WO2017119093A1 - Irradiation device for heating - Google Patents
Irradiation device for heating Download PDFInfo
- Publication number
- WO2017119093A1 WO2017119093A1 PCT/JP2016/050313 JP2016050313W WO2017119093A1 WO 2017119093 A1 WO2017119093 A1 WO 2017119093A1 JP 2016050313 W JP2016050313 W JP 2016050313W WO 2017119093 A1 WO2017119093 A1 WO 2017119093A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heating
- heated
- electromagnetic wave
- antenna
- irradiation
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/12—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D11/00—Arrangement of elements for electric heating in or on furnaces
- F27D11/12—Arrangement of elements for electric heating in or on furnaces with electromagnetic fields acting directly on the material being heated
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/72—Radiators or antennas
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/74—Mode transformers or mode stirrers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/80—Apparatus for specific applications
Definitions
- the present invention relates to a heating irradiation apparatus, and more particularly to a heating irradiation apparatus that heats a substance by irradiating it with a high frequency.
- a chemical reaction apparatus and a chemical reaction method are known in which heat treatment or the like is performed by a method using internal heating of a substance using high frequency. Research and development for practical application of industrial applications is being actively conducted (for example, see Patent Document 1).
- Well-known high-frequency generators used in high-frequency chemical reaction equipment are electron tube oscillators typified by magnetrons used in microwave ovens.
- the electron tube oscillator can output a large amount of power.
- the electron tube oscillator is characterized in that it has a range in the frequency of the oscillating high frequency and that the output characteristics have a large time fluctuation. Therefore, when a plurality of electron tube oscillators are synthesized, there is a problem that the synthesis loss is large and the efficiency is lowered.
- the present invention has been made to solve such problems, and in the case where a plurality of high frequencies are combined and used, a heating irradiation apparatus capable of suppressing irradiation loss and performing efficient irradiation is provided.
- the purpose is to get.
- the present invention includes an electromagnetic wave generator that generates an electromagnetic wave for heating, a plurality of antennas that irradiate an object to be heated with the electromagnetic wave for heating generated by the electromagnetic wave generator, and a part of an upper surface that is a convex portion having a curved surface.
- An irradiation port of each antenna is attached to the surface of the convex portion, and a reaction furnace having an internal space for accommodating the object to be heated, the irradiation direction of each antenna being the object to be heated
- Each of the antennas is a heating irradiation device arranged in a curved surface on the surface of the convex portion of the reaction furnace so as to go to the specific point.
- the heating irradiation apparatus of the present invention by synthesizing a plurality of high frequencies, it is possible to efficiently irradiate the object to be heated in the reaction furnace that is a closed space, and to perform the reaction in a short time. Heating can be performed, and further, an effect that energy efficiency associated therewith can be achieved.
- FIG. 1 It is a block diagram which shows the structure of the irradiation apparatus for heating which concerns on Embodiment 1 of this invention. It is the figure which showed the comparative example for demonstrating the effect by the irradiation apparatus for a heating which concerns on Embodiment 1 of this invention. It is explanatory drawing explaining the effect by the irradiation apparatus for heating which concerns on Embodiment 1 of this invention. It is explanatory drawing explaining the effect by the irradiation apparatus for heating which concerns on Embodiment 1 of this invention. It is explanatory drawing explaining the effect by the irradiation apparatus for heating which concerns on Embodiment 1 of this invention. It is explanatory drawing explaining the effect by the irradiation apparatus for heating which concerns on Embodiment 1 of this invention using a graph.
- FIG. 2 It is a block diagram which shows the structure of the irradiation apparatus for heating which concerns on Embodiment 2 of this invention. It is the figure which showed the comparative example for demonstrating the effect by the irradiation apparatus for heating which concerns on Embodiment 2 of this invention. It is explanatory drawing explaining the effect by the irradiation apparatus for heating which concerns on Embodiment 2 of this invention. It is explanatory drawing explaining the effect by the irradiation apparatus for heating which concerns on Embodiment 2 of this invention. It is the figure which showed the comparative example for demonstrating the effect by the irradiation apparatus for heating which concerns on Embodiment 2 of this invention.
- FIG. 1 is a configuration diagram showing a configuration of a heating irradiation apparatus according to Embodiment 1 of the present invention.
- the heating irradiation apparatus includes a high-frequency generator 1, a high-frequency supply path 2, an antenna 3, and a reaction furnace 4.
- the object to be heated 5 is accommodated in the internal space of the reaction furnace 4, and in this state, the high frequency generated by the high frequency generator 1 is transferred from the antenna 3 to the object to be heated 5. Irradiation is performed to heat the article 5 to be heated.
- the heated object 5 may be in any form of gas, liquid, and solid.
- the object to be heated 5 is illustrated as a rectangle along the shape of the internal space of the reaction furnace 4, but the shape of the object to be heated 5 may be arbitrary.
- the high frequency generator 1 generates a high frequency heating electromagnetic wave (hereinafter simply referred to as a high frequency) for irradiating the object to be heated 5 in the reaction furnace 4.
- the high frequency generator 1 is composed of a frequency variable electromagnetic wave generator in which the frequency of the high frequency to be generated is variable.
- microwaves are used as the high frequency generated by the high frequency generator 1.
- a microwave is a region of electromagnetic waves.
- An electromagnetic wave having a frequency range of 0.3 to 30 GHz and a wavelength range of 1 cm to 1 m in a conventional radio wave classification is called a microwave.
- the high-frequency generator 1 in the present embodiment is not limited to the microwave, and any frequency and any wavelength may be appropriately selected.
- the high frequency generator 1 is disposed outside the reaction furnace 4.
- the type of the high frequency generator 1 may be appropriately selected as long as the phase coherence is high.
- one high frequency generator 1 is provided for a plurality of antennas 3, but one high frequency generator 1 may be connected to each antenna 3.
- the high frequency supply path 2 is connected to the high frequency generator 1 and the antenna 3.
- the high frequency supply path 2 transmits the high frequency generated by the high frequency generator 1 to the antenna 3 and supplies it to the antenna 3.
- the high frequency supply path 2 may be appropriately selected as long as it is any member that can efficiently transmit a high frequency, such as a coaxial cable or a waveguide.
- the antenna 3 irradiates a heated object 5 installed in the reaction furnace 4 with a high frequency from an irradiation port.
- a plurality of antennas 3 are provided. In FIG. 1, five antennas 3 are provided, but the number of antennas 3 may be appropriately selected.
- a waveguide may be used as it is, or may be appropriately selected as long as it is a device that can efficiently radiate a high frequency to a space, such as a horn antenna or a patch antenna.
- the directions of the high-frequency vectors emitted from the antennas 3 are all directed toward the specific point 6 set in advance.
- the specific point 6 may be appropriately set in the reaction furnace 4, and the position thereof is not particularly limited. However, the specific point 6 is often set at the center in the reaction furnace 4.
- the article to be heated 5 is usually placed at the central portion in the reaction furnace 4.
- the specific point 6 does not have to be a point, and may be a circular shape having an area or a band-like region.
- Each antenna 3 is arranged in a curved surface on the surface of the curved surface 7 in order to efficiently concentrate the high frequency on the specific point 6 of the object to be heated 5.
- the curved surface 7 is comprised from the spherical surface centering on the specific point 6 of the to-be-heated object 5, as shown in FIG.
- the arrangement intervals of the antennas 3 are equal.
- the arrangement interval of the antennas 3 is desirably set to one wavelength or less of the high frequency irradiated from the antenna 3.
- the distance between the irradiation port of the antenna 3 and the surface of the object to be heated 5 is preferably set to 5 wavelengths or less of the high frequency irradiated from the antenna 3.
- the antennas 3 are arranged one-dimensionally along one arc on the curved surface 7.
- the present invention is not limited to this. Depending on the size, it may be two-dimensionally or three-dimensionally arranged along the curved surface 7.
- the reaction furnace 4 has an internal space in which the object to be heated 5 is accommodated, and the object to be heated 5 is heated or reacted at a high frequency in the internal space.
- the material of the reaction furnace 4 may be appropriately selected as long as it does not leak high frequency to the outside.
- only the internal space of the reaction furnace 4 may be surrounded by a member such as a metal wall that can shield high frequencies. In that case, as the material of the reaction furnace 4 itself, any material that cannot shield high frequency may be selected, and any material can be selected.
- the reactor 4 is generally provided with a charging / discharging port for charging and discharging the article to be heated 5.
- the reaction furnace 4 may be provided with a transport device such as a belt conveyor through which the object to be heated 5 flows.
- a stirrer for stirring the object to be heated 5 in the reaction furnace 4 may be provided.
- the to-be-heated material 5 may contain a catalyst.
- ⁇ charging / discharging ports stirrer, belt conveyor, catalyst, and the like are considered to be a general configuration of a chemical reaction apparatus, and the internal structure of the reaction furnace 4 is not limited and may be appropriately selected.
- a part of the upper surface of the reaction furnace 4 is a convex part constituted by a part of the curved surface 7.
- the irradiation port of the antenna 3 is attached to the surface of this convex part.
- the high frequency generated by the high frequency generator 1 is fed to the antenna 3 via the high frequency supply path 2.
- the antenna 3 radiates the supplied high frequency from the irradiation port.
- the high frequency wave radiated from the antenna 3 is irradiated to the object to be heated 5 in the reaction furnace 4.
- a plurality of antennas 3 are arranged on a spherical curved surface 7 centered on the specific point 6 of the object to be heated 5 in order to efficiently concentrate the high frequency on the specific point 6 of the object to be heated. Therefore, all the vectors of the high-frequency radiation direction from the antenna 3 are directed to the specific point 6 of the object to be heated 5.
- the arrangement interval of the antennas 3 is desirably one wavelength or less of the high frequency as described above. The reason for this is that if the arrangement interval is wide, the area where the irradiation area from the antenna 3 to the object to be heated 5 is overlapped decreases. Further, as described above, the distance between the irradiation port of the antenna 3 and the surface of the object to be heated 5 is desirably one fifth or less of the high frequency. The reason will be explained.
- the high frequency radiated from each antenna 3 spreads with distance. Therefore, if the distance to the object to be heated 5 is large, it is reflected at a portion where the object to be heated 5 in the reaction furnace 4 does not exist, the irradiation distribution to the object to be heated 5 is disturbed, and a loss in high frequency synthesis occurs. It is because it ends. For efficient space synthesis, it is necessary to match the output phase of the high frequency emitted from each antenna 3. In the present embodiment, by adjusting the length of the high-frequency supply path 2 as appropriate, the high-frequency output phase irradiated from each antenna 3 is matched.
- FIGS. 2A to 2D show the effects of the first embodiment.
- 2A to 2D show the efficiency of the irradiation power to the specific point 6 of the heated object 5 in the reaction furnace 4 with respect to the input power.
- the specific point 6 is set at the center of the reaction furnace 4.
- FIG. 2A, FIG. 2B, and FIG. 2C the specific point 6 is distinguished and shown as specific points 6A, 6B, and 6C, respectively.
- FIG. 2A shows a conventional system in which an electron tube oscillator capable of high output and one antenna are provided.
- 2B and 2C show the heating irradiation apparatus according to the first embodiment shown in FIG.
- FIG. 2B shows a case where power is concentrated at a specific point 6 of the object to be heated 5 by adjusting the length of the high-frequency supply path 2 and setting the phase.
- FIG. 2C adjusts the length of the high frequency supply path 2 and sets the phase so that the same amount of power as in FIG. 2A in which only one antenna is provided is concentrated at the specific point 6. Shows the case. 2A to 2C, the antenna 3 is a rectangular waveguide, the center-to-center distance is 0.6 wavelength, and the height of the center antenna is 1.7 wavelengths. 2A to 2C, the total high-frequency power irradiated into the reaction furnace 4 is the same.
- FIGS. 2A to 2C the efficiency of the irradiation power to the specific point 6 of the heated object in the reaction furnace 4 with respect to the input power was measured.
- the result is shown in FIG. 2D.
- the horizontal axis in FIG. 2D indicates specific points 6A, 6B, and 6C, respectively.
- shaft shows the power efficiency to the specific point of a to-be-heated material. From the bar graph of FIG. 2D, it can be seen that the power efficiency in the vicinity of the specific point 6 of the object to be heated 5 is larger in FIG. 2B than in FIG. On the other hand, FIG. 2C shows that the same power efficiency as in FIG. 2A is realized.
- desired power efficiency can be realized by adjusting the length of the high-frequency supply path 2.
- the setting value of a phase suitably with the form (for example, gas, liquid, solid) of the to-be-heated material 5, and a characteristic.
- the heating irradiation apparatus is heated by the high-frequency generator 1 as an electromagnetic wave generator that generates a heating electromagnetic wave and the heating electromagnetic wave (high-frequency) generated by the high-frequency generator 1.
- the plurality of antennas 3 that irradiate the object 5 and a part of the upper surface thereof are curved convex portions, the irradiation ports of the antennas 3 are attached to the surface of the convex portions, and the object to be heated 5 is accommodated.
- Each antenna 3 has a curved surface on the surface of the convex portion of the reaction furnace 4 so that the irradiation direction of each antenna 3 is directed to a specific point 6 of the object 5 to be heated. Is arranged.
- the curved surface 7 of the convex portion is composed of a part of a spherical surface centered on the specific point 6.
- the high frequency generator 1 having high phase coherence is used to spatially synthesize the high frequencies from the plurality of antennas 3 arranged in a curved surface in the reaction furnace 4. Compared with the method using the electron tube oscillator, it is possible to efficiently heat the object 5 to be heated.
- FIG. FIG. 3 is a diagram showing a configuration of a heating irradiation apparatus according to Embodiment 2 of the present invention. 3, parts that are the same as or equivalent to those in the heating irradiation apparatus according to Embodiment 1 shown in FIG. 1 are given the same reference numerals, and descriptions thereof are omitted.
- the antenna 3 is arranged on the curved surface 7 in a curved shape.
- the upper surface of the reaction furnace 4 is a flat plane, and the irradiation port of each antenna 3 is arranged on the plane. Therefore, in the second embodiment, the antennas 3 are arranged linearly as shown in the cross-sectional view of FIG.
- the second difference will be described.
- the number of antennas 3 is an arbitrary number.
- the number of antennas 3 is limited to three. Since other configurations are the same as those in the first embodiment, the description thereof is omitted here.
- the vector of the irradiation direction of one antenna 3 is directed toward the specific point 6 of the object 5 to be heated.
- Two other antennas 3 are arranged on both sides of the antenna 3.
- the arrangement intervals of the antennas 3 are equal.
- the arrangement interval of the antennas 3 is desirably set to one wavelength or less of the high frequency irradiated from the antenna 3.
- the distance between the irradiation port of the antenna 3 and the surface of the object to be heated 5 is preferably set to 5 wavelengths or less of the high frequency irradiated from the antenna 3.
- the number of antennas 3 is effectively three. If one antenna 3 is further arranged on both sides of the three antennas 3 in FIG. 3 for a total of five, the area where the irradiation area from the antenna 3 to the object to be heated 5 is superimposed is reduced. The increase in efficiency proportional to the number of antennas 3 cannot be expected.
- 4A to 4E verify the effects of the second embodiment.
- 4A to 4E show the efficiency of the irradiation power to the specific point 6 of the heated object 5 in the reaction furnace 4 with respect to the input power.
- the specific point 6 is set at the center of the reactor 4 as in the first embodiment.
- the specific points 6 are distinguished and shown as specific points 6D, 6E, 6F, and 6G, respectively.
- FIG. 4A shows a conventional system provided with an electron tube oscillator capable of high output and one antenna.
- 4B and 4C show the heating irradiation apparatus according to the second embodiment shown in FIG. 4B and 4C, a high-frequency generator 1 with high phase coherence and three antennas 3 arranged in a straight line are provided.
- a high-frequency generator 1 with high phase coherence and five antennas 3 arranged linearly are provided.
- 4B and 4D show a case where power is concentrated on a specific point 6 of the object to be heated 5 by adjusting the length of the high-frequency supply path 2 and setting the phase.
- FIG. 4A shows a conventional system provided with an electron tube oscillator capable of high output and one antenna.
- 4B and 4C show the heating irradiation apparatus according to the second embodiment shown in FIG. 4B and 4C, a high-frequency generator 1 with high phase coherence and three antennas 3 arranged in a straight line are provided.
- FIG. 4D shows a case where
- 4C adjusts the length of the high-frequency supply path 2 and sets the phase so that the same amount of power as in FIG. 4A in which only one antenna 3 is provided is concentrated at the specific point 6.
- the antenna 3 is a rectangular waveguide, the distance between the centers is 0.9 wavelength, and the height of the center antenna is 1.2 wavelengths.
- the total high-frequency power irradiated into the reaction furnace 4 is the same.
- FIGS. 4A to 4D the efficiency of the irradiation power to the specific point 6 of the heated object in the reaction furnace 4 with respect to the input power was measured.
- the result is shown in FIG. 4E.
- the horizontal axis in FIG. 4E indicates specific points 6D, 6E, 6F, and 6G, respectively.
- shaft shows the power efficiency to the specific point of a to-be-heated material. From the bar graph of FIG. 4E, it can be seen that the specific point 6E of FIG. 4B has higher power efficiency near the specific point 6 of the heated object 5 than the specific point 6D of FIG. Will improve. On the other hand, at the specific point 6F in FIG.
- the heating irradiation apparatus is heated by the high frequency generator 1 as an electromagnetic wave generator that generates a heating electromagnetic wave (high frequency) and the heating electromagnetic wave generated by the high frequency generator 1.
- Reaction that has three antennas 3 for irradiating the object 5 and an upper surface of the antenna 3 that is flat and has an irradiation space for the object 3 and an irradiation port of the antenna 3 attached to the upper surface.
- the three antennas are arranged in a straight line, and the three antennas are arranged so that the irradiation direction of the electromagnetic wave for heating is directed to the specific point 6 of the object to be heated 5;
- the other two antennas 3 arranged on both sides of one antenna 3 are included.
- the high-frequency generator 1 having high phase coherence is used to spatially synthesize the high-frequency waves from the three antennas 3 arranged linearly in the reaction furnace 4. Even in this case, the same effect as in the first embodiment can be obtained.
- FIG. FIG. 5 is a diagram showing a configuration of a heating irradiation apparatus according to Embodiment 3 of the present invention. Parts that are the same as or equivalent to those in the heating irradiation apparatus according to Embodiment 1 shown in FIG. 1 are given the same reference numerals, and descriptions thereof are omitted.
- FIG. 5 shows the case where the configuration of the third embodiment is applied to the configuration of the first embodiment, but the configuration of the third embodiment is applied to the configuration of the second embodiment. Also good. Since other configurations are the same as those in the first and second embodiments, the description thereof is omitted here.
- the phase shifter 51 is attached in the high frequency supply path 2.
- the phase shifter 51 is connected to the high frequency generator 1 through a part of the high frequency supply path 2.
- the phase shifter 51 controls the phase amount to the antenna 3 regardless of the length of the high-frequency supply path 2.
- the phase shifter 51 may be appropriately selected as long as it can change the amount of phase shift, such as a voltage-controlled variable phase shifter.
- the amplifier 52 is attached in the high frequency supply path 2.
- the amplifier 52 is provided between the phase shifter 51 and the antenna 3.
- the amplifier 52 is connected to the phase shifter 51 and the antenna 3 through a part of the high-frequency supply path 2.
- the amplifier 52 amplifies the high frequency to the antenna 3, and may be appropriately selected as long as it can amplify the high frequency, such as an amplifier constituted by a semiconductor device.
- the output from the antenna 3 can be changed by the phase shifter 51 and the amplifier 52. Therefore, in the output to the article 5 to be heated, the efficiency realized by the configurations of FIGS. 2B and 2C and FIGS. 4B and 4C described above can be realized without changing the length of the high-frequency supply path 2. Is possible.
- the same effect as in the first and second embodiments can be obtained without adjusting the length of the high-frequency supply path 2. Obtainable.
- FIG. FIG. 6 is a diagram showing a configuration of a heating irradiation apparatus according to Embodiment 4 of the present invention. The same or corresponding parts as those of the heating irradiation apparatus according to the third embodiment shown in FIG.
- FIG. 6 the position where the phase shifter 51 is provided is illustrated so as to change stepwise. This is because a plurality of signals connecting the high frequency output control device 73 and the phase shifter 51 are shown.
- the positions of the phase shifters 51 are described in steps so as to be shifted step by step for the sake of convenience. Actually, as in FIG. 5, the phase shifters 51 are arranged in a straight line. It's okay.
- One amplitude / phase acquisition unit 71 is provided for each antenna 3.
- the amplitude / phase acquisition unit 71 is provided between the antenna 3 and the amplifier 52.
- the amplitude / phase acquisition unit 71 acquires the amplitude and phase of the high frequency incident into the reaction furnace 4 and acquires the amplitude and phase of the high frequency reflected from the reaction furnace 4.
- the high frequency incident into the reaction furnace 4 is referred to as “input wave”
- the high frequency reflected from the reaction furnace 4 is referred to as “reflected wave”.
- the amplitude / phase acquisition unit 71 may be appropriately selected as long as it can acquire both amplitude and phase, such as a directional coupler.
- the amplitude / phase acquisition unit 71 is described as acquiring both the amplitude and phase of the input wave and the amplitude and phase of the reflected wave. Only one of the phase and the amplitude and phase of the reflected wave may be acquired.
- the amplitude / phase monitor 72 monitors the amplitude / phase acquisition unit 71. Specifically, the amplitude / phase monitor 72 acquires the amplitude and phase of the input wave and reflected wave acquired by the amplitude / phase acquisition unit 71 as an amplitude value and a phase value, respectively.
- the amplitude / phase monitor 72 is composed of, for example, a network analyzer, but is not limited thereto, and may be appropriately selected. Only one amplitude / phase monitor 72 is provided for the plurality of amplitude / phase acquisition units 71.
- the high frequency output control device 73 controls the high frequency generator 1, the phase shifter 51, and the amplifier 52 based on the amplitude value and the phase value of the input wave and the reflected wave monitored by the amplitude / phase monitor 72.
- signal lines that connect the high-frequency output control device 73 and the amplifier 52 are not shown for the sake of simplicity.
- the high frequency output control device 73 is composed of a processor and a memory, for example, a personal computer. Each function of the high-frequency output control device 73 is realized by a processing circuit such as a CPU or a system LSI that executes a program stored in a memory. A plurality of processors and a plurality of memories may cooperate to execute each function of the high-frequency output control device 73.
- the high-frequency output control device 73 is not limited to a personal computer, and may be appropriately selected from other hardware.
- the high frequency output control device 73 stores the input wave and the amplitude value and the phase value of the reflected wave obtained by the amplitude / phase monitor 72 in a memory.
- the high frequency output control device 73 provides the frequency of the high frequency generator 1 and the phase shifter 51 based on the amplitude value and the phase value stored in the memory in order to provide the optimum irradiation distribution of the high frequency in the reactor 4.
- the amount of amplification of the amplifier 52 are controlled.
- the high-frequency output control device 73 does not necessarily need to control all of the frequency of the high-frequency generator 1, the phase value of the phase shifter 51, and the amplification amount of the amplifier 52, and controls at least one of them. That's fine.
- the operation will be described.
- the amplitude and phase of the input wave and the reflected wave obtained by the amplitude / phase acquisition unit 71 are sent to the high frequency output control device 73 via the amplitude / phase monitor 72. If there is a change in the heating state of the article 5 to be heated, a change occurs in the input wave and the reflected wave. Therefore, for example, the high frequency output control device 73 can control the high frequency generator 1, the phase shifter 51, and the amplifier 52 by preparing a lookup table based on calculated values in advance. Note that look-up tables are prepared for the high-frequency generator 1, the phase shifter 51, and the amplifier 52, respectively. This will be described below.
- the correspondence relationship between the amplitude value and phase value of the input wave, the amplitude value and phase value of the reflected wave, and the frequency of the high frequency generator 1 is determined in advance. . Therefore, the optimum frequency of the high-frequency generator 1 can be obtained based on the amplitude value and phase value of the input wave and the amplitude value and phase value of the reflected wave according to the lookup table.
- the look-up table for the phase shifter 51 the correspondence relationship between the amplitude value and phase value of the input wave, the amplitude value and phase value of the reflected wave, and the phase value of the phase shifter 51 is stored in advance. It has been established. Therefore, the optimum phase value of the phase shifter 51 can be obtained based on the amplitude value and phase value of the input wave and the amplitude value and phase value of the reflected wave according to the lookup table.
- the correspondence relationship between the amplitude value and phase value of the input wave, the amplitude value and phase value of the reflected wave, and the amplification amount of the amplifier 52 is determined in advance. ing. Therefore, the optimum amplification amount of the amplifier 52 can be obtained based on the amplitude value and phase value of the input wave and the amplitude value and phase value of the reflected wave according to the lookup table.
- the high-frequency output control device 73 controls the high-frequency generator 1, the phase shifter 51, and the amplifier 52, for example, so that the input wave and the reflected wave are larger so that the input wave is larger and the reflected wave is smaller. Can be controlled. Thereby, in the output of the high frequency to the to-be-heated object 5, the efficiency equivalent to the efficiency obtained from the structure of FIG. 2B and FIG. 2C mentioned above or the structure of FIG. 4B and FIG. Can be realized in real time.
- the high-frequency output control device 73 does not need to use all of the amplitude value and phase value of the input wave and the amplitude value and phase value of the reflected wave for control, and uses at least one of these values for control. What should I do?
- the amplitude / phase acquisition unit 71, the amplitude / phase monitor 72, and the high-frequency output control device 73 are provided, so that real-time according to the state of the object to be heated 5. Therefore, the irradiation distribution can be controlled, and a more efficient heating effect can be obtained.
- FIG. FIG. 7 is a diagram showing a configuration of a heating irradiation apparatus according to Embodiment 5 of the present invention. The same or corresponding parts as those of the heating irradiation apparatus according to the third embodiment shown in FIG.
- a temperature acquisition unit 81 that acquires the temperature of the article 5 to be heated
- a temperature monitor 82 that monitors the temperature
- a high-frequency output control device 73 include Have been added.
- Other configurations and operations are the same as those in the third embodiment.
- FIG. 7 the position where the phase shifter 51 is provided is illustrated so as to change stepwise. This is because a plurality of signals connecting the high-frequency output control device 73 and the phase shifter 51 are shown.
- the positions of the phase shifters 51 are described in steps so as to be shifted step by step for the sake of convenience.
- the phase shifters 51 are arranged in a straight line. It's okay.
- FIG. 7 shows the case where the configuration according to the fifth embodiment is applied to the third embodiment, but the configuration according to the fifth embodiment is applied to the fourth embodiment. Also good. In that case, it is not necessary to provide two high-frequency output control devices 73, and the single high-frequency output control device 73 allows the amplitude value and phase value of the input wave, the amplitude value and phase value of the reflected wave, and the object to be heated.
- the high-frequency generator 1, the phase shifter 51, and the amplifier 52 are controlled based on at least one of the five temperatures.
- the high-frequency output control device 73 does not necessarily need to control all of the frequency of the high-frequency generator 1, the phase value of the phase shifter 51, and the amplification amount of the amplifier 52, and controls at least one of them. That's fine.
- the temperature acquisition unit 81 is provided inside the reaction furnace 4.
- the temperature acquisition unit 81 measures the temperature of the object to be heated 5 in the reaction furnace 4.
- the temperature acquisition unit 81 may be appropriately selected as long as the temperature can be measured, such as a thermocouple or a thermography. Further, a plurality of temperature acquisition units 81 may be provided in the reaction furnace 4, and the attachment position is not particularly limited.
- the temperature monitor 82 monitors the temperature acquisition unit 81. Specifically, the temperature monitor 82 acquires the temperature acquired by the temperature acquisition unit 81 as a value.
- the temperature monitor 82 is composed of, for example, a data logger or the like, but is not limited thereto and may be selected as appropriate. Only one temperature monitor 82 is provided for the plurality of temperature acquisition units 81.
- the temperature obtained by the temperature acquisition unit 81 is sent to the high frequency output control device 73 via the temperature monitor 82.
- the high frequency output control device 73 controls the high frequency generator 1, the phase shifter 51, and the amplifier 52 according to the temperature distribution of the article to be heated 5 based on the temperature monitored by the temperature monitor 82.
- the irradiation distribution is real-time according to the state of the heated object 5. It becomes controllable and the more efficient heating effect is acquired.
- FIG. FIG. 8 is a diagram showing a configuration of a heating irradiation apparatus according to Embodiment 6 of the present invention. The same or corresponding parts as those in the microwave heating irradiation apparatus according to the third embodiment shown in FIG.
- a plurality of heating irradiation apparatuses shown in the third embodiment are connected in series to construct a high-frequency heating irradiation system as a whole. This is different from the third embodiment.
- the reaction furnaces 4 of the respective heating irradiation devices are connected in series to form one large elongated common reaction furnace. It is assumed that the article 5 to be heated is transported through the long and large common reactor by a transport device such as a belt conveyor, and sequentially passes through each heating irradiation device.
- Other configurations are the same as those in the third embodiment, and thus the description thereof is omitted here.
- the output of the high frequency irradiated to the to-be-heated material 5 can be made variable for every reaction furnace 4 of the irradiation apparatus. Thereby, according to the condition of the to-be-heated material 5 between each irradiation apparatus for heating, it is possible to create a separate condition for each reaction furnace 4.
- the high frequency generator 1, the phase shifter 51, the amplifier 52, and the antenna 3 are provided separately for every reaction furnace 4 which comprises a common reaction furnace. . Therefore, the output of the high frequency irradiated from the antenna 3 can be controlled for each reaction furnace 4 according to the reaction state of the article 5 to be heated. Thereby, in each reaction furnace 4, since irradiation distribution can be changed according to the state of the to-be-heated material 5, the to-be-heated material 5 can be efficiently heated on optimal conditions.
- FIG. 8 shows a case where the configuration according to the sixth embodiment is applied to the third embodiment.
- the present invention is not limited to this case, and other embodiments, that is, the first to fifth embodiments.
- the configuration according to the sixth embodiment may be applied to any of the previous embodiments.
- it is not necessary that the plurality of heating irradiation devices connected in series have the same configuration. Therefore, a plurality of configurations according to any two or more of the first to fifth embodiments may be freely combined and connected in series.
- the high frequency output control device 73 When the configurations of the fourth embodiment and the fifth embodiment are used, since the high frequency output control device 73 is provided, the frequency of the high frequency generator 1, the phase amount of the phase shifter 51, and the amplifier 52 The amount of amplification can be automatically controlled by the high-frequency output control device 73 for each heating irradiation device. However, when the configuration of another embodiment is used, the frequency of the high-frequency generator 1 and the phase shifter 51 The operator manually adjusts the phase amount and the amplification amount of the amplifier 52.
- the same effects as those of the first to fifth embodiments can be obtained.
- the irradiation distribution can be changed in each reaction furnace 4 according to the state of the object to be heated 5, which is effective.
- a scalable extensibility effect can be obtained.
- any combination of each embodiment, any component of each embodiment can be modified, or any component can be omitted in each embodiment. .
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Toxicology (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Power Engineering (AREA)
- Constitution Of High-Frequency Heating (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Control Of High-Frequency Heating Circuits (AREA)
Abstract
This irradiation device for heating comprises: a high-frequency generator 1 serving as an electromagnetic wave generator for generating electromagnetic waves for heating; a plurality of antennae 3 for irradiating, onto an object to be heated 5, the electromagnetic wave for heating generated by the high-frequency generator 1; and a reaction oven 4 having an internal space for housing the object to be heated 5, and an upper surface whereof a portion is a convex portion having a curved surface shape, the reaction oven 4 having irradiation ports being mounted on the surface of the convex portion, each of the irradiation ports being from each of the antennae 3. Each of the antennae 3 are arranged into a curved surface shape on the surface of the convex portion of the reaction oven 4 in such a manner that each irradiation direction from each of the antennae 3 is oriented toward a specific point 6 on the object to be heated 5.
Description
本発明は、加熱用照射装置に関し、特に、物質に高周波を照射して加熱する加熱用照射装置に関するものである。
The present invention relates to a heating irradiation apparatus, and more particularly to a heating irradiation apparatus that heats a substance by irradiating it with a high frequency.
高周波を利用した物質の内部加熱による方法により熱処理等を行う化学反応装置や化学反応方法が知られている。そして、工業用アプケーションの実用化に向けた研究開発が活発に行われている(例えば、特許文献1参照)。
A chemical reaction apparatus and a chemical reaction method are known in which heat treatment or the like is performed by a method using internal heating of a substance using high frequency. Research and development for practical application of industrial applications is being actively conducted (for example, see Patent Document 1).
この種の従来の化学反応装置においては、高周波を照射する際に、物質の反応や加熱の状況に応じて、照射分布を変化させたり、局所的に効率よく照射させたりして、加熱促進や化学反応促進を行いたいという要望がある。
In this type of conventional chemical reaction apparatus, when irradiating a high frequency, depending on the reaction of the substance and the state of heating, the irradiation distribution is changed or the irradiation is efficiently performed locally. There is a desire to promote chemical reactions.
高周波を利用した化学反応装置に用いられる高周波発生機器として、よく知られているものは、電子レンジに使用されているマグネトロンに代表される電子管発振器である。電子管発振器は、大電力を出力することが可能である。しかしながら、電子管発振器は、発振する高周波の周波数に幅を持っていること、および、出力特性の時間変動が大きいこと、という特徴がある。そのため、電子管発振器を複数個合成した場合には、合成損失が大きく、かえって効率が落ちてしまうという問題点があった。
Well-known high-frequency generators used in high-frequency chemical reaction equipment are electron tube oscillators typified by magnetrons used in microwave ovens. The electron tube oscillator can output a large amount of power. However, the electron tube oscillator is characterized in that it has a range in the frequency of the oscillating high frequency and that the output characteristics have a large time fluctuation. Therefore, when a plurality of electron tube oscillators are synthesized, there is a problem that the synthesis loss is large and the efficiency is lowered.
本発明は、かかる問題点を解決するためになされたものであり、複数の高周波を合成させて用いる場合において、合成損失を抑え、効率の良い照射を行うことが可能な、加熱用照射装置を得ることを目的としている。
The present invention has been made to solve such problems, and in the case where a plurality of high frequencies are combined and used, a heating irradiation apparatus capable of suppressing irradiation loss and performing efficient irradiation is provided. The purpose is to get.
本発明は、加熱用電磁波を発生する電磁波発生器と、前記電磁波発生器で発生した前記加熱用電磁波を被加熱物に照射する複数のアンテナと、上面の一部が曲面状の凸部になっており、前記凸部の表面に各前記アンテナの照射口が取り付けられ、前記被加熱物を収容するための内部空間を有する、反応炉とを備え、各前記アンテナの照射方向が前記被加熱物の特定点に向かうように、各前記アンテナは、前記反応炉の前記凸部の表面に曲面状に配列されている、加熱用照射装置である。
The present invention includes an electromagnetic wave generator that generates an electromagnetic wave for heating, a plurality of antennas that irradiate an object to be heated with the electromagnetic wave for heating generated by the electromagnetic wave generator, and a part of an upper surface that is a convex portion having a curved surface. An irradiation port of each antenna is attached to the surface of the convex portion, and a reaction furnace having an internal space for accommodating the object to be heated, the irradiation direction of each antenna being the object to be heated Each of the antennas is a heating irradiation device arranged in a curved surface on the surface of the convex portion of the reaction furnace so as to go to the specific point.
本発明の加熱用照射装置によれば、複数の高周波を合成させることにより、閉空間となる反応炉において、被加熱物に対して効率の良い高周波の照射が可能となり、短時間での反応や加熱を行うことができ、さらには、それに伴うエネルギーの効率化を図ることができるという効果も得られる。
According to the heating irradiation apparatus of the present invention, by synthesizing a plurality of high frequencies, it is possible to efficiently irradiate the object to be heated in the reaction furnace that is a closed space, and to perform the reaction in a short time. Heating can be performed, and further, an effect that energy efficiency associated therewith can be achieved.
実施の形態1.
図1は、本発明の実施の形態1に係る加熱用照射装置の構成を示す構成図である。図1に示すように、加熱用照射装置は、高周波発生器1、高周波供給路2、アンテナ3、および、反応炉4から構成されている。Embodiment 1 FIG.
FIG. 1 is a configuration diagram showing a configuration of a heating irradiation apparatus according toEmbodiment 1 of the present invention. As shown in FIG. 1, the heating irradiation apparatus includes a high-frequency generator 1, a high-frequency supply path 2, an antenna 3, and a reaction furnace 4.
図1は、本発明の実施の形態1に係る加熱用照射装置の構成を示す構成図である。図1に示すように、加熱用照射装置は、高周波発生器1、高周波供給路2、アンテナ3、および、反応炉4から構成されている。
FIG. 1 is a configuration diagram showing a configuration of a heating irradiation apparatus according to
実施の形態1に係る加熱用照射装置は、反応炉4の内部空間に被加熱物5を収容させ、その状態で、高周波発生器1で発生させた高周波を、アンテナ3から被加熱物5に照射して、被加熱物5の加熱を行う。被加熱物5は、気体、液体、固体のいずれの形態であってもよい。図1においては、被加熱物5が、反応炉4の内部空間の形状に沿った矩形であるように図示されているが、被加熱物5の形状は任意のものでよい。
In the heating irradiation apparatus according to Embodiment 1, the object to be heated 5 is accommodated in the internal space of the reaction furnace 4, and in this state, the high frequency generated by the high frequency generator 1 is transferred from the antenna 3 to the object to be heated 5. Irradiation is performed to heat the article 5 to be heated. The heated object 5 may be in any form of gas, liquid, and solid. In FIG. 1, the object to be heated 5 is illustrated as a rectangle along the shape of the internal space of the reaction furnace 4, but the shape of the object to be heated 5 may be arbitrary.
高周波発生器1は、反応炉4内の被加熱物5に照射するための高周波の加熱用電磁波(以下、単に、高周波と呼ぶ。)を発生させる。高周波発生器1は、発生させる高周波の周波数が可変の周波数可変型電磁波発生器から構成されている。ここで、高周波発生器1が発生させる高周波としては、マイクロ波を用いることを想定している。マイクロ波は、電磁波の1領域である。慣用的な電波区分で、周波数が0.3~30GHzの範囲、且つ、波長が1cm~1mの範囲の電磁波を、マイクロ波と呼んでいる。しかしながら、本実施の形態における高周波発生器1は、マイクロ波に限定されるものではなく、任意の周波数および任意の波長を適宜選択してよい。高周波発生器1は、反応炉4の外部に配置されている。高周波発生器1の種類については、位相コヒーレンスが高いものであれば、適宜選択してよい。また、図1では、複数のアンテナ3に対して、1つの高周波発生器1が設けられているが、各アンテナ3にそれぞれ高周波発生器1が1つずつ接続されていてもよい。
The high frequency generator 1 generates a high frequency heating electromagnetic wave (hereinafter simply referred to as a high frequency) for irradiating the object to be heated 5 in the reaction furnace 4. The high frequency generator 1 is composed of a frequency variable electromagnetic wave generator in which the frequency of the high frequency to be generated is variable. Here, it is assumed that microwaves are used as the high frequency generated by the high frequency generator 1. A microwave is a region of electromagnetic waves. An electromagnetic wave having a frequency range of 0.3 to 30 GHz and a wavelength range of 1 cm to 1 m in a conventional radio wave classification is called a microwave. However, the high-frequency generator 1 in the present embodiment is not limited to the microwave, and any frequency and any wavelength may be appropriately selected. The high frequency generator 1 is disposed outside the reaction furnace 4. The type of the high frequency generator 1 may be appropriately selected as long as the phase coherence is high. In FIG. 1, one high frequency generator 1 is provided for a plurality of antennas 3, but one high frequency generator 1 may be connected to each antenna 3.
高周波供給路2は、高周波発生器1とアンテナ3とに連結されている。高周波供給路2は、高周波発生器1により発生された高周波をアンテナ3まで伝送させて、アンテナ3に供給する。高周波供給路2は、たとえば、同軸ケーブルや導波管などといった高周波を効率よく伝送できるいずれかの部材であれば適宜選択してよい。
The high frequency supply path 2 is connected to the high frequency generator 1 and the antenna 3. The high frequency supply path 2 transmits the high frequency generated by the high frequency generator 1 to the antenna 3 and supplies it to the antenna 3. The high frequency supply path 2 may be appropriately selected as long as it is any member that can efficiently transmit a high frequency, such as a coaxial cable or a waveguide.
アンテナ3は、反応炉4の中に設置された被加熱物5に対して、照射口から、高周波を照射する。アンテナ3は、複数個設けられている。図1では、5つのアンテナ3が設けられているが、アンテナ3の個数は、適宜選択してよい。アンテナ3は、たとえば、導波管をそのまま利用してもよいが、あるいは、ホーンアンテナやパッチアンテナなどといった高周波を効率よく空間に放射できる機器であれば、適宜選択してよい。各アンテナ3から照射される高周波のベクトルの向きは、すべて、予め設定された特定点6に向かっている。特定点6は、反応炉4内で、適宜、設定すればよく、その位置は特に限定されない。但し、特定点6は、反応炉4内の中央部に設定されることが多い。その理由は、被加熱物5は、通常、反応炉4内の中央部に置かれることが多いためである。また、特定点6は、点でなくてもよく、面積を有する円状であっても、あるいは、帯状の領域であってもよい。各アンテナ3は、被加熱物5の特定点6に高周波を効率的に集中させるために、曲面7の表面に、曲面状に配列されている。なお、曲面7は、図1に示すように、被加熱物5の特定点6を中心とした球面から構成されている。アンテナ3の配置間隔は、均等である。アンテナ3の配置間隔は、アンテナ3から照射される高周波の1波長以下に設定することが望ましい。また、アンテナ3の照射口と被加熱物5の表面との距離は、アンテナ3から照射される高周波の5波長以下に設定することが望ましい。なお、図1においては、曲面7上の1本の弧に沿って、1次元的に、各アンテナ3が並んで配置されたものを示しているが、その場合に限らず、反応炉4の大きさによっては、曲面7に沿って、2次元的または3次元的に配列されたものでもよい。
The antenna 3 irradiates a heated object 5 installed in the reaction furnace 4 with a high frequency from an irradiation port. A plurality of antennas 3 are provided. In FIG. 1, five antennas 3 are provided, but the number of antennas 3 may be appropriately selected. As the antenna 3, for example, a waveguide may be used as it is, or may be appropriately selected as long as it is a device that can efficiently radiate a high frequency to a space, such as a horn antenna or a patch antenna. The directions of the high-frequency vectors emitted from the antennas 3 are all directed toward the specific point 6 set in advance. The specific point 6 may be appropriately set in the reaction furnace 4, and the position thereof is not particularly limited. However, the specific point 6 is often set at the center in the reaction furnace 4. The reason is that the article to be heated 5 is usually placed at the central portion in the reaction furnace 4. Further, the specific point 6 does not have to be a point, and may be a circular shape having an area or a band-like region. Each antenna 3 is arranged in a curved surface on the surface of the curved surface 7 in order to efficiently concentrate the high frequency on the specific point 6 of the object to be heated 5. In addition, the curved surface 7 is comprised from the spherical surface centering on the specific point 6 of the to-be-heated object 5, as shown in FIG. The arrangement intervals of the antennas 3 are equal. The arrangement interval of the antennas 3 is desirably set to one wavelength or less of the high frequency irradiated from the antenna 3. In addition, the distance between the irradiation port of the antenna 3 and the surface of the object to be heated 5 is preferably set to 5 wavelengths or less of the high frequency irradiated from the antenna 3. In FIG. 1, the antennas 3 are arranged one-dimensionally along one arc on the curved surface 7. However, the present invention is not limited to this. Depending on the size, it may be two-dimensionally or three-dimensionally arranged along the curved surface 7.
反応炉4は、被加熱物5を収容させる内部空間を有し、当該内部空間内で、被加熱物5を高周波で加熱もしくは反応させる。反応炉4の材料は、高周波を外部に漏えいさせないものであれば、適宜選択してよい。あるいは、反応炉4の内部空間だけを、高周波を遮蔽できる金属壁などの部材で囲むようにしてもよい。その場合には、反応炉4自体の材料としては、高周波が遮蔽できないものでもよいため、任意のものが選択可能である。反応炉4の形状については、反応させる被加熱物5の形態(たとえば、気体、液体、固体の別)、および、特性によって、適宜選択してよい。また、反応炉4には、被加熱物5を投入および排出するための投入/排出口がついているものが一般的である。被加熱物5が個体の場合には、被加熱物5を流していくベルトコンベアーなどの搬送機器が反応炉4に備えられていてもよい。被加熱物5が気体や液体の場合には、反応炉4内に被加熱物5をかき混ぜる攪拌機などが備えられてもよい。また、被加熱物5を効率よく加熱もしくは反応させるために、被加熱物5に触媒などが入っていてもよい。これらの投入/排出口や、攪拌機、ベルトコンベアー、触媒などについては、化学反応装置の一般的な構成と考えられ、反応炉4の内部構造についてもて限定するものではなく適宜選択してよい。
本実施の形態においては、反応炉4の上面の一部が、曲面7の一部から構成された凸部となっている。アンテナ3の照射口は、この凸部の表面に取り付けられている。 Thereaction furnace 4 has an internal space in which the object to be heated 5 is accommodated, and the object to be heated 5 is heated or reacted at a high frequency in the internal space. The material of the reaction furnace 4 may be appropriately selected as long as it does not leak high frequency to the outside. Alternatively, only the internal space of the reaction furnace 4 may be surrounded by a member such as a metal wall that can shield high frequencies. In that case, as the material of the reaction furnace 4 itself, any material that cannot shield high frequency may be selected, and any material can be selected. About the shape of the reaction furnace 4, you may select suitably according to the form (for example, distinction of gas, liquid, solid) of the to-be-heated material 5 made to react, and a characteristic. Further, the reactor 4 is generally provided with a charging / discharging port for charging and discharging the article to be heated 5. In the case where the object to be heated 5 is an individual, the reaction furnace 4 may be provided with a transport device such as a belt conveyor through which the object to be heated 5 flows. When the object to be heated 5 is gas or liquid, a stirrer for stirring the object to be heated 5 in the reaction furnace 4 may be provided. Moreover, in order to heat or react the to-be-heated material 5 efficiently, the to-be-heated material 5 may contain a catalyst. These charging / discharging ports, stirrer, belt conveyor, catalyst, and the like are considered to be a general configuration of a chemical reaction apparatus, and the internal structure of the reaction furnace 4 is not limited and may be appropriately selected.
In the present embodiment, a part of the upper surface of thereaction furnace 4 is a convex part constituted by a part of the curved surface 7. The irradiation port of the antenna 3 is attached to the surface of this convex part.
本実施の形態においては、反応炉4の上面の一部が、曲面7の一部から構成された凸部となっている。アンテナ3の照射口は、この凸部の表面に取り付けられている。 The
In the present embodiment, a part of the upper surface of the
次に、本実施の形態1に係る加熱用照射装置の動作について説明する。
Next, the operation of the heating irradiation apparatus according to the first embodiment will be described.
まず、高周波発生器1で発生した高周波は、高周波供給路2を介して、アンテナ3に給電される。アンテナ3は、供給された高周波を、照射口から放射する。こうして、アンテナ3から放射された高周波が、反応炉4内の被加熱物5に照射される。アンテナ3は、被加熱物の特定点6に高周波を効率的に集中させるために、被加熱物5の特定点6を中心とした球面の曲面7上に複数配列されている。そのため、アンテナ3からの高周波の放射方向のベクトルは、すべて被加熱物5の特定点6を向いている。高周波発生器1で発生した高周波の位相コヒーレンスが高ければ、各アンテナ3からの複数の高周波を空間合成することが可能であり、被加熱物の特定点6に対して効率の良い加熱が可能となる。このとき、アンテナ3の配置間隔は、上述したように、高周波の1波長以下が望ましい。その理由としては、配置間隔が広いと、各アンテナ3からの被加熱物5への照射領域の重畳される領域が少なくなるためである。また、アンテナ3の照射口と被加熱物5の表面との距離は、上述したように、高周波の5分の1以下が望ましい。その理由を説明する。各アンテナ3から放射される高周波は、距離に伴って広がっていく。そのため、被加熱物5との距離が大きいと、反応炉4内の被加熱物5が存在しない部分で反射され、被加熱物5に対する照射分布に乱れが生じ、高周波の合成に損失が生じてしまうためである。効率の良い空間合成のためには、各アンテナ3から照射される高周波の出力位相を合わせる必要がある。本実施の形態では、高周波供給路2の長さを適宜調整することで、各アンテナ3から照射される高周波の出力位相を合わせることを実現させている。
First, the high frequency generated by the high frequency generator 1 is fed to the antenna 3 via the high frequency supply path 2. The antenna 3 radiates the supplied high frequency from the irradiation port. In this way, the high frequency wave radiated from the antenna 3 is irradiated to the object to be heated 5 in the reaction furnace 4. A plurality of antennas 3 are arranged on a spherical curved surface 7 centered on the specific point 6 of the object to be heated 5 in order to efficiently concentrate the high frequency on the specific point 6 of the object to be heated. Therefore, all the vectors of the high-frequency radiation direction from the antenna 3 are directed to the specific point 6 of the object to be heated 5. If the phase coherence of the high frequency generated by the high frequency generator 1 is high, it is possible to spatially synthesize a plurality of high frequencies from each antenna 3 and to efficiently heat the specific point 6 of the object to be heated. Become. At this time, the arrangement interval of the antennas 3 is desirably one wavelength or less of the high frequency as described above. The reason for this is that if the arrangement interval is wide, the area where the irradiation area from the antenna 3 to the object to be heated 5 is overlapped decreases. Further, as described above, the distance between the irradiation port of the antenna 3 and the surface of the object to be heated 5 is desirably one fifth or less of the high frequency. The reason will be explained. The high frequency radiated from each antenna 3 spreads with distance. Therefore, if the distance to the object to be heated 5 is large, it is reflected at a portion where the object to be heated 5 in the reaction furnace 4 does not exist, the irradiation distribution to the object to be heated 5 is disturbed, and a loss in high frequency synthesis occurs. It is because it ends. For efficient space synthesis, it is necessary to match the output phase of the high frequency emitted from each antenna 3. In the present embodiment, by adjusting the length of the high-frequency supply path 2 as appropriate, the high-frequency output phase irradiated from each antenna 3 is matched.
図2A~図2Dは、実施の形態1の効果について検証したものである。図2A~図2Dは、入力電力に対する、反応炉4内の被加熱物5の特定点6への照射電力の効率を示している。図2A~図2Dに示す検証では、特定点6を、反応炉4内の中央部に設定している。なお、図2A,図2B,図2Cにおいては、特定点6を区別して、それぞれ、特定点6A、6B、6Cとして示している。図2Aは、大出力が可能な電子管発振器と1つのアンテナとを設けた従来の方式である。図2Bおよび図2Cは、図1に示した本実施の形態1に係る加熱用照射装置である。図2Bおよび図2Cでは、位相コヒーレントが高い高周波発生器1と、5つのアンテナ3とを備えている。図2Bは、高周波供給路2の長さを調整して、位相を設定することで、被加熱物5の特定点6に電力が集中するようにした場合を示している。一方、図2Cは、高周波供給路2の長さを調整して、位相を設定することで、アンテナが1つだけ設けられている図2Aと同様の電力量が特定点6に集中するようにした場合を示している。図2A~図2Cにおいて、それぞれ、アンテナ3は矩形導波管とし、その中心間距離は0.6波長、中心のアンテナの高さは1.7波長である。図2A~図2Cにおいて、反応炉4内へ照射する高周波の総電力は同じである。
2A to 2D show the effects of the first embodiment. 2A to 2D show the efficiency of the irradiation power to the specific point 6 of the heated object 5 in the reaction furnace 4 with respect to the input power. In the verification shown in FIGS. 2A to 2D, the specific point 6 is set at the center of the reaction furnace 4. In FIG. 2A, FIG. 2B, and FIG. 2C, the specific point 6 is distinguished and shown as specific points 6A, 6B, and 6C, respectively. FIG. 2A shows a conventional system in which an electron tube oscillator capable of high output and one antenna are provided. 2B and 2C show the heating irradiation apparatus according to the first embodiment shown in FIG. 2B and 2C, the high-frequency generator 1 having high phase coherence and the five antennas 3 are provided. FIG. 2B shows a case where power is concentrated at a specific point 6 of the object to be heated 5 by adjusting the length of the high-frequency supply path 2 and setting the phase. On the other hand, FIG. 2C adjusts the length of the high frequency supply path 2 and sets the phase so that the same amount of power as in FIG. 2A in which only one antenna is provided is concentrated at the specific point 6. Shows the case. 2A to 2C, the antenna 3 is a rectangular waveguide, the center-to-center distance is 0.6 wavelength, and the height of the center antenna is 1.7 wavelengths. 2A to 2C, the total high-frequency power irradiated into the reaction furnace 4 is the same.
このとき、図2A~図2Cにおいて、入力電力に対する反応炉4内の被加熱物の特定点6への照射電力の効率を測定した。その結果を、図2Dに示す。図2Dの横軸は、それぞれ、特定点6A、6B、6Cを示す。縦軸は、被加熱物の特定点への電力効率を示す。図2Dの棒グラフより、図2Bの方が、図2Aに比べて、被加熱物5の特定点6付近の電力効率が大きいことがわかり、3倍以上効率が向上している。他方、図2Cでは、図2Aと同様の電力効率を実現していることがわかる。このように、実施の形態1においては、高周波供給路2の長さを調整することで、所望の電力効率を実現することができる。また、位相の設定値については、被加熱物5の形態(たとえば、気体、液体、固体)、および、特性によって適宜選択すればよい。
At this time, in FIGS. 2A to 2C, the efficiency of the irradiation power to the specific point 6 of the heated object in the reaction furnace 4 with respect to the input power was measured. The result is shown in FIG. 2D. The horizontal axis in FIG. 2D indicates specific points 6A, 6B, and 6C, respectively. A vertical axis | shaft shows the power efficiency to the specific point of a to-be-heated material. From the bar graph of FIG. 2D, it can be seen that the power efficiency in the vicinity of the specific point 6 of the object to be heated 5 is larger in FIG. 2B than in FIG. On the other hand, FIG. 2C shows that the same power efficiency as in FIG. 2A is realized. Thus, in Embodiment 1, desired power efficiency can be realized by adjusting the length of the high-frequency supply path 2. Moreover, what is necessary is just to select the setting value of a phase suitably with the form (for example, gas, liquid, solid) of the to-be-heated material 5, and a characteristic.
以上のように、実施の形態1に係る加熱用照射装置は、加熱用電磁波を発生する電磁波発生器としての高周波発生器1と、高周波発生器1で発生した加熱用電磁波(高周波)を被加熱物5に照射する複数のアンテナ3と、上面の一部が曲面状の凸部になっており、当該凸部の表面に各アンテナ3の照射口が取り付けられるとともに、被加熱物5を収容するための内部空間を有する、反応炉4とを備え、各アンテナ3の照射方向が被加熱物5の特定点6に向かうように、各アンテナ3は、反応炉4の凸部の表面に曲面状に配列されている。このとき、凸部の曲面7は、特定点6を中心とする球面の一部から構成されている。
このように、実施の形態1によれば、位相コヒーレンスの高い高周波発生器1を用いて、曲面状に配列された複数のアンテナ3からの高周波を反応炉4内で空間合成することにより、従来の電子管発振器を用いた方式に比べて、被加熱物5に対して、効率良く加熱することが可能となる。 As described above, the heating irradiation apparatus according toEmbodiment 1 is heated by the high-frequency generator 1 as an electromagnetic wave generator that generates a heating electromagnetic wave and the heating electromagnetic wave (high-frequency) generated by the high-frequency generator 1. The plurality of antennas 3 that irradiate the object 5 and a part of the upper surface thereof are curved convex portions, the irradiation ports of the antennas 3 are attached to the surface of the convex portions, and the object to be heated 5 is accommodated. Each antenna 3 has a curved surface on the surface of the convex portion of the reaction furnace 4 so that the irradiation direction of each antenna 3 is directed to a specific point 6 of the object 5 to be heated. Is arranged. At this time, the curved surface 7 of the convex portion is composed of a part of a spherical surface centered on the specific point 6.
As described above, according to the first embodiment, thehigh frequency generator 1 having high phase coherence is used to spatially synthesize the high frequencies from the plurality of antennas 3 arranged in a curved surface in the reaction furnace 4. Compared with the method using the electron tube oscillator, it is possible to efficiently heat the object 5 to be heated.
このように、実施の形態1によれば、位相コヒーレンスの高い高周波発生器1を用いて、曲面状に配列された複数のアンテナ3からの高周波を反応炉4内で空間合成することにより、従来の電子管発振器を用いた方式に比べて、被加熱物5に対して、効率良く加熱することが可能となる。 As described above, the heating irradiation apparatus according to
As described above, according to the first embodiment, the
実施の形態2.
図3は、本発明の実施の形態2に係る加熱用照射装置の構成を示す図である。図3において、図1に示した実施の形態1に係る加熱用照射装置と同一または相当する部分については、同一符号を付し、その説明を省略する。Embodiment 2. FIG.
FIG. 3 is a diagram showing a configuration of a heating irradiation apparatus according toEmbodiment 2 of the present invention. 3, parts that are the same as or equivalent to those in the heating irradiation apparatus according to Embodiment 1 shown in FIG. 1 are given the same reference numerals, and descriptions thereof are omitted.
図3は、本発明の実施の形態2に係る加熱用照射装置の構成を示す図である。図3において、図1に示した実施の形態1に係る加熱用照射装置と同一または相当する部分については、同一符号を付し、その説明を省略する。
FIG. 3 is a diagram showing a configuration of a heating irradiation apparatus according to
実施の形態1と実施の形態2との相違点について説明する。
まず、第1の相違点について説明する。実施の形態1では、アンテナ3を曲面7の表面上に、曲面状に配置していた。一方、実施の形態2では、反応炉4の上面を平坦な平面にして、当該平面上に各アンテナ3の照射口を平面状に配置している。従って、実施の形態2では、図3の断面図に示されるように、アンテナ3が直線状に配列されている。
次に、第2の相違点について説明する。実施の形態1では、アンテナ3の個数が任意の複数個だったが、一方、実施の形態2では、アンテナ3の個数が3つに限定されている。
他の構成については、実施の形態1と同じであるため、ここではその説明を省略する。 Differences between the first embodiment and the second embodiment will be described.
First, the first difference will be described. In the first embodiment, theantenna 3 is arranged on the curved surface 7 in a curved shape. On the other hand, in the second embodiment, the upper surface of the reaction furnace 4 is a flat plane, and the irradiation port of each antenna 3 is arranged on the plane. Therefore, in the second embodiment, the antennas 3 are arranged linearly as shown in the cross-sectional view of FIG.
Next, the second difference will be described. In the first embodiment, the number ofantennas 3 is an arbitrary number. On the other hand, in the second embodiment, the number of antennas 3 is limited to three.
Since other configurations are the same as those in the first embodiment, the description thereof is omitted here.
まず、第1の相違点について説明する。実施の形態1では、アンテナ3を曲面7の表面上に、曲面状に配置していた。一方、実施の形態2では、反応炉4の上面を平坦な平面にして、当該平面上に各アンテナ3の照射口を平面状に配置している。従って、実施の形態2では、図3の断面図に示されるように、アンテナ3が直線状に配列されている。
次に、第2の相違点について説明する。実施の形態1では、アンテナ3の個数が任意の複数個だったが、一方、実施の形態2では、アンテナ3の個数が3つに限定されている。
他の構成については、実施の形態1と同じであるため、ここではその説明を省略する。 Differences between the first embodiment and the second embodiment will be described.
First, the first difference will be described. In the first embodiment, the
Next, the second difference will be described. In the first embodiment, the number of
Since other configurations are the same as those in the first embodiment, the description thereof is omitted here.
本実施の形態においては、図3に示すように、1つのアンテナ3の照射方向のベクトルは、被加熱物5の特定点6に向かっている。また、当該アンテナ3の両側に、他の2本のアンテナ3が配置されている。アンテナ3の配置間隔は、均等である。アンテナ3の配置間隔は、アンテナ3から照射される高周波の1波長以下に設定することが望ましい。また、アンテナ3の照射口と被加熱物5の表面との距離は、アンテナ3から照射される高周波の5波長以下に設定することが望ましい。
In the present embodiment, as shown in FIG. 3, the vector of the irradiation direction of one antenna 3 is directed toward the specific point 6 of the object 5 to be heated. Two other antennas 3 are arranged on both sides of the antenna 3. The arrangement intervals of the antennas 3 are equal. The arrangement interval of the antennas 3 is desirably set to one wavelength or less of the high frequency irradiated from the antenna 3. In addition, the distance between the irradiation port of the antenna 3 and the surface of the object to be heated 5 is preferably set to 5 wavelengths or less of the high frequency irradiated from the antenna 3.
図3に示すように、アンテナ3を直線状に配置した場合は、アンテナ3の個数は3つの場合が効果的である。図3の3つのアンテナ3の両側に、さらに、アンテナ3を1つずつ配置して、合計5つにすると、アンテナ3からの被加熱物5への照射領域の重畳される領域が少なくなるため、アンテナ3の個数に比例した効率の増加が見込めない。
As shown in FIG. 3, when the antennas 3 are arranged in a straight line, the number of antennas 3 is effectively three. If one antenna 3 is further arranged on both sides of the three antennas 3 in FIG. 3 for a total of five, the area where the irradiation area from the antenna 3 to the object to be heated 5 is superimposed is reduced. The increase in efficiency proportional to the number of antennas 3 cannot be expected.
図4A~図4Eは、実施の形態2の効果について検証したものである。図4A~図4Eは、入力電力に対する、反応炉4内の被加熱物5の特定点6への照射電力の効率を示している。図4A~図4Eの検証においても、実施の形態1と同様に、特定点6を、反応炉4内の中央部に設定している。なお、図4A,図4B,図4C,図4Dにおいては、特定点6を区別して、それぞれ、特定点6D、6E、6F、6Gとして示している。
4A to 4E verify the effects of the second embodiment. 4A to 4E show the efficiency of the irradiation power to the specific point 6 of the heated object 5 in the reaction furnace 4 with respect to the input power. Also in the verification of FIGS. 4A to 4E, the specific point 6 is set at the center of the reactor 4 as in the first embodiment. In FIG. 4A, FIG. 4B, FIG. 4C, and FIG. 4D, the specific points 6 are distinguished and shown as specific points 6D, 6E, 6F, and 6G, respectively.
図4Aは、大出力が可能な電子管発振器と1つのアンテナを設けた従来の方式である。図4B及び図4Cは、図3に示した本実施の形態2に係る加熱用照射装置である。図4Bおよび図4Cでは、位相コヒーレントが高い高周波発生器1と、直線状に配列した3つのアンテナ3とが設けられている。また、図4Dは、位相コヒーレントが高い高周波発生器1と、直線状に配列した5つのアンテナ3とが設けられている。図4Bおよび図4Dは、高周波供給路2の長さを調整して、位相を設定することで、被加熱物5の特定点6に電力が集中するようにした場合を示している。一方、図4Cは、高周波供給路2の長さを調整して、位相を設定することで、アンテナ3が1つだけ設けられている図4Aと同様の電力量が特定点6に集中するようにした場合を示している。図4A~図4Dにおいて、それぞれ、アンテナ3は矩形導波管とし、その中心間距離は0.9波長、中心のアンテナの高さは1.2波長である。図4A~図4Dにおいて、反応炉4内へ照射する高周波の総電力は同じである。
FIG. 4A shows a conventional system provided with an electron tube oscillator capable of high output and one antenna. 4B and 4C show the heating irradiation apparatus according to the second embodiment shown in FIG. 4B and 4C, a high-frequency generator 1 with high phase coherence and three antennas 3 arranged in a straight line are provided. In FIG. 4D, a high-frequency generator 1 with high phase coherence and five antennas 3 arranged linearly are provided. 4B and 4D show a case where power is concentrated on a specific point 6 of the object to be heated 5 by adjusting the length of the high-frequency supply path 2 and setting the phase. On the other hand, FIG. 4C adjusts the length of the high-frequency supply path 2 and sets the phase so that the same amount of power as in FIG. 4A in which only one antenna 3 is provided is concentrated at the specific point 6. This shows the case. 4A to 4D, the antenna 3 is a rectangular waveguide, the distance between the centers is 0.9 wavelength, and the height of the center antenna is 1.2 wavelengths. 4A to 4D, the total high-frequency power irradiated into the reaction furnace 4 is the same.
このとき、図4A~図4Dにおいて、入力電力に対する反応炉4内の被加熱物の特定点6への照射電力の効率を測定した。その結果を、図4Eに示す。図4Eの横軸は、それぞれ、特定点6D、6E、6F、6Gを示す。縦軸は、被加熱物の特定点への電力効率を示す。図4Eの棒グラフより、図4Bの特定点6Eの方が、図4Aの特定点6Dに比べて、被加熱物5の特定点6付近の電力効率が大きいことがわかり、1.5倍以上効率が向上する。他方、図4Cの特定点6Fでは、図4Aの特定点6Dと同様の電力効率を実現することが可能である。また、アンテナ3の個数を3本とした図4Bの特定点6Eの方が、アンテナ3の個数を5本とした図4Dの特定点6Gよりも効率が高いことがわかる。すなわち、前述の通り、直線状に配置した場合は、アンテナ3の個数は3つが効果的と言える。位相の設定値については、被加熱物5の形態(たとえば気体、液体、固体)および特性によって適宜選択すればよい。
At this time, in FIGS. 4A to 4D, the efficiency of the irradiation power to the specific point 6 of the heated object in the reaction furnace 4 with respect to the input power was measured. The result is shown in FIG. 4E. The horizontal axis in FIG. 4E indicates specific points 6D, 6E, 6F, and 6G, respectively. A vertical axis | shaft shows the power efficiency to the specific point of a to-be-heated material. From the bar graph of FIG. 4E, it can be seen that the specific point 6E of FIG. 4B has higher power efficiency near the specific point 6 of the heated object 5 than the specific point 6D of FIG. Will improve. On the other hand, at the specific point 6F in FIG. 4C, it is possible to achieve the same power efficiency as the specific point 6D in FIG. 4A. Further, it can be seen that the specific point 6E in FIG. 4B in which the number of antennas 3 is three is higher in efficiency than the specific point 6G in FIG. 4D in which the number of antennas 3 is five. That is, as described above, when the antennas are arranged linearly, it can be said that three antennas 3 are effective. What is necessary is just to select suitably the setting value of a phase with the form (for example, gas, liquid, solid) of the to-be-heated material 5, and a characteristic.
以上のように、実施の形態2に係る加熱用照射装置は、加熱用電磁波(高周波)を発生させる電磁波発生器としての高周波発生器1と、高周波発生器1で発生した加熱用電磁波を被加熱物5に照射する3つのアンテナ3と、上面が平坦な平面状になっており、当該上面にアンテナ3の照射口が取り付けられるとともに、被加熱物5を収容するための内部空間を有する、反応炉4とを備え、3つのアンテナは、直線状に配置され、3つのアンテナは、加熱用電磁波の照射方向が被加熱物5の特定点6に向かうように配置された1つのアンテナ3と、1つのアンテナ3の両側にそれぞれ配置された他の2つのアンテナ3とを含む。
このように、実施の形態2においては、位相コヒーレンスの高い高周波発生器1を用いて、直線状に配列された3つのアンテナ3からの高周波を反応炉4内で空間合成しているが、この場合においても、実施の形態1と同様の効果が得られる。 As described above, the heating irradiation apparatus according to the second embodiment is heated by thehigh frequency generator 1 as an electromagnetic wave generator that generates a heating electromagnetic wave (high frequency) and the heating electromagnetic wave generated by the high frequency generator 1. Reaction that has three antennas 3 for irradiating the object 5 and an upper surface of the antenna 3 that is flat and has an irradiation space for the object 3 and an irradiation port of the antenna 3 attached to the upper surface. The three antennas are arranged in a straight line, and the three antennas are arranged so that the irradiation direction of the electromagnetic wave for heating is directed to the specific point 6 of the object to be heated 5; The other two antennas 3 arranged on both sides of one antenna 3 are included.
As described above, in the second embodiment, the high-frequency generator 1 having high phase coherence is used to spatially synthesize the high-frequency waves from the three antennas 3 arranged linearly in the reaction furnace 4. Even in this case, the same effect as in the first embodiment can be obtained.
このように、実施の形態2においては、位相コヒーレンスの高い高周波発生器1を用いて、直線状に配列された3つのアンテナ3からの高周波を反応炉4内で空間合成しているが、この場合においても、実施の形態1と同様の効果が得られる。 As described above, the heating irradiation apparatus according to the second embodiment is heated by the
As described above, in the second embodiment, the high-
実施の形態3.
図5は、本発明の実施の形態3に係る加熱用照射装置の構成を示す図である。図1に示した実施の形態1に係る加熱用照射装置と同一または相当する部分については、同一符号を付し、その説明を省略する。Embodiment 3 FIG.
FIG. 5 is a diagram showing a configuration of a heating irradiation apparatus according toEmbodiment 3 of the present invention. Parts that are the same as or equivalent to those in the heating irradiation apparatus according to Embodiment 1 shown in FIG. 1 are given the same reference numerals, and descriptions thereof are omitted.
図5は、本発明の実施の形態3に係る加熱用照射装置の構成を示す図である。図1に示した実施の形態1に係る加熱用照射装置と同一または相当する部分については、同一符号を付し、その説明を省略する。
FIG. 5 is a diagram showing a configuration of a heating irradiation apparatus according to
実施の形態1と実施の形態3との相違点について説明する。
図5に示すように、実施の形態3では、各アンテナ3に対して、移相器51と増幅器52とを1つずつ設けている。この点が、実施の形態1と異なる。なお、図5では、実施の形態1の構成に対して実施の形態3の構成を適用した場合を示しているが、実施の形態2の構成に対して実施の形態3の構成を適用してもよい。
他の構成については、実施の形態1,2と同じであるため、ここでは、その説明を省略する。 Differences between the first embodiment and the third embodiment will be described.
As shown in FIG. 5, in the third embodiment, onephase shifter 51 and one amplifier 52 are provided for each antenna 3. This point is different from the first embodiment. FIG. 5 shows the case where the configuration of the third embodiment is applied to the configuration of the first embodiment, but the configuration of the third embodiment is applied to the configuration of the second embodiment. Also good.
Since other configurations are the same as those in the first and second embodiments, the description thereof is omitted here.
図5に示すように、実施の形態3では、各アンテナ3に対して、移相器51と増幅器52とを1つずつ設けている。この点が、実施の形態1と異なる。なお、図5では、実施の形態1の構成に対して実施の形態3の構成を適用した場合を示しているが、実施の形態2の構成に対して実施の形態3の構成を適用してもよい。
他の構成については、実施の形態1,2と同じであるため、ここでは、その説明を省略する。 Differences between the first embodiment and the third embodiment will be described.
As shown in FIG. 5, in the third embodiment, one
Since other configurations are the same as those in the first and second embodiments, the description thereof is omitted here.
移相器51は、高周波供給路2内に取り付けられている。移相器51は、高周波供給路2の一部を介して、高周波発生器1に接続されている。移相器51は、高周波供給路2の長さによらず、アンテナ3への位相量を制御する。移相器51は、例えば電圧制御型の可変移相器など、移相量を変化できるものであれば、適宜選択してよい。
The phase shifter 51 is attached in the high frequency supply path 2. The phase shifter 51 is connected to the high frequency generator 1 through a part of the high frequency supply path 2. The phase shifter 51 controls the phase amount to the antenna 3 regardless of the length of the high-frequency supply path 2. The phase shifter 51 may be appropriately selected as long as it can change the amount of phase shift, such as a voltage-controlled variable phase shifter.
増幅器52は、高周波供給路2内に取り付けられている。増幅器52は、移相器51とアンテナ3との間に設けられている。増幅器52は、移相器51とアンテナ3とに、高周波供給路2の一部を介して、接続されている。増幅器52は、アンテナ3への高周波を増幅するものであり、例えば、半導体デバイスで構成される増幅器など、高周波を増幅できるものであれば、適宜選択してよい。
The amplifier 52 is attached in the high frequency supply path 2. The amplifier 52 is provided between the phase shifter 51 and the antenna 3. The amplifier 52 is connected to the phase shifter 51 and the antenna 3 through a part of the high-frequency supply path 2. The amplifier 52 amplifies the high frequency to the antenna 3, and may be appropriately selected as long as it can amplify the high frequency, such as an amplifier constituted by a semiconductor device.
移相器51と増幅器52とにより、アンテナ3での出力を変化させることができる。そのため、被加熱物5への出力において、高周波供給路2の長さを変更することなく、上述した、図2Bおよび図2Cや、図4Bおよび図4Cの構成で実現させた効率を実現することが可能である。
The output from the antenna 3 can be changed by the phase shifter 51 and the amplifier 52. Therefore, in the output to the article 5 to be heated, the efficiency realized by the configurations of FIGS. 2B and 2C and FIGS. 4B and 4C described above can be realized without changing the length of the high-frequency supply path 2. Is possible.
以上のように、実施の形態3によれば、移相器51と増幅器52とを設けることで、高周波供給路2の長さを調整することなく、実施の形態1および2と同様の効果を得ることができる。
As described above, according to the third embodiment, by providing the phase shifter 51 and the amplifier 52, the same effect as in the first and second embodiments can be obtained without adjusting the length of the high-frequency supply path 2. Obtainable.
実施の形態4.
図6は、本発明の実施の形態4に係る加熱用照射装置の構成を示す図である。図5に示した実施の形態3に係る加熱用照射装置と同一または相当部分については、同一符号を付し、その説明を省略する。Embodiment 4 FIG.
FIG. 6 is a diagram showing a configuration of a heating irradiation apparatus according toEmbodiment 4 of the present invention. The same or corresponding parts as those of the heating irradiation apparatus according to the third embodiment shown in FIG.
図6は、本発明の実施の形態4に係る加熱用照射装置の構成を示す図である。図5に示した実施の形態3に係る加熱用照射装置と同一または相当部分については、同一符号を付し、その説明を省略する。
FIG. 6 is a diagram showing a configuration of a heating irradiation apparatus according to
実施の形態3と実施の形態4との相違点について説明する。
図5と図6とを比較すると分かるように、実施の形態4においては、振幅/位相取得部71と、振幅/位相モニタ72と、高周波出力制御装置73とが、追加されている。
他の構成および動作については、実施の形態3と同じである。 Differences between the third embodiment and the fourth embodiment will be described.
As can be seen from a comparison between FIG. 5 and FIG. 6, in the fourth embodiment, an amplitude /phase acquisition unit 71, an amplitude / phase monitor 72, and a high-frequency output control device 73 are added.
Other configurations and operations are the same as those in the third embodiment.
図5と図6とを比較すると分かるように、実施の形態4においては、振幅/位相取得部71と、振幅/位相モニタ72と、高周波出力制御装置73とが、追加されている。
他の構成および動作については、実施の形態3と同じである。 Differences between the third embodiment and the fourth embodiment will be described.
As can be seen from a comparison between FIG. 5 and FIG. 6, in the fourth embodiment, an amplitude /
Other configurations and operations are the same as those in the third embodiment.
なお、図6においては、移相器51を設ける位置が階段状に変化しているように図示されているが、これは、高周波出力制御装置73と移相器51とを接続する複数の信号線を図示する関係で、便宜上、移相器51の位置を階段状に少しずつずらして記載したもので、実際には、図5と同様に、各移相器51を一直線上に並べて配置してよい。
In FIG. 6, the position where the phase shifter 51 is provided is illustrated so as to change stepwise. This is because a plurality of signals connecting the high frequency output control device 73 and the phase shifter 51 are shown. For the sake of convenience, the positions of the phase shifters 51 are described in steps so as to be shifted step by step for the sake of convenience. Actually, as in FIG. 5, the phase shifters 51 are arranged in a straight line. It's okay.
振幅/位相取得部71は、各アンテナ3に対して1つずつ設けられている。振幅/位相取得部71は、アンテナ3と増幅器52との間に設けられている。振幅/位相取得部71は、反応炉4内へ入射される高周波の振幅と位相を取得するとともに、反応炉4内から反射される高周波の振幅と位相を取得する。以下では、反応炉4内へ入射される高周波を「入力波」と呼び、反応炉4内から反射される高周波を「反射波」と呼ぶ。振幅/位相取得部71は、たとえば、方向性結合器など、振幅と位相の両方を取得できるものであれば、適宜選択してよい。なお、ここでは、振幅/位相取得部71が、入力波の振幅及び位相と反射波の振幅及び位相との、両方を取得することとして説明するが、その場合に限らず、入力波の振幅及び位相と反射波の振幅及び位相とのうちのいずれか一方のみを取得する構成としてもよい。
One amplitude / phase acquisition unit 71 is provided for each antenna 3. The amplitude / phase acquisition unit 71 is provided between the antenna 3 and the amplifier 52. The amplitude / phase acquisition unit 71 acquires the amplitude and phase of the high frequency incident into the reaction furnace 4 and acquires the amplitude and phase of the high frequency reflected from the reaction furnace 4. Hereinafter, the high frequency incident into the reaction furnace 4 is referred to as “input wave”, and the high frequency reflected from the reaction furnace 4 is referred to as “reflected wave”. The amplitude / phase acquisition unit 71 may be appropriately selected as long as it can acquire both amplitude and phase, such as a directional coupler. Note that here, the amplitude / phase acquisition unit 71 is described as acquiring both the amplitude and phase of the input wave and the amplitude and phase of the reflected wave. Only one of the phase and the amplitude and phase of the reflected wave may be acquired.
振幅/位相モニタ72は、振幅/位相取得部71をモニタする。具体的には、振幅/位相モニタ72は、振幅/位相取得部71で取得された入力波と反射波の振幅と位相とを、振幅値および位相値として、それぞれ、値として取得する。振幅/位相モニタ72、たとえば、ネットワークアナライザなどから構成されるが、これに限定されることなく、適宜選択してよい。振幅/位相モニタ72は、複数の振幅/位相取得部71に対して、1つだけ設けられている。
The amplitude / phase monitor 72 monitors the amplitude / phase acquisition unit 71. Specifically, the amplitude / phase monitor 72 acquires the amplitude and phase of the input wave and reflected wave acquired by the amplitude / phase acquisition unit 71 as an amplitude value and a phase value, respectively. The amplitude / phase monitor 72 is composed of, for example, a network analyzer, but is not limited thereto, and may be appropriately selected. Only one amplitude / phase monitor 72 is provided for the plurality of amplitude / phase acquisition units 71.
高周波出力制御装置73は、振幅/位相モニタ72でモニタした入力波と反射波の振幅値および位相値に基づいて、高周波発生器1と移相器51と増幅器52とを制御する。なお、図6においては、図の簡略化を図るため、高周波出力制御装置73と増幅器52とを接続する信号線については図示を省略している。
The high frequency output control device 73 controls the high frequency generator 1, the phase shifter 51, and the amplifier 52 based on the amplitude value and the phase value of the input wave and the reflected wave monitored by the amplitude / phase monitor 72. In FIG. 6, signal lines that connect the high-frequency output control device 73 and the amplifier 52 are not shown for the sake of simplicity.
高周波出力制御装置73は、プロセッサとメモリから構成された、例えば、パーソナルコンピュータから構成される。高周波出力制御装置73の各機能は、メモリに記憶されたプログラムを実行するCPU、システムLSI等の処理回路により、実現される。また、複数のプロセッサおよび複数のメモリが連携して、高周波出力制御装置73の各機能を実行してもよい。ただし、高周波出力制御装置73は、パーソナルコンピュータに限定されることなく、他のハードウエアから適宜選択してよい。
The high frequency output control device 73 is composed of a processor and a memory, for example, a personal computer. Each function of the high-frequency output control device 73 is realized by a processing circuit such as a CPU or a system LSI that executes a program stored in a memory. A plurality of processors and a plurality of memories may cooperate to execute each function of the high-frequency output control device 73. However, the high-frequency output control device 73 is not limited to a personal computer, and may be appropriately selected from other hardware.
次に、実施の形態4に係る加熱用照射装置の動作について説明する。
高周波出力制御装置73は、振幅/位相モニタ72によって得られた入力波と反射波の振幅値と位相値とを、メモリに格納する。高周波出力制御装置73は、反応炉4内に、高周波の最適な照射分布を提供するために、メモリに格納した振幅値と位相値とに基づいて、高周波発生器1の周波数、移相器51の位相値、および、増幅器52の増幅量を制御する。なお、高周波出力制御装置73は、高周波発生器1の周波数、移相器51の位相値、及び、増幅器52の増幅量のすべてを必ずしも制御する必要はなく、このうちの少なくとも1つを制御すればよい。 Next, the operation of the heating irradiation apparatus according to the fourth embodiment will be described.
The high frequencyoutput control device 73 stores the input wave and the amplitude value and the phase value of the reflected wave obtained by the amplitude / phase monitor 72 in a memory. The high frequency output control device 73 provides the frequency of the high frequency generator 1 and the phase shifter 51 based on the amplitude value and the phase value stored in the memory in order to provide the optimum irradiation distribution of the high frequency in the reactor 4. And the amount of amplification of the amplifier 52 are controlled. The high-frequency output control device 73 does not necessarily need to control all of the frequency of the high-frequency generator 1, the phase value of the phase shifter 51, and the amplification amount of the amplifier 52, and controls at least one of them. That's fine.
高周波出力制御装置73は、振幅/位相モニタ72によって得られた入力波と反射波の振幅値と位相値とを、メモリに格納する。高周波出力制御装置73は、反応炉4内に、高周波の最適な照射分布を提供するために、メモリに格納した振幅値と位相値とに基づいて、高周波発生器1の周波数、移相器51の位相値、および、増幅器52の増幅量を制御する。なお、高周波出力制御装置73は、高周波発生器1の周波数、移相器51の位相値、及び、増幅器52の増幅量のすべてを必ずしも制御する必要はなく、このうちの少なくとも1つを制御すればよい。 Next, the operation of the heating irradiation apparatus according to the fourth embodiment will be described.
The high frequency
動作について説明する。
振幅/位相取得部71によって得られた入力波および反射波の振幅と位相とは、振幅/位相モニタ72を介して、高周波出力制御装置73に送られる。被加熱物5の加熱状況に変化があれば、入力波および反射波に変化が生じる。そのため、例えば、高周波出力制御装置73では、あらかじめ計算値によるルックアップテーブルを用意することで、高周波発生器1と移相器51と増幅器52とを制御することができる。なお、ルックアップテーブルとしては、高周波発生器1と、移相器51と、増幅器52とに対して、それぞれ、用意する。以下に、説明する。 The operation will be described.
The amplitude and phase of the input wave and the reflected wave obtained by the amplitude /phase acquisition unit 71 are sent to the high frequency output control device 73 via the amplitude / phase monitor 72. If there is a change in the heating state of the article 5 to be heated, a change occurs in the input wave and the reflected wave. Therefore, for example, the high frequency output control device 73 can control the high frequency generator 1, the phase shifter 51, and the amplifier 52 by preparing a lookup table based on calculated values in advance. Note that look-up tables are prepared for the high-frequency generator 1, the phase shifter 51, and the amplifier 52, respectively. This will be described below.
振幅/位相取得部71によって得られた入力波および反射波の振幅と位相とは、振幅/位相モニタ72を介して、高周波出力制御装置73に送られる。被加熱物5の加熱状況に変化があれば、入力波および反射波に変化が生じる。そのため、例えば、高周波出力制御装置73では、あらかじめ計算値によるルックアップテーブルを用意することで、高周波発生器1と移相器51と増幅器52とを制御することができる。なお、ルックアップテーブルとしては、高周波発生器1と、移相器51と、増幅器52とに対して、それぞれ、用意する。以下に、説明する。 The operation will be described.
The amplitude and phase of the input wave and the reflected wave obtained by the amplitude /
高周波発生器1のためのルックアップテーブルには、入力波の振幅値および位相値と、反射波の振幅値および位相値と、高周波発生器1の周波数との対応関係が、予め定められている。従って、ルックアップテーブルに従って、入力波の振幅値および位相値と、反射波の振幅値および位相値とに基づいて、高周波発生器1の最適な周波数を求めることができる。
In the look-up table for the high frequency generator 1, the correspondence relationship between the amplitude value and phase value of the input wave, the amplitude value and phase value of the reflected wave, and the frequency of the high frequency generator 1 is determined in advance. . Therefore, the optimum frequency of the high-frequency generator 1 can be obtained based on the amplitude value and phase value of the input wave and the amplitude value and phase value of the reflected wave according to the lookup table.
同様に、移相器51のためのルックアップテーブルには、入力波の振幅値および位相値と、反射波の振幅値および位相値と、移相器51の位相値との対応関係が、予め定められている。従って、ルックアップテーブルに従って、入力波の振幅値および位相値と、反射波の振幅値および位相値とに基づいて、移相器51の最適な位相値を求めることができる。
Similarly, in the look-up table for the phase shifter 51, the correspondence relationship between the amplitude value and phase value of the input wave, the amplitude value and phase value of the reflected wave, and the phase value of the phase shifter 51 is stored in advance. It has been established. Therefore, the optimum phase value of the phase shifter 51 can be obtained based on the amplitude value and phase value of the input wave and the amplitude value and phase value of the reflected wave according to the lookup table.
また、同様に、増幅器52のためのルックアップテーブルには、入力波の振幅値および位相値と、反射波の振幅値および位相値と、増幅器52の増幅量との対応関係が、予め定められている。従って、ルックアップテーブルに従って、入力波の振幅値および位相値と、反射波の振幅値および位相値とに基づいて、増幅器52の最適な増幅量を求めることができる。
Similarly, in the look-up table for the amplifier 52, the correspondence relationship between the amplitude value and phase value of the input wave, the amplitude value and phase value of the reflected wave, and the amplification amount of the amplifier 52 is determined in advance. ing. Therefore, the optimum amplification amount of the amplifier 52 can be obtained based on the amplitude value and phase value of the input wave and the amplitude value and phase value of the reflected wave according to the lookup table.
こうして、高周波出力制御装置73では、高周波発生器1と移相器51と増幅器52とを制御することで、例えば、入力波がより大きく、反射波がより小さくなるように、入力波および反射波を制御することができる。これにより、被加熱物5への高周波の出力において、上述した、図2B及び図2Cの構成あるいは図4B及び図4Cの構成から得られる効率と同等の効率を、被加熱物5の状態に応じて、リアルタイムに実現することが可能である。
Thus, the high-frequency output control device 73 controls the high-frequency generator 1, the phase shifter 51, and the amplifier 52, for example, so that the input wave and the reflected wave are larger so that the input wave is larger and the reflected wave is smaller. Can be controlled. Thereby, in the output of the high frequency to the to-be-heated object 5, the efficiency equivalent to the efficiency obtained from the structure of FIG. 2B and FIG. 2C mentioned above or the structure of FIG. 4B and FIG. Can be realized in real time.
なお、高周波出力制御装置73は、入力波の振幅値及び位相値と反射波の振幅値および位相値とのすべてを制御に用いる必要はなく、これらの値のうち、少なくとも1つを制御に用いるようにすればよい。
The high-frequency output control device 73 does not need to use all of the amplitude value and phase value of the input wave and the amplitude value and phase value of the reflected wave for control, and uses at least one of these values for control. What should I do?
以上のように、この実施の形態4によれば、振幅/位相取得部71と、振幅/位相モニタ72と、高周波出力制御装置73とを備えることにより、被加熱物5の状態に応じてリアルタイムに照射分布を制御できるようになり、より効率的な加熱効果が得られる。
As described above, according to the fourth embodiment, the amplitude / phase acquisition unit 71, the amplitude / phase monitor 72, and the high-frequency output control device 73 are provided, so that real-time according to the state of the object to be heated 5. Therefore, the irradiation distribution can be controlled, and a more efficient heating effect can be obtained.
実施の形態5.
図7は、本発明の実施の形態5に係る加熱用照射装置の構成を示す図である。図5に示した実施の形態3に係る加熱用照射装置と同一または相当部分については、同一符号を付し、その説明を省略する。Embodiment 5 FIG.
FIG. 7 is a diagram showing a configuration of a heating irradiation apparatus according toEmbodiment 5 of the present invention. The same or corresponding parts as those of the heating irradiation apparatus according to the third embodiment shown in FIG.
図7は、本発明の実施の形態5に係る加熱用照射装置の構成を示す図である。図5に示した実施の形態3に係る加熱用照射装置と同一または相当部分については、同一符号を付し、その説明を省略する。
FIG. 7 is a diagram showing a configuration of a heating irradiation apparatus according to
実施の形態3と実施の形態5との相違点について説明する。
図5と図7とを比較すると分かるように、実施の形態5では、被加熱物5の温度を取得する温度取得部81と、それをモニタする温度モニタ82と、高周波出力制御装置73とが追加されている。
他の構成および動作については、実施の形態3と同じである。 Differences between the third embodiment and the fifth embodiment will be described.
As can be seen from a comparison between FIG. 5 and FIG. 7, in the fifth embodiment, atemperature acquisition unit 81 that acquires the temperature of the article 5 to be heated, a temperature monitor 82 that monitors the temperature, and a high-frequency output control device 73 include Have been added.
Other configurations and operations are the same as those in the third embodiment.
図5と図7とを比較すると分かるように、実施の形態5では、被加熱物5の温度を取得する温度取得部81と、それをモニタする温度モニタ82と、高周波出力制御装置73とが追加されている。
他の構成および動作については、実施の形態3と同じである。 Differences between the third embodiment and the fifth embodiment will be described.
As can be seen from a comparison between FIG. 5 and FIG. 7, in the fifth embodiment, a
Other configurations and operations are the same as those in the third embodiment.
なお、図7においては、移相器51を設ける位置が階段状に変化しているように図示されているが、これは、高周波出力制御装置73と移相器51とを接続する複数の信号線を図示する関係で、便宜上、移相器51の位置を階段状に少しずつずらして記載したもので、実際には、図5と同様に、各移相器51を一直線上に並べて配置してよい。
In FIG. 7, the position where the phase shifter 51 is provided is illustrated so as to change stepwise. This is because a plurality of signals connecting the high-frequency output control device 73 and the phase shifter 51 are shown. For the sake of convenience, the positions of the phase shifters 51 are described in steps so as to be shifted step by step for the sake of convenience. Actually, as in FIG. 5, the phase shifters 51 are arranged in a straight line. It's okay.
なお、図7では、実施の形態3に対して本実施の形態5に係る構成を適用した場合を示しているが、実施の形態4に対して本実施の形態5に係る構成を適用してもよい。その場合には、高周波出力制御装置73を2つ設ける必要はなく、1つの高周波出力制御装置73により、入力波の振幅値および位相値と、反射波の振幅値および位相値と、被加熱物5の温度のうちの、すくなくとも1つに基づいて、高周波発生器1と移相器51と増幅器52とを制御する。なお、高周波出力制御装置73は、高周波発生器1の周波数、移相器51の位相値、及び、増幅器52の増幅量のすべてを必ずしも制御する必要はなく、このうちの少なくとも1つを制御すればよい。
FIG. 7 shows the case where the configuration according to the fifth embodiment is applied to the third embodiment, but the configuration according to the fifth embodiment is applied to the fourth embodiment. Also good. In that case, it is not necessary to provide two high-frequency output control devices 73, and the single high-frequency output control device 73 allows the amplitude value and phase value of the input wave, the amplitude value and phase value of the reflected wave, and the object to be heated. The high-frequency generator 1, the phase shifter 51, and the amplifier 52 are controlled based on at least one of the five temperatures. The high-frequency output control device 73 does not necessarily need to control all of the frequency of the high-frequency generator 1, the phase value of the phase shifter 51, and the amplification amount of the amplifier 52, and controls at least one of them. That's fine.
温度取得部81は、反応炉4の内部に設けられている。温度取得部81は、反応炉4内の被加熱物5の温度を測定する。温度取得部81は、例えば、熱電対やサーモグラフィなど、温度を測定できるものであれば、適宜選択してよい。また、反応炉4内に、温度取得部81を複数個設けてもよく、その取付位置は特に限定しない。
The temperature acquisition unit 81 is provided inside the reaction furnace 4. The temperature acquisition unit 81 measures the temperature of the object to be heated 5 in the reaction furnace 4. The temperature acquisition unit 81 may be appropriately selected as long as the temperature can be measured, such as a thermocouple or a thermography. Further, a plurality of temperature acquisition units 81 may be provided in the reaction furnace 4, and the attachment position is not particularly limited.
温度モニタ82は、温度取得部81をモニタする。具体的には、温度モニタ82は、温度取得部81で取得された温度を、値として取得する。温度モニタ82は、例えばデータロガーなどから構成されるが、これに限定されることなく、適宜選択してよい。温度モニタ82は、複数の温度取得部81に対して、1つだけ設けられている。
The temperature monitor 82 monitors the temperature acquisition unit 81. Specifically, the temperature monitor 82 acquires the temperature acquired by the temperature acquisition unit 81 as a value. The temperature monitor 82 is composed of, for example, a data logger or the like, but is not limited thereto and may be selected as appropriate. Only one temperature monitor 82 is provided for the plurality of temperature acquisition units 81.
温度取得部81によって得られた温度は、温度モニタ82を介して、高周波出力制御装置73に送られる。高周波出力制御装置73は、温度モニタ82でモニタした温度に基づいて、被加熱物5の温度分布に応じて、高周波発生器1と移相器51と増幅器52とを制御する。これにより、被加熱物5への高周波の出力において、上述した、図2B及び図2Cの構成あるいは図4B及び図4Cの構成から得られる効率と同等の効率を、被加熱物5の状態に応じて、リアルタイムに実現することが可能である。
The temperature obtained by the temperature acquisition unit 81 is sent to the high frequency output control device 73 via the temperature monitor 82. The high frequency output control device 73 controls the high frequency generator 1, the phase shifter 51, and the amplifier 52 according to the temperature distribution of the article to be heated 5 based on the temperature monitored by the temperature monitor 82. Thereby, in the output of the high frequency to the to-be-heated object 5, the efficiency equivalent to the efficiency obtained from the structure of FIG. 2B and FIG. 2C mentioned above or the structure of FIG. 4B and FIG. Can be realized in real time.
以上のように、この実施の形態5によれば、温度取得部81と、温度モニタ82と、高周波出力制御装置73とを備えることにより、被加熱物5の状態に応じてリアルタイムに照射分布を制御できるようになり、より効率的な加熱効果が得られる。
As described above, according to the fifth embodiment, by providing the temperature acquisition unit 81, the temperature monitor 82, and the high-frequency output control device 73, the irradiation distribution is real-time according to the state of the heated object 5. It becomes controllable and the more efficient heating effect is acquired.
実施の形態6.
図8は、本発明の実施の形態6に係る加熱用照射装置の構成を示す図である。図5に示した実施の形態3に係るマイクロ波加熱照射装置と同一または相当部分については、同一符号を付し、その説明を省略する。Embodiment 6 FIG.
FIG. 8 is a diagram showing a configuration of a heating irradiation apparatus according toEmbodiment 6 of the present invention. The same or corresponding parts as those in the microwave heating irradiation apparatus according to the third embodiment shown in FIG.
図8は、本発明の実施の形態6に係る加熱用照射装置の構成を示す図である。図5に示した実施の形態3に係るマイクロ波加熱照射装置と同一または相当部分については、同一符号を付し、その説明を省略する。
FIG. 8 is a diagram showing a configuration of a heating irradiation apparatus according to
実施の形態3と実施の形態6との相違点について説明する。
図5と図8とを比較すると分かるように、実施の形態6では、実施の形態3に示した加熱用照射装置を、複数個直列に接続して、全体として、高周波加熱用照射システムを構築している点が、実施の形態3と異なる。加熱用照射装置を直列接続する際には、各加熱用照射装置の反応炉4を直列に連結させて、1つの大きな細長い共用反応炉とする。被加熱物5は、その細長い大きな共用反応炉内を、ベルトコンベアーなどの搬送機器で搬送され、各加熱用照射装置を、順次、通過していくものとする。
他の構成については、実施の形態3と同様であるため、ここでは、その説明を省略する。 Differences between the third embodiment and the sixth embodiment will be described.
As can be seen by comparing FIG. 5 and FIG. 8, in the sixth embodiment, a plurality of heating irradiation apparatuses shown in the third embodiment are connected in series to construct a high-frequency heating irradiation system as a whole. This is different from the third embodiment. When the heating irradiation devices are connected in series, thereaction furnaces 4 of the respective heating irradiation devices are connected in series to form one large elongated common reaction furnace. It is assumed that the article 5 to be heated is transported through the long and large common reactor by a transport device such as a belt conveyor, and sequentially passes through each heating irradiation device.
Other configurations are the same as those in the third embodiment, and thus the description thereof is omitted here.
図5と図8とを比較すると分かるように、実施の形態6では、実施の形態3に示した加熱用照射装置を、複数個直列に接続して、全体として、高周波加熱用照射システムを構築している点が、実施の形態3と異なる。加熱用照射装置を直列接続する際には、各加熱用照射装置の反応炉4を直列に連結させて、1つの大きな細長い共用反応炉とする。被加熱物5は、その細長い大きな共用反応炉内を、ベルトコンベアーなどの搬送機器で搬送され、各加熱用照射装置を、順次、通過していくものとする。
他の構成については、実施の形態3と同様であるため、ここでは、その説明を省略する。 Differences between the third embodiment and the sixth embodiment will be described.
As can be seen by comparing FIG. 5 and FIG. 8, in the sixth embodiment, a plurality of heating irradiation apparatuses shown in the third embodiment are connected in series to construct a high-frequency heating irradiation system as a whole. This is different from the third embodiment. When the heating irradiation devices are connected in series, the
Other configurations are the same as those in the third embodiment, and thus the description thereof is omitted here.
図8において、被加熱物5は、共用反応炉の左側から投入され、複数の各加熱用照射装置を通って、共用反応炉の右側の方向に移動するものと仮定する。なお、投入および移動の方向は、この逆であってもよい。
8, it is assumed that the object to be heated 5 is input from the left side of the common reactor, and moves in the right direction of the common reactor through a plurality of heating irradiation devices. It should be noted that the direction of input and movement may be reversed.
このとき、被加熱物5の加熱状況や反応状況に応じて、各加熱用照射装置毎に、移相器51の位相量および増幅器52の増幅量の少なくとも1つを変化させることで、各加熱用照射装置の反応炉4ごとに、被加熱物5に照射する高周波の出力を可変とすることができる。これにより、各加熱用照射装置間で、被加熱物5の状況に合わせて、各反応炉4ごとに、別々の状況を作り出すことが可能である。
At this time, by changing at least one of the phase amount of the phase shifter 51 and the amplification amount of the amplifier 52 for each heating irradiation device according to the heating state and reaction state of the article to be heated 5, The output of the high frequency irradiated to the to-be-heated material 5 can be made variable for every reaction furnace 4 of the irradiation apparatus. Thereby, according to the condition of the to-be-heated material 5 between each irradiation apparatus for heating, it is possible to create a separate condition for each reaction furnace 4.
また、このとき、さらに、各加熱用照射装置の高周波発生器1の周波数を変化させることもできるため、各加熱用照射装置間で高周波が干渉することも防止することができる。
Further, at this time, since the frequency of the high-frequency generator 1 of each heating irradiation apparatus can be changed, it is possible to prevent high-frequency interference between the heating irradiation apparatuses.
図8に示すように、本実施の形態においては、共用反応炉を構成する各反応炉4ごとに、高周波発生器1、移相器51、増幅器52、アンテナ3が、別個に設けられている。そのため、それぞれの各反応炉4ごとに、被加熱物5の反応状態に応じて、アンテナ3から照射する高周波の出力を制御することができる。これにより、各反応炉4において、被加熱物5の状態に応じて、照射分布を変えることができるため、最適な条件で、効率よく、被加熱物5の加熱を行うことができる。
As shown in FIG. 8, in this Embodiment, the high frequency generator 1, the phase shifter 51, the amplifier 52, and the antenna 3 are provided separately for every reaction furnace 4 which comprises a common reaction furnace. . Therefore, the output of the high frequency irradiated from the antenna 3 can be controlled for each reaction furnace 4 according to the reaction state of the article 5 to be heated. Thereby, in each reaction furnace 4, since irradiation distribution can be changed according to the state of the to-be-heated material 5, the to-be-heated material 5 can be efficiently heated on optimal conditions.
なお、図8では、実施の形態3に対して実施の形態6に係る構成を適用した場合を示しているが、その場合に限らず、他の実施の形態、すなわち、実施の形態1から5までのいずれかの実施の形態に対して、実施の形態6に係る構成を適用してもよい。さらに、直列接続する複数の加熱用照射装置がすべて同一構成である必要はない。従って、実施の形態1から5までのいずれかの2以上の実施の形態に係る構成を複数個自由に組み合わせて、直列に接続してもよい。
FIG. 8 shows a case where the configuration according to the sixth embodiment is applied to the third embodiment. However, the present invention is not limited to this case, and other embodiments, that is, the first to fifth embodiments. The configuration according to the sixth embodiment may be applied to any of the previous embodiments. Furthermore, it is not necessary that the plurality of heating irradiation devices connected in series have the same configuration. Therefore, a plurality of configurations according to any two or more of the first to fifth embodiments may be freely combined and connected in series.
なお、実施の形態4および実施の形態5の構成を用いた場合には、高周波出力制御装置73が設けられているので、高周波発生器1の周波数、移相器51の位相量、増幅器52の増幅量は、加熱用照射装置ごとに、高周波出力制御装置73により自動的に制御できるが、他の実施の形態の構成を用いた場合には、高周波発生器1の周波数、移相器51の位相量、及び、増幅器52の増幅量は、作業員が手動で調整することとする。
When the configurations of the fourth embodiment and the fifth embodiment are used, since the high frequency output control device 73 is provided, the frequency of the high frequency generator 1, the phase amount of the phase shifter 51, and the amplifier 52 The amount of amplification can be automatically controlled by the high-frequency output control device 73 for each heating irradiation device. However, when the configuration of another embodiment is used, the frequency of the high-frequency generator 1 and the phase shifter 51 The operator manually adjusts the phase amount and the amplification amount of the amplifier 52.
以上のように、この実施の形態6によれば、実施の形態1から5までの加熱用照射装置を直列に接続しても、実施の形態1から5までと同様の効果が得られる。とくに、ベルトコンベアーなどで被加熱物5が流れてくるときに、各反応炉4において、被加熱物5の状態に応じて、照射分布を変えることができるため、効果的である。また、スケーラブルな拡張性の効果が得られる。
As described above, according to the sixth embodiment, even if the heating irradiation apparatuses according to the first to fifth embodiments are connected in series, the same effects as those of the first to fifth embodiments can be obtained. Particularly, when the object to be heated 5 flows on a belt conveyor or the like, the irradiation distribution can be changed in each reaction furnace 4 according to the state of the object to be heated 5, which is effective. In addition, a scalable extensibility effect can be obtained.
なお、本発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
In the present invention, within the scope of the invention, any combination of each embodiment, any component of each embodiment can be modified, or any component can be omitted in each embodiment. .
Claims (10)
- 加熱用電磁波を発生する電磁波発生器と、
前記電磁波発生器で発生した前記加熱用電磁波を被加熱物に照射する複数のアンテナと、
上面の一部が曲面状の凸部になっており、前記凸部の表面に各前記アンテナの照射口が取り付けられ、前記被加熱物を収容するための内部空間を有する、反応炉と
を備え、
各前記アンテナの照射方向が前記被加熱物の特定点に向かうように、各前記アンテナは、前記反応炉の前記凸部の表面に曲面状に配列されている、
加熱用照射装置。 An electromagnetic wave generator for generating heating electromagnetic waves;
A plurality of antennas for irradiating an object to be heated with the heating electromagnetic wave generated by the electromagnetic wave generator;
A reaction furnace, wherein a part of the upper surface is a curved convex part, an irradiation port of each antenna is attached to the surface of the convex part, and an internal space for accommodating the object to be heated is provided. ,
Each antenna is arranged in a curved surface on the surface of the convex portion of the reactor so that the irradiation direction of each antenna is directed to a specific point of the object to be heated.
Irradiation device for heating. - 前記凸部を構成する曲面は、前記特定点を中心とする球面の一部から構成されている
請求項1に記載の加熱用照射装置。 The irradiation apparatus for heating according to claim 1, wherein the curved surface constituting the convex portion is constituted by a part of a spherical surface centered on the specific point. - 加熱用電磁波を発生させる電磁波発生器と、
前記電磁波発生器で発生した前記加熱用電磁波を被加熱物に照射する3つのアンテナと、
上面が平坦な平面状になっており、前記上面に前記アンテナの照射口が取り付けられ、前記被加熱物を収容するための内部空間を有する、反応炉と
を備え、
前記3つのアンテナは、直線状に配置され、
前記3つのアンテナは、前記加熱用電磁波の照射方向が前記被加熱物の特定点に向かうように配置された1つのアンテナと、前記1つのアンテナの両側にそれぞれ配置された他の2つのアンテナとを含む、
加熱用照射装置。 An electromagnetic wave generator for generating electromagnetic waves for heating;
Three antennas for irradiating the object to be heated with the heating electromagnetic wave generated by the electromagnetic wave generator;
A reaction furnace having an inner surface for accommodating the object to be heated, the irradiation port of the antenna being attached to the upper surface, and an inner space for accommodating the object to be heated;
The three antennas are arranged in a straight line,
The three antennas include one antenna arranged so that the irradiation direction of the heating electromagnetic wave is directed to a specific point of the object to be heated, and the other two antennas arranged on both sides of the one antenna, including,
Irradiation device for heating. - 前記アンテナの配置間隔は、前記加熱用電磁波の1波長以下である、
請求項1から3までのいずれか1項に記載の加熱用照射装置。 The arrangement interval of the antennas is one wavelength or less of the heating electromagnetic wave.
The irradiation apparatus for heating according to any one of claims 1 to 3. - 前記アンテナと前記被加熱物との距離は、前記加熱用電磁波の5波長以下である、
請求項1から4までのいずれか1項に記載の加熱用照射装置。 The distance between the antenna and the object to be heated is 5 wavelengths or less of the heating electromagnetic wave.
The irradiation apparatus for heating according to any one of claims 1 to 4. - 各前記アンテナに対して設けられ、各前記アンテナへ供給される前記加熱用電磁波の位相量を制御する移相器と、
各前記アンテナに対して設けられ、各前記アンテナへ供給される前記加熱用電磁波を増幅する増幅器と
をさらに備えた
請求項1から5までのいずれか1項に記載の加熱用照射装置。 A phase shifter that is provided for each of the antennas and controls a phase amount of the heating electromagnetic wave supplied to each of the antennas;
The heating irradiation apparatus according to any one of claims 1 to 5, further comprising: an amplifier that is provided for each of the antennas and that amplifies the heating electromagnetic wave supplied to each of the antennas. - 各前記アンテナに対して設けられ、各前記アンテナから前記反応炉内へ照射される前記加熱用電磁波の振幅および位相と、前記加熱用電磁波が前記反応炉内で反射した反射波の振幅および位相とのうちの、少なくともいずれか一方を取得する振幅/位相取得部と、
前記振幅/位相取得部で取得した前記振幅および前記位相に基づいて、前記電磁波発生器、前記移相器、および、前記増幅器を制御することで、前記アンテナから前記被加熱物に照射する前記加熱用電磁波の出力を制御する、第1の電磁波出力制御装置と
をさらに備えた
請求項6に記載の加熱用照射装置。 The amplitude and phase of the heating electromagnetic wave provided to each of the antennas and irradiated from the antenna to the reaction furnace, and the amplitude and phase of the reflected wave reflected by the heating electromagnetic wave in the reaction furnace, An amplitude / phase acquisition unit that acquires at least one of
The heating that irradiates the object to be heated from the antenna by controlling the electromagnetic wave generator, the phase shifter, and the amplifier based on the amplitude and the phase acquired by the amplitude / phase acquisition unit. The heating irradiation device according to claim 6, further comprising: a first electromagnetic wave output control device that controls an output of the electromagnetic wave for operation. - 前記反応炉に対して設けられ、前記反応炉内の前記被加熱物の温度を取得する温度取得部と、
前記温度取得部で取得した前記被加熱物の前記温度に基づいて、前記電磁波発生器、前記移相器、および、前記増幅器を制御することで、前記アンテナから前記被加熱物に照射する前記加熱用電磁波の出力を制御する、第2の電磁波出力制御装置と
をさらに備えた
請求項6または7に記載の加熱用照射装置。 A temperature acquisition unit that is provided for the reaction furnace and acquires the temperature of the object to be heated in the reaction furnace;
The heating that irradiates the object to be heated from the antenna by controlling the electromagnetic wave generator, the phase shifter, and the amplifier based on the temperature of the object to be heated acquired by the temperature acquisition unit. The heating irradiation device according to claim 6, further comprising: a second electromagnetic wave output control device that controls the output of the electromagnetic wave for operation. - 前記加熱用照射装置は複数個直列に接続されており、
各前記加熱用照射装置の前記反応炉は直列に連結されて、連続した1つの共用反応炉を構成している、
請求項1から8までのいずれか1項に記載の加熱用照射装置。 A plurality of the irradiation devices for heating are connected in series,
The reactors of each of the heating irradiation devices are connected in series to constitute one continuous shared reactor,
The irradiation device for heating according to any one of claims 1 to 8. - 前記共用反応炉を構成するそれぞれの各前記反応炉ごとに、前記アンテナから前記被加熱物に照射する前記加熱用電磁波の出力を可変とする
請求項9に記載の加熱用照射装置。 The heating irradiation apparatus according to claim 9, wherein the output of the heating electromagnetic wave applied to the object to be heated from the antenna is variable for each of the reaction furnaces constituting the shared reaction furnace.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016541730A JP6042040B1 (en) | 2016-01-07 | 2016-01-07 | Irradiation device for heating |
MYPI2018001157A MY189980A (en) | 2016-01-07 | 2016-01-07 | Irradiation device for heating |
PCT/JP2016/050313 WO2017119093A1 (en) | 2016-01-07 | 2016-01-07 | Irradiation device for heating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/050313 WO2017119093A1 (en) | 2016-01-07 | 2016-01-07 | Irradiation device for heating |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017119093A1 true WO2017119093A1 (en) | 2017-07-13 |
Family
ID=57543791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/050313 WO2017119093A1 (en) | 2016-01-07 | 2016-01-07 | Irradiation device for heating |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6042040B1 (en) |
MY (1) | MY189980A (en) |
WO (1) | WO2017119093A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113495438A (en) * | 2020-03-19 | 2021-10-12 | 卡西欧计算机株式会社 | Molding device, method for manufacturing molded article, and transport device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS488767Y1 (en) * | 1968-10-28 | 1973-03-07 | ||
JP2000357583A (en) * | 1999-06-15 | 2000-12-26 | Mitsubishi Electric Corp | Microwave oven |
JP2010092794A (en) * | 2008-10-10 | 2010-04-22 | Panasonic Corp | Microwave processor |
US20120305808A1 (en) * | 2008-11-25 | 2012-12-06 | Zhylkov Valerie S | Microwave processing chamber |
JP5603134B2 (en) * | 2010-05-13 | 2014-10-08 | マイクロ波化学株式会社 | Chemical reaction apparatus and chemical reaction method |
WO2015129723A1 (en) * | 2014-02-27 | 2015-09-03 | マイクロ波化学株式会社 | Chemical reaction device |
-
2016
- 2016-01-07 MY MYPI2018001157A patent/MY189980A/en unknown
- 2016-01-07 WO PCT/JP2016/050313 patent/WO2017119093A1/en active Application Filing
- 2016-01-07 JP JP2016541730A patent/JP6042040B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS488767Y1 (en) * | 1968-10-28 | 1973-03-07 | ||
JP2000357583A (en) * | 1999-06-15 | 2000-12-26 | Mitsubishi Electric Corp | Microwave oven |
JP2010092794A (en) * | 2008-10-10 | 2010-04-22 | Panasonic Corp | Microwave processor |
US20120305808A1 (en) * | 2008-11-25 | 2012-12-06 | Zhylkov Valerie S | Microwave processing chamber |
JP5603134B2 (en) * | 2010-05-13 | 2014-10-08 | マイクロ波化学株式会社 | Chemical reaction apparatus and chemical reaction method |
WO2015129723A1 (en) * | 2014-02-27 | 2015-09-03 | マイクロ波化学株式会社 | Chemical reaction device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113495438A (en) * | 2020-03-19 | 2021-10-12 | 卡西欧计算机株式会社 | Molding device, method for manufacturing molded article, and transport device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017119093A1 (en) | 2018-01-11 |
MY189980A (en) | 2022-03-22 |
JP6042040B1 (en) | 2016-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101495378B1 (en) | Microwave heating device | |
JP5358580B2 (en) | Microwave heating device | |
JP2018006718A (en) | Microwave plasma processing device | |
JP6042040B1 (en) | Irradiation device for heating | |
JP5217882B2 (en) | Microwave processing equipment | |
JP2008021493A (en) | Microwave utilization device | |
TW201922050A (en) | A device for treating a product with microwaves | |
JP7230802B2 (en) | Microwave processor | |
JP7170197B2 (en) | Microwave processor | |
JP2017528884A (en) | Direct heating via patch antenna | |
WO2018037801A1 (en) | High-frequency heating device | |
TWI826392B (en) | A device for treating a product with microwaves | |
KR101455701B1 (en) | System for remote heating using electromagnetic wave transmitter array | |
JP2008060016A (en) | Microwave utilization device | |
US11683867B2 (en) | Microwave treatment device | |
JP7113192B2 (en) | High frequency processing device | |
WO2024014151A1 (en) | Microwave irradiation device, microwave irradiation method, and method for manufacturing food | |
WO2024095425A1 (en) | Microwave irradiation device | |
JP7113191B2 (en) | High frequency processing device | |
RU134726U1 (en) | DEVICE FOR CONTINUOUS MICROWAVE PROCESSING OF BULK AGRICULTURAL MATERIALS | |
JP2018006257A (en) | Microwave plasma processing device | |
TW202226889A (en) | Frequency reconfigurable phased array system and material processing method performed thereby | |
Tornero et al. | Microwave Heating Pattern Beamforming Using A Cylindrical Phased-Array of Antennas | |
JP5877304B2 (en) | Microwave heating device | |
CN115604879A (en) | Microwave heating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016541730 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16883596 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16883596 Country of ref document: EP Kind code of ref document: A1 |