WO2024095425A1 - Microwave irradiation device - Google Patents

Microwave irradiation device Download PDF

Info

Publication number
WO2024095425A1
WO2024095425A1 PCT/JP2022/041080 JP2022041080W WO2024095425A1 WO 2024095425 A1 WO2024095425 A1 WO 2024095425A1 JP 2022041080 W JP2022041080 W JP 2022041080W WO 2024095425 A1 WO2024095425 A1 WO 2024095425A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary radiation
antenna
microwave irradiation
irradiation device
radiation antenna
Prior art date
Application number
PCT/JP2022/041080
Other languages
French (fr)
Japanese (ja)
Inventor
友樹 丸山
真司 山田
隆明 山崎
Original Assignee
東洋製罐グループホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐グループホールディングス株式会社 filed Critical 東洋製罐グループホールディングス株式会社
Priority to PCT/JP2022/041080 priority Critical patent/WO2024095425A1/en
Publication of WO2024095425A1 publication Critical patent/WO2024095425A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/78Arrangements for continuous movement of material

Definitions

  • the present invention relates to a microwave irradiation device.
  • heating devices are known that apply microwaves to an object to dielectrically heat it.
  • the object may not be heated evenly for a variety of reasons. For this reason, various efforts have been made to ensure even heating.
  • Patent Document 1 discloses the following microwave heating device.
  • microwaves are supplied to the heating chamber from a power supply port through a waveguide.
  • the heating chamber is divided into an upper space and a lower space by a mounting shelf.
  • the periphery of the mounting shelf is located at the center in the vertical direction of the power supply port.
  • the mounting surface has multiple parallel lines with openings and a length that is an integer multiple of 1/2 wavelength, and is configured so that microwaves are secondarily radiated from these parallel lines.
  • An equal amount of objects to be heated is placed in the upper space and the lower space, and the objects to be heated and the mounting shelf are simultaneously heated by microwaves while rotating.
  • Microwaves supplied from the power supply port at the periphery of the mounting surface are evenly distributed to the upper space and the lower space, and microwaves are secondarily radiated above and below from the parallel lines, so that the objects to be heated are heated evenly and efficiently.
  • the microwave heating device described above has the effect of evenly distributing microwaves to the upper and lower spaces, but it is not possible to control the uniformity of heating of the objects placed in each space, and there is a risk of uneven heating depending on the shape and type of the objects.
  • the object of the present invention is to appropriately control heating in a microwave irradiation device.
  • a microwave irradiation device includes a power supply device configured to be conductive with an oscillator, a directional antenna group including at least one directional antenna configured to irradiate microwaves by power supply through the power supply device, and a secondary radiation antenna group including at least one secondary radiation antenna configured to secondarily radiate microwaves.
  • heating can be appropriately controlled in a microwave irradiation device.
  • FIG. 1A is a front view diagrammatically illustrating an outline of a configuration example of a microwave radiating device according to a first embodiment.
  • FIG. FIG. 1B is a right side view diagrammatically illustrating an outline of a configuration example of the microwave radiating device according to the first embodiment.
  • FIG. FIG. 2A is a diagram for explaining the operation of the microwave radiating device of the first embodiment, showing a current at a certain moment.
  • FIG. 2B is a diagram for explaining the operation of the microwave radiating device of the first embodiment, showing a magnetic field in an xz cross section including the radiation axis of the loop antenna at a certain moment.
  • FIG. 1A is a front view diagrammatically illustrating an outline of a configuration example of a microwave radiating device according to a first embodiment.
  • FIG. 1B is a right side view diagrammatically illustrating an outline of a configuration example of the microwave radiating device according to the first embodiment.
  • FIG. 2A is a diagram for explaining the operation of the microwave radiat
  • FIG. 2C is a diagram for explaining the operation of the microwave radiating device of the first embodiment, and is a diagram for explaining an electric field formed at a certain moment.
  • FIG. 2D is a diagram for explaining the operation of the microwave radiating device of the first embodiment, showing the electric field in an xy cross section passing through the secondary radiation antenna at a certain moment.
  • FIG. 2E is a diagram for explaining the operation of the microwave radiating device of the first embodiment, and is a diagram showing the electric field in a yz cross section passing through an object to be radiated at a certain moment.
  • FIG. 3 is a diagram showing an example of a simulation result of a temperature distribution when an irradiated object is heated by the microwave irradiating device of the first embodiment, and showing respective results when the length of the secondary radiation antenna is different.
  • FIG. 4A is a diagram showing an example of a model used in a simulation of a temperature distribution when an irradiated object is heated by the microwave irradiating device of the first embodiment.
  • FIG. 4B is a diagram showing an example of a simulation result of a temperature distribution when an irradiated object is heated by the microwave irradiating device of the first embodiment.
  • FIG. 4A is a diagram showing an example of a model used in a simulation of a temperature distribution when an irradiated object is heated by the microwave irradiating device of the first embodiment.
  • FIG. 4B is a diagram showing an example of a simulation result of a temperature distribution when an irradiated object is heated by the microwave irradiating device of the first embodiment
  • FIG. 4C is a diagram showing an example of a simulation result of a temperature distribution when an irradiated object is heated by the microwave irradiating device of the first embodiment.
  • FIG. 5 is a diagram showing an example of a test result in which an object to be irradiated is heated by the microwave irradiating device of the first embodiment.
  • FIG. 6 is a diagram showing an example of a simulation result of the temperature distribution when an irradiated object is heated by a microwave irradiation device according to a modified example, and shows the results for different lengths of the secondary radiation antenna perpendicular to the irradiation axis.
  • FIG. 5 is a diagram showing an example of a test result in which an object to be irradiated is heated by the microwave irradiating device of the first embodiment.
  • FIG. 6 is a diagram showing an example of a simulation result of the temperature distribution when an irradiated object is heated by a microwave irradiation device according to a
  • FIG. 7A is a front view that diagrammatically illustrates an example of the configuration of a microwave radiating device according to a second embodiment.
  • FIG. 7B is a right side view diagrammatically illustrating an outline of a configuration example of the microwave radiating device according to the second embodiment.
  • FIG. 8A is a diagram for explaining the operation of the microwave radiating device of the second embodiment, showing a current at a certain moment.
  • FIG. 8B is a diagram for explaining the operation of the microwave radiating device of the second embodiment, showing a magnetic field in an xz cross section including the radiation axis of the loop antenna at a certain moment.
  • FIG. 8C is a diagram for explaining the operation of the microwave radiating device of the second embodiment, showing a current at a certain moment.
  • FIG. 8A is a diagram for explaining the operation of the microwave radiating device of the second embodiment, showing a current at a certain moment.
  • FIG. 8B is a diagram for explaining the operation of the microwave radiating device of the second embodiment, showing
  • FIG. 8D is a diagram for explaining the operation of the microwave radiating device of the second embodiment, and is a diagram showing the electric field in an xy cross section passing through the secondary radiation antenna at a certain moment.
  • FIG. 8E is a diagram for explaining the operation of the microwave radiating device of the second embodiment, and is a diagram showing the electric field in a yz cross section passing through an object to be radiated at a certain moment.
  • FIG. 9A is a diagram showing an example of a simulation result of a temperature distribution when an irradiated object is heated by the microwave irradiating device of the second embodiment.
  • FIG. 9A is a diagram showing an example of a simulation result of a temperature distribution when an irradiated object is heated by the microwave irradiating device of the second embodiment.
  • FIG. 9B is a diagram showing an example of a simulation result of a temperature distribution when an irradiated object is heated by the microwave irradiating device of the second embodiment.
  • FIG. 10 is a diagram showing an example of a test result in which an object to be irradiated is heated by the microwave irradiating device of the second embodiment.
  • FIG. 11 is a diagram showing an example of a simulation result of temperature distribution when an irradiated object is heated by the microwave irradiating device of the third embodiment, and showing respective results when the position of the secondary radiation antenna is different.
  • FIG. 12 is a front view diagrammatically illustrating an outline of a configuration example of a microwave radiating device according to the fourth embodiment.
  • the microwave irradiating device of this embodiment is configured to irradiate microwaves to an irradiated object to heat the inside of the irradiated object.
  • the irradiated object is, but is not limited to, a food product.
  • ⁇ composition> 1A and 1B are diagrams showing an outline of a configuration example of a microwave irradiation device 1 according to the present embodiment.
  • Fig. 1A is a front view of the microwave irradiation device 1, and is a diagram showing a state in which a plate on the front part of a metal housing 82 described later is removed to make the inside visible.
  • Fig. 1B is a right side view of the microwave irradiation device 1, and is a diagram showing a state in which a plate on the right side part of a metal housing 82 described later is removed to make the inside visible.
  • the microwave irradiation device 1 includes a holder 60.
  • the holder 60 holds an irradiated object 90, which is an object to be heated and is irradiated with microwaves.
  • the holder 60 can be, for example, a table on which the irradiated object 90 is placed.
  • the holder 60 is configured, for example, to be able to hold the irradiated object 90 at an irradiation position where the microwaves are appropriately irradiated.
  • the microwave irradiation device 1 is equipped with a directional antenna group 34 including two directional antennas 40 configured to irradiate microwaves to an irradiated object 90 held by a holder 60.
  • Each directional antenna 40 is, for example, an antenna such as a loop antenna or a patch antenna.
  • the two directional antennas 40 are arranged opposite each other with the irradiated object 90 in between, with their directional irradiation axes facing each other toward the irradiated object 90.
  • the two directional antennas 40 are arranged along the irradiation axes of these directional antennas 40.
  • the two directional antennas 40 are loop antennas 41.
  • the holder 60 is provided so as to pass through the loops of the two loop antennas 41.
  • the irradiation position where the microwaves are appropriately irradiated is the midpoint between the two opposing loop antennas 41.
  • the two loop antennas 41 are arranged symmetrically with the irradiated object 90 in between.
  • the loop antenna 41 includes a conductor 42 formed in a ring shape with a length of, for example, one wavelength of the microwaves to be irradiated. Both ends of the conductor 42 are power supply points 43.
  • the coaxial cable 21 connects the oscillator 10 and the loop antenna 41 to provide electrical continuity.
  • the oscillator 10 supplies high-frequency power to the loop antenna 41 via the coaxial cable 21.
  • a current is generated in the conductor 42 as an element, and the loop antenna 41 radiates radio waves to form an electric field.
  • the surface formed by the conductor 42 becomes the radio wave irradiation surface, and directional microwaves are emitted from the irradiation source in the center of the irradiation surface toward an irradiation axis perpendicular to the irradiation surface.
  • the loop antenna 41 is arranged perpendicular to the mounting surface of the holder 60, and the irradiation axis is along the mounting surface of the holder 60.
  • the microwave irradiation device 1 includes a secondary radiation antenna group 35 including two secondary radiation antennas 50.
  • the two secondary radiation antennas 50 are arranged between the two loop antennas 41.
  • the two thin plate-shaped secondary radiation antennas 50 are arranged so as to extend parallel to the irradiation axis of the loop antenna 41, penetrate both loop antennas 41, and sandwich the irradiated object 90 from the horizontal direction.
  • the loop antenna 41 which is the directional antenna 40, and the secondary radiation antenna 50 are not conductive and are insulated.
  • the two secondary radiation antennas 50 are arranged symmetrically with respect to the irradiation position where the irradiated object 90 is held.
  • the irradiated object 90 is arranged in the middle of the two loop antennas 41, and the secondary radiation antenna 50 is also arranged in the middle of the two loop antennas 41.
  • the above-mentioned configuration is covered with metal to block microwaves. That is, the holder 60, the directional antenna 40, the secondary radiation antenna 50, etc. are arranged inside the metal housing 82.
  • the operation of the microwave irradiation device 1 of this embodiment will be described.
  • the oscillator 10 outputs high-frequency power according to the frequency of the microwave.
  • the frequency is not limited to, but may be, for example, 2.45 GHz, 915 MHz, or 450 MHz.
  • the high-frequency power output from the oscillator 10 is supplied to the directional antenna 40 via the power supply device 20.
  • the directional antenna 40 radiates microwaves based on this power supply.
  • the secondary radiation antenna 50 is electromagnetically induced by the microwaves radiated from the directional antenna 40. As a result, an electric field is generated by the secondary radiation antenna 50.
  • Microwaves are irradiated from the directional antenna 40 and the secondary radiation antenna 50 to the irradiated object 90 placed on the holder 60.
  • the irradiated object 90 is dielectrically heated by the microwaves.
  • the directional antenna 40 and the secondary radiation antenna 50 are provided as described above, so that the irradiated object 90 is heated more uniformly.
  • the horizontal mounting surface of the holder 60 is defined as the xy plane, and the vertical direction is defined as the z axis.
  • the loop antenna 41 as the directional antenna 40 is provided on the yz plane, and its irradiation axis is along the x axis.
  • FIG. 2A is a diagram showing the direction and magnitude of the current at a certain moment when high-frequency power is supplied from oscillator 10 to loop antenna 41, using the direction and magnitude of many small vectors.
  • Current flows through loop antenna 41 in the direction shown by the large white arrow.
  • a magnetic field is generated around loop antenna 41 in the direction shown by the large shaded arrow.
  • FIG. 2B is a diagram showing the direction and strength of the magnetic field in an xz cross section including the irradiation axis of the loop antenna 41 at this time, using the direction and magnitude of many small vectors.
  • a magnetic field is generated in the direction shown by the large hatched arrow in FIG. 2B.
  • FIG. 2C is a diagram showing the direction and magnitude of the current, also shown in FIG. 2A, with the direction and magnitude of many small vectors.
  • a magnetic field such as that shown in FIG. 2B penetrates the secondary radiation antenna 50
  • eddy currents are generated, and a current is induced in the secondary radiation antenna 50 as a result of the combination of these eddy currents.
  • the direction of the current in the secondary radiation antenna 50 is shown by a large white arrow in FIG. 2C. That is, in one secondary radiation antenna 50, a current is generated toward its center, and in the other secondary radiation antenna 50, a current is generated toward the outside from the center.
  • positive and negative charges accumulate where the induced currents face each other, i.e., in the center of the secondary radiation antenna 50.
  • FIGS. 2D and 2E are diagrams showing the direction and strength of the electric field generated at this time by the direction and magnitude of many small vectors.
  • FIG. 2D shows an xy cross section passing through the secondary radiation antenna 50
  • FIG. 2E shows a yz cross section passing through the irradiated object 90.
  • an electric field is generated between the two secondary radiation antennas 50, crossing the irradiated object 90.
  • the irradiated object 90 is efficiently dielectrically heated.
  • FIG. 3 shows the results of simulating the temperature distribution of the irradiated object 90 when the irradiated object 90 is heated by the microwave irradiation device 1 described above, and shows the results for each case where the length of the secondary radiation antenna 50 is different.
  • the analysis was performed with the diameter of the irradiated object 90 being 80 mm, the frequency of the power supply to the loop antenna 41 being 450 MHz, and the distance between the two loop antennas 41 being 333 mm, which corresponds to 1/2 wavelength.
  • the upper part shows the model used in the simulation, showing the arrangement of the secondary radiation antenna 50. In both cases, the width of the secondary radiation antenna 50 is 20 mm, and the interval between them is 95 mm.
  • the secondary radiation antenna 50 is arranged at the center position in the height direction of the irradiated object 90.
  • the analysis was performed for (a) the case where the secondary radiation antenna 50 is not provided, and the case where the length of the secondary radiation antenna 50 is set to a length equivalent to each of (b) 1/32 wavelength, (c) 1/16 wavelength, (d) 1/8 wavelength, and (e) 1/4 wavelength.
  • the electromagnetic field generated for each condition was calculated, and the temperature distribution based on this electromagnetic field was calculated.
  • the lower part of Fig. 3 shows the analysis result of the temperature distribution in the xy cross section including the center of the irradiated object 90 on which the secondary radiation antenna 50 is arranged after the uniform irradiated object 90 is heated for 5 minutes at an output of 150 W.
  • the temperature difference depending on the position was small in both the direction along the irradiation axis 45 and the direction perpendicular to the irradiation axis 45, and it was found that the entire irradiated object 90 was heated more uniformly. It was considered preferable that the secondary radiation antenna 50 has a certain length.
  • the oscillation frequency of the oscillator 10 was 450 MHz.
  • Power was fed to the two loop antennas 41 in phase.
  • a 5 mm thick polyethylene (PE) plate was used as the holder 60.
  • the food holder 166 was positioned so that it penetrated the two loop antennas 140.
  • a plate-shaped secondary radiation antenna 50 with a width of 40 mm and a length that penetrated the two loop antennas 41 was placed with a gap of 95 mm between them, sandwiching the irradiated object 90.
  • the irradiated object 90 was a polypropylene (PP) container with a diameter of 80 mm, containing potato salad. The temperature was measured by attaching multiple Thermo Labels (registered trademark) to the surface of the potato salad. The temperature was measured after heating for 5 minutes at an output of 150 W.
  • PP polypropylene
  • the irradiated object 90 after heating is shown in FIG. 5.
  • the temperature reached 70°C everywhere along the irradiation axis 45.
  • the center was 70°C and both sides were 80°C.
  • the microwave irradiation device 1 is capable of uniform heating.
  • the temperature on both sides in the direction perpendicular to the irradiation axis 45 was lower than that of the center. In other words, the same measurement results as the simulation results in FIG. 3(a) were obtained.
  • a multi-mode heating device that reflects microwaves inside a metal housing to heat the object to be heated.
  • a single-mode heating device is known in which the object to be heated is placed inside a waveguide that carries microwaves.
  • uneven heating is likely to occur.
  • a heating device that uses a waveguide is likely to become large in size, especially when the frequency is low, as the waveguide becomes large.
  • the microwave irradiation device 1 of this embodiment does not use a waveguide and does not need to combine multiple types of devices, so the device can be easily miniaturized.
  • since a waveguide is not used, it is easy to use microwaves of a relatively low frequency. By lowering the frequency, the half-power depth can also be deepened.
  • FIG. 6 shows the results of a simulation of the temperature distribution of the irradiated object 90 when the irradiated object 90 is heated by the microwave irradiation device 1 according to the modified example.
  • the long axis of the secondary radiation antenna 50 is provided so as to be perpendicular to the irradiation axis 45.
  • FIGS. 6(a) to 6(d) summarizes the analysis of the case where the secondary radiation antenna 50 is not provided (a) and the case where the length of the secondary radiation antenna 50 is set to a length equivalent to each of 1/32 wavelength (b), 1/16 wavelength (c), and 1/8 wavelength (d), as shown in the upper part of the model.
  • the width of the secondary radiation antenna 50 is 10 mm, and the interval between them is 95 mm.
  • the secondary radiation antenna 50 is disposed at the center position in the height direction of the irradiated object 90.
  • the frequency of the power supply to the loop antenna 41 is 450 MHz, and the analysis is performed with the distance between the two loop antennas 41 being 333 mm, which corresponds to 1/2 wavelength.
  • the lower part of Figure 6 shows the analysis results of the temperature distribution in the xy cross section including the center of the irradiated object 90 where the secondary radiation antenna 50 is placed after heating a uniform irradiated object 90 with a diameter of 80 mm for 5 minutes at an output of 150 W.
  • the center of the irradiated object 90 is the hottest, and the temperature decreases the further away from the center.
  • a high-temperature region is formed along the irradiation axis 45 as described above, and the temperature difference depending on the position becomes large in the direction perpendicular to the irradiation axis.
  • the thin plate-shaped secondary radiation antenna 50 is arranged so that its main surface is horizontal, but this is not limiting.
  • the secondary radiation antenna 50 may be arranged so that its main surface is vertical.
  • the dimensions of the secondary radiation antenna 50 can be appropriately determined so as to achieve impedance matching, taking into consideration the output frequency of the oscillator 10, etc.
  • the secondary radiation antenna 50 is preferably positioned reasonably close to the irradiated object 90, since the electric field formed in the area of the irradiated object 90 weakens as it moves away from the irradiated object 90.
  • the microwave irradiation device 2 of this embodiment is provided with an additional secondary radiation antenna as a secondary radiation antenna 52 for heat control, compared with the microwave irradiation device 1 according to the first embodiment. That is, in this embodiment, the secondary radiation antenna group 35 includes the secondary radiation antenna 52 for heat control in addition to the two secondary radiation antennas 50 on both sides of the irradiated object 90.
  • FIGS. 7A and 7B are schematic diagrams showing an example of the configuration of a microwave irradiation device 2 according to this embodiment.
  • FIG. 7A is a front view of the microwave irradiation device 2, and is a schematic diagram showing a state in which the plate on the front part of the metal housing 82 has been removed to make the inside visible.
  • FIG. 7B is a right side view of the microwave irradiation device 2, and is a schematic diagram showing a state in which the plate on the right side part of the metal housing 82 has been removed to make the inside visible.
  • the microwave irradiation device 2 has a secondary radiation antenna 52 for heating control provided below the holder 60.
  • the secondary radiation antenna 52 for heating control extends parallel to the irradiation axis 45, but is positioned so that it does not pass directly below the center of the irradiated object 90, but is offset to the left side in FIG. 7B. That is, in this embodiment, the multiple secondary radiation antennas included in the secondary radiation antenna group 35 are positioned asymmetrically with respect to the irradiation position where the irradiated object 90 is placed.
  • the rest of the configuration of the microwave irradiation device 2 is the same as in the first embodiment.
  • the directional antenna 40, the secondary radiation antenna 50, and the heating control secondary radiation antenna 52 are provided as described above, so that the irradiated object 90 is heated unevenly.
  • the horizontal mounting surface of the holder 60 is defined as the xy plane, and the vertical direction is defined as the z axis.
  • the loop antenna 41 is provided on the yz plane, and its irradiation axis is along the x axis.
  • FIG. 8A is a diagram showing the direction and magnitude of the current at a certain moment when high-frequency power is supplied from oscillator 10 to loop antenna 41, using the direction and magnitude of many small vectors.
  • Current flows through loop antenna 41 in the direction shown by the large white arrow.
  • a magnetic field is generated around loop antenna 41 in the direction shown by the large shaded arrow.
  • FIG. 8B is a diagram showing the direction and strength of the magnetic field in the xz cross section including the irradiation axis of the loop antenna 41 at this time, using the direction and magnitude of many small vectors.
  • a magnetic field is generated in the direction shown by the large hatched arrow in FIG. 8B.
  • FIG. 8C is a diagram showing the direction and magnitude of the current as shown in FIG. 8A, using the direction and magnitude of many small vectors.
  • a magnetic field such as that shown in FIG. 8B passes through the secondary radiation antenna 50 and the secondary radiation antenna for heating control 52, eddy currents are generated, and currents are induced in the secondary radiation antenna 50 and the secondary radiation antenna for heating control 52 as a result of the combination of these eddy currents.
  • the direction of the currents in the secondary radiation antenna 50 and the secondary radiation antenna for heating control 52 is shown by the large white arrows. Electric charge accumulates where the induced currents face each other.
  • FIG. 8D and 8E are diagrams showing the direction and strength of the electric field generated at this time by the direction and magnitude of many small vectors.
  • FIG. 8D shows an xy cross section passing through the secondary radiation antenna 50
  • FIG. 8E shows a yz cross section passing through the irradiated object 90.
  • an electric field is generated that crosses the irradiated object 90 between the opposing secondary radiation antennas 50
  • an electric field is generated that crosses the irradiated object 90 toward the secondary radiation antenna 50 farther from the heating control secondary radiation antenna 52.
  • the electric field strength is stronger on the side of the secondary radiation antenna 50 farther from the heating control secondary radiation antenna 52 than on the opposite secondary radiation antenna 50. Therefore, the irradiated object 90 is dielectrically heated more strongly on the side of the secondary radiation antenna 50 farther from the heating control secondary radiation antenna 52 where the electric field strength is stronger.
  • Simulation of temperature distribution due to dielectric heating 9A and 9B are simulation results of the temperature distribution of the irradiated object 90 when the irradiated object 90 is heated by the microwave irradiation device 2 of this embodiment.
  • the analysis was performed with the diameter of the irradiated object 90 being 80 mm, the frequency of the power supply to the loop antenna 41 being 450 MHz, and the distance between the two loop antennas 41 being 333 mm, which corresponds to 1/2 wavelength.
  • the width of the secondary radiation antenna 50 was 40 mm, and the interval between them was 95 mm.
  • the secondary radiation antenna 50 was placed at the center position in the height direction of the irradiated object 90.
  • the width of the heating control secondary radiation antenna 52 was 30 mm, and it was placed under the holder 60 so that the width direction end of the heating control secondary radiation antenna 52 was located at the center position of the irradiated object 90.
  • FIG. 9B shows the temperature distribution of the 9B-9B cross section shown in FIG. 9A. As a result, it was revealed that the irradiated object 90 was heated more strongly on the side of the secondary radiation antenna 50 farther from the heating control secondary radiation antenna 52.
  • Heating by the microwave radiating device 2 of this embodiment was evaluated using a containerized potato salad as an object to be heated.
  • the experimental conditions were the same as those of the first embodiment, except that the microwave radiating device 2 was provided with a secondary radiation antenna 52 for heating control.
  • the irradiated object 90 after heating is shown in FIG. 10. As shown in this figure, the temperature after heating on the side where the secondary radiation antenna for heating control 52 is located is 70°C, while the temperature after heating on the side opposite the side where the secondary radiation antenna for heating control 52 is located is 90°C. In this way, it was confirmed that the microwave irradiation device 2 is capable of uneven heating. It was made clear that the heating distribution can be controlled by adjusting the location of the secondary radiation antenna for heating control 52.
  • the irradiated object 90 When heating the irradiated object 90, it is not necessarily desirable to heat it uniformly. For example, when there are areas within the irradiated object 90 that are easily heated and areas that are difficult to heat, the entire irradiated object 90 will be heated uniformly by supplying more power to the areas that are difficult to heat. Also, a single irradiated object 90 may contain areas that you want to heat and areas that you do not want to heat excessively. In such cases, it is necessary to supply power to the areas that you want to heat.
  • the microwave irradiation device 2 can perform appropriate heating by adjusting the position and size of the heating control secondary radiation antenna 52 according to the electric field strength required at each part of the irradiated object 90.
  • the microwave irradiation device 2 may be configured so that the position of the heating control secondary radiation antenna 52 can be changed. In this way, by changing the position of the heating control secondary radiation antenna 52 according to the irradiated object 90, heating according to the irradiated object 90 becomes possible.
  • a secondary radiation antenna 52 for heating control is provided in addition to the secondary radiation antenna 50 of the microwave irradiation device 1 of the first embodiment, but this is not limited to this.
  • the microwave irradiation device can adjust the electric field strength and control the heating of the irradiated object 90.
  • the secondary radiation antenna is provided symmetrically with respect to the irradiated object 90, so that power is uniformly supplied to the irradiated object.
  • the secondary radiation antenna is provided asymmetrically with respect to the irradiated object 90, so that power is non-uniformly supplied to the irradiated object.
  • the distribution of the electric field strength may vary depending on various conditions.
  • the secondary radiation antenna 50 farther from the heating control secondary radiation antenna 52 when the secondary radiation antenna 50 farther from the heating control secondary radiation antenna 52 is not provided, that is, when the right-side secondary radiation antenna 50 in FIG. 8E is not provided and only two secondary radiation antennas, the left-side secondary radiation antenna 50 and the heating control secondary radiation antenna 52, are provided, a strong electric field is formed between these two secondary radiation antennas.
  • the left side of the irradiated object 90 in FIG. 8E is strongly heated.
  • Figure 11 shows the results of a simulation of the temperature distribution in the irradiated object 90, which is a tapered cup with a diameter of 80 mm to 85 mm containing an item 91, when the irradiated object 90 is heated by the microwave irradiation device 1.
  • (a) shows the case where the secondary radiation antenna 50 is not provided
  • (b) shows the case where the secondary radiation antenna 50 is placed at the center of the height of the item 91
  • (c) shows the case where the secondary radiation antenna 50 is placed at the same height as the holder 60.
  • the upper and middle sections show the models used in the simulation.
  • the upper section shows a perspective view
  • the middle section shows a yz cross section passing through the center of the irradiated object 90.
  • the width of the secondary radiation antenna 50 was 20 mm.
  • the spacing between the secondary radiation antennas 50 was 95 mm.
  • the spacing between the secondary radiation antennas 50 was 140 mm.
  • the frequency of the power supply to the loop antenna 41 was 450 MHz, and the distance between the two loop antennas 41 was 333 mm, which corresponds to 1/2 wavelength, for the analysis.
  • the electromagnetic field generated for each condition was calculated, and the temperature distribution based on this electromagnetic field was calculated.
  • the lower part of Figure 11 shows the analysis results of the temperature distribution in the yz cross section including the center of the irradiated object 90 after the irradiated object 90 was heated for 5 minutes at an output of 150 W.
  • the experiment was conducted with the irradiated object 90 being a container of potato salad.
  • the irradiated object 90 was a tapered polypropylene (PP) container with a diameter of 80 mm to 85 mm, in which potato salad was placed. Except for the position of the secondary radiation antenna 50, the other experimental conditions were the same as those shown in the first embodiment.
  • PP polypropylene
  • FIG. 12 is a front view showing an outline of a configuration example of a microwave irradiation device 3 according to a fourth embodiment.
  • the microwave irradiation device 3 of this embodiment is configured to irradiate microwaves to an object to be irradiated 90, such as food, to heat the inside of the object to be irradiated 90.
  • the microwave irradiation device 3 is configured so that a plurality of objects to be irradiated are transported in succession and heated in succession.
  • the microwave irradiation device 3 includes a conveying device 61 as a holder 60 that conveys an irradiated object 90, which is an object to be heated and irradiated with microwaves.
  • the conveying device 61 includes, for example, a belt 62 and a roller 63.
  • the belt 62 is hung on the roller 63.
  • the roller 63 is rotated by a motor (not shown) to move the belt 62 in the longitudinal direction.
  • the irradiated object 90 is placed on the belt 62 and conveyed in a conveying direction 89 by the movement of the belt 62.
  • a supplying device 84 is provided on the upstream side of the conveying device 61 in the conveying direction 89, which supplies the irradiated object 90 onto the belt 62 one after another.
  • a conveying device 86 is provided on the downstream side of the conveying device 61 in the conveying direction 89, which conveys the conveyed irradiated object 90 from the belt 62.
  • the microwave irradiation device 3 has the same configuration as the microwave irradiation device 1 according to the first embodiment as a device for heating an irradiated object 90.
  • the microwave irradiation device 3 includes a pair of loop antennas 41 configured to irradiate microwaves to the irradiated object 90 transported by a transport device 61.
  • the loop antennas 41 are powered by an oscillator 10 that is electrically connected via a power supply device 20, such as a coaxial cable.
  • the belt 62 of the conveying device 61 is provided so as to penetrate the irradiation surface, which is the opening surface of the two loop antennas 41.
  • the irradiated object 90 is conveyed in the conveying direction 89 so as to pass through the loop antennas 41.
  • the microwave irradiation device 3 is provided with a pair of secondary radiation antennas 50 so as to sandwich the irradiated object 90 conveyed in the conveying direction 89 between them.
  • the loop antenna 41 and the secondary radiation antenna 50 are surrounded by a metal covering to block microwaves.
  • the transport device 61 is arranged to pass through the metal housing 82, and the loop antenna 41 and the secondary radiation antenna 50 are disposed within the metal housing 82.
  • the object to be irradiated 90 passes through the loop antenna 41 and between the secondary radiation antennas 50, thereby achieving efficient and uniform heating of the object to be irradiated 90.
  • the oscillator 10 outputs high-frequency power according to the frequency of the microwave.
  • the frequency is, but is not limited to, for example, 2.45 GHz, 915 MHz, or 450 MHz.
  • the high-frequency power output from this oscillator 10 is supplied to the loop antenna 41 via the power supply device 20. Based on this power supply, the loop antenna 41 radiates microwaves in the direction of the irradiation axis 45. In this way, an electric field is formed by the loop antenna 41 and the secondary radiation antenna 50.
  • the conveying device 61 rotates the belt 62 by rotating the roller 63.
  • the supplying device 84 supplies the irradiated object 90 onto the belt 62 of the conveying device 61, for example at regular intervals.
  • the conveying device 61 conveys the supplied irradiated object 90 in the conveying direction 89 and passes it through the opening surface of the loop antenna 41 in the metal housing 82.
  • the conveying device 61 further passes the irradiated object 90 between a pair of secondary radiation antennas 50 and passes it through the opening surface of the other loop antenna 41.
  • Microwaves are irradiated from the loop antenna 41 and secondary radiation antenna 50 to the conveyed irradiated object 90.
  • the irradiated object 90 is dielectrically heated by the microwaves.
  • the heated irradiated object 90 is conveyed to the outside of the metal housing 82 by the conveying device 61.
  • the conveying device 86 conveys the heated irradiated object 90 out of the conveying device
  • the conveying device 61 may move the irradiated object 90 continuously, or may move the irradiated object 90 intermittently, for example, so that the irradiated object 90 stops at the midpoint between the pair of loop antennas 41.
  • the irradiated object 90 is heated evenly by passing between the loop antenna 41 and the secondary radiation antenna 50 that radiate microwaves.
  • the microwave irradiation device 3 can be incorporated into processing equipment for various applications, or configured in an appropriate manner.
  • the microwave irradiation device 1 when used for heat sterilization of sealed packaged food, the microwave irradiation device 1 is incorporated into an apparatus configured so that the irradiated object 90, which is the sealed packaged food, is pressurized and kept warm for the time required for sterilization.
  • the irradiated object 90 when used for reaction processing of materials, the irradiated object 90, which is the object to be processed, may be contained in an appropriate reaction container, and the conveying device 61 may be configured as a pipe through which the object to be processed flows, or the like.
  • the device configuration for heating the irradiated object 90 is similar to that of the microwave irradiation device 1 of the first embodiment, but this is not limited to this.
  • the microwave irradiation device 3 may have a device configuration similar to that of the microwave irradiation device 2 of the second embodiment. By having such a configuration, the microwave irradiation device 3 of this embodiment can also perform biased heating.
  • the microwave irradiation device 3 of this embodiment an example in which two loop antennas 41 are arranged along the radiation axis has been shown, but this is not limited to this.
  • the device may be configured such that three loop antennas 41, such as a first, second, and third loop antenna 41, are arranged along the radiation axis, a secondary radiation antenna 50 is provided between the first and second loop antennas 41, and a secondary radiation antenna 50 is also provided between the second and third loop antennas 41, so that appropriate heating is performed at two locations.
  • the number of loop antennas 41 may be one or any number of times.
  • the conveying device 61 changes the position of the irradiated object 90 relative to the loop antenna 41 and the secondary radiation antenna 50.
  • this is not limiting, and it is also possible that the position of the loop antenna 41 or the secondary radiation antenna 50 relative to the irradiated object 90 is changed.
  • the holder 60 may fix the position of the irradiated object 90, and the loop antenna 41 or the secondary radiation antenna 50 may move. In this way, if the relative positional relationship between the loop antenna 41 and the holder 60, or the relative positional relationship between the secondary radiation antenna 50 and the holder 60, is changed, a similar effect can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

A microwave irradiation device 1 is provided with: a power supply tool 20 configured to conduct to an oscillator 10; a directional antenna group 34 including at least one directional antenna 40 configured to radiate microwaves through power supply by the conduction via the power supply tool 20; and a secondary radiation antenna group 35 including at least one secondary radiation antenna 50 configured to secondly radiate the microwaves.

Description

マイクロ波照射装置Microwave irradiation device
 本発明は、マイクロ波照射装置に関する。 The present invention relates to a microwave irradiation device.
 一般に、被照射物にマイクロ波を照射することで被照射物を誘電加熱する加熱装置が知られている。誘電加熱では、種々の理由により均等に被照射物が加熱されないことがある。そこで均等な加熱のための工夫が様々行われている。  Generally, heating devices are known that apply microwaves to an object to dielectrically heat it. However, with dielectric heating, the object may not be heated evenly for a variety of reasons. For this reason, various efforts have been made to ensure even heating.
 例えば特許文献1には、次のようなマイクロ波加熱装置について開示されている。このマイクロ波加熱装置では、導波管を介して給電口からマイクロ波が加熱室に供給される。加熱室は、載置棚によって上部空間と下部空間とに仕切られている。載置棚の周縁部は、給電口の上下方向中央部に配置されている。載置面は、開口部を有する1/2波長の整数倍の長さの複数の平行線路を有し、これら平行線路からマイクロ波が2次放射されるように構成されている。等しい量の被加熱物が上部空間と下部空間とに配置され、被加熱物及び載置棚が回転しながら、被加熱物が同時にマイクロ波で加熱される。載置面の周縁部で給電口から供給されたマイクロ波が上部空間と下部空間とに均等分散され、また、平行線路からマイクロ波が上下に2次放射されることで、被加熱物は、均等かつ高効率に加熱される。 For example, Patent Document 1 discloses the following microwave heating device. In this microwave heating device, microwaves are supplied to the heating chamber from a power supply port through a waveguide. The heating chamber is divided into an upper space and a lower space by a mounting shelf. The periphery of the mounting shelf is located at the center in the vertical direction of the power supply port. The mounting surface has multiple parallel lines with openings and a length that is an integer multiple of 1/2 wavelength, and is configured so that microwaves are secondarily radiated from these parallel lines. An equal amount of objects to be heated is placed in the upper space and the lower space, and the objects to be heated and the mounting shelf are simultaneously heated by microwaves while rotating. Microwaves supplied from the power supply port at the periphery of the mounting surface are evenly distributed to the upper space and the lower space, and microwaves are secondarily radiated above and below from the parallel lines, so that the objects to be heated are heated evenly and efficiently.
特開平11-40339号公報Japanese Patent Application Laid-Open No. 11-40339
 上記のマイクロ波加熱装置では、上部空間と下部空間へマイクロ波を均等分散する効果はあるが、各空間に置かれた被加熱物の加熱均一性は制御できず、被加熱物の形状や種類に応じて不均一な加熱になるおそれがある。本発明は、マイクロ波照射装置において適切に加熱を制御することを目的とする。 The microwave heating device described above has the effect of evenly distributing microwaves to the upper and lower spaces, but it is not possible to control the uniformity of heating of the objects placed in each space, and there is a risk of uneven heating depending on the shape and type of the objects. The object of the present invention is to appropriately control heating in a microwave irradiation device.
 本発明の一態様によれば、マイクロ波照射装置は、発振器と導通するように構成された給電器具と、前記給電器具を介した導通による給電によってマイクロ波を照射するように構成された少なくとも1つの指向性アンテナを含む指向性アンテナ群と、マイクロ波を2次放射するように構成された少なくとも1つの2次放射アンテナを含む2次放射アンテナ群とを備える。 According to one aspect of the present invention, a microwave irradiation device includes a power supply device configured to be conductive with an oscillator, a directional antenna group including at least one directional antenna configured to irradiate microwaves by power supply through the power supply device, and a secondary radiation antenna group including at least one secondary radiation antenna configured to secondarily radiate microwaves.
 本発明によれば、マイクロ波照射装置において適切に加熱を制御できる。 According to the present invention, heating can be appropriately controlled in a microwave irradiation device.
図1Aは、第1の実施形態に係るマイクロ波照射装置の構成例の概略を模式的に示す正面図である。FIG. 1A is a front view diagrammatically illustrating an outline of a configuration example of a microwave radiating device according to a first embodiment. FIG. 図1Bは、第1の実施形態に係るマイクロ波照射装置の構成例の概略を模式的に示す右側面図である。FIG. 1B is a right side view diagrammatically illustrating an outline of a configuration example of the microwave radiating device according to the first embodiment. FIG. 図2Aは、第1の実施形態のマイクロ波照射装置の動作を説明するための図であり、ある瞬間の電流を示す図である。FIG. 2A is a diagram for explaining the operation of the microwave radiating device of the first embodiment, showing a current at a certain moment. 図2Bは、第1の実施形態のマイクロ波照射装置の動作を説明するための図であり、ある瞬間のループアンテナの照射軸を含むxz断面における磁界を示す図である。FIG. 2B is a diagram for explaining the operation of the microwave radiating device of the first embodiment, showing a magnetic field in an xz cross section including the radiation axis of the loop antenna at a certain moment. 図2Cは、第1の実施形態のマイクロ波照射装置の動作を説明するための図であり、ある瞬間に形成される電界について説明するための図である。FIG. 2C is a diagram for explaining the operation of the microwave radiating device of the first embodiment, and is a diagram for explaining an electric field formed at a certain moment. 図2Dは、第1の実施形態のマイクロ波照射装置の動作を説明するための図であり、ある瞬間の2次放射アンテナを通るxy断面における電界について示す図である。FIG. 2D is a diagram for explaining the operation of the microwave radiating device of the first embodiment, showing the electric field in an xy cross section passing through the secondary radiation antenna at a certain moment. 図2Eは、第1の実施形態のマイクロ波照射装置の動作を説明するための図であり、ある瞬間の被照射物を通るyz断面における電界について示す図である。FIG. 2E is a diagram for explaining the operation of the microwave radiating device of the first embodiment, and is a diagram showing the electric field in a yz cross section passing through an object to be radiated at a certain moment. 図3は、第1の実施形態のマイクロ波照射装置により被照射物を加熱したときの温度分布のシミュレーション結果の一例であり、2次放射アンテナの長さが異なる場合の各々の結果を示す図である。FIG. 3 is a diagram showing an example of a simulation result of a temperature distribution when an irradiated object is heated by the microwave irradiating device of the first embodiment, and showing respective results when the length of the secondary radiation antenna is different. 図4Aは、第1の実施形態のマイクロ波照射装置により被照射物を加熱したときの温度分布のシミュレーションに用いたモデルの一例を示す図である。FIG. 4A is a diagram showing an example of a model used in a simulation of a temperature distribution when an irradiated object is heated by the microwave irradiating device of the first embodiment. 図4Bは、第1の実施形態のマイクロ波照射装置により被照射物を加熱したときの温度分布のシミュレーション結果の一例を示す図である。FIG. 4B is a diagram showing an example of a simulation result of a temperature distribution when an irradiated object is heated by the microwave irradiating device of the first embodiment. 図4Cは、第1の実施形態のマイクロ波照射装置により被照射物を加熱したときの温度分布のシミュレーション結果の一例を示す図である。FIG. 4C is a diagram showing an example of a simulation result of a temperature distribution when an irradiated object is heated by the microwave irradiating device of the first embodiment. 図5は、第1の実施形態のマイクロ波照射装置により被照射物を加熱した試験結果例を示す図である。FIG. 5 is a diagram showing an example of a test result in which an object to be irradiated is heated by the microwave irradiating device of the first embodiment. 図6は、変形例に係るマイクロ波照射装置により被照射物を加熱したときの温度分布のシミュレーション結果の一例であり、照射軸と直交する2次放射アンテナの長さが異なる場合の各々の結果を示す図である。FIG. 6 is a diagram showing an example of a simulation result of the temperature distribution when an irradiated object is heated by a microwave irradiation device according to a modified example, and shows the results for different lengths of the secondary radiation antenna perpendicular to the irradiation axis. 図7Aは、第2の実施形態に係るマイクロ波照射装置の構成例の概略を模式的に示す正面図である。FIG. 7A is a front view that diagrammatically illustrates an example of the configuration of a microwave radiating device according to a second embodiment. FIG. 図7Bは、第2の実施形態に係るマイクロ波照射装置の構成例の概略を模式的に示す右側面図である。FIG. 7B is a right side view diagrammatically illustrating an outline of a configuration example of the microwave radiating device according to the second embodiment. 図8Aは、第2の実施形態のマイクロ波照射装置の動作を説明するための図であり、ある瞬間の電流を示す図である。FIG. 8A is a diagram for explaining the operation of the microwave radiating device of the second embodiment, showing a current at a certain moment. 図8Bは、第2の実施形態のマイクロ波照射装置の動作を説明するための図であり、ある瞬間のループアンテナの照射軸を含むxz断面における磁界を示す図である。FIG. 8B is a diagram for explaining the operation of the microwave radiating device of the second embodiment, showing a magnetic field in an xz cross section including the radiation axis of the loop antenna at a certain moment. 図8Cは、第2の実施形態のマイクロ波照射装置の動作を説明するための図であり、ある瞬間の電流を示す図である。FIG. 8C is a diagram for explaining the operation of the microwave radiating device of the second embodiment, showing a current at a certain moment. 図8Dは、第2の実施形態のマイクロ波照射装置の動作を説明するための図であり、ある瞬間の2次放射アンテナを通るxy断面における電界について示す図である。FIG. 8D is a diagram for explaining the operation of the microwave radiating device of the second embodiment, and is a diagram showing the electric field in an xy cross section passing through the secondary radiation antenna at a certain moment. 図8Eは、第2の実施形態のマイクロ波照射装置の動作を説明するための図であり、ある瞬間の被照射物を通るyz断面における電界について示す図である。FIG. 8E is a diagram for explaining the operation of the microwave radiating device of the second embodiment, and is a diagram showing the electric field in a yz cross section passing through an object to be radiated at a certain moment. 図9Aは、第2の実施形態のマイクロ波照射装置により被照射物を加熱したときの温度分布のシミュレーション結果の一例を示す図である。FIG. 9A is a diagram showing an example of a simulation result of a temperature distribution when an irradiated object is heated by the microwave irradiating device of the second embodiment. 図9Bは、第2の実施形態のマイクロ波照射装置により被照射物を加熱したときの温度分布のシミュレーション結果の一例を示す図である。FIG. 9B is a diagram showing an example of a simulation result of a temperature distribution when an irradiated object is heated by the microwave irradiating device of the second embodiment. 図10は、第2の実施形態のマイクロ波照射装置により被照射物を加熱した試験結果例を示す図である。FIG. 10 is a diagram showing an example of a test result in which an object to be irradiated is heated by the microwave irradiating device of the second embodiment. 図11は、第3の実施形態のマイクロ波照射装置により被照射物を加熱したときの温度分布のシミュレーション結果の一例であり、2次放射アンテナの位置が異なる場合の各々の結果を示す図である。FIG. 11 is a diagram showing an example of a simulation result of temperature distribution when an irradiated object is heated by the microwave irradiating device of the third embodiment, and showing respective results when the position of the secondary radiation antenna is different. 図12は、第4の実施形態に係るマイクロ波照射装置の構成例の概略を模式的に示す正面図である。FIG. 12 is a front view diagrammatically illustrating an outline of a configuration example of a microwave radiating device according to the fourth embodiment.
 [第1の実施形態]
 第1の実施形態について図面を参照して説明する。本実施形態は、マイクロ波照射装置に関する。本実施形態のマイクロ波照射装置は、被照射物に対してマイクロ波を照射して、被照射物を内部加熱するように構成されている。被照射物は、これに限らないが、例えば食品である。
[First embodiment]
A first embodiment will be described with reference to the drawings. This embodiment relates to a microwave irradiating device. The microwave irradiating device of this embodiment is configured to irradiate microwaves to an irradiated object to heat the inside of the irradiated object. The irradiated object is, but is not limited to, a food product.
 〈構成〉
 図1A及び図1Bは、本実施形態に係るマイクロ波照射装置1の構成例の概略を模式的に示す図である。図1Aは、マイクロ波照射装置1の正面図であり、後述する金属筐体82の正面部分の板を外して内部が見えるようにした状態を模式的に示す図である。図1Bは、マイクロ波照射装置1の右側面図であり、後述する金属筐体82の右側面部分の板を外して内部が見えるようにした状態を模式的に示す図である。
<composition>
1A and 1B are diagrams showing an outline of a configuration example of a microwave irradiation device 1 according to the present embodiment. Fig. 1A is a front view of the microwave irradiation device 1, and is a diagram showing a state in which a plate on the front part of a metal housing 82 described later is removed to make the inside visible. Fig. 1B is a right side view of the microwave irradiation device 1, and is a diagram showing a state in which a plate on the right side part of a metal housing 82 described later is removed to make the inside visible.
 これら図に示すように、マイクロ波照射装置1は、保持具60を備える。保持具60は、加熱対象物であってマイクロ波が照射される被照射物90を保持する。保持具60は、例えば被照射物90が載置される台であり得る。保持具60は、例えば、マイクロ波が適切に照射される照射位置に被照射物90を保持できるように構成されている。 As shown in these figures, the microwave irradiation device 1 includes a holder 60. The holder 60 holds an irradiated object 90, which is an object to be heated and is irradiated with microwaves. The holder 60 can be, for example, a table on which the irradiated object 90 is placed. The holder 60 is configured, for example, to be able to hold the irradiated object 90 at an irradiation position where the microwaves are appropriately irradiated.
 マイクロ波照射装置1は、保持具60によって保持される被照射物90にマイクロ波を照射するように構成された2つの指向性アンテナ40を含む指向性アンテナ群34を備える。各々の指向性アンテナ40は、例えば、ループアンテナ、パッチアンテナ等といったアンテナである。2つの指向性アンテナ40は、被照射物90を挟んで互いに指向性照射軸を被照射物90の方向に向けるように、対向して配置されている。2つの指向性アンテナ40は、これら指向性アンテナ40の照射軸に沿って配置されている。 The microwave irradiation device 1 is equipped with a directional antenna group 34 including two directional antennas 40 configured to irradiate microwaves to an irradiated object 90 held by a holder 60. Each directional antenna 40 is, for example, an antenna such as a loop antenna or a patch antenna. The two directional antennas 40 are arranged opposite each other with the irradiated object 90 in between, with their directional irradiation axes facing each other toward the irradiated object 90. The two directional antennas 40 are arranged along the irradiation axes of these directional antennas 40.
 図1A及び図1Bに示す例では、2つの指向性アンテナ40は、ループアンテナ41である。保持具60は、2つのループアンテナ41のループ内を貫通するように設けられている。本実施形態では、マイクロ波が適切に照射される照射位置は、対向する2つのループアンテナ41の中間位置となっている。すなわち、2つのループアンテナ41は、被照射物90を挟んで対称に配置されている。 In the example shown in Figures 1A and 1B, the two directional antennas 40 are loop antennas 41. The holder 60 is provided so as to pass through the loops of the two loop antennas 41. In this embodiment, the irradiation position where the microwaves are appropriately irradiated is the midpoint between the two opposing loop antennas 41. In other words, the two loop antennas 41 are arranged symmetrically with the irradiated object 90 in between.
 ループアンテナ41は、例えば、照射するマイクロ波の一波長分の長さを有して環形状に形成された導線42を備える。導線42の両端は、給電点43となっている。給電点43には、給電器具20としての例えば同軸ケーブル21が接続されている。同軸ケーブル21は、発振器10とループアンテナ41とを接続して導通させる。発振器10は、同軸ケーブル21を介して高周波電力をループアンテナ41に供給する。給電されると、エレメントとしての導線42に電流が生じ、ループアンテナ41は電波を放射して電界を形成する。 The loop antenna 41 includes a conductor 42 formed in a ring shape with a length of, for example, one wavelength of the microwaves to be irradiated. Both ends of the conductor 42 are power supply points 43. A coaxial cable 21, for example, serving as a power supply device 20, is connected to the power supply point 43. The coaxial cable 21 connects the oscillator 10 and the loop antenna 41 to provide electrical continuity. The oscillator 10 supplies high-frequency power to the loop antenna 41 via the coaxial cable 21. When power is supplied, a current is generated in the conductor 42 as an element, and the loop antenna 41 radiates radio waves to form an electric field.
 ループアンテナ41では、導線42で形成される面が電波の照射面となり、照射面の中央の照射源から照射面と直交する照射軸に向けて指向性のマイクロ波が放射される。ループアンテナ41は、保持具60の載置面と直交するように設けられており、照射軸は、保持具60の載置面に沿っている。 In the loop antenna 41, the surface formed by the conductor 42 becomes the radio wave irradiation surface, and directional microwaves are emitted from the irradiation source in the center of the irradiation surface toward an irradiation axis perpendicular to the irradiation surface. The loop antenna 41 is arranged perpendicular to the mounting surface of the holder 60, and the irradiation axis is along the mounting surface of the holder 60.
 マイクロ波照射装置1は、2つの2次放射アンテナ50を含む2次放射アンテナ群35を備える。2つの2次放射アンテナ50は、2つのループアンテナ41の間に配置されている。図1A及び図1Bに示す例では、細い板状の2つの2次放射アンテナ50が、ループアンテナ41の照射軸に沿って平行に伸びて両方のループアンテナ41を貫通するように、かつ、被照射物90を水平方向から挟むように、設けられている。指向性アンテナ40であるループアンテナ41と2次放射アンテナ50とは、導通しておらず、絶縁されている。本実施形態では、2つの2次放射アンテナ50は、被照射物90が保持される照射位置に対して対称に配置されている。これに限らないが、2つのループアンテナ41の中間において電界強度が強くなり加熱効率がよいので、被照射物90は2つのループアンテナ41の中間に配置されることが好ましく、2次放射アンテナ50も2つのループアンテナ41の中間に配置されることが好ましい。 The microwave irradiation device 1 includes a secondary radiation antenna group 35 including two secondary radiation antennas 50. The two secondary radiation antennas 50 are arranged between the two loop antennas 41. In the example shown in FIG. 1A and FIG. 1B, the two thin plate-shaped secondary radiation antennas 50 are arranged so as to extend parallel to the irradiation axis of the loop antenna 41, penetrate both loop antennas 41, and sandwich the irradiated object 90 from the horizontal direction. The loop antenna 41, which is the directional antenna 40, and the secondary radiation antenna 50 are not conductive and are insulated. In this embodiment, the two secondary radiation antennas 50 are arranged symmetrically with respect to the irradiation position where the irradiated object 90 is held. Although not limited to this, since the electric field strength is strong and heating efficiency is good in the middle of the two loop antennas 41, it is preferable that the irradiated object 90 is arranged in the middle of the two loop antennas 41, and the secondary radiation antenna 50 is also arranged in the middle of the two loop antennas 41.
 上述の構成は、マイクロ波の遮蔽のため、金属で覆われている。すなわち、保持具60、指向性アンテナ40及び2次放射アンテナ50などは、金属筐体82内に配置されている。 The above-mentioned configuration is covered with metal to block microwaves. That is, the holder 60, the directional antenna 40, the secondary radiation antenna 50, etc. are arranged inside the metal housing 82.
 〈動作〉
 本実施形態のマイクロ波照射装置1の動作について説明する。発振器10は、マイクロ波の周波数に応じた高周波電力を出力する。その周波数は、これに限らないが、例えば、2.45GHz又は915MHzといったものや、450MHzといったものである。この発振器10から出力された高周波電力は、給電器具20を介して指向性アンテナ40に供給される。指向性アンテナ40は、この給電に基づいて、マイクロ波を放射する。
<motion>
The operation of the microwave irradiation device 1 of this embodiment will be described. The oscillator 10 outputs high-frequency power according to the frequency of the microwave. The frequency is not limited to, but may be, for example, 2.45 GHz, 915 MHz, or 450 MHz. The high-frequency power output from the oscillator 10 is supplied to the directional antenna 40 via the power supply device 20. The directional antenna 40 radiates microwaves based on this power supply.
 2次放射アンテナ50は、指向性アンテナ40から放射されたマイクロ波によって電磁誘導される。その結果、2次放射アンテナ50による電界が発生する。 The secondary radiation antenna 50 is electromagnetically induced by the microwaves radiated from the directional antenna 40. As a result, an electric field is generated by the secondary radiation antenna 50.
 保持具60上に配置された被照射物90には、指向性アンテナ40及び2次放射アンテナ50からマイクロ波が照射される。このマイクロ波によって、被照射物90は、誘電加熱される。 Microwaves are irradiated from the directional antenna 40 and the secondary radiation antenna 50 to the irradiated object 90 placed on the holder 60. The irradiated object 90 is dielectrically heated by the microwaves.
 〈発生する電界等について〉
 本実施形態のマイクロ波照射装置1では、上述のように指向性アンテナ40及び2次放射アンテナ50が設けられていることで、被照射物90がより均一に加熱される。このことについて、図2A乃至図2Eを参照して説明する。ここで、図2A中に示すように、水平な保持具60の載置面をxy平面と定義し、鉛直方向をz軸と定義する。指向性アンテナ40としてのループアンテナ41はyz平面に設けられ、その照射軸はx軸に沿う。
<Regarding generated electric fields, etc.>
In the microwave irradiation device 1 of the present embodiment, the directional antenna 40 and the secondary radiation antenna 50 are provided as described above, so that the irradiated object 90 is heated more uniformly. This will be described with reference to Figs. 2A to 2E. Here, as shown in Fig. 2A, the horizontal mounting surface of the holder 60 is defined as the xy plane, and the vertical direction is defined as the z axis. The loop antenna 41 as the directional antenna 40 is provided on the yz plane, and its irradiation axis is along the x axis.
 図2Aは、発振器10からループアンテナ41に高周波電力が供給されたときのある瞬間の電流の向き及び大きさを多数の小さいベクトルの向き及び大きさで示す図である。ループアンテナ41には、大きな白抜き矢印で示す向きに電流が流れる。このとき、ループアンテナ41の周りには、斜線を付した大きな矢印で示す向きの磁界が発生する。 FIG. 2A is a diagram showing the direction and magnitude of the current at a certain moment when high-frequency power is supplied from oscillator 10 to loop antenna 41, using the direction and magnitude of many small vectors. Current flows through loop antenna 41 in the direction shown by the large white arrow. At this time, a magnetic field is generated around loop antenna 41 in the direction shown by the large shaded arrow.
 図2Bは、このときのループアンテナ41の照射軸を含むxz断面における磁界の向き及び強度を多数の小さいベクトルの向き及び大きさで示す図である。概して、図2Bにおいて斜線を付した大きな矢印で示す向きの磁界が発生する。 FIG. 2B is a diagram showing the direction and strength of the magnetic field in an xz cross section including the irradiation axis of the loop antenna 41 at this time, using the direction and magnitude of many small vectors. In general, a magnetic field is generated in the direction shown by the large hatched arrow in FIG. 2B.
 図2Cは、図2Aにも示した、電流の向き及び大きさを多数の小さいベクトルの向き及び大きさで示す図である。図2Bに示したような磁界が2次放射アンテナ50を貫く際に渦電流が発生し、その合成として2次放射アンテナ50に電流が誘導される。2次放射アンテナ50の電流の向きは、図2Cにおいて、大きな白抜き矢印で示されている。すなわち、一方の2次放射アンテナ50には、その中央に向けた電流が、他方の2次放射アンテナ50には、その中央から外側に向けた電流が生じる。図2Cに示すように、誘導電流が向かい合う部分に、すなわち、2次放射アンテナ50の中央部分に、それぞれ正負の電荷が溜まる。 FIG. 2C is a diagram showing the direction and magnitude of the current, also shown in FIG. 2A, with the direction and magnitude of many small vectors. When a magnetic field such as that shown in FIG. 2B penetrates the secondary radiation antenna 50, eddy currents are generated, and a current is induced in the secondary radiation antenna 50 as a result of the combination of these eddy currents. The direction of the current in the secondary radiation antenna 50 is shown by a large white arrow in FIG. 2C. That is, in one secondary radiation antenna 50, a current is generated toward its center, and in the other secondary radiation antenna 50, a current is generated toward the outside from the center. As shown in FIG. 2C, positive and negative charges accumulate where the induced currents face each other, i.e., in the center of the secondary radiation antenna 50.
 図2D及び図2Eは、このときに生じる電界の向き及び強度を多数の小さいベクトルの向き及び大きさで示す図である。図2Dは、2次放射アンテナ50を通るxy断面を示し、図2Eは、被照射物90を通るyz断面を示す。図2C乃至図2Eに大きな網掛け矢印で示されるように、2つの2次放射アンテナ50の間に、被照射物90を横切るように、電界が発生する。 FIGS. 2D and 2E are diagrams showing the direction and strength of the electric field generated at this time by the direction and magnitude of many small vectors. FIG. 2D shows an xy cross section passing through the secondary radiation antenna 50, and FIG. 2E shows a yz cross section passing through the irradiated object 90. As shown by the large shaded arrows in FIGS. 2C to 2E, an electric field is generated between the two secondary radiation antennas 50, crossing the irradiated object 90.
 以上のように、対向する2つのループアンテナ41の間に2つの2次放射アンテナ50が設けられることで、被照射物90は、効率的に誘電加熱される。 As described above, by providing two secondary radiation antennas 50 between two opposing loop antennas 41, the irradiated object 90 is efficiently dielectrically heated.
 〈誘電加熱による温度分布のシミュレーション〉
 図3は、上述のマイクロ波照射装置1により被照射物90を加熱したときの被照射物90の温度分布のシミュレーション結果であり、2次放射アンテナ50の長さが異なる場合の各々の結果である。被照射物90の直径を80mmとし、ループアンテナ41への給電の周波数は450MHzとし、2つのループアンテナ41間の距離を1/2波長に相当する333mmとして解析を行った。図3において、上段は、シミュレーションに用いたモデルを示し、2次放射アンテナ50の配置を示す。いずれの場合も、2次放射アンテナ50の幅は20mmとし、それらの間隔は95mmとした。2次放射アンテナ50は被照射物90の高さ方向中央位置に配置した。(a)2次放射アンテナ50を設けない場合、及び、2次放射アンテナ50の長さを(b)1/32波長、(c)1/16波長、(d)1/8波長、(e)1/4波長のそれぞれに相当する長さにした場合について解析を行った。解析では、条件ごとに発生する電磁界を算出し、この電磁界に基づく温度分布を算出した。図3の下段は、均一な被照射物90を150Wの出力で5分間加熱した後の、2次放射アンテナ50が配置された被照射物90の中央を含むxy断面の温度分布の解析結果を示している。
Simulation of temperature distribution due to dielectric heating
FIG. 3 shows the results of simulating the temperature distribution of the irradiated object 90 when the irradiated object 90 is heated by the microwave irradiation device 1 described above, and shows the results for each case where the length of the secondary radiation antenna 50 is different. The analysis was performed with the diameter of the irradiated object 90 being 80 mm, the frequency of the power supply to the loop antenna 41 being 450 MHz, and the distance between the two loop antennas 41 being 333 mm, which corresponds to 1/2 wavelength. In FIG. 3, the upper part shows the model used in the simulation, showing the arrangement of the secondary radiation antenna 50. In both cases, the width of the secondary radiation antenna 50 is 20 mm, and the interval between them is 95 mm. The secondary radiation antenna 50 is arranged at the center position in the height direction of the irradiated object 90. The analysis was performed for (a) the case where the secondary radiation antenna 50 is not provided, and the case where the length of the secondary radiation antenna 50 is set to a length equivalent to each of (b) 1/32 wavelength, (c) 1/16 wavelength, (d) 1/8 wavelength, and (e) 1/4 wavelength. In the analysis, the electromagnetic field generated for each condition was calculated, and the temperature distribution based on this electromagnetic field was calculated. The lower part of Fig. 3 shows the analysis result of the temperature distribution in the xy cross section including the center of the irradiated object 90 on which the secondary radiation antenna 50 is arranged after the uniform irradiated object 90 is heated for 5 minutes at an output of 150 W.
 いずれの場合も、被照射物90の中央部が最も高温となっており、中央から離れるほど温度が低くなっている。2次放射アンテナ50が設けられていない(a)の場合には、ループアンテナ41によって、2つのループアンテナ41の中心を結ぶ照射軸45に沿って電波が放射されるため、この照射軸45に沿って高温の領域が形成され、照射軸と直交する方向では位置による温度差が大きくなった。一方、2次放射アンテナ50が設けられ、それが長くなるに従って、照射軸45と直交する方向の位置による温度差が小さくなった。特に、2次放射アンテナ50の長さが1/8波長以上の(d)及び(e)の場合には、照射軸45に沿う方向及び照射軸45と直交する方向のいずれの方向においても、位置による温度差は小さく、被照射物90の全体がより均一に加熱されることが分かった。2次放射アンテナ50は、ある程度の長さを有していることが好ましいと考えられた。 In both cases, the center of the irradiated object 90 was the hottest, and the temperature decreased the further away from the center. In the case of (a) where the secondary radiation antenna 50 was not provided, the loop antenna 41 radiated radio waves along the irradiation axis 45 connecting the centers of the two loop antennas 41, so a high-temperature area was formed along this irradiation axis 45, and the temperature difference depending on the position became large in the direction perpendicular to the irradiation axis. On the other hand, as the secondary radiation antenna 50 was provided and became longer, the temperature difference depending on the position in the direction perpendicular to the irradiation axis 45 became smaller. In particular, in the cases of (d) and (e) where the length of the secondary radiation antenna 50 was 1/8 wavelength or more, the temperature difference depending on the position was small in both the direction along the irradiation axis 45 and the direction perpendicular to the irradiation axis 45, and it was found that the entire irradiated object 90 was heated more uniformly. It was considered preferable that the secondary radiation antenna 50 has a certain length.
 また、図4Aに示すように、ループアンテナ41を貫通するように2次放射アンテナ50を配置した場合についても同様に解析を行った。図4B及び図4Cは、その解析結果であり、温度分布を示す。図4Cは、図4Aに示す4C-4C断面の温度分布を示す。この結果に示されるように、被照射物90の加熱に関して高い均一性が得られることが確認された。 A similar analysis was also performed for the case where the secondary radiation antenna 50 was positioned so as to penetrate the loop antenna 41, as shown in Figure 4A. Figures 4B and 4C show the analysis results, showing the temperature distribution. Figure 4C shows the temperature distribution on the 4C-4C cross section shown in Figure 4A. As shown in these results, it was confirmed that high uniformity could be obtained in heating the irradiated object 90.
 〈実験結果〉
 上述のマイクロ波照射装置1による加熱の均一性を、加熱対象物を容器詰めされたポテトサラダとして評価した。
<Experimental result>
The uniformity of heating by the microwave radiating device 1 described above was evaluated by using a containerized potato salad as an object to be heated.
 発振器10の発振周波数は450MHzとした。ループアンテナ140には、アルミニウム製であり、周長が1波長(λ=666mm)に相当する方形のループアンテナ41を用いた。2つのループアンテナ41の間隔は、λ/2=333mmとした。2つのループアンテナ41への給電は、同相給電とした。保持具60として保持台には、厚さ5mmのポリエチレン(PE)製の板を用いた。食品保持台166を、2つのループアンテナ140を貫通するように配置した。2つのループアンテナ41を貫通する長さを有し幅40mmの板状の2次放射アンテナ50を、被照射物90を間に挟むように95mmの間隔をあけて配置した。 The oscillation frequency of the oscillator 10 was 450 MHz. For the loop antenna 140, a square loop antenna 41 made of aluminum with a circumference equivalent to one wavelength (λ = 666 mm) was used. The distance between the two loop antennas 41 was λ/2 = 333 mm. Power was fed to the two loop antennas 41 in phase. A 5 mm thick polyethylene (PE) plate was used as the holder 60. The food holder 166 was positioned so that it penetrated the two loop antennas 140. A plate-shaped secondary radiation antenna 50 with a width of 40 mm and a length that penetrated the two loop antennas 41 was placed with a gap of 95 mm between them, sandwiching the irradiated object 90.
 被照射物90は、直径80mmのポリプロピレン(PP)製の容器に、ポテトサラダを盛りつけたものとした。温度計測は、複数のサーモラベル(登録商標)をポテトサラダ表面に貼付することで行った。温度計測は、出力150Wで5分間加熱した後に行った。 The irradiated object 90 was a polypropylene (PP) container with a diameter of 80 mm, containing potato salad. The temperature was measured by attaching multiple Thermo Labels (registered trademark) to the surface of the potato salad. The temperature was measured after heating for 5 minutes at an output of 150 W.
 加熱後の被照射物90を図5に示す。この図に示すように、照射軸45に沿っていずれの場所でも70℃となった。また、照射軸45に直交する方向については、中央部が70℃、その両側が80℃となった。このように、マイクロ波照射装置1によれば、均一な加熱が可能であることが確認できた。なお、比較例として2次放射アンテナ50を設けなかった場合には、照射軸45に直交する方向について両側の温度が中央部よりも低くなった。すなわち、図3(a)のシミュレーション結果と同様の測定結果が得られた。 The irradiated object 90 after heating is shown in FIG. 5. As shown in this figure, the temperature reached 70°C everywhere along the irradiation axis 45. In addition, in the direction perpendicular to the irradiation axis 45, the center was 70°C and both sides were 80°C. In this way, it was confirmed that the microwave irradiation device 1 is capable of uniform heating. Note that, as a comparative example, when the secondary radiation antenna 50 was not provided, the temperature on both sides in the direction perpendicular to the irradiation axis 45 was lower than that of the center. In other words, the same measurement results as the simulation results in FIG. 3(a) were obtained.
 誘電加熱による加熱装置として、例えば、金属筐体内でマイクロ波を反射させて被加熱物を加熱するマルチモードの加熱装置が知られている。また、マイクロ波を搬送する導波管内に被加熱物を配置するシングルモードの加熱装置が知られている。マルチモードの加熱装置では、加熱むらが生じやすい。また、導波管を用いる加熱装置は、特に周波数が低い場合に導波管が大型化するなど、装置が大型化しやすい。また、均一加熱のために、複数種類の加熱装置を組み合わせる等する場合には、装置全体が大型化しやすい。これに対して、本実施形態のマイクロ波照射装置1は、導波管を用いることなく、複数種類の装置を組み合わせる必要もないので、装置の小型化も容易である。また、導波管を用いないので、比較的低い周波数のマイクロ波を使用することも容易である。周波数を低くすることで、電力半減深度を深くすることもできる。 As a heating device using dielectric heating, for example, a multi-mode heating device is known that reflects microwaves inside a metal housing to heat the object to be heated. Also, a single-mode heating device is known in which the object to be heated is placed inside a waveguide that carries microwaves. In a multi-mode heating device, uneven heating is likely to occur. Also, a heating device that uses a waveguide is likely to become large in size, especially when the frequency is low, as the waveguide becomes large. Also, when multiple types of heating devices are combined to achieve uniform heating, the entire device is likely to become large. In contrast, the microwave irradiation device 1 of this embodiment does not use a waveguide and does not need to combine multiple types of devices, so the device can be easily miniaturized. Also, since a waveguide is not used, it is easy to use microwaves of a relatively low frequency. By lowering the frequency, the half-power depth can also be deepened.
 〈変形例〉
 図6は、変形例に係るマイクロ波照射装置1により被照射物90を加熱したときの被照射物90の温度分布のシミュレーション結果である。本変形例では、2次放射アンテナ50の長軸を照射軸45と直交するように設けている。図6(a)乃至(d)の各々は、上段にそのモデルを示すように、(a)2次放射アンテナ50を設けない場合、及び、2次放射アンテナ50の長さを(b)1/32波長、(c)1/16波長、(d)1/8波長のそれぞれに相当する長さにした場合の解析をまとめたものである。いずれの場合も、2次放射アンテナ50の幅は10mmとし、それらの間隔は95mmとした。2次放射アンテナ50は被照射物90の高さ方向中央位置に配置した。ループアンテナ41への給電の周波数は450MHzとし、2つのループアンテナ41間の距離を1/2波長に相当する333mmとして解析を行った。
<Modification>
FIG. 6 shows the results of a simulation of the temperature distribution of the irradiated object 90 when the irradiated object 90 is heated by the microwave irradiation device 1 according to the modified example. In this modified example, the long axis of the secondary radiation antenna 50 is provided so as to be perpendicular to the irradiation axis 45. Each of FIGS. 6(a) to 6(d) summarizes the analysis of the case where the secondary radiation antenna 50 is not provided (a) and the case where the length of the secondary radiation antenna 50 is set to a length equivalent to each of 1/32 wavelength (b), 1/16 wavelength (c), and 1/8 wavelength (d), as shown in the upper part of the model. In each case, the width of the secondary radiation antenna 50 is 10 mm, and the interval between them is 95 mm. The secondary radiation antenna 50 is disposed at the center position in the height direction of the irradiated object 90. The frequency of the power supply to the loop antenna 41 is 450 MHz, and the analysis is performed with the distance between the two loop antennas 41 being 333 mm, which corresponds to 1/2 wavelength.
 図6の下段は、直径80mmの均一な被照射物90を150Wの出力で5分間加熱した後の、2次放射アンテナ50が配置された被照射物90の中央を含むxy断面の温度分布の解析結果を示している。いずれの場合も、被照射物90の中央部が最も高温となっており、中央から離れるほど温度が低くなっている。2次放射アンテナ50が設けられていない(a)の場合には、上述のとおり照射軸45に沿って高温の領域が形成され、照射軸と直交する方向では位置による温度差が大きくなった。一方、2次放射アンテナ50が設けられ、それが長くなるに従って、照射軸と直交する方向に高温の領域が形成された。2次放射アンテナ50の長さが1/16波長である(c)の場合には、照射軸に沿う方向及び照射軸と直交する方向のいずれの方向においても、位置による温度差は比較的小さく、被照射物90の全体が比較的均一に加熱されることが分かった。 The lower part of Figure 6 shows the analysis results of the temperature distribution in the xy cross section including the center of the irradiated object 90 where the secondary radiation antenna 50 is placed after heating a uniform irradiated object 90 with a diameter of 80 mm for 5 minutes at an output of 150 W. In both cases, the center of the irradiated object 90 is the hottest, and the temperature decreases the further away from the center. In the case of (a) where the secondary radiation antenna 50 is not provided, a high-temperature region is formed along the irradiation axis 45 as described above, and the temperature difference depending on the position becomes large in the direction perpendicular to the irradiation axis. On the other hand, when the secondary radiation antenna 50 is provided and becomes longer, a high-temperature region is formed in the direction perpendicular to the irradiation axis. In the case of (c) where the length of the secondary radiation antenna 50 is 1/16 wavelength, the temperature difference depending on the position is relatively small in both the direction along the irradiation axis and the direction perpendicular to the irradiation axis, and it was found that the entire irradiated object 90 is heated relatively uniformly.
 なお、上述の実施形態及び変形例では、薄板状の2次放射アンテナ50を、主面が水平になるように配置した例を示したが、これに限らない。2次放射アンテナ50は、その主面が鉛直になるように配置されてもよい。 In the above-described embodiment and modified example, the thin plate-shaped secondary radiation antenna 50 is arranged so that its main surface is horizontal, but this is not limiting. The secondary radiation antenna 50 may be arranged so that its main surface is vertical.
 2次放射アンテナ50の寸法は、発振器10の出力周波数等も考慮して、インピーダンス整合が取れるように適宜に決定され得る。また、2次放射アンテナ50の配置は、被照射物90から離れると被照射物90の領域に形成される電界が弱くなるので、被照射物90に適度に近い位置に設定されることが好ましい。 The dimensions of the secondary radiation antenna 50 can be appropriately determined so as to achieve impedance matching, taking into consideration the output frequency of the oscillator 10, etc. In addition, the secondary radiation antenna 50 is preferably positioned reasonably close to the irradiated object 90, since the electric field formed in the area of the irradiated object 90 weakens as it moves away from the irradiated object 90.
 [第2の実施形態]
 〈構成〉
 第2の実施形態について説明する。ここでは、第1の実施形態との相違点について説明し、同一の部分については、同一の符号を付してその説明を省略する。本実施形態のマイクロ波照射装置2は、第1の実施形態に係るマイクロ波照射装置1と比較して、さらに追加の2次放射アンテナを加熱制御用2次放射アンテナ52として備える。すなわち、本実施形態では、2次放射アンテナ群35が、被照射物90の両脇の2つの2次放射アンテナ50に加えて、加熱制御用2次放射アンテナ52を含む。
Second Embodiment
<composition>
The second embodiment will be described. Here, the differences from the first embodiment will be described, and the same parts will be given the same reference numerals and their description will be omitted. The microwave irradiation device 2 of this embodiment is provided with an additional secondary radiation antenna as a secondary radiation antenna 52 for heat control, compared with the microwave irradiation device 1 according to the first embodiment. That is, in this embodiment, the secondary radiation antenna group 35 includes the secondary radiation antenna 52 for heat control in addition to the two secondary radiation antennas 50 on both sides of the irradiated object 90.
 図7A及び図7Bは、本実施形態に係るマイクロ波照射装置2の構成例の概略を模式的に示す図である。図7Aは、マイクロ波照射装置2の正面図であり、金属筐体82の正面部分の板を外して内部が見えるようにした状態を模式的に示す図である。図7Bは、マイクロ波照射装置2の右側面図であり、金属筐体82の右側面部分の板を外して内部が見えるようにした状態を模式的に示す図である。 FIGS. 7A and 7B are schematic diagrams showing an example of the configuration of a microwave irradiation device 2 according to this embodiment. FIG. 7A is a front view of the microwave irradiation device 2, and is a schematic diagram showing a state in which the plate on the front part of the metal housing 82 has been removed to make the inside visible. FIG. 7B is a right side view of the microwave irradiation device 2, and is a schematic diagram showing a state in which the plate on the right side part of the metal housing 82 has been removed to make the inside visible.
 この図に示すように、マイクロ波照射装置2は、保持具60の下に、加熱制御用2次放射アンテナ52が設けられている。加熱制御用2次放射アンテナ52は、照射軸45と平行に伸びているが、その位置は、配置される被照射物90の中央の真下を通らず、図7Bにおける左側に偏って配置されている。すなわち、本実施形態では、2次放射アンテナ群35に含まれる複数の2次放射アンテナは、被照射物90が配置される照射位置に対して非対称に配置されている。その他のマイクロ波照射装置2の構成は、第1の実施形態の場合と同様である。 As shown in this figure, the microwave irradiation device 2 has a secondary radiation antenna 52 for heating control provided below the holder 60. The secondary radiation antenna 52 for heating control extends parallel to the irradiation axis 45, but is positioned so that it does not pass directly below the center of the irradiated object 90, but is offset to the left side in FIG. 7B. That is, in this embodiment, the multiple secondary radiation antennas included in the secondary radiation antenna group 35 are positioned asymmetrically with respect to the irradiation position where the irradiated object 90 is placed. The rest of the configuration of the microwave irradiation device 2 is the same as in the first embodiment.
 〈発生する電界等について〉
 本実施形態のマイクロ波照射装置2では、上述のように指向性アンテナ40、2次放射アンテナ50及び加熱制御用2次放射アンテナ52が設けられていることで、被照射物90が偏って加熱される。このことについて、図8A乃至図8Eを参照して説明する。ここで、第1の実施形態の説明と同様に、図8A中に示すように、水平な保持具60の載置面をxy平面と定義し、鉛直方向をz軸と定義する。ループアンテナ41はyz平面に設けられ、その照射軸はx軸に沿う。
<Regarding generated electric fields, etc.>
In the microwave irradiation device 2 of this embodiment, the directional antenna 40, the secondary radiation antenna 50, and the heating control secondary radiation antenna 52 are provided as described above, so that the irradiated object 90 is heated unevenly. This will be described with reference to Figures 8A to 8E. Here, as in the description of the first embodiment, as shown in Figure 8A, the horizontal mounting surface of the holder 60 is defined as the xy plane, and the vertical direction is defined as the z axis. The loop antenna 41 is provided on the yz plane, and its irradiation axis is along the x axis.
 図8Aは、発振器10からループアンテナ41に高周波電力が供給されたときのある瞬間の電流の向き及び大きさを多数の小さいベクトルの向き及び大きさで示す図である。ループアンテナ41には、大きな白抜き矢印で示す向きに電流が流れる。このとき、ループアンテナ41の周りには、斜線を付した大きな矢印で示す向きの磁界が発生する。 FIG. 8A is a diagram showing the direction and magnitude of the current at a certain moment when high-frequency power is supplied from oscillator 10 to loop antenna 41, using the direction and magnitude of many small vectors. Current flows through loop antenna 41 in the direction shown by the large white arrow. At this time, a magnetic field is generated around loop antenna 41 in the direction shown by the large shaded arrow.
 図8Bは、このときのループアンテナ41の照射軸を含むxz断面における磁界の向き及び強度を多数の小さいベクトルの向き及び大きさで示す図である。概して、図8Bにおいて斜線を付した大きな矢印で示す向きの磁界が発生する。 FIG. 8B is a diagram showing the direction and strength of the magnetic field in the xz cross section including the irradiation axis of the loop antenna 41 at this time, using the direction and magnitude of many small vectors. In general, a magnetic field is generated in the direction shown by the large hatched arrow in FIG. 8B.
 図8Cは、図8Aにも示した、電流の向き及び大きさを多数の小さいベクトルの向き及び大きさで示す図である。図8Bに示したような磁界が2次放射アンテナ50及び加熱制御用2次放射アンテナ52を貫く際に渦電流が発生し、その合成として2次放射アンテナ50及び加熱制御用2次放射アンテナ52に電流が誘導される。2次放射アンテナ50及び加熱制御用2次放射アンテナ52の電流の向きは大きな白抜き矢印で示されている。誘導電流が向かい合う部分に電荷が溜まる。 FIG. 8C is a diagram showing the direction and magnitude of the current as shown in FIG. 8A, using the direction and magnitude of many small vectors. When a magnetic field such as that shown in FIG. 8B passes through the secondary radiation antenna 50 and the secondary radiation antenna for heating control 52, eddy currents are generated, and currents are induced in the secondary radiation antenna 50 and the secondary radiation antenna for heating control 52 as a result of the combination of these eddy currents. The direction of the currents in the secondary radiation antenna 50 and the secondary radiation antenna for heating control 52 is shown by the large white arrows. Electric charge accumulates where the induced currents face each other.
 図8D及び図8Eは、このときに生じる電界の向き及び強度を多数の小さいベクトルの向き及び大きさで示す図である。図8Dは、2次放射アンテナ50を通るxy断面を示し、図8Eは、被照射物90を通るyz断面を示す。図8D及び図8Eに大きな網掛け矢印で示されるように、対向する2次放射アンテナ50間で被照射物90を横切る電界と、加熱制御用2次放射アンテナ52から遠い側の2次放射アンテナ50へ向けて被照射物90を横切る電界とが発生する。その結果、加熱制御用2次放射アンテナ52から遠い2次放射アンテナ50の側で、反対の2次放射アンテナ50の側よりも電界の強度が強くなる。したがって、電界強度が強い加熱制御用2次放射アンテナ52から遠い2次放射アンテナ50の側で、被照射物90は、より強く誘電加熱される。 8D and 8E are diagrams showing the direction and strength of the electric field generated at this time by the direction and magnitude of many small vectors. FIG. 8D shows an xy cross section passing through the secondary radiation antenna 50, and FIG. 8E shows a yz cross section passing through the irradiated object 90. As shown by the large hatched arrows in FIG. 8D and FIG. 8E, an electric field is generated that crosses the irradiated object 90 between the opposing secondary radiation antennas 50, and an electric field is generated that crosses the irradiated object 90 toward the secondary radiation antenna 50 farther from the heating control secondary radiation antenna 52. As a result, the electric field strength is stronger on the side of the secondary radiation antenna 50 farther from the heating control secondary radiation antenna 52 than on the opposite secondary radiation antenna 50. Therefore, the irradiated object 90 is dielectrically heated more strongly on the side of the secondary radiation antenna 50 farther from the heating control secondary radiation antenna 52 where the electric field strength is stronger.
 〈誘電加熱による温度分布のシミュレーション〉
 図9A及び図9Bは、本実施形態のマイクロ波照射装置2により被照射物90を加熱したときの被照射物90の温度分布のシミュレーション結果である。第1の実施形態の場合と同様に、被照射物90の直径を80mmとし、ループアンテナ41への給電の周波数は450MHzとし、2つのループアンテナ41間の距離を1/2波長に相当する333mmとして解析を行った。2次放射アンテナ50の幅は40mmとし、それらの間隔は95mmとした。2次放射アンテナ50は被照射物90の高さ方向中央位置に配置した。加熱制御用2次放射アンテナ52の幅は30mmとし、被照射物90の中心位置に加熱制御用2次放射アンテナ52の幅方向端部が位置するように保持具60の下に配置した。図9Bは、図9Aに示す9B-9B断面の温度分布を示す。この結果のとおり、加熱制御用2次放射アンテナ52から遠い2次放射アンテナ50の側で、被照射物90は、より強く加熱されることが明らかになった。
Simulation of temperature distribution due to dielectric heating
9A and 9B are simulation results of the temperature distribution of the irradiated object 90 when the irradiated object 90 is heated by the microwave irradiation device 2 of this embodiment. As in the first embodiment, the analysis was performed with the diameter of the irradiated object 90 being 80 mm, the frequency of the power supply to the loop antenna 41 being 450 MHz, and the distance between the two loop antennas 41 being 333 mm, which corresponds to 1/2 wavelength. The width of the secondary radiation antenna 50 was 40 mm, and the interval between them was 95 mm. The secondary radiation antenna 50 was placed at the center position in the height direction of the irradiated object 90. The width of the heating control secondary radiation antenna 52 was 30 mm, and it was placed under the holder 60 so that the width direction end of the heating control secondary radiation antenna 52 was located at the center position of the irradiated object 90. FIG. 9B shows the temperature distribution of the 9B-9B cross section shown in FIG. 9A. As a result, it was revealed that the irradiated object 90 was heated more strongly on the side of the secondary radiation antenna 50 farther from the heating control secondary radiation antenna 52.
 〈実験結果〉
 本実施形態のマイクロ波照射装置2による加熱について、加熱対象物を容器詰めされたポテトサラダとして評価した。実験条件は、マイクロ波照射装置2が加熱制御用2次放射アンテナ52を備えることを除いて、第1の実施形態の場合と同様である。
<Experimental result>
Heating by the microwave radiating device 2 of this embodiment was evaluated using a containerized potato salad as an object to be heated. The experimental conditions were the same as those of the first embodiment, except that the microwave radiating device 2 was provided with a secondary radiation antenna 52 for heating control.
 加熱後の被照射物90を図10に示す。この図に示すように、加熱制御用2次放射アンテナ52が配置された側の加熱後の温度は70℃であったのに対して、加熱制御用2次放射アンテナ52が配置された側と反対側の加熱後の温度は90℃であった。このように、マイクロ波照射装置2によれば、偏った加熱が可能であることが確認できた。加熱制御用2次放射アンテナ52の配置を調整することによって、加熱分布を制御することができることが明らかになった。 The irradiated object 90 after heating is shown in FIG. 10. As shown in this figure, the temperature after heating on the side where the secondary radiation antenna for heating control 52 is located is 70°C, while the temperature after heating on the side opposite the side where the secondary radiation antenna for heating control 52 is located is 90°C. In this way, it was confirmed that the microwave irradiation device 2 is capable of uneven heating. It was made clear that the heating distribution can be controlled by adjusting the location of the secondary radiation antenna for heating control 52.
 被照射物90の加熱においては、必ずしも均一に加熱されることが好ましいとは限らない。例えば、被照射物90内において、加熱されやすい領域と加熱されにくい領域とがあるときには、加熱されにくい領域により多くの電力が投入されることで被照射物90の全体が均一に加熱されることになる。また、一つの被照射物90に加熱したいものと過度に加熱したくないものとが含まれることもある。このような場合には、加熱したいものの領域に電力が投入されることが求められる。 When heating the irradiated object 90, it is not necessarily desirable to heat it uniformly. For example, when there are areas within the irradiated object 90 that are easily heated and areas that are difficult to heat, the entire irradiated object 90 will be heated uniformly by supplying more power to the areas that are difficult to heat. Also, a single irradiated object 90 may contain areas that you want to heat and areas that you do not want to heat excessively. In such cases, it is necessary to supply power to the areas that you want to heat.
 本実施形態によれば、被照射物90の各部位において求められる電界強度に応じて、加熱制御用2次放射アンテナ52の位置及び大きさ等を調整することで、マイクロ波照射装置2は、適切な加熱を行うことができる。 According to this embodiment, the microwave irradiation device 2 can perform appropriate heating by adjusting the position and size of the heating control secondary radiation antenna 52 according to the electric field strength required at each part of the irradiated object 90.
 なお、マイクロ波照射装置2は、加熱制御用2次放射アンテナ52の位置が変更可能であるように構成されてもよい。このようにすれば、被照射物90に応じて加熱制御用2次放射アンテナ52の位置を変更することで、被照射物90に応じた加熱が可能になる。 The microwave irradiation device 2 may be configured so that the position of the heating control secondary radiation antenna 52 can be changed. In this way, by changing the position of the heating control secondary radiation antenna 52 according to the irradiated object 90, heating according to the irradiated object 90 becomes possible.
 ここでは、第1の実施形態のマイクロ波照射装置1の2次放射アンテナ50に追加して加熱制御用2次放射アンテナ52を設ける例を示したが、これに限らない。2次放射アンテナ50及び加熱制御用2次放射アンテナ52の区別なく、2次放射アンテナ群35に含まれる一つ以上の2次放射アンテナ50の位置及び大きさ等を適宜に調整することで、マイクロ波照射装置は電界強度を調整することができ、被照射物90の加熱を制御することができる。例えば、第1の実施形態では、被照射物90に対して対称に2次放射アンテナを設けることで、被照射物に均一に電力が投入されるようにしている。第2の実施形態では、被照射物90に対して非対称に2次放射アンテナを設けることで、被照射物に不均一に電力が投入されるようにしている。特に2次放射アンテナが非対称に配置される場合、種々の条件により電界強度の分布は様々に変わり得る。 Here, an example is shown in which a secondary radiation antenna 52 for heating control is provided in addition to the secondary radiation antenna 50 of the microwave irradiation device 1 of the first embodiment, but this is not limited to this. By appropriately adjusting the position and size of one or more secondary radiation antennas 50 included in the secondary radiation antenna group 35, regardless of whether they are the secondary radiation antenna 50 or the secondary radiation antenna 52 for heating control, the microwave irradiation device can adjust the electric field strength and control the heating of the irradiated object 90. For example, in the first embodiment, the secondary radiation antenna is provided symmetrically with respect to the irradiated object 90, so that power is uniformly supplied to the irradiated object. In the second embodiment, the secondary radiation antenna is provided asymmetrically with respect to the irradiated object 90, so that power is non-uniformly supplied to the irradiated object. In particular, when the secondary radiation antenna is arranged asymmetrically, the distribution of the electric field strength may vary depending on various conditions.
 例えば、第2の実施形態において、加熱制御用2次放射アンテナ52から遠い側の2次放射アンテナ50を設けないとき、すなわち、図8Eにおける右側の2次放射アンテナ50を設けずに、左側の2次放射アンテナ50と加熱制御用2次放射アンテナ52との2つの2次放射アンテナのみが設けられているとき、これら2つの2次放射アンテナ間に強い電界が形成される。その結果、第2の実施形態の場合とは異なり、図8Eにおける被照射物90の左側が強く加熱されることになる。 For example, in the second embodiment, when the secondary radiation antenna 50 farther from the heating control secondary radiation antenna 52 is not provided, that is, when the right-side secondary radiation antenna 50 in FIG. 8E is not provided and only two secondary radiation antennas, the left-side secondary radiation antenna 50 and the heating control secondary radiation antenna 52, are provided, a strong electric field is formed between these two secondary radiation antennas. As a result, unlike the second embodiment, the left side of the irradiated object 90 in FIG. 8E is strongly heated.
 [第3の実施形態]
 第3の実施形態について説明する。ここでは、第1の実施形態との相違点について説明し、同一の部分については、同一の符号を付してその説明を省略する。第3の実施形態では、第1の実施形態に係るマイクロ波照射装置1の2次放射アンテナ50の位置について検討する。
[Third embodiment]
The third embodiment will be described. Here, the differences from the first embodiment will be described, and the same parts will be given the same reference numerals and the description thereof will be omitted. In the third embodiment, the position of the secondary radiation antenna 50 of the microwave irradiating device 1 according to the first embodiment will be considered.
 図11は、直径80mmから85mmのテーパーの付いたカップに内容品91を入れた被照射物90をマイクロ波照射装置1により加熱したときの被照射物90の温度分布のシミュレーション結果である。(a)は2次放射アンテナ50が設けられていない場合であり、(b)は内容品91の高さ中央位置に2次放射アンテナ50を配置した場合であり、(c)は保持具60と同じ高さに2次放射アンテナ50を配置した場合である。 Figure 11 shows the results of a simulation of the temperature distribution in the irradiated object 90, which is a tapered cup with a diameter of 80 mm to 85 mm containing an item 91, when the irradiated object 90 is heated by the microwave irradiation device 1. (a) shows the case where the secondary radiation antenna 50 is not provided, (b) shows the case where the secondary radiation antenna 50 is placed at the center of the height of the item 91, and (c) shows the case where the secondary radiation antenna 50 is placed at the same height as the holder 60.
 図11において、上段及び中段はそれぞれシミュレーションに用いたモデルを示す。上段は斜視図を示し、中段は、被照射物90の中央を通るyz断面を示す。(b)及び(c)に示す場合において、2次放射アンテナ50の幅は20mmとした。(b)内容品91の高さ中央位置に2次放射アンテナ50を配置した場合においては、2次放射アンテナ50の間隔を95mmとした。(c)保持具60と同じ高さに2次放射アンテナ50を配置した場合においては、2次放射アンテナ50の間隔を140mmとした。ループアンテナ41への給電の周波数は450MHzとし、2つのループアンテナ41間の距離を1/2波長に相当する333mmとして解析を行った。解析では、条件ごとに発生する電磁界を算出し、この電磁界に基づく温度分布を算出した。 In FIG. 11, the upper and middle sections show the models used in the simulation. The upper section shows a perspective view, and the middle section shows a yz cross section passing through the center of the irradiated object 90. In the cases shown in (b) and (c), the width of the secondary radiation antenna 50 was 20 mm. (b) When the secondary radiation antenna 50 was placed at the center of the height of the contents 91, the spacing between the secondary radiation antennas 50 was 95 mm. (c) When the secondary radiation antenna 50 was placed at the same height as the holder 60, the spacing between the secondary radiation antennas 50 was 140 mm. The frequency of the power supply to the loop antenna 41 was 450 MHz, and the distance between the two loop antennas 41 was 333 mm, which corresponds to 1/2 wavelength, for the analysis. In the analysis, the electromagnetic field generated for each condition was calculated, and the temperature distribution based on this electromagnetic field was calculated.
 図11の下段は、被照射物90を150Wの出力で5分間加熱した後の被照射物90の中央を含むyz断面の温度分布の解析結果を示している。(a)2次放射アンテナが無い場合や(b)内容品91の高さ中央位置に2次放射アンテナ50を配置した場合は、内容品91の上面縁部が強く発熱し温度が高くなっている。これに対して、(c)保持具60と同じ高さに2次放射アンテナ50を配置した場合は、内容品91の上面縁部の発熱が抑制されている。 The lower part of Figure 11 shows the analysis results of the temperature distribution in the yz cross section including the center of the irradiated object 90 after the irradiated object 90 was heated for 5 minutes at an output of 150 W. (a) When there is no secondary radiation antenna, or (b) when the secondary radiation antenna 50 is placed at the center of the height of the contents 91, the upper edge of the contents 91 generates heat strongly and the temperature becomes high. In contrast, (c) when the secondary radiation antenna 50 is placed at the same height as the holder 60, heat generation at the upper edge of the contents 91 is suppressed.
 第1の実施形態の場合と同様に、被照射物90を容器詰めされたポテトサラダとして実験を行った。被照射物90は、直径80mmから85mmのテーパーの付いたポリプロピレン(PP)製の容器に、ポテトサラダを盛りつけたものとした。2次放射アンテナ50の位置を除いて、その他の実験条件は、第1の実施形態で示したものと同様とした。 As in the first embodiment, the experiment was conducted with the irradiated object 90 being a container of potato salad. The irradiated object 90 was a tapered polypropylene (PP) container with a diameter of 80 mm to 85 mm, in which potato salad was placed. Except for the position of the secondary radiation antenna 50, the other experimental conditions were the same as those shown in the first embodiment.
 図11の(b)と同様に、ポテトサラダの高さ中央位置に2次放射アンテナ50を配置した場合には、ポテトサラダの上面縁部の一部に焦げが発生した。一方、図11の(c)と同様に、保持具60と同じ高さに2次放射アンテナ50を配置した場合には、ポテトサラダの上面縁部に焦げは発生しなかった。このように、実験でも、図11に示したシミュレーション結果と同様の結果が得られた。 When the secondary radiation antenna 50 was placed at the center of the height of the potato salad, as in (b) of Figure 11, part of the edge of the top surface of the potato salad became burnt. On the other hand, when the secondary radiation antenna 50 was placed at the same height as the holder 60, as in (c) of Figure 11, no burnt occurred on the edge of the top surface of the potato salad. In this way, the experiment produced results similar to the simulation results shown in Figure 11.
 以上のとおり、2次放射アンテナの位置調整により温度分布を制御することで、被照射物の包装容器形状や内容品の種類によっては発生し得る、例えば内容品の上面縁部の焦げなどといった不具合を抑制することができる。 As described above, by controlling the temperature distribution by adjusting the position of the secondary radiation antenna, it is possible to prevent defects such as burning of the top edge of the contents, which may occur depending on the shape of the packaging container of the irradiated object and the type of contents.
 [第4の実施形態]
 第4の実施形態について説明する。ここでは、第1の実施形態との相違点について説明し、同一の部分については、同一の符号を付してその説明を省略する。図12は、第4の実施形態に係るマイクロ波照射装置3の構成例の概略を模式的に示す正面図である。本実施形態のマイクロ波照射装置3は、例えば食品といった被照射物90に対してマイクロ波を照射して、被照射物90を内部加熱するように構成されている。マイクロ波照射装置3は、複数の被照射物が次々と搬送されて、次々と加熱されるように構成されている。
[Fourth embodiment]
A fourth embodiment will be described. Here, differences from the first embodiment will be described, and the same parts will be given the same reference numerals and their description will be omitted. FIG. 12 is a front view showing an outline of a configuration example of a microwave irradiation device 3 according to a fourth embodiment. The microwave irradiation device 3 of this embodiment is configured to irradiate microwaves to an object to be irradiated 90, such as food, to heat the inside of the object to be irradiated 90. The microwave irradiation device 3 is configured so that a plurality of objects to be irradiated are transported in succession and heated in succession.
 マイクロ波照射装置3は、加熱対象物であってマイクロ波が照射される被照射物90を搬送する、保持具60としての搬送装置61を備える。搬送装置61は、例えば、ベルト62とローラ63とを備える。ベルト62は、ローラ63に掛けられている。ローラ63は、図示しないモータによって回転し、ベルト62を長手軸方向に移動させる。被照射物90は、ベルト62に載せられて、ベルト62の移動によって搬送方向89に搬送される。搬送装置61の搬送方向89上流側には、被照射物90をベルト62の上に次々と供給する供給装置84が設けられている。搬送装置61の搬送方向89下流側には、搬送された被照射物90をベルト62から搬出する搬出装置86が設けられている。 The microwave irradiation device 3 includes a conveying device 61 as a holder 60 that conveys an irradiated object 90, which is an object to be heated and irradiated with microwaves. The conveying device 61 includes, for example, a belt 62 and a roller 63. The belt 62 is hung on the roller 63. The roller 63 is rotated by a motor (not shown) to move the belt 62 in the longitudinal direction. The irradiated object 90 is placed on the belt 62 and conveyed in a conveying direction 89 by the movement of the belt 62. A supplying device 84 is provided on the upstream side of the conveying device 61 in the conveying direction 89, which supplies the irradiated object 90 onto the belt 62 one after another. A conveying device 86 is provided on the downstream side of the conveying device 61 in the conveying direction 89, which conveys the conveyed irradiated object 90 from the belt 62.
 マイクロ波照射装置3は、被照射物90を加熱する装置として第1の実施形態に係るマイクロ波照射装置1と同様の構成を有する。マイクロ波照射装置3は、搬送装置61によって搬送される被照射物90にマイクロ波を照射するように構成された一対のループアンテナ41を備える。ループアンテナ41は、例えば同軸ケーブルといった給電器具20を介して導通した発振器10から給電される。 The microwave irradiation device 3 has the same configuration as the microwave irradiation device 1 according to the first embodiment as a device for heating an irradiated object 90. The microwave irradiation device 3 includes a pair of loop antennas 41 configured to irradiate microwaves to the irradiated object 90 transported by a transport device 61. The loop antennas 41 are powered by an oscillator 10 that is electrically connected via a power supply device 20, such as a coaxial cable.
 本実施形態のマイクロ波照射装置3では、2つのループアンテナ41の開口面である照射面を貫通するように、搬送装置61のベルト62が設けられている。すなわち、被照射物90は、ループアンテナ41を通り抜けるように搬送方向89に搬送される。また、マイクロ波照射装置3は、搬送方向89に搬送される被照射物90を間に挟むように、一対の2次放射アンテナ50を備える。 In the microwave irradiation device 3 of this embodiment, the belt 62 of the conveying device 61 is provided so as to penetrate the irradiation surface, which is the opening surface of the two loop antennas 41. In other words, the irradiated object 90 is conveyed in the conveying direction 89 so as to pass through the loop antennas 41. In addition, the microwave irradiation device 3 is provided with a pair of secondary radiation antennas 50 so as to sandwich the irradiated object 90 conveyed in the conveying direction 89 between them.
 ループアンテナ41及び2次放射アンテナ50の周囲は、マイクロ波の遮蔽のため、金属で覆われている。すなわち、搬送装置61は、金属筐体82を通り抜けるように設けられており、ループアンテナ41及び2次放射アンテナ50は、金属筐体82内に配置されている。 The loop antenna 41 and the secondary radiation antenna 50 are surrounded by a metal covering to block microwaves. In other words, the transport device 61 is arranged to pass through the metal housing 82, and the loop antenna 41 and the secondary radiation antenna 50 are disposed within the metal housing 82.
 本実施形態のマイクロ波照射装置3では、被照射物90がループアンテナ41をくぐり、2次放射アンテナ50の間を通り抜けることで、効率よく、かつ、均等な被照射物90の加熱が実現される。 In the microwave irradiation device 3 of this embodiment, the object to be irradiated 90 passes through the loop antenna 41 and between the secondary radiation antennas 50, thereby achieving efficient and uniform heating of the object to be irradiated 90.
 本実施形態のマイクロ波照射装置3の動作について説明する。発振器10は、マイクロ波の周波数に応じた高周波電力を出力する。その周波数は、これに限らないが、例えば、2.45GHz、915MHz又は450MHzといったものである。この発振器10から出力された高周波電力は、給電器具20を介してループアンテナ41に供給される。ループアンテナ41は、この給電に基づいて、マイクロ波を照射軸45の方向に放射する。このようにして、ループアンテナ41及び2次放射アンテナ50によって電界が形成される。 The operation of the microwave irradiation device 3 of this embodiment will be described. The oscillator 10 outputs high-frequency power according to the frequency of the microwave. The frequency is, but is not limited to, for example, 2.45 GHz, 915 MHz, or 450 MHz. The high-frequency power output from this oscillator 10 is supplied to the loop antenna 41 via the power supply device 20. Based on this power supply, the loop antenna 41 radiates microwaves in the direction of the irradiation axis 45. In this way, an electric field is formed by the loop antenna 41 and the secondary radiation antenna 50.
 搬送装置61は、ローラ63の回転により、ベルト62を回転させる。供給装置84は、搬送装置61のベルト62上に、例えば一定間隔で、被照射物90を供給する。搬送装置61は、供給された被照射物90を搬送方向89に搬送し、金属筐体82内のループアンテナ41の開口面を通過させる。搬送装置61は、さらに被照射物90を一対の2次放射アンテナ50の間を通過させ、もう一方のループアンテナ41の開口面を通過させる。搬送される被照射物90に対して、ループアンテナ41及び2次放射アンテナ50からマイクロ波が照射される。このマイクロ波によって、被照射物90は、誘電加熱される。加熱された被照射物90は、搬送装置61によって金属筐体82の外部まで搬送される。搬出装置86は、加熱された被照射物90を搬送装置61から搬出する。 The conveying device 61 rotates the belt 62 by rotating the roller 63. The supplying device 84 supplies the irradiated object 90 onto the belt 62 of the conveying device 61, for example at regular intervals. The conveying device 61 conveys the supplied irradiated object 90 in the conveying direction 89 and passes it through the opening surface of the loop antenna 41 in the metal housing 82. The conveying device 61 further passes the irradiated object 90 between a pair of secondary radiation antennas 50 and passes it through the opening surface of the other loop antenna 41. Microwaves are irradiated from the loop antenna 41 and secondary radiation antenna 50 to the conveyed irradiated object 90. The irradiated object 90 is dielectrically heated by the microwaves. The heated irradiated object 90 is conveyed to the outside of the metal housing 82 by the conveying device 61. The conveying device 86 conveys the heated irradiated object 90 out of the conveying device 61.
 搬送装置61は、被照射物90を連続的に移動させてもよいし、例えば被照射物90を一対のループアンテナ41の中間地点で停止させるように間歇的に移動させてもよい。マイクロ波を放射するループアンテナ41及び2次放射アンテナ50の間を通過することで、被照射物90は均等に加熱される。 The conveying device 61 may move the irradiated object 90 continuously, or may move the irradiated object 90 intermittently, for example, so that the irradiated object 90 stops at the midpoint between the pair of loop antennas 41. The irradiated object 90 is heated evenly by passing between the loop antenna 41 and the secondary radiation antenna 50 that radiate microwaves.
 本実施形態に係るマイクロ波照射装置3は、種々の用途の処理装置に組み込まれたり、適切な態様で構成されたりし得る。例えば、密封包装された食品の加熱殺菌のために用いられる場合には、マイクロ波照射装置1は、密封包装された食品である被照射物90が加圧されたり、殺菌のために必要な時間保温されたりするように構成された装置内に組み込まれることになる。あるいは、材料の反応処理等に用いられるためには、処理対象物である被照射物90は、適当な反応容器に収容されてもよいし、搬送装置61が、処理対象物が流れる管などとして構成されてもよい。 The microwave irradiation device 3 according to this embodiment can be incorporated into processing equipment for various applications, or configured in an appropriate manner. For example, when used for heat sterilization of sealed packaged food, the microwave irradiation device 1 is incorporated into an apparatus configured so that the irradiated object 90, which is the sealed packaged food, is pressurized and kept warm for the time required for sterilization. Alternatively, when used for reaction processing of materials, the irradiated object 90, which is the object to be processed, may be contained in an appropriate reaction container, and the conveying device 61 may be configured as a pipe through which the object to be processed flows, or the like.
 また、本実施形態のマイクロ波照射装置3では、被照射物90を加熱する装置構成が第1の実施形態のマイクロ波照射装置1と同様であるものを示したが、これに限らない。例えば、マイクロ波照射装置3は、第2の実施形態のマイクロ波照射装置2と同様の装置構成を有していてもよい。このような構成を有することで、本実施形態のマイクロ波照射装置3も、偏りがある加熱を実施することができる。 In addition, in the microwave irradiation device 3 of this embodiment, the device configuration for heating the irradiated object 90 is similar to that of the microwave irradiation device 1 of the first embodiment, but this is not limited to this. For example, the microwave irradiation device 3 may have a device configuration similar to that of the microwave irradiation device 2 of the second embodiment. By having such a configuration, the microwave irradiation device 3 of this embodiment can also perform biased heating.
 また、本実施形態のマイクロ波照射装置3では、ループアンテナ41が放射軸に沿って2つ並べられる例を示したがこれに限らない。例えば、第1、第2及び第3のループアンテナ41といった3つのループアンテナ41が放射軸に沿って並べられ、第1及び第2のループアンテナ41の間に、2次放射アンテナ50が設けられ、第2及び第3のループアンテナ41の間にも2次放射アンテナ50が設けられ、2か所で適切な加熱がなされるように、装置は構成されていてもよい。ループアンテナ41の数は、一つであってもよいし、いくつであってもよい。 In addition, in the microwave irradiation device 3 of this embodiment, an example in which two loop antennas 41 are arranged along the radiation axis has been shown, but this is not limited to this. For example, the device may be configured such that three loop antennas 41, such as a first, second, and third loop antenna 41, are arranged along the radiation axis, a secondary radiation antenna 50 is provided between the first and second loop antennas 41, and a secondary radiation antenna 50 is also provided between the second and third loop antennas 41, so that appropriate heating is performed at two locations. The number of loop antennas 41 may be one or any number of times.
 本実施形態では、搬送装置61がループアンテナ41及び2次放射アンテナ50に対する被照射物90の位置を変化させる例を示した。しかしながらこれに限らず、被照射物90に対するループアンテナ41又は2次放射アンテナ50の位置が変更されることも考えられる。すなわち、保持具60は、被照射物90の位置を固定し、ループアンテナ41又は2次放射アンテナ50が移動してもよい。このように、ループアンテナ41と保持具60との相対的な位置関係、又は、2次放射アンテナ50と保持具60との相対的な位置関係が変更されれば、同様の効果が得られる。 In this embodiment, an example has been shown in which the conveying device 61 changes the position of the irradiated object 90 relative to the loop antenna 41 and the secondary radiation antenna 50. However, this is not limiting, and it is also possible that the position of the loop antenna 41 or the secondary radiation antenna 50 relative to the irradiated object 90 is changed. In other words, the holder 60 may fix the position of the irradiated object 90, and the loop antenna 41 or the secondary radiation antenna 50 may move. In this way, if the relative positional relationship between the loop antenna 41 and the holder 60, or the relative positional relationship between the secondary radiation antenna 50 and the holder 60, is changed, a similar effect can be obtained.
 以上、本発明について、好ましい実施形態を示して説明したが、本発明は、前述した実施形態にのみ限定されるものではなく、本発明の範囲で種々の変更実施が可能であることはいうまでもない。 The present invention has been described above by showing preferred embodiments, but it goes without saying that the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention.
 1,2,3 マイクロ波照射装置
 10 発振器
 20 給電器具
 21 同軸ケーブル
 34 指向性アンテナ群
 35 2次放射アンテナ群
 40 指向性アンテナ
 41 ループアンテナ
 42 導線
 43 給電点
 45 照射軸
 50 2次放射アンテナ
 52 加熱制御用2次放射アンテナ
 60 保持具
 61 搬送装置
 62 ベルト
 63 ローラ
 82 金属筐体
 84 供給装置
 86 搬出装置
 89 搬送方向
 90 被照射物

 
REFERENCE SIGNS LIST 1, 2, 3 Microwave irradiation device 10 Oscillator 20 Power supply device 21 Coaxial cable 34 Directional antenna group 35 Secondary radiation antenna group 40 Directional antenna 41 Loop antenna 42 Conductor 43 Power supply point 45 Irradiation axis 50 Secondary radiation antenna 52 Secondary radiation antenna for heating control 60 Holder 61 Conveyor device 62 Belt 63 Roller 82 Metal case 84 Supply device 86 Carry-out device 89 Conveying direction 90 Irradiated object

Claims (14)

  1.  発振器と導通するように構成された給電器具と、
     前記給電器具を介した導通による給電によってマイクロ波を照射するように構成された少なくとも1つの指向性アンテナを含む指向性アンテナ群と、
     マイクロ波を2次放射するように構成された少なくとも1つの2次放射アンテナを含む2次放射アンテナ群と
     を備えるマイクロ波照射装置。
    A power supply device configured to be in electrical communication with the oscillator;
    A directional antenna group including at least one directional antenna configured to irradiate microwaves by power supply through conduction via the power supply device;
    and a secondary radiation antenna group including at least one secondary radiation antenna configured to secondarily radiate microwaves.
  2.  前記2次放射アンテナは、前記指向性アンテナと絶縁されている、請求項1に記載のマイクロ波照射装置。 The microwave irradiation device of claim 1, wherein the secondary radiation antenna is insulated from the directional antenna.
  3.  前記指向性アンテナ群は、複数の指向性アンテナを含み、
     前記複数の指向性アンテナは、当該複数の指向性アンテナの照射軸に沿って配置されている、
     請求項1又は2に記載のマイクロ波照射装置。
    the directional antenna group includes a plurality of directional antennas;
    The plurality of directional antennas are arranged along the radiation axes of the plurality of directional antennas.
    The microwave irradiation device according to claim 1 or 2.
  4.  前記複数の指向性アンテナは、被照射物が保持される照射位置に対して対称に配置されている、
     請求項3に記載のマイクロ波照射装置。
    The plurality of directional antennas are arranged symmetrically with respect to an irradiation position where an object to be irradiated is held.
    The microwave irradiation device according to claim 3.
  5.  前記2次放射アンテナは、前記指向性アンテナ群を構成する指向性アンテナと指向性アンテナとの間に配置されている、
     請求項3又は4に記載のマイクロ波照射装置。
    The secondary radiation antenna is disposed between the directional antennas constituting the directional antenna group.
    The microwave irradiation device according to claim 3 or 4.
  6.  前記2次放射アンテナは、前記指向性アンテナの照射軸に沿って伸びる形状を有している、請求項1乃至5の何れかに記載のマイクロ波照射装置。 The microwave irradiation device according to any one of claims 1 to 5, wherein the secondary radiation antenna has a shape that extends along the radiation axis of the directional antenna.
  7.  前記2次放射アンテナ群は、複数の2次放射アンテナを含む、請求項1乃至6の何れかに記載のマイクロ波照射装置。 The microwave irradiation device according to any one of claims 1 to 6, wherein the group of secondary radiation antennas includes a plurality of secondary radiation antennas.
  8.  前記複数の2次放射アンテナは、被照射物が保持される照射位置に対して対称に配置されている、
     請求項7に記載のマイクロ波照射装置。
    The plurality of secondary radiation antennas are arranged symmetrically with respect to an irradiation position where an object to be irradiated is held.
    The microwave irradiation device according to claim 7.
  9.  前記複数の2次放射アンテナは、被照射物が保持される照射位置に対して非対称に配置されている、
     請求項7に記載のマイクロ波照射装置。
    The plurality of secondary radiation antennas are arranged asymmetrically with respect to an irradiation position where an object to be irradiated is held.
    The microwave irradiation device according to claim 7.
  10.  前記2次放射アンテナは、前記指向性アンテナに対する位置が変更可能に構成されている、請求項1乃至9の何れかに記載のマイクロ波照射装置。 The microwave irradiation device according to any one of claims 1 to 9, wherein the secondary radiation antenna is configured so that its position relative to the directional antenna can be changed.
  11.  前記被照射物を少なくとも前記照射位置に保持することができるように構成された保持具をさらに備える、請求項4、8又は9に記載のマイクロ波照射装置。 The microwave irradiation device according to claim 4, 8 or 9, further comprising a holder configured to hold the object to be irradiated at least at the irradiation position.
  12.  被照射物を保持する保持具をさらに備え、
     前記指向性アンテナと前記保持具との少なくとも何れか一方は、前記指向性アンテナの照射軸に沿って移動し、前記指向性アンテナと前記保持具との相対的な位置関係を変化させるように構成されている、
     請求項1乃至10の何れかに記載のマイクロ波照射装置。
    Further comprising a holder for holding the object to be irradiated;
    At least one of the directional antenna and the holder is configured to move along an irradiation axis of the directional antenna and change a relative positional relationship between the directional antenna and the holder.
    The microwave irradiation device according to any one of claims 1 to 10.
  13.  被照射物を保持する保持具をさらに備え、
     前記2次放射アンテナと前記保持具との少なくとも何れか一方は移動し、前記2次放射アンテナと前記保持具との相対的な位置関係を変化させるように構成されている、
     請求項1乃至10の何れかに記載のマイクロ波照射装置。
    Further comprising a holder for holding the object to be irradiated;
    At least one of the secondary radiation antenna and the holder is configured to move so as to change a relative positional relationship between the secondary radiation antenna and the holder.
    The microwave irradiation device according to any one of claims 1 to 10.
  14.  前記指向性アンテナは、ループアンテナである、請求項1乃至13の何れかに記載のマイクロ波照射装置。

     
    The microwave radiating device according to claim 1 , wherein the directional antenna is a loop antenna.

PCT/JP2022/041080 2022-11-02 2022-11-02 Microwave irradiation device WO2024095425A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041080 WO2024095425A1 (en) 2022-11-02 2022-11-02 Microwave irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041080 WO2024095425A1 (en) 2022-11-02 2022-11-02 Microwave irradiation device

Publications (1)

Publication Number Publication Date
WO2024095425A1 true WO2024095425A1 (en) 2024-05-10

Family

ID=90930036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041080 WO2024095425A1 (en) 2022-11-02 2022-11-02 Microwave irradiation device

Country Status (1)

Country Link
WO (1) WO2024095425A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154258A (en) * 1997-08-07 1999-02-26 Hitachi Home Tec Ltd Microwave oven
JP2006297054A (en) * 2005-04-20 2006-11-02 Lg Electronics Inc Thawing receptacle for microwave oven
JP2008282693A (en) * 2007-05-11 2008-11-20 Matsushita Electric Ind Co Ltd Microwave heating apparatus
JP2012032083A (en) * 2010-07-30 2012-02-16 Toshiba Corp Heating cooker
WO2017141826A1 (en) * 2016-02-17 2017-08-24 パナソニック株式会社 Microwave heating device
JP2021085617A (en) * 2019-11-28 2021-06-03 シャープ株式会社 Heating cooker
WO2022191068A1 (en) * 2021-03-12 2022-09-15 東洋製罐グループホールディングス株式会社 Microwave irradiation device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154258A (en) * 1997-08-07 1999-02-26 Hitachi Home Tec Ltd Microwave oven
JP2006297054A (en) * 2005-04-20 2006-11-02 Lg Electronics Inc Thawing receptacle for microwave oven
JP2008282693A (en) * 2007-05-11 2008-11-20 Matsushita Electric Ind Co Ltd Microwave heating apparatus
JP2012032083A (en) * 2010-07-30 2012-02-16 Toshiba Corp Heating cooker
WO2017141826A1 (en) * 2016-02-17 2017-08-24 パナソニック株式会社 Microwave heating device
JP2021085617A (en) * 2019-11-28 2021-06-03 シャープ株式会社 Heating cooker
WO2022191068A1 (en) * 2021-03-12 2022-09-15 東洋製罐グループホールディングス株式会社 Microwave irradiation device

Similar Documents

Publication Publication Date Title
KR101495378B1 (en) Microwave heating device
KR20030031112A (en) Improved dielectric heating using inductive coupling
WO2012148621A4 (en) Apparatus and methods for microwave processing of semiconductor substrates
Regier et al. Introducing microwave-assisted processing of food: Fundamentals of the technology
US20230422362A1 (en) Microwave irradiation device
WO2024095425A1 (en) Microwave irradiation device
KR20210030665A (en) Microwave heating device with cylindrical antenna
US11191133B2 (en) Direct heating through patch antennas
JP2023049673A (en) Microwave irradiation device
JP7230802B2 (en) Microwave processor
TWI826392B (en) A device for treating a product with microwaves
KR20230025792A (en) microwave processing unit
JP7389444B2 (en) Microwave heating device, heating method and chemical reaction method
WO2024014151A1 (en) Microwave irradiation device, microwave irradiation method, and method for manufacturing food
EP3852496A1 (en) Microwave processing apparatus
JP2024037682A (en) Microwave irradiation method and irradiation device
US4184060A (en) Process for developing a two-component diazotype material on a non-metallic carrier, which material can be developed by the influence of heat
JPH11135251A (en) Microwave oven
JP2022140342A (en) Microwave irradiation device
EP2933081A1 (en) Microwave heating apparatus and method
KR101971668B1 (en) Low frequency heating antenna for selective heating and oven using the same
JP2022140343A (en) Microwave irradiation device
JP2024037681A (en) Microwave irradiation method and irradiation device
KR100275968B1 (en) Feed system of microwave oven
JPH0728714Y2 (en) Dielectric heating device