JP6857361B2 - Lithium copper-based composite oxide - Google Patents

Lithium copper-based composite oxide Download PDF

Info

Publication number
JP6857361B2
JP6857361B2 JP2017560381A JP2017560381A JP6857361B2 JP 6857361 B2 JP6857361 B2 JP 6857361B2 JP 2017560381 A JP2017560381 A JP 2017560381A JP 2017560381 A JP2017560381 A JP 2017560381A JP 6857361 B2 JP6857361 B2 JP 6857361B2
Authority
JP
Japan
Prior art keywords
lithium
copper
positive electrode
composition formula
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017560381A
Other languages
Japanese (ja)
Other versions
JPWO2017119410A1 (en
Inventor
タイタス ニャムワロ マセセ
タイタス ニャムワロ マセセ
鹿野 昌弘
昌弘 鹿野
栄部 比夏里
比夏里 栄部
博 妹尾
博 妹尾
光 佐野
光 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JPWO2017119410A1 publication Critical patent/JPWO2017119410A1/en
Application granted granted Critical
Publication of JP6857361B2 publication Critical patent/JP6857361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/32Alkali metal silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G17/00Compounds of germanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

本発明は、リチウム銅系複合酸化物に関する。 The present invention relates to a lithium copper-based composite oxide.

リチウムイオン二次電池は、エネルギー貯蔵デバイスの中で最も重要な位置を占めるものであり、近年では、プラグインハイブリッド用自動車電池等、その用途が拡大しつつある。 Lithium-ion secondary batteries occupy the most important position among energy storage devices, and in recent years, their applications have been expanding, such as automobile batteries for plug-in hybrids.

リチウムイオン二次電池の正極に関し、現在、LiCoO、LiNi1/3Co1/3Mn1/3などの正極活物質が主流となっている(非特許文献1及び2)。しかしながら、これらの正極活物質を含む正極材料には、コバルト、ニッケルなどの希少金属が大量に含まれているため高価であり、さらに、助燃性も強いため発熱事故等を引き起こす要因となっている。Regarding the positive electrode of a lithium ion secondary battery, positive electrode active materials such as LiCoO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 are currently the mainstream (Non-Patent Documents 1 and 2). However, the positive electrode material containing these positive electrode active materials is expensive because it contains a large amount of rare metals such as cobalt and nickel, and also has strong flammability, which causes a heat generation accident and the like. ..

そこで、現在では、このような問題を解決可能な正極活物質として、自然界に豊富に存在する元素である鉄を利用し、強固なポリアニオン酸骨格により助燃性を大幅に抑制した鉄系ポリ(オキソ)アニオン材料、特にLiFePOが注目されている(非特許文献3)。Therefore, at present, as a positive electrode active material that can solve such a problem, iron, which is an element abundant in nature, is used, and an iron-based poly (oxo) whose flammability is significantly suppressed by a strong polyanic acid skeleton. ) Anionic materials, especially LiFePO 4, are attracting attention (Non-Patent Document 3).

Solid State Ionics,3−4,171−174,1981Solid State Inics, 3-4, 171-174, 1981 Electrochem.Soc.,151(6),A914−A921,2004Electrochem. Soc. , 151 (6), A914-A9211,2004 Electrochem.Soc.,144(4),1188−1194,1997Electrochem. Soc. , 144 (4), 1188-1194, 1997

しかしながら、上記したLiFePO等の正極材料は、構造中に充放電反応に関与しないポリアニオンユニットを有していることから、理論容量が274mAh/gのLiCoOなどの単純酸化物系正極材料よりも低く、また、実用化に際しては微粒子化、カーボンとの複合化などを行うため、タップ密度も必然的に低下する。However, since the positive electrode material such as LiFePO 4 described above has a polyanion unit in the structure that does not participate in the charge / discharge reaction, it is more than a simple oxide-based positive electrode material such as LiCoO 2 having a theoretical capacity of 274 mAh / g. It is low, and when it is put into practical use, it is made into fine particles and compounded with carbon, so that the tap density is inevitably lowered.

本発明は、このような現状に鑑みてなされたものであり、リチウムイオン二次電池用正極活物質として有用な新規化合物を提供することを目的とする。 The present invention has been made in view of such a current situation, and an object of the present invention is to provide a novel compound useful as a positive electrode active material for a lithium ion secondary battery.

本発明者らは、上記した本発明の課題を解決すべく鋭意検討を重ねてきた。その結果、特定の組成を有するリチウム銅系複合酸化物の合成に成功した。さらに、当該リチウム銅系複合酸化物は、リチウムイオンの挿入及び脱離が可能であり、リチウムイオン二次電池用正極活物質として使用できる程度に高い理論充放電容量を示すことを見出した。本発明者らは、これらの知見に基づいてさらなる研究を重ねることにより本発明を完成させるに至った。 The present inventors have made extensive studies to solve the above-mentioned problems of the present invention. As a result, we succeeded in synthesizing a lithium copper-based composite oxide having a specific composition. Furthermore, it has been found that the lithium-copper composite oxide is capable of inserting and removing lithium ions and exhibits a theoretical charge / discharge capacity high enough to be used as a positive electrode active material for a lithium ion secondary battery. The present inventors have completed the present invention by repeating further research based on these findings.

即ち、本発明は、代表的には以下の項に記載の主題を包含する。
項1.
組成式(1):
LiCu
[組成式(1)中、XはSi又はGeを示す。yは0.8〜1.2を示す。mは1.5〜2.5を示す。nは3.9〜4.1を示す。]
で表されるリチウム銅系複合酸化物。
項2.
単斜晶構造を有する、上記項1に記載のリチウム銅系複合酸化物。
項3.
平均粒子径が0.1〜100μmである、上記項1又は2に記載のリチウム銅系複合酸化物。
項4.
リチウムと、銅と、ケイ素又はゲルマニウムと、酸素とを含む混合物を加熱する工程を含む、上記項1〜3のいずれかに記載のリチウム銅系複合酸化物の製造方法。
項5.
加熱温度が600℃以上である、上記項4に記載の方法。
項6.
組成式(2):
LiCu
[組成式(2)中、XはSi、Ti又はGeを示す。yは0.8〜1.2を示す。mは1.5〜2.5を示す。nは3.9〜4.1を示す。]
で表されるリチウム銅系複合酸化物を含む、リチウムイオン二次電池用正極活物質。
項7.
上記項6に記載のリチウムイオン二次電池用正極活物質を含む、リチウムイオン二次電池用正極。
項8.
さらに、導電助剤を含む、上記項7に記載のリチウムイオン二次電池用正極。
項9.
上記項7又は8に記載のリチウムイオン二次電池用正極を含む、リチウムイオン二次電池。
That is, the present invention typically includes the subjects described in the following sections.
Item 1.
Composition formula (1):
Li m Cu y X 1 O n
[In the composition formula (1), X 1 represents Si or Ge. y indicates 0.8 to 1.2. m indicates 1.5 to 2.5. n indicates 3.9 to 4.1. ]
Lithium-copper composite oxide represented by.
Item 2.
Item 2. The lithium copper-based composite oxide according to Item 1, which has a monoclinic structure.
Item 3.
Item 2. The lithium copper-based composite oxide according to Item 1 or 2, wherein the average particle size is 0.1 to 100 μm.
Item 4.
The method for producing a lithium copper-based composite oxide according to any one of Items 1 to 3 above, which comprises a step of heating a mixture containing lithium, copper, silicon or germanium, and oxygen.
Item 5.
Item 4. The method according to Item 4, wherein the heating temperature is 600 ° C. or higher.
Item 6.
Composition formula (2):
Li m Cu y X 2 O n
[In the composition formula (2), X 2 represents Si, Ti or Ge. y indicates 0.8 to 1.2. m indicates 1.5 to 2.5. n indicates 3.9 to 4.1. ]
A positive electrode active material for a lithium ion secondary battery containing a lithium copper-based composite oxide represented by.
Item 7.
A positive electrode for a lithium ion secondary battery, which comprises the positive electrode active material for a lithium ion secondary battery according to item 6 above.
Item 8.
The positive electrode for a lithium ion secondary battery according to Item 7, further comprising a conductive auxiliary agent.
Item 9.
A lithium ion secondary battery including the positive electrode for the lithium ion secondary battery according to item 7 or 8 above.

本発明のリチウム銅系複合酸化物は、リチウムイオンを挿入及び脱離することができるため、リチウムイオン二次電池用正極活物質として使用することができる。特に、本発明のリチウム銅系複合酸化物を正極活物質として用いることにより、高い充放電容量を発揮するリチウムイオン二次電池とすることができる。 Since the lithium copper-based composite oxide of the present invention can insert and desorb lithium ions, it can be used as a positive electrode active material for a lithium ion secondary battery. In particular, by using the lithium copper-based composite oxide of the present invention as the positive electrode active material, a lithium ion secondary battery exhibiting a high charge / discharge capacity can be obtained.

実施例1で得られたLiCuSiOのX線回折パターンを示す図である。It is a figure which shows the X-ray diffraction pattern of Li 2 CuSiO 4 obtained in Example 1. FIG. 実施例1において焼成温度を900℃とした場合に得られたLiCuSiOのX線回折パターンと、原料化合物であるCuO、並びに原料化合物であるLiCO及びSiOから生成されるLiSiOのX線回折パターンとを比較した結果を示す図である。 The X-ray diffraction pattern of Li 2 CuSiO 4 obtained when the firing temperature was set to 900 ° C. in Example 1, CuO as a raw material compound, and Li produced from Li 2 CO 3 and SiO 2 as raw material compounds. It is a figure which shows the result of having compared with the X-ray diffraction pattern of 2 SiO 3. 実施例1において焼成温度を900℃とした場合に得られたLiCuSiOの走査型電子顕微鏡(SEM)による観察結果を示す図である。It is a figure which shows the observation result by the scanning electron microscope (SEM) of Li 2 CuSiO 4 obtained when the firing temperature was 900 degreeC in Example 1. FIG. 実施例2で得られたLiCuGeOのX線回折パターンを示す図である。It is a figure which shows the X-ray diffraction pattern of Li 2 CuGeO 4 obtained in Example 2. FIG. 実施例2において焼成温度を900℃とした場合に得られたLiCuGeOの走査型電子顕微鏡(SEM)による観察結果を示す図である。It is a figure which shows the observation result by the scanning electron microscope (SEM) of Li 2 CuGeO 4 obtained when the firing temperature was set to 900 degreeC in Example 2. FIG. 実施例3及び4で用いた試験用セルの断面図である。It is sectional drawing of the test cell used in Examples 3 and 4. 実施例3で行った開回路電位の測定結果を示す図である。It is a figure which shows the measurement result of the open circuit potential performed in Example 3. 実施例3で行った充放電特性の測定結果(C/20レート)を示す図である。It is a figure which shows the measurement result (C / 20 rate) of the charge / discharge characteristic performed in Example 3. FIG. 実施例3で行った充放電特性の測定結果(C/50レート)を示す図である。It is a figure which shows the measurement result (C / 50 rate) of the charge / discharge characteristic performed in Example 3. カーボンとPVdFのみの充放電結果を示す図である。It is a figure which shows the charge / discharge result of only carbon and PVdF. 実施例4で行った開回路電位の測定結果を示す図である。It is a figure which shows the measurement result of the open circuit potential performed in Example 4. 実施例4で行った充放電特性の測定結果(C/50レート)を示す図である。It is a figure which shows the measurement result (C / 50 rate) of the charge / discharge characteristic performed in Example 4.

以下、本発明について詳細に説明する。なお、本明細書において、数値範囲を示す場合、当該数値範囲はいずれも両端の数値を含む。 Hereinafter, the present invention will be described in detail. In the present specification, when a numerical range is indicated, the numerical range includes the numerical values at both ends.

1.リチウム銅系複合酸化物
本発明のリチウム銅系複合酸化物は、組成式(1):
LiCu
[組成式(1)中、XはSi又はGeを示す。yは0.8〜1.2を示す。mは1.5〜2.5を示す。nは3.9〜4.1を示す。]
で表される化合物である。なお、以下において、当該化合物を「組成式(1)で表される化合物」と記載する場合がある。
1. 1. Lithium-Copper Composite Oxide The lithium-copper composite oxide of the present invention has a composition formula (1):
Li m Cu y X 1 O n
[In the composition formula (1), X 1 represents Si or Ge. y indicates 0.8 to 1.2. m indicates 1.5 to 2.5. n indicates 3.9 to 4.1. ]
It is a compound represented by. In the following, the compound may be referred to as "a compound represented by the composition formula (1)".

上記組成式(1)において、Xは、ケイ素(Si)又はゲルマニウム(Ge)である。In the composition formula (1), X 1 is silicon (Si) or germanium (Ge).

上記組成式(1)において、yは0.8〜1.2であり、高容量化の観点からは0.8〜1.0が好ましい。 In the composition formula (1), y is 0.8 to 1.2, preferably 0.8 to 1.0 from the viewpoint of increasing the capacity.

上記組成式(1)において、mは1.5〜2.5であり、リチウムイオンの挿入及び脱離のし易さ、並びに容量及び電位の観点からは1.75〜2.25が好ましい。また、上記一般式(1)において、nは3.9〜4.1であり、リチウムイオンの挿入及び脱離のし易さ、並びに容量及び電位の観点からは3.95〜4.05が好ましい。 In the above composition formula (1), m is 1.5 to 2.5, and 1.75 to 2.25 is preferable from the viewpoint of ease of insertion and desorption of lithium ions, as well as capacity and potential. Further, in the above general formula (1), n is 3.9 to 4.1, and 3.95 to 4.05 is obtained from the viewpoint of ease of insertion and desorption of lithium ions, as well as capacitance and potential. preferable.

上記組成式(1)で表される化合物としては、具体的には、LiCuSiO、LiCuGeOなどが挙げられる。中でも、後述するリチウムイオン二次電池用正極活物質として用いる場合、性能(特に、容量向上)の観点からは、LiCuSiOが好ましい。Specific examples of the compound represented by the composition formula (1) include Li 2 CuSiO 4 and Li 2 CuGeO 4 . Among them, when used as a positive electrode active material for a lithium ion secondary battery, which will be described later, Li 2 CuSiO 4 is preferable from the viewpoint of performance (particularly, capacity improvement).

上記組成式(1)で表される化合物の結晶構造は、単斜晶構造であることが好ましい。特に、上記組成式(1)で表される化合物は、単斜晶構造が主相であることが好ましい。上記組成式(1)で表される化合物において、主相である結晶構造の存在量は特に限定的ではなく、上記組成式(1)で表される化合物全体を基準として80mol%以上であることが好ましく、90mol%以上であることがより好ましい。このため、上記組成式(1)で表される化合物は、単相の結晶構造からなる材料とすることもできるし、本発明の効果を損なわない範囲で、他の結晶構造を有する材料とすることもできる。なお、上記組成式(1)で表される化合物の結晶構造は、X線回折測定により確認することができる。 The crystal structure of the compound represented by the composition formula (1) is preferably a monoclinic structure. In particular, the compound represented by the composition formula (1) preferably has a monoclinic structure as the main phase. In the compound represented by the composition formula (1), the abundance of the crystal structure as the main phase is not particularly limited, and is 80 mol% or more based on the entire compound represented by the composition formula (1). Is preferable, and 90 mol% or more is more preferable. Therefore, the compound represented by the composition formula (1) can be a material having a single-phase crystal structure, or a material having another crystal structure as long as the effects of the present invention are not impaired. You can also do it. The crystal structure of the compound represented by the composition formula (1) can be confirmed by X-ray diffraction measurement.

上記組成式(1)で表される化合物は、CuKα線によるX線回折図において、種々の位置にピークを有する。 The compound represented by the composition formula (1) has peaks at various positions in the X-ray diffraction pattern using CuKα rays.

例えば、LiCuSiOは、回折角2θが18.3〜19.3°、26.3〜27.0°、27.1〜28.0°、28.8〜29.6°、29.9〜30.5°、32.3〜32.9°、35.5〜36.7°、38.6〜39.9°、40.8〜42.0°、43.6〜45.2°、45.7〜46.8°、47.1〜48.3°、48.5〜49.8°、50.8〜52.7°、53.7〜55.2°、55.6〜58.2°、62.3〜63.4°、63.8〜65.1°、及び68.6〜71.0°等にピークを有することが好ましい。For example, Li 2 CuSiO 4 has a diffraction angle of 2θ of 18.3 to 19.3 °, 26.3 to 27.0 °, 27.1 to 28.0 °, 28.8 to 29.6 °, 29. 9 to 30.5 °, 32.3 to 32.9 °, 35.5 to 36.7 °, 38.6 to 39.9 °, 40.8 to 42.0 °, 43.6 to 45.2 °, 45.7-46.8 °, 47.1-48.3 °, 48.5-49.8 °, 50.8-52.7 °, 53.7-55.2 °, 55.6 It is preferable to have peaks at ~ 58.2 °, 62.3-63.4 °, 63.8-65.1 °, 68.6-71.0 ° and the like.

また、例えば、LiCuGeOは、回折角2θが17.9〜19.2°、24.9〜27.0°、31.6〜33.4°、35.0〜39.2°、41.2〜43.4°、49.2〜51.5°、53.2〜55.4°、56.9〜58.7°、60.1〜62.7°、63.7〜65.2°、66.5〜68.5°、69.9〜71.7°、72.7〜75.5°、及び76.9〜78.4°等にピークを有することが好ましい。Further, for example, Li 2 CuGeO 4 has a diffraction angle of 2θ of 17.9 to 19.2 °, 24.9 to 27.0 °, 31.6 to 33.4 °, and 35.0 to 39.2 °. 41.2 to 43.4 °, 49.2 to 51.5 °, 53.2 to 55.4 °, 56.9 to 58.7 °, 60 to 62.7 °, 63.7 to 65 It is preferable to have peaks at .2 °, 66.5 to 68.5 °, 69.9 to 71.7 °, 72.7 to 75.5 °, 76.9 to 78.4 ° and the like.

上記組成式(1)で表される化合物の平均粒子径は特に限定的ではなく、Li拡散経路の短縮化の観点から、0.1〜100μmであることが好ましく、0.1〜50μmであることがより好ましい。なお、上記組成式(1)で表される化合物の平均粒子径は、走査型電子顕微鏡(SEM)により確認することができる。The average particle size of the compound represented by the composition formula (1) is not particularly limited, and is preferably 0.1 to 100 μm, preferably 0.1 to 50 μm, from the viewpoint of shortening the Li + diffusion path. More preferably. The average particle size of the compound represented by the composition formula (1) can be confirmed by a scanning electron microscope (SEM).

2.リチウム銅系複合酸化物の製造方法
上記組成式(1)で表される化合物の製造方法において、リチウムと、銅と、ケイ素又はゲルマニウムと、酸素とを含む混合物を得るための原料化合物としては、最終的に混合物中にリチウムと、銅と、ケイ素又はゲルマニウムと、酸素とが所定の比率で含まれていればよく、例えば、リチウム含有化合物、銅含有化合物、ケイ素含有化合物又はゲルマニウム含有化合物、酸素含有化合物等を用いることができる。
2. Method for Producing Lithium Copper Composite Oxide In the method for producing the compound represented by the above composition formula (1), as a raw material compound for obtaining a mixture containing lithium, copper, silicon or germanium, and oxygen, the raw material compound is used. Finally, the mixture may contain lithium, copper, silicon or germanium, and oxygen in a predetermined ratio, for example, lithium-containing compound, copper-containing compound, silicon-containing compound or germanium-containing compound, oxygen. Containing compounds and the like can be used.

リチウム含有化合物、銅含有化合物、ケイ素含有化合物、ゲルマニウム含有化合物、酸素含有化合物等の各化合物の種類については特に限定的ではなく、リチウム、銅、ケイ素又はゲルマニウム、及び酸素の各元素を1種類ずつ含む4種類又はそれ以上の化合物を混合して用いることもでき、また、リチウム、銅、ケイ素又はゲルマニウム、及び酸素のうち、2種類又はそれ以上の元素を同時に含む化合物を原料の一部として用い、4種類未満の化合物を混合して用いることもできる。 The type of each compound such as a lithium-containing compound, a copper-containing compound, a silicon-containing compound, a germanium-containing compound, and an oxygen-containing compound is not particularly limited, and one type of each element of lithium, copper, silicon or germanium, and oxygen is used. It is also possible to use a mixture of four or more compounds containing the same, and a compound containing two or more elements of lithium, copper, silicon or germanium, and oxygen at the same time is used as a part of the raw material. It is also possible to mix and use less than four kinds of compounds.

これらの原料化合物としては、リチウム、銅、ケイ素又はゲルマニウム、及び酸素以外の金属元素(特に、希少金属元素)を含まない化合物が好ましい。また、原料化合物中に含まれるリチウム、銅、ケイ素又はゲルマニウム、及び酸素の各元素以外の元素については、後述する加熱処理により離脱又は揮発していくものであることが好ましい。 As these raw material compounds, compounds containing no metal elements other than lithium, copper, silicon or germanium, and oxygen (particularly, rare metal elements) are preferable. Further, it is preferable that the elements other than each element of lithium, copper, silicon or germanium, and oxygen contained in the raw material compound are separated or volatilized by the heat treatment described later.

このような原料化合物の具体例としては以下の化合物が挙げられる。 Specific examples of such a raw material compound include the following compounds.

リチウム含有化合物としては、金属リチウム(Li);臭化リチウム(LiBr);シュウ酸リチウム(Li);フッ化リチウム(LiF);ヨウ化リチウム(LiI);硫酸リチウム(LiSO);メトキシリチウム(LiOCH);エトキシリチウム(LiOC);水酸化リチウム(LiOH);硝酸リチウム(LiNO);塩化リチウム(LiCl);炭酸リチウム(LiCO)などが挙げられる。Lithium-containing compounds include metallic lithium (Li); lithium bromide (LiBr); lithium oxalate (Li 2 C 2 O 4 ); lithium fluoride (LiF); lithium iodide (Li I); lithium sulfate (Li 2). SO 4 ); methoxylithium (LiOCH 3 ); ethoxylithium (LiOC 2 H 5 ); lithium hydroxide (LiOH); lithium nitrate (LiNO 3 ); lithium chloride (LiCl); lithium carbonate (Li 2 CO 3 ), etc. Can be mentioned.

銅含有化合物としては、金属銅(Cu);酸化銅(CuO);水酸化銅(Cu(OH));炭酸銅(CuCO);シュウ酸銅(CuC);硫酸銅(CuSO);塩化銅(CuCl);ヨウ化銅(CuI);酢酸銅(Cu(CHCOO))等が挙げられる。Copper-containing compounds include metallic copper (Cu); copper oxide (CuO); copper hydroxide (Cu (OH) 2 ); copper carbonate (CuCO 3 ); copper oxalate (CuC 2 O 4 ); copper sulfate (CuSO). 4 ); Copper chloride (CuCl 2 ); Copper iodide (CuI); Copper acetate (Cu (CH 3 COO) 2 ) and the like.

ケイ素含有化合物としては、ケイ素(Si);酸化ケイ素(SiO);テトラエトキシシラン(SiOC);テトラメトキシシラン(SiOCH);四臭化ケイ素(SiBr);四塩化ケイ素(SiCl)等が挙げられる。Silicon-containing compounds include silicon (Si); silicon oxide (SiO 2 ); tetraethoxysilane (SiOC 2 H 5 ); tetramethoxysilane (SiOCH 3 ); silicon tetrabromide (SiBr 4 ); silicon tetrachloride (SiCl). 4 ) and the like.

ゲルマニウム化合物としては、ゲルマニウム(Ge);酸化ゲルマニウム(GeO);四塩化ゲルマニウム(GeCl);四臭化ゲルマニウム(GeBr);四ヨウ化ゲルマニウム(GeI);四フッ化ゲルマニウム(GeF);二硫化ゲルマニウム(GeS)等が挙げられる。Germanium compounds include germanium (Ge); germanium oxide (GeO 2 ); germanium tetrachloride (GeCl 4 ); germanium tetrabromide (GeBr 4 ); germanium tetraiodide (GeI 4 ); germanium tetrafluoride (GeF 4). ); Germanium disulfide (GeS 2 ) and the like can be mentioned.

酸素含有化合物としては、水酸化リチウム(LiOH);炭酸リチウム(LiCO);酸化銅(CuO);水酸化銅(Cu(OH));炭酸銅(CuCO);シュウ酸銅(CuC);酸化ケイ素(SiO);酸化ゲルマニウム(GeO)等が挙げられる。As oxygen-containing compounds, lithium hydroxide (LiOH); lithium carbonate (Li 2 CO 3 ); copper oxide (CuO); copper hydroxide (Cu (OH) 2 ); copper carbonate (CuCO 3 ); copper oxalate ( CuC 2 O 4 ); silicon oxide (SiO 2 ); germanium oxide (GeO 2 ) and the like.

なお、これらの原料化合物は水和物を使用することもできる。 In addition, hydrate can also be used as these raw material compounds.

また、本発明の製造方法において使用する原料化合物は、市販品を用いることもできるし、適宜合成して使用することもできる。各原料化合物を合成する場合の合成方法は特に限定的ではなく、公知の方法に従って行うことができる。 Further, as the raw material compound used in the production method of the present invention, a commercially available product can be used, or it can be appropriately synthesized and used. The synthesis method for synthesizing each raw material compound is not particularly limited, and can be carried out according to a known method.

これら原料化合物の形状については特に制限されない。取り扱い易さ等の観点からは、粉末状であることが好ましい。また、反応性の観点からは、粒子が微細である方が好ましく、平均粒子径が1μm以下(好ましくは、10〜500nm程度、特に好ましくは60〜80nm程度)の粉末状であることがより好ましい。なお、原料化合物の平均粒子径は、走査型電子顕微鏡(SEM)により測定することができる。 The shape of these raw material compounds is not particularly limited. From the viewpoint of ease of handling and the like, it is preferably in the form of powder. From the viewpoint of reactivity, the particles are preferably fine, and more preferably in the form of a powder having an average particle diameter of 1 μm or less (preferably about 10 to 500 nm, particularly preferably about 60 to 80 nm). .. The average particle size of the raw material compound can be measured by a scanning electron microscope (SEM).

リチウムと、銅と、ケイ素又はゲルマニウムと、酸素とを含む混合物は、上記した原料化合物のうち必要な材料を混合することにより得ることができる。 A mixture containing lithium, copper, silicon or germanium, and oxygen can be obtained by mixing a necessary material among the above-mentioned raw material compounds.

各原料化合物の混合割合については特に限定的ではなく、最終生成物である上記組成式(1)で表される化合物が有する組成となるように混合することが好ましい。原料化合物の混合割合は、原料化合物に含まれる各元素の比率が、生成される上記組成式(1)で表される化合物中の各元素の比率と同一となるようにすることが好ましい。 The mixing ratio of each raw material compound is not particularly limited, and it is preferable to mix the final product so as to have the composition of the compound represented by the above composition formula (1). The mixing ratio of the raw material compound is preferably such that the ratio of each element contained in the raw material compound is the same as the ratio of each element in the produced compound represented by the composition formula (1).

リチウムと、銅と、ケイ素又はゲルマニウムと、酸素とを含む混合物を調製するための方法としては特に限定的ではなく、各原料化合物を均一に混合できる方法を採用することができる。例えば、乳鉢混合、メカニカルミリング処理、共沈法、各原料化合物を溶媒中に分散させた後に混合する方法、各原料化合物を溶媒中で一度に分散させて混合させる方法などを採用することができる。これらの中でも、乳鉢混合を採用することにより簡便な方法によって混合物を得ることができ、また、共沈法を採用することにより均一な混合物を得ることができる。 The method for preparing a mixture containing lithium, copper, silicon or germanium, and oxygen is not particularly limited, and a method capable of uniformly mixing each raw material compound can be adopted. For example, mortar mixing, mechanical milling treatment, coprecipitation method, a method of dispersing each raw material compound in a solvent and then mixing, a method of dispersing each raw material compound in a solvent at once and mixing, etc. can be adopted. .. Among these, a mixture can be obtained by a simple method by adopting the mortar mixing method, and a uniform mixture can be obtained by adopting the coprecipitation method.

また、混合手段としてメカニカルミリング処理を行う場合、メカニカルミリング装置としては、例えば、ボールミル、振動ミル、ターボミル、ディスクミル等を用いることができ、中でもボールミルが好ましい。また、メカニカルミリング処理を行う場合には、混合と加熱とを同時に行うことが好ましい。 When the mechanical milling process is performed as the mixing means, for example, a ball mill, a vibration mill, a turbo mill, a disc mill or the like can be used as the mechanical milling device, and a ball mill is particularly preferable. Further, when performing the mechanical milling treatment, it is preferable to perform mixing and heating at the same time.

混合時及び加熱時の雰囲気は特に限定的ではなく、例えば、アルゴン、窒素等の不活性ガス雰囲気、水素ガス雰囲気などを採用することができる。また、真空等の減圧下で混合及び加熱を行ってもよい。 The atmosphere at the time of mixing and heating is not particularly limited, and for example, an atmosphere of an inert gas such as argon or nitrogen, an atmosphere of hydrogen gas, or the like can be adopted. Further, mixing and heating may be performed under reduced pressure such as vacuum.

リチウムと、銅と、ケイ素又はゲルマニウムと、酸素とを含む混合物を加熱する際に、加熱温度としては特に限定的ではなく、得られる上記組成式(1)で表される化合物の結晶性及び電極特性(容量及び電位)をより向上させる観点から、600℃以上とすることが好ましく、700℃以上とすることがより好ましく、800℃以上とすることがさらに好ましく、900℃以上とすることが特に好ましい。なお、加熱温度の上限については特に限定的ではなく、上記組成式(1)で表される化合物の製造を容易に行うことができる程度の温度(例えば、1500℃程度)であればよい。換言すると、加熱温度としては、600〜1500℃とすることが好ましく、700〜1500℃とすることがより好ましく、800〜1500℃とすることがさらに好ましく、900〜1500℃とすることが特に好ましい。 When heating a mixture containing lithium, copper, silicon or germanium, and oxygen, the heating temperature is not particularly limited, and the obtained compound crystallinity and electrode represented by the composition formula (1) can be obtained. From the viewpoint of further improving the characteristics (capacity and potential), the temperature is preferably 600 ° C. or higher, more preferably 700 ° C. or higher, further preferably 800 ° C. or higher, and particularly preferably 900 ° C. or higher. preferable. The upper limit of the heating temperature is not particularly limited, and may be a temperature (for example, about 1500 ° C.) at which the compound represented by the above composition formula (1) can be easily produced. In other words, the heating temperature is preferably 600 to 1500 ° C, more preferably 700 to 1500 ° C, further preferably 800 to 1500 ° C, and particularly preferably 900 to 1500 ° C. ..

3.リチウムイオン二次電池用正極活物質
上記組成式(1)で表される化合物は、上記した組成及び結晶構造を有しているため、リチウムイオンを挿入及び脱離できることから、リチウムイオン二次電池用正極活物質として用いることができる。従って、本発明は、上記組成式(1)で表される化合物を含むリチウムイオン二次電池用正極活物質を包含する。
3. 3. Positive Electrode Active Material for Lithium Ion Secondary Battery The compound represented by the above composition formula (1) has the above composition and crystal structure, and therefore lithium ions can be inserted and removed. Therefore, the lithium ion secondary battery It can be used as a positive electrode active material for use. Therefore, the present invention includes a positive electrode active material for a lithium ion secondary battery containing the compound represented by the above composition formula (1).

また、組成式(1)で表される化合物又のみならず、組成式(2):
LiCu
[組成式(2)中、XはSi、Ti又はGeを示す。yは0.8〜1.2を示す。mは1.5〜2.5を示す。nは3.9〜4.1を示す。]
で表されるリチウム銅系複合酸化物も、リチウムイオンを挿入及び脱離できることから、リチウムイオン二次電池用正極活物質として用いることができる。なお、以下において、上記組成式(2)で表されるリチウム銅系複合酸化物を「上記組成式(2)で表される化合物」と記載する場合がある。従って、本発明は、上記組成式(2)で表される化合物を含むリチウムイオン二次電池用正極活物質を包含する。
Further, not only the compound represented by the composition formula (1), but also the composition formula (2):
Li m Cu y X 2 O n
[In the composition formula (2), X 2 represents Si, Ti or Ge. y indicates 0.8 to 1.2. m indicates 1.5 to 2.5. n indicates 3.9 to 4.1. ]
Since the lithium copper-based composite oxide represented by is also capable of inserting and removing lithium ions, it can be used as a positive electrode active material for a lithium ion secondary battery. In the following, the lithium copper-based composite oxide represented by the composition formula (2) may be referred to as "a compound represented by the composition formula (2)". Therefore, the present invention includes a positive electrode active material for a lithium ion secondary battery containing the compound represented by the above composition formula (2).

なお、以下において、上記組成式(1)で表される化合物を含むリチウムイオン二次電池用正極活物質及び上記組成式(2)で表される化合物を含むリチウムイオン二次電池用正極活物質をまとめて、「本発明のリチウムイオン二次電池用正極活物質」と記載する場合がある。 In the following, the positive electrode active material for a lithium ion secondary battery containing the compound represented by the composition formula (1) and the positive electrode active material for a lithium ion secondary battery containing the compound represented by the composition formula (2). May be collectively referred to as "the positive electrode active material for the lithium ion secondary battery of the present invention".

上記組成式(2)において、Xは、ケイ素(Si)、チタン(Ti)又はゲルマニウム(Ge)である。In the composition formula (2), X 2 is silicon (Si), titanium (Ti) or germanium (Ge).

上記組成式(2)において、yは0.8〜1.2であり、高容量化の観点からは0.8〜1.0が好ましい。 In the composition formula (2), y is 0.8 to 1.2, preferably 0.8 to 1.0 from the viewpoint of increasing the capacity.

上記組成式(2)において、mは1.5〜2.5であり、リチウムイオンの挿入及び脱離のし易さ、並びに容量及び電位の観点からは1.75〜2.25が好ましい。nは3.9〜4.1であり、リチウムイオンの挿入及び脱離のし易さ、並びに容量及び電位の観点からは3.95〜4.05が好ましい。 In the above composition formula (2), m is 1.5 to 2.5, and 1.75 to 2.25 is preferable from the viewpoint of ease of insertion and desorption of lithium ions, as well as capacity and potential. n is 3.9 to 4.1, and 3.95 to 4.05 is preferable from the viewpoint of ease of insertion and desorption of lithium ions, as well as capacitance and potential.

上記組成式(2)で表される化合物としては、具体的には、LiCuSiO、LiCuTiO、LiCuGeOなどが挙げられる。中でも、リチウムイオン二次電池用正極活物質として用いた場合の性能(特に容量向上)の観点からは、LiCuSiOが好ましい。Specific examples of the compound represented by the composition formula (2) include Li 2 CuSiO 4 , Li 2 CuTiO 4 , and Li 2 CuGeO 4 . Among them, Li 2 CuSiO 4 is preferable from the viewpoint of performance (particularly capacity improvement) when used as a positive electrode active material for a lithium ion secondary battery.

上記組成式(2)で表される化合物の結晶構造は、単斜晶構造であることが好ましい。特に、上記組成式(2)で表される化合物は、単斜晶構造が主相であることが好ましい。上記組成式(2)で表される化合物において、主相である結晶構造の存在量は特に限定的ではなく、上記組成式(2)で表される化合物全体を基準として80mol%以上であることが好ましく、90mol%以上であることがより好ましい。このため、上記組成式(2)で表される化合物は、単相の結晶構造からなる材料とすることもできるし、本発明の効果を損なわない範囲で、他の結晶構造を有する材料とすることもできる。なお、上記組成式(2)で表される化合物の結晶構造は、X線回折測定により確認することができる。 The crystal structure of the compound represented by the composition formula (2) is preferably a monoclinic structure. In particular, the compound represented by the composition formula (2) preferably has a monoclinic structure as the main phase. In the compound represented by the composition formula (2), the abundance of the crystal structure as the main phase is not particularly limited, and is 80 mol% or more based on the entire compound represented by the composition formula (2). Is preferable, and 90 mol% or more is more preferable. Therefore, the compound represented by the composition formula (2) can be a material having a single-phase crystal structure, or a material having another crystal structure as long as the effects of the present invention are not impaired. You can also do it. The crystal structure of the compound represented by the composition formula (2) can be confirmed by X-ray diffraction measurement.

上記組成式(2)で表される化合物は、CuKα線によるX線回折図において、種々の位置にピークを有する。 The compound represented by the composition formula (2) has peaks at various positions in the X-ray diffraction pattern using CuKα rays.

例えば、LiCuSiOは、回折角2θが18.3〜19.3°、26.3〜27.0°、27.1〜28.0°、28.8〜29.6°、29.9〜30.5°、32.3〜32.9°、35.5〜36.7°、38.6〜39.9°、40.8〜42.0°、43.6〜45.2°、45.7〜46.8°、47.1〜48.3°、48.5〜49.8°、50.8〜52.7°、53.7〜55.2°、55.6〜58.2°、62.3〜63.4°、63.8〜65.1°、及び68.6〜71.0°等にピークを有することが好ましい。For example, Li 2 CuSiO 4 has a diffraction angle of 2θ of 18.3 to 19.3 °, 26.3 to 27.0 °, 27.1 to 28.0 °, 28.8 to 29.6 °, 29. 9 to 30.5 °, 32.3 to 32.9 °, 35.5 to 36.7 °, 38.6 to 39.9 °, 40.8 to 42.0 °, 43.6 to 45.2 °, 45.7-46.8 °, 47.1-48.3 °, 48.5-49.8 °, 50.8-52.7 °, 53.7-55.2 °, 55.6 It is preferable to have peaks at ~ 58.2 °, 62.3-63.4 °, 63.8-65.1 °, 68.6-71.0 ° and the like.

また、例えば、LiCuGeOは、回折角2θが17.9〜19.2°、24.9〜27.0°、31.6〜33.4°、35.0〜39.2°、41.2〜43.4°、49.2〜51.5°、53.2〜55.4°、56.9〜58.7°、60.1〜62.7°、63.7〜65.2°、66.5〜68.5°、69.9〜71.7°、72.7〜75.5°、及び76.9〜78.4°等にピークを有することが好ましい。Further, for example, Li 2 CuGeO 4 has a diffraction angle of 2θ of 17.9 to 19.2 °, 24.9 to 27.0 °, 31.6 to 33.4 °, and 35.0 to 39.2 °. 41.2 to 43.4 °, 49.2 to 51.5 °, 53.2 to 55.4 °, 56.9 to 58.7 °, 60 to 62.7 °, 63.7 to 65 It is preferable to have peaks at .2 °, 66.5 to 68.5 °, 69.9 to 71.7 °, 72.7 to 75.5 °, 76.9 to 78.4 ° and the like.

上記組成式(2)で表される化合物の平均粒子径は特に限定的ではなく、Li拡散経路の短縮化の観点から0.1〜100μmであることが好ましく、0.1〜50μmであることがより好ましい。なお、上記組成式(2)で表される化合物の平均粒子径は、走査型電子顕微鏡(SEM)により確認することができる。The average particle size of the compound represented by the composition formula (2) is not particularly limited, and is preferably 0.1 to 100 μm, preferably 0.1 to 50 μm, from the viewpoint of shortening the Li + diffusion path. Is more preferable. The average particle size of the compound represented by the composition formula (2) can be confirmed by a scanning electron microscope (SEM).

上記組成式(2)で表される化合物の製造方法は、リチウムと、銅と、上記Xと、酸素とを含む混合物を加熱する工程を含む。Method for producing a compound represented by the formula (2) include lithium, copper, and the X 2, the step of heating a mixture comprising oxygen.

リチウム含有化合物、銅含有化合物、X含有化合物、酸素含有化合物等の各化合物の種類については特に限定的ではなく、リチウム、銅、X、及び酸素の各元素を1種類ずつ含む4種類又はそれ以上の化合物を混合して用いることもでき、また、リチウム、銅、X、及び酸素のうち、2種類又はそれ以上の元素を同時に含む化合物を原料の一部として用い、4種類未満の化合物を混合して用いることもできる。Lithium-containing compounds, copper-containing compounds, X 2 containing compound is not particularly limited about the kind of each compound such as oxygen-containing compounds, lithium, copper, four or comprises one by one each element of X 2, and oxygen can be used as a mixture of more compounds, also, lithium, copper, X 2, and of oxygen, using two types or compounds containing more elements simultaneously as part of the raw materials, of less than four Compounds can also be mixed and used.

これらの原料化合物としては、リチウム、銅、X、及び酸素以外の金属元素(特に、希少金属元素)を含まない化合物が好ましい。また、原料化合物中に含まれるリチウム、銅、X、及び酸素の各元素以外の元素については、後述する加熱処理により離脱又は揮発していくものであることが好ましい。These raw material compounds, lithium, copper, X 2, and oxygen other than metal elements (in particular, rare metal element) compound containing no is preferred. Further, lithium contained in the raw material compound, copper, X 2, and for the elements other than the elements of oxygen, it is preferable that gradually disengaged or volatilization by heat treatment to be described later.

このような原料化合物の具体例としては以下の化合物が挙げられる。 Specific examples of such a raw material compound include the following compounds.

リチウム含有化合物としては、シュウ酸リチウム(Li);水酸化リチウム(LiOH);硝酸リチウム(LiNO);塩化リチウム(LiCl);炭酸リチウム(LiCO)などが挙げられる。Examples of the lithium-containing compound include lithium oxalate (Li 2 C 2 O 4 ); lithium hydroxide (LiOH); lithium nitrate (LiNO 3 ); lithium chloride (LiCl); lithium carbonate (Li 2 CO 3 ). ..

銅含有化合物としては、金属銅(Cu);酸化銅(CuO);水酸化銅(Cu(OH));炭酸銅(CuCO);シュウ酸銅(CuC);塩化第二銅(CuCl);硫酸第二銅(CuSO);硝酸第二銅(Cu(NO);硫酸第二銅(CuSO)等が挙げられる。Copper-containing compounds include metallic copper (Cu); copper oxide (CuO); copper hydroxide (Cu (OH) 2 ); copper carbonate (CuCO 3 ); copper oxalate (CuC 2 O 4 ); cupric chloride. (CuCl 2 ); cupric sulfate (CuSO 4 ); cupric nitrate (Cu (NO 3 ) 2 ); cupric sulfate (CuSO 4 ) and the like.

チタン含有化合物としては、四塩化チタン(TiCl);水酸化チタン(Ti(OH))等が挙げられる。ケイ素含有化合物としては、ケイ素(Si);酸化ケイ素(SiO)等が挙げられる。Examples of the titanium-containing compound include titanium tetrachloride (TiCl 4 ); titanium hydroxide (Ti (OH) 2 ) and the like. Examples of the silicon-containing compound include silicon (Si); silicon oxide (SiO 2 ) and the like.

ゲルマニウム化合物としては、ゲルマニウム(Ge);酸化ゲルマニウム(GeO)等が挙げられる。Examples of the germanium compound include germanium (Ge); germanium oxide (GeO 2 ) and the like.

酸素含有化合物としては、水酸化リチウム(LiOH);炭酸リチウム(LiCO);酸化銅(CuO);水酸化銅(Cu(OH));炭酸銅(CuCO);シュウ酸銅(CuC);酸化ケイ素(SiO);酸化チタン(TiO);水酸化チタン(Ti(OH));酸化ゲルマニウム(GeO)等が挙げられる。As oxygen-containing compounds, lithium hydroxide (LiOH); lithium carbonate (Li 2 CO 3 ); copper oxide (CuO); copper hydroxide (Cu (OH) 2 ); copper carbonate (CuCO 3 ); copper oxalate ( CuC 2 O 4); silicon oxide (SiO 2); titanium oxide (TiO 2); titanium hydroxide (Ti (OH) 2); germanium oxide (GeO 2), and the like.

なお、これらの原料化合物は水和物を使用することもできる。 In addition, hydrate can also be used as these raw material compounds.

また、上記組成式(2)で表される化合物の製造方法において使用する原料化合物は、市販品を用いることもできるし、適宜合成して使用することもできる。各原料化合物を合成する場合の合成方法は特に限定的ではなく、公知の方法に従って行うことができる。 Further, as the raw material compound used in the method for producing the compound represented by the composition formula (2), a commercially available product may be used, or a commercially available product may be appropriately synthesized and used. The synthesis method for synthesizing each raw material compound is not particularly limited, and can be carried out according to a known method.

これら原料化合物の形状については特に制限されない。取り扱い易さ等の観点からは、粉末状であることが好ましい。また、反応性の観点からは、粒子が微細である方が好ましく、平均粒子径が1μm以下(好ましくは、10〜100nm程度、特に好ましくは60〜80nm程度)の粉末状であることがより好ましい。なお、原料化合物の平均粒子径は、走査型電子顕微鏡(SEM)により測定することができる。 The shape of these raw material compounds is not particularly limited. From the viewpoint of ease of handling and the like, it is preferably in the form of powder. From the viewpoint of reactivity, the particles are preferably fine, and more preferably in the form of a powder having an average particle diameter of 1 μm or less (preferably about 10 to 100 nm, particularly preferably about 60 to 80 nm). .. The average particle size of the raw material compound can be measured by a scanning electron microscope (SEM).

リチウムと、銅と、Xと、酸素とを含む混合物は、上記した原料化合物のうち必要な材料を混合することにより得ることができる。Lithium, and copper, and X 2, mixture comprising oxygen can be obtained by mixing the necessary materials of the feed compounds described above.

各原料化合物の混合割合については特に限定的ではなく、最終生成物である上記組成式(2)で表される化合物が有する組成となるように混合することが好ましい。原料化合物の混合割合は、原料化合物に含まれる各元素の比率が、生成される上記組成式(2)で表される化合物中の各元素の比率と同一となるようにすることが好ましい。 The mixing ratio of each raw material compound is not particularly limited, and it is preferable to mix the final product so as to have the composition of the compound represented by the above composition formula (2). The mixing ratio of the raw material compound is preferably such that the ratio of each element contained in the raw material compound is the same as the ratio of each element in the produced compound represented by the composition formula (2).

リチウムと、銅と、Xと、酸素とを含む混合物を調製するための方法としては特に限定的ではなく、各原料化合物を均一に混合できる方法を採用することができる。例えば、乳鉢混合、メカニカルミリング処理、共沈法、各原料化合物を溶媒中に分散させた後に混合する方法、各原料化合物を溶媒中で一度に分散させて混合させる方法などを採用することができる。これらの中でも、乳鉢混合を採用することにより簡便な方法によって混合物を得ることができ、また、共沈法を採用することにより均一な混合物を得ることができる。Lithium, and copper, and X 2, not particularly limited as methods for preparing the mixture comprising oxygen, it is possible to employ a method of each raw material compound can be uniformly mixed. For example, mortar mixing, mechanical milling treatment, coprecipitation method, a method of dispersing each raw material compound in a solvent and then mixing, a method of dispersing each raw material compound in a solvent at once and mixing, etc. can be adopted. .. Among these, a mixture can be obtained by a simple method by adopting the mortar mixing method, and a uniform mixture can be obtained by adopting the coprecipitation method.

また、混合手段としてメカニカルミリング処理を行う場合、メカニカルミリング装置としては、例えば、ボールミル、振動ミル、ターボミル、ディスクミル等を用いることができ、中でもボールミルが好ましい。また、メカニカルミリング処理を行う場合には、混合と加熱を同時に行うことが好ましい。 When the mechanical milling process is performed as the mixing means, for example, a ball mill, a vibration mill, a turbo mill, a disc mill or the like can be used as the mechanical milling device, and a ball mill is particularly preferable. Further, when performing the mechanical milling treatment, it is preferable to perform mixing and heating at the same time.

混合時及び加熱時の雰囲気は特に限定的ではなく、例えば、アルゴン、窒素等の不活性ガス雰囲気、水素ガス雰囲気などを採用することができる。また、真空等の減圧下で混合及び加熱を行ってもよい。 The atmosphere at the time of mixing and heating is not particularly limited, and for example, an atmosphere of an inert gas such as argon or nitrogen, an atmosphere of hydrogen gas, or the like can be adopted. Further, mixing and heating may be performed under reduced pressure such as vacuum.

リチウムと、銅と、Xと、酸素とを含む混合物を加熱する際に、加熱温度としては特に限定的ではなく、得られる上記組成式(2)で表される化合物の結晶性及び電極特性(容量及び電位)をより向上させる観点から、600℃以上とすることが好ましく、700℃以上とすることがより好ましく、800℃以上とすることがさらに好ましく、900℃以上とすることが特に好ましい。なお、加熱温度の上限については特に限定的ではなく、上記組成式(2)で表される化合物の製造を容易に行うことができる程度の温度(例えば、1500℃程度)であればよい。換言すると、加熱温度としては、600〜1500℃とすることが好ましく、700〜1500℃とすることがより好ましく、800〜1500℃とすることがさらに好ましく、900〜1500℃とすることが特に好ましい。Lithium, and copper, and X 2, when heating a mixture comprising oxygen, crystallinity and electrode characteristics of heating is not particularly limited as temperature, the compound represented by the obtained above composition formula (2) From the viewpoint of further improving (capacity and potential), the temperature is preferably 600 ° C. or higher, more preferably 700 ° C. or higher, further preferably 800 ° C. or higher, and particularly preferably 900 ° C. or higher. .. The upper limit of the heating temperature is not particularly limited, and may be a temperature (for example, about 1500 ° C.) at which the compound represented by the above composition formula (2) can be easily produced. In other words, the heating temperature is preferably 600 to 1500 ° C, more preferably 700 to 1500 ° C, further preferably 800 to 1500 ° C, and particularly preferably 900 to 1500 ° C. ..

本発明のリチウムイオン二次電池用正極活物質は、上記した組成式(1)で表される化合物又は組成式(2)で表される化合物と炭素材料(例えば、アセチレンブラック等のカーボンブラックなどの材料)とが複合体を形成していてもよい。これにより、焼成時に炭素材料が粒子成長を抑制するため、電極特性に優れた微粒子のリチウムイオン二次電池用正極活物質を得ることが可能となる。この場合、炭素材料の含有量は、本発明のリチウムイオン二次電池用正極活物質中に好ましくは1〜30質量%、より好ましくは3〜20質量%、特に好ましくは5〜15質量%である。 The positive electrode active material for a lithium ion secondary battery of the present invention is a compound represented by the above composition formula (1) or a compound represented by the composition formula (2) and a carbon material (for example, carbon black such as acetylene black). (Material) may form a complex. As a result, since the carbon material suppresses particle growth during firing, it becomes possible to obtain fine particle positive electrode active materials for lithium ion secondary batteries having excellent electrode characteristics. In this case, the content of the carbon material is preferably 1 to 30% by mass, more preferably 3 to 20% by mass, and particularly preferably 5 to 15% by mass in the positive electrode active material for the lithium ion secondary battery of the present invention. is there.

本発明のリチウムイオン二次電池用正極活物質は、上記した組成式(1)で表される化合物又は組成式(2)で表される化合物を含有している。本発明のリチウムイオン二次電池用正極活物質は、上記した組成式(1)で表される化合物又は組成式(2)で表される化合物のみで構成されていてもよいし、上記した組成式(1)で表される化合物又は組成式(2)で表される化合物の他に不可避不純物を含んでいてもよい。このような不可避不純物としては、上記した原料化合物などを挙げられる。不可避不純物の含有量としては、本発明の効果を損なわない範囲で、10mol%以下、好ましくは5mol%以下、より好ましくは2mol%以下である。 The positive electrode active material for a lithium ion secondary battery of the present invention contains the compound represented by the above composition formula (1) or the compound represented by the composition formula (2). The positive electrode active material for a lithium ion secondary battery of the present invention may be composed only of the compound represented by the composition formula (1) or the compound represented by the composition formula (2) described above, or may be composed only of the compound represented by the composition formula (2) described above. In addition to the compound represented by the formula (1) or the compound represented by the composition formula (2), unavoidable impurities may be contained. Examples of such unavoidable impurities include the above-mentioned raw material compounds. The content of unavoidable impurities is 10 mol% or less, preferably 5 mol% or less, and more preferably 2 mol% or less as long as the effect of the present invention is not impaired.

4.リチウムイオン二次電池用正極及びリチウムイオン二次電池
本発明のリチウムイオン二次電池用正極質及びリチウムイオン二次電池は、上記した組成式(1)で表される化合物又は組成式(2)で表される化合物を正極活物質として使用すること以外は、基本的な構造は、公知の非水電解液(非水系)リチウムイオン二次電池用正極及び非水電解液(非水系)リチウムイオン二次電池と同様の構成を採用することができる。例えば、正極、負極、及びセパレータを、当該正極及び負極がセパレータによって互いに隔離されるように電池容器内に配置することができる。その後、非水電解液を当該電池容器内に充填した後、当該電池容器を密封することなどによって本発明のリチウムイオン二次電池を製造することができる。なお、本発明のリチウムイオン二次電池は、リチウム二次電池であってもよい。本明細書において、「リチウムイオン二次電池」は、リチウムイオンをキャリアイオンとする二次電池を意味し、「リチウム二次電池」は、負極活物質としてリチウム金属又はリチウム合金を使用する二次電池を意味する。
4. Positive Electrode for Lithium Ion Secondary Battery and Lithium Ion Secondary Battery The positive electrode quality for lithium ion secondary battery and lithium ion secondary battery of the present invention are the compound represented by the above composition formula (1) or the composition formula (2). Except for using the compound represented by (1) as the positive electrode active material, the basic structure is known non-aqueous electrolyte (non-aqueous) lithium ion positive electrode for secondary batteries and non-aqueous electrolyte (non-aqueous) lithium ion. A configuration similar to that of the secondary battery can be adopted. For example, the positive electrode, the negative electrode, and the separator can be arranged in the battery container so that the positive electrode and the negative electrode are separated from each other by the separator. Then, the lithium ion secondary battery of the present invention can be manufactured by filling the battery container with a non-aqueous electrolytic solution and then sealing the battery container. The lithium ion secondary battery of the present invention may be a lithium secondary battery. In the present specification, the "lithium ion secondary battery" means a secondary battery using lithium ions as carrier ions, and the "lithium secondary battery" is a secondary battery using a lithium metal or a lithium alloy as a negative electrode active material. Means a battery.

本発明のリチウムイオン二次電池用正極は、上記した組成式(1)で表される化合物又は組成式(2)で表される化合物を含む正極活物質を正極集電体に担持した構造を採用することができる。例えば、上記した組成式(1)で表される化合物又は組成式(2)で表される化合物、導電助剤、及び必要に応じて結着剤を含有する正極材料を、正極集電体に塗布することにより製造することができる。 The positive electrode for a lithium ion secondary battery of the present invention has a structure in which a positive electrode active material containing the compound represented by the above composition formula (1) or the compound represented by the composition formula (2) is supported on a positive electrode current collector. Can be adopted. For example, a positive electrode material containing the compound represented by the composition formula (1) or the compound represented by the composition formula (2), a conductive auxiliary agent, and if necessary, a binder is applied to the positive electrode current collector. It can be manufactured by coating.

導電助剤としては、例えば、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ、気相法炭素繊維、カーボンナノファイバー、黒鉛、コークス類等の炭素材料を用いることができる。導電助剤の形状は特に限定的ではなく、例えば、粉末状等を採用することができる。 As the conductive auxiliary agent, for example, carbon materials such as acetylene black, ketjen black, carbon nanotubes, vapor-phase carbon fibers, carbon nanofibers, graphite, and cokes can be used. The shape of the conductive auxiliary agent is not particularly limited, and for example, a powder or the like can be adopted.

結着剤としては、例えば、ポリフッ化ビニリデン樹脂、ポリテトラフルオロエチレン等のフッ素樹脂を用いることができる。 As the binder, for example, a fluororesin such as polyvinylidene fluoride resin or polytetrafluoroethylene can be used.

正極材料中の各種成分の含有量としては特に限定的ではなく、広い範囲内から適宜決定することができる。例えば、上記した組成式(1)で表される化合物又は組成式(2)で表される化合物を50〜95体積%(特に、70〜90体積%)、導電助剤を2.5〜25体積%(特に、5〜15体積%)、及び結着剤を2.5〜25体積%(特に、5〜15体積%)含有することが好ましい。 The content of various components in the positive electrode material is not particularly limited and can be appropriately determined from a wide range. For example, the compound represented by the composition formula (1) or the compound represented by the composition formula (2) is 50 to 95% by volume (particularly 70 to 90% by volume), and the conductive additive is 2.5 to 25% by volume. It is preferable to contain% by volume (particularly 5 to 15% by volume) and 2.5 to 25% by volume (particularly 5 to 15% by volume) of the binder.

正極集電体を構成する材料としては、例えば、アルミニウム、白金、モリブデン、ステンレス等が挙げられる。正極集電体の形状としては、例えば、多孔質体、箔、板、繊維からなるメッシュ等が挙げられる。 Examples of the material constituting the positive electrode current collector include aluminum, platinum, molybdenum, and stainless steel. Examples of the shape of the positive electrode current collector include a porous body, a foil, a plate, and a mesh made of fibers.

なお、正極集電体に対する正極材料の塗布量は特に限定的ではなく、リチウムイオン二次電池の用途等に応じて適宜決定することが好ましい。 The amount of the positive electrode material applied to the positive electrode current collector is not particularly limited, and is preferably determined as appropriate according to the application of the lithium ion secondary battery and the like.

負極を構成する負極活物質としては、例えば、リチウム金属;ケイ素;ケイ素含有Clathrate化合物;リチウム合金;M (M:Co、Ni、Mn、Sn等、M:Mn、Fe、Zn等)で表される三元又は四元酸化物;M (M:Fe、Co、Ni、Mn等)、M (M:Fe、Co、Ni、Mn等)、MnV、M(M:Sn、Ti等)、MO(M:Fe、Co、Ni、Mn、Sn、Cu等)等で表される金属酸化物;黒鉛、ハードカーボン、ソフトカーボン、グラフェン;上記した炭素材料;Li、Li、Li16等のような有機系化合物等が挙げられる。Examples of the negative electrode active material constituting the negative electrode include lithium metal; silicon; silicon-containing Krathrate compound; lithium alloy; M 1 M 2 2 O 4 (M 1 : Co, Ni, Mn, Sn, etc., M 2 : Mn, etc. Three-dimensional or quaternary oxide represented by Fe, Zn, etc.); M 3 3 O 4 (M 3 : Fe, Co, Ni, Mn, etc.), M 4 2 O 3 (M 4 : Fe, Co, Ni) , Mn, etc.), MnV 2 O 6 , M 5 O 2 (M 5 : Sn, Ti, etc.), M 6 O (M 6 : Fe, Co, Ni, Mn, Sn, Cu, etc.) Oxides; graphite, hard carbon, soft carbon, graphene; carbon materials mentioned above; organic systems such as Li 2 C 6 H 4 O 4 , Li 2 C 8 H 4 O 4 , Li 2 C 16 H 8 O 4 etc. Examples include compounds.

リチウム合金としては、例えば、リチウム及びアルミニウムを構成元素として含む合金、リチウム及び亜鉛を構成元素として含む合金、リチウム及び鉛を構成元素として含む合金、リチウム及びマンガンを構成元素として含む合金、リチウム及びビスマスを構成成分として含む合金、リチウム及びニッケルを構成元素として含む合金、リチウム及びアンチモンを構成元素として含む合金、リチウム及びスズを構成元素として含む合金、リチウム及びインジウムを構成元素として含む合金;金属(スカンジウム、チタン、バナジウム、クロム、ジルコニウム、ニオブ、モリブデン、ハフニウム、タンタル等)とカーボンを構成元素として含むMXene系合金、M BC系合金(M:Sc、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta等)等の四元系層状炭化又は窒化化合物等が挙げられる。Examples of lithium alloys include alloys containing lithium and aluminum as constituent elements, alloys containing lithium and zinc as constituent elements, alloys containing lithium and lead as constituent elements, alloys containing lithium and manganese as constituent elements, lithium and bismuth. Alloys containing lithium and nickel as constituent elements, alloys containing lithium and antimony as constituent elements, alloys containing lithium and tin as constituent elements, alloys containing lithium and indium as constituent elements; metals (scandium) , titanium, vanadium, chromium, zirconium, niobium, molybdenum, hafnium, MXene based alloy containing as constituent elements carbon and tantalum), M 7 x BC 3 alloy (M 7: Sc, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, etc.) and the like are quaternary layered carbonized or nitrided compounds.

負極は、負極活物質から構成することもでき、また、負極活物質、導電助剤、及び必要に応じて結着剤を含有する負極材料が負極集電体上に担持する構成を採用することもできる。負極材料が負極集電体上に担持する構成を採用する場合、負極活物質、導電助剤、及び必要に応じて結着剤を含有する負極合剤を、負極集電体に塗布することで製造することができる。 The negative electrode may be composed of a negative electrode active material, and a negative electrode material containing a negative electrode active material, a conductive auxiliary agent, and, if necessary, a binder shall be supported on the negative electrode current collector. You can also. When adopting a configuration in which the negative electrode material is supported on the negative electrode current collector, a negative electrode mixture containing a negative electrode active material, a conductive auxiliary agent, and, if necessary, a binder is applied to the negative electrode current collector. Can be manufactured.

負極が負極活物質から構成する場合、上記の負極活物質を電極に適した形状(板状等)
に成形して得ることができる。
When the negative electrode is composed of a negative electrode active material, the above negative electrode active material has a shape suitable for the electrode (plate shape, etc.).
Can be obtained by molding into.

また、負極材料が負極集電体上に担持する構成を採用する場合、導電助剤及び結着剤の種類、並びに負極活物質、導電助剤及び結着剤の含有量は上記した正極のものを適用することができる。負極集電体を構成する材料としては、例えば、アルミニウム、銅、ニッケル、ステンレス等が挙げられる。前記負極集電体の形状としては、例えば、多孔質体、箔、板、繊維からなるメッシュ等が挙げられる。なお、負極集電体に対する負極材料の塗布量は、リチウムイオン二次電池の用途等に応じて適宜決定することが好ましい。 When the negative electrode material is supported on the negative electrode current collector, the types of the conductive auxiliary agent and the binder, and the contents of the negative electrode active material, the conductive auxiliary agent and the binder are those of the positive electrode described above. Can be applied. Examples of the material constituting the negative electrode current collector include aluminum, copper, nickel, stainless steel and the like. Examples of the shape of the negative electrode current collector include a porous body, a foil, a plate, and a mesh made of fibers. The amount of the negative electrode material applied to the negative electrode current collector is preferably determined as appropriate according to the application of the lithium ion secondary battery and the like.

セパレータとしては、電池中で正極と負極とを隔離し、かつ電解液を保持して正極と負極との間のイオン伝導性を確保することができる材料からなるものであれば制限はない。例えば、ポリエチレン、ポリプロピレン、ポリイミド、ポリビニルアルコール、末端アミノ化ポリエチレンオキシド等のポリオレフィン樹脂;ポリテトラフルオロエチレン等のフッ素樹脂;アクリル樹脂;ナイロン;芳香族アラミド;無機ガラス;セラミックス等の材質からなり、多孔質膜、不織布、織布等の形態の材料を用いることができる。 The separator is not limited as long as it is made of a material capable of separating the positive electrode and the negative electrode in the battery and holding the electrolytic solution to ensure the ionic conductivity between the positive electrode and the negative electrode. For example, it is made of a polyolefin resin such as polyethylene, polypropylene, polyimide, polyvinyl alcohol, terminal amination polyethylene oxide; a fluororesin such as polytetrafluoroethylene; an acrylic resin; nylon; an aromatic aramid; an inorganic glass; and ceramics, and is porous. Materials in the form of a film, non-woven fabric, woven fabric, etc. can be used.

非水電解液は、リチウムイオンを含む電解液が好ましい。このような電解液としては、例えば、リチウム塩の溶液、リチウムを含む無機材料で構成されるイオン液体等が挙げられる。 The non-aqueous electrolytic solution is preferably an electrolytic solution containing lithium ions. Examples of such an electrolytic solution include a solution of a lithium salt, an ionic liquid composed of an inorganic material containing lithium, and the like.

リチウム塩としては、例えば、塩化リチウム、臭化リチウム、ヨウ化リチウム等のハロゲン化リチウム;過塩素酸リチウム、テトラフルオロホウ酸リチウム、ヘキサフルオロリン酸リチウム、ヘキサフルオロヒ酸リチウム等のリチウム無機塩化合物;ビス(トリフルオロメチルスルホニル)イミドリチウム、ビス(パフルオロエタンスルホニル)イミドリチウム、安息香酸リチウム、サリチル酸リチウム、フタル酸リチウム、酢酸リチウム、プロピオン酸リチウム、グリニャール試薬等のリチウム有機塩化合物等が挙げられる。 Examples of the lithium salt include lithium halide such as lithium chloride, lithium bromide and lithium iodide; and lithium inorganic salts such as lithium perchlorate, lithium tetrafluoroborate, lithium hexafluorophosphate and lithium hexafluorophosphate. Compounds: Lithium organic salt compounds such as bis (trifluoromethylsulfonyl) imidelithium, bis (pafluoroethanesulfonyl) imidelithium, lithium benzoate, lithium salicylate, lithium phthalate, lithium acetate, lithium propionate, glignal reagent, etc. Can be mentioned.

また、溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ジメトルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等のカーボネート化合物;γ−ブチロラクトン、γ−バレロラクトンなどのラクトン化合物;テトラヒドロフラン、2−メチルテトラヒドロフラン、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、メトキシメタン、グライム、ジメトキシエタン、ジメトキシメタン、ジエトキシメタン、ジエトキシエタン、プロピレングリコールジメチルエーテルなどのエーテル化合物;アセトニトリル;N,N−ジメチルホルムアミド;N−プロピル−N−メチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド等が挙げられる。 As the solvent, for example, a carbonate compound such as propylene carbonate, ethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate; a lactone compound such as γ-butyrolactone and γ-valerolactone; tetrahydrofuran, 2-methyl tetrahydrofuran, diethyl. Ether compounds such as ether, diisopropyl ether, dibutyl ether, methoxymethane, glyme, dimethoxyethane, dimethoxymethane, diethoxymethane, diethoxyethane, propylene glycol dimethyl ether; acetonitrile; N, N-dimethylformamide; N-propyl-N- Examples thereof include methylpyrrolidinium bis (trifluoromethanesulfonyl) imide.

また、上記非水電解液の代わりに固体電解質を使用することもできる。固体電解質としては、例えば、Li10GeP12、Li11、LiLaZr12、La0.51Li0.34TiO2.94等のリチウムイオン伝導体等が列挙される。Further, a solid electrolyte can be used instead of the non-aqueous electrolyte solution. Examples of the solid electrolyte include lithium ion conductors such as Li 10 GeP 2 S 12 , Li 7 P 3 S 11 , Li 7 La 3 Zr 2 O 12 , La 0.51 Li 0.34 TiO 2.94, and the like. Enumerated.

このような本発明のリチウムイオン二次電池は、組成式(1)で表される化合物又は組成式(2)で表される化合物が用いられているので、酸化還元反応(充放電反応)に際し、より高い電位及びエネルギー密度を確保することができ、しかも、安全性(ポリアニオン骨格)及び実用性に優れる。したがって、本発明のリチウムイオン二次電池は、例えば、小型化及び高性能化が求められるデバイス等に好適に用いることができる。 Since the compound represented by the composition formula (1) or the compound represented by the composition formula (2) is used in such a lithium ion secondary battery of the present invention, it is used in the redox reaction (charge / discharge reaction). , Higher potential and energy density can be secured, and moreover, it is excellent in safety (polyanion skeleton) and practicality. Therefore, the lithium ion secondary battery of the present invention can be suitably used for, for example, a device that requires miniaturization and high performance.

以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明は下記の例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.

実施例1:Li CuSiO の合成
原料粉体として、LiCO(レアメタリック社製;99.9%(3N))、CuO(高純度化学研究所社製;99.99%(4N))、及び沈降性非晶質SiO(関東化学社製;3N)を用いた。LiCO、CuO、及びSiOをリチウム:銅:ケイ素(モル比)が2:1:1となるように秤量し、ジルコニアボール(15mmΦ×10個)と共にクロム鋼製容器に入れ、アセトンを加えて遊星ボールミル(Fritsch社製、商品名:P−6)にて、400rpmで24時間粉砕混合した。その後、減圧下でアセトンを除去した後、回収した粉末を手押しでペレット成型し、アルゴン気流下にて600℃、700℃、800℃、900℃、又は1000℃で1時間焼成した。このとき、昇温速度を400℃/hとした。また、冷却速度は300℃まで100℃/hとし、以降は自然冷却により室温まで放冷した。得られた各生成物(LiCuSiO)を粉末X線回折(XRD)により確認した。結果を図1に示す。
Example 1: As synthetic raw material powder of Li 2 CuSiO 4 , Li 2 CO 3 (manufactured by Rare Metallic Co., Ltd .; 99.9% (3N)), CuO (manufactured by High Purity Chemical Laboratory Co., Ltd .; 99.99% (4N)) )) And settling amorphous SiO 2 (manufactured by Kanto Chemical Co., Inc .; 3N) were used. Li 2 CO 3 , CuO, and SiO 2 are weighed so that the ratio of lithium: copper: silicon (molar ratio) is 2: 1: 1, placed in a chrome steel container together with zirconia balls (15 mmΦ × 10 pieces), and acetone. Was added and pulverized and mixed at 400 rpm for 24 hours in a planetary ball mill (manufactured by Fritzch, trade name: P-6). Then, after removing acetone under reduced pressure, the recovered powder was manually pellet-molded and calcined at 600 ° C., 700 ° C., 800 ° C., 900 ° C., or 1000 ° C. for 1 hour under an argon stream. At this time, the heating rate was set to 400 ° C./h. The cooling rate was 100 ° C./h up to 300 ° C., and thereafter the mixture was allowed to cool to room temperature by natural cooling. Each of the obtained products (Li 2 CuSiO 4 ) was confirmed by powder X-ray diffraction (XRD). The results are shown in FIG.

さらに、焼成温度を900℃とした場合に得られたLiCuSiOと、原料化合物であるCuO、並びに原料化合物であるLiCO及びSiOから生成されるLiSiOとのX線回折パターンを比較した結果を図2に示す。Further, X-rays of Li 2 CuSiO 4 obtained when the firing temperature is 900 ° C., CuO as a raw material compound, and Li 2 CO 3 and Li 2 SiO 3 produced from the raw material compounds Li 2 CO 3 and SiO 2. The result of comparing the diffraction patterns is shown in FIG.

なお、粉末X線回折(XRD)測定には、X線回折測定装置(リガク社製、商品名:RINT2200)を使用し、X線源はモノクロメーターで単色化されたCuKαを使用した。測定条件は、管電圧を5kV、管電流を300mAとしてデータ収集を行った。このとき、強度を約10000カウントとなるよう、走査速度を設定した。また、測定に使用する試料は粒子が均一となるように十分に粉砕した。構造解析には、リートベルト解析を行い、解析プログラムにはJANA−2006を使用した。 An X-ray diffraction measuring device (manufactured by Rigaku Co., Ltd., trade name: RINT2200) was used for the powder X-ray diffraction (XRD) measurement, and CuKα monochromated with a monochromator was used as the X-ray source. As the measurement conditions, data was collected with the tube voltage set to 5 kV and the tube current set to 300 mA. At this time, the scanning speed was set so that the intensity was about 10,000 counts. In addition, the sample used for the measurement was sufficiently pulverized so that the particles became uniform. Rietveld analysis was performed for the structural analysis, and JANA-2006 was used for the analysis program.

図1から、焼成温度が800℃以上である場合には、少なくとも2θ値15〜70°に複数の主要ピークが見られることが確認された。また、2θ値15〜70°に見られるピークは、焼成温度が高いほど強いピークとなっていることから、焼成温度は高い方が好ましいことが分かった。 From FIG. 1, it was confirmed that when the firing temperature was 800 ° C. or higher, a plurality of major peaks were observed at least at a 2θ value of 15 to 70 ° C. Further, since the peak observed at the 2θ value of 15 to 70 ° becomes stronger as the firing temperature is higher, it was found that the higher the firing temperature is, the more preferable.

図1から、2θ値15〜70°に確認された複数の主要ピークは、単相のLiCuSiOに対応することから、生成物として単相のLiCuSiOが得られていることが分かった。さらに、図2から、原料化合物であるCuO、並びに原料化合物であるLiCO及びSiOから生成されるLiSiOに由来するピークが確認されなかったことからも、単相のLiCuSiOが得られていることが分かった。From FIG. 1, since the plurality of major peaks confirmed to have a 2θ value of 15 to 70 ° correspond to the single-phase Li 2 CuSiO 4 , it can be seen that the single-phase Li 2 CuSiO 4 is obtained as a product. Do you get it. Further, from FIG. 2, a peak derived from CuO, which is a raw material compound, and Li 2 SiO 3 produced from the raw material compounds Li 2 CO 3 and SiO 2 was not confirmed, and thus the single-phase Li 2 was not confirmed. It was found that CuSiO 4 was obtained.

また、図1から、焼成温度を900℃とした場合に得られたLiCuSiOの結晶は、粉末X線回折によるX線回折パターンにおいて、2θで表される回折角度が18.31〜19.24°、26.39〜26.96°、27.22〜27.39°、28.90〜29.59°、38.65〜39.82°、40.88〜41.92°、43.63〜45.12°、45.72〜46.70°、47.21〜48.23°、48.56〜49.71°、50.87〜52.69°、53.81〜55.14°、55.66〜58.17°、62.40〜63.33°、63.88〜65.04°、及び68.67〜70.90°にピークを有することが分かった。当該結果から、得られたLiCuSiOの結晶は、単斜晶構造(空間群C2/m)を有し、格子定数がa=6.457〜6.484Å、b=3.340〜3.345Å、c=9.504〜11.183Å、β=93.65〜121.78°であり、単位格子体積(V)が205.1〜206.0Åである結晶であることが分かった。 Further, from FIG. 1, the crystals of Li 2 CuSiO 4 obtained when the firing temperature is 900 ° C. have a diffraction angle represented by 2θ of 18.31 to 19 in the X-ray diffraction pattern by powder X-ray diffraction. .24 °, 26.39 to 26.96 °, 27.22 to 27.39 °, 28.90 to 29.59 °, 38.65 to 39.82 °, 40.88 to 41.92 °, 43 .63 to 45.12 °, 45.72 to 46.70 °, 47.21 to 48.23 °, 48.56 to 49.71 °, 50.87 to 52.69 °, 53.81 to 55. It was found to have peaks at 14 °, 55.66 to 58.17 °, 62.40 to 63.33 °, 63.88 to 65.04 °, and 68.67 to 70.90 °. From the results, the obtained Li 2 CuSiO 4 crystal has a monoclinic structure (space group C2 / m) and has a lattice constant of a = 6.457 to 6.484 Å and b = 3.340 to 3. It was found that the crystal had .345 Å, c = 9.504 to 11.183 Å, β = 93.65 to 121.78 °, and the unit lattice volume (V) was 205.1 to 206.0 Å 3. ..

さらに、焼成温度を900℃とした場合に得られたLiCuSiOを走査型電子顕微鏡(SEM)で観察した。結果を図3に示す。なお、図3中、スケールバーは11.7μmを示す。図3から、粒子径約3〜10μmのLiCuSiOが得られていることが分かった。 Further, Li 2 CuSiO 4 obtained when the firing temperature was 900 ° C. was observed with a scanning electron microscope (SEM). The results are shown in FIG. In FIG. 3, the scale bar shows 11.7 μm. From FIG. 3, it was found that Li 2 CuSiO 4 having a particle size of about 3 to 10 μm was obtained.

また、ICP−AES法(測定装置:iCAP6500、サーモフィッシャーサイエンティフィック社製)により、焼成温度900℃の場合に得られた生成物の化学組成を測定したところ、Li2.08Cu1.05Si1.00であることが分かった。Further, when the chemical composition of the product obtained when the firing temperature was 900 ° C. was measured by the ICP-AES method (measuring device: iCAP6500, manufactured by Thermo Fisher Scientific Co., Ltd.), Li 2.08 Cu 1.05 It turned out to be Si 1.00 O 4.

実施例2:Li CuGeO の合成
原料粉体として、LiCO(レアメタリック社製;99.9%(3N))、CuO(高純度化学研究所社製;99.99%(4N))、及びGeO(関東化学社製;99.99%(4N))を用いた。LiCO、CuO、及びGeOをリチウム:銅:ゲルマニウム(モル比)が2:1:1となるように秤量し、ジルコニアボール(15mmΦ×10個)と共にクロム鋼製容器に入れ、アセトンを加えて遊星ボールミル(Fritsch社製、商品名:P−6)にて、400rpmで24時間粉砕混合した。その後、減圧下でアセトンを除去した後、回収した粉末を手押しでペレット成型し、アルゴン気流下にて700℃、800℃、又は900℃で1時間焼成した。このとき、昇温速度を400℃/hとした。また、冷却速度は300℃まで100℃/hとし、以降は自然冷却により室温まで放冷した。得られた各生成物(LiCuGeO)を実施例1と同様にして粉末X線回折(XRD)により確認した。結果を図4に示す。
Example 2: As synthetic raw material powder of Li 2 CuGeO 4 , Li 2 CO 3 (manufactured by Rare Metallic Co., Ltd .; 99.9% (3N)), CuO (manufactured by High Purity Chemical Laboratory Co., Ltd .; 99.99% (4N)) )) And GeO 2 (manufactured by Kanto Chemical Co., Inc .; 99.99% (4N)) were used. Li 2 CO 3 , CuO, and GeO 2 are weighed so that the lithium: copper: germanium (molar ratio) is 2: 1: 1, placed in a chrome steel container together with zirconia balls (15 mmΦ × 10), and acetone. Was added and pulverized and mixed at 400 rpm for 24 hours in a planetary ball mill (manufactured by Fritzch, trade name: P-6). Then, after removing acetone under reduced pressure, the recovered powder was manually pellet-molded and calcined at 700 ° C., 800 ° C., or 900 ° C. for 1 hour under an argon stream. At this time, the heating rate was set to 400 ° C./h. The cooling rate was 100 ° C./h up to 300 ° C., and thereafter the mixture was allowed to cool to room temperature by natural cooling. Each of the obtained products (Li 2 CuGeO 4 ) was confirmed by powder X-ray diffraction (XRD) in the same manner as in Example 1. The results are shown in FIG.

図4から、焼成温度が700℃以上である場合には、少なくとも2θ値15〜80°に複数の主要ピークが見られることが確認された。これらのピークは、単相のLiCuGeOに対応することから、生成物として単相のLiCuGeOが得られていることが分かった。また、2θ値15〜80°に見られるピークは、焼成温度が高いほど強いピークとなっていることから、焼成温度は高い方が好ましいことが分かった。From FIG. 4, it was confirmed that when the firing temperature was 700 ° C. or higher, a plurality of major peaks were observed at least at a 2θ value of 15 to 80 ° C. These peaks, since it corresponds to the Li 2 CuGeO 4 single-phase, Li 2 CuGeO 4 single-phase is found to be obtained as a product. Further, since the peak observed at the 2θ value of 15 to 80 ° becomes stronger as the firing temperature is higher, it was found that the higher the firing temperature is, the more preferable.

また、図4から、焼成温度を700℃とした場合に得られたLiCuSiOの結晶は、粉末X線回折によるX線回折パターンにおいて、2θで表される回折角度が17.94〜19.15°、24.96〜26.91°、31.65〜33.32°、35.07〜39.17°、41.30〜43.39°、49.29〜51.44°、53.24〜55.30°、56.92〜58.63°、60.16〜62.63°、63.79〜65.19°、66.57〜68.44°、69.92〜71.64°、72.80〜75.41°、及び76.94〜78.33°にピークを有することが分かった。当該結果から、得られたLiCuGeOの結晶は、単斜晶構造(空間群C2/m)を有し、格子定数がa=5.491〜5.552Å、b=9.645〜9.691Å、c=5.491〜5.552Å、β=119.69〜120.75°であり、単位格子体積(V)が256.1〜256.6Åである結晶であることが分かった。 Further, from FIG. 4, the crystals of Li 2 CuSiO 4 obtained when the firing temperature is 700 ° C. have a diffraction angle represented by 2θ of 17.94 to 19 in the X-ray diffraction pattern by powder X-ray diffraction. .15 °, 24.96 to 26.91 °, 31.65 to 33.32 °, 35.07 to 39.17 °, 41.30 to 43.39 °, 49.29 to 51.44 °, 53 .24 to 55.30 °, 56.92 to 58.63 °, 60.16 to 62.63 °, 63.79 to 65.19 °, 66.57 to 68.44 °, 69.92 to 71. It was found to have peaks at 64 °, 72.80 to 75.41 °, and 76.94 to 78.33 °. From the results, the obtained Li 2 CuGeO 4 crystal has a monoclinic structure (space group C2 / m) and has a lattice constant of a = 5.491-5.552 Å and b = 9.645-9. It was found that the crystal had .691 Å, c = 5.491 to 5.552 Å, β = 119.69 to 120.75 °, and the unit lattice volume (V) was 256.1 to 256.6 Å 3. ..

さらに、焼成温度を900℃とした場合に得られたLiCuGeOを走査型電子顕微鏡(SEM)で観察した。結果を図5に示す。なお、図5中、スケールバーは27.0μmを示す。図5から、粒子径約1〜50μmのLiCuGeOが得られていることが分かった。 Further, Li 2 CuGeO 4 obtained when the firing temperature was 900 ° C. was observed with a scanning electron microscope (SEM). The results are shown in FIG. In FIG. 5, the scale bar shows 27.0 μm. From FIG. 5, it was found that Li 2 CuGeO 4 having a particle size of about 1 to 50 μm was obtained.

また、EDX法(測定装置:JSM−7800F、日本電子株式会社製)により、焼成温度900℃の場合に得られた生成物の化学組成を測定したところ、CuとGeとの質量比は1:0.956であることが分かった。 Further, when the chemical composition of the product obtained at a firing temperature of 900 ° C. was measured by the EDX method (measuring device: JSM-7800F, manufactured by JEOL Ltd.), the mass ratio of Cu and Ge was 1: 1. It turned out to be 0.956.

実施例3:Li CuSiO の充放電特性の測定
充放電測定を行うために、上記実施例1において焼成温度900℃の場合に得られたLiCuSiO、ポリフッ化ビニリデン(PVDF)、及びアセチレンブラック(AB)が体積比85:7.5:7.5となるようにめのう乳鉢で混合し、得られたスラリーを正極集電体であるアルミニウム箔(厚さ20μm)上に塗布し、これを直径8mmの円形に打ち抜き、正極とした。また、試料が正極集電体から剥がれないようにするため、30〜40mPaで圧着した。
Example 3: Measurement of charge / discharge characteristics of Li 2 CuSiO 4 In order to perform charge / discharge measurement, Li 2 CuSiO 4 , polyvinylidene fluoride (PVDF), and polyvinylidene fluoride (PVDF) obtained at a firing temperature of 900 ° C. in Example 1 above. The acetylene black (AB) was mixed in a mortar so that the volume ratio was 85: 7.5: 7.5, and the obtained slurry was applied onto an aluminum foil (thickness 20 μm) which was a positive electrode current collector. This was punched into a circle with a diameter of 8 mm to obtain a positive electrode. Further, in order to prevent the sample from peeling off from the positive electrode current collector, the sample was pressure-bonded at 30 to 40 mPa.

負極には14mmφで打ち抜いた金属リチウムを使用し、セパレータは18mmφで切り抜いた多孔質膜(商品名:celgard 2500)を2枚使用した。電解液は、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)を体積比1:2で混合した溶媒に支持電解質としてLiPFを1mol/dmの濃度で溶解した電解液(岸田化学社製)を使用した。電池の作製は、金属リチウムを使用すること、及び電解液に水分が混入した場合に抵抗増分増加の要因となること等の理由により、アルゴン雰囲気下のグローブブックス内で行った。セルは、図6に示すCR2032型コインセルを用いた。充放電試験に先立って、電極に電流を印加していない状態の電位(即ち、開回路電位)の測定を行った。定電流充放電測定は、電圧切り替え器を用い、C/20レート又はC/50レート、電流10mA/g、上限電圧4.8V、下限電圧1.5Vに設定し、充電より開始した。また、充放電測定は、55℃恒温槽内にセルを入れた状態で行った。開回路電位の測定結果を図7に、C/20レートでの充放電特性の測定結果(各サイクルと放電容量との関係)を図8、C/50レートでの充放電特性の測定結果を図9に示す。なお、Cレートとは電極活物質から理論容量分の充放電を1時間で行うのに必要な電流密度を意味する。Metallic lithium punched out at 14 mmφ was used for the negative electrode, and two porous films (trade name: celgard 2500) punched out at 18 mmφ were used for the separator. The electrolytic solution is an electrolytic solution (manufactured by Kishida Chemical Co., Ltd.) in which LiPF 6 is dissolved as a supporting electrolyte at a concentration of 1 mol / dm 3 in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 1: 2. used. The battery was manufactured in Globebooks under an argon atmosphere because of the use of metallic lithium and the fact that when water is mixed in the electrolytic solution, it causes an increase in resistance increment. As the cell, a CR2032 type coin cell shown in FIG. 6 was used. Prior to the charge / discharge test, the potential (that is, the open circuit potential) in the state where no current was applied to the electrodes was measured. The constant current charge / discharge measurement was set to C / 20 rate or C / 50 rate, current 10 mA / g, upper limit voltage 4.8 V, and lower limit voltage 1.5 V using a voltage switch, and started from charging. The charge / discharge measurement was performed with the cell placed in a constant temperature bath at 55 ° C. The measurement result of the open circuit potential is shown in FIG. 7, the measurement result of the charge / discharge characteristic at the C / 20 rate (relationship between each cycle and the discharge capacity) is shown in FIG. 8, and the measurement result of the charge / discharge characteristic at the C / 50 rate is shown in FIG. It is shown in FIG. The C rate means the current density required to charge and discharge the theoretical capacity of the electrode active material in 1 hour.

図7から、LiCuSiOの開回路電位は約3.0Vであることが分かった。また、図8から、C/20レートにおいて引き出し初期充電容量は約110mAh/gであることが分かった。なお、理論容量は316mAh/gであり、LiCuSiOの初回充放電容量は理論容量の約3分の1に相当する。また、図8に示すように、充電曲線と放電曲線との交点における電圧(平均作動電圧)は約3.3Vであったことから、LiCuSiOは、高電位及び高容量の正極材料として有用であることが分かった。From FIG. 7, it was found that the open circuit potential of Li 2 CuSiO 4 was about 3.0 V. Further, from FIG. 8, it was found that the initial charge capacity for withdrawal at the C / 20 rate was about 110 mAh / g. The theoretical capacity is 316 mAh / g, and the initial charge / discharge capacity of Li 2 CuSiO 4 corresponds to about one-third of the theoretical capacity. Further, as shown in FIG. 8, since the voltage (average operating voltage) at the intersection of the charge curve and the discharge curve was about 3.3 V, Li 2 CuSiO 4 was used as a high-potential and high-capacity positive electrode material. It turned out to be useful.

さらに、図9から、LiCuSiOの初回充電容量がC/50レートで220mAh/g (理論容量の約70%に相当する容量)が確認された。このことからも、LiCuSiOは高容量材料として期待される。Further, from FIG. 9, it was confirmed that the initial charge capacity of Li 2 CuSiO 4 was 220 mAh / g (capacity corresponding to about 70% of the theoretical capacity) at the C / 50 rate. From this, Li 2 CuSiO 4 is expected as a high-capacity material.

また、LiCuSiOを用いないこと以外は上記と同様にして正極を作製し、上記と同様の条件によりC/20レートで充放電試験を行った。結果を図10に示す。Further, a positive electrode was prepared in the same manner as above except that Li 2 CuSiO 4 was not used, and a charge / discharge test was conducted at a C / 20 rate under the same conditions as above. The results are shown in FIG.

図10から、LiCuSiOを用いない電極では充放電容量が得られないことが確認された。図8と図10とを比較することにより、図8において示された高い充放電容量は、LiCuSiOに由来するものであることが分かった。From FIG. 10, it was confirmed that the charge / discharge capacity could not be obtained with the electrode not using Li 2 CuSiO 4. By comparing FIG. 8 and FIG. 10, it was found that the high charge / discharge capacity shown in FIG. 8 was derived from Li 2 CuSiO 4.

実施例4:Li CuGeO の充放電特性の測定
充放電測定を行うために、上記実施例2において焼成温度900℃の場合に得られたLiCuGeO、ポリフッ化ビニリデン(PVDF)、及びアセチレンブラック(AB)が体積比85:7.5:7.5となるようにめのう乳鉢で混合し、得られたスラリーを正極集電体であるアルミニウム箔(厚さ20μm)上に塗布し、これを直径8mmの円形に打ち抜き、正極とした。また、試料が正極集電体から剥がれないようにするため、30〜40mPaで圧着した。
Example 4: Measurement of charge / discharge characteristics of Li 2 CuGeO 4 In order to perform charge / discharge measurement, Li 2 CuGeO 4 , polyvinylidene fluoride (PVDF), and polyvinylidene fluoride (PVDF) obtained at a firing temperature of 900 ° C. in Example 2 above, and The acetylene black (AB) was mixed in a mortar so that the volume ratio was 85: 7.5: 7.5, and the obtained slurry was applied onto an aluminum foil (thickness 20 μm) which was a positive electrode current collector. This was punched into a circle with a diameter of 8 mm to obtain a positive electrode. Further, in order to prevent the sample from peeling off from the positive electrode current collector, the sample was pressure-bonded at 30 to 40 mPa.

負極には14mmφで打ち抜いた金属リチウムを使用し、セパレータは18mmφで切り抜いた多孔質膜(商品名:celgard 2500)を2枚使用した。電解液は、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)を体積比1:2で混合した溶媒に支持電解質としてLiPFを1mol/dmの濃度で溶解した電解液(岸田化学社製)を使用した。電池の作製は、金属リチウムを使用すること、及び電解液に水分が混入した場合に抵抗増分増加の要因となること等の理由により、アルゴン雰囲気下のグローブブックス内で行った。セルは、図6に示すCR2032型コインセルを用いた。充放電試験に先立って、電極に電流を印加していない状態の電位(即ち、開回路電位)の測定を行った。定電流充放電測定は、電圧切り替え器を用い、C/50レート、電流10mA/g、上限電圧4.8V、下限電圧1.5Vに設定し、充電より開始した。また、充放電測定は、55℃恒温槽内にセルを入れた状態で行った。開回路電位の測定結果を図11に、充放電特性の測定結果(各サイクルと放電容量との関係)を図12に示す。Metallic lithium punched out at 14 mmφ was used for the negative electrode, and two porous films (trade name: celgard 2500) punched out at 18 mmφ were used for the separator. The electrolytic solution is an electrolytic solution (manufactured by Kishida Chemical Co., Ltd.) in which LiPF 6 is dissolved as a supporting electrolyte at a concentration of 1 mol / dm 3 in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 1: 2. used. The battery was manufactured in Globebooks under an argon atmosphere because of the use of metallic lithium and the fact that when water is mixed in the electrolytic solution, it causes an increase in resistance increment. As the cell, a CR2032 type coin cell shown in FIG. 6 was used. Prior to the charge / discharge test, the potential (that is, the open circuit potential) in the state where no current was applied to the electrodes was measured. The constant current charge / discharge measurement was set to C / 50 rate, current 10 mA / g, upper limit voltage 4.8 V, and lower limit voltage 1.5 V using a voltage switch, and started from charging. The charge / discharge measurement was performed with the cell placed in a constant temperature bath at 55 ° C. The measurement result of the open circuit potential is shown in FIG. 11, and the measurement result of the charge / discharge characteristics (relationship between each cycle and the discharge capacity) is shown in FIG.

図11から、LiCuGeOの開回路電位は約2.7Vであることが分かった。また、図12から、引き出し初期容量は約120mAh/gであることが分かった。なお、理論容量は250mAh/gであり、LiCuGeOの初回充放電容量は理論容量の約2分の1に相当する。以上の結果から、LiCuGeOは、高電位及び高容量の正極材料として有用であることが分かった。From FIG. 11, it was found that the open circuit potential of Li 2 CuGeO 4 was about 2.7 V. Further, from FIG. 12, it was found that the initial withdrawal capacity was about 120 mAh / g. The theoretical capacity is 250 mAh / g, and the initial charge / discharge capacity of Li 2 CuGeO 4 corresponds to about half of the theoretical capacity. From the above results, it was found that Li 2 CuGeO 4 is useful as a positive electrode material having a high potential and a high capacity.

1 リチウムイオン二次電池
2 負極端子
3 負極
4 電解液が含浸されたセパレータ
5 絶縁パッキング
6 正極
7 正極缶
1 Lithium-ion secondary battery 2 Negative electrode terminal 3 Negative electrode 4 Separator impregnated with electrolytic solution 5 Insulation packing 6 Positive electrode 7 Positive electrode can

Claims (8)

組成式(1):
LiCu
[組成式(1)中、XはSi又はGeを示す。yは0.8〜1.2を示す。mは1.5〜2.5を示す。nは3.9〜4.1を示す。]
で表され、単斜晶構造を有する、リチウム銅系複合酸化物。
Composition formula (1):
Li m Cu y X 1 O n
[In the composition formula (1), X 1 represents Si or Ge. y indicates 0.8 to 1.2. m indicates 1.5 to 2.5. n indicates 3.9 to 4.1. ]
A lithium copper-based composite oxide represented by and having a monoclinic structure.
平均粒子径が0.1〜100μmである、請求項1に記載のリチウム銅系複合酸化物。 The lithium copper-based composite oxide according to claim 1, which has an average particle size of 0.1 to 100 μm. リチウムと、銅と、ケイ素又はゲルマニウムと、酸素とを含む混合物を加熱する工程を含む、請求項1又は2に記載のリチウム銅系複合酸化物の製造方法。 The method for producing a lithium copper-based composite oxide according to claim 1 or 2, which comprises a step of heating a mixture containing lithium, copper, silicon or germanium, and oxygen. 加熱温度が600℃以上である、請求項3に記載の方法。 The method according to claim 3, wherein the heating temperature is 600 ° C. or higher. 組成式(2):
LiCu
[組成式(2)中、XはSi又はGeを示す。yは0.8〜1.2を示す。mは1.5〜2.5を示す。nは3.9〜4.1を示す。]
で表され、単斜晶構造を有するリチウム銅系複合酸化物を含む、リチウムイオン二次電池用正極活物質。
Composition formula (2):
Li m Cu y X 2 O n
[In formula (2), X 2 represents a S i or Ge. y indicates 0.8 to 1.2. m indicates 1.5 to 2.5. n indicates 3.9 to 4.1. ]
A positive electrode active material for a lithium ion secondary battery, which is represented by and contains a lithium copper-based composite oxide having a monoclinic structure.
請求項5に記載のリチウムイオン二次電池用正極活物質を含む、リチウムイオン二次電池用正極。 A positive electrode for a lithium ion secondary battery, which comprises the positive electrode active material for a lithium ion secondary battery according to claim 5. さらに、導電助剤を含む、請求項6に記載のリチウムイオン二次電池用正極。 The positive electrode for a lithium ion secondary battery according to claim 6, further comprising a conductive auxiliary agent. 請求項6又は7に記載のリチウムイオン二次電池用正極を含む、リチウムイオン二次電池。 A lithium ion secondary battery comprising the positive electrode for a lithium ion secondary battery according to claim 6 or 7.
JP2017560381A 2016-01-05 2017-01-04 Lithium copper-based composite oxide Active JP6857361B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016000562 2016-01-05
JP2016000562 2016-01-05
PCT/JP2017/000017 WO2017119410A1 (en) 2016-01-05 2017-01-04 Lithium-copper composite oxide

Publications (2)

Publication Number Publication Date
JPWO2017119410A1 JPWO2017119410A1 (en) 2018-10-25
JP6857361B2 true JP6857361B2 (en) 2021-04-14

Family

ID=59274196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017560381A Active JP6857361B2 (en) 2016-01-05 2017-01-04 Lithium copper-based composite oxide

Country Status (3)

Country Link
JP (1) JP6857361B2 (en)
TW (1) TWI790197B (en)
WO (1) WO2017119410A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210034391A (en) * 2019-09-20 2021-03-30 주식회사 엘지화학 Irreversible additive comprised in cathod material for secondary battery, cathode material comprising the same, and secondary battery comprising cathod active material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2696689B2 (en) * 1988-03-08 1998-01-14 株式会社クボタ Oxide superconducting material
JPH09147861A (en) * 1995-11-22 1997-06-06 Sanyo Electric Co Ltd Lithium secondary battery
JP5115697B2 (en) * 2007-05-22 2013-01-09 Necエナジーデバイス株式会社 Positive electrode for lithium secondary battery and lithium secondary battery using the same
JP5403669B2 (en) * 2009-04-21 2014-01-29 Necエナジーデバイス株式会社 Lithium ion secondary battery
CN105457645A (en) * 2015-12-20 2016-04-06 桂林理工大学 Photocatalyst Li2CuGeO4 with visible light response function and preparing method thereof

Also Published As

Publication number Publication date
TWI790197B (en) 2023-01-21
WO2017119410A1 (en) 2017-07-13
TW201736269A (en) 2017-10-16
JPWO2017119410A1 (en) 2018-10-25

Similar Documents

Publication Publication Date Title
JP6927579B2 (en) Lithium iron manganese-based composite oxide
JP7460590B2 (en) Oxides for high energy cathode materials
JP7034471B2 (en) Potassium compound and positive electrode active material for potassium ion secondary battery containing it
JP5294225B2 (en) Single crystal particles of oxide for lithium secondary battery electrode, method for producing the same, and lithium secondary battery using the same
JP2019506703A (en) Lithium nickelate positive electrode active material powder, method for producing the same, and nonaqueous electrolyte secondary battery
WO2017099137A1 (en) Positive electrode active material for potassium ion secondary cell
JP2017522253A (en) Tin-containing compounds
JP2015507333A (en) Sulfate electrode
Song et al. Co3O4 hollow nanospheres doped with ZnCo2O4 via thermal vapor mechanism for fast lithium storage
JP7169650B2 (en) Positive electrode active material for potassium ion secondary battery, manufacturing method thereof, and potassium ion secondary battery
JP7224617B2 (en) Potassium compounds, solid electrolytes for potassium ion secondary batteries, positive electrode active materials for potassium ion secondary batteries, and secondary batteries
JP7116464B2 (en) Positive electrode active material for secondary battery, manufacturing method thereof, and secondary battery
US8962187B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
JP6857361B2 (en) Lithium copper-based composite oxide
JP7074314B2 (en) Positive electrode active material for potassium ion secondary battery and secondary battery
JP2019102247A (en) Potassium ion secondary battery cathode active material and secondary battery
JP6934665B2 (en) Positive electrode active material for secondary batteries, their manufacturing methods, and secondary batteries
JP7016148B2 (en) Positive electrode active material for potassium ion secondary batteries
JP7060866B2 (en) A method for manufacturing a positive electrode active material for a secondary battery, a secondary battery, and a positive electrode active material for a secondary battery.
CN112952081A (en) Lithium ion battery layered perovskite structure negative electrode material and preparation method thereof
JP2019102198A (en) Potassium compound, and potassium ion secondary battery cathode active material containing the same
WO2022045129A1 (en) Negative electrode active material for secondary batteries, and secondary battery
JP2021177459A (en) Positive electrode active material precursor for lithium secondary battery, manufacturing method of positive electrode active material precursor for lithium secondary battery, and manufacturing method for positive electrode active material for lithium secondary battery
JP2013095609A (en) Electrode material for lithium ion secondary battery using nitroprusside compound

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210312

R150 Certificate of patent or registration of utility model

Ref document number: 6857361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250