WO2017119391A1 - Optical film, polarizing plate, and image display device - Google Patents

Optical film, polarizing plate, and image display device Download PDF

Info

Publication number
WO2017119391A1
WO2017119391A1 PCT/JP2016/089081 JP2016089081W WO2017119391A1 WO 2017119391 A1 WO2017119391 A1 WO 2017119391A1 JP 2016089081 W JP2016089081 W JP 2016089081W WO 2017119391 A1 WO2017119391 A1 WO 2017119391A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard coat
coat layer
region
optical film
hardness
Prior art date
Application number
PCT/JP2016/089081
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 純
啓志 中村
正隆 中島
智之 堀尾
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2017560371A priority Critical patent/JP6773049B2/en
Publication of WO2017119391A1 publication Critical patent/WO2017119391A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to an optical film, a polarizing plate, and an image display device.
  • optical films used for touch panels which have been rapidly spreading, are required to have excellent hardness and excellent durable folding performance that does not cause cracks even when the optical film is repeatedly folded.
  • touch panels often use glass for the display screen.
  • glass has high hardness, it cannot be given folding performance because it is broken when folded, and glass is a material with a large specific gravity. When the glass is thinned, there is a problem that the strength is reduced and the glass is easily broken.
  • a first hard coat layer is provided on one surface of a light-transmitting resin base material, and the first hard coat layer is Vickers hardness on the other surface.
  • An optical film provided with a second hard coat layer having a different thickness is disclosed (for example, see JP-A-2014-186210).
  • JP-A-2014-186210 JP-A-2014-186210
  • the present invention has been made to solve the above problems. That is, it aims at providing the optical film which has the outstanding hardness and the outstanding durable folding performance, a polarizing plate provided with the same, and an image display apparatus.
  • the inventors of the present invention have excellent hardness and excellent folding performance as long as the second region having a lower hardness on the surface of the optical film than the first region is formed. It was found that it can be obtained.
  • the present invention has been completed based on such findings.
  • a foldable optical film comprising a light transmissive resin base material and a hard coat layer provided on one surface side of the light transmissive resin base material,
  • an optical film comprising: a first region; and a second region having a lower hardness on the surface of the optical film than the first region.
  • the hard coat layers are a plurality of first hard coat layers that are spaced apart from each other via a gap, and a second hard coat layer having a hardness lower than that of the first hard coat layer.
  • the first region the light transmissive resin base material, the first hard coat layer, and the second hard coat layer are laminated in this order, and the second region In the region, the gap may exist, and the second hard coat layer may be embedded in the gap.
  • the hard coat layer includes a first hard coat layer having one or more recesses, and a second hard coat layer having a hardness lower than that of the first hard coat layer.
  • the light transmissive resin base material, the first hard coat layer, and the second hard coat layer are laminated in this order, and in the second region, the concave portion And the recess has a region where the thickness of the first hard coat layer is 50% or less of the thickness of the first hard coat layer in the first region, and the first Two hard coat layers may be embedded in the recess.
  • the width of the region in which the thickness of the first hard coat layer in the second region is 50% or less of the thickness of the first hard coat layer in the first region is 0. It may be 5 mm or more.
  • a part of the first hard coat layer is present in the second region, and a part of the first hard coat layer is present in the second region.
  • the film thickness of the first hard coat layer may gradually decrease toward the separated position of the hard coat layer or toward the center of the recess.
  • the foldable polarizing plate provided with said optical film and the polarizer provided in the other surface side of the said light-transmissive base material of the said optical film is provided.
  • a foldable image display device comprising a display element and the optical film or the polarizing plate disposed on the viewer side with respect to the display element.
  • FIG. 1 is a schematic configuration diagram of an optical film according to the first embodiment.
  • FIG. 2 is a plan view of the optical film according to the first embodiment.
  • FIG. 3 is an enlarged view of a part of the optical film according to the first embodiment.
  • 4 (A) and 4 (B) are diagrams schematically showing a state of the 180 ° folding test.
  • FIG. 5A and FIG. 5B are schematic configuration diagrams of other optical films according to the first embodiment.
  • 6 (A) to 6 (D) are diagrams schematically showing a manufacturing process of the optical film according to the first embodiment.
  • FIG. 7A to FIG. 7D are diagrams schematically showing a manufacturing process of the optical film according to the first embodiment.
  • FIG. 8 is a schematic configuration diagram of a polarizing plate according to the first embodiment.
  • FIG. 9 is a schematic configuration diagram of the image display apparatus according to the first embodiment.
  • FIG. 10 is a schematic configuration diagram of an optical film according to the second embodiment.
  • FIG. 11 is an enlarged view of a part of the optical film according to the second embodiment.
  • FIG. 12A to FIG. 12C are diagrams schematically showing a manufacturing process of the optical film according to the second embodiment.
  • FIG. 13A to FIG. 13C are diagrams schematically showing a manufacturing process of the optical film according to the second embodiment.
  • FIG. 1 is a schematic configuration diagram of an optical film according to the present embodiment
  • FIG. 2 is a plan view of the optical film according to the present embodiment
  • FIG. 3 is an enlarged view of a part of the optical film according to the present embodiment.
  • FIG. 4 is a diagram schematically showing a state of the 180 ° folding test
  • FIG. 5 is a schematic configuration diagram of another optical film according to the present embodiment
  • FIGS. 6 and 7 are according to the embodiment. It is a figure which shows the manufacturing process of an optical film typically.
  • the optical film 10 shown in FIGS. 1 and 2 is foldable, and includes a light-transmitting resin base material 11 and a hard coat layer 12 provided on one surface 11A of the light-transmitting base material 11.
  • foldable means that when the optical film is folded in a part of the optical film, the optical film is not cracked or broken. In the optical film, when the optical film is folded, if there is a portion where the optical film is not cracked or broken, the optical film can be folded.
  • the “hard coat layer” is a layer that has optical transparency and has a pencil hardness of at least “F” or more in a pencil hardness test specified by JIS K5600-5-4: 1999.
  • the hard coat layer 12 may have other functions such as antifouling properties.
  • the pencil hardness test in this specification shall be performed with a load of 750 g and a scratching speed of 1 mm / second.
  • the optical film 10 has a first region 10B and a second region 10C having different hardnesses on the surface 10A of the optical film 10, respectively. Specifically, the hardness of the surface 10A of the optical film 10 is lower in the second region 10C than in the first region 10B.
  • the “surface of the optical film” in the present specification means a surface on one side and the hard coat layer side of the optical film.
  • the surface of the optical film in this specification means the surface of one side of an optical film
  • the surface 12A of the hard coat layer 12 is the surface 10A of the optical film 10
  • the surface of this functional layer Becomes the surface of the optical film.
  • the “first region” means a region whose hardness on the surface of the optical film is higher than the second region
  • the “second region” means that the hardness on the surface of the optical film is the first. It means a region lower than one region.
  • the hardness of the first region 10B is not particularly limited as long as it is higher than the hardness of the second region 10C.
  • the surface 10A of the optical film 10 preferably has a pencil hardness of 5H or more, preferably 6H or more when measured by a pencil hardness test specified in JIS K5600-5-4: 1999. More preferably, it is 7H or more.
  • the surface 10A of the optical film 10 in the first region 10B is a pencil defined by JIS K5600-5-4: 1999.
  • the pencil hardness as measured by a hardness test is preferably 4H or more, preferably 5H or more, and more preferably 6H or more.
  • the pencil hardness is the highest hardness at which the surface of the optical film was not damaged in the pencil hardness test.
  • the pencil hardness is measured using a plurality of pencils having different hardnesses.
  • the pencil hardness test is performed five times for each pencil, and the surface of the optical film is scratched four times or more out of the five times. If not, it is determined that the surface of the optical film was not scratched with the pencil having this hardness.
  • the above-mentioned scratches refer to those that are visually observed through transmission observation of the surface of the optical film subjected to the pencil hardness test under a fluorescent lamp. Further, in the following pencil hardness, even if not specifically described, the pencil hardness is a pencil hardness as measured by a pencil hardness test specified in JIS K5600-5-4: 1999.
  • the hardness of the second region 10C is not particularly limited as long as it is lower than the hardness of the first region 10B.
  • the surface 10A of the optical film 10 has a pencil hardness of preferably 2H or more, preferably 3H or more, and more preferably 4H or more.
  • the surface 10A of the optical film 10 preferably has a pencil hardness of H or higher in the second region 10C. Preferably, it is preferably 3H or more.
  • the difference in hardness between the first region and the second region is smaller.
  • the difference between the pencil hardness of the first region and the pencil hardness of the second region is preferably within 5 ranks, more preferably within 3 ranks.
  • the optical film 10 does not crack or break when the test of folding the optical film 10 180 ° in the second region 10C is repeated 100,000 times so that the bending radius is 1.5 mm. If the optical film 10 is cracked or broken within 100,000 times, the durable folding performance of the optical film 10 becomes insufficient.
  • the folding test can be performed using, for example, an endurance tester (product name “DLDMMLH-FS”, manufactured by Yuasa System Equipment Co., Ltd.).
  • FIG. 4 is a diagram schematically showing a state in which a part of the optical film 10 is folded by 180 ° (hereinafter also referred to as a durability folding test) so that the bending radius R of the optical film 10 is 1.5 mm. .
  • a durability folding test in the endurance folding test, first, in a state in which the optical film 10 is flat, one side of the optical film 10 and another side facing the one side. The sides are fixed to the fixed end 21 and the moving end 22 of the folding tester, which are arranged at predetermined intervals in the horizontal direction.
  • an optical film may be arbitrary shapes, it is preferable that the optical film 10 which performs the said durable folding test is a rectangle.
  • the moving end 22 is moved closer to the fixed end 21 and the optical film 10 is folded at 180 ° so that the bending radius R of the optical film 10 is 1.5 mm.
  • the place where the optical film 10 is folded is a place where the second region 10C exists. Then, the state shown in FIGS. 4A and 4B is repeated 100,000 times.
  • the optical film 10 is 180 so that the bending radius R of the optical film 10 is 1.5 mm. Can be folded to °.
  • the optical film 10 may be one that does not crack or break when the above-described durable folding test is performed on one side, but is broken when the above-described durable folding test is performed on both sides. Alternatively, it is preferable that no breakage occurs. In addition, even if the optical film 10 mentioned above is rotated 90 degree
  • the optical film 10 preferably has a transmittance of light having a wavelength of 380 nm of 10% or less.
  • the transmittance exceeds 10%, when the optical film 10 is used in a mobile terminal, the polarizer may be exposed to ultraviolet rays and may be easily deteriorated.
  • the upper limit of the transmittance is more preferably 8% or less, and most preferably 5% or less.
  • the transmittance can be measured using a haze meter (product name “HM-150”, manufactured by Murakami Color Research Laboratory).
  • the transmittance of light having a wavelength of 380 nm is an arithmetic average value obtained by measuring three times.
  • the optical film 10 preferably has a total light transmittance of 85% or more. If the transmittance is less than 85%, the display screen may be difficult to visually recognize when the optical film 10 is used in a mobile terminal.
  • the lower limit of the total light transmittance is more preferably 90% or less.
  • the total light transmittance can be measured by a method based on JIS K7361-1: 1997 using a haze meter (product name “HM-150”, manufactured by Murakami Color Research Laboratory).
  • the total light transmittance is an arithmetic average value of values obtained by measuring three times.
  • the haze value of the entire optical film 10 is preferably 2.5% or less. If the haze value exceeds 2.5%, the display screen may be whitened when the optical film 10 is used in a mobile terminal.
  • the haze value is more preferably 1.5% or less, and more preferably 1.0% or less.
  • the haze value can be measured by a method based on JIS K7136: 2000 using a haze meter (product name “HM-150”, manufactured by Murakami Color Research Laboratory).
  • the haze value is the arithmetic average value of the values obtained by measuring three times.
  • the light-transmitting resin base material 11 is not particularly limited as long as it is a base material made of a light-transmitting resin.
  • the resin having optical transparency include polyamide imide resin, polyimide resin, aramid resin, cellulose acylate resin, cycloolefin resin, polycarbonate resin, acrylate resin, polyester resin, or a mixture of two or more of these resins. Etc.
  • a polyimide resin, an aramid resin, or a mixture thereof is preferable.
  • Examples of the polyimide resin include compounds having a structure represented by the following formula.
  • n is a repeating unit and represents an integer of 2 or more.
  • the aramid resin generally has a skeleton represented by the following formulas (18) and (19), and examples of the aramid resin include compounds represented by the following formula (20). .
  • n is a repeating unit and represents an integer of 2 or more.
  • Examples of the commercially available base material made of the polyimide resin include, for example, Neoprim manufactured by Mitsubishi Gas Chemical Co., Ltd., and examples of the commercially available base material made of the aramid resin include, for example, Mikutron manufactured by Toray Industries, Inc. It is done.
  • the base material made of the polyimide resin or the aramid resin represented by the above formulas (1) to (17) and (20) may be synthesized by a known method.
  • a method for synthesizing a polyimide resin represented by the above formula (1) is described in JP-A-2009-132091.
  • 4,4′-hexafluoro represented by the following formula (21) is described. It can be obtained by reacting propylidenebisphthalic dianhydride (FPA) with 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl (TFDB).
  • the weight average molecular weight of the polyimide resin or aramid resin is preferably in the range of 3000 to 500,000, more preferably in the range of 5000 to 300,000, and still more preferably in the range of 10,000 to 200,000. .
  • the weight average molecular weight is 3000 or less, sufficient strength may not be obtained.
  • the weight average molecular weight exceeds 500,000, the viscosity increases and the solubility decreases, so that a substrate with a smooth surface and a uniform film thickness can be obtained. It may not be obtained.
  • a weight average molecular weight is a polystyrene conversion value measured by gel permeation chromatography (GPC).
  • a polyimide resin or an aramid resin having a structure in which charge transfer within a molecule or between molecules hardly occurs is preferable because it has excellent transparency.
  • polyimide resins having an alicyclic structure such as the above formulas (9) to (12)
  • aramid resins having a halogen group such as the above formula (20).
  • the fluorinated polyimide resins such as the above formulas (1) to (8) have a fluorinated structure, and thus have high heat resistance, and are colored by the heat during the production of the substrate made of the polyimide resin. Therefore, it has excellent transparency.
  • the light-transmitting resin substrate 11 is a fluorinated polyimide resin represented by the above formulas (1) to (8) or the like, It is preferable to use an aramid resin having a halogen group such as 20) or a base material made of a mixture of these resins. Especially, since the said pencil hardness can provide very excellent hardness of 7H or more, it is more preferable to use the base material which consists of a polyimide resin represented by the said Formula (1).
  • Examples of the cellulose acylate resin include cellulose triacetate resin and cellulose diacetate resin.
  • Examples of the cycloolefin resin include polymers such as norbornene monomers and monocyclic cycloolefin monomers.
  • triacetyl cellulose resin in addition to pure triacetyl cellulose, cellulose acetate propionate and cellulose acetate butyrate may be used in combination with components other than acetic acid as a fatty acid forming an ester with cellulose. Further, these triacetylcelluloses may be added with other additives such as other cellulose lower fatty acid esters such as diacetylcellulose, or plasticizers, ultraviolet absorbers, and lubricants as necessary.
  • polycarbonate resin examples include aromatic polycarbonate resins based on bisphenols (such as bisphenol A) and aliphatic polycarbonate resins such as diethylene glycol bisallyl carbonate.
  • acrylate resins examples include poly (meth) methyl acrylate resins, poly (meth) ethyl acrylate resins, methyl (meth) acrylate-butyl (meth) acrylate copolymers, and the like.
  • polyester resin examples include resins containing at least one of polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate as constituent components.
  • the thickness of the light transmissive resin substrate 11 is not particularly limited, but is preferably 10 ⁇ m or more and 55 ⁇ m or less. If the thickness of the light-transmitting resin substrate 11 is less than 10 ⁇ m, the curl of the optical film becomes large, and the hardness may be insufficient, so that the pencil hardness described later cannot be increased to 4H or more. When manufacturing with Roll to Roll, wrinkles are likely to occur, which may lead to deterioration of the appearance. On the other hand, if the thickness of the light-transmitting resin substrate 11 exceeds 55 ⁇ m, the folding performance of the optical film may be insufficient, and the requirements for the folding test described later may not be satisfied, and the optical film becomes heavy and lighter. This is not preferable.
  • the thickness of the light transmissive resin base material 11 was measured by measuring the thickness of the light transmissive resin base material 11 at 10 points using a thickness measuring device (product name “Digimatic Indicator IDF-130”, manufactured by Mitutoyo Corporation). It shall mean the arithmetic mean value.
  • the hard coat layer 12 includes a plurality of first hard coat layers 13 and a second hard coat layer 14 having a hardness lower than that of the first hard coat layer 13.
  • the hardness of the first hard coat layer 13 and the second hard coat layer 14 can be confirmed by measuring the Martens hardness.
  • the “Martens hardness” is the hardness when the indenter is pushed in by 500 nm by the hardness measurement by the nanoindentation method.
  • the measurement of the Martens hardness by the nanoindentation method is performed using “TI950 TriboIndenter” manufactured by HYSITRON.
  • a Berkovich indenter (triangular pyramid) as the above indenter is pushed in by 500 nm from the side surfaces of the first hard coat layer 13 and the second hard coat layer 14 under the following measurement conditions, and held for a certain period of time to relieve the residual stress. And then unloading, measuring the maximum load after relaxation, and using the maximum load P max ( ⁇ N) and the indentation area A (nm 2 ) having a depth of 500 nm, the martens by P max / A Calculate the hardness.
  • the Martens hardness is the arithmetic average value of the values obtained by measuring 10 locations. (Measurement condition) ⁇ Loading speed: 10 nm / second ⁇ Retention time: 5 seconds ⁇ Load unloading speed: 10 nm / second ⁇ Measurement temperature: 25 ° C.
  • the first hard coat layer 13 is a layer for imparting hardness to the optical film 10, and the Martens hardness at the center of the cross section of the first hard coat layer 13 is preferably 500 MPa or more and less than 1000 MPa.
  • the pencil hardness in the first region can be set to 4H or more.
  • the lower limit of the Martens hardness at the center of the cross section of the first hard coat layer 13 is preferably 600 MPa or more, and the upper limit is preferably 950 MPa or less.
  • the second hard coat layer 14 is a layer for imparting the above-mentioned durable foldability and scratch resistance, and the Martens hardness at the center of the cross section of the second hard coat layer 14 is preferably 350 MPa or more and 600 MPa or less. .
  • the Martens hardness of the second hard coat layer 14 is preferably 350 MPa or more and 600 MPa or less.
  • the lower limit of the Martens hardness at the center of the cross section of the second hard coat layer 14 is more preferably 375 MPa, and the upper limit is more preferably 575 MPa.
  • the first hard coat layers 13 are separated from each other through a gap 15.
  • the shape of the first hard coat layer 13 is not particularly limited, and examples thereof include a stripe shape, a dot shape, a block shape, and a lattice shape. Among these, a stripe shape is preferable from the viewpoint of productivity in continuous coating.
  • the first hard coat layer 13 shown in FIG. 1 has a stripe shape as shown in FIG.
  • the minimum width of the first hard coat layer 13 corresponding to the width of the first region 10B is preferably 10 mm or more and 1000 mm or less. If the minimum width of the first hard coat layer 13 is less than 10 mm, there is a fear that sufficient hardness cannot be obtained in the image display device provided with the optical film and the touch panel. There is a possibility that a sufficient yield cannot be obtained when processing an image display device including a film and a touch panel.
  • the lower limit of the minimum width of the first hard coat layer 13 is more preferably 20 mm or more, and the upper limit is more preferably 800 mm or less.
  • the maximum width of the gap 15 corresponding to the width of the second region 10C is preferably 2 mm or more and 50 mm or less.
  • the maximum width of the gap 15 is less than 2 mm, the first region may be cracked or broken during the endurance folding test.
  • the width exceeds 50 mm, the image display device including the optical film and the touch panel is provided. There is a possibility that sufficient hardness cannot be obtained.
  • the lower limit of the maximum width of the gap 15 is more preferably 5 mm or more, and the upper limit is more preferably 20 mm or less.
  • the “gap” in the present specification means a space sandwiched between the first hard coat layers.
  • the first hard coat layer 13 exists at least in the first region 10B, and the gap 15 between the first hard coat layers 13 exists in the second region 10C.
  • the second region 10C having a lower hardness than the first region 10B is formed by causing the gap 15 to exist in the second region 10C and embedding the second hard coat layer 14 in the gap 15 as will be described later. Can do.
  • the thickness of the first hard coat layer 13 is preferably constant.
  • the film thickness of the first hard coat layer 13 in the first region 10B is preferably 2 ⁇ m or more and 20 ⁇ m or less. If the film thickness of the first hard coat layer in the first region is less than 2 ⁇ m, the hardness of the hard coat layer may be reduced, and if it exceeds 20 ⁇ m, the thickness is too thick. May deteriorate.
  • the film thickness of the first hard coat layer 13 is obtained by photographing a cross section of the first hard coat layer 13 using a scanning electron microscope (SEM), and in the image of the cross section, the film of the first hard coat layer 13 The thickness is measured at 20 locations, and the arithmetic average value of the film thickness at the 20 locations is taken.
  • the film thickness of the first hard coat layer 13 in the second region 10C is the first in the first region 10B.
  • the width of the region 10D is preferably 0.5 mm or more.
  • the width of the region 10D is more preferably 1 mm or more, and the upper limit is more preferably 45 mm or less.
  • This region 10 ⁇ / b> D also includes a separated portion where the first hard coat layer 13 does not exist in the second region 10 ⁇ / b> C.
  • the film thickness of the first hard coat layer 13 is gradually increased toward the separated portion of the first hard coat layer 13. It is getting smaller.
  • the interface between the first hard coat layer 13 and the second hard coat layer 14 becomes difficult to be visually recognized.
  • the second hard coat layer 14 is provided on the first hard coat layer 13 in the first region 10B, and is embedded in the gap between the first hard coat layers 13 in the second region 10C. ing.
  • the film thickness of the second hard coat layer 14 in the first region 10B is preferably 0.5 ⁇ m or more and 4 ⁇ m or less. If the film thickness of the second hard coat layer in the first region is less than 0.5 ⁇ m, the scratch resistance may be reduced. If the film thickness exceeds 4 ⁇ m, the second hard coat layer composition Coating may be difficult.
  • the film thickness of the second hard coat layer 14 in the second region 10C is preferably 0.5 ⁇ m or more and 20 ⁇ m or less.
  • the film thickness of the second hard coat layer in the second region is less than 0.5 ⁇ m, the scratch resistance may be reduced, and if it exceeds 20 ⁇ m, sufficient flexibility may not be obtained. is there.
  • the film thickness of the second hard coat layer 14 is measured by the same method as the film thickness of the first hard coat layer 13.
  • the first hard coat layer 13 preferably contains a binder resin and particles dispersed in the binder resin. Hardness can be improved by dispersing the particles in the binder resin.
  • the 1st hard-coat layer 13 may contain the ultraviolet absorber.
  • the binder resin contains a polymer (cured product) of a polymerizable compound (curable compound).
  • the polymerizable compound has at least one polymerizable functional group in the molecule.
  • the polymerizable functional group include ethylenically unsaturated groups such as a (meth) acryloyl group, a vinyl group, and an allyl group.
  • the “(meth) acryloyl group” means to include both “acryloyl group” and “methacryloyl group”.
  • polyfunctional (meth) acrylate is preferable.
  • the polyfunctional (meth) acrylate include trimethylolpropane tri (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, pentaerythritol tri (meth) ) Acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, Ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, tripentaerythr
  • those having 3 to 6 functional groups are preferable because they can satisfy the above-mentioned Martens hardness suitably.
  • pentaerythritol triacrylate PETA
  • dipentaerythritol hexaacrylate DPHA
  • pentaerythritol tetraacrylate PETTA
  • Dipentaerythritol pentaacrylate DPPA
  • trimethylolpropane tri (meth) acrylate tripentaerythritol octa (meth) acrylate
  • tetrapentaerythritol deca (meth) acrylate and the like are preferable.
  • a polymerizable monomer or a polymerizable oligomer other than the above may be contained.
  • the polymerizable monomer or polymerizable oligomer include a (meth) acrylate monomer having a polymerizable functional group in the molecule, or a (meth) acrylate oligomer having a polymerizable functional group in the molecule.
  • Examples of the polymerizable monomer or polymerizable oligomer include urethane (meth) acrylate, polyester (meth) acrylate, epoxy (meth) acrylate, melamine (meth) acrylate, polyfluoroalkyl (meth) acrylate, and silicone (meth).
  • Examples thereof include monomers or oligomers such as acrylate. These polymerizable monomers or polymerizable oligomers may be used alone or in combination of two or more.
  • urethane (meth) acrylate having polyfunctionality (6 functionalities or more) and having a weight average molecular weight of 1,000 to 10,000 is preferable.
  • a monofunctional (meth) acrylate monomer may be further included for adjusting the hardness, the viscosity of the composition, improving the adhesion, and the like.
  • the monofunctional (meth) acrylate monomer include hydroxyethyl acrylate (HEA), glycidyl methacrylate, methoxypolyethylene glycol (meth) acrylate, isostearyl (meth) acrylate, 2-acryloyloxyethyl succinate, acryloylmorpholine, N -Acryloyloxyethyl hexahydrophthalimide, cyclohexyl acrylate, tetrahydrofuryl acrylate, isobornyl acrylate, phenoxyethyl acrylate, adamantyl acrylate and the like.
  • HOA hydroxyethyl acrylate
  • glycidyl methacrylate methoxypolyethylene glycol (meth) acrylate
  • the weight average molecular weight of the polymerizable monomer is preferably less than 1000 and more preferably 200 to 800 from the viewpoint of improving the hardness of the first hard coat layer. Further, the weight average molecular weight of the polymerizable oligomer is preferably 1000 to 20,000, more preferably 1000 to 10,000, and still more preferably 2000 to 7000. In addition, in this specification, the weight average molecular weight of the said polymerizable monomer and polymerizable oligomer is the weight average molecular weight of polystyrene conversion measured by GPC method.
  • the particles are not particularly limited as long as the hardness can be improved, but silica particles are preferable from the viewpoint of obtaining excellent hardness.
  • silica particles are preferred.
  • the reactive silica particles are silica particles that can form a crosslinked structure with the polyfunctional (meth) acrylate, and the first hard coat layer includes the reactive silica particles. Can be sufficiently increased in hardness.
  • the reactive silica particles preferably have a reactive functional group on the surface, and for example, the polymerizable functional group is preferably used as the reactive functional group.
  • the reactive silica particles are not particularly limited, and conventionally known reactive silica particles can be used, and examples thereof include reactive silica particles described in JP-A-2008-165040.
  • Examples of commercially available reactive silica particles include, for example, Nissan Chemical Industries; MIBK-SD, MIBK-SDMS, MIBK-SDL, MIBK-SDZL, JGC Catalysts &Chemicals; V8802, V8803, and the like. .
  • the silica particles may be spherical silica particles, but are preferably atypical silica particles. Spherical silica particles and atypical silica particles may be mixed.
  • “spherical silica particles” means, for example, silica particles such as true spheres and oval spheres, and “atypical silica particles” have a shape having potato-like random irregularities on the surface. Means silica particles. Since the atypical silica particles have a surface area larger than that of the spherical silica particles, the inclusion of such atypical silica particles increases the contact area with the polyfunctional (meth) acrylate and the hard coat. The layer hardness (pencil hardness) can be made more excellent. Whether or not the atypical silica particles are present can be confirmed by cross-sectional observation of the first hard coat layer using a transmission electron microscope (TEM) or a scanning transmission electron microscope (STEM).
  • TEM transmission electron microscope
  • STEM scanning transmission electron microscope
  • the average particle size of the silica particles is preferably 5 nm or more and 200 nm or less. If the thickness is less than 5 nm, it may be difficult to produce the particles themselves, the particles may aggregate together, and it may be extremely difficult to deform the ink. In some stages, the dispersible silica particles may be poorly dispersed and may aggregate. On the other hand, when the average particle diameter of the irregular shaped silica particles exceeds 200 nm, there may be a problem that large irregularities are formed in the hard coat layer or haze is increased.
  • the average particle diameter of the silica particles is 20 particles from the cross-sectional image of the particles taken using a transmission electron microscope (TEM) or a scanning transmission electron microscope (STEM). The particle diameter is measured to obtain the arithmetic average value of the particle diameters of 20 particles.
  • the average particle diameter of the silica particles is the cross-section of the hard coat layer taken using a transmission electron microscope (TEM) or a scanning transmission electron microscope (STEM).
  • the maximum value (major axis) and the minimum value (minor axis) of the distance between the two points on the outer periphery of the deformed silica particles are measured from the image, and the average is obtained by calculating the particle diameter. To do.
  • the hardness (Martens hardness) of the first hard coat layer 13 can be controlled by controlling the size and blending amount of the particles.
  • the silica particles when the first hard coat layer 13 is formed, the silica particles have a diameter of 5 nm to 200 nm and preferably 25 to 60 parts by mass with respect to 100 parts by mass of the polymerizable compound.
  • the optical film is particularly preferably used for a mobile terminal such as a foldable smartphone or a tablet terminal.
  • a mobile terminal is often used outdoors, and thus is displayed more than the optical film.
  • the polarizer disposed on the element side is easily deteriorated by being exposed to ultraviolet rays.
  • the hard coat layer is disposed on the display screen side of the polarizer, if the ultraviolet light absorber is contained in the first hard coat layer, deterioration due to exposure of the polarizer to ultraviolet rays is suitably prevented. can do.
  • the said ultraviolet absorber (UVA) may be contained in the light transmissive resin base material mentioned above. In this case, the ultraviolet absorber (UVA) may not be contained in the first hard coat layer.
  • ultraviolet absorbers examples include triazine-based ultraviolet absorbers, benzophenone-based ultraviolet absorbers, and benzotriazole-based ultraviolet absorbers.
  • Examples of the triazine ultraviolet absorber include 2- (2-hydroxy-4- [1-octyloxycarbonylethoxy] phenyl) -4,6-bis (4-phenylphenyl) -1,3,5-triazine.
  • benzophenone ultraviolet absorber examples include 2-hydroxybenzophenone, 2,4-dihydroxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, 2,2 ′, 4,4′-tetrahydroxy. Examples thereof include benzophenone, 2-hydroxy-4-methoxybenzophenone, hydroxymethoxybenzophenone sulfonic acid and its trihydrate, hydroxymethoxybenzophenone sulfonate sodium, and the like. Examples of commercially available benzophenone ultraviolet absorbers include CHMASSORB81 / FL (manufactured by BASF).
  • benzotriazole ultraviolet absorber examples include 2-ethylhexyl-3- [3-tert-butyl-4-hydroxy-5- (5-chloro-2H-benzotriazol-2-yl) phenyl] propionate, 2 -(2H-benzotriazol-2-yl) -6- (linear and side chain dodecyl) -4-methylphenol, 2- [5-chloro (2H) -benzotriazol-2-yl] -4-methyl- 6- (tert-butyl) phenol, 2- (2H-benzotriazol-2-yl) -4,6-di-tert-pentylphenol, 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) benzotriazole, 2- (2′-hydroxy-3) -Tert-butyl-5'-methylphenyl) benzotriazole, 2- (2'-
  • benzotriazole ultraviolet absorbers examples include KEMISORB71D, KEMISORB79 (all manufactured by Chemipro Kasei Co., Ltd.), JF-80, JAST-500 (all manufactured by Johoku Chemical Co., Ltd.), ULS-1933D (one side) And RUVA-93 (manufactured by Otsuka Chemical Co., Ltd.).
  • triazine ultraviolet absorbers and benzotriazole ultraviolet absorbers are preferably used as the ultraviolet absorber. It is preferable that the ultraviolet absorber has high solubility with the resin component constituting the hard coat layer, and it is preferable that the bleed-out after the above-described durability folding test is small.
  • the ultraviolet absorber is preferably polymerized or oligomerized.
  • a polymer or oligomer having a benzotriazole, triazine, or benzophenone skeleton is preferable. Specifically, (meth) acrylate having a benzotriazole or benzophenone skeleton and methyl methacrylate (MMA) at an arbitrary ratio. It is preferable that it has been heat copolymerized.
  • the ultraviolet absorber can also play a role of protecting the OLED from ultraviolet rays.
  • the content of the ultraviolet absorber is not particularly limited, but is preferably 1 to 6 parts by mass with respect to 100 parts by mass of the solid content of the first hard coat layer composition. If the amount is less than 1 part by mass, the effect of containing the above-described ultraviolet absorber in the hard coat layer may not be sufficiently obtained. If the amount exceeds 6 parts by mass, the hard coat layer may be markedly colored or deteriorated in strength. May occur.
  • the minimum with more preferable content of the said ultraviolet absorber is 2 mass parts, and a more preferable upper limit is 5 mass parts.
  • the second hard coat layer 14 contains a resin.
  • the second hard coat layer 14 may contain an ultraviolet absorber in addition to the resin.
  • the resin contains a polymer (cured product) of a polymerizable compound (curable compound).
  • a polymerizable compound curable compound
  • the description is omitted here.
  • polymerizable compound in addition to the polyfunctional (meth) acrylate monomer, polyfunctional urethane (meth) acrylate and / or polyfunctional epoxy (meth) acrylate may be included.
  • UV absorber the same ultraviolet absorber as described in the column of the first hard coat layer can be used, and the description thereof will be omitted here.
  • the surface 14A of the second hard coat layer 14 in the second region 10C is depressed, but when an optical film is used as the outermost surface of an image display device including a touch panel,
  • the surface 14A of the second hard coat layer 14 is preferably flat.
  • the configuration of the first region 30B is the same as that of the first region 10B, and the second region 30C is the same as the second region 10C except for the above.
  • a part of the first hard coat layer 13 exists in the second region 10C, but like the optical film 40 shown in FIG.
  • a part of the first hard coat layer 13 may not be present in the second region 40C.
  • the configuration of the first region 40B is the same as that of the first region 10B
  • the second region 40C is the same as the second region 10C except for the above.
  • the optical film 10 can be produced as follows, for example. First, as shown in FIG. 6A, the mask 16 is arranged on the one surface 11A of the light-transmitting resin substrate 11 at predetermined intervals. After the mask 16 is disposed, the first hard coat layer composition is applied onto the one surface 11A of the light-transmitting resin base material 11 by a coating device such as a bar coater, as shown in FIG. As shown, a coating film 17 of the first hard coat layer composition is formed. Although it does not specifically limit as a coating method of the 1st composition for hard-coat layers, The bar-coat method, the gravure printing method, the screen printing method, the spray printing method etc. are mentioned. Further, as a method for forming the first hard coat layer 13, a photolithography method may be used.
  • the 1st composition for hard-coat layers contains the polymeric compound and particle
  • the 1st composition for hard-coat layers may contain the ultraviolet absorber, the solvent, and the polymerization initiator as needed.
  • the first hard coat layer composition preferably has a total solid content of 25 to 55%. If it is lower than 25%, residual solvent may remain or whitening may occur. If it exceeds 55%, the viscosity of the first composition for hard coat layer will increase, the coatability may decrease, and unevenness and streaks may appear on the surface.
  • the solid content is more preferably 30 to 50%.
  • solvent examples include alcohols (eg, methanol, ethanol, propanol, isopropanol, n-butanol, s-butanol, t-butanol, benzyl alcohol, PGME, ethylene glycol, diacetone alcohol), ketones (eg, acetone, methyl ethyl ketone, Methyl isobutyl ketone, cyclopentanone, cyclohexanone, heptanone, diisobutyl ketone, diethyl ketone, diacetone alcohol), ester (methyl acetate, ethyl acetate, butyl acetate, n-propyl acetate, isopropyl acetate, methyl formate, PGMEA), aliphatic Hydrocarbons (eg, hexane, cyclohexane), halogenated hydrocarbons (eg, methylene chloride, chloro
  • solvents may be used alone or two or more of them may be used in combination.
  • the resin component such as the polymerizable monomer and / or polymerizable oligomer described above, and other additives can be dissolved or dispersed to suitably apply the hard coat layer composition.
  • methyl isobutyl ketone and methyl ethyl ketone are preferred.
  • the polymerization initiator is a component that is decomposed by light irradiation to generate radicals to initiate or advance polymerization (crosslinking) of the photopolymerizable compound.
  • the polymerization initiator is not particularly limited as long as it can release a substance that initiates radical polymerization by light irradiation.
  • the polymerization initiator is not particularly limited, and known ones can be used. Specific examples include, for example, acetophenones, benzophenones, Michler benzoylbenzoate, ⁇ -amyloxime ester, thioxanthones, propiophenone. , Benzyls, benzoins, acylphosphine oxides. Further, it is preferable to use a mixture of photosensitizers, and specific examples thereof include n-butylamine, triethylamine, poly-n-butylphosphine and the like.
  • the binder resin is a resin system having a radically polymerizable unsaturated group
  • the max 16 on the light transmissive resin substrate 11 is removed.
  • the first hard coat layer composition slightly flows into the region where the mask 16 was present, and the film thickness becomes toward the gap 15 between the coating films 17. Gradually lower.
  • the coating film 17 is dried by heating at a temperature of, for example, 30 ° C. to 120 ° C. for 10 seconds to 12 seconds by various known methods, and the solvent is evaporated.
  • the coating film 17 of the first hard coat layer composition is irradiated with ionizing radiation such as ultraviolet rays, so that the first hard coat layer
  • ionizing radiation such as ultraviolet rays
  • the coating film 17 of the composition for use is semi-cured.
  • “Semi-curing” in the present specification means that curing substantially proceeds when irradiated with light. However, at this stage, the coating film 17 of the first hard coat composition may be completely cured (full cure). The “complete curing” in the present specification means that the curing does not substantially proceed even when light is further irradiated.
  • the ionizing radiation include visible light, ultraviolet light, X-rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays.
  • a second hard coat layer composition is applied onto the coating film 17 by a coating device such as a bar coater.
  • the coating film 18 of the composition for 2 hard-coat layers is formed.
  • the 2nd composition for hard-coat layers contains the polymeric compound.
  • the 2nd composition for hard-coat layers may contain the ultraviolet absorber, the solvent, and the polymerization initiator as needed.
  • the second hard coat layer composition preferably has a total solid content of 25 to 55%. Since the solvent and the polymerization initiator are the same as the solvent and the polymerization initiator described in the first hard coat layer composition, the description thereof will be omitted here.
  • the coating film 18 of the composition for the second hard coat layer is formed at a temperature of, for example, 30 ° C. or more and 120 ° C. or less by various known methods.
  • the solvent is evaporated by drying by heating for 12 seconds or more.
  • the coating film 18 of the second composition for hard coat layer is irradiated with ionizing radiation such as ultraviolet rays, so that the first hard coat layer
  • ionizing radiation such as ultraviolet rays
  • the hardness in the surface 10A of the optical film 10 is lower in the second region 10C than in the first region 10B, excellent hardness can be obtained in the first region 10B. Further, when the optical film 10 is folded in the second region 10C, excellent durability foldability can be obtained. Thereby, the optical film 10 which has the outstanding hardness and the outstanding durable foldability can be obtained.
  • the first hard coat layer 13 exists in the first region 10B, excellent hardness can be obtained. Further, there is a gap 15 between the first hard coat layers 13 in the second region 10C, and the second hard coat layer 14 having a hardness lower than that of the first hard coat layer 13 is embedded in the gap 15. Therefore, when the optical film 10 is folded in the second region 10C, an excellent durability foldability can be obtained. Thereby, the optical film 10 which has the outstanding hardness and the outstanding durable foldability can be obtained.
  • FIG. 8 is a schematic configuration diagram of a polarizing plate incorporating the optical film according to the present embodiment.
  • the polarizing plate 50 includes an optical film 10 that functions as a protective film, a polarizer 51, and a protective film 52 in this order.
  • the polarizer 51 is formed on the other surface 11B of the light transmissive substrate 11.
  • the protective film 52 is provided on the surface opposite to the surface on which the optical film 10 of the polarizer 51 is provided.
  • the protective film 52 may be a retardation film.
  • the polarizer 51 is a polyvinyl alcohol resin film that is dyed with iodine or a dichroic dye and stretched uniaxially.
  • a saponified polyvinyl acetate resin can be used as the polyvinyl alcohol resin.
  • the polyvinyl acetate resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith.
  • Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
  • the polyvinyl alcohol-based resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes may be used.
  • FIG. 9 is a schematic configuration diagram of the image display apparatus according to the present embodiment.
  • the image display device 60 mainly includes a display element 61 for displaying an image having a touch panel function, and a polarizing plate 50 disposed on the viewer side from the display element 61.
  • the display element 61 is an organic light emitting diode (OLED).
  • OLED organic light emitting diode
  • the display element 61 has an in-cell structure having a touch panel function inside, a display element that does not have a touch panel function can be used as the display element. In this case, a touch panel may be disposed between the display element and the polarizing plate (on-cell structure).
  • the optical film 10 is disposed on the viewer side with respect to the display panel 61, and the hard coat layer 12 is disposed on the viewer side with respect to the light transmissive resin substrate 11.
  • the optical film 10 is provided on the polarizing plate 50.
  • the present invention is not limited to this, and the optical film 10 may be provided on, for example, a brightness enhancement film, a retardation film, an antistatic film, or the like. .
  • FIG. 10 is a schematic configuration diagram of the optical film according to the present embodiment
  • FIG. 11 is a partially enlarged view of the optical film according to the present embodiment
  • FIGS. 12 and 13 are diagrams of the optical film according to the present embodiment. It is a figure which shows a manufacturing process typically.
  • the optical film 70 shown in FIG. 10 includes a light transmissive resin base 71 and a hard coat layer 72 provided on one surface 71A of the light transmissive resin base 71. Since the physical properties of the optical film 70 are the same as the physical properties of the optical film 10, the description thereof will be omitted here.
  • the optical film 70 has a first region 70B and a second region 70C having different hardnesses on the surface 70A of the optical film 70, respectively. Specifically, the hardness of the surface 70A of the optical film 70 is lower in the second region 70C than in the first region 70B.
  • the hard coat layer 72 includes a first hard coat layer 73 having one or more recesses 73 ⁇ / b> A, and a second hard coat layer 74 having a hardness lower than that of the first hard coat layer 73.
  • the hardness of the first hard coat layer 73 is the same as the hardness of the first hard coat layer 13, and the hardness of the second hard coat layer 74 is the hardness of the second hard coat layer 14. Therefore, the description is omitted here.
  • the first hard coat layer 73 has a recess 73A as described above. That is, as shown in FIG. 11, the thin film portion 73 ⁇ / b> B of the first hard coat layer 73 exists between the bottom surface of the recess 73 ⁇ / b> A and the light transmissive resin base material 71, and the both sides of the recess 73. There is a thick film portion 73C whose film thickness is thicker than the thin film portion 73B.
  • the second region has a region where the thickness of the first hard coat layer is 50% or less of the thickness of the first hard coat layer in the first region due to the recess 73A.
  • the shape of the recess 73A is not particularly limited, and examples thereof include a stripe shape, a dot shape, a block shape, and a lattice shape. Among these, a stripe shape is preferable from the viewpoint of productivity in continuous coating.
  • the width of the thick film portion 73C corresponding to the width of the first region 70B is preferably 10 mm or more and 1000 mm or less. If the width of the thick film portion 73C is less than 10 nm, sufficient hardness may not be obtained in the image display device including the optical film and the touch panel. If the width exceeds 1000 mm, the optical film and the touch panel may be removed. There is a possibility that a sufficient yield cannot be obtained during processing of the image display device provided.
  • the lower limit of the width of the thick film portion 73C is more preferably 20 mm or more, and the upper limit is more preferably 800 mm or less.
  • the maximum width of the recess 73A corresponding to the width of the second region 70C is preferably 2 mm or more and 50 mm or less. If the maximum width of the recess 73A is less than 2 mm, the first region may be cracked or broken during the endurance folding test. If the maximum width exceeds 50 mm, the image display device includes the optical film and the touch panel. There is a risk that sufficient hardness cannot be obtained.
  • the lower limit of the maximum width of the recess 73A is more preferably 5 mm or more, and the upper limit is more preferably 20 mm or less.
  • the first hard coat layer 73 is present at least in the first region 70B, and the recess 73A is present in the second region 70C.
  • the second region 70C having a hardness lower than that of the first region 70B is formed by causing the recess 73A to exist in the second region 70C and embedding the second hard coat layer 74 in the recess 73A as will be described later. Can do.
  • the thickness of the thick film portion 73C of the first hard coat layer 73 is preferably constant.
  • the film thickness of the thick film portion 73C of the first hard coat layer 73 in the first region 70B is preferably 2 ⁇ m or more and 20 ⁇ m or less. If the thickness of the thick film portion of the first hard coat layer in the first region is less than 2 ⁇ m, the hardness of the hard coat layer may decrease, and if it exceeds 20 ⁇ m, the thickness is too thick. As a result, workability may be deteriorated.
  • the film thickness of the thick film portion 73 ⁇ / b> C of the first hard coat layer 73 is measured by the same method as the film thickness of the first hard coat layer 13.
  • the thickness of the first hard coat layer 73 (thickness of the thin film portion 73B) in the second region 70C is due to the presence of the recess 73A.
  • the width of the region 70D is preferably 0.5 mm or more. By setting the width of the region 70D to 1 mm or more, the second hard coat layer 74 embedded between the first hard coat layers 73 increases, so that the durable folding performance can be further improved.
  • the lower limit of the width of the region 70D is more preferably 1 mm or more, and the upper limit is more preferably 45 mm or less.
  • the thin film portion 73B of the first hard coat layer 73 exists, and the film thickness of the thin film portion 73B gradually increases toward the central portion of the recess 73A of the first hard coat layer 73. It is getting smaller. Thus, by gradually reducing the film thickness of the thin film portion 73B, the interface between the first hard coat layer 73 and the second hard coat layer 74 becomes difficult to be visually recognized.
  • the second hard coat layer 74 is provided on the thick film portion 73C in the first region 70B, and is embedded in the recess 73A in the second region 70C.
  • the film thickness of the second hard coat layer 74 in the first region 70B is preferably not less than 0.5 ⁇ m and not more than 4 ⁇ m. If the film thickness of the second hard coat layer in the first region is less than 0.5 ⁇ m, the scratch resistance may be reduced. If the film thickness exceeds 4 ⁇ m, the second hard coat layer composition Coating may be difficult.
  • the film thickness of the second hard coat layer 74 is measured by the same method as the film thickness of the first hard coat layer 13.
  • the film thickness of the second hard coat layer 74 in the second region 70C is preferably 0.5 ⁇ m or more and 20 ⁇ m or less. If the film thickness of the second hard coat layer in the second region is less than 0.5 ⁇ m, the scratch resistance may be reduced, and if it exceeds 20 ⁇ m, sufficient flexibility may not be obtained. is there.
  • the surface 74A of the second hard coat layer 74 in the second region 70C is depressed, but when an optical film is used as the outermost surface of an image display device including a touch panel, Similar to the optical film 30, the second region preferably has a flat surface of the second hard coat layer. By making the surface of the second hard coat layer flat, the touch when the surface is touched with a finger is good.
  • a part of the first hard coat layer 73 exists in the second region 70 ⁇ / b> C, but like the optical film 40, the second film 70 ⁇ / b> C is in the second region.
  • a part of one hard coat layer may not exist.
  • the optical film 70 can be manufactured as follows, for example. First, as shown in FIG. 12A, a first hard coat layer composition coating film 75 having a recess 75 ⁇ / b> A is formed on one surface 71 ⁇ / b> A of the light-transmitting resin substrate 71.
  • the coating film 75 having the recess 75A can be formed by a method similar to the method described in the first embodiment. Specifically, as described in the first embodiment, since the first hard coat layer composition flows into the region where the mask was present when the mask was removed, the width of the maximum was made larger than that in the first embodiment.
  • each coating film is connected by the 1st composition for hard-coat layers which flows at the time of mask removal, and the coating film 75 which has the recessed part 75A can be formed.
  • the coating film 75 which has such a recessed part 75A can be formed also by increasing the application quantity of the composition for 1st hard-coat layers rather than 1st Embodiment. It is also possible to form the coating film 75 having the concave portions 75A by a coating apparatus such as a gravure coater. Since the composition for the first hard coat layer is the same as that of the first embodiment, the description thereof will be omitted here.
  • the coating film 75 of the composition for the first hard coat layer is formed at a temperature of, for example, 30 ° C. or more and 120 ° C. or less by various known methods.
  • the solvent is evaporated by drying by heating for 12 seconds or more.
  • the coating film 75 of the first hard coat layer composition is irradiated with ionizing radiation such as ultraviolet rays, so that the first hard coat layer
  • ionizing radiation such as ultraviolet rays
  • the coating film 75 of the composition for use is semi-cured (half-cured).
  • the coating film 75 of the first hard coat layer composition may be completely cured (full cure).
  • the second hard coat layer composition is applied onto the coating film 75 by a coating device such as a bar coater.
  • a coating film 76 of the composition for hard coat layer 2 is formed. Since the 2nd composition for hard-coat layers is the same as that of 1st Embodiment, description shall be abbreviate
  • the coating film 76 of the second hard coat layer composition is formed at a temperature of 30 ° C. or more and 120 ° C. or less by various known methods.
  • the solvent is evaporated by drying by heating for 12 seconds or more.
  • the coating film 76 of the second hard coat layer composition is irradiated with ionizing radiation such as ultraviolet rays, so that the first hard coat layer
  • ionizing radiation such as ultraviolet rays
  • the hardness in the surface 70A of the optical film 70 is lower in the second region 70C than in the first region 70B, excellent hardness can be obtained in the first region 70B. Further, when the optical film 70 is folded in the second region 70C, excellent durability foldability can be obtained. Thereby, the optical film 70 which has the outstanding hardness and the outstanding durable foldability can be obtained.
  • the first hard coat layer 73 is present in the first region 70B, excellent hardness can be obtained.
  • a recess 73A between the first hard coat layers 73 exists in the second region 70C, and a second hard coat layer 74 having a hardness lower than that of the first hard coat layer 73 is embedded in the recess 73A. Therefore, when the optical film 70 is folded in the second region 70C, an excellent durability foldability can be obtained. Thereby, the optical film 70 which has the outstanding hardness and the outstanding durable foldability can be obtained.
  • optical films 30, 40, and 70 can be used by being incorporated in the polarizing plate and the image display device having the same structure as the polarizing plate 50 and the image display device 60 described in the first embodiment.
  • 100% solid content conversion value is a value when the solid content in the solvent diluted product is 100%.
  • composition for first hard coat layer First, each component was mix
  • a polyimide substrate made of a polyimide resin represented by the above formula (1) having a thickness of 30 ⁇ m and a width of 300 mm is prepared as a light-transmitting resin substrate, and the width direction of the polyimide substrate is formed on one surface of the polyimide substrate.
  • a plurality of rectangular masks having a width of 10 mm, a length of 300 mm and a thickness of 0.06 mm are arranged at intervals of 10 cm, and in that state, the first hard coat layer composition is applied with a bar coater, A coating film was formed. After forming the coating film, the mask was removed. Then, the solvent in the coating film is evaporated by heating the formed coating film at 70 ° C.
  • the coating film was semi-cured by irradiation so that the integrated light amount was 100 mJ / cm 2 .
  • the second hard coat layer composition was applied onto the semi-cured coating film with a bar coater to form a coating film.
  • the solvent in the coating film is evaporated by heating the formed coating film at 70 ° C. for 1 minute, and ultraviolet rays are converted into oxygen concentration by using an ultraviolet irradiation device (light source H bulb manufactured by Fusion UV System Japan). Is irradiated with an integrated light amount of 200 mJ / cm 2 under a condition of 200 ppm or less to completely cure the coating film, thereby providing a plurality of first hard coat layers having a film thickness of 7 ⁇ m and a first hard coat A hard coat layer comprising a second hard coat layer having a thickness of 2 ⁇ m was formed on the layer.
  • the second hard coat layer is embedded in the gap between the first region where the polyimide base material, the first hard coat layer, and the second hard coat layer are arranged in this order, and the first hard coat layer.
  • an optical film having a second region in which the hardness of the surface of the hard coat layer is lower than the first region was obtained.
  • the width of the gap between the first hard coat layers is 5 mm near the interface with the narrowest polyimide substrate, 12 mm at the widest second hard coat layer side, and between the first hard coat layers.
  • the second hard coat layer was embedded in the gap. In the second region including the gap, the width of the region where the thickness of the first hard coat layer is 50% or less of the thickness of the first hard coat layer in the first region was 8 mm.
  • Example 2 an optical film was produced in the same manner as in Example 1 except that the film thickness of the first hard coat layer was changed from 7 ⁇ m to 20 ⁇ m. In the optical film according to Example 2, there was a gap between the first hard coat layers, and the second hard coat layer was embedded in the gap. In the second region including the gap, the width of the region where the thickness of the first hard coat layer is 50% or less of the thickness of the first hard coat layer in the first region was 7 mm.
  • Example 3 the thickness of the first hard coat layer was changed from 7 ⁇ m to 20 ⁇ m, and the thickness of the second hard coat layer was changed from 2 ⁇ m to 4 ⁇ m.
  • An optical film was prepared. In the optical film according to Example 3, a gap was present between the first hard coat layers, and the second hard coat layer was embedded in the gap. In the second region including the gap, the width of the region where the film thickness of the first hard coat layer is 50% or less of the film thickness of the first hard coat layer in the first region was 7 mm.
  • Example 4 an optical film was produced in the same manner as in Example 1 except that the film thickness of the second hard coat layer was changed from 2 ⁇ m to 0.5 ⁇ m.
  • Example 5 was the same as Example 1 except that a mask having a width of 8 mm, a length of 300 mm and a thickness of 0.06 mm was used instead of a mask having a width of 10 mm, a length of 300 mm and a thickness of 0.06 mm. Thus, an optical film was produced. In the optical film according to Example 5, there was a gap between the first hard coat layers, and the second hard coat layer was embedded in the gap. In the second region including the gap, the width of the region where the thickness of the first hard coat layer is 50% or less of the thickness of the first hard coat layer in the first region was 6 mm.
  • Example 6 a mask having a width of 5 mm, a length of 300 mm, and a thickness of 0.06 mm was used instead of a mask having a width of 10 mm, a length of 300 mm, and a thickness of 0.06 mm.
  • an optical film was produced.
  • the optical film according to Example 6 there was a gap between the first hard coat layers, and the second hard coat layer was embedded in the gap. Further, in the second region including the gap, the width of the region where the thickness of the first hard coat layer is 50% or less of the thickness of the first hard coat layer in the first region was 3 mm.
  • Example 7 the film thickness of the first hard coat layer was changed from 7 ⁇ m to 2 ⁇ m, and the film thickness of the second hard coat layer was changed from 2 ⁇ m to 0.5 ⁇ m. Thus, an optical film was produced. In the optical film according to Example 7, there was a gap between the first hard coat layers, and the second hard coat layer was embedded in the gap. In the second region including the gap, the width of the region in which the film thickness of the first hard coat layer is 50% or less of the film thickness of the first hard coat layer in the first region was 9 mm.
  • Example 8 an optical film was produced in the same manner as in Example 1 except that a polyethylene terephthalate substrate having a thickness of 30 ⁇ m and a width of 300 mm was used instead of the polyimide substrate.
  • Example 9 an optical film was produced in the same manner as in Example 1 except that a triacetylcellulose substrate having a thickness of 30 ⁇ m and a width of 300 mm was used instead of the polyimide substrate.
  • a polyimide substrate made of a polyimide resin represented by the above formula (1) having a thickness of 30 ⁇ m and a width of 300 mm is prepared as a light-transmitting resin substrate, and the width direction of the polyimide substrate is formed on one surface of the polyimide substrate.
  • a plurality of rectangular masks having a width of 2 mm, a length of 300 mm, and a thickness of 0.06 mm are arranged at intervals of 10 cm along the above, and in this state, the first hard coat layer composition is applied with a bar coater, A coating film was formed. After forming the coating film, the mask was removed. Then, the solvent in the coating film is evaporated by heating the formed coating film at 70 ° C.
  • the coating film was semi-cured by irradiation so that the integrated light amount was 100 mJ / cm 2 .
  • the second hard coat layer composition was applied onto the semi-cured coating film with a bar coater to form a coating film.
  • the solvent in the coating film is evaporated by heating the formed coating film at 70 ° C. for 1 minute, and ultraviolet rays are converted into oxygen concentration by using an ultraviolet irradiation device (light source H bulb manufactured by Fusion UV System Japan). Is irradiated with a cumulative light quantity of 200 mJ / cm 2 under a condition of 200 ppm or less to completely cure the coating, thereby providing a first hard part having a recess and a thick film part having a thickness of 7 ⁇ m.
  • a hard coat layer comprising a coat layer and a second hard coat layer having a thickness of 2 ⁇ m was formed on the first hard coat layer.
  • the polyimide substrate, the first hard coat layer thick film portion, and the second hard coat layer are disposed in this order in the first region, and the second hard coat layer is recessed in the first hard coat layer.
  • An optical film having a second region in which the coat layer was embedded and the hardness of the surface of the hard coat layer was lower than the first region was obtained.
  • the entrance width of the recess between the first hard coat layers is 3 mm, and the thinnest part of the thin film portion of the first hard coat layer (the portion immediately below the bottom surface of the recess of the first hard coat layer) The thickness was 1 ⁇ m.
  • the width of the region in which the thickness of the first hard coat layer is 50% or less of the thickness of the first hard coat layer in the first region was 1 mm.
  • a polyimide substrate made of a polyimide resin represented by the above formula (1) having a thickness of 30 ⁇ m and a width of 300 mm is prepared as a light-transmitting resin substrate.
  • the hard coat layer composition was applied to form a coating film. Thereafter, the formed coating film is heated at 70 ° C. for 1 minute to evaporate the solvent in the coating film.
  • the coating film was semi-cured by irradiation so that the integrated light amount was 100 mJ / cm 2 .
  • the second hard coat layer composition was applied onto the semi-cured coating film with a bar coater to form a coating film.
  • the solvent in the coating film is evaporated by heating the formed coating film at 70 ° C. for 1 minute, and ultraviolet rays are converted into oxygen concentration by using an ultraviolet irradiation device (light source H bulb manufactured by Fusion UV System Japan).
  • the film was completely cured by irradiation so that the integrated light amount was 200 mJ / cm 2 under the condition of 200 ppm or less.
  • an optical film having a uniform first hard coat layer having a thickness of 7 ⁇ m on the polyimide substrate and a uniform second hard coat layer having a thickness of 2 ⁇ m on the first hard coat layer was obtained.
  • a polyimide substrate made of a polyimide resin represented by the above formula (1) having a thickness of 30 ⁇ m and a width of 300 mm is prepared as a light-transmitting resin substrate.
  • the hard coat layer composition was applied to form a coating film.
  • the solvent in the coating film is evaporated by heating the formed coating film at 70 ° C. for 1 minute, and ultraviolet rays are converted into oxygen by using an ultraviolet irradiation device (light source H bulb manufactured by Fusion UV System Japan).
  • the coating film was cured by irradiation so that the integrated light amount was 200 mJ / cm 2 under the condition where the concentration was 200 ppm or less. Thereby, the optical film which has only a uniform 1st hard-coat layer with a film thickness of 7 micrometers on the polyimide base material was obtained.
  • a polyimide substrate made of a polyimide resin represented by the above formula (1) having a thickness of 30 ⁇ m and a width of 300 mm is prepared as a light-transmitting resin substrate, and the second substrate is coated with a bar coater on one surface of the polyimide substrate.
  • the hard coat layer composition was applied to form a coating film.
  • the solvent in the coating film is evaporated by heating the formed coating film at 70 ° C. for 1 minute, and ultraviolet rays are converted into oxygen by using an ultraviolet irradiation device (light source H bulb manufactured by Fusion UV System Japan).
  • the coating film was cured by irradiation so that the integrated light amount was 200 mJ / cm 2 under the condition where the concentration was 200 ppm or less. Thereby, the optical film which has only a uniform 2nd hard-coat layer with a film thickness of 2 micrometers on the polyimide base material was obtained.
  • the pencil hardness of the first region and the second region on the surface of the optical film according to the example is determined by a pencil hardness test (load: 750 g, scratching speed: 1 mm / second) defined in JIS K5600-5-4: 1999. Based on each measurement. Further, the pencil hardness of the surface of the optical film according to the comparative example was measured based on a pencil hardness test (load: 750 g, scratching speed: 1 mm / second) defined by JIS K5600-5-4: 1999. In the optical film according to the comparative example, since the first hard coat layer and the second hard coat layer were uniformly formed, there was no region where the hardness changed on the surface of the optical film.
  • the surface hardness of the optical film according to the comparative example is described only in the column of the first region.
  • the pencil hardness is the highest hardness at which the surface of the optical film was not damaged in the pencil hardness test.
  • the pencil hardness is measured using a plurality of pencils having different hardnesses.
  • the pencil hardness test is performed five times for each pencil, and the surface of the optical film is measured under a fluorescent lamp four times or more out of five times. In the case where no scratch is visually recognized on the surface of the optical film during the transmission observation, it is determined that the surface of the optical film is not scratched with the pencil having this hardness.
  • Martens hardness The Martens hardness of the first hard coat layer and / or the second hard coat layer of the optical films according to Examples and Comparative Examples was measured. Martens hardness was measured using “TI950 TriboIndenter” manufactured by HYSITRON. Specifically, using a Berkovich indenter (triangular pyramid) as an indenter, pushing in from the side surface of each hard coat layer by 500 nm under the following measurement conditions, holding for a certain period of time to relieve the residual stress, then unloading Then, the maximum load after relaxation was measured, and the Martens hardness was calculated from P max / A using the maximum load P max ( ⁇ N) and the indentation area A (nm 2 ) having a depth of 500 nm.
  • the Martens hardness was an arithmetic average value of values obtained by measuring 10 locations. (Measurement condition) ⁇ Loading speed: 10 nm / second ⁇ Retention time: 5 seconds ⁇ Load unloading speed: 10 nm / second ⁇ Measurement temperature: 25 ° C.
  • ⁇ Durable folding test> Samples prepared by cutting optical films according to Examples and Comparative Examples into a rectangular shape of 30 mm ⁇ 100 mm were placed on the fixed end and moving end of a durability tester (product name “DLDMMLH-FS, manufactured by Yuasa System Equipment Co., Ltd.”). A test in which the sample is folded at 180 ° by moving the mounting and moving ends so that the surface on which the hard coat layer of the sample is formed is inward and the bending radius of the sample is 1.5 mm (diameter: 3.0 mm) The sample according to the example was folded in the second region.
  • DLDMMLH-FS manufactured by Yuasa System Equipment Co., Ltd.
  • the sample is replaced with a new sample, and similarly, the sample is folded by 180 ° so that the surface on which the hard coat layer is formed is the outside and the bending radius of the sample is 1.5 mm (diameter: 3.0 mm).
  • the test was conducted 100,000 times and evaluated according to the following criteria. Also in this case, the sample according to the example is folded in the second region. ⁇ : Even when the above test was performed on both sides of the sample, the sample was not cracked or broken. X: When the above test was performed on both sides of the sample, the sample was cracked or broken.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Polarising Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

[Problem] To provide an optical film having exceptional hardness and exceptional folding endurance, and a polarizing plate and an image display device provided with the optical film. [Solution] According to an embodiment of the present invention, there is provided a foldable optical film 10 provided with a light-transmissive resin substrate 11 and a hard coating layer 12 provided on one surface side of the light-transmissive resin substrate 11, wherein the optical film 10 is characterized in having a first region 10B and a second region 10C, the second region 10C having a lower hardness at the surface 10A of the optical film 10 than does the first region 10B.

Description

光学フィルム、偏光板および画像表示装置Optical film, polarizing plate and image display device 関連出願の参照Reference to related applications
 本願は、先行する日本国出願である特願2016-2954(出願日:2016年1月8日)の優先権の利益を享受するものであり、その開示内容全体は引用することにより本明細書の一部とされる。 This application enjoys the benefit of the priority of Japanese Patent Application No. 2016-2954 (filing date: January 8, 2016), which is a prior Japanese application, the entire disclosure of which is incorporated herein by reference. To be part of
 本発明は、光学フィルム、偏光板および画像表示装置に関する。 The present invention relates to an optical film, a polarizing plate, and an image display device.
 近年、急速に普及してきているタッチパネルに用いる光学フィルムは、優れた硬度を有するとともに、光学フィルムを繰り返し折り畳んでもクラックの生じることのない優れた耐久折り畳み性能が求められることがある。 In recent years, optical films used for touch panels, which have been rapidly spreading, are required to have excellent hardness and excellent durable folding performance that does not cause cracks even when the optical film is repeatedly folded.
 しかしながら、硬度と屈曲性とは、通常、トレードオフの関係にあるため、従来の光学フィルムでは、硬度の向上を図ると耐久折り畳み性能は低下し、耐久折り畳み性能の向上を図ると硬度が低下してしまい、これらの性能を同時に優れたものとすることができなかった。 However, since hardness and bendability are usually in a trade-off relationship, with conventional optical films, when the hardness is improved, the durable folding performance is lowered, and when the durable folding performance is improved, the hardness is lowered. Therefore, these performances could not be improved at the same time.
 また、タッチパネルでは、表示画面にガラスが用いられている場合が多い。ところが、ガラスは、硬度は高いが折り畳むと割れてしまい折り畳み性能を付与することはできず、また、ガラスは、比重の大きい材料であるため、軽量化を図るには薄くする必要があるが、ガラスを薄くすると強度が低下して割れやすくなる問題があった。 Also, touch panels often use glass for the display screen. However, although glass has high hardness, it cannot be given folding performance because it is broken when folded, and glass is a material with a large specific gravity. When the glass is thinned, there is a problem that the strength is reduced and the glass is easily broken.
 また、硬度と屈曲性とを備えた光学フィルムとして、光透過性樹脂基材の一方の面上に第1のハードコート層を設けるとともに他方の面上に第1のハードコート層とはビッカース硬度が異なる第2のハードコート層を設けた光学フィルムが開示されている(例えば、特開2014-186210号公報参照)。しかしながら、このような光学フィルムでは、優れた硬度を有するものの、繰り返し折り畳むことにより、折り畳みの跡が付いたりすることがあり、近年要求される耐久折り畳み性能を満たすものではなかった。 Further, as an optical film having hardness and flexibility, a first hard coat layer is provided on one surface of a light-transmitting resin base material, and the first hard coat layer is Vickers hardness on the other surface. An optical film provided with a second hard coat layer having a different thickness is disclosed (for example, see JP-A-2014-186210). However, although such an optical film has excellent hardness, it may not be able to satisfy the durable folding performance required in recent years, because it may be marked by folding when it is repeatedly folded.
 本発明は、上記問題を解決するためになされたものである。すなわち、優れた硬度および優れた耐久折り畳み性能を有する光学フィルム、これを備えた偏光板および画像表示装置を提供することを目的とする。 The present invention has been made to solve the above problems. That is, it aims at providing the optical film which has the outstanding hardness and the outstanding durable folding performance, a polarizing plate provided with the same, and an image display apparatus.
 本発明者らは、上記課題に対して鋭意研究を重ねたところ、光学フィルムの表面における硬度が第1の領域より低い第2の領域を形成すれば、優れた硬度および優れた耐久折り畳み性能が得られることを見出した。本発明は、このような知見に基づき完成されたものである。 As a result of intensive research on the above problems, the inventors of the present invention have excellent hardness and excellent folding performance as long as the second region having a lower hardness on the surface of the optical film than the first region is formed. It was found that it can be obtained. The present invention has been completed based on such findings.
 本発明の一の態様によれば、光透過性樹脂基材と、前記光透過性樹脂基材の一方の面側に設けられたハードコート層とを備え、かつ折り畳み可能な光学フィルムであって、第1の領域と、前記第1の領域より前記光学フィルムの表面における硬度が低い第2の領域とを有することを特徴とする、光学フィルムが提供される。 According to one aspect of the present invention, a foldable optical film comprising a light transmissive resin base material and a hard coat layer provided on one surface side of the light transmissive resin base material, There is provided an optical film comprising: a first region; and a second region having a lower hardness on the surface of the optical film than the first region.
 上記光学フィルムにおいて、前記光学フィルムを前記光学フィルムの曲げ半径が1.5mmとなるように前記第2の領域で180°折り畳む試験を10万回繰り返し行った場合に割れまたは破断が生じなくてもよい。 In the above optical film, even when the test for folding the optical film by 180 ° in the second region so that the bending radius of the optical film is 1.5 mm is repeated 100,000 times, no crack or breakage occurs. Good.
 上記光学フィルムにおいて、前記ハードコート層が、隙間を介して互いに離間して配置された複数の第1のハードコート層と、硬度が前記第1のハードコート層より低い第2のハードコート層とを有し、前記第1の領域内においては、前記光透過性樹脂基材、前記第1のハードコート層、および前記第2のハードコート層がこの順で積層されており、前記第2の領域内においては、前記隙間が存在しており、かつ前記第2のハードコート層が前記隙間に埋め込まれていてもよい。 In the optical film, the hard coat layers are a plurality of first hard coat layers that are spaced apart from each other via a gap, and a second hard coat layer having a hardness lower than that of the first hard coat layer. In the first region, the light transmissive resin base material, the first hard coat layer, and the second hard coat layer are laminated in this order, and the second region In the region, the gap may exist, and the second hard coat layer may be embedded in the gap.
 上記光学フィルムにおいて、前記ハードコート層が、1以上の凹部を有する第1のハードコート層と、硬度が前記第1のハードコート層より低い第2のハードコート層とを有し、前記第1の領域内においては、前記光透過性樹脂基材、前記第1のハードコート層、および前記第2のハードコート層がこの順で積層されており、前記第2の領域内においては、前記凹部が存在しており、前記凹部によって前記第1のハードコート層の膜厚が前記第1の領域における前記第1のハードコート層の膜厚の50%以下となる領域を有し、かつ前記第2のハードコート層が前記凹部に埋め込まれていてもよい。 In the optical film, the hard coat layer includes a first hard coat layer having one or more recesses, and a second hard coat layer having a hardness lower than that of the first hard coat layer. In the region, the light transmissive resin base material, the first hard coat layer, and the second hard coat layer are laminated in this order, and in the second region, the concave portion And the recess has a region where the thickness of the first hard coat layer is 50% or less of the thickness of the first hard coat layer in the first region, and the first Two hard coat layers may be embedded in the recess.
 上記光学フィルムにおいて、前記第2の領域内における前記第1のハードコート層の膜厚が前記第1の領域における前記第1のハードコート層の膜厚の50%以下となる領域の幅が0.5mm以上であってもよい。 In the optical film, the width of the region in which the thickness of the first hard coat layer in the second region is 50% or less of the thickness of the first hard coat layer in the first region is 0. It may be 5 mm or more.
 上記光学フィルムにおいて、前記第2の領域内に前記第1のハードコート層の一部が存在し、前記第2の領域内に存在する前記第1のハードコート層の一部が前記第1のハードコート層の離間位置または前記凹部の中央部に向かうにつれて前記第1のハードコート層の膜厚が徐々に小さくなっていてもよい。 In the optical film, a part of the first hard coat layer is present in the second region, and a part of the first hard coat layer is present in the second region. The film thickness of the first hard coat layer may gradually decrease toward the separated position of the hard coat layer or toward the center of the recess.
 本発明の他の態様によれば、上記の光学フィルムと、前記光学フィルムの前記光透過性基材の他方の面側に設けられた偏光子とを備える、折り畳み可能な偏光板が提供される。 According to the other aspect of this invention, the foldable polarizing plate provided with said optical film and the polarizer provided in the other surface side of the said light-transmissive base material of the said optical film is provided. .
 本発明の他の態様によれば、表示素子と、前記表示素子よりも観察者側に配置された上記の光学フィルムまたは上記の偏光板とを備える、折り畳み可能な画像表示装置が提供される。 According to another aspect of the present invention, there is provided a foldable image display device comprising a display element and the optical film or the polarizing plate disposed on the viewer side with respect to the display element.
図1は、第1の実施形態に係る光学フィルムの概略構成図である。FIG. 1 is a schematic configuration diagram of an optical film according to the first embodiment. 図2は、第1の実施形態に係る光学フィルムの平面図である。FIG. 2 is a plan view of the optical film according to the first embodiment. 図3は、第1の実施形態に係る光学フィルムの一部の拡大図である。FIG. 3 is an enlarged view of a part of the optical film according to the first embodiment. 図4(A)および図4(B)は、180°折り畳み試験の様子を模式的に示した図である。4 (A) and 4 (B) are diagrams schematically showing a state of the 180 ° folding test. 図5(A)および図5(B)は、第1の実施形態に係る他の光学フィルムの概略構成図である。FIG. 5A and FIG. 5B are schematic configuration diagrams of other optical films according to the first embodiment. 図6(A)~図6(D)は、第1の実施形態に係る光学フィルムの製造工程を模式的に示す図である。6 (A) to 6 (D) are diagrams schematically showing a manufacturing process of the optical film according to the first embodiment. 図7(A)~図7(D)は、第1の実施形態に係る光学フィルムの製造工程を模式的に示す図である。FIG. 7A to FIG. 7D are diagrams schematically showing a manufacturing process of the optical film according to the first embodiment. 図8は、第1の実施形態に係る偏光板の概略構成図である。FIG. 8 is a schematic configuration diagram of a polarizing plate according to the first embodiment. 図9は、第1の実施形態に係る画像表示装置の概略構成図である。FIG. 9 is a schematic configuration diagram of the image display apparatus according to the first embodiment. 図10は、第2の実施形態に係る光学フィルムの概略構成図である。FIG. 10 is a schematic configuration diagram of an optical film according to the second embodiment. 図11は、第2の実施形態に係る光学フィルムの一部の拡大図である。FIG. 11 is an enlarged view of a part of the optical film according to the second embodiment. 図12(A)~図12(C)は、第2の実施形態に係る光学フィルムの製造工程を模式的に示す図である。FIG. 12A to FIG. 12C are diagrams schematically showing a manufacturing process of the optical film according to the second embodiment. 図13(A)~図13(C)は、第2の実施形態に係る光学フィルムの製造工程を模式的に示す図である。FIG. 13A to FIG. 13C are diagrams schematically showing a manufacturing process of the optical film according to the second embodiment.
 以下、本発明の実施形態に係る光学フィルム、偏光板、表示パネルおよび画像表示装置について、図面を参照しながら説明する。本明細書において、「フィルム」、「シート」等の用語は、呼称の違いのみに基づいて、互いから区別されるものではない。したがって、例えば、「フィルム」はシートとも呼ばれるような部材も含む意味で用いられ、また「シート」はフィルムとも呼ばれ得るような部材も含む意味で用いられる。図1は本実施形態に係る光学フィルムの概略構成図であり、図2は本実施形態に係る光学フィルムの平面図であり、図3は本実施形態に係る光学フィルムの一部の拡大図であり、図4は180°折り畳み試験の様子を模式的に示した図であり、図5は本実施形態に係る他の光学フィルムの概略構成図であり、図6および図7は実施形態に係る光学フィルムの製造工程を模式的に示す図である。 Hereinafter, an optical film, a polarizing plate, a display panel, and an image display device according to an embodiment of the present invention will be described with reference to the drawings. In this specification, terms such as “film” and “sheet” are not distinguished from each other only based on the difference in designation. Thus, for example, “film” is used to include a member that may also be referred to as a sheet, and “sheet” is used to include a member that may also be referred to as a film. FIG. 1 is a schematic configuration diagram of an optical film according to the present embodiment, FIG. 2 is a plan view of the optical film according to the present embodiment, and FIG. 3 is an enlarged view of a part of the optical film according to the present embodiment. 4 is a diagram schematically showing a state of the 180 ° folding test, FIG. 5 is a schematic configuration diagram of another optical film according to the present embodiment, and FIGS. 6 and 7 are according to the embodiment. It is a figure which shows the manufacturing process of an optical film typically.
<<<<光学フィルム>>>>
 図1および図2に示される光学フィルム10は、折り畳み可能であり、かつ光透過性樹脂基材11と、光透過性基材11の一方の面11Aに設けられたハードコート層12とを備えるものである。本明細書において、「折り畳み可能」とは、光学フィルムの一部において光学フィルムを折り畳んだとき、光学フィルムに割れや破断が生じないことを意味する。なお、光学フィルムにおいて、光学フィルムを折り畳んだときに、光学フィルムに割れや破断が生じない部分が存在すれば、この光学フィルムは折り畳み可能とする。また、「ハードコート層」とは、光透過性を有し、かつJIS K5600-5-4:1999で規定される鉛筆硬度試験で少なくとも「F」以上の鉛筆硬度を有する層である。ハードコート層12は、防汚性等の他の機能を有してよい。なお、本明細書における鉛筆硬度試験は、荷重750gおよびひっかき速度1mm/秒で行うものとする。
<<<<< Optical Film >>>>
The optical film 10 shown in FIGS. 1 and 2 is foldable, and includes a light-transmitting resin base material 11 and a hard coat layer 12 provided on one surface 11A of the light-transmitting base material 11. Is. In this specification, “foldable” means that when the optical film is folded in a part of the optical film, the optical film is not cracked or broken. In the optical film, when the optical film is folded, if there is a portion where the optical film is not cracked or broken, the optical film can be folded. Further, the “hard coat layer” is a layer that has optical transparency and has a pencil hardness of at least “F” or more in a pencil hardness test specified by JIS K5600-5-4: 1999. The hard coat layer 12 may have other functions such as antifouling properties. In addition, the pencil hardness test in this specification shall be performed with a load of 750 g and a scratching speed of 1 mm / second.
 光学フィルム10は、光学フィルム10の表面10Aにおける硬度がそれぞれ異なる第1の領域10Bおよび第2の領域10Cを有している。具体的には、光学フィルム10の表面10Aにおける硬度は、第1の領域10Bよりも第2の領域10Cの方が低くなっている。本明細書における「光学フィルムの表面」とは、光学フィルムにおける片側かつハードコート層側の表面を意味する。なお、本明細書における光学フィルムの表面は光学フィルムの片側の表面を意味するものであるので、光学フィルムの表面とは反対側の面は本明細書における光学フィルムの表面と区別するために裏面と称するものとする。本実施形態においては、ハードコート層12の表面12Aが光学フィルム10の表面10Aとなっているが、ハードコート層12上に他の機能層が設けられている場合には、この機能層の表面が光学フィルムの表面となる。本明細書における「第1の領域」とは、光学フィルムの表面における硬度が第2の領域よりも高い領域を意味し、また「第2の領域」とは、光学フィルムの表面における硬度が第1の領域よりも低い領域を意味する。 The optical film 10 has a first region 10B and a second region 10C having different hardnesses on the surface 10A of the optical film 10, respectively. Specifically, the hardness of the surface 10A of the optical film 10 is lower in the second region 10C than in the first region 10B. The “surface of the optical film” in the present specification means a surface on one side and the hard coat layer side of the optical film. In addition, since the surface of the optical film in this specification means the surface of one side of an optical film, in order to distinguish the surface on the opposite side to the surface of an optical film in order to distinguish from the surface of the optical film in this specification, Shall be referred to as In the present embodiment, the surface 12A of the hard coat layer 12 is the surface 10A of the optical film 10, but when another functional layer is provided on the hard coat layer 12, the surface of this functional layer. Becomes the surface of the optical film. In the present specification, the “first region” means a region whose hardness on the surface of the optical film is higher than the second region, and the “second region” means that the hardness on the surface of the optical film is the first. It means a region lower than one region.
 第1の領域10Bの硬度は、第2の領域10Cの硬度より高ければ特に限定されないが、タッチパネルを備える画像表示装置の表面で光学フィルム10を使用する場合には、第1の領域10Bにおいては、光学フィルム10の表面10Aは、JIS K5600-5-4:1999で規定される鉛筆硬度試験で測定されたときの鉛筆硬度が、5H以上であることが好ましく、6H以上であることが好ましく、7H以上であることがより好ましい。また、タッチパネルを備える画像表示装置の内部で光学フィルム10を使用する場合には、第1の領域10Bにおいては、光学フィルム10の表面10Aは、JIS K5600-5-4:1999で規定される鉛筆硬度試験で測定されたときの鉛筆硬度が、4H以上であることが好ましく、5H以上であることが好ましく、6H以上であることがより好ましい。鉛筆硬度は、鉛筆硬度試験において光学フィルムの表面に傷が付かなかった最も高い硬度とする。なお、鉛筆硬度の測定の際には、硬度が異なる鉛筆を複数本用いて行うが、鉛筆1本につき5回鉛筆硬度試験を行い、5回のうち4回以上光学フィルムの表面に傷が付かなかった場合には、この硬度の鉛筆においては光学フィルムの表面に傷が付かなかったと判断する。上記傷は、鉛筆硬度試験を行った光学フィルムの表面を蛍光灯下で透過観察して視認されるものを指す。また、以降の鉛筆硬度において、特に説明しない場合においても、鉛筆硬度は、JIS K5600-5-4:1999で規定される鉛筆硬度試験で測定されたときの鉛筆硬度とする。 The hardness of the first region 10B is not particularly limited as long as it is higher than the hardness of the second region 10C. However, when the optical film 10 is used on the surface of an image display device including a touch panel, The surface 10A of the optical film 10 preferably has a pencil hardness of 5H or more, preferably 6H or more when measured by a pencil hardness test specified in JIS K5600-5-4: 1999. More preferably, it is 7H or more. When the optical film 10 is used inside an image display device having a touch panel, the surface 10A of the optical film 10 in the first region 10B is a pencil defined by JIS K5600-5-4: 1999. The pencil hardness as measured by a hardness test is preferably 4H or more, preferably 5H or more, and more preferably 6H or more. The pencil hardness is the highest hardness at which the surface of the optical film was not damaged in the pencil hardness test. The pencil hardness is measured using a plurality of pencils having different hardnesses. The pencil hardness test is performed five times for each pencil, and the surface of the optical film is scratched four times or more out of the five times. If not, it is determined that the surface of the optical film was not scratched with the pencil having this hardness. The above-mentioned scratches refer to those that are visually observed through transmission observation of the surface of the optical film subjected to the pencil hardness test under a fluorescent lamp. Further, in the following pencil hardness, even if not specifically described, the pencil hardness is a pencil hardness as measured by a pencil hardness test specified in JIS K5600-5-4: 1999.
 第2の領域10Cの硬度は、第1の領域10Bの硬度より低ければ特に限定されないが、タッチパネルを備える画像表示装置の表面で光学フィルム10を使用する場合には、第2の領域10Cにおいては、光学フィルム10の表面10Aは、鉛筆硬度が、2H以上であることが好ましく、3H以上であることが好ましく、4H以上であることがより好ましい。また、タッチパネルを備える画像表示装置の内部で光学フィルム10を使用する場合には、第2の領域10Cにおいては、光学フィルム10の表面10Aは、鉛筆硬度が、H以上であることが好ましく、2H以上であることが好ましく、3H以上であることがより好ましい。なお、優れた硬度および優れた耐久折り畳み性能の両立を図るためには第1の領域の硬度と第2の領域の硬度は差があることが必要であるが、より優れた硬度を得ることを考えると、第1の領域と第2の領域の硬度の差は小さい方が好ましい。鉛筆硬度で言えば、第1の領域の鉛筆硬度と第2の領域の鉛筆硬度との差が鉛筆硬度のランクで5ランク以内であることが好ましく、3ランク以内であることがより好ましい。 The hardness of the second region 10C is not particularly limited as long as it is lower than the hardness of the first region 10B. However, when the optical film 10 is used on the surface of the image display device including a touch panel, The surface 10A of the optical film 10 has a pencil hardness of preferably 2H or more, preferably 3H or more, and more preferably 4H or more. When the optical film 10 is used inside an image display device including a touch panel, the surface 10A of the optical film 10 preferably has a pencil hardness of H or higher in the second region 10C. Preferably, it is preferably 3H or more. In addition, in order to achieve both excellent hardness and excellent durability folding performance, it is necessary that the hardness of the first region and the hardness of the second region have a difference. In view of this, it is preferable that the difference in hardness between the first region and the second region is smaller. In terms of pencil hardness, the difference between the pencil hardness of the first region and the pencil hardness of the second region is preferably within 5 ranks, more preferably within 3 ranks.
 光学フィルム10は、曲げ半径が1.5mmとなるように光学フィルム10を第2の領域10Cにおいて180°折り畳む試験を10万回繰り返し行った場合に割れ又は破断が生じないことが好ましい。10万回以内に光学フィルム10に割れ又は破断が生じると、光学フィルム10の耐久折り畳み性能が不充分となる。折り畳み試験は、例えば、耐久試験機(製品名「DLDMLH-FS」、ユアサシステム機器社製)を用いて行うことができる。 It is preferable that the optical film 10 does not crack or break when the test of folding the optical film 10 180 ° in the second region 10C is repeated 100,000 times so that the bending radius is 1.5 mm. If the optical film 10 is cracked or broken within 100,000 times, the durable folding performance of the optical film 10 becomes insufficient. The folding test can be performed using, for example, an endurance tester (product name “DLDMMLH-FS”, manufactured by Yuasa System Equipment Co., Ltd.).
 図4は、光学フィルム10の曲げ半径Rが1.5mmとなるように光学フィルム10の一部を180°折り畳む試験(以下、耐久折り畳み試験とも言う)の様子を模式的に示した図である。図4(A)に示されるように、上記耐久折り畳み試験においては、まず、光学フィルム10が平坦となっている状態で、光学フィルム10の一の辺と、該一の辺に対向する他の辺とを、水平方向に所定の間隔を置いて配置された、折り畳み試験機の固定端21と移動端22とにそれぞれ固定する。なお、光学フィルムは、任意の形状であってよいが、上記耐久折り畳み試験を行う光学フィルム10は、矩形であることが好ましい。次いで、図4(B)に示されるように、移動端22を固定端21に向けて近づけて、光学フィルム10の曲げ半径Rが1.5mmとなるように光学フィルム10を180°に折り畳む。ここで、光学フィルム10を折り畳む箇所は、第2の領域10Cが存在する箇所とする。そして、図4(A)と図4(B)に示される状態を10万回繰り返す。なお、光学フィルムの大きさにもよるが、例えば、固定端21と移動端22との間隔は3mmとすれば、光学フィルム10の曲げ半径Rが1.5mmとなるように光学フィルム10を180°に折り畳むことができる。 FIG. 4 is a diagram schematically showing a state in which a part of the optical film 10 is folded by 180 ° (hereinafter also referred to as a durability folding test) so that the bending radius R of the optical film 10 is 1.5 mm. . As shown in FIG. 4 (A), in the endurance folding test, first, in a state in which the optical film 10 is flat, one side of the optical film 10 and another side facing the one side. The sides are fixed to the fixed end 21 and the moving end 22 of the folding tester, which are arranged at predetermined intervals in the horizontal direction. In addition, although an optical film may be arbitrary shapes, it is preferable that the optical film 10 which performs the said durable folding test is a rectangle. Next, as shown in FIG. 4B, the moving end 22 is moved closer to the fixed end 21 and the optical film 10 is folded at 180 ° so that the bending radius R of the optical film 10 is 1.5 mm. Here, the place where the optical film 10 is folded is a place where the second region 10C exists. Then, the state shown in FIGS. 4A and 4B is repeated 100,000 times. Although depending on the size of the optical film, for example, if the distance between the fixed end 21 and the moving end 22 is 3 mm, the optical film 10 is 180 so that the bending radius R of the optical film 10 is 1.5 mm. Can be folded to °.
 上記耐久折り畳み試験を光学フィルム10の両面でそれぞれ15万回行った場合に割れ又は破断が生じないことが好ましい。また、光学フィルム10は、上記耐久折り畳み試験を片面に対して行った場合に、割れ又は破断が生じないものであってもよいが、上記耐久折り畳み試験を両面に対して行った場合に、割れ又は破断が生じないことが好ましい。なお、上述した光学フィルム10を90°回転させて同様の耐久折り畳み試験を行っても、同様に割れ又は破断が生じないものである。 It is preferable that no cracks or breaks occur when the durability folding test is performed 150,000 times on both sides of the optical film 10 respectively. In addition, the optical film 10 may be one that does not crack or break when the above-described durable folding test is performed on one side, but is broken when the above-described durable folding test is performed on both sides. Alternatively, it is preferable that no breakage occurs. In addition, even if the optical film 10 mentioned above is rotated 90 degree | times and the same durable folding test is done, a crack or a fracture | rupture will not arise similarly.
 光学フィルム10は、波長380nmの光の透過率が10%以下であることが好ましい。上記透過率が10%を越えると、光学フィルム10をモバイル端末に用いた場合、偏光子が紫外線に晒されて、劣化しやすくなるおそれがある。上記透過率の上限は8%以下であることがより好ましく、5%以下であることが最も好ましい。上記透過率は、ヘイズメーター(製品名「HM-150」、村上色彩技術研究所製)を用いて測定することができる。波長380nmの光の透過率は、3回測定して得られた値の算術平均値とする。 The optical film 10 preferably has a transmittance of light having a wavelength of 380 nm of 10% or less. When the transmittance exceeds 10%, when the optical film 10 is used in a mobile terminal, the polarizer may be exposed to ultraviolet rays and may be easily deteriorated. The upper limit of the transmittance is more preferably 8% or less, and most preferably 5% or less. The transmittance can be measured using a haze meter (product name “HM-150”, manufactured by Murakami Color Research Laboratory). The transmittance of light having a wavelength of 380 nm is an arithmetic average value obtained by measuring three times.
 光学フィルム10は、全光線透過率が85%以上であることが好ましい。上記透過率が85%未満であると、光学フィルム10をモバイル端末に用いた場合に、表示画面が視認しにくくなるおそれがある。上記全光線透過率の下限は90%以下であることがより好ましい。上記全光線透過率は、ヘイズメーター(製品名「HM-150」、村上色彩技術研究所製)を用いてJIS K7361-1:1997に準拠した方法により測定することができる。全光線透過率は、3回測定して得られた値の算術平均値とする。 The optical film 10 preferably has a total light transmittance of 85% or more. If the transmittance is less than 85%, the display screen may be difficult to visually recognize when the optical film 10 is used in a mobile terminal. The lower limit of the total light transmittance is more preferably 90% or less. The total light transmittance can be measured by a method based on JIS K7361-1: 1997 using a haze meter (product name “HM-150”, manufactured by Murakami Color Research Laboratory). The total light transmittance is an arithmetic average value of values obtained by measuring three times.
 光学フィルム10全体のヘイズ値は2.5%以下であることが好ましい。ヘイズ値が2.5%を越えると、光学フィルム10をモバイル端末に用いた場合、表示画面が白化するおそれがある。上記ヘイズ値は、1.5%以下であることがより好ましく、1.0%以下であることがより好ましい。上記ヘイズ値は、ヘイズメーター(製品名「HM-150」、村上色彩技術研究所製)を用いてJIS K7136:2000に準拠した方法により測定することができる。ヘイズ値は、3回測定して得られた値の算術平均値とする。 The haze value of the entire optical film 10 is preferably 2.5% or less. If the haze value exceeds 2.5%, the display screen may be whitened when the optical film 10 is used in a mobile terminal. The haze value is more preferably 1.5% or less, and more preferably 1.0% or less. The haze value can be measured by a method based on JIS K7136: 2000 using a haze meter (product name “HM-150”, manufactured by Murakami Color Research Laboratory). The haze value is the arithmetic average value of the values obtained by measuring three times.
<<光透過性樹脂基材>>
 光透過性樹脂基材11としては、光透過性を有する樹脂からなる基材であれば特に限定されない。光透過性を有する樹脂としては、例えば、ポリアミドイミド樹脂、ポリイミド樹脂、アラミド樹脂、セルロースアシレート樹脂、シクロオレフィン樹脂、ポリカーボネート樹脂、アクリレート系樹脂、ポリエステル樹脂、またはこれらの樹脂を2以上混合した混合物等が挙げられる。これらの中でも、耐久折り畳み試験において割れ又は破断が発生しにくいだけでなく、優れた硬度及び透明性をも有し、また、耐熱性にも優れ、焼成することにより、更に優れた硬度及び透明性を付与することもできる観点から、ポリイミド樹脂、アラミド樹脂、またはこれらの混合物が好ましい。
<< light transmissive resin base material >>
The light-transmitting resin base material 11 is not particularly limited as long as it is a base material made of a light-transmitting resin. Examples of the resin having optical transparency include polyamide imide resin, polyimide resin, aramid resin, cellulose acylate resin, cycloolefin resin, polycarbonate resin, acrylate resin, polyester resin, or a mixture of two or more of these resins. Etc. Among these, in addition to being hard to crack or break in the endurance folding test, it also has excellent hardness and transparency, excellent heat resistance, and further improved hardness and transparency by firing. From the viewpoint of imparting a cation, a polyimide resin, an aramid resin, or a mixture thereof is preferable.
 ポリイミド樹脂としては、例えば、下記式で表される構造を有する化合物が挙げられる。下記式中、nは、繰り返し単位であり、2以上の整数を表す。
Figure JPOXMLDOC01-appb-C000001
Examples of the polyimide resin include compounds having a structure represented by the following formula. In the following formula, n is a repeating unit and represents an integer of 2 or more.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 アラミド樹脂としては、一般的に、下記式(18)及び(19)で表される骨格を有するものであり、上記アラミド樹脂としては、例えば、下記式(20)で表される化合物が挙げられる。なお、下記式中、nは、繰り返し単位であり、2以上の整数を表す。 The aramid resin generally has a skeleton represented by the following formulas (18) and (19), and examples of the aramid resin include compounds represented by the following formula (20). . In the following formula, n is a repeating unit and represents an integer of 2 or more.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 上記式(1)~(17)および(20)で表されるポリイミド樹脂またはアラミド樹脂からなる基材は、市販のものを用いても良い。上記ポリイミド樹脂からなる基材の市販品としては、例えば、三菱ガス化学社製のネオプリム等が挙げられ、上記アラミド樹脂からなる基材の市販品としては、例えば、東レ社製のミクトロン等が挙げられる。 Commercially available materials may be used as the base material made of polyimide resin or aramid resin represented by the above formulas (1) to (17) and (20). Examples of the commercially available base material made of the polyimide resin include, for example, Neoprim manufactured by Mitsubishi Gas Chemical Co., Ltd., and examples of the commercially available base material made of the aramid resin include, for example, Mikutron manufactured by Toray Industries, Inc. It is done.
 また、上記式(1)~(17)および(20)で表されるポリイミド樹脂またはアラミド樹脂からなる基材は、公知の方法により合成したものを用いても良い。例えば、上記式(1)で表されるポリイミド樹脂の合成方法は、特開2009-132091に記載されており、具体的には、下記式(21)で表される4,4’-ヘキサフルオロプロピリデンビスフタル酸二無水物(FPA)と2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル(TFDB)とを反応させることにより得ることができる。
Figure JPOXMLDOC01-appb-C000021
Further, the base material made of the polyimide resin or the aramid resin represented by the above formulas (1) to (17) and (20) may be synthesized by a known method. For example, a method for synthesizing a polyimide resin represented by the above formula (1) is described in JP-A-2009-132091. Specifically, 4,4′-hexafluoro represented by the following formula (21) is described. It can be obtained by reacting propylidenebisphthalic dianhydride (FPA) with 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl (TFDB).
Figure JPOXMLDOC01-appb-C000021
 上記ポリイミド樹脂またはアラミド樹脂の重量平均分子量は、3000~50万の範囲であることが好ましく、5000~30万の範囲であることがより好ましく、1万~20万の範囲であることが更に好ましい。重量平均分子量が3000以下であると、充分な強度が得られないことがあり、50万を超えると粘度が上昇し、溶解性が低下するため、表面が平滑で膜厚が均一な基材が得られないことがある。なお、本明細書において、重量平均分子量とは、ゲル浸透クロマトグラフィー(GPC)により測定したポリスチレン換算値である。 The weight average molecular weight of the polyimide resin or aramid resin is preferably in the range of 3000 to 500,000, more preferably in the range of 5000 to 300,000, and still more preferably in the range of 10,000 to 200,000. . When the weight average molecular weight is 3000 or less, sufficient strength may not be obtained. When the weight average molecular weight exceeds 500,000, the viscosity increases and the solubility decreases, so that a substrate with a smooth surface and a uniform film thickness can be obtained. It may not be obtained. In addition, in this specification, a weight average molecular weight is a polystyrene conversion value measured by gel permeation chromatography (GPC).
 上記ポリイミド樹脂およびアラミド樹脂のなかでも、優れた透明性を有することから、分子内又は分子間の電荷移動が起こりにくい構造を有するポリイミド樹脂またはアラミド樹脂が好ましく、具体的には、上記式(1)~(8)等のフッ素化ポリイミド樹脂、上記式(9)~(12)等の脂環構造を有するポリイミド樹脂、上記式(20)等のハロゲン基を有するアラミド樹脂が挙げられる。 Among the polyimide resin and the aramid resin, a polyimide resin or an aramid resin having a structure in which charge transfer within a molecule or between molecules hardly occurs is preferable because it has excellent transparency. Specifically, the above formula (1 ) To (8), polyimide resins having an alicyclic structure such as the above formulas (9) to (12), and aramid resins having a halogen group such as the above formula (20).
 また、上記式(1)~(8)等のフッ素化ポリイミド樹脂では、フッ素化された構造を有するため、高い耐熱性を有しており、ポリイミド樹脂からなる基材の製造時の熱によって着色されることもないので、優れた透明性を有する。 In addition, the fluorinated polyimide resins such as the above formulas (1) to (8) have a fluorinated structure, and thus have high heat resistance, and are colored by the heat during the production of the substrate made of the polyimide resin. Therefore, it has excellent transparency.
 光透過性樹脂基材11は、ハードコート層12の鉛筆硬度を、5H以上にできることが可能な観点から、上記式(1)~(8)等で表されるフッ素化ポリイミド樹脂、上記式(20)等のハロゲン基を有するアラミド樹脂、またはこれらの樹脂の混合物からなる基材を用いることが好ましい。なかでも、上記鉛筆硬度を7H以上の極めて優れた硬度を付与できることから、上記式(1)で表されるポリイミド樹脂からなる基材を用いることがより好ましい。 From the viewpoint that the pencil hardness of the hard coat layer 12 can be increased to 5H or more, the light-transmitting resin substrate 11 is a fluorinated polyimide resin represented by the above formulas (1) to (8) or the like, It is preferable to use an aramid resin having a halogen group such as 20) or a base material made of a mixture of these resins. Especially, since the said pencil hardness can provide very excellent hardness of 7H or more, it is more preferable to use the base material which consists of a polyimide resin represented by the said Formula (1).
 セルロースアシレート樹脂としては、例えば、セルローストリアセテート樹脂、セルロースジアセテート樹脂が挙げられる。シクロオレフィン樹脂としては、例えばノルボルネン系モノマーおよび単環シクロオレフィンモノマー等の重合体が挙げられる。 Examples of the cellulose acylate resin include cellulose triacetate resin and cellulose diacetate resin. Examples of the cycloolefin resin include polymers such as norbornene monomers and monocyclic cycloolefin monomers.
 トリアセチルセルロース樹脂としては、純粋なトリアセチルセルロース以外に、セルロースアセテートプロピオネート、セルロースアセテートブチレートの如くセルロースとエステルを形成する脂肪酸として酢酸以外の成分も併用した物であってもよい。また、これらトリアセチルセルロースには、必要に応じて、ジアセチルセルロース等の他のセルロース低級脂肪酸エステル、或いは可塑剤、紫外線吸收剤、易滑剤等の各種添加剤が添加されていてもよい。 As the triacetyl cellulose resin, in addition to pure triacetyl cellulose, cellulose acetate propionate and cellulose acetate butyrate may be used in combination with components other than acetic acid as a fatty acid forming an ester with cellulose. Further, these triacetylcelluloses may be added with other additives such as other cellulose lower fatty acid esters such as diacetylcellulose, or plasticizers, ultraviolet absorbers, and lubricants as necessary.
 ポリカーボネート樹脂としては、例えば、ビスフェノール類(ビスフェノールA等)をベースとする芳香族ポリカーボネート樹脂、ジエチレングリコールビスアリルカーボネート等の脂肪族ポリカーボネート樹脂等が挙げられる。 Examples of the polycarbonate resin include aromatic polycarbonate resins based on bisphenols (such as bisphenol A) and aliphatic polycarbonate resins such as diethylene glycol bisallyl carbonate.
 アクリレート系樹脂としては、例えば、ポリ(メタ)アクリル酸メチル樹脂、ポリ(メタ)アクリル酸エチル樹脂、(メタ)アクリル酸メチル-(メタ)アクリル酸ブチル共重合体等が挙げられる。 Examples of the acrylate resins include poly (meth) methyl acrylate resins, poly (meth) ethyl acrylate resins, methyl (meth) acrylate-butyl (meth) acrylate copolymers, and the like.
 ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートの少なくとも1種を構成成分とする樹脂等が挙げられる。 Examples of the polyester resin include resins containing at least one of polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate as constituent components.
 光透過性樹脂基材11の厚みは、特に限定されないが、10μm以上55μm以下であることが好ましい。光透過性樹脂基材11の厚みが10μm未満であると、光学フィルムのカールが大きくなり、また硬度も不充分となって後述する鉛筆硬度が4H以上にできないおそれがあり、更に、光学フィルムをRoll to Rollで製造する場合、シワが発生しやすくなるため外観の悪化を招く恐れがある。一方、光透過性樹脂基材11の厚みが55μmを超えると、光学フィルムの折り畳み性能が不充分となり、後述する折り畳み試験の要件を満たせないことがあり、また、光学フィルムが重くなり、軽量化の面で好ましくない。光透過性樹脂基材11の厚みは、厚み測定装置(製品名「デジマチックインジケーターIDF-130」、ミツトヨ社製)を用いて、光透過性樹脂基材11の厚みを10点測定し、その算術平均値を意味するものとする。 The thickness of the light transmissive resin substrate 11 is not particularly limited, but is preferably 10 μm or more and 55 μm or less. If the thickness of the light-transmitting resin substrate 11 is less than 10 μm, the curl of the optical film becomes large, and the hardness may be insufficient, so that the pencil hardness described later cannot be increased to 4H or more. When manufacturing with Roll to Roll, wrinkles are likely to occur, which may lead to deterioration of the appearance. On the other hand, if the thickness of the light-transmitting resin substrate 11 exceeds 55 μm, the folding performance of the optical film may be insufficient, and the requirements for the folding test described later may not be satisfied, and the optical film becomes heavy and lighter. This is not preferable. The thickness of the light transmissive resin base material 11 was measured by measuring the thickness of the light transmissive resin base material 11 at 10 points using a thickness measuring device (product name “Digimatic Indicator IDF-130”, manufactured by Mitutoyo Corporation). It shall mean the arithmetic mean value.
<<ハードコート層>>
 ハードコート層12は、複数の第1のハードコート層13と、硬度が第1のハードコート層13よりも低い第2のハードコート層14とを有している。第1のハードコート層13および第2のハードコート層14の硬度はマルテンス硬度を測定することによって確認することができる。本明細書において、「マルテンス硬度」とは、ナノインデンテーション法による硬度測定により、圧子を500nm押込んだときの硬度である。なお、本明細書において、上記ナノインデンテーション法によるマルテンス硬度の測定は、HYSITRON(ハイジトロン)社製の「TI950 TriboIndenter」を用いて行う。すなわち、上記圧子としてBerkovich圧子(三角錐)を、以下の測定条件で、第1のハードコート層13および第2のハードコート層14の側面からそれぞれ500nm押し込み、一定時間保持して残留応力の緩和を行った後、除荷させて、緩和後の最大荷重を計測し、該最大荷重Pmax(μN)と深さ500nmのくぼみ面積A(nm)とを用い、Pmax/Aにより、マルテンス硬度を算出する。マルテンス硬度は、10箇所測定して得られた値の算術平均値とする。
(測定条件)
・荷重速度:10nm/秒
・保持時間:5秒
・荷重除荷速度:10nm/秒
・測定温度:25℃
<< Hard coat layer >>
The hard coat layer 12 includes a plurality of first hard coat layers 13 and a second hard coat layer 14 having a hardness lower than that of the first hard coat layer 13. The hardness of the first hard coat layer 13 and the second hard coat layer 14 can be confirmed by measuring the Martens hardness. In this specification, the “Martens hardness” is the hardness when the indenter is pushed in by 500 nm by the hardness measurement by the nanoindentation method. In the present specification, the measurement of the Martens hardness by the nanoindentation method is performed using “TI950 TriboIndenter” manufactured by HYSITRON. That is, a Berkovich indenter (triangular pyramid) as the above indenter is pushed in by 500 nm from the side surfaces of the first hard coat layer 13 and the second hard coat layer 14 under the following measurement conditions, and held for a certain period of time to relieve the residual stress. And then unloading, measuring the maximum load after relaxation, and using the maximum load P max (μN) and the indentation area A (nm 2 ) having a depth of 500 nm, the martens by P max / A Calculate the hardness. The Martens hardness is the arithmetic average value of the values obtained by measuring 10 locations.
(Measurement condition)
・ Loading speed: 10 nm / second ・ Retention time: 5 seconds ・ Load unloading speed: 10 nm / second ・ Measurement temperature: 25 ° C.
 第1のハードコート層13は、光学フィルム10に硬度を付与するための層であり、第1のハードコート層13の断面中央におけるマルテンス硬度が500MPa以上1000MPa未満であることが好ましい。第1のハードコート層13のマルテンス硬度を上記範囲とすることにより、上記第1の領域における鉛筆硬度を、4H以上とすることができる。第1のハードコート層13の断面中央におけるマルテンス硬度の下限は600MPa以上であることが好ましく、また上限は950MPa以下であることが好ましい。 The first hard coat layer 13 is a layer for imparting hardness to the optical film 10, and the Martens hardness at the center of the cross section of the first hard coat layer 13 is preferably 500 MPa or more and less than 1000 MPa. By setting the Martens hardness of the first hard coat layer 13 in the above range, the pencil hardness in the first region can be set to 4H or more. The lower limit of the Martens hardness at the center of the cross section of the first hard coat layer 13 is preferably 600 MPa or more, and the upper limit is preferably 950 MPa or less.
 第1のハードコート層13のマルテンス硬度を第2のハードコート層14のマルテンス硬度よりも大きくする方法としては、例えば、後述するシリカ粒子の含有量を第1のハードコート層側により多く含有するよう制御する方法等が挙げられる。 As a method for making the Martens hardness of the first hard coat layer 13 larger than the Martens hardness of the second hard coat layer 14, for example, a content of silica particles to be described later is contained more on the first hard coat layer side. The method of controlling so that, etc. are mentioned.
 第2のハードコート層14は、上述した耐久折り畳み性と耐擦傷性を付与するための層であり、第2のハードコート層14の断面中央におけるマルテンス硬度が350MPa以上600MPa以下であることが好ましい。第2のハードコート層14のマルテンス硬度を上記範囲とすることにより、充分な耐久折り畳み性能を有するとともに、#0000番のスチールウールで1kg/cmの荷重をかけながら、ハードコート層の表面を3500回往復摩擦させる耐スチールウール試験において傷が生じないといった極めて優れた耐擦傷性を付与することができる。上記第2のハードコート層14の断面中央におけるマルテンス硬度の下限は375MPaであることがより好ましく、上限は575MPaであることがより好ましい。 The second hard coat layer 14 is a layer for imparting the above-mentioned durable foldability and scratch resistance, and the Martens hardness at the center of the cross section of the second hard coat layer 14 is preferably 350 MPa or more and 600 MPa or less. . By setting the Martens hardness of the second hard coat layer 14 within the above range, the surface of the hard coat layer can be applied while having sufficient durability folding performance and applying a load of 1 kg / cm 2 with # 0000 steel wool. It is possible to impart extremely excellent scratch resistance such that no scratches are generated in a steel wool test in which reciprocating friction is performed 3500 times. The lower limit of the Martens hardness at the center of the cross section of the second hard coat layer 14 is more preferably 375 MPa, and the upper limit is more preferably 575 MPa.
 第1のハードコート層13は、隙間15を介して互いに離間している。第1のハードコート層13の形状としては、特に限定されないが、例えば、ストライプ状、ドット状、ブロック状、格子状等が挙げられる。これらの中でも、連続コーティングでの生産性の観点から、ストライプ状が好ましい。 The first hard coat layers 13 are separated from each other through a gap 15. The shape of the first hard coat layer 13 is not particularly limited, and examples thereof include a stripe shape, a dot shape, a block shape, and a lattice shape. Among these, a stripe shape is preferable from the viewpoint of productivity in continuous coating.
 図1に示される第1のハードコート層13は図2に示されるようにストライプ状となっている。第1の領域10Bの幅に相当する第1のハードコート層13の最小幅は、10mm以上1000mm以下であることが好ましい。第1のハードコート層13の最小幅が10mm未満であると、この光学フィルムおよびタッチパネルを備える画像表示装置において充分な硬度が得られないおそれがあり、またこの幅が1000mmを超えると、この光学フィルムおよびタッチパネルを備える画像表示装置の加工時に充分な歩留りが得られないおそれがある。第1のハードコート層13の最小幅の下限は、20mm以上であることがより好ましく、上限は800mm以下であることがより好ましい。 The first hard coat layer 13 shown in FIG. 1 has a stripe shape as shown in FIG. The minimum width of the first hard coat layer 13 corresponding to the width of the first region 10B is preferably 10 mm or more and 1000 mm or less. If the minimum width of the first hard coat layer 13 is less than 10 mm, there is a fear that sufficient hardness cannot be obtained in the image display device provided with the optical film and the touch panel. There is a possibility that a sufficient yield cannot be obtained when processing an image display device including a film and a touch panel. The lower limit of the minimum width of the first hard coat layer 13 is more preferably 20 mm or more, and the upper limit is more preferably 800 mm or less.
 第2の領域10Cの幅に相当する隙間15の最大幅は、2mm以上50mm以下であることが好ましい。隙間15の最大幅が2mm未満であると、耐久折り畳み試験時に第1の領域に割れ又は破断が生じるおそれがあり、またこの幅が50mmを超えると、この光学フィルムおよびタッチパネルを備える画像表示装置において充分な硬度が得られないおそれがある。隙間15の最大幅の下限は、5mm以上であることがより好ましく、上限は20mm以下であることがより好ましい。本明細書における「隙間」とは、第1のハードコート層間で挟まれる空間を意味する。 The maximum width of the gap 15 corresponding to the width of the second region 10C is preferably 2 mm or more and 50 mm or less. When the maximum width of the gap 15 is less than 2 mm, the first region may be cracked or broken during the endurance folding test. When the width exceeds 50 mm, the image display device including the optical film and the touch panel is provided. There is a possibility that sufficient hardness cannot be obtained. The lower limit of the maximum width of the gap 15 is more preferably 5 mm or more, and the upper limit is more preferably 20 mm or less. The “gap” in the present specification means a space sandwiched between the first hard coat layers.
 第1のハードコート層13は、少なくとも第1の領域10Bに存在しており、第1のハードコート層13間の隙間15は第2の領域10Cに存在している。隙間15を第2の領域10Cに存在させ、かつ後述するように隙間15に第2のハードコート層14を埋め込むことにより、第1の領域10Bより硬度が低い第2の領域10Cを形成することができる。 The first hard coat layer 13 exists at least in the first region 10B, and the gap 15 between the first hard coat layers 13 exists in the second region 10C. The second region 10C having a lower hardness than the first region 10B is formed by causing the gap 15 to exist in the second region 10C and embedding the second hard coat layer 14 in the gap 15 as will be described later. Can do.
 第1の領域10Bにおいては、第1のハードコート層13の膜厚は、一定となっていることが好ましい。第1の領域10Bにおける第1のハードコート層13の膜厚は、2μm以上20μm以下であることが好ましい。第1の領域における第1のハードコート層の膜厚が、2μm未満であると、ハードコート層の硬度が低下するおそれがあり、また20μmを超えると、厚みが厚すぎることに起因して加工性が悪化するおそれがある。第1のハードコート層13の膜厚は、走査型電子顕微鏡(SEM)を用いて、第1のハードコート層13の断面を撮影し、その断面の画像において第1のハードコート層13の膜厚を20箇所測定し、その20箇所の膜厚の算術平均値とする。 In the first region 10B, the thickness of the first hard coat layer 13 is preferably constant. The film thickness of the first hard coat layer 13 in the first region 10B is preferably 2 μm or more and 20 μm or less. If the film thickness of the first hard coat layer in the first region is less than 2 μm, the hardness of the hard coat layer may be reduced, and if it exceeds 20 μm, the thickness is too thick. May deteriorate. The film thickness of the first hard coat layer 13 is obtained by photographing a cross section of the first hard coat layer 13 using a scanning electron microscope (SEM), and in the image of the cross section, the film of the first hard coat layer 13 The thickness is measured at 20 locations, and the arithmetic average value of the film thickness at the 20 locations is taken.
 第2の領域10C内においては、図3に示されるように、隙間15が存在することによって第2の領域10C内における第1のハードコート層13の膜厚が第1の領域10Bにおける第1のハードコート層13の膜厚の50%以下となる領域10Dが存在している。この領域10Dの幅は0.5mm以上であることが好ましい。領域10Dの幅を0.5mm以上とすることによって、第1のハードコート層13間に埋め込まれる第2のハードコート層14が多くなるので、より耐久折り畳み性能を向上させることができる。領域10Dの幅の下限は、1mm以上であることがより好ましく、上限は45mm以下であることがより好ましい。この領域10Dは、第2の領域10C内における第1のハードコート層13が存在しない離間箇所も含むものとする。 In the second region 10C, as shown in FIG. 3, due to the presence of the gap 15, the film thickness of the first hard coat layer 13 in the second region 10C is the first in the first region 10B. There is a region 10D that is 50% or less of the film thickness of the hard coat layer 13. The width of the region 10D is preferably 0.5 mm or more. By setting the width of the region 10D to 0.5 mm or more, the second hard coat layer 14 embedded between the first hard coat layers 13 increases, so that the durable folding performance can be further improved. The lower limit of the width of the region 10D is more preferably 1 mm or more, and the upper limit is more preferably 45 mm or less. This region 10 </ b> D also includes a separated portion where the first hard coat layer 13 does not exist in the second region 10 </ b> C.
 第2の領域10C内においては、第1のハードコート層13の一部が存在しており、第1のハードコート層13の膜厚は第1のハードコート層13の離間箇所に向かうにつれて徐々に小さくなっている。このように第1のハードコート層13の膜厚を徐々に小さくすることにより、第1のハードコート層13と第2のハードコート層14と界面が視認され難くなる。 In the second region 10 </ b> C, a part of the first hard coat layer 13 is present, and the film thickness of the first hard coat layer 13 is gradually increased toward the separated portion of the first hard coat layer 13. It is getting smaller. Thus, by gradually reducing the film thickness of the first hard coat layer 13, the interface between the first hard coat layer 13 and the second hard coat layer 14 becomes difficult to be visually recognized.
 第2のハードコート層14は、第1の領域10Bにおいては第1のハードコート層13上に設けられており、第2の領域10Cにおいては第1のハードコート層13間の隙間に埋め込まれている。第1の領域10Bにおける第2のハードコート層14の膜厚は、0.5μm以上4μm以下であることが好ましい。第1の領域における第2のハードコート層の膜厚が、0.5μm未満であると、耐擦傷性が低下するおそれがあり、また4μmを超えると、第2のハードコート層用組成物のコーティングが困難となるおそれがある。また、第2の領域10Cにおける第2のハードコート層14の膜厚は、0.5μm以上20μm以下であることが好ましい。第2の領域における第2のハードコート層の膜厚が、0.5μm未満であると、耐擦傷性が低下するおそれがあり、また20μmを超えると、充分な屈曲性が得られないおそれがある。第2のハードコート層14の膜厚は、第1のハードコート層13の膜厚と同様の方法によって測定するものとする。 The second hard coat layer 14 is provided on the first hard coat layer 13 in the first region 10B, and is embedded in the gap between the first hard coat layers 13 in the second region 10C. ing. The film thickness of the second hard coat layer 14 in the first region 10B is preferably 0.5 μm or more and 4 μm or less. If the film thickness of the second hard coat layer in the first region is less than 0.5 μm, the scratch resistance may be reduced. If the film thickness exceeds 4 μm, the second hard coat layer composition Coating may be difficult. The film thickness of the second hard coat layer 14 in the second region 10C is preferably 0.5 μm or more and 20 μm or less. If the film thickness of the second hard coat layer in the second region is less than 0.5 μm, the scratch resistance may be reduced, and if it exceeds 20 μm, sufficient flexibility may not be obtained. is there. The film thickness of the second hard coat layer 14 is measured by the same method as the film thickness of the first hard coat layer 13.
<<第1のハードコート層>>
 第1のハードコート層13は、バインダ樹脂と、バインダ樹脂中に分散された粒子とを含むことが好ましい。バインダ樹脂中に粒子を分散させることによって、硬度を向上させることができる。第1のハードコート層13は、その他、紫外線吸収剤を含んでいてもよい。
<< first hard coat layer >>
The first hard coat layer 13 preferably contains a binder resin and particles dispersed in the binder resin. Hardness can be improved by dispersing the particles in the binder resin. In addition, the 1st hard-coat layer 13 may contain the ultraviolet absorber.
<バインダ樹脂>
 バインダ樹脂は、重合性化合物(硬化性化合物)の重合体(硬化物)を含む。重合性化合物は、分子内に重合性官能基を少なくとも1つ有するものである。重合性官能基としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基等のエチレン性不飽和基が挙げられる。なお、「(メタ)アクリロイル基」とは、「アクリロイル基」および「メタクリロイル基」の両方を含む意味である。
<Binder resin>
The binder resin contains a polymer (cured product) of a polymerizable compound (curable compound). The polymerizable compound has at least one polymerizable functional group in the molecule. Examples of the polymerizable functional group include ethylenically unsaturated groups such as a (meth) acryloyl group, a vinyl group, and an allyl group. The “(meth) acryloyl group” means to include both “acryloyl group” and “methacryloyl group”.
 重合性化合物としては、多官能(メタ)アクリレートが好ましい。多官能(メタ)アクリレートとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、テトラペンタエリスリトールデカ(メタ)アクリレート、イソシアヌル酸トリ(メタ)アクリレート、イソシアヌル酸ジ(メタ)アクリレート、ポリエステルトリ(メタ)アクリレート、ポリエステルジ(メタ)アクリレート、ビスフェノールジ(メタ)アクリレート、ジグリセリンテトラ(メタ)アクリレート、アダマンチルジ(メタ)アクリレート、イソボロニルジ(メタ)アクリレート、ジシクロペンタンジ(メタ)アクリレート、トリシクロデカンジ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレートや、これらをPO、EO、カプロラクトン等で変性したものが挙げられる。 As the polymerizable compound, polyfunctional (meth) acrylate is preferable. Examples of the polyfunctional (meth) acrylate include trimethylolpropane tri (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, pentaerythritol tri (meth) ) Acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, Ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, tripentaerythritol octa (meth) acrylate , Tetrapentaerythritol deca (meth) acrylate, isocyanuric acid tri (meth) acrylate, isocyanuric acid di (meth) acrylate, polyester tri (meth) acrylate, polyester di (meth) acrylate, bisphenol di (meth) acrylate, diglycerin tetra (Meth) acrylate, adamantyl di (meth) acrylate, isobornyl di (meth) acrylate, dicyclopentane di (meth) acrylate, tricyclodecane di (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, and these, PO, Those modified with EO, caprolactone and the like can be mentioned.
 これらの中でも上述したマルテンス硬度を好適に満たし得ることから、3~6官能のものが好ましく、例えば、ペンタエリスリトールトリアクリレート(PETA)、ジペンタエリスリトールヘキサアクリレート(DPHA)、ペンタエリスリトールテトラアクリレート(PETTA)、ジペンタエリスリトールペンタアクリレート(DPPA)、トリメチロールプロパントリ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、テトラペンタエリスリトールデカ(メタ)アクリレート等が好ましい。 Among them, those having 3 to 6 functional groups are preferable because they can satisfy the above-mentioned Martens hardness suitably. For example, pentaerythritol triacrylate (PETA), dipentaerythritol hexaacrylate (DPHA), pentaerythritol tetraacrylate (PETTA) Dipentaerythritol pentaacrylate (DPPA), trimethylolpropane tri (meth) acrylate, tripentaerythritol octa (meth) acrylate, tetrapentaerythritol deca (meth) acrylate and the like are preferable.
 重合性化合物としては、多官能(メタ)アクリレートの他、上記以外の重合性モノマーや重合性オリゴマー等を含んでいてもよい。重合性モノマー又は重合性オリゴマーとしては、例えば、分子中に重合性官能基を有する(メタ)アクリレートモノマー、又は、分子中に重合性官能基を有する(メタ)アクリレートオリゴマーが挙げられる。重合性モノマー、又は、重合性オリゴマーとしては、例えば、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、メラミン(メタ)アクリレート、ポリフルオロアルキル(メタ)アクリレート、シリコーン(メタ)アクリレート等のモノマー又はオリゴマーが挙げられる。これら重合性モノマー又は重合性オリゴマーは、1種又は2種以上を組み合わせて使用してもよい。なかでも、多官能(6官能以上)で重量平均分子量が1000~1万のウレタン(メタ)アクリレートが好ましい。 As the polymerizable compound, in addition to the polyfunctional (meth) acrylate, a polymerizable monomer or a polymerizable oligomer other than the above may be contained. Examples of the polymerizable monomer or polymerizable oligomer include a (meth) acrylate monomer having a polymerizable functional group in the molecule, or a (meth) acrylate oligomer having a polymerizable functional group in the molecule. Examples of the polymerizable monomer or polymerizable oligomer include urethane (meth) acrylate, polyester (meth) acrylate, epoxy (meth) acrylate, melamine (meth) acrylate, polyfluoroalkyl (meth) acrylate, and silicone (meth). Examples thereof include monomers or oligomers such as acrylate. These polymerizable monomers or polymerizable oligomers may be used alone or in combination of two or more. Among these, urethane (meth) acrylate having polyfunctionality (6 functionalities or more) and having a weight average molecular weight of 1,000 to 10,000 is preferable.
 なお、硬度や組成物の粘度調整、密着性の改善等のために、更に単官能(メタ)アクリレートモノマーを含んでいてもよい。上記単官能(メタ)アクリレートモノマーとしては、例えば、ヒドロキシエチルアクリレート(HEA)、グリシジルメタクリレート、メトキシポリエチレングリコール(メタ)アクリレート、イソステアリル(メタ)アクリレート、2-アクリロイルオキシエチルサクシネート、アクリロイルモルホリン、N-アクリロイルオキシエチルヘキサヒドロフタルイミド、シクロヘキシルアクリレート、テトラヒドロフリルアクリレート、イソボルニルアクリレート、フェノキシエチルアクリレート、及び、アダマンチルアクリレート等が挙げられる。 In addition, a monofunctional (meth) acrylate monomer may be further included for adjusting the hardness, the viscosity of the composition, improving the adhesion, and the like. Examples of the monofunctional (meth) acrylate monomer include hydroxyethyl acrylate (HEA), glycidyl methacrylate, methoxypolyethylene glycol (meth) acrylate, isostearyl (meth) acrylate, 2-acryloyloxyethyl succinate, acryloylmorpholine, N -Acryloyloxyethyl hexahydrophthalimide, cyclohexyl acrylate, tetrahydrofuryl acrylate, isobornyl acrylate, phenoxyethyl acrylate, adamantyl acrylate and the like.
 上記重合性モノマーの重量平均分子量は、第1のハードコート層の硬度を向上させる観点から、1000未満が好ましく、200~800がより好ましい。また、上記重合性オリゴマーの重量平均分子量は、1000~2万であることが好ましく、1000~1万であることがより好ましく、2000~7000であることが更に好ましい。なお、本明細書において、上記重合性モノマー及び重合性オリゴマーの重量平均分子量は、GPC法で測定したポリスチレン換算の重量平均分子量である。 The weight average molecular weight of the polymerizable monomer is preferably less than 1000 and more preferably 200 to 800 from the viewpoint of improving the hardness of the first hard coat layer. Further, the weight average molecular weight of the polymerizable oligomer is preferably 1000 to 20,000, more preferably 1000 to 10,000, and still more preferably 2000 to 7000. In addition, in this specification, the weight average molecular weight of the said polymerizable monomer and polymerizable oligomer is the weight average molecular weight of polystyrene conversion measured by GPC method.
<粒子>
 粒子としては、硬度を向上させることができれば、特に限定されないが、優れた硬度を得る観点から、シリカ粒子が好ましい。シリカ粒子の中でも、反応性シリカ粒子が好ましい。上記反応性シリカ粒子は、上記多官能(メタ)アクリレートとの間で架橋構造を構成することが可能なシリカ粒子であり、この反応性シリカ粒子を含有することで、上記第1のハードコート層の硬度を充分に高めることができる。
<Particle>
The particles are not particularly limited as long as the hardness can be improved, but silica particles are preferable from the viewpoint of obtaining excellent hardness. Of the silica particles, reactive silica particles are preferred. The reactive silica particles are silica particles that can form a crosslinked structure with the polyfunctional (meth) acrylate, and the first hard coat layer includes the reactive silica particles. Can be sufficiently increased in hardness.
 上記反応性シリカ粒子は、その表面に反応性官能基を有することが好ましく、該反応性官能基とてしては、例えば、上記の重合性官能基が好適に用いられる。 The reactive silica particles preferably have a reactive functional group on the surface, and for example, the polymerizable functional group is preferably used as the reactive functional group.
 上記反応性シリカ粒子としては特に限定されず、従来公知のものを用いることができ、例えば、特開2008-165040号公報記載の反応性シリカ粒子等が挙げられる。
また、上記反応性シリカ粒子の市販品としては、例えば、日産化学工業社製;MIBK-SD、MIBK-SDMS、MIBK-SDL、MIBK-SDZL、日揮触媒化成社製;V8802、V8803等が挙げられる。
The reactive silica particles are not particularly limited, and conventionally known reactive silica particles can be used, and examples thereof include reactive silica particles described in JP-A-2008-165040.
Examples of commercially available reactive silica particles include, for example, Nissan Chemical Industries; MIBK-SD, MIBK-SDMS, MIBK-SDL, MIBK-SDZL, JGC Catalysts &Chemicals; V8802, V8803, and the like. .
 また、上記シリカ粒子は、球状シリカ粒子であってもよいが、異型シリカ粒子であることが好ましい。球状シリカ粒子と異型シリカ粒子とを混合させてもよい。なお、本明細書における「球状シリカ粒子」とは、例えば、真球状、楕円球状等のシリカ粒子を意味しまた、「異型シリカ粒子」とは、ジャガイモ状のランダムな凹凸を表面に有する形状のシリカ粒子を意味する。上記異型シリカ粒子は、その表面積が球状シリカ粒子と比較して大きいため、このような異型シリカ粒子を含有することで、上記多官能(メタ)アクリレート等との接触面積が大きくなり、上記ハードコート層の硬度(鉛筆硬度)をより優れたものとすることができる。上記異型シリカ粒子か否かは、上記第1のハードコート層の透過型電子顕微鏡(TEM)または走査透過型電子顕微鏡(STEM)による断面観察により確認することができる。 The silica particles may be spherical silica particles, but are preferably atypical silica particles. Spherical silica particles and atypical silica particles may be mixed. In the present specification, “spherical silica particles” means, for example, silica particles such as true spheres and oval spheres, and “atypical silica particles” have a shape having potato-like random irregularities on the surface. Means silica particles. Since the atypical silica particles have a surface area larger than that of the spherical silica particles, the inclusion of such atypical silica particles increases the contact area with the polyfunctional (meth) acrylate and the hard coat. The layer hardness (pencil hardness) can be made more excellent. Whether or not the atypical silica particles are present can be confirmed by cross-sectional observation of the first hard coat layer using a transmission electron microscope (TEM) or a scanning transmission electron microscope (STEM).
 上記シリカ粒子の平均粒子径は、5nm以上200nm以下であることが好ましい。5nm未満であると、粒子自身の製造が困難になり、粒子同士が凝集したりすることがあり、また、異形にするのが極めて困難になることがあり、更に、上記塗工前のインキの段階で異形シリカ粒子の分散性が悪く凝集したりすることがある。一方、上記異形シリカ粒子の平均粒子径が200nmを超えると、上記ハードコート層に大きな凹凸が形成されたり、ヘイズの上昇といった不具合が生じたりすることがある。シリカ粒子が球形シリカ粒子の場合には、シリカ粒子の平均粒子径は、透過型電子顕微鏡(TEM)または走査透過型電子顕微鏡(STEM)を用いて撮影した粒子の断面の画像から20個の粒子の粒子径を測定し、20個の粒子の粒子径の算術平均値とする。また、シリカ粒子が異形シリカ粒子である場合には、シリカ粒子の平均粒子径は、透過型電子顕微鏡(TEM)または走査透過型電子顕微鏡(STEM)を用いて撮影した上記ハードコート層の断面の画像から異形シリカ粒子の外周の2点間距離の最大値(長径)と最小値(短径)とを測定し、平均して粒子径を求め、20個の粒子の粒子径の算術平均値とする。 The average particle size of the silica particles is preferably 5 nm or more and 200 nm or less. If the thickness is less than 5 nm, it may be difficult to produce the particles themselves, the particles may aggregate together, and it may be extremely difficult to deform the ink. In some stages, the dispersible silica particles may be poorly dispersed and may aggregate. On the other hand, when the average particle diameter of the irregular shaped silica particles exceeds 200 nm, there may be a problem that large irregularities are formed in the hard coat layer or haze is increased. When the silica particles are spherical silica particles, the average particle diameter of the silica particles is 20 particles from the cross-sectional image of the particles taken using a transmission electron microscope (TEM) or a scanning transmission electron microscope (STEM). The particle diameter is measured to obtain the arithmetic average value of the particle diameters of 20 particles. When the silica particles are irregularly shaped silica particles, the average particle diameter of the silica particles is the cross-section of the hard coat layer taken using a transmission electron microscope (TEM) or a scanning transmission electron microscope (STEM). The maximum value (major axis) and the minimum value (minor axis) of the distance between the two points on the outer periphery of the deformed silica particles are measured from the image, and the average is obtained by calculating the particle diameter. To do.
 上記粒子の大きさ及び配合量を制御することで第1のハードコート層13の硬度(マルテンス硬度)を制御できる。例えば、第1のハードコート層13を形成する場合、上記シリカ粒子は直径が5nm以上200nm以下であり、上記重合性化合物100質量部に対して、25~60質量部であることが好ましい。 The hardness (Martens hardness) of the first hard coat layer 13 can be controlled by controlling the size and blending amount of the particles. For example, when the first hard coat layer 13 is formed, the silica particles have a diameter of 5 nm to 200 nm and preferably 25 to 60 parts by mass with respect to 100 parts by mass of the polymerizable compound.
<紫外線吸収剤>
 光学フィルムは、後述するように、折り畳み可能なスマートフォンやタブレット端末のようなモバイル端末に特に好適に用いられるが、このようなモバイル端末は屋外で使用されることが多く、そのため、光学フィルムより表示素子側に配置された偏光子が紫外線に晒されて劣化しやすいという問題がある。しかしながら、ハードコート層は、偏光子の表示画面側に配置されるため、第1のハードコート層に紫外線吸収剤が含有されていると、偏光子が紫外線に晒されることによる劣化を好適に防止することができる。なお、上記紫外線吸収剤(UVA)は、上述した光透過性樹脂基材に含有されていてもよい。この場合、紫外線吸収剤(UVA)は、上記第1のハードコート層に含有されていなくてもよい。
<Ultraviolet absorber>
As will be described later, the optical film is particularly preferably used for a mobile terminal such as a foldable smartphone or a tablet terminal. However, such a mobile terminal is often used outdoors, and thus is displayed more than the optical film. There is a problem that the polarizer disposed on the element side is easily deteriorated by being exposed to ultraviolet rays. However, since the hard coat layer is disposed on the display screen side of the polarizer, if the ultraviolet light absorber is contained in the first hard coat layer, deterioration due to exposure of the polarizer to ultraviolet rays is suitably prevented. can do. In addition, the said ultraviolet absorber (UVA) may be contained in the light transmissive resin base material mentioned above. In this case, the ultraviolet absorber (UVA) may not be contained in the first hard coat layer.
 紫外線吸収剤としては、例えば、トリアジン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、及び、ベンゾトリアゾール系紫外線吸収剤等が挙げられる。 Examples of ultraviolet absorbers include triazine-based ultraviolet absorbers, benzophenone-based ultraviolet absorbers, and benzotriazole-based ultraviolet absorbers.
 上記トリアジン系紫外線吸収剤としては、例えば、2-(2-ヒドロキシ-4-[1-オクチルオキシカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン、2-[4-[(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2,4-ビス[2-ヒドロキシ-4-ブトキシフェニル]-6-(2,4-ジブトキシフェニル)-1,3,5-トリアジン、2-[4-[(2-ヒドロキシ-3-トリデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、および2-[4-[(2-ヒドロキシ-3-(2’-エチル)ヘキシル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン等が挙げられる。市販されているトリアジン系紫外線吸収剤としては、例えば、TINUVIN460、TINUVIN477(いずれも、BASF社製)、LA-46(ADEKA社製)等が挙げられる。 Examples of the triazine ultraviolet absorber include 2- (2-hydroxy-4- [1-octyloxycarbonylethoxy] phenyl) -4,6-bis (4-phenylphenyl) -1,3,5-triazine. 2- [4-[(2-hydroxy-3-dodecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2 , 4-Bis [2-hydroxy-4-butoxyphenyl] -6- (2,4-dibutoxyphenyl) -1,3,5-triazine, 2- [4-[(2-hydroxy-3-tridecyl) Oxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, and 2- [4-[(2-hydroxy-3- ( '- ethyl) hexyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine. Examples of commercially available triazine ultraviolet absorbers include TINUVIN 460, TINUVIN 477 (both manufactured by BASF), LA-46 (manufactured by ADEKA), and the like.
 上記ベンゾフェノン系紫外線吸収剤としては、例えば、2-ヒドロキシベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、ヒドロキシメトキシベンゾフェノンスルホン酸及びその三水塩、ヒドロキシメトキシベンゾフェノンスルホン酸ナトリウム等が挙げられる。市販されているベンゾフェノン系紫外線吸収剤としては、例えば、CHMASSORB81/FL(BASF社製)等が挙げられる。 Examples of the benzophenone ultraviolet absorber include 2-hydroxybenzophenone, 2,4-dihydroxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, 2,2 ′, 4,4′-tetrahydroxy. Examples thereof include benzophenone, 2-hydroxy-4-methoxybenzophenone, hydroxymethoxybenzophenone sulfonic acid and its trihydrate, hydroxymethoxybenzophenone sulfonate sodium, and the like. Examples of commercially available benzophenone ultraviolet absorbers include CHMASSORB81 / FL (manufactured by BASF).
 上記ベンゾトリアゾール系紫外線吸収剤としては、例えば、2-エチルヘキシル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネート、2-(2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール、2-〔5-クロロ(2H)-ベンゾトリアゾール-2-イル〕-4-メチル-6-(tert-ブチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-tert-ペンチルフェノール、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’-(3’’,4’’,5’’,6’’-テトラヒドロフタルイミドメチル)-5’-メチルフェニル)ベンゾトリアゾール、2,2-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール)、及び、2-(2’-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)-5-クロロベンゾトリアゾール等が挙げられる。市販されているベンゾトリアゾール系紫外線吸収剤としては、例えば、KEMISORB71D、KEMISORB79(いずれも、ケミプロ化成社製)、JF-80、JAST-500(いずれも、城北化学社製)、ULS-1933D(一方社製)、RUVA-93(大塚化学社製)等が挙げられる。 Examples of the benzotriazole ultraviolet absorber include 2-ethylhexyl-3- [3-tert-butyl-4-hydroxy-5- (5-chloro-2H-benzotriazol-2-yl) phenyl] propionate, 2 -(2H-benzotriazol-2-yl) -6- (linear and side chain dodecyl) -4-methylphenol, 2- [5-chloro (2H) -benzotriazol-2-yl] -4-methyl- 6- (tert-butyl) phenol, 2- (2H-benzotriazol-2-yl) -4,6-di-tert-pentylphenol, 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) benzotriazole, 2- (2′-hydroxy-3) -Tert-butyl-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy- 3 ′-(3 ″, 4 ″, 5 ″, 6 ″ -tetrahydrophthalimidomethyl) -5′-methylphenyl) benzotriazole, 2,2-methylenebis (4- (1,1,3,3 -Tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol) and 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole Etc. Examples of commercially available benzotriazole ultraviolet absorbers include KEMISORB71D, KEMISORB79 (all manufactured by Chemipro Kasei Co., Ltd.), JF-80, JAST-500 (all manufactured by Johoku Chemical Co., Ltd.), ULS-1933D (one side) And RUVA-93 (manufactured by Otsuka Chemical Co., Ltd.).
 紫外線吸収剤は、なかでも、トリアジン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤が好適に用いられる。紫外線吸収剤は、ハードコート層を構成する樹脂成分との溶解性が高いほうが好ましく、また、上述した耐久折り畳み試験後のブリードアウトが少ないほうが好ましい。紫外線吸収剤は、ポリマー化又はオリゴマー化されていることが好ましい。紫外線吸収剤としては、ベンゾトリアゾール、トリアジン、ベンゾフェノン骨格を有するポリマー又はオリゴマーが好ましく、具体的には、ベンゾトリアゾールやベンゾフェノン骨格を有する(メタ)アクリレートと、メチルメタクリレート(MMA)とを任意の比率で熱共重合したものであることが好ましい。なお、有機発光ダイオード)に光学フィルムを適用する場合、紫外線吸収剤は、OLEDを紫外線から保護する役割も果たすことができる。 Among these, triazine ultraviolet absorbers and benzotriazole ultraviolet absorbers are preferably used as the ultraviolet absorber. It is preferable that the ultraviolet absorber has high solubility with the resin component constituting the hard coat layer, and it is preferable that the bleed-out after the above-described durability folding test is small. The ultraviolet absorber is preferably polymerized or oligomerized. As the ultraviolet absorber, a polymer or oligomer having a benzotriazole, triazine, or benzophenone skeleton is preferable. Specifically, (meth) acrylate having a benzotriazole or benzophenone skeleton and methyl methacrylate (MMA) at an arbitrary ratio. It is preferable that it has been heat copolymerized. In addition, when an optical film is applied to an organic light emitting diode), the ultraviolet absorber can also play a role of protecting the OLED from ultraviolet rays.
 紫外線吸収剤の含有量としては特に限定されないが、第1のハードコート層用組成物の固形分100質量部に対して1~6質量部であることが好ましい。1質量部未満であると、上述した紫外線吸収剤をハードコート層に含有させる効果を充分に得ることができないことがあり、6質量部を超えると、上記ハードコート層に著しい着色や強度低下が生じることがある。上記紫外線吸収剤の含有量のより好ましい下限は2質量部、より好ましい上限は5質量部である。 The content of the ultraviolet absorber is not particularly limited, but is preferably 1 to 6 parts by mass with respect to 100 parts by mass of the solid content of the first hard coat layer composition. If the amount is less than 1 part by mass, the effect of containing the above-described ultraviolet absorber in the hard coat layer may not be sufficiently obtained. If the amount exceeds 6 parts by mass, the hard coat layer may be markedly colored or deteriorated in strength. May occur. The minimum with more preferable content of the said ultraviolet absorber is 2 mass parts, and a more preferable upper limit is 5 mass parts.
<<第2のハードコート層>>
 第2のハードコート層14は、樹脂を含む。第2のハードコート層14は、樹脂の他、紫外線吸収剤を含んでいてもよい。
<< Second hard coat layer >>
The second hard coat layer 14 contains a resin. The second hard coat layer 14 may contain an ultraviolet absorber in addition to the resin.
<樹脂>
 樹脂は、重合性化合物(硬化性化合物)の重合体(硬化物)を含む。重合性化合物としては、第1のハードコート層13の欄で説明した重合性化合物と同様のものを用いることができるので、ここでは説明を省略するものとする。
<Resin>
The resin contains a polymer (cured product) of a polymerizable compound (curable compound). As the polymerizable compound, since the same compound as the polymerizable compound described in the column of the first hard coat layer 13 can be used, the description is omitted here.
 重合性化合物としては、多官能(メタ)アクリレートモノマーに加えて、多官能ウレタン(メタ)アクリレート及び/又は多官能エポキシ(メタ)アクリレート等が含まれてもよい。 As the polymerizable compound, in addition to the polyfunctional (meth) acrylate monomer, polyfunctional urethane (meth) acrylate and / or polyfunctional epoxy (meth) acrylate may be included.
<紫外線吸収剤>
 紫外線吸収剤としては、第1のハードコート層の欄で説明した紫外線吸収剤と同様のものを用いることができるので、ここでは説明を省略するものとする。
<Ultraviolet absorber>
As the ultraviolet absorber, the same ultraviolet absorber as described in the column of the first hard coat layer can be used, and the description thereof will be omitted here.
<他の光学フィルム>
 図1に示される光学フィルム10は、第2の領域10Cにおける第2のハードコート層14の表面14Aが窪んでいるが、タッチパネルを備える画像表示装置の最表面として光学フィルムを用いる場合には、図5(A)に示される光学フィルム30のように、第2の領域30Cは、第2のハードコート層14の表面14Aが平坦であることが好ましい。第2のハードコート層14の表面14Aを平坦とすることにより、表面14Aを指で触れたときの感触が良好となる。なお、第1の領域30Bの構成は第1の領域10Bと同様であり、第2の領域30Cは上記以外第2の領域10Cと同様である。
<Other optical films>
In the optical film 10 shown in FIG. 1, the surface 14A of the second hard coat layer 14 in the second region 10C is depressed, but when an optical film is used as the outermost surface of an image display device including a touch panel, As in the optical film 30 shown in FIG. 5A, in the second region 30C, the surface 14A of the second hard coat layer 14 is preferably flat. By making the surface 14A of the second hard coat layer 14 flat, the feel when the surface 14A is touched with a finger is improved. The configuration of the first region 30B is the same as that of the first region 10B, and the second region 30C is the same as the second region 10C except for the above.
 また、図1に示される光学フィルム10は、第2の領域10C内に第1のハードコート層13の一部が存在しているが、図5(B)に示される光学フィルム40のように、第2の領域40C内に第1のハードコート層13の一部が存在していなくともよい。なお、第1の領域40Bの構成は第1の領域10Bと同様であり、第2の領域40Cは上記以外第2の領域10Cと同様である。 Further, in the optical film 10 shown in FIG. 1, a part of the first hard coat layer 13 exists in the second region 10C, but like the optical film 40 shown in FIG. In addition, a part of the first hard coat layer 13 may not be present in the second region 40C. The configuration of the first region 40B is the same as that of the first region 10B, and the second region 40C is the same as the second region 10C except for the above.
<<<光学フィルムの製造方法>>>
 光学フィルム10は、例えば、以下のようにして作製することができる。まず、図6(A)に示されるように、光透過性樹脂基材11の一方の面11A上に、所定の間隔毎に、マスク16を配置する。マスク16を配置した後に、光透過性樹脂基材11の一方の面11A上に、バーコーター等の塗布装置によって、第1のハードコート層用組成物を塗布して、図6(B)に示されるように、第1のハードコート層用組成物の塗膜17を形成する。第1のハードコート層用組成物の塗布方法としては、特に限定されないが、バーコート法、グラビア印刷法、スクリーン印刷法、スプレー印刷法等が挙げられる。また、第1のハードコート層13の形成方法としては、フォトリソグラフィ法を用いても良い。
<<< Optical Film Manufacturing Method >>>
The optical film 10 can be produced as follows, for example. First, as shown in FIG. 6A, the mask 16 is arranged on the one surface 11A of the light-transmitting resin substrate 11 at predetermined intervals. After the mask 16 is disposed, the first hard coat layer composition is applied onto the one surface 11A of the light-transmitting resin base material 11 by a coating device such as a bar coater, as shown in FIG. As shown, a coating film 17 of the first hard coat layer composition is formed. Although it does not specifically limit as a coating method of the 1st composition for hard-coat layers, The bar-coat method, the gravure printing method, the screen printing method, the spray printing method etc. are mentioned. Further, as a method for forming the first hard coat layer 13, a photolithography method may be used.
<<第1のハードコート層用組成物>>
 第1のハードコート層用組成物は、重合性化合物および粒子を含んでいる。第1のハードコート層用組成物は、その他、必要に応じて、紫外線吸収剤、溶剤、重合開始剤を含んでいてもよい。
<< First composition for hard coat layer >>
The 1st composition for hard-coat layers contains the polymeric compound and particle | grains. The 1st composition for hard-coat layers may contain the ultraviolet absorber, the solvent, and the polymerization initiator as needed.
 第1のハードコート層用組成物は、総固形分が25~55%であることが好ましい。25%より低いと残留溶剤が残ったり、白化が生じたりするおそれがある。55%を超えると、第1のハードコート層用組成物の粘度が高くなり、塗工性が低下して表面にムラやスジが出たりすることがある。上記固形分は、30~50%であることがより好ましい。 The first hard coat layer composition preferably has a total solid content of 25 to 55%. If it is lower than 25%, residual solvent may remain or whitening may occur. If it exceeds 55%, the viscosity of the first composition for hard coat layer will increase, the coatability may decrease, and unevenness and streaks may appear on the surface. The solid content is more preferably 30 to 50%.
<溶剤>
 上記溶媒としては、アルコール(例、メタノール、エタノール、プロパノール、イソプロパノール、n-ブタノール、s-ブタノール、t-ブタノール、ベンジルアルコール、PGME、エチレングリコール、ジアセトンアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、ヘプタノン、ジイソブチルケトン、ジエチルケトン、ジアセトンアルコール)、エステル(酢酸メチル、酢酸エチル、酢酸ブチル、酢酸n-プロピル、酢酸イソプロピル、蟻酸メチル、PGMEA)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n-メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラヒドロフラン)、エーテルアルコール(例、1-メトキシ-2-プロパノール)、カーボネート(炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル)、等が挙げられる。これらの溶媒、単独で用いられてもよく、2種類以上が併用されてもよい。なかでも、上記溶媒としては、上述した重合性モノマー及び/又は重合性オリゴマー等の樹脂成分、並びに、他の添加剤を溶解或いは分散させ、上記ハードコート層用組成物を好適に塗工できる点で、メチルイソブチルケトン、メチルエチルケトンが好ましい。
<Solvent>
Examples of the solvent include alcohols (eg, methanol, ethanol, propanol, isopropanol, n-butanol, s-butanol, t-butanol, benzyl alcohol, PGME, ethylene glycol, diacetone alcohol), ketones (eg, acetone, methyl ethyl ketone, Methyl isobutyl ketone, cyclopentanone, cyclohexanone, heptanone, diisobutyl ketone, diethyl ketone, diacetone alcohol), ester (methyl acetate, ethyl acetate, butyl acetate, n-propyl acetate, isopropyl acetate, methyl formate, PGMEA), aliphatic Hydrocarbons (eg, hexane, cyclohexane), halogenated hydrocarbons (eg, methylene chloride, chloroform, carbon tetrachloride), aromatic hydrocarbons (eg, benzene, toluene, xylene), Amide (eg, dimethylformamide, dimethylacetamide, n-methylpyrrolidone), ether (eg, diethyl ether, dioxane, tetrahydrofuran), ether alcohol (eg, 1-methoxy-2-propanol), carbonate (dimethyl carbonate, diethyl carbonate, Ethyl methyl carbonate), and the like. These solvents may be used alone or two or more of them may be used in combination. Among them, as the solvent, the resin component such as the polymerizable monomer and / or polymerizable oligomer described above, and other additives can be dissolved or dispersed to suitably apply the hard coat layer composition. And methyl isobutyl ketone and methyl ethyl ketone are preferred.
<重合開始剤>
 重合開始剤は、光照射により分解されて、ラジカルを発生して光重合性化合物の重合(架橋)を開始または進行させる成分である。
<Polymerization initiator>
The polymerization initiator is a component that is decomposed by light irradiation to generate radicals to initiate or advance polymerization (crosslinking) of the photopolymerizable compound.
 重合開始剤は、光照射によりラジカル重合を開始させる物質を放出することが可能であれば特に限定されない。重合開始剤としては、特に限定されず、公知のものを用いることができ、具体例には、例えば、アセトフェノン類、ベンゾフェノン類、ミヒラーベンゾイルベンゾエート、α-アミロキシムエステル、チオキサントン類、プロピオフェノン類、ベンジル類、ベンゾイン類、アシルホスフィンオキシド類が挙げられる。また、光増感剤を混合して用いることが好ましく、その具体例としては、例えば、n-ブチルアミン、トリエチルアミン、ポリ-n-ブチルホスフィン等が挙げられる。 The polymerization initiator is not particularly limited as long as it can release a substance that initiates radical polymerization by light irradiation. The polymerization initiator is not particularly limited, and known ones can be used. Specific examples include, for example, acetophenones, benzophenones, Michler benzoylbenzoate, α-amyloxime ester, thioxanthones, propiophenone. , Benzyls, benzoins, acylphosphine oxides. Further, it is preferable to use a mixture of photosensitizers, and specific examples thereof include n-butylamine, triethylamine, poly-n-butylphosphine and the like.
 上記重合開始剤としては、上記バインダ樹脂がラジカル重合性不飽和基を有する樹脂系の場合は、アセトフェノン類、ベンゾフェノン類、チオキサントン類、ベンゾイン、ベンゾインメチルエーテル等を単独又は混合して用いることが好ましい。 As the polymerization initiator, when the binder resin is a resin system having a radically polymerizable unsaturated group, it is preferable to use acetophenones, benzophenones, thioxanthones, benzoin, benzoin methyl ether or the like alone or in combination. .
 第1のハードコート層用組成物の塗膜17を形成した後、光透過性樹脂基材11上のマクス16を除去する。これにより、図6(C)に示されるように、マスク16が存在していた領域に若干第1のハードコート層用組成物が流れ込み、各塗膜17間の隙間15に向けて膜厚が徐々に低くなる。 After forming the coating film 17 of the first hard coat layer composition, the max 16 on the light transmissive resin substrate 11 is removed. As a result, as shown in FIG. 6C, the first hard coat layer composition slightly flows into the region where the mask 16 was present, and the film thickness becomes toward the gap 15 between the coating films 17. Gradually lower.
 その後、図6(D)に示されるように、各種の公知の方法で塗膜17を例えば30℃以上120℃以下の温度で10秒以上12秒間加熱することにより乾燥させ、溶剤を蒸発させる。 Thereafter, as shown in FIG. 6D, the coating film 17 is dried by heating at a temperature of, for example, 30 ° C. to 120 ° C. for 10 seconds to 12 seconds by various known methods, and the solvent is evaporated.
 塗膜17を乾燥させた後、図7(A)に示されるように、第1のハードコート層用組成物の塗膜17に紫外線等の電離放射線を照射して、第1のハードコート層用組成物の塗膜17を半硬化(ハーフキュア)させる。本明細書における「半硬化」とは、光を照射すると硬化が実質的に進行することを意味する。ただし、この段階で、第1のハードコート用組成物の塗膜17を完全硬化(フルキュア)させてもよい。本明細書における「完全硬化」とは、これ以上光を照射しても硬化が実質的に進行しないことを意味する。また、電離放射線としては、可視光線、紫外線、X線、電子線、α線、β線、およびγ線が挙げられる。 After the coating film 17 is dried, as shown in FIG. 7A, the coating film 17 of the first hard coat layer composition is irradiated with ionizing radiation such as ultraviolet rays, so that the first hard coat layer The coating film 17 of the composition for use is semi-cured. “Semi-curing” in the present specification means that curing substantially proceeds when irradiated with light. However, at this stage, the coating film 17 of the first hard coat composition may be completely cured (full cure). The “complete curing” in the present specification means that the curing does not substantially proceed even when light is further irradiated. Examples of the ionizing radiation include visible light, ultraviolet light, X-rays, electron beams, α rays, β rays, and γ rays.
 塗膜17を半硬化させた後、図7(B)に示されるように、塗膜17上に、バーコーター等の塗布装置によって、第2のハードコート層用組成物を塗布して、第2のハードコート層用組成物の塗膜18を形成する。 After the coating film 17 is semi-cured, as shown in FIG. 7B, a second hard coat layer composition is applied onto the coating film 17 by a coating device such as a bar coater. The coating film 18 of the composition for 2 hard-coat layers is formed.
<<第2のハードコート層用組成物>>
 第2のハードコート層用組成物は、重合性化合物を含んでいる。第2のハードコート層用組成物は、その他、必要に応じて、紫外線吸収剤、溶剤、重合開始剤を含んでいてもよい。第2のハードコート層用組成物は、第1のハードコート層用組成物と同様に、総固形分が25~55%であることが好ましい。溶剤および重合開始剤は、第1のハードコート層用組成物で説明した溶剤および重合開始剤と同様であるので、ここでは説明を省略するものとする。
<< Second composition for hard coat layer >>
The 2nd composition for hard-coat layers contains the polymeric compound. The 2nd composition for hard-coat layers may contain the ultraviolet absorber, the solvent, and the polymerization initiator as needed. Like the first hard coat layer composition, the second hard coat layer composition preferably has a total solid content of 25 to 55%. Since the solvent and the polymerization initiator are the same as the solvent and the polymerization initiator described in the first hard coat layer composition, the description thereof will be omitted here.
 第2のハードコート層用組成物の塗膜18を形成した後、図7(C)に示されるように、各種の公知の方法で塗膜18を例えば30℃以上120℃以下の温度で10秒以上12秒間加熱することにより乾燥させ、溶剤を蒸発させる。 After forming the coating film 18 of the composition for the second hard coat layer, as shown in FIG. 7C, the coating film 18 is formed at a temperature of, for example, 30 ° C. or more and 120 ° C. or less by various known methods. The solvent is evaporated by drying by heating for 12 seconds or more.
 塗膜18を乾燥させた後、図7(D)に示されるように、第2のハードコート層用組成物の塗膜18に紫外線等の電離放射線を照射して、第1のハードコート層用組成物の塗膜17および第2のハードコート層用組成物の塗膜18を完全硬化(フルキュア)させて、第1のハードコート層13および第2のハードコート層14を形成する。これにより、図1に示される光学フィルム10が得られる。 After the coating film 18 is dried, as shown in FIG. 7D, the coating film 18 of the second composition for hard coat layer is irradiated with ionizing radiation such as ultraviolet rays, so that the first hard coat layer The coating film 17 of the composition for use and the coating film 18 of the composition for the second hard coat layer are completely cured (full cure) to form the first hard coat layer 13 and the second hard coat layer 14. Thereby, the optical film 10 shown in FIG. 1 is obtained.
 本実施形態によれば、光学フィルム10の表面10Aにおける硬度が第1の領域10Bよりも第2の領域10Cが低くなっているので、第1の領域10Bでは優れた硬度を得ることができ、また第2の領域10Cで光学フィルム10を折り畳んだ場合には優れた耐久折り畳み性を得ることができる。これにより、優れた硬度および優れた耐久折り畳み性を有する光学フィルム10を得ることができる。 According to this embodiment, since the hardness in the surface 10A of the optical film 10 is lower in the second region 10C than in the first region 10B, excellent hardness can be obtained in the first region 10B. Further, when the optical film 10 is folded in the second region 10C, excellent durability foldability can be obtained. Thereby, the optical film 10 which has the outstanding hardness and the outstanding durable foldability can be obtained.
 本実施形態によれば、第1の領域10Bには第1のハードコート層13が存在しているので、優れた硬度を得ることができる。また、第2の領域10Cには第1のハードコート層13間の隙間15が存在し、かつこの隙間15に硬度が第1のハードコート層13よりも低い第2のハードコート層14が埋め込まれているので、第2の領域10Cで光学フィルム10を折り畳んだ場合には、優れた耐久折り畳み性を得ることができる。これにより、優れた硬度および優れた耐久折り畳み性を有する光学フィルム10を得ることができる。 According to the present embodiment, since the first hard coat layer 13 exists in the first region 10B, excellent hardness can be obtained. Further, there is a gap 15 between the first hard coat layers 13 in the second region 10C, and the second hard coat layer 14 having a hardness lower than that of the first hard coat layer 13 is embedded in the gap 15. Therefore, when the optical film 10 is folded in the second region 10C, an excellent durability foldability can be obtained. Thereby, the optical film 10 which has the outstanding hardness and the outstanding durable foldability can be obtained.
<<<偏光板>>>
 光学フィルム10は、例えば、偏光板に組み込んで使用することができる。図8は本実施形態に係る光学フィルムを組み込んだ偏光板の概略構成図である。図8に示されるように偏光板50は、保護フィルムとして機能する光学フィルム10と、偏光子51と、保護フィルム52とをこの順で備えている。偏光子51は、光透過性基材11の他方の面11Bに形成されている。保護フィルム52は、偏光子51の光学フィルム10が設けられている面とは反対側の面に設けられている。保護フィルム52は位相差フィルムであってもよい。
<<< Polarizing plate >>>
The optical film 10 can be used by being incorporated into a polarizing plate, for example. FIG. 8 is a schematic configuration diagram of a polarizing plate incorporating the optical film according to the present embodiment. As shown in FIG. 8, the polarizing plate 50 includes an optical film 10 that functions as a protective film, a polarizer 51, and a protective film 52 in this order. The polarizer 51 is formed on the other surface 11B of the light transmissive substrate 11. The protective film 52 is provided on the surface opposite to the surface on which the optical film 10 of the polarizer 51 is provided. The protective film 52 may be a retardation film.
 偏光子51は、ヨウ素または二色性色素により染色し、一軸延伸させたポリビニルアルコール系樹脂フィルムが上げられる。ポリビニルアルコール系樹脂としては、ポリ酢酸ビニル系樹脂を鹸化したものを用いることができる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルの他、酢酸ビニルとそれに共重合可能な他の単量体との共重合体等が挙げられる。酢酸ビニルに共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有するアクリルアミド類等が挙げられる。 The polarizer 51 is a polyvinyl alcohol resin film that is dyed with iodine or a dichroic dye and stretched uniaxially. As the polyvinyl alcohol resin, a saponified polyvinyl acetate resin can be used. Examples of the polyvinyl acetate resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith. Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
 ポリビニルアルコール系樹脂は、変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマールやポリビニルアセタール等を用いることもできる。 The polyvinyl alcohol-based resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes may be used.
 光学フィルム10と偏光子51とを積層する際には、予め光学フィルム10に鹸化処理を施すことが好ましい。鹸化処理を施すことによって、偏光子51との接着性が良好になる。 When laminating the optical film 10 and the polarizer 51, it is preferable to saponify the optical film 10 in advance. By performing the saponification treatment, the adhesiveness with the polarizer 51 is improved.
<<<画像表示装置>>>
 光学フィルム10や偏光板50は、例えば、画像表示装置に組み込んで使用することが可能である。図9は、本実施形態に係る画像表示装置の概略構成図である。図9に示されるように、画像表示装置60は、主に、タッチパネル機能を有する画像を表示するための表示素子61と、表示素子61より観察者側に配置された偏光板50とを備えている。表示素子61は、有機発光ダイオード(OLED)となっている。なお、表示素子61は内部にタッチパネル機能を有するインセル構造となっているが、表示素子としては、タッチパネル機能を有していない表示素子を用いることも可能である。この場合には、表示素子と偏光板との間にタッチパネルを配置してもよい(オンセル構造)。
<<< Image display device >>>
The optical film 10 and the polarizing plate 50 can be used by being incorporated into an image display device, for example. FIG. 9 is a schematic configuration diagram of the image display apparatus according to the present embodiment. As shown in FIG. 9, the image display device 60 mainly includes a display element 61 for displaying an image having a touch panel function, and a polarizing plate 50 disposed on the viewer side from the display element 61. Yes. The display element 61 is an organic light emitting diode (OLED). Although the display element 61 has an in-cell structure having a touch panel function inside, a display element that does not have a touch panel function can be used as the display element. In this case, a touch panel may be disposed between the display element and the polarizing plate (on-cell structure).
 光学フィルム10は、表示パネル61よりも観察者側に配置され、かつハードコート層12が光透過性樹脂基材11より観察者側に位置するように配置されている。 The optical film 10 is disposed on the viewer side with respect to the display panel 61, and the hard coat layer 12 is disposed on the viewer side with respect to the light transmissive resin substrate 11.
 画像表示装置60においては、偏光板50に光学フィルム10を設けているが、これに限定されず、光学フィルム10を、例えば、輝度向上フィルム、位相差フィルム、帯電防止フィルム等に設けてもよい。 In the image display device 60, the optical film 10 is provided on the polarizing plate 50. However, the present invention is not limited to this, and the optical film 10 may be provided on, for example, a brightness enhancement film, a retardation film, an antistatic film, or the like. .
[第2の実施形態]
 以下、本発明の第2の実施形態に係る光学フィルム、偏光板、表示パネルおよび画像表示装置について、図面を参照しながら説明する。図10は本実施形態に係る光学フィルムの概略構成図であり、図11は本実施形態に係る光学フィルムの一部の拡大図であり、図12および図13は本実施形態に係る光学フィルムの製造工程を模式的に示す図である。
[Second Embodiment]
Hereinafter, an optical film, a polarizing plate, a display panel, and an image display device according to a second embodiment of the present invention will be described with reference to the drawings. FIG. 10 is a schematic configuration diagram of the optical film according to the present embodiment, FIG. 11 is a partially enlarged view of the optical film according to the present embodiment, and FIGS. 12 and 13 are diagrams of the optical film according to the present embodiment. It is a figure which shows a manufacturing process typically.
<<<<光学フィルム>>>>
 図10に示される光学フィルム70は、光透過性樹脂基材71と、光透過性樹脂基材71の一方の面71Aに設けられたハードコート層72とを備えるものである。光学フィルム70の物性は、光学フィルム10の物性と同様であるので、ここでは説明を省略するものとする。
<<<<< Optical Film >>>>
The optical film 70 shown in FIG. 10 includes a light transmissive resin base 71 and a hard coat layer 72 provided on one surface 71A of the light transmissive resin base 71. Since the physical properties of the optical film 70 are the same as the physical properties of the optical film 10, the description thereof will be omitted here.
 光学フィルム70は、光学フィルム70の表面70Aにおける硬度がそれぞれ異なる第1の領域70Bおよび第2の領域70Cを有している。具体的には、光学フィルム70の表面70Aにおける硬度は、第1の領域70Bよりも第2の領域70Cの方が低くなっている。 The optical film 70 has a first region 70B and a second region 70C having different hardnesses on the surface 70A of the optical film 70, respectively. Specifically, the hardness of the surface 70A of the optical film 70 is lower in the second region 70C than in the first region 70B.
<<光透過性樹脂基材>>
 光透過性樹脂基材71は、光透過性樹脂基材11と同様であるので、ここでは説明を省略するものとする。
<< light transmissive resin base material >>
Since the light transmissive resin base material 71 is the same as the light transmissive resin base material 11, the description thereof is omitted here.
<<ハードコート層>>
 ハードコート層72は、1以上の凹部73Aを有する第1のハードコート層73と、硬度が第1のハードコート層73よりも低い第2のハードコート層74とを有している。硬度に関しては、第1のハードコート層73の硬度は、第1のハードコート層13の硬度と同様であり、また第2のハードコート層74の硬度は、第2のハードコート層14の硬度と同様であるので、ここでは説明を省略するものとする。
<< Hard coat layer >>
The hard coat layer 72 includes a first hard coat layer 73 having one or more recesses 73 </ b> A, and a second hard coat layer 74 having a hardness lower than that of the first hard coat layer 73. Regarding the hardness, the hardness of the first hard coat layer 73 is the same as the hardness of the first hard coat layer 13, and the hardness of the second hard coat layer 74 is the hardness of the second hard coat layer 14. Therefore, the description is omitted here.
 第1のハードコート層73は、上記したように凹部73Aを有している。すなわち、図11に示されるように、凹部73Aの底面と光透過性樹脂基材71との間には、第1のハードコート層73の薄膜部73Bが存在しており、凹部73の両側には膜厚が薄膜部73Bより厚い厚膜部73Cが存在している。第2の領域においては、凹部73Aによって第1のハードコート層の膜厚が前記第1の領域における前記第1のハードコート層の膜厚の50%以下となる領域を有している。凹部73Aの形状としては、特に限定されないが、例えば、ストライプ状、ドット状、ブロック状、格子状等が挙げられる。これらの中でも、連続コーティングでの生産性の観点から、ストライプ状が好ましい。 The first hard coat layer 73 has a recess 73A as described above. That is, as shown in FIG. 11, the thin film portion 73 </ b> B of the first hard coat layer 73 exists between the bottom surface of the recess 73 </ b> A and the light transmissive resin base material 71, and the both sides of the recess 73. There is a thick film portion 73C whose film thickness is thicker than the thin film portion 73B. The second region has a region where the thickness of the first hard coat layer is 50% or less of the thickness of the first hard coat layer in the first region due to the recess 73A. The shape of the recess 73A is not particularly limited, and examples thereof include a stripe shape, a dot shape, a block shape, and a lattice shape. Among these, a stripe shape is preferable from the viewpoint of productivity in continuous coating.
 図10に示される第1のハードコート層73の凹部73Aおよび厚膜部73Cはストライプ状となっている。第1の領域70Bの幅に相当する厚膜部73Cの幅は、10mm以上1000mm以下であることが好ましい。厚膜部73Cの幅が10nm未満であると、この光学フィルムおよびタッチパネルを備える画像表示装置において充分な硬度が得られないおそれがあり、またこの幅が1000mmを超えると、この光学フィルムおよびタッチパネルを備える画像表示装置の加工時に充分な歩留りが得られないおそれがある。厚膜部73Cの幅の下限は、20mm以上であることがより好ましく、上限は800mm以下であることがより好ましい。 The concave portions 73A and the thick film portions 73C of the first hard coat layer 73 shown in FIG. The width of the thick film portion 73C corresponding to the width of the first region 70B is preferably 10 mm or more and 1000 mm or less. If the width of the thick film portion 73C is less than 10 nm, sufficient hardness may not be obtained in the image display device including the optical film and the touch panel. If the width exceeds 1000 mm, the optical film and the touch panel may be removed. There is a possibility that a sufficient yield cannot be obtained during processing of the image display device provided. The lower limit of the width of the thick film portion 73C is more preferably 20 mm or more, and the upper limit is more preferably 800 mm or less.
 第2の領域70Cの幅に相当する凹部73Aの最大幅は、2mm以上50mm以下であることが好ましい。凹部73Aの最大幅が2mm未満であると、耐久折り畳み試験時に第1の領域に割れ又は破断が生じるおそれがあり、またこの最大幅が50mmを超えると、この光学フィルムおよびタッチパネルを備える画像表示装置において充分な硬度が得られないおそれがある。凹部73Aの最大幅の下限は、5mm以上であることがより好ましく、上限は20mm以下であることがより好ましい。 The maximum width of the recess 73A corresponding to the width of the second region 70C is preferably 2 mm or more and 50 mm or less. If the maximum width of the recess 73A is less than 2 mm, the first region may be cracked or broken during the endurance folding test. If the maximum width exceeds 50 mm, the image display device includes the optical film and the touch panel. There is a risk that sufficient hardness cannot be obtained. The lower limit of the maximum width of the recess 73A is more preferably 5 mm or more, and the upper limit is more preferably 20 mm or less.
 第1のハードコート層73は、少なくとも第1の領域70Bに存在しており、凹部73Aは第2の領域70Cに存在している。凹部73Aを第2の領域70Cに存在させ、かつ後述するように凹部73Aに第2のハードコート層74を埋め込むことにより、第1の領域70Bより硬度が低い第2の領域70Cを形成することができる。 The first hard coat layer 73 is present at least in the first region 70B, and the recess 73A is present in the second region 70C. The second region 70C having a hardness lower than that of the first region 70B is formed by causing the recess 73A to exist in the second region 70C and embedding the second hard coat layer 74 in the recess 73A as will be described later. Can do.
 第1の領域70Bにおいては、第1のハードコート層73の厚膜部73Cの膜厚は、一定となっていることが好ましい。第1の領域70Bにおける第1のハードコート層73の厚膜部73Cの膜厚は、2μm以上20μm以下であることが好ましい。第1の領域における第1のハードコート層の厚膜部の膜厚が、2μm未満であると、ハードコート層の硬度が低下するおそれがあり、また20μmを超えると、厚みが厚すぎることに起因して加工性が悪化するおそれがある。第1のハードコート層73の厚膜部73Cの膜厚は、第1のハードコート層13の膜厚と同様の方法によって測定するものとする。 In the first region 70B, the thickness of the thick film portion 73C of the first hard coat layer 73 is preferably constant. The film thickness of the thick film portion 73C of the first hard coat layer 73 in the first region 70B is preferably 2 μm or more and 20 μm or less. If the thickness of the thick film portion of the first hard coat layer in the first region is less than 2 μm, the hardness of the hard coat layer may decrease, and if it exceeds 20 μm, the thickness is too thick. As a result, workability may be deteriorated. The film thickness of the thick film portion 73 </ b> C of the first hard coat layer 73 is measured by the same method as the film thickness of the first hard coat layer 13.
 第2の領域70C内においては、図11に示されるように、凹部73Aが存在することによって第2の領域70C内における第1のハードコート層73の膜厚(薄膜部73Bの膜厚)が第1の領域70Bにおける第1のハードコート層73の膜厚の50%以下となる領域70Dが存在している。この領域70Dの幅は0.5mm以上であることが好ましい。領域70Dの幅を1mm以上とすることによって、第1のハードコート層73間に埋め込まれる第2のハードコート層74が多くなるので、より耐久折り畳み性能を向上させることができる。領域70Dの幅の下限は、1mm以上であることがより好ましく、上限は45mm以下であることがより好ましい。 In the second region 70C, as shown in FIG. 11, the thickness of the first hard coat layer 73 (thickness of the thin film portion 73B) in the second region 70C is due to the presence of the recess 73A. There is a region 70D that is 50% or less of the film thickness of the first hard coat layer 73 in the first region 70B. The width of the region 70D is preferably 0.5 mm or more. By setting the width of the region 70D to 1 mm or more, the second hard coat layer 74 embedded between the first hard coat layers 73 increases, so that the durable folding performance can be further improved. The lower limit of the width of the region 70D is more preferably 1 mm or more, and the upper limit is more preferably 45 mm or less.
 第2の領域70C内においては、第1のハードコート層73の薄膜部73Bが存在しており、薄膜部73Bの膜厚は第1のハードコート層73の凹部73Aの中央部に向かうにつれて徐々に小さくなっている。このように薄膜部73Bの膜厚を徐々に小さくすることにより、第1のハードコート層73と第2のハードコート層74と界面が視認され難くなる。 In the second region 70C, the thin film portion 73B of the first hard coat layer 73 exists, and the film thickness of the thin film portion 73B gradually increases toward the central portion of the recess 73A of the first hard coat layer 73. It is getting smaller. Thus, by gradually reducing the film thickness of the thin film portion 73B, the interface between the first hard coat layer 73 and the second hard coat layer 74 becomes difficult to be visually recognized.
 第2のハードコート層74は、第1の領域70Bにおいては厚膜部73C上に設けられており、第2の領域70Cにおいては凹部73Aに埋め込まれている。第1の領域70Bにおける第2のハードコート層74の膜厚は、0.5μm以上4μm以下であることが好ましい。第1の領域における第2のハードコート層の膜厚が、0.5μm未満であると、耐擦傷性が低下するおそれがあり、また4μmを超えると、第2のハードコート層用組成物のコーティングが困難となるおそれがある。第2のハードコート層74の膜厚は、第1のハードコート層13の膜厚と同様の方法によって測定するものとする。また、第2の領域70Cにおける第2のハードコート層74の膜厚は、0.5μm以上20μm以下であることが好ましい。第2の領域における第2のハードコート層の膜厚が、0.5μm未満であると、耐擦傷性が低下するおそれがあり、また20μmを超えると、充分な屈曲性が得られないおそれがある。 The second hard coat layer 74 is provided on the thick film portion 73C in the first region 70B, and is embedded in the recess 73A in the second region 70C. The film thickness of the second hard coat layer 74 in the first region 70B is preferably not less than 0.5 μm and not more than 4 μm. If the film thickness of the second hard coat layer in the first region is less than 0.5 μm, the scratch resistance may be reduced. If the film thickness exceeds 4 μm, the second hard coat layer composition Coating may be difficult. The film thickness of the second hard coat layer 74 is measured by the same method as the film thickness of the first hard coat layer 13. The film thickness of the second hard coat layer 74 in the second region 70C is preferably 0.5 μm or more and 20 μm or less. If the film thickness of the second hard coat layer in the second region is less than 0.5 μm, the scratch resistance may be reduced, and if it exceeds 20 μm, sufficient flexibility may not be obtained. is there.
<他の光学フィルム>
 図10に示される光学フィルム70は、第2の領域70Cにおける第2のハードコート層74の表面74Aが窪んでいるが、タッチパネルを備える画像表示装置の最表面として光学フィルムを用いる場合には、光学フィルム30と同様に、第2の領域は、第2のハードコート層の表面が平坦であることが好ましい。第2のハードコート層の表面を平坦とすることにより、表面を指で触れたときの感触が良好である。
<Other optical films>
In the optical film 70 shown in FIG. 10, the surface 74A of the second hard coat layer 74 in the second region 70C is depressed, but when an optical film is used as the outermost surface of an image display device including a touch panel, Similar to the optical film 30, the second region preferably has a flat surface of the second hard coat layer. By making the surface of the second hard coat layer flat, the touch when the surface is touched with a finger is good.
 また、図10に示される光学フィルム70は、第2の領域70C内に第1のハードコート層73の一部が存在しているが、光学フィルム40のように、第2の領域内に第1のハードコート層の一部が存在していなくともよい。 Further, in the optical film 70 shown in FIG. 10, a part of the first hard coat layer 73 exists in the second region 70 </ b> C, but like the optical film 40, the second film 70 </ b> C is in the second region. A part of one hard coat layer may not exist.
<<<光学フィルムの製造方法>>>
 光学フィルム70は、例えば、以下のようにして作製することができる。まず、図12(A)に示されるように、光透過性樹脂基材71の一方の面71A上に、凹部75Aを有する第1のハードコート層用組成物の塗膜75を形成する。ここで、凹部75Aを有する塗膜75は、第1の実施形態で説明した方法と同様の方法によって形成できる。具体的には、第1の実施形態で述べたようにマスク除去時にマスクが存在していた領域に第1のハードコート層用組成物が流れ込むので、マクスの幅を第1の実施形態よりも狭くすることで、マスク除去時に流れ込む第1のハードコート層用組成物によって各塗膜同士が繋がり、凹部75Aを有する塗膜75を形成することができる。また、第1の実施形態よりも第1のハードコート層用組成物の塗布量を増やすことによっても、このような凹部75Aを有する塗膜75を形成することができる。また、グラビアコーター等の塗布装置によっても凹部75Aを有する塗膜75を形成することも可能である。第1のハードコート層用組成物は、第1の実施形態と同様であるので、ここでは説明を省略するものとする。
<<< Optical Film Manufacturing Method >>>
The optical film 70 can be manufactured as follows, for example. First, as shown in FIG. 12A, a first hard coat layer composition coating film 75 having a recess 75 </ b> A is formed on one surface 71 </ b> A of the light-transmitting resin substrate 71. Here, the coating film 75 having the recess 75A can be formed by a method similar to the method described in the first embodiment. Specifically, as described in the first embodiment, since the first hard coat layer composition flows into the region where the mask was present when the mask was removed, the width of the maximum was made larger than that in the first embodiment. By narrowing, each coating film is connected by the 1st composition for hard-coat layers which flows at the time of mask removal, and the coating film 75 which has the recessed part 75A can be formed. Moreover, the coating film 75 which has such a recessed part 75A can be formed also by increasing the application quantity of the composition for 1st hard-coat layers rather than 1st Embodiment. It is also possible to form the coating film 75 having the concave portions 75A by a coating apparatus such as a gravure coater. Since the composition for the first hard coat layer is the same as that of the first embodiment, the description thereof will be omitted here.
 第1のハードコート層用組成物の塗膜75を形成した後、図12(B)に示されるように、各種の公知の方法で塗膜75を例えば30℃以上120℃以下の温度で10秒以上12秒間加熱することにより乾燥させ、溶剤を蒸発させる。 After forming the coating film 75 of the composition for the first hard coat layer, as shown in FIG. 12B, the coating film 75 is formed at a temperature of, for example, 30 ° C. or more and 120 ° C. or less by various known methods. The solvent is evaporated by drying by heating for 12 seconds or more.
 塗膜75を乾燥させた後、図12(C)に示されるように、第1のハードコート層用組成物の塗膜75に紫外線等の電離放射線を照射して、第1のハードコート層用組成物の塗膜75を半硬化(ハーフキュア)させる。なお、この段階で、第1のハードコート層用組成物の塗膜75を完全硬化(フルキュア)させてもよい。 After the coating film 75 is dried, as shown in FIG. 12C, the coating film 75 of the first hard coat layer composition is irradiated with ionizing radiation such as ultraviolet rays, so that the first hard coat layer The coating film 75 of the composition for use is semi-cured (half-cured). At this stage, the coating film 75 of the first hard coat layer composition may be completely cured (full cure).
 塗膜75を半硬化させた後、図13(A)に示されるように、塗膜75上に、バーコーター等の塗布装置によって、第2のハードコート層用組成物を塗布して、第2のハードコート層用組成物の塗膜76を形成する。第2のハードコート層用組成物は、第1の実施形態と同様であるので、ここでは説明を省略するものとする。 After the coating film 75 is semi-cured, as shown in FIG. 13A, the second hard coat layer composition is applied onto the coating film 75 by a coating device such as a bar coater. A coating film 76 of the composition for hard coat layer 2 is formed. Since the 2nd composition for hard-coat layers is the same as that of 1st Embodiment, description shall be abbreviate | omitted here.
 第2のハードコート層用組成物の塗膜76を形成した後、図13(B)に示されるように、各種の公知の方法で塗膜76を例えば30℃以上120℃以下の温度で10秒以上12秒間加熱することにより乾燥させ、溶剤を蒸発させる。 After forming the coating film 76 of the second hard coat layer composition, as shown in FIG. 13B, the coating film 76 is formed at a temperature of 30 ° C. or more and 120 ° C. or less by various known methods. The solvent is evaporated by drying by heating for 12 seconds or more.
 塗膜76を乾燥させた後、図13(C)に示されるように、第2のハードコート層用組成物の塗膜76に紫外線等の電離放射線を照射して、第1のハードコート層用組成物の塗膜75および第2のハードコート層用組成物の塗膜76を完全硬化(フルキュア)させて、第1のハードコート層73および第2のハードコート層74を形成する。 After the coating film 76 is dried, as shown in FIG. 13C, the coating film 76 of the second hard coat layer composition is irradiated with ionizing radiation such as ultraviolet rays, so that the first hard coat layer The first hard coat layer 73 and the second hard coat layer 74 are formed by completely curing (full cure) the coating film 75 of the composition for use and the coating film 76 of the composition for the second hard coat layer.
 本実施形態によれば、光学フィルム70の表面70Aにおける硬度が第1の領域70Bよりも第2の領域70Cが低くなっているので、第1の領域70Bでは優れた硬度を得ることができ、また第2の領域70Cで光学フィルム70を折り畳んだ場合には優れた耐久折り畳み性を得ることができる。これにより、優れた硬度および優れた耐久折り畳み性を有する光学フィルム70を得ることができる。 According to this embodiment, since the hardness in the surface 70A of the optical film 70 is lower in the second region 70C than in the first region 70B, excellent hardness can be obtained in the first region 70B. Further, when the optical film 70 is folded in the second region 70C, excellent durability foldability can be obtained. Thereby, the optical film 70 which has the outstanding hardness and the outstanding durable foldability can be obtained.
 本実施形態によれば、第1の領域70Bには第1のハードコート層73が存在しているので、優れた硬度を得ることができる。また、第2の領域70Cには第1のハードコート層73間の凹部73Aが存在し、かつこの凹部73Aに硬度が第1のハードコート層73よりも低い第2のハードコート層74が埋め込まれているので、第2の領域70Cで光学フィルム70を折り畳んだ場合には、優れた耐久折り畳み性を得ることができる。これにより、優れた硬度および優れた耐久折り畳み性を有する光学フィルム70を得ることができる。 According to the present embodiment, since the first hard coat layer 73 is present in the first region 70B, excellent hardness can be obtained. In addition, a recess 73A between the first hard coat layers 73 exists in the second region 70C, and a second hard coat layer 74 having a hardness lower than that of the first hard coat layer 73 is embedded in the recess 73A. Therefore, when the optical film 70 is folded in the second region 70C, an excellent durability foldability can be obtained. Thereby, the optical film 70 which has the outstanding hardness and the outstanding durable foldability can be obtained.
 光学フィルム30、40、70は、第1の実施形態に示した偏光板50、画像表示装置60と同様の構造の偏光板、画像表示装置に組み込んで用いることができる。 The optical films 30, 40, and 70 can be used by being incorporated in the polarizing plate and the image display device having the same structure as the polarizing plate 50 and the image display device 60 described in the first embodiment.
 本発明を詳細に説明するために、以下に実施例を挙げて説明するが、本発明はこれらの記載に限定されない。なお、下記の「固形分100%換算値」とは、溶剤希釈品中の固形分を100%としたときの値である。 In order to describe the present invention in detail, examples will be described below, but the present invention is not limited to these descriptions. In addition, the following “100% solid content conversion value” is a value when the solid content in the solvent diluted product is 100%.
<第1のハードコート層用組成物の調製>
 まず、下記に示す組成となるように各成分を配合して、第1のハードコート層用組成物を得た。
<Preparation of composition for first hard coat layer>
First, each component was mix | blended so that it might become a composition shown below, and the 1st composition for hard-coat layers was obtained.
(第1のハードコート層用組成物)
・ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(製品名「M403」、東亜合成社製):25質量部
・ジペンタエリスリトールEO変性ヘキサアクリレート(製品名「A-DPH-6E」、新中村化学社製):25質量部
・異形シリカ粒子(平均粒子径25nm、日揮触媒化成社製):50質量部(固形分100%換算値)
・光重合開始剤(1-ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):4質量部
・フッ素系レベリング剤(製品名「F568」、DIC社製):0.2質量部(固形分100%換算値)
・メチルイソブチルケトン:150質量部
(First hard coat layer composition)
-Mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (product name "M403", manufactured by Toa Gosei Co., Ltd.): 25 parts by mass-Dipentaerythritol EO-modified hexaacrylate (product name "A-DPH-6E", new Nakamura Chemical Co., Ltd.): 25 parts by mass, deformed silica particles (average particle size 25 nm, manufactured by JGC Catalysts & Chemicals Co., Ltd.): 50 parts by mass (converted to 100% solid content)
Photopolymerization initiator (1-hydroxycyclohexyl phenyl ketone, product name “Irgacure (registered trademark) 184”, manufactured by BASF Japan): 4 parts by mass Fluorine leveling agent (product name “F568”, manufactured by DIC): 0.2 parts by mass (converted to 100% solid content)
・ Methyl isobutyl ketone: 150 parts by mass
(第2のハードコート層用組成物)
・ウレタンアクリレート(製品名「UX5000」、日本化薬社製):25質量部
・ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(製品名「M403」、東亜合成社製):50質量部
・多官能アクリレートポリマー(製品名「アクリット8KX-012C」、大成ファインケミカル社製):25質量部(固形分100%換算値)
・防汚剤(製品名「BYKUV3500」、ビックケミー社製):1.5質量部(固形分100%換算値)
・光重合開始剤(1-ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):4質量部
・メチルイソブチルケトン:150質量部
(Second hard coat layer composition)
-Urethane acrylate (product name "UX5000", Nippon Kayaku Co., Ltd.): 25 parts by mass-Mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (product name "M403", manufactured by Toa Gosei Co., Ltd.): 50 parts by mass・ Polyfunctional acrylate polymer (Product name “Acryt 8KX-012C”, manufactured by Taisei Fine Chemical Co., Ltd.): 25 parts by mass (converted to 100% solid content)
Antifouling agent (product name “BYKUV3500”, manufactured by Big Chemie): 1.5 parts by mass (converted to 100% solid content)
Photopolymerization initiator (1-hydroxycyclohexyl phenyl ketone, product name “Irgacure (registered trademark) 184” manufactured by BASF Japan Ltd.): 4 parts by mass Methyl isobutyl ketone: 150 parts by mass
<実施例1>
 光透過性樹脂基材として、厚さ30μmおよび幅300mmの上記式(1)で表されるポリイミド樹脂からなるポリイミド基材を準備し、ポリイミド基材の一方の面に、ポリイミド基材の幅方向に沿って幅10mm、長さ300mmおよび厚さ0.06mmの複数の矩形状マスクを10cm間隔で複数配置し、その状態で、バーコーターで上記第1のハードコート層用組成物を塗布し、塗膜を形成した。塗膜を形成した後、マスクを除去した。その後、形成した塗膜に対して、70℃、1分間加熱させることにより塗膜中の溶剤を蒸発させ、紫外線照射装置(フュージョンUVシステムジャパン社製、光源Hバルブ)を用いて、紫外線を空気中にて積算光量が100mJ/cmになるように照射して塗膜を半硬化させた。
<Example 1>
A polyimide substrate made of a polyimide resin represented by the above formula (1) having a thickness of 30 μm and a width of 300 mm is prepared as a light-transmitting resin substrate, and the width direction of the polyimide substrate is formed on one surface of the polyimide substrate. A plurality of rectangular masks having a width of 10 mm, a length of 300 mm and a thickness of 0.06 mm are arranged at intervals of 10 cm, and in that state, the first hard coat layer composition is applied with a bar coater, A coating film was formed. After forming the coating film, the mask was removed. Then, the solvent in the coating film is evaporated by heating the formed coating film at 70 ° C. for 1 minute, and ultraviolet rays are removed from the air using an ultraviolet irradiation device (Fusion UV System Japan, light source H bulb). The coating film was semi-cured by irradiation so that the integrated light amount was 100 mJ / cm 2 .
 次いで、半硬化した塗膜上に、バーコーターで上記第2のハードコート層用組成物を塗布し、塗膜を形成した。次いで、形成した塗膜に対して、70℃1分間加熱させることにより塗膜中の溶剤を蒸発させ、紫外線照射装置(フュージョンUVシステムジャパン社製、光源Hバルブ)を用いて、紫外線を酸素濃度が200ppm以下の条件下にて積算光量が200mJ/cmになるように照射して塗膜を完全硬化させることにより、膜厚7μmの複数の第1のハードコート層と、第1のハードコート層上に膜厚2μmの第2のハードコート層とからなるハードコート層を形成した。これにより、ポリイミド基材、第1のハードコート層および第2のハードコート層がこの順で配置された第1の領域と、第1のハードコート層間の隙間に第2のハードコート層が埋め込まれ、ハードコート層の表面の硬度が第1の領域より低い第2の領域とを有する光学フィルムを得た。なお、第1のハードコート層間の隙間の幅は最も狭いポリイミド基材との界面付近で5mmであり、最も広い第2のハードコート層側の箇所で12mmであり、第1のハードコート層間の隙間には第2のハードコート層が埋め込まれていた。また、隙間を含む第2の領域において、第1のハードコート層の膜厚が第1の領域における第1のハードコート層の膜厚の50%以下となる領域の幅は8mmであった。 Next, the second hard coat layer composition was applied onto the semi-cured coating film with a bar coater to form a coating film. Next, the solvent in the coating film is evaporated by heating the formed coating film at 70 ° C. for 1 minute, and ultraviolet rays are converted into oxygen concentration by using an ultraviolet irradiation device (light source H bulb manufactured by Fusion UV System Japan). Is irradiated with an integrated light amount of 200 mJ / cm 2 under a condition of 200 ppm or less to completely cure the coating film, thereby providing a plurality of first hard coat layers having a film thickness of 7 μm and a first hard coat A hard coat layer comprising a second hard coat layer having a thickness of 2 μm was formed on the layer. Thereby, the second hard coat layer is embedded in the gap between the first region where the polyimide base material, the first hard coat layer, and the second hard coat layer are arranged in this order, and the first hard coat layer. Thus, an optical film having a second region in which the hardness of the surface of the hard coat layer is lower than the first region was obtained. The width of the gap between the first hard coat layers is 5 mm near the interface with the narrowest polyimide substrate, 12 mm at the widest second hard coat layer side, and between the first hard coat layers. The second hard coat layer was embedded in the gap. In the second region including the gap, the width of the region where the thickness of the first hard coat layer is 50% or less of the thickness of the first hard coat layer in the first region was 8 mm.
<実施例2>
 実施例2においては、第1のハードコート層の膜厚を7μmから20μmに代えたこと以外は、実施例1と同様にして、光学フィルムを作製した。なお、実施例2に係る光学フィルムにおいても、第1のハードコート層間に隙間が存在し、この隙間に第2のハードコート層が埋め込まれていた。また、隙間を含む第2の領域において、第1のハードコート層の膜厚が第1の領域における第1のハードコート層の膜厚の50%以下となる領域の幅は7mmであった。
<Example 2>
In Example 2, an optical film was produced in the same manner as in Example 1 except that the film thickness of the first hard coat layer was changed from 7 μm to 20 μm. In the optical film according to Example 2, there was a gap between the first hard coat layers, and the second hard coat layer was embedded in the gap. In the second region including the gap, the width of the region where the thickness of the first hard coat layer is 50% or less of the thickness of the first hard coat layer in the first region was 7 mm.
<実施例3>
 実施例3においては、第1のハードコート層の膜厚を7μmから20μmに代え、また第2のハードコート層の膜厚を2μmから4μmに代えたこと以外は、実施例1と同様にして、光学フィルムを作製した。なお、実施例3に係る光学フィルムにおいても、第1のハードコート層間に隙間が存在し、この隙間に第2のハードコート層が埋め込まれていた。また隙間を含む第2の領域において、第1のハードコート層の膜厚が第1の領域における第1のハードコート層の膜厚の50%以下となる領域の幅は7mmであった。
<Example 3>
In Example 3, the thickness of the first hard coat layer was changed from 7 μm to 20 μm, and the thickness of the second hard coat layer was changed from 2 μm to 4 μm. An optical film was prepared. In the optical film according to Example 3, a gap was present between the first hard coat layers, and the second hard coat layer was embedded in the gap. In the second region including the gap, the width of the region where the film thickness of the first hard coat layer is 50% or less of the film thickness of the first hard coat layer in the first region was 7 mm.
<実施例4>
 実施例4においては、第2のハードコート層の膜厚を2μmから0.5μmに代えたこと以外は、実施例1と同様にして、光学フィルムを作製した。
<Example 4>
In Example 4, an optical film was produced in the same manner as in Example 1 except that the film thickness of the second hard coat layer was changed from 2 μm to 0.5 μm.
<実施例5>
 実施例5においては、幅10mm、長さ300mmおよび厚さ0.06mmのマスクの代わりに幅8mm、長さ300mmおよび厚さ0.06mmのマスクを用いたこと以外は、実施例1と同様にして、光学フィルムを作製した。なお、実施例5に係る光学フィルムにおいても、第1のハードコート層間に隙間が存在し、この隙間に第2のハードコート層が埋め込まれていた。また、隙間を含む第2の領域において、第1のハードコート層の膜厚が第1の領域における第1のハードコート層の膜厚の50%以下となる領域の幅は6mmであった。
<Example 5>
Example 5 was the same as Example 1 except that a mask having a width of 8 mm, a length of 300 mm and a thickness of 0.06 mm was used instead of a mask having a width of 10 mm, a length of 300 mm and a thickness of 0.06 mm. Thus, an optical film was produced. In the optical film according to Example 5, there was a gap between the first hard coat layers, and the second hard coat layer was embedded in the gap. In the second region including the gap, the width of the region where the thickness of the first hard coat layer is 50% or less of the thickness of the first hard coat layer in the first region was 6 mm.
<実施例6>
 実施例6においては、幅10mm、長さ300mmおよび厚さ0.06mmのマスクの代わりに幅5mm、長さ300mmおよび厚さ0.06mmのマスクを用いたこと以外は、実施例1と同様にして、光学フィルムを作製した。なお、実施例6に係る光学フィルムにおいても、第1のハードコート層間に隙間が存在し、この隙間に第2のハードコート層が埋め込まれていた。また、隙間を含む第2の領域において、第1のハードコート層の膜厚が第1の領域における第1のハードコート層の膜厚の50%以下となる領域の幅は3mmであった。
<Example 6>
In Example 6, a mask having a width of 5 mm, a length of 300 mm, and a thickness of 0.06 mm was used instead of a mask having a width of 10 mm, a length of 300 mm, and a thickness of 0.06 mm. Thus, an optical film was produced. In the optical film according to Example 6, there was a gap between the first hard coat layers, and the second hard coat layer was embedded in the gap. Further, in the second region including the gap, the width of the region where the thickness of the first hard coat layer is 50% or less of the thickness of the first hard coat layer in the first region was 3 mm.
<実施例7>
 実施例7においては、第1のハードコート層の膜厚を7μmから2μmに代え、また第2のハードコート層の膜厚を2μmから0.5μmに代えたこと以外は、実施例1と同様にして、光学フィルムを作製した。なお、実施例7に係る光学フィルムにおいても、第1のハードコート層間に隙間が存在し、この隙間に第2のハードコート層が埋め込まれていた。また、隙間を含む第2の領域において、第1のハードコート層の膜厚が第1の領域における第1のハードコート層の膜厚の50%以下となる領域の幅は9mmであった。
<Example 7>
In Example 7, the film thickness of the first hard coat layer was changed from 7 μm to 2 μm, and the film thickness of the second hard coat layer was changed from 2 μm to 0.5 μm. Thus, an optical film was produced. In the optical film according to Example 7, there was a gap between the first hard coat layers, and the second hard coat layer was embedded in the gap. In the second region including the gap, the width of the region in which the film thickness of the first hard coat layer is 50% or less of the film thickness of the first hard coat layer in the first region was 9 mm.
<実施例8>
 実施例8においては、ポリイミド基材の代わりに厚さ30μmおよび幅300mmのポリエチレンテレフタレート基材を用いたことを以外は、実施例1と同様にして、光学フィルムを作製した。
<Example 8>
In Example 8, an optical film was produced in the same manner as in Example 1 except that a polyethylene terephthalate substrate having a thickness of 30 μm and a width of 300 mm was used instead of the polyimide substrate.
<実施例9>
 実施例9においては、ポリイミド基材の代わりに厚さ30μmおよび幅300mmのトリアセチルセルロース基材を用いたことを以外は、実施例1と同様にして、光学フィルムを作製した。
<Example 9>
In Example 9, an optical film was produced in the same manner as in Example 1 except that a triacetylcellulose substrate having a thickness of 30 μm and a width of 300 mm was used instead of the polyimide substrate.
<実施例10>
 光透過性樹脂基材として、厚さ30μmおよび幅300mmの上記式(1)で表されるポリイミド樹脂からなるポリイミド基材を準備し、ポリイミド基材の一方の面に、ポリイミド基材の幅方向に沿って幅2mm、長さ300mmおよび厚さ0.06mmの複数の矩形状マスクを10cm間隔で複数配置し、その状態で、バーコーターで上記第1のハードコート層用組成物を塗布し、塗膜を形成した。塗膜を形成した後、マスクを除去した。その後、形成した塗膜に対して、70℃、1分間加熱させることにより塗膜中の溶剤を蒸発させ、紫外線照射装置(フュージョンUVシステムジャパン社製、光源Hバルブ)を用いて、紫外線を空気中にて積算光量が100mJ/cmになるように照射して塗膜を半硬化させた。
<Example 10>
A polyimide substrate made of a polyimide resin represented by the above formula (1) having a thickness of 30 μm and a width of 300 mm is prepared as a light-transmitting resin substrate, and the width direction of the polyimide substrate is formed on one surface of the polyimide substrate. A plurality of rectangular masks having a width of 2 mm, a length of 300 mm, and a thickness of 0.06 mm are arranged at intervals of 10 cm along the above, and in this state, the first hard coat layer composition is applied with a bar coater, A coating film was formed. After forming the coating film, the mask was removed. Then, the solvent in the coating film is evaporated by heating the formed coating film at 70 ° C. for 1 minute, and ultraviolet rays are removed from the air using an ultraviolet irradiation device (Fusion UV System Japan, light source H bulb). The coating film was semi-cured by irradiation so that the integrated light amount was 100 mJ / cm 2 .
 次いで、半硬化した塗膜上に、バーコーターで上記第2のハードコート層用組成物を塗布し、塗膜を形成した。次いで、形成した塗膜に対して、70℃1分間加熱させることにより塗膜中の溶剤を蒸発させ、紫外線照射装置(フュージョンUVシステムジャパン社製、光源Hバルブ)を用いて、紫外線を酸素濃度が200ppm以下の条件下にて積算光量が200mJ/cmになるように照射して塗膜を完全硬化させることにより、凹部を有し、かつ厚膜部の膜厚が7μmの第1のハードコート層と、第1のハードコート層上に膜厚2μmの第2のハードコート層とからなるハードコート層を形成した。これにより、ポリイミド基材、第1のハードコート層の厚膜部および第2のハードコート層がこの順で配置された第1の領域と、第1のハードコート層の凹部に第2のハードコート層が埋め込まれ、ハードコート層の表面の硬度が第1の領域より低い第2の領域とを有する光学フィルムを得た。なお、第1のハードコート層間の凹部の入口の幅は3mmであり、第1のハードコート層の薄膜部(第1のハードコート層の凹部の底面直下の部分)のうち最も薄い部分の膜厚は1μmであった。また、凹部を含む第2の領域において、第1のハードコート層の膜厚が第1の領域における第1のハードコート層の膜厚の50%以下となる領域の幅は1mmであった。 Next, the second hard coat layer composition was applied onto the semi-cured coating film with a bar coater to form a coating film. Next, the solvent in the coating film is evaporated by heating the formed coating film at 70 ° C. for 1 minute, and ultraviolet rays are converted into oxygen concentration by using an ultraviolet irradiation device (light source H bulb manufactured by Fusion UV System Japan). Is irradiated with a cumulative light quantity of 200 mJ / cm 2 under a condition of 200 ppm or less to completely cure the coating, thereby providing a first hard part having a recess and a thick film part having a thickness of 7 μm. A hard coat layer comprising a coat layer and a second hard coat layer having a thickness of 2 μm was formed on the first hard coat layer. As a result, the polyimide substrate, the first hard coat layer thick film portion, and the second hard coat layer are disposed in this order in the first region, and the second hard coat layer is recessed in the first hard coat layer. An optical film having a second region in which the coat layer was embedded and the hardness of the surface of the hard coat layer was lower than the first region was obtained. The entrance width of the recess between the first hard coat layers is 3 mm, and the thinnest part of the thin film portion of the first hard coat layer (the portion immediately below the bottom surface of the recess of the first hard coat layer) The thickness was 1 μm. In the second region including the recess, the width of the region in which the thickness of the first hard coat layer is 50% or less of the thickness of the first hard coat layer in the first region was 1 mm.
<比較例1>
 光透過性樹脂基材として、厚さ30μmおよび幅300mmの上記式(1)で表されるポリイミド樹脂からなるポリイミド基材を準備し、ポリイミド基材の一方の面に、バーコーターで上記第1のハードコート層用組成物を塗布し、塗膜を形成した。その後、形成した塗膜に対して、70℃、1分間加熱させることにより塗膜中の溶剤を蒸発させ、紫外線照射装置(フュージョンUVシステムジャパン社製、光源Hバルブ)を用いて、紫外線を空気中にて積算光量が100mJ/cmになるように照射して塗膜を半硬化させた。
<Comparative Example 1>
A polyimide substrate made of a polyimide resin represented by the above formula (1) having a thickness of 30 μm and a width of 300 mm is prepared as a light-transmitting resin substrate. The hard coat layer composition was applied to form a coating film. Thereafter, the formed coating film is heated at 70 ° C. for 1 minute to evaporate the solvent in the coating film. The coating film was semi-cured by irradiation so that the integrated light amount was 100 mJ / cm 2 .
 次いで、半硬化した塗膜上に、バーコーターで上記第2のハードコート層用組成物を塗布し、塗膜を形成した。次いで、形成した塗膜に対して、70℃1分間加熱させることにより塗膜中の溶剤を蒸発させ、紫外線照射装置(フュージョンUVシステムジャパン社製、光源Hバルブ)を用いて、紫外線を酸素濃度が200ppm以下の条件下にて積算光量が200mJ/cmになるように照射して塗膜を完全硬化させた。これにより、ポリイミド基材上に膜厚7μmの均一な第1のハードコート層と、第1のハードコート層上に膜厚2μmの均一な第2のハードコート層を有する光学フィルムを得た。 Next, the second hard coat layer composition was applied onto the semi-cured coating film with a bar coater to form a coating film. Next, the solvent in the coating film is evaporated by heating the formed coating film at 70 ° C. for 1 minute, and ultraviolet rays are converted into oxygen concentration by using an ultraviolet irradiation device (light source H bulb manufactured by Fusion UV System Japan). The film was completely cured by irradiation so that the integrated light amount was 200 mJ / cm 2 under the condition of 200 ppm or less. As a result, an optical film having a uniform first hard coat layer having a thickness of 7 μm on the polyimide substrate and a uniform second hard coat layer having a thickness of 2 μm on the first hard coat layer was obtained.
<比較例2>
 光透過性樹脂基材として、厚さ30μmおよび幅300mmの上記式(1)で表されるポリイミド樹脂からなるポリイミド基材を準備し、ポリイミド基材の一方の面に、バーコーターで上記第1のハードコート層用組成物を塗布し、塗膜を形成した。その後、形成した塗膜に対して、70℃、1分間加熱させることにより塗膜中の溶剤を蒸発させ、紫外線照射装置(フュージョンUVシステムジャパン社製、光源Hバルブ)を用いて、紫外線を酸素濃度が200ppm以下の条件下にて積算光量が200mJ/cmになるように照射して塗膜を硬化させた。これにより、ポリイミド基材上に膜厚7μmの均一な第1のハードコート層のみを有する光学フィルムを得た。
<Comparative Example 2>
A polyimide substrate made of a polyimide resin represented by the above formula (1) having a thickness of 30 μm and a width of 300 mm is prepared as a light-transmitting resin substrate. The hard coat layer composition was applied to form a coating film. Then, the solvent in the coating film is evaporated by heating the formed coating film at 70 ° C. for 1 minute, and ultraviolet rays are converted into oxygen by using an ultraviolet irradiation device (light source H bulb manufactured by Fusion UV System Japan). The coating film was cured by irradiation so that the integrated light amount was 200 mJ / cm 2 under the condition where the concentration was 200 ppm or less. Thereby, the optical film which has only a uniform 1st hard-coat layer with a film thickness of 7 micrometers on the polyimide base material was obtained.
<比較例3>
 光透過性樹脂基材として、厚さ30μmおよび幅300mmの上記式(1)で表されるポリイミド樹脂からなるポリイミド基材を準備し、ポリイミド基材の一方の面に、バーコーターで上記第2のハードコート層用組成物を塗布し、塗膜を形成した。その後、形成した塗膜に対して、70℃、1分間加熱させることにより塗膜中の溶剤を蒸発させ、紫外線照射装置(フュージョンUVシステムジャパン社製、光源Hバルブ)を用いて、紫外線を酸素濃度が200ppm以下の条件下にて積算光量が200mJ/cmになるように照射して塗膜を硬化させた。これにより、ポリイミド基材上に膜厚2μmの均一な第2のハードコート層のみを有する光学フィルムを得た。
<Comparative Example 3>
A polyimide substrate made of a polyimide resin represented by the above formula (1) having a thickness of 30 μm and a width of 300 mm is prepared as a light-transmitting resin substrate, and the second substrate is coated with a bar coater on one surface of the polyimide substrate. The hard coat layer composition was applied to form a coating film. Then, the solvent in the coating film is evaporated by heating the formed coating film at 70 ° C. for 1 minute, and ultraviolet rays are converted into oxygen by using an ultraviolet irradiation device (light source H bulb manufactured by Fusion UV System Japan). The coating film was cured by irradiation so that the integrated light amount was 200 mJ / cm 2 under the condition where the concentration was 200 ppm or less. Thereby, the optical film which has only a uniform 2nd hard-coat layer with a film thickness of 2 micrometers on the polyimide base material was obtained.
<鉛筆硬度>
 実施例に係る光学フィルムの表面の第1の領域および第2の領域の鉛筆硬度を、JIS K5600-5-4:1999で規定される鉛筆硬度試験(荷重:750g、ひっかき速度1mm/秒)に基づいてそれぞれ測定した。また、比較例に係る光学フィルムの表面の鉛筆硬度を、JIS K5600-5-4:1999で規定される鉛筆硬度試験(荷重:750g、ひっかき速度1mm/秒)に基づいて測定した。なお、比較例に係る光学フィルムは、第1のハードコート層や第2のハードコート層が均一に形成されているので、光学フィルムの表面において硬度が変わる領域はなかった。このため、表1においては、比較例に係る光学フィルムの表面の硬度は第1の領域の欄のみに記載した。鉛筆硬度は、鉛筆硬度試験において光学フィルムの表面に傷が付かなかった最も高い硬度とする。なお、鉛筆硬度の測定の際には、硬度が異なる鉛筆を複数本用いて行うが、鉛筆1本につき5回鉛筆硬度試験を行い、5回のうち4回以上蛍光灯下で光学フィルムの表面を透過観察した際に光学フィルムの表面に傷が視認されなかった場合には、この硬度の鉛筆においては光学フィルムの表面に傷が付かなかったと判断する。
<Pencil hardness>
The pencil hardness of the first region and the second region on the surface of the optical film according to the example is determined by a pencil hardness test (load: 750 g, scratching speed: 1 mm / second) defined in JIS K5600-5-4: 1999. Based on each measurement. Further, the pencil hardness of the surface of the optical film according to the comparative example was measured based on a pencil hardness test (load: 750 g, scratching speed: 1 mm / second) defined by JIS K5600-5-4: 1999. In the optical film according to the comparative example, since the first hard coat layer and the second hard coat layer were uniformly formed, there was no region where the hardness changed on the surface of the optical film. For this reason, in Table 1, the surface hardness of the optical film according to the comparative example is described only in the column of the first region. The pencil hardness is the highest hardness at which the surface of the optical film was not damaged in the pencil hardness test. The pencil hardness is measured using a plurality of pencils having different hardnesses. The pencil hardness test is performed five times for each pencil, and the surface of the optical film is measured under a fluorescent lamp four times or more out of five times. In the case where no scratch is visually recognized on the surface of the optical film during the transmission observation, it is determined that the surface of the optical film is not scratched with the pencil having this hardness.
<マルテンス硬度>
 実施例および比較例に係る光学フィルムの第1のハードコート層および/または第2のハードコート層のマルテンス硬度をそれぞれ測定した。マルテンス硬度は、HYSITRON(ハイジトロン)社製の「TI950 TriboIndenter」を用いて、測定した。具体的には、圧子としてBerkovich圧子(三角錐)を用いて、以下の測定条件で、各ハードコート層の側面から500nm押し込み、一定時間保持して残留応力の緩和を行った後、除荷し、緩和後の最大荷重を計測し、該最大荷重Pmax(μN)と深さ500nmのくぼみ面積A(nm)とを用い、Pmax/Aにより、マルテンス硬度を算出した。マルテンス硬度は、10箇所測定して得られた値の算術平均値とした。
(測定条件)
・荷重速度:10nm/秒
・保持時間:5秒
・荷重除荷速度:10nm/秒
・測定温度:25℃
<Martens hardness>
The Martens hardness of the first hard coat layer and / or the second hard coat layer of the optical films according to Examples and Comparative Examples was measured. Martens hardness was measured using “TI950 TriboIndenter” manufactured by HYSITRON. Specifically, using a Berkovich indenter (triangular pyramid) as an indenter, pushing in from the side surface of each hard coat layer by 500 nm under the following measurement conditions, holding for a certain period of time to relieve the residual stress, then unloading Then, the maximum load after relaxation was measured, and the Martens hardness was calculated from P max / A using the maximum load P max (μN) and the indentation area A (nm 2 ) having a depth of 500 nm. The Martens hardness was an arithmetic average value of values obtained by measuring 10 locations.
(Measurement condition)
・ Loading speed: 10 nm / second ・ Retention time: 5 seconds ・ Load unloading speed: 10 nm / second ・ Measurement temperature: 25 ° C.
<耐久折り畳み試験>
 実施例及び比較例に係る光学フィルムを30mm×100mmの矩形状にカットして作製したサンプルを、耐久性試験機(製品名「DLDMLH-FS、ユアサシステム機器社製)の固定端および移動端に取り付け、移動端を移動させて、サンプルのハードコート層を形成した側の面が内側となり、かつサンプルの曲げ半径が1.5mm(直径3.0mm)となるようにサンプルを180°に折り畳む試験を10万回行った。なお、実施例に係るサンプルにおいては、第2の領域で折り畳むものとした。
<Durable folding test>
Samples prepared by cutting optical films according to Examples and Comparative Examples into a rectangular shape of 30 mm × 100 mm were placed on the fixed end and moving end of a durability tester (product name “DLDMMLH-FS, manufactured by Yuasa System Equipment Co., Ltd.”). A test in which the sample is folded at 180 ° by moving the mounting and moving ends so that the surface on which the hard coat layer of the sample is formed is inward and the bending radius of the sample is 1.5 mm (diameter: 3.0 mm) The sample according to the example was folded in the second region.
 その後、新たなサンプルに入れ替え、同様に該サンプルのハードコート層を形成した側の面が外側となり、かつサンプルの曲げ半径が1.5mm(直径3.0mm)となるようにサンプルを180°折り畳む試験を10万回行い、以下の基準にて評価した。なお、この場合も、実施例に係るサンプルにおいては、第2の領域で折り畳むものとした。
○:上記試験をサンプルの両面に対して行った場合であっても、サンプルに割れおよび破断が生じていなかった。
×:上記試験をサンプルの両面に対して行った場合、サンプルに割れもしくは破断が生じた。
Thereafter, the sample is replaced with a new sample, and similarly, the sample is folded by 180 ° so that the surface on which the hard coat layer is formed is the outside and the bending radius of the sample is 1.5 mm (diameter: 3.0 mm). The test was conducted 100,000 times and evaluated according to the following criteria. Also in this case, the sample according to the example is folded in the second region.
◯: Even when the above test was performed on both sides of the sample, the sample was not cracked or broken.
X: When the above test was performed on both sides of the sample, the sample was cracked or broken.
<耐スチールウール(SW)性>
 実施例及び比較例に係る光学フィルムのハードコート層の表面(第2のハードコート層が存在する場合には第2のハードコート層の表面、第2のハードコート層が存在しない場合には第1のハードコート層の表面)を、#0000番のスチールウール(製品名「BON STAR」、日本スチールウール社製)を用いて、1kg/cmの荷重をかけながら、速度50mm/秒で3500回往復摩擦し、その後のハードコート層表面に傷の有無を目視し下記の基準にて評価した。
○:傷が確認されなかった。
×:傷が確認された。
<Steel Wool (SW) resistance>
Surface of hard coat layer of optical film according to examples and comparative examples (surface of second hard coat layer when second hard coat layer is present, surface of second hard coat layer when second hard coat layer is not present The surface of 1 hard coat layer) is 3500 at a speed of 50 mm / sec while applying a load of 1 kg / cm 2 using # 0000 steel wool (product name “BON STAR”, manufactured by Nippon Steel Wool). After reciprocating friction, the surface of the subsequent hard coat layer was visually checked for the presence or absence of scratches and evaluated according to the following criteria.
○: No scratch was confirmed.
X: Scratches were confirmed.
 以下、結果を表1に示す。
Figure JPOXMLDOC01-appb-T000022
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000022
 以下、結果について述べる。比較例1および2に係る光学フィルムにおいては、鉛筆硬度は高いものの、耐久折り畳み性試験および耐SW性の結果に劣っていた。また、比較例3に係る光学フィルムにおいては、耐久折り畳み性試験および耐SW性の結果は良好であったものの、鉛筆硬度が低かった。これに対し、実施例1~10に係る光学フィルムにおいては、第1の領域での鉛筆硬度は高く、また耐久折り畳み性試験および耐SW性の結果が良好であった。 The following describes the results. In the optical films according to Comparative Examples 1 and 2, although the pencil hardness was high, the results of the durability foldability test and the SW resistance were inferior. Moreover, in the optical film which concerns on the comparative example 3, although the result of a durable foldability test and SW resistance was favorable, pencil hardness was low. On the other hand, in the optical films according to Examples 1 to 10, the pencil hardness in the first region was high, and the results of the durability foldability test and the SW resistance were good.
10、30、40、70…光学フィルム
10A、70A…表面
11、71…光透過性樹脂基材
12、72…ハードコート層
13、73…第1のハードコート層
14、74…第2のハードコート層
50…偏光板
51…偏光子
60…画像表示装置
61…表示素子
DESCRIPTION OF SYMBOLS 10, 30, 40, 70 ... Optical film 10A, 70A ... Surface 11, 71 ... Light transmissive resin base material 12, 72 ... Hard coat layer 13, 73 ... 1st hard coat layer 14, 74 ... 2nd hard Coat layer 50 ... Polarizing plate 51 ... Polarizer 60 ... Image display device 61 ... Display element

Claims (10)

  1.  光透過性樹脂基材と、前記光透過性樹脂基材の一方の面側に設けられたハードコート層とを備え、かつ折り畳み可能な光学フィルムであって、
     第1の領域と、前記第1の領域より前記光学フィルムの表面における硬度が低い第2の領域とを有することを特徴とする、光学フィルム。
    A foldable optical film comprising a light transmissive resin base material and a hard coat layer provided on one surface side of the light transmissive resin base material,
    An optical film comprising: a first region; and a second region having a lower hardness on the surface of the optical film than the first region.
  2.  前記光学フィルムを前記光学フィルムの曲げ半径が1.5mmとなるように前記第2の領域で180°折り畳む試験を10万回繰り返し行った場合に割れまたは破断が生じない、請求項1に記載の光学フィルム。 2. The crack according to claim 1, wherein the optical film is not cracked or broken when the test of folding the optical film by 180 ° in the second region so as to have a bending radius of 1.5 mm is repeated 100,000 times. Optical film.
  3.  前記ハードコート層が、隙間を介して互いに離間して配置された複数の第1のハードコート層と、硬度が前記第1のハードコート層より低い第2のハードコート層とを有し、
     前記第1の領域内においては、前記光透過性樹脂基材、前記第1のハードコート層、および前記第2のハードコート層がこの順で積層されており、
     前記第2の領域内においては、前記隙間が存在しており、かつ前記第2のハードコート層が前記隙間に埋め込まれている、請求項1に記載の光学フィルム。
    The hard coat layer has a plurality of first hard coat layers disposed apart from each other through a gap, and a second hard coat layer having a hardness lower than that of the first hard coat layer,
    In the first region, the light-transmitting resin base material, the first hard coat layer, and the second hard coat layer are laminated in this order,
    The optical film according to claim 1, wherein the gap is present in the second region, and the second hard coat layer is embedded in the gap.
  4.  前記ハードコート層が、1以上の凹部を有する第1のハードコート層と、硬度が前記第1のハードコート層より低い第2のハードコート層とを有し、
     前記第1の領域内においては、前記光透過性樹脂基材、前記第1のハードコート層、および前記第2のハードコート層がこの順で積層されており、
     前記第2の領域内においては、前記凹部が存在しており、前記凹部によって前記第1のハードコート層の膜厚が前記第1の領域における前記第1のハードコート層の膜厚の50%以下となる領域を有し、かつ前記第2のハードコート層が前記凹部に埋め込まれている、請求項1に記載の光学フィルム。
    The hard coat layer has a first hard coat layer having one or more recesses, and a second hard coat layer having a hardness lower than that of the first hard coat layer,
    In the first region, the light-transmitting resin base material, the first hard coat layer, and the second hard coat layer are laminated in this order,
    The recess is present in the second region, and the thickness of the first hard coat layer is 50% of the thickness of the first hard coat layer in the first region due to the recess. The optical film according to claim 1, wherein the optical film has a region to be described below, and the second hard coat layer is embedded in the recess.
  5.  前記第2の領域内における前記第1のハードコート層の膜厚が前記第1の領域における前記第1のハードコート層の膜厚の50%以下となる領域の幅が0.5mm以上である、請求項3または4に記載の光学フィルム。 The width of the region where the film thickness of the first hard coat layer in the second region is 50% or less of the film thickness of the first hard coat layer in the first region is 0.5 mm or more. The optical film according to claim 3 or 4.
  6.  前記第2の領域内に前記第1のハードコート層の一部が存在し、前記第2の領域内に存在する前記第1のハードコート層の一部が前記第1のハードコート層の離間位置または前記凹部の中央部に向かうにつれて前記第1のハードコート層の膜厚が徐々に小さくなっている、請求項3または4に記載の光学フィルム。 A part of the first hard coat layer exists in the second region, and a part of the first hard coat layer present in the second region is separated from the first hard coat layer. The optical film according to claim 3 or 4, wherein the film thickness of the first hard coat layer is gradually reduced toward the position or the center of the concave portion.
  7.  請求項1に記載の光学フィルムと、
     前記光学フィルムの前記光透過性基材の他方の面側に設けられた偏光子と
     を備える、折り畳み可能な偏光板。
    An optical film according to claim 1;
    A foldable polarizing plate comprising: a polarizer provided on the other surface side of the light transmissive substrate of the optical film.
  8.  表示素子と、
     前記表示素子よりも観察者側に配置された請求項1に記載の光学フィルムまたは請求項7に記載の偏光板と、
     を備える、折り畳み可能な画像表示装置。
    A display element;
    The optical film according to claim 1 or the polarizing plate according to claim 7, which is disposed closer to the viewer than the display element,
    A foldable image display device comprising:
  9.  前記表示素子が、有機発光ダイオードを備えている、請求項8に記載の画像表示装置。 The image display device according to claim 8, wherein the display element includes an organic light emitting diode.
  10.  前記表示素子が、タッチパネル機能を備えている、請求項8に記載の画像表示装置。 The image display device according to claim 8, wherein the display element has a touch panel function.
PCT/JP2016/089081 2016-01-08 2016-12-28 Optical film, polarizing plate, and image display device WO2017119391A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017560371A JP6773049B2 (en) 2016-01-08 2016-12-28 Optical film, polarizing plate and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016002954 2016-01-08
JP2016-002954 2016-01-08

Publications (1)

Publication Number Publication Date
WO2017119391A1 true WO2017119391A1 (en) 2017-07-13

Family

ID=59274391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/089081 WO2017119391A1 (en) 2016-01-08 2016-12-28 Optical film, polarizing plate, and image display device

Country Status (3)

Country Link
JP (1) JP6773049B2 (en)
TW (1) TWI726966B (en)
WO (1) WO2017119391A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6434186B1 (en) * 2018-05-08 2018-12-05 住友化学株式会社 Laminated body and method for producing the same
WO2019097850A1 (en) * 2017-11-17 2019-05-23 株式会社ジャパンディスプレイ Display device
WO2019168005A1 (en) * 2018-02-28 2019-09-06 大日本印刷株式会社 Optical film and image display device
JP2020091395A (en) * 2018-12-05 2020-06-11 大日本印刷株式会社 Optical film for flexible display, polarizing plate for flexible display, and flexible display
WO2020121965A1 (en) * 2018-12-10 2020-06-18 住友化学株式会社 Laminate and image display device using same
JPWO2019216172A1 (en) * 2018-05-07 2021-03-25 東洋紡株式会社 Foldable displays and mobile devices
WO2021112132A1 (en) * 2019-12-05 2021-06-10 昭和電工マテリアルズ株式会社 Functional film, film-like curable composition, functional film production method, and article conveyance method
JP2023053016A (en) * 2018-07-09 2023-04-12 大日本印刷株式会社 image display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145587A (en) * 2004-11-16 2006-06-08 Konica Minolta Opto Inc Antiglare antireflection film, polarizing plate and display device
JP2007025040A (en) * 2005-07-13 2007-02-01 Konica Minolta Opto Inc Antiglare film, method for producing antiglare film, antiglare antireflection film, polarizing plate and display device
JP2010079014A (en) * 2008-09-26 2010-04-08 Bridgestone Corp Optical filter for display, and manufacturing method for optical filter for display
JP2013092632A (en) * 2011-10-25 2013-05-16 Konica Minolta Advanced Layers Inc Display device
JP2014115502A (en) * 2012-12-11 2014-06-26 Toppan Printing Co Ltd Optical film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145587A (en) * 2004-11-16 2006-06-08 Konica Minolta Opto Inc Antiglare antireflection film, polarizing plate and display device
JP2007025040A (en) * 2005-07-13 2007-02-01 Konica Minolta Opto Inc Antiglare film, method for producing antiglare film, antiglare antireflection film, polarizing plate and display device
JP2010079014A (en) * 2008-09-26 2010-04-08 Bridgestone Corp Optical filter for display, and manufacturing method for optical filter for display
JP2013092632A (en) * 2011-10-25 2013-05-16 Konica Minolta Advanced Layers Inc Display device
JP2014115502A (en) * 2012-12-11 2014-06-26 Toppan Printing Co Ltd Optical film

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097850A1 (en) * 2017-11-17 2019-05-23 株式会社ジャパンディスプレイ Display device
JPWO2019168005A1 (en) * 2018-02-28 2021-03-11 大日本印刷株式会社 Optical film and image display device
WO2019168005A1 (en) * 2018-02-28 2019-09-06 大日本印刷株式会社 Optical film and image display device
JP7331829B2 (en) 2018-02-28 2023-08-23 大日本印刷株式会社 Optical film and image display device
JPWO2019216172A1 (en) * 2018-05-07 2021-03-25 東洋紡株式会社 Foldable displays and mobile devices
KR102035717B1 (en) * 2018-05-08 2019-10-24 스미또모 가가꾸 가부시키가이샤 Laminate and method for manufacturing the same
JP2019195988A (en) * 2018-05-08 2019-11-14 住友化学株式会社 Laminate and production method thereof
JP6434186B1 (en) * 2018-05-08 2018-12-05 住友化学株式会社 Laminated body and method for producing the same
JP2023053016A (en) * 2018-07-09 2023-04-12 大日本印刷株式会社 image display device
JP2020091395A (en) * 2018-12-05 2020-06-11 大日本印刷株式会社 Optical film for flexible display, polarizing plate for flexible display, and flexible display
JP7298146B2 (en) 2018-12-05 2023-06-27 大日本印刷株式会社 Optical films for flexible displays, polarizing plates for flexible displays, and flexible displays
WO2020121965A1 (en) * 2018-12-10 2020-06-18 住友化学株式会社 Laminate and image display device using same
JP2020095079A (en) * 2018-12-10 2020-06-18 住友化学株式会社 Laminate and image display device using the same
WO2021112132A1 (en) * 2019-12-05 2021-06-10 昭和電工マテリアルズ株式会社 Functional film, film-like curable composition, functional film production method, and article conveyance method

Also Published As

Publication number Publication date
JPWO2017119391A1 (en) 2018-11-08
TWI726966B (en) 2021-05-11
JP6773049B2 (en) 2020-10-21
TW201731691A (en) 2017-09-16

Similar Documents

Publication Publication Date Title
WO2017119391A1 (en) Optical film, polarizing plate, and image display device
JP6773118B2 (en) Optical film and image display device
WO2018128171A1 (en) Optical film and image display device
WO2017014198A1 (en) Laminate for optical members and image display device
JP7016604B2 (en) Laminated body for touch panel, foldable image display device
JP6237796B2 (en) Optical laminate, polarizing plate, and image display device
JP6235287B2 (en) Optical laminate
JP7016602B2 (en) Hard-coated film for touch panels and foldable image display device
JPWO2018070523A1 (en) Optical film and image display device
JP6235288B2 (en) Optical laminate
JP7196384B2 (en) Polyimide film, optical film and image display device
WO2017175674A1 (en) Protective film, optical film, laminate, polarizing plate, image display device and method for producing said polarizing plate
JP6547481B2 (en) Organic electroluminescent laminate
JP7016605B2 (en) Laminated body for touch panel and foldable image display device
JP7435640B2 (en) Light transparent film with protective film and protective film
JP6443069B2 (en) Optical laminate
KR102192944B1 (en) Manufacturing method of anti-glare film
JPWO2019035398A1 (en) Optical film, polarizing plate, and image display device
JP6551117B2 (en) Optical laminate and method for producing the same
JP7238869B2 (en) Laminate for touch panel, foldable image display device
JP7238870B2 (en) LAMINATED BODY FOR TOUCH PANEL AND FOLDABLE IMAGE DISPLAY DEVICE
JP7491963B2 (en) Anti-glare film, its manufacturing method and use
JP7238871B2 (en) HARD COAT FILM FOR TOUCH PANEL AND FOLDABLE IMAGE DISPLAY DEVICE
CN115104045A (en) Anti-glare film, polarizing plate, and display device
JP2018172528A (en) Hard coat film, foldable image display device and method for manufacturing hard coat film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883890

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017560371

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883890

Country of ref document: EP

Kind code of ref document: A1