JP7113192B2 - High frequency processing device - Google Patents

High frequency processing device Download PDF

Info

Publication number
JP7113192B2
JP7113192B2 JP2018096703A JP2018096703A JP7113192B2 JP 7113192 B2 JP7113192 B2 JP 7113192B2 JP 2018096703 A JP2018096703 A JP 2018096703A JP 2018096703 A JP2018096703 A JP 2018096703A JP 7113192 B2 JP7113192 B2 JP 7113192B2
Authority
JP
Japan
Prior art keywords
transmission line
radiating
frequency
feeding
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018096703A
Other languages
Japanese (ja)
Other versions
JP2019204572A (en
Inventor
義治 大森
幹男 福井
大介 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2018096703A priority Critical patent/JP7113192B2/en
Priority to CN201980003797.1A priority patent/CN111034358B/en
Priority to PCT/JP2019/019200 priority patent/WO2019225412A1/en
Priority to US17/052,968 priority patent/US11683867B2/en
Publication of JP2019204572A publication Critical patent/JP2019204572A/en
Application granted granted Critical
Publication of JP7113192B2 publication Critical patent/JP7113192B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of High-Frequency Heating Circuits (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Description

本発明は高周波処理装置に関するものである。 The present invention relates to a high frequency processing device.

従来、この種の高周波処理装置は、複数の回転アンテナを備え、この複数の回転アンテナより高周波を放射することにより加熱室の広範囲に高周波を供給し、加熱むらのない例えば調理を可能としている(例えば、特許文献1参照)。 Conventionally, this type of high-frequency processing apparatus has a plurality of rotating antennas, and by radiating high-frequency waves from the plurality of rotating antennas, high-frequency waves are supplied to a wide range of a heating chamber, enabling, for example, cooking without uneven heating ( For example, see Patent Document 1).

また、複数の放射部を備え、この複数の放射部から放射される高周波の位相差を変化させて干渉状態を変化させることにより、高周波分布を変化させ、対象物を均一に加熱したり、集中的に加熱したりすることができるようにしている(例えば、特許文献2参照)。 In addition, a plurality of radiating portions are provided, and by changing the phase difference of the high frequencies radiated from the plurality of radiating portions to change the interference state, the high frequency distribution can be changed to uniformly heat the object or to concentrate the heat. It is designed so that it can be heated to a certain extent (see, for example, Patent Document 2).

特開2004-47322号公報JP-A-2004-47322 特開2008-66292号公報JP-A-2008-66292

しかしながら、前記従来の回転アンテナを回転させるものは、放射部が回転範囲内で動く程度で、高周波分布の変動効果は少ない。 However, when the conventional rotating antenna is rotated, the radiating part only moves within the range of rotation, and the effect of changing the high-frequency distribution is small.

また、複数の放射部から高周波を放射することにより加熱室内で高周波を空間合成させるものでは、下記するように、加熱室内に収納されたさまざまな形状・種類・量の異なる被加熱物を所望の状態に加熱処理することが難しいという課題を有していた。 In addition, in the case of spatially synthesizing high-frequency waves in a heating chamber by radiating high-frequency waves from a plurality of radiating portions, objects to be heated of various shapes, types, and amounts accommodated in the heating chamber are desired. There was a problem that it was difficult to heat-treat to the state.

すなわち、位相差制御で定在波を移動させても、半波長程度の移動に留まるため、高周波分布の変動効果は少なかった。 That is, even if the standing wave is moved by phase difference control, the movement is limited to about half the wavelength, so the effect of changing the high-frequency distribution is small.

さらに、複数放射を空間合成して、加熱室内の高周波分布を制御しようとしても、加熱室に収納された被加熱物、例えば食品の影響で高周波分布自体が変わるので、設計時点の思惑通りの加熱を再現することができなかった。 Furthermore, even if you try to control the high-frequency distribution in the heating chamber by spatially synthesizing multiple radiations, the high-frequency distribution itself changes due to the influence of the object to be heated, such as food, stored in the heating chamber, so it is difficult to heat as expected at the time of design. could not be reproduced.

また、複数放射部をON/OFFさせると、放射位置が大きくずれて、高周波分布の変動を大きくできるが、供給電力が小さくなり、調理時間が長くなる別の課題が生じる。 Also, turning on/off the multiple radiating portions greatly deviates the radiating positions, which makes it possible to increase the fluctuation of the high-frequency distribution, but the supplied power becomes smaller, and another problem arises that the cooking time becomes longer.

本発明はこのような点に鑑みてなしたもので、さまざまな形状・種類・量の異なる被加熱物を所望の状態に短時間で加熱する高周波発処理装置を提供することを目的としたものである。 SUMMARY OF THE INVENTION The present invention has been made in view of these points, and it is an object of the present invention to provide a high-frequency generation processing apparatus capable of heating objects of various shapes, types, and amounts to a desired state in a short period of time. is.

本発明は、上記目的を達成するため、高周波を供給する2か所の給電部と、高周波を放射する複数の放射部と、前記給電部から前記放射部へ高周波を伝送する伝送線路とを有し、前記伝送線路は環状伝送線路を備え、前記2か所の給電部は前記環状伝送線路を経由して前記複数の放射部へ高周波を伝送し、前記2か所の給電部の前記環状伝送線路への結合位置を略4分の1波長の間隔で配置した構成としてある。 In order to achieve the above object, the present invention has two power feed sections that supply high frequencies, a plurality of radiation sections that radiate high frequencies, and a transmission line that transmits high frequencies from the power feed sections to the radiation section. wherein the transmission line comprises a ring transmission line, the two feeding parts transmit high frequencies to the plurality of radiating parts via the ring transmission line, and the ring transmission of the two feeding parts is performed. The coupling positions to the line are arranged at intervals of approximately 1/4 wavelength.

これにより、複数の放射部から高周波を選択的に切り替えて放射させ、さまざまな形状・種類・量の異なる被加熱物を短時間で所望の状態に加熱することができる。 As a result, it is possible to selectively switch and radiate high-frequency waves from a plurality of radiating parts, thereby heating objects having various shapes, types, and amounts to a desired state in a short period of time.

本発明の高周波処理装置は、上記構成により、放射部から高周波を選択的に切り替えて意図した加熱分布を実現することができ、さまざまな形状・種類・量の異なる被加熱物を短時間で所望の状態に加熱することができる。 With the above configuration, the high-frequency processing apparatus of the present invention can selectively switch the high-frequency wave from the radiating section to achieve an intended heating distribution, and can heat objects of various shapes, types, and amounts in a short time. can be heated to a state of

本発明の実施の形態1における高周波処理装置の構成図1 is a configuration diagram of a high-frequency processing device according to Embodiment 1 of the present invention; 本発明の実施の形態1における伝送線路の線路長説明図FIG. 1 is a line length explanatory diagram of a transmission line according to Embodiment 1 of the present invention; 本発明の実施の形態1における伝送線路の線路長説明図FIG. 1 is a line length explanatory diagram of a transmission line according to Embodiment 1 of the present invention; 本発明の実施の形態1における伝送線路の斜視図1 is a perspective view of a transmission line according to Embodiment 1 of the present invention; FIG. 本発明の実施の形態2における伝送線路の配置図Layout of transmission lines according to Embodiment 2 of the present invention

第1の発明は、高周波を供給する2か所の給電部と、高周波を放射する複数の放射部と、前記給電部から前記放射部へ高周波を伝送する伝送線路とを有し、前記伝送線路は環状伝送線路を備え、前記2か所の給電部は前記環状伝送線路を経由して前記複数の放射部へ高周波を伝送し、前記2か所の給電部の前記環状伝送線路への結合位置を略4分の1波長の間隔で配置した構成としてある。 A first aspect of the present invention has two feeding parts that supply high frequencies, a plurality of radiating parts that radiate high frequencies, and a transmission line that transmits high frequencies from the feeding parts to the radiating parts, and the transmission line comprises a ring-shaped transmission line, the two feeding parts transmit high frequency to the plurality of radiating parts via the ring-shaped transmission line, and the coupling positions of the two feeding parts to the ring-shaped transmission line are arranged at an interval of approximately 1/4 wavelength.

これにより、複数の放射部から高周波を選択的に切り替えて放射させ、さまざまな形状・種類・量の異なる被加熱物を短時間で所望の状態に加熱することができる。詳述すると、2か所の給電部から供給される高周波の給電位相により、それぞれの給電部の環状伝送線路との結合位置での合成を制御して、高周波の伝送方向を制御できる。よって、高周波を供給する放射部を選択することができ、意図した加熱分布を実現することができて、さまざまな形状・種類・量の異なる被加熱物を短時間で所望の状態に加熱することができる。 As a result, it is possible to selectively switch and radiate high-frequency waves from a plurality of radiating parts, thereby heating objects having various shapes, types, and amounts to a desired state in a short period of time. More specifically, it is possible to control the transmission direction of the high frequency by controlling the combination at the coupling position of each power supply with the ring-shaped transmission line according to the power supply phase of the high frequency supplied from the two power supply units. Therefore, it is possible to select the radiating part that supplies the high frequency, realize the intended heating distribution, and heat objects of various shapes, types, and amounts to the desired state in a short time. can be done.

第2の発明は、特に第1の発明の高周波処理装置において、前記環状伝送線路の前記2か所の給電部とのそれぞれの結合位置からほぼ同等の距離となる位置に第1の分岐伝送線路を結合し、前記環状伝送線路の前記第1の分岐伝送線路との結合位置から略4分の1波長の位置に第2、第3の分岐伝送線路を結合し、前記複数の放射部は、前記第1、第2、第3の分岐伝送線路のいずれかの先に設置する構成としてある。 In a second aspect of the invention, particularly in the high-frequency processing device of the first aspect, a first branch transmission line is provided at a position that is approximately the same distance from each coupling position of the annular transmission line with the two feeding parts. and second and third branch transmission lines are coupled at a position approximately one-fourth wavelength from the coupling position of the annular transmission line with the first branch transmission line, and the plurality of radiating sections are: It is configured to be installed at any one of the first, second, and third branch transmission lines.

これにより、第1、第2、第3の分岐伝送線路の環状伝送線路との結合位置での合成位相を2か所の給電位相により制御して、高周波を供給する放射部を選択することができ、意図した加熱分布を実現することができ、さまざまな形状・種類・量の異なる被加熱物に適した加熱を短時間で行うことができる。 As a result, it is possible to select the radiating portion that supplies the high frequency by controlling the composite phase at the coupling position of the first, second, and third branch transmission lines with the ring-shaped transmission line by the two feed phases. It is possible to realize the intended heating distribution, and it is possible to perform heating suitable for various shapes, types, and amounts of objects to be heated in a short time.

第3の発明は、特に第1または第2の発明の高周波処理装置において、前記環状伝送線路のほぼ直線部に直交する方向から前記給電部を結合する構成としてある。 According to a third aspect of the present invention, in the high-frequency processing apparatus according to the first or second aspect, the power feeding portion is coupled in a direction substantially perpendicular to the linear portion of the annular transmission line.

これにより、給電部から環状伝送線路への結合をT字形状とすることができ、これによって周回側ともう一方の給電部結合側へ伝送する電力を均等に分配でき、それぞれの給電部の結合位置での合成による高周波の伝送方向の制御をより確実に行って、高周波を供給する放射部を選択し、意図した加熱分布を実現することができ、さまざまな形状・種類・量の異なる被加熱物に適した加熱を短時間で行うことができる。 As a result, the coupling from the feeding section to the ring-shaped transmission line can be formed in a T shape, whereby the power transmitted to the loop side and the other feeding section coupling side can be equally distributed, and the coupling of each feeding section can be performed. It is possible to more reliably control the direction of high-frequency transmission by synthesizing at the position, select the radiating part that supplies high-frequency waves, and realize the intended heating distribution. Suitable heating can be performed in a short time.

第4の発明は、特に第1~第3の発明の高周波処理装置において、前記2か所の給電部間の位相差制御を可能とし、前記位相差制御により、前記複数の放射部への給電を選択する構成としてある。 A fourth invention is the high-frequency processing apparatus according to any one of the first to third inventions, in which phase difference control between the two power supply units is enabled, and power is supplied to the plurality of radiating units by the phase difference control. is configured to select

この給電部間位相差制御により、高周波を伝送する放射部を選択して、意図した加熱分布を実現することができ、さまざまな形状・種類・量の異なる被加熱物に適した加熱を短時間で行うことができる。 By controlling the phase difference between the feeding parts, it is possible to select the radiating part that transmits the high frequency and realize the intended heating distribution. can be done with

第5の発明は、特に第1~第4の発明の高周波処理装置において、前記第1、第2、第3の分岐伝送線路の先にさらに分岐を設けて、前記複数の放射部を設置する構成としてある。 A fifth aspect of the invention is particularly the high-frequency processing apparatus according to any one of the first to fourth aspects of the invention, wherein branches are further provided at the ends of the first, second, and third branch transmission lines, and the plurality of radiating sections are installed. as a configuration.

この給電部間位相差制御により、複数の放射部への給電を選択でき、意図した加熱分布をより広範囲で実現することができ、さまざまな形状・種類・量の異なる被加熱物に適した加熱を短時間で行うことができる。 By controlling the phase difference between the feeding parts, it is possible to select the power supply to multiple radiating parts, realize the intended heating distribution in a wider range, and perform heating suitable for objects with different shapes, types, and amounts. can be done in a short time.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the present invention is not limited by this embodiment.

(実施の形態1)
図1は、本発明の実施の形態1における高周波処理装置の構成図を示す。図1において、加熱室1に収納された被加熱物2は、放射部8a、8b、8cより放射された高周波により加熱される。高周波は、発振部3により発振し、分配部4で複数に分配され、増幅部6a、6bで大電力に増幅され、伝送線路7で放射部8a、8b、8cへ供給される。分配部4で複数に分配された高周波は、位相可変部5により他方と異なる位相値に調整して増幅部6bへ供給することができる。
(Embodiment 1)
FIG. 1 shows a configuration diagram of a high-frequency processing device according to Embodiment 1 of the present invention. In FIG. 1, an object 2 to be heated housed in a heating chamber 1 is heated by high frequencies radiated from radiating portions 8a, 8b, and 8c. A high frequency wave is oscillated by the oscillating section 3, distributed to a plurality of parts by the distributing section 4, amplified to a large power by the amplifying sections 6a and 6b, and supplied to the radiating sections 8a, 8b and 8c through the transmission line 7. FIG. A plurality of high frequencies distributed by the distribution section 4 can be adjusted to a different phase value from the other by the phase variable section 5 and supplied to the amplification section 6b.

以上のように構成された高周波処理装置について、以下その動作、作用を説明する。 The operation and effect of the high-frequency processing apparatus constructed as described above will be described below.

図2は、本発明の実施の形態1における伝送線路の線路長説明図である。増幅部6a、6bからの高周波は、給電部9a、9bより環状線路構造の伝送線路7へ供給され、伝送線路7上で合成され、伝送線路7上の分岐10a、10b、10cより放射部8a、8b、8cへ供給される。略長円形状の環状線路構造の伝送線路7のほぼ直線部に増幅部6a、6bからの給電部9a、9bが略4分の1波長の経路13で設けられ、伝送線路7のほぼ直線部に対して直交する方向から給電する構成になっている。すなわち、略T字形状の結合線路構成になっている。よって、給電は2方向に均等に分かれる。 FIG. 2 is a line length explanatory diagram of the transmission line in the first embodiment of the present invention. High-frequency waves from the amplifiers 6a and 6b are supplied from the feeders 9a and 9b to the transmission line 7 having a loop line structure, are combined on the transmission line 7, and are sent to the radiating section 8a from the branches 10a, 10b and 10c on the transmission line 7. , 8b, 8c. Feeding portions 9a and 9b from the amplifying portions 6a and 6b are provided in substantially linear portions of the transmission line 7 having an approximately elliptical annular line structure through a route 13 of approximately quarter wavelength, and the substantially linear portions of the transmission line 7 are provided. It is configured to feed power from a direction orthogonal to That is, it has a substantially T-shaped coupled line configuration. Thus, the power supply is split evenly in two directions.

表1は、図2における同相給電条件の伝送線路の伝送動作説明表である。なお、表の中で記載している数字は各図(この場合は図2)で使用している図番を意味している。これは以下に述べる表2、表3(この場合はいずれも図2)、表4(この場合は図3)においても同じである。 Table 1 is a transmission operation explanatory table of the transmission line under the common-mode feeding condition in FIG. It should be noted that the numbers described in the table mean the drawing number used in each figure (in this case, FIG. 2). This also applies to Tables 2 and 3 (in this case, both are shown in FIG. 2) and Table 4 (in this case, FIG. 3) described below.

Figure 0007113192000001
Figure 0007113192000001

経路13の経路長は、90deg(略4分の1波長)なので、増幅部6bから0degで伝送してきた高周波は、経路13を経て給電部9aの位置で90deg進んで90degになる。給電部9aでは、増幅部6aからの0deg位相の高周波と、前記増幅部6bからの90deg位相の高周波が合成され、周回側へ伝送される。 Since the path length of the path 13 is 90 degrees (approximately 1/4 wavelength), the high frequency transmitted at 0 degrees from the amplifier 6b passes through the path 13 and becomes 90 degrees after advancing 90 degrees at the position of the feeder 9a. In the feeding section 9a, the high frequency of 0 deg phase from the amplifying section 6a and the high frequency of 90 deg phase from the amplifying section 6b are combined and transmitted to the circulation side.

給電部9bでも同様に増幅部6bからの0deg位相の高周波と、増幅部6aからの90deg位相の高周波が合成され、周回側へ伝送される。つまり、増幅部6a、6bが同じ0deg位相で給電された場合、給電部9a、9bから周回側へは均等な電力が伝送される。 Similarly, in the power feeding section 9b, the high frequency of 0 deg phase from the amplifying section 6b and the high frequency of 90 deg phase from the amplifying section 6a are combined and transmitted to the circulation side. That is, when the amplifiers 6a and 6b are fed with the same 0 deg phase, equal power is transmitted from the power feeders 9a and 9b to the circulating side.

表2は、図2における90deg位相差給電条件の伝送線路の伝送動作説明表である。 Table 2 is a transmission operation explanatory table of the transmission line under the 90-degree phase difference feeding condition in FIG.

Figure 0007113192000002
Figure 0007113192000002

増幅部6bから90degで伝送してきた高周波は、経路13を経て給電部9aの位置で90deg進んで180degになる。給電部9aでは、増幅部6aからの0deg位相の高周波と、前記増幅部6bからの180deg位相の高周波が、逆相合成で打ち消され、周回側へは伝送できなくなる。 The high frequency transmitted from the amplifying section 6b at 90 degrees passes through the path 13 and advances by 90 degrees at the position of the feeding section 9a to become 180 degrees. In the feeding section 9a, the high frequency of 0deg phase from the amplifying section 6a and the high frequency of 180deg phase from the amplifying section 6b are canceled by anti-phase synthesis and cannot be transmitted to the circulating side.

一方、給電部9bでは、増幅部6aから0degで伝送してきた高周波は、経路13を経て給電部9bの位置で90deg進んで90degになり、増幅部6bからの90deg位相の高周波と、同相合成で重ね合わさり、周回側へ伝送される。つまり、増幅部6bが増幅部6aより90deg位相が進んだ給電の場合、給電部9a側では周回方向へ伝送せず、給電部9b側から周回方向へ2給電が重ねあわされた電力が伝送され、主に放射部8cへ選択的に供給される。 On the other hand, in the power feeder 9b, the high frequency transmitted from the amplifier 6a at 0deg advances by 90deg at the position of the power feeder 9b through the path 13 and becomes 90deg. They are superimposed and transmitted to the circulation side. That is, when the amplifier 6b supplies power with a 90 degree phase lead from the amplifier 6a, the power supplied by the power supply unit 9a is not transmitted in the circulating direction, and the power in which the two feeds are superimposed is transmitted in the circulating direction from the power feeding unit 9b side. , is selectively supplied mainly to the radiating portion 8c.

表3は、同じく図2における-90deg位相差給電条件の伝送線路の伝送動作説明表である。 Table 3 is a transmission operation explanatory table of the transmission line under the −90 deg phase difference feeding condition in FIG. 2 as well.

Figure 0007113192000003
Figure 0007113192000003

増幅部6bから-90degで伝送してきた高周波は、経路13を経て給電部9aの位置で90deg進んで0degになる。給電部9aでは、増幅部6aからの0deg位相の高周波と、前記増幅部6bからの0deg位相の高周波が、同相合成で重ね合わさり、周回側へ伝送される。 The high frequency transmitted from the amplifying section 6b at −90 deg passes through the path 13 and advances by 90 deg at the position of the feeding section 9a to become 0 deg. In the feeding section 9a, the high frequency of 0 deg phase from the amplifying section 6a and the high frequency of 0 deg phase from the amplifying section 6b are superimposed by in-phase synthesis and transmitted to the circulation side.

一方、給電部9bでは、増幅部6aから0degで伝送してきた高周波は、経路13を経て給電部9aの位置で90deg進んで90degになり、増幅部6bからの-90deg位相の高周波と、逆相合成で打ち消され、周回側へは伝送できなくなる。つまり、増幅部6bが増幅部6aより90deg位相が遅れた給電の場合、給電部9b側では周回方向へ伝送せず、給電部9a側から周回方向へ2給電が重ねあわされた電力が伝送され、主に放射部8bへ選択的に供給される。 On the other hand, in the power feeding portion 9b, the high frequency transmitted from the amplifying portion 6a at 0 deg advances by 90 deg at the position of the power feeding portion 9a through the path 13 and becomes 90 deg, and the high frequency of -90 deg phase from the amplifying portion 6b is opposite in phase. It is canceled by synthesis and cannot be transmitted to the circulating side. That is, when the amplifier 6b supplies power with a phase delay of 90 degrees from the amplifier 6a, the power supplied by the power supply unit 9b is not transmitted in the circulating direction, and the power in which the two feeds are superimposed is transmitted in the circulating direction from the power supply unit 9a. , is selectively supplied mainly to the radiating portion 8b.

図3は、本実施の形態1における伝送線路の線路長説明図である。環状線路構造の伝送線路7の距離は、給電部9aから分岐10aまでの位相長11aと給電部9bから分岐10aまでの位相長11bは、同相となる距離で、例えば0degの位相距離となる。また、分岐10aと分岐10b、10cまでの位相長12a、12bは、それぞれ90deg(4分の1波長)の位相距離となる。 FIG. 3 is a line length explanatory diagram of the transmission line in the first embodiment. As for the distance of the transmission line 7 having the loop line structure, the phase length 11a from the feeder portion 9a to the branch 10a and the phase length 11b from the feeder portion 9b to the branch 10a are in phase. Also, the phase lengths 12a and 12b from the branch 10a to the branches 10b and 10c are 90 deg (1/4 wavelength) respectively.

表4は、図3における伝送線路の伝送動作説明表である。 Table 4 is a transmission operation explanatory table of the transmission line in FIG.

Figure 0007113192000004
Figure 0007113192000004

増幅部6a、6bから給電部9a、9bへの給電位相が同相で共に0degの場合、位相長11a、11bが前記の0degなので、分岐部10aへの伝送位相は、それぞれ0degになり、放射部8aへは同相で重ね合わせた高周波が供給される。 When the feed phases from the amplifiers 6a and 6b to the feeders 9a and 9b are in phase and both are 0 deg, the phase lengths 11a and 11b are 0 deg, so the transmission phase to the branch 10a is 0 deg. In-phase and superimposed high frequencies are supplied to 8a.

しかし、分岐部10bへの伝送位相は、位相長12a分位相がずれ、増幅部6a側が-90deg、増幅部6b側が90degになり、放射部8bへは逆相で打ち消され高周波は供給されない。分岐部10cへの伝送も同じ原理により、放射部8cへは逆相で打ち消され高周波は供給されない。 However, the transmission phase to the branching portion 10b is shifted by the phase length 12a, -90deg on the amplifying portion 6a side and 90deg on the amplifying portion 6b side. According to the same principle, the transmission to the branch portion 10c is also canceled by the opposite phase to the radiation portion 8c, and the high frequency is not supplied to the radiation portion 8c.

つまり、増幅部6a、6bから給電部9a、9bへの給電位相が同相の場合、高周波電力は、選択的に放射部8aへのみ供給される。 That is, when the power supply phases from the amplifier units 6a and 6b to the power supply units 9a and 9b are in phase, the high frequency power is selectively supplied only to the radiation unit 8a.

以上説明の通り、給電部9a、9bへの給電位相の制御により、加熱室1へ高周波を放射する放射部8aまたは、8b、8cを選択して切り替えることができ、高周波分布を操作することができる。すなわち、高周波を供給する放射部を選択することができ、意図した加熱分布を実現することができて、さまざまな形状・種類・量の異なる被加熱物を短時間で所望の状態に加熱することができる。 As described above, by controlling the power supply phase to the power supply units 9a and 9b, it is possible to select and switch between the radiating units 8a, 8b, and 8c that radiate the high frequency to the heating chamber 1, and to operate the high frequency distribution. can. That is, it is possible to select the radiating part that supplies the high frequency, to realize the intended heating distribution, and to heat objects of various shapes, types, and amounts to a desired state in a short time. can be done.

図4は、本発明の実施の形態1における伝送線路の斜視図を示す。環状線路構造の伝送線路7を加熱室1の1壁面に近接したマイクロストリップ線路で構成している。給電部9a、9bは、加熱室1の壁面より挿入した同軸線芯線をマイクロストリップ線路に接続して構成している。分岐部10a、10b、10cは、分岐したマイクロストリップ線路で構成している。放射部8a、8b、8cは、マイクロストリップ線路で構成したアンテナにより構成している。 FIG. 4 shows a perspective view of a transmission line according to Embodiment 1 of the present invention. A transmission line 7 having a loop line structure is formed of a microstrip line close to one wall surface of the heating chamber 1 . The feeders 9a and 9b are configured by connecting coaxial core wires inserted from the wall surface of the heating chamber 1 to microstrip lines. The branch portions 10a, 10b, and 10c are configured by branched microstrip lines. The radiating sections 8a, 8b, and 8c are composed of antennas composed of microstrip lines.

(実施の形態2)
図5は、本発明の実施の形態2における伝送線路の配置図を示す。
(Embodiment 2)
FIG. 5 shows a layout diagram of transmission lines in Embodiment 2 of the present invention.

本実施の形態の高周波処理装置は、伝送線路7上の分岐10bの先には、伝送線路を更に分岐させて、放射部8b、8dが接続されている。また、分岐10cの先には、同様に伝送線路を分岐させて放射部8c、8eが接続されている。例えば、表3の増幅部6bが増幅部6aより90deg位相が遅れた給電をすることで、給電部9a側から周回方向へ2給電が重ねあわされた電力が伝送され、主に放射部8b、8dへ選択的に供給されて、右半分を広く加熱することができる。すなわち、高周波を供給する放射部を8b、8dと増やすことによって意図した加熱分布をより広範囲で実現することができ、さまざまな形状・種類・量の異なる被加熱物に適した加熱を短時間で行うことができる。 In the high-frequency processing apparatus of the present embodiment, the transmission line is further branched to the tip of the branch 10b on the transmission line 7, and radiating portions 8b and 8d are connected. At the tip of the branch 10c, the transmission line is similarly branched to connect the radiating sections 8c and 8e. For example, when the amplifier 6b in Table 3 supplies power with a phase delay of 90 degrees from the amplifier 6a, power in which two feeds are superimposed is transmitted from the power supply 9a side in the circulating direction. 8d can be selectively supplied to heat the right half extensively. In other words, by increasing the number of radiating parts that supply high frequencies to 8b and 8d, the intended heating distribution can be realized in a wider range, and suitable heating for objects with different shapes, types, and amounts can be achieved in a short time. It can be carried out.

以上、本発明に係る高周波加熱処理装置について、上記実施の形態を用いて説明したが、本発明はこれに限定されるものではない。例えば本実施の形態では、高周波の発信源を半導体で構成した例を示しているが、マグネトロンなど他の発振源を使用してもかまわない。このように、今回開示した実施の形態はすべての点で例示であって制限的なものではないと考えられるべきであり、本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 Although the high frequency heating apparatus according to the present invention has been described above using the above embodiment, the present invention is not limited to this. For example, in the present embodiment, an example in which a semiconductor is used as the high-frequency source is shown, but other sources such as a magnetron may be used. Thus, the embodiments disclosed this time should be considered as examples and not restrictive in all respects, and the scope of the present invention is indicated by the scope of claims rather than the above description. , all changes within the meaning and range of equivalence to the claims are intended to be included.

以上のように、本発明にかかる高周波処理装置は、複数の放射部を選択して放射できるので、意図した加熱分布を実現することができる高周波処理装置とすることができる。よって、電子レンジで代表されるような誘電加熱を利用した加熱装置や生ゴミ処理機、あるいは半導体製造装置であるプラズマ電源の高周波電源などの用途に適用できる。 As described above, the high-frequency processing apparatus according to the present invention can select a plurality of radiating portions to radiate, so that the high-frequency processing apparatus can realize an intended heating distribution. Therefore, it can be applied to applications such as a heating device using dielectric heating such as a microwave oven, a garbage disposer, or a high-frequency power source for a plasma power source, which is a semiconductor manufacturing device.

1 加熱室
2 被加熱物
3 発振部
4 分配部
5 位相可変部
6a~6b 増幅部
7 伝送線路
8a~8e 放射部
9a~9b 給電部
10a~10c 分岐部
11a~11b 位相長
12a~12b 位相長
13 経路
1 heating chamber 2 object to be heated 3 oscillating section 4 distributing section 5 phase varying section 6a-6b amplifying section 7 transmission line 8a-8e radiation section 9a-9b feeding section 10a-10c branch section 11a-11b phase length 12a-12b phase length 13 route

Claims (5)

高周波を供給する2か所の給電部と、高周波を放射する複数の放射部と、前記給電部から前記放射部へ高周波を伝送する伝送線路とを有し、前記伝送線路は環状伝送線路を備え、前記2か所の給電部は前記環状伝送線路を経由して前記複数の放射部へ高周波を伝送し、前記2か所の給電部の前記環状伝送線路への結合位置を略4分の1波長の間隔で配置する構成とした高周波処理装置。 It has two feeding parts that supply high frequencies, a plurality of radiating parts that radiate high frequencies, and a transmission line that transmits the high frequencies from the feeding parts to the radiating parts, and the transmission lines comprise annular transmission lines. , the two feeding parts transmit high frequencies to the plurality of radiating parts via the ring-shaped transmission line, and the coupling positions of the two feeding parts to the ring-shaped transmission line are substantially 1/4. A high-frequency processing device arranged at wavelength intervals. 前記環状伝送線路の前記2か所の給電部とのそれぞれの結合位置からほぼ同等の距離となる位置に第1の分岐伝送線路を結合し、前記環状伝送線路の前記第1の分岐伝送線路との結合位置から略4分の1波長の位置に第2、第3の分岐伝送線路を結合し、前記複数の放射部は、前記第1、第2、第3の分岐伝送線路のいずれかの先に設置する構成とした請求項1に記載の高周波処理装置。 A first branch transmission line is coupled at a position that is approximately the same distance from each coupling position of the annular transmission line with the two feeding parts, and the first branch transmission line of the annular transmission line and the the second and third branch transmission lines are coupled at a position approximately one-fourth wavelength from the coupling position of the plurality of radiating sections, any one of the first, second and third branch transmission lines 2. The high-frequency processing apparatus according to claim 1, wherein the high-frequency processing apparatus is configured to be installed first. 前記環状伝送線路のほぼ直線部に直交する方向から前記給電部を結合する構成とした請求項1または2に記載の高周波処理装置。 3. A high-frequency processing apparatus according to claim 1, wherein said feeder is coupled in a direction perpendicular to said straight portion of said annular transmission line. 前記2か所の給電部間の位相差制御を可能とし、前記位相差制御により、前記複数の放射部への給電を選択する構成とした請求項1~3のいずれか1項に記載の高周波処理装置。 The high frequency according to any one of claims 1 to 3, wherein phase difference control between the two power feeding portions is enabled, and power feeding to the plurality of radiating portions is selected by the phase difference control. processing equipment. 前記第1、第2、第3の分岐伝送線路の先にさらに分岐を設けて、前記複数の放射部を設置する構成とした請求項1~4のいずれか1項に記載の高周波処理装置。 5. The high-frequency processing device according to claim 1, further comprising a plurality of radiating sections provided at the ends of the first, second, and third branched transmission lines.
JP2018096703A 2018-05-21 2018-05-21 High frequency processing device Active JP7113192B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018096703A JP7113192B2 (en) 2018-05-21 2018-05-21 High frequency processing device
CN201980003797.1A CN111034358B (en) 2018-05-21 2019-05-15 Microwave processing apparatus
PCT/JP2019/019200 WO2019225412A1 (en) 2018-05-21 2019-05-15 Microwave processing device
US17/052,968 US11683867B2 (en) 2018-05-21 2019-05-15 Microwave treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018096703A JP7113192B2 (en) 2018-05-21 2018-05-21 High frequency processing device

Publications (2)

Publication Number Publication Date
JP2019204572A JP2019204572A (en) 2019-11-28
JP7113192B2 true JP7113192B2 (en) 2022-08-05

Family

ID=68727158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018096703A Active JP7113192B2 (en) 2018-05-21 2018-05-21 High frequency processing device

Country Status (1)

Country Link
JP (1) JP7113192B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066292A (en) 2006-08-08 2008-03-21 Matsushita Electric Ind Co Ltd Microwave processor
US20080191940A1 (en) 2005-05-12 2008-08-14 Qinetiq Limited Electrically Steerable Phased Array Antenna System

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56132793A (en) * 1980-03-19 1981-10-17 Hitachi Netsu Kigu Kk High frequency heater
JPS5797204A (en) * 1980-12-08 1982-06-16 Nec Corp Slot line hybrid ring

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080191940A1 (en) 2005-05-12 2008-08-14 Qinetiq Limited Electrically Steerable Phased Array Antenna System
JP2008066292A (en) 2006-08-08 2008-03-21 Matsushita Electric Ind Co Ltd Microwave processor

Also Published As

Publication number Publication date
JP2019204572A (en) 2019-11-28

Similar Documents

Publication Publication Date Title
WO2010032345A1 (en) Microwave heating device
JPWO2009050893A1 (en) Microwave heating device
JP5217882B2 (en) Microwave processing equipment
JP7113192B2 (en) High frequency processing device
JP7113191B2 (en) High frequency processing device
JP4462275B2 (en) Antenna using distribution circuit
JP7170197B2 (en) Microwave processor
WO2019225412A1 (en) Microwave processing device
JP5444734B2 (en) Microwave processing equipment
JP2010245789A (en) Antenna device
JP6042040B1 (en) Irradiation device for heating
JP5217881B2 (en) Microwave processing equipment
TW202105453A (en) Thermal break for high-frequency antennae
KR101455701B1 (en) System for remote heating using electromagnetic wave transmitter array
JP7329736B2 (en) High frequency heating device
JP2020161856A (en) Microstrip antenna and array antenna
JP7113209B2 (en) High frequency heating device
JP5142368B2 (en) High frequency processing equipment
JP2013105690A (en) Microwave heating device
WO2023189941A1 (en) High frequency heating apparatus
JP2009181727A (en) Microwave processing device
JP5877304B2 (en) Microwave heating device
JP2024011760A (en) Microwave irradiation apparatus, microwave irradiation method, and food production method
JP2013120632A (en) Microwave heating device
JP2022185330A (en) Array antenna device and array antenna

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220425

R151 Written notification of patent or utility model registration

Ref document number: 7113192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151