JP2008021493A - Microwave utilization device - Google Patents

Microwave utilization device Download PDF

Info

Publication number
JP2008021493A
JP2008021493A JP2006191401A JP2006191401A JP2008021493A JP 2008021493 A JP2008021493 A JP 2008021493A JP 2006191401 A JP2006191401 A JP 2006191401A JP 2006191401 A JP2006191401 A JP 2006191401A JP 2008021493 A JP2008021493 A JP 2008021493A
Authority
JP
Japan
Prior art keywords
microwave
phase
heating chamber
heating
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006191401A
Other languages
Japanese (ja)
Other versions
JP4839994B2 (en
JP2008021493A5 (en
Inventor
Tomotaka Nobue
等隆 信江
Kenji Yasui
健治 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006191401A priority Critical patent/JP4839994B2/en
Publication of JP2008021493A publication Critical patent/JP2008021493A/en
Publication of JP2008021493A5 publication Critical patent/JP2008021493A5/ja
Application granted granted Critical
Publication of JP4839994B2 publication Critical patent/JP4839994B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/705Feed lines using microwave tuning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/70Plates of cast metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/72Plates of sheet metal

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microwave utilization device of which a heated object can surely enjoy an effect of heating uniformity by phase variability. <P>SOLUTION: Irradiation means 15, 16 are set in opposition to right and left wall faces 13, 14 of a heating chamber 10 housing the heated object, and two outputs of a microwave generating means 17 constituted of semiconductor elements are connected with the irradiation means 15, 16, while on the other hand, phases of the microwaves irradiated from the respective irradiation means are varied, so that electric field concentration regions formed by the pair of opposed irradiation means 15, 16 move one after another in a right and left direction of the heating chamber 10, and a heating site on the heated object is surely moved irrespective of a housing position of the heated object to promote uniform heating. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、マイクロ波を用いて被加熱物を誘電加熱するマイクロ波利用装置に関わる。   The present invention relates to a microwave utilization device that dielectrically heats an object to be heated using microwaves.

この種の代表的なマイクロ波利用装置は、電子レンジである。この電子レンジに搭載されているマグネトロンは、その形状に対する出力が大きく、さらにその動作効率が70%強と高い特徴がある。一方、マグネトロンは、発振周波数を自在に制御することができなく、またマグネトロン自身の発振周波数が被加熱物を含む負荷側のインピーダンスの影響を受ける。このため、不適当な発振周波数での動作によって加熱室内に生じる定在波により被加熱物には不均一な加熱を生じる場合がある。   A typical microwave utilization apparatus of this type is a microwave oven. The magnetron installed in this microwave oven has a high output for its shape and a high operating efficiency of over 70%. On the other hand, the magnetron cannot freely control the oscillation frequency, and the oscillation frequency of the magnetron itself is affected by the impedance on the load side including the object to be heated. For this reason, the object to be heated may be unevenly heated due to the standing wave generated in the heating chamber due to the operation at an inappropriate oscillation frequency.

マグネトロンの発振周波数を可変制御するものとして、同軸型のマグネトロンなどがあるが、形状が大きいことや高価なことにより、電子レンジ用途には適さない。   There are coaxial magnetrons and the like that variably control the oscillation frequency of the magnetron, but they are not suitable for microwave oven applications due to their large shape and high price.

一方、近年の移動体通信の発展に伴う旺盛なマイクロ波回路技術の進化、あるいはSiC材料やGaN材料などの新しい半導体材料を利用した半導体素子そのものの技術革新などが進み、半導体素子を用いたマイクロ波発生手段が半導体製造に用いられるプラズマ処理装置などに実用化され始めている。   On the other hand, with the recent advancement of mobile communication in recent years, the progress of vigorous microwave circuit technology, or the technological innovation of semiconductor devices themselves using new semiconductor materials such as SiC materials and GaN materials, has progressed. Wave generation means are beginning to be put into practical use in plasma processing apparatuses used for semiconductor manufacturing.

この半導体素子により構成されるマイクロ波発生手段は、電圧制御型発振器や容量制御型発振器を発振源に使用することで、発振周波数を可変制御することが容易である。また、マグネトロン相当の大電力を得る方法として、複数の並列動作する増幅系を配し、それぞれの出力を加熱室内で空間合成する方法も考えられている。また、加熱室内に放射するマイクロ波の位相関係を制御して最適な加熱を実行させるものがある(たとえば、特許文献1、2参照)。   The microwave generating means constituted by this semiconductor element can easily control the oscillation frequency variably by using a voltage controlled oscillator or a capacitance controlled oscillator as an oscillation source. Further, as a method of obtaining a large power equivalent to a magnetron, a method of arranging a plurality of amplification systems that operate in parallel and spatially synthesizing respective outputs in a heating chamber is also considered. In addition, there is an apparatus that performs optimum heating by controlling the phase relationship of microwaves radiated into the heating chamber (see, for example, Patent Documents 1 and 2).

特許文献1の装置は、発振源とその分配された出力を並列に増幅する複数の増幅器と増幅器の出力をそれぞれ加熱室内に放射する放射手段とを有し、増幅器の前段に位相可変器を配するものであり、これにより位相量を調整して加熱室内の電界集中場所を移動させて加熱の均一化を促進するというものである。   The apparatus of Patent Document 1 includes an oscillation source, a plurality of amplifiers that amplify the distributed output in parallel, and a radiation unit that radiates the output of each amplifier into the heating chamber, and a phase variable device is arranged in front of the amplifier. Thus, the phase amount is adjusted to move the electric field concentration place in the heating chamber to promote uniform heating.

また、特許文献2の装置は、発振源と、発振源の出力を電力2分配する分配器と、分配出力をそれぞれ増幅する増幅器と、増幅器出力を電力合成するとともに2つの出力端を有する合成器(たとえば90°ハイブリッドや180°ハイブリッド)と、合成器の2出力にそれぞれ接続され加熱室内にマイクロ波を放射する放射手段とを備え、電力分配器と増幅器との間に位相可変器を設け位相を可変することでそれぞれの放射手段から放射されるマイクロ波の電力量を変化させて均一加熱を促進するというものである。
特開昭55−10777号公報 特開昭56−132793号公報
The device of Patent Document 2 includes an oscillation source, a distributor that distributes the output of the oscillation source to power 2, an amplifier that amplifies the distribution output, and a combiner that combines the amplifier output with power and has two output terminals. (For example, 90 ° hybrid or 180 ° hybrid) and radiation means for radiating microwaves in the heating chamber connected to the two outputs of the synthesizer, and a phase variable device provided between the power distributor and the amplifier. The amount of microwaves radiated from each radiating means is changed by changing the value of the radiating means to promote uniform heating.
JP-A-55-10777 JP 56-132793 A

しかしながら、従来の装置は、複数の放射手段が加熱室の同一壁面に配置された構成しか開示されてなく、加熱室内に収納される被加熱物が加熱室の中央からどちらかの壁面に偏って収納された場合に位相制御による加熱の均一化の促進が困難である課題がある。   However, in the conventional apparatus, only a configuration in which a plurality of radiating means are arranged on the same wall surface of the heating chamber is disclosed, and an object to be heated housed in the heating chamber is biased to one of the wall surfaces from the center of the heating chamber. When stored, there is a problem that it is difficult to promote uniform heating by phase control.

本発明はかかる事情に鑑みてなされたものであり、位相可変による加熱の均一性の効能
を被加熱物が確実に享受できるマイクロ波利用装置を提供することを目的とする。
This invention is made | formed in view of this situation, and it aims at providing the microwave utilization apparatus which a to-be-heated material can enjoy the effect of the uniformity of the heating by variable phase reliably.

前記従来の課題を解決するために、本発明のマイクロ波利用装置は被加熱物が収納される加熱室と、前記加熱室に供給するマイクロ波を発生させるマイクロ波発生手段と、前記マイクロ波発生手段から発生したマイクロ波を前記加熱室に供給する複数の放射手段とを備え、前記放射手段は対向配置された一対の放射手段を有し、前記一対の放射手段にそれぞれ伝送するマイクロ波の位相を可変制御するものである。   In order to solve the above-described conventional problems, the microwave utilization apparatus of the present invention includes a heating chamber in which an object to be heated is stored, microwave generation means for generating a microwave to be supplied to the heating chamber, and the microwave generation A plurality of radiating means for supplying microwaves generated from the means to the heating chamber, the radiating means having a pair of radiating means arranged opposite to each other, and a phase of the microwaves respectively transmitted to the pair of radiating means Is variably controlled.

これにより、被加熱物は対向配置された一対の放射手段によって挟まれた構図となり、一対の放射手段間のマイクロ波の位相を可変制御することで一対の放射手段から合成された電界集中領域は被加熱物の収納空間領域において確実に移動させることができ、被加熱物の加熱の均一化を確実に促進させることができる。   As a result, the object to be heated is sandwiched between a pair of radiating means arranged opposite to each other, and the electric field concentration region synthesized from the pair of radiating means by variably controlling the phase of the microwave between the pair of radiating means is The object can be reliably moved in the storage space area of the object to be heated, and uniform heating of the object to be heated can be surely promoted.

本発明のマイクロ波利用装置は、加熱室に対向配置した一対の放射手段から放射されるマイクロ波の位相を可変することにより加熱の均一性の効能を被加熱物が確実に享受できる装置を提供することができる。   The microwave utilization apparatus of the present invention provides an apparatus in which an object to be heated can reliably enjoy the effect of heating uniformity by changing the phase of microwaves radiated from a pair of radiating means arranged opposite to the heating chamber. can do.

第1の発明は、被加熱物が収納される加熱室と、前記加熱室に供給するマイクロ波を発生させるマイクロ波発生手段と、前記マイクロ波発生手段から発生したマイクロ波を前記加熱室に供給する複数の放射手段とを備え、前記放射手段は対向配置された一対の放射手段を有し、前記一対の放射手段にそれぞれ伝送するマイクロ波の位相を可変制御するものであり、被加熱物は対向配置された一対の放射手段によって挟まれた構図となり、一対の放射手段間のマイクロ波の位相を可変制御することで一対の放射手段から合成された電界集中領域は被加熱物の収納空間領域において確実に移動させることができ、被加熱物の加熱の均一化を確実に促進させることができる。   1st invention supplies the microwave generated from the heating chamber in which a to-be-heated material is accommodated, the microwave generation means which generates the microwave supplied to the heating chamber, and the microwave generation means to the heating chamber A plurality of radiating means, wherein the radiating means has a pair of radiating means arranged opposite to each other, and variably controls the phase of the microwaves respectively transmitted to the pair of radiating means. The electric field concentration area synthesized from the pair of radiating means by variably controlling the phase of the microwave between the pair of radiating means is a space area for storing the object to be heated. Can be reliably moved, and uniform heating of the object to be heated can be surely promoted.

第2の発明は、特に第1の発明の一対の放射手段は、加熱室の左右側面に配設したものであり、これにより嵩が低い被加熱物や複数の被加熱物の同時加熱に対して電界集中領域を移動させることができ、加熱の均一化を促進できる。   In the second invention, in particular, the pair of radiating means of the first invention are arranged on the left and right side surfaces of the heating chamber, and thereby, against the simultaneous heating of a heated object or a plurality of heated objects having a low bulk. Thus, the electric field concentration region can be moved, and uniform heating can be promoted.

第3の発明は、特に第1の発明のマイクロ波発生手段は、発振部と、前記発振部の出力を複数に等分分配する電力分配器と、前記電力分配器の出力をそれぞれ増幅する増幅部とで構成し、前記電力分配器と前記増幅部との間の伝送路の少なくとも2つの伝送路に位相可変器をそれぞれ配置した構成としたものであり、これにより位相可変器の伝送損失の影響を含めてマイクロ波発生手段の位相を制御する少なくとも2つの出力はほぼ同量とすることができ、加熱の均一化に対する位相可変の制御を容易かつ再現性よく行うことができる。   According to a third aspect of the invention, in particular, the microwave generation means of the first aspect of the invention includes an oscillation unit, a power divider that equally divides the output of the oscillation unit into a plurality of parts, and an amplification that amplifies the output of the power divider, respectively. In which at least two transmission paths are arranged between the power distributor and the amplification section, thereby reducing the transmission loss of the phase changer. The at least two outputs for controlling the phase of the microwave generating means including the influence can be set to substantially the same amount, and the phase variable control for uniform heating can be easily and reproducibly performed.

第4の発明は、特に第3の発明の位相可変器を配置した伝送路を経由したマイクロ波は、対向配置された放射手段に導く構成としたものであり、これにより対向配置された放射手段からほぼ同量のマイクロ波を出力でき位相を変化することで移動する電界集中領域の強さは移動場所によらずほぼ同量にできるので、加熱の均一化に対する位相可変の制御を容易に行うことができる。   The fourth aspect of the invention is such that, in particular, the microwave passing through the transmission line in which the phase shifter of the third aspect of the invention is arranged is guided to the radiating means arranged oppositely, and thereby the radiating means arranged oppositely. Since the intensity of the electric field concentration region that moves by changing the phase can be output by changing the phase, it is possible to make the intensity of the electric field concentration region almost the same regardless of the moving location, so that the variable phase control for uniform heating is easily performed. be able to.

第5の発明は、特に第3の発明のそれぞれの位相可変器に入力するマイクロ波の位相は、90度の位相差を有する構成したものであり、これにより位相可変範囲は位相可変器の位相可変範囲に90度を加算した範囲を位相可変することができ、位相可変器の負担を緩
和し、位相可変器の形状の小型化あるいはコストの縮小を図ることができる。
In the fifth aspect of the invention, in particular, the phase of the microwave input to each phase variable device of the third invention has a phase difference of 90 degrees, so that the phase variable range is the phase of the phase variable device. It is possible to vary the phase of a range obtained by adding 90 degrees to the variable range, alleviate the burden on the phase variable device, and reduce the shape of the phase variable device or reduce the cost.

第6の発明は、特に第1の発明の一対の放射手段の位相差の可変最大は、少なくとも180度以上としたものであり、これにより同相と逆相の状態を形成できるので、任意の特定領域において電界集中形成状態と電界集中無し状態とを形成し加熱の均一性を確実に行うことができる。   In the sixth invention, in particular, the variable maximum of the phase difference of the pair of radiating means of the first invention is set to at least 180 degrees or more, so that in-phase and anti-phase states can be formed. In the region, the electric field concentration formation state and the no electric field concentration state can be formed to ensure uniform heating.

第7の発明は、特に第1の発明の位相を可変する手段は、電圧可変型としたものであり、これにより電圧をリニアに可変することで位相を連続的に可変することができ、電界集中領域を連続的に移動させることにより加熱の均一化をさらに促進させることができる。   In the seventh invention, in particular, the means for changing the phase of the first invention is a voltage variable type, whereby the phase can be continuously changed by changing the voltage linearly. Uniform heating can be further promoted by continuously moving the concentration region.

第8の発明は、特に第7の発明の電圧可変型の位相の可変範囲は、すくなくとも90度以上としたものであり、これにより広範囲の位相可変に対して位相器を複数直列接続することなく各伝送路に単一配置するだけで効果的な加熱が実行できる。   In the eighth aspect of the invention, in particular, the variable range of the voltage variable type phase of the seventh aspect of the invention is at least 90 degrees, so that a plurality of phase shifters can be connected in series for a wide range of phase variations. Efficient heating can be performed by simply arranging each transmission line.

第9の発明は、特に第1の発明のマイクロ波発生手段は、2400MHzから2500MHzまでの周波数を発生できる構成としたものであり、これによりマイクロ波の波長の変化を位相可変に加えることで加熱の均一化をさらに効果的に実行できる。   In the ninth aspect of the invention, in particular, the microwave generation means of the first aspect of the invention is configured to generate a frequency from 2400 MHz to 2500 MHz, thereby heating by changing the wavelength of the microwave in a variable manner. Can be more effectively performed.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by this embodiment.

(実施の形態1)
図1は本発明の第1の実施の形態におけるマイクロ波利用装置の構成図、図2は図1のマイクロ波発生手段の構成図である。
(Embodiment 1)
FIG. 1 is a block diagram of the microwave utilization apparatus according to the first embodiment of the present invention, and FIG. 2 is a block diagram of the microwave generation means of FIG.

図1〜図2において、被加熱物を収納する加熱室10は、被加熱物を出し入れする扉(図示していない)を一面に配し、それ以外の壁面は金属材料で構成し、供給されるマイクロ波を内部に閉じ込めるように構成している。加熱室10内の下方には、加熱室底壁面11と所定の間隔をもって被加熱物を載置する低誘電損失材料からなる載置板12を配する。また加熱室10の左右の壁面13、14のそれぞれの略中央には、放射手段15、16を対向するように設けている。   1 to 2, a heating chamber 10 for storing an object to be heated is provided with a door (not shown) through which the object to be heated is taken in and out, and other wall surfaces are made of a metal material and supplied. The microwave is confined inside. A placement plate 12 made of a low dielectric loss material on which the object to be heated is placed at a predetermined interval from the heating chamber bottom wall surface 11 is disposed below the heating chamber 10. In addition, radiating means 15 and 16 are provided so as to face each other at the approximate center of the left and right wall surfaces 13 and 14 of the heating chamber 10.

加熱室10の下側には、半導体素子を用いて構成したマイクロ波発生手段17を配する。このマイクロ波発生手段17は、2400MHzから2500MHzの周波数を発生する電圧可変型の周波数可変機能を備えた発振部18と、発振部18の出力を2分配するウイルキンソン型の分配器19と、分配器19の2つの出力を後段の初段増幅部20、21に伝送する伝送路22、23と、伝送路22、23にそれぞれ配置した位相可変器24、25と、初段増幅部20、21の出力をそれぞれ増幅する主増幅部26、27とから構成している。また、主増幅部26、27のそれぞれの出力は、同軸線路28、29を伝送させて対向配置の放射手段15、16に導いている。   Below the heating chamber 10, a microwave generation means 17 configured using a semiconductor element is disposed. This microwave generation means 17 includes an oscillation unit 18 having a voltage variable type frequency variable function for generating a frequency of 2400 MHz to 2500 MHz, a Wilkinson type distributor 19 for distributing the output of the oscillation unit 18 in two, and a distributor 19 transmission lines 22 and 23 for transmitting the two outputs to the first-stage amplifying units 20 and 21, the phase-variers 24 and 25 respectively disposed in the transmission lines 22 and 23, and the outputs of the first-stage amplifying units 20 and 21. The main amplifying units 26 and 27 are respectively amplifying. The outputs of the main amplifying units 26 and 27 are transmitted through the coaxial lines 28 and 29 and guided to the radiating means 15 and 16 arranged opposite to each other.

伝送路22、23は、伝送路長さを異なるものとし、発振部18の発振周波数帯の中央値である2450MHzの周波数を伝送する時に電気長が90度異なる長さ構成としている。   The transmission paths 22 and 23 have different transmission path lengths, and are configured to have different electrical lengths by 90 degrees when transmitting a frequency of 2450 MHz, which is the median value of the oscillation frequency band of the oscillating unit 18.

また、位相可変器24、25は、略同一仕様の部品からなり、供給する印加電圧の値に応じてほぼ一次関数にて所定の位相遅延を行う。位相遅延の最大は、90度以上、たとえば100度の仕様としている。   The phase shifters 24 and 25 are composed of components having substantially the same specifications, and perform a predetermined phase delay with a substantially linear function according to the value of the applied voltage to be supplied. The maximum phase delay is 90 degrees or more, for example, 100 degrees.

また、マイクロ波発生手段17の二つの出力には、それぞれ反射電力を抽出する電力結合器30、31を配する。また、駆動電源32は、発振部18と位相可変器24、25と初段増幅部20、21および主増幅部26、27のそれぞれに供給する駆動電力を発生するものである。また、駆動電源32の動作を制御する制御手段33を配する。   In addition, power combiners 30 and 31 for extracting reflected power are disposed at the two outputs of the microwave generation means 17, respectively. The drive power supply 32 generates drive power to be supplied to the oscillation unit 18, the phase shifters 24 and 25, the first stage amplification units 20 and 21, and the main amplification units 26 and 27. Further, a control means 33 for controlling the operation of the drive power supply 32 is provided.

電力結合器30、31は、結合度が約40dBとし、反射電力の約1/10000の電力量を抽出する。この電力信号はそれぞれ、検波ダイオード(図示していない)で整流化しコンデンサ(図示していない)で平滑処理し、その出力信号を制御手段33に入力させている。   The power combiners 30 and 31 have a degree of coupling of about 40 dB and extract an amount of power that is about 1/10000 of the reflected power. Each power signal is rectified by a detection diode (not shown), smoothed by a capacitor (not shown), and the output signal is input to the control means 33.

また、マイクロ波発生手段17には半導体素子の発熱を放熱させる放熱手段(図示していない)を配する。   The microwave generating means 17 is provided with heat radiating means (not shown) for radiating heat generated by the semiconductor element.

以上のように構成されたマイクロ波利用装置について、以下その動作と作用を説明する。   About the microwave utilization apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず被加熱物を加熱室10に収納し、その加熱条件を操作部(図示していない)から入力し、加熱開始キーを押す。加熱開始信号を受けた制御手段33の制御出力信号によりマイクロ波発生手段17が動作を開始する。制御手段33は、駆動電源32を動作させて発振部18に電力を供給する。この時、発振部18の初期の発振周波数は、たとえば2450MHzに設定する電圧信号を供給し、発振が開始する。以降、駆動電源32を制御して初段増幅部20、21を動作させ、次に主増幅部26、27を動作させる。動作初期には位相可変器24、25には0V電圧を印加する。これにより、各主増幅部26、27はそれぞれ100W未満、たとえば50Wのマイクロ波電力を位相差90度でもって出力する。   First, an object to be heated is stored in the heating chamber 10, the heating condition is input from an operation unit (not shown), and a heating start key is pressed. In response to the control output signal of the control means 33 that has received the heating start signal, the microwave generation means 17 starts its operation. The control means 33 operates the drive power supply 32 to supply power to the oscillation unit 18. At this time, the initial oscillation frequency of the oscillation unit 18 is supplied with a voltage signal set to 2450 MHz, for example, and oscillation starts. Thereafter, the drive power supply 32 is controlled to operate the first stage amplifiers 20 and 21, and then the main amplifiers 26 and 27 are operated. In the initial stage of operation, a 0 V voltage is applied to the phase shifters 24 and 25. As a result, the main amplifying units 26 and 27 each output microwave power of less than 100 W, for example, 50 W, with a phase difference of 90 degrees.

加熱室10内に供給されるマイクロ波エネルギが被加熱物に100%吸収されると加熱室10からの反射電力は無しになるが、被加熱物の種類・形状・量が被加熱物を含む加熱室10の電気的特性を決定し、マイクロ波発生手段17の出力インピーダンスと加熱室10のインピーダンスとに基づいて、加熱室10側から同軸線路28、29を逆方向に伝送する反射電力が生じる。   When 100% of the microwave energy supplied into the heating chamber 10 is absorbed by the object to be heated, the reflected power from the heating chamber 10 is eliminated, but the type, shape, and amount of the object to be heated include the object to be heated. Based on the output impedance of the microwave generating means 17 and the impedance of the heating chamber 10, the reflected power that transmits the coaxial lines 28 and 29 in the reverse direction from the heating chamber 10 is generated based on the electrical characteristics of the heating chamber 10. .

電力結合器30、31は、この同軸線路28、29をマイクロ波発生手段17側に伝送する反射電力と結合し、その反射電力量に比例した信号を検出するものであり、検出信号を受けた制御手段33は、反射電力が極小値となる発振周波数の選択を行う。この周波数選択に対して、制御手段33は、発振部18の発振周波数を初期の2450MHzから0.1MHzピッチ(たとえば、10ミリ秒で1MHz)で低い周波数側に変化させ、周波数可変範囲の下限である2400MHzに到達すると1MHzピッチで周波数を高く変化させ、2450MHzに到達すると再び0.1MHzピッチで周波数可変範囲の上限である2500MHzまで高くする。この周波数可変の中で得られた反射電力が極小となる周波数とその周波数における反射電力に相当する信号を記憶する。そして、反射電力が極小をとる周波数群において反射電力に相当する信号が最も小さい周波数を選定し、発振部18をその選定した周波数が発振するように制御するとともに発振出力を入力された加熱条件に対応した出力が得られるように制御する。これにより、各主増幅部26、27はそれぞれ200Wから500Wのマイクロ波電力を位相差90度でもって出力する。   The power combiners 30 and 31 couple the coaxial lines 28 and 29 to the reflected power transmitted to the microwave generation means 17 side, and detect a signal proportional to the reflected power amount. The control means 33 selects an oscillation frequency at which the reflected power becomes a minimum value. In response to this frequency selection, the control means 33 changes the oscillation frequency of the oscillating unit 18 from the initial 2450 MHz to a lower frequency side at a 0.1 MHz pitch (for example, 1 MHz at 10 milliseconds), and at the lower limit of the frequency variable range. When the frequency reaches 2400 MHz, the frequency is increased at a 1 MHz pitch, and when it reaches 2450 MHz, the frequency is increased again to the upper limit of the frequency variable range at 2500 MHz at the 0.1 MHz pitch. A frequency at which the reflected power obtained in the frequency variation is minimized and a signal corresponding to the reflected power at that frequency are stored. Then, the frequency corresponding to the reflected power is selected in the frequency group where the reflected power is minimized, and the oscillation unit 18 is controlled so that the selected frequency oscillates, and the oscillation output is set to the heating condition input. Control to obtain the corresponding output. As a result, the main amplification units 26 and 27 each output microwave power of 200 W to 500 W with a phase difference of 90 degrees.

このマイクロ波は、同軸線路28、29を伝送して一対の対向配置の放射手段15、16から被加熱物が収納された加熱室10内に放射される。加熱初期に加熱室10内に一対の対向配置の放射手段15、16から放射されるマイクロ波の位相差は略0度であり、加熱室10の左右方向の略中央部に電界集中領域が形成される。加熱室10の略中央部に形
成された電界集中領域により、被加熱物が加熱室10の略中央に収納された場合には、被加熱物の略中央が強く加熱される。また被加熱物が中央から左右のどちらかの壁面に偏って収納された場合には、加熱室10の中央側の被加熱物領域が強く加熱される。
The microwaves are transmitted through the coaxial lines 28 and 29 and are radiated from the pair of opposed radiating means 15 and 16 into the heating chamber 10 in which the object to be heated is accommodated. In the initial stage of heating, the phase difference of the microwaves radiated from the pair of opposed radiating means 15 and 16 in the heating chamber 10 is approximately 0 degrees, and an electric field concentration region is formed at a substantially central portion in the horizontal direction of the heating chamber 10. Is done. When the object to be heated is stored in the approximate center of the heating chamber 10 due to the electric field concentration region formed in the approximate center of the heating chamber 10, the approximate center of the object to be heated is strongly heated. Further, when the object to be heated is stored in a biased manner on either the left or right wall surface from the center, the area to be heated on the center side of the heating chamber 10 is strongly heated.

そして制御手段33は、被加熱物の加熱の均一化を図るために、適当な時間周期、たとえば2秒、で位相可変器24へ印加する電圧を増加させるように駆動電源32に制御信号を出力する。このとき一方の位相可変器25の印加電圧は変化させない。以降、位相可変器24への印加電圧が最大値に到達するまで電圧を増加させ、最大印加電圧に到達すると電圧を減少させて初期の0Vまで減少させる。この後、位相可変器24への印加電圧は0V一定として位相可変器25の印加電圧を制御し、最大印加電圧まで順次増加させ、最大印加電圧に到達すると電圧を減少させ初期の0Vまで減少させる。その後、再び位相可変器24への印加電圧を増加させ、上述の動作を加熱終了まで繰り返す。この位相可変制御により、一対の対向配置した放射手段15、16によって形成される電界集中領域は加熱室10の左右方向に順次移動し、被加熱物の加熱部位を移動させて均一加熱を促進する。   Then, the control means 33 outputs a control signal to the drive power source 32 so as to increase the voltage applied to the phase variable device 24 at an appropriate time period, for example, 2 seconds, in order to achieve uniform heating of the object to be heated. To do. At this time, the applied voltage of one phase variable device 25 is not changed. Thereafter, the voltage is increased until the applied voltage to the phase shifter 24 reaches the maximum value, and when the maximum applied voltage is reached, the voltage is decreased to the initial 0V. After that, the voltage applied to the phase shifter 24 is controlled to be 0V, and the voltage applied to the phase shifter 25 is controlled to increase gradually to the maximum applied voltage. When the maximum applied voltage is reached, the voltage is decreased and decreased to the initial 0V. . Thereafter, the voltage applied to the phase variable device 24 is increased again, and the above operation is repeated until the heating is completed. By this phase variable control, the electric field concentration region formed by the pair of opposed radiating means 15 and 16 is sequentially moved in the left-right direction of the heating chamber 10, and the heating part of the object to be heated is moved to promote uniform heating. .

この電界集中領域を加熱室10の左右方向に移動制御させることにより、加熱室10内の中央から左右どちらかの壁面に偏って収納された被加熱物はもとより、複数の被加熱物の同時加熱においても被加熱物全体に電界集中領域を順次移動させることができ、被加熱物の加熱の均一化を確実に実行することができる。   By controlling the movement of the electric field concentration region in the left-right direction of the heating chamber 10, not only the object to be heated, but also the objects to be stored on the left or right wall surface from the center in the heating chamber 10, are simultaneously heated. In this case, the electric field concentration region can be sequentially moved over the entire object to be heated, so that the heating of the object to be heated can be made uniform.

上記の一連の加熱制御の中で、さらに以下のような制御を実行する。上述したように加熱室10内に供給されるマイクロ波エネルギが被加熱物に100%吸収されると加熱室10からの反射電力は無しになるが、被加熱物の種類・形状・量が被加熱物を含む加熱室10の電気的特性を決定し、マイクロ波発生手段17の出力インピーダンスと加熱室10のインピーダンスとに基づいて、加熱室10側から同軸線路28、29を逆方向に伝送する反射電力が生じる。   In the series of heating control described above, the following control is further executed. As described above, when 100% of the microwave energy supplied into the heating chamber 10 is absorbed by the object to be heated, the reflected power from the heating chamber 10 is eliminated, but the type, shape, and amount of the object to be heated are limited. The electrical characteristics of the heating chamber 10 including the heated object are determined, and the coaxial lines 28 and 29 are transmitted in the reverse direction from the heating chamber 10 side based on the output impedance of the microwave generation means 17 and the impedance of the heating chamber 10. Reflected power is generated.

電力結合器30、31は、この同軸線路28、29をマイクロ波発生手段17側に伝送する反射電力と結合し、その反射電力量に比例した信号を検出するものであり、検出信号が予め規定した第一レベルの反射電力に対応する信号を超過した信号を制御手段33が検出すると、制御手段33は、発振部18の発振周波数を0.1MHzピッチで最大3MHz低い周波数側に変化させ、その後、発振周波数を高めて初期の周波数に対して最大3MHzまで高める。この過程で、反射電力検知信号が上述の第一レベルを下回る周波数が生じるとその周波数に発振部18の発振周波数を固定して加熱を継続する。反射電力検知信号が上述の第一レベルを下回らない場合は、加熱初期に周波数選択をした中で二番目に反射電力が少ない周波数に発振部18の発振周波数を設定して加熱を継続する。   The power combiners 30 and 31 couple the coaxial lines 28 and 29 with the reflected power transmitted to the microwave generation means 17 side and detect a signal proportional to the reflected power amount. When the control unit 33 detects a signal that exceeds the signal corresponding to the reflected power of the first level, the control unit 33 changes the oscillation frequency of the oscillating unit 18 to the lower frequency side by a maximum of 3 MHz at a 0.1 MHz pitch. The oscillation frequency is increased to a maximum of 3 MHz with respect to the initial frequency. In this process, when the reflected power detection signal has a frequency lower than the first level, the oscillation frequency of the oscillating unit 18 is fixed to the frequency and the heating is continued. If the reflected power detection signal does not fall below the first level, heating is continued by setting the oscillation frequency of the oscillating unit 18 to a frequency with the second least reflected power in the frequency selection at the beginning of heating.

この二番目に反射電力が少ない周波数における加熱動作の継続においても、その周波数における反射電力検知信号が第一レベルを超過していた場合は、上述した一連の周波数可変制御を実行しする。   Even in the continuation of the heating operation at the frequency with the second least reflected power, if the reflected power detection signal at that frequency exceeds the first level, the above-described series of frequency variable control is executed.

そして、この二番目に反射電力が少ない周波数における一連の加熱動作において、所望の第一レペルを下回る状態が得られない場合は、初期と二番目の周波数の一連の加熱動作において、最も反射電力が小さい周波数に発振周波数を設定して加熱を継続する。   If a state below the desired first lepel is not obtained in a series of heating operations at a frequency with the second least reflected power, the reflected power is the highest in the initial and second frequency series of heating operations. Set the oscillation frequency to a lower frequency and continue heating.

この加熱の継続において、反射電力検知信号が第二レベル(第一レベルよりも反射電力が大きく、半導体素子の熱的動作安全限界温度に相当する反射電力)に達すると、制御手段33は、発振部18の出力を低減するように制御し、反射電力検知信号が上述の第二レベルを下回る出力に制御して加熱を実行する。この一連の反射電力に基づく制御の過程においても位相可変器24、25に対する制御は連続的に並行して実行され、被加熱物に対
しては電界集中領域が順次移動し、被加熱物の加熱の均一化が継続されている。
When the reflected power detection signal reaches the second level (the reflected power is larger than the first level and corresponds to the thermal operating safety limit temperature of the semiconductor element) in the continuation of heating, the control means 33 oscillates. Control is performed so as to reduce the output of the unit 18, and heating is executed by controlling the reflected power detection signal to an output lower than the second level described above. Also in the control process based on the series of reflected power, the control for the phase shifters 24 and 25 is continuously executed in parallel, and the electric field concentration region sequentially moves with respect to the object to be heated to heat the object to be heated. Has been made uniform.

そして、被加熱物の表面温度検出手段の検知信号や手動入力された加熱時間情報に基づいて、加熱が終了制御される。   Then, heating is controlled to end based on the detection signal of the surface temperature detection means of the article to be heated and the manually input heating time information.

(実施の形態2)
図3〜図4は、本発明の第2の実施の形態のマイクロ波利用装置の構成図である。
本実施の形態が第1の実施の形態と相違する点は、マイクロ波発生手段の出力を4個とし、対向配置の放射手段を二対としたものである。図3〜図4において、第1の実施の形態と同一構成あるいは略同一機能のものは同一番号で示す。
(Embodiment 2)
3-4 is a block diagram of the microwave utilization apparatus of the 2nd Embodiment of this invention.
The difference between the present embodiment and the first embodiment is that the output of the microwave generating means is four and the radiation means arranged opposite to each other are two pairs. 3 to 4, components having the same configuration or substantially the same function as those of the first embodiment are denoted by the same reference numerals.

図3において、加熱室10の左右壁面に形成した一対の対向配設した放射手段15、16に加えて、加熱室10の上下壁面にも一対の対向配設の放射手段50、51を設けている。   3, in addition to the pair of opposed radiating means 15 and 16 formed on the left and right wall surfaces of the heating chamber 10, a pair of opposed radiating means 50 and 51 are provided on the upper and lower wall surfaces of the heating chamber 10, respectively. Yes.

そして、マイクロ波発生手段52と、その駆動電源53および制御手段54を備える。マイクロ波発生手段52は、4つの出力を有する構成としている。すなわち、マイクロ波発生手段52は、2400MHzから2500MHzの周波数を発生する電圧可変型の周波数可変機能を備えた発振部18と、発振部18の出力を2分配するウイルキンソン型の電力分配器19と、電力分配器19の2つの出力を後段の電力分配器55、56に伝送する伝送路57、58とをそれぞれ配する。伝送路57、58は、実施の形態1と同様に伝送路長さを異なるものとし、発振部18の発振周波数帯の中央値である2450MHzの周波数を伝送する時に電気長が90度異なる長さ構成としている。   And the microwave generation means 52, the drive power supply 53, and the control means 54 are provided. The microwave generation means 52 is configured to have four outputs. That is, the microwave generation means 52 includes an oscillation unit 18 having a voltage variable type frequency variable function that generates a frequency of 2400 MHz to 2500 MHz, a Wilkinson type power distributor 19 that distributes the output of the oscillation unit 18 in two, Transmission paths 57 and 58 for transmitting the two outputs of the power distributor 19 to the power distributors 55 and 56 in the subsequent stage are arranged, respectively. The transmission paths 57 and 58 have different transmission path lengths as in the first embodiment, and the electrical length is 90 degrees different when transmitting the frequency of 2450 MHz, which is the median value of the oscillation frequency band of the oscillator 18. It is configured.

電力分配器55、56は、実施の形態2では、90度ハイブリッド構成としている。この90度ハイブリッド構成の電力分配器55、56を用いると、その2つの出力は、位相が90度異なるものになる。そして、それぞれの電力分配器55、56の出力にはそれぞれ位相可変器59〜62、初段増幅器63〜66、その後段にはそれぞれ主増幅器67〜70を配する。そして、主増幅器67〜70の出力は電力結合器71〜74を介して放射手段50、51、16、15に接続されている。この構成により、それぞれの放射手段間の位相差は、放射手段16を基準にして、放射手段15、51が90度遅れ、放射手段50が180度遅れとなる。   In the second embodiment, power distributors 55 and 56 have a 90-degree hybrid configuration. When the 90-degree hybrid power distributors 55 and 56 are used, the two outputs are 90 degrees out of phase. Phase outputs 59 to 62 and first stage amplifiers 63 to 66 are arranged at the outputs of the power distributors 55 and 56, respectively, and main amplifiers 67 to 70 are arranged at the subsequent stages. The outputs of the main amplifiers 67 to 70 are connected to the radiating means 50, 51, 16 and 15 via the power combiners 71 to 74. With this configuration, the phase difference between the respective radiation means is 90 degrees behind the radiation means 15 and 51 and 180 degrees behind the radiation means 50 with respect to the radiation means 16.

なお、電力分配器55、56は、4端子構成からなり、残りの一端子には電力吸収抵抗75、76がそれぞれ接続される。この電力吸収抵抗75、76は、電力分配器55、56を伝送する周波数が2450MHzの場合には理想的には不要であるが、発振部18の発振周波数可変範囲の2400MHzから2500MHzに対応して、端子に生じる電力を完全吸収させ、電力分配の性能を保証させるものである。   The power distributors 55 and 56 have a four-terminal configuration, and power absorption resistors 75 and 76 are connected to the remaining one terminal, respectively. The power absorption resistors 75 and 76 are ideally unnecessary when the frequency of transmission through the power distributors 55 and 56 is 2450 MHz, but correspond to the oscillation frequency variable range of the oscillation unit 18 from 2400 MHz to 2500 MHz. The power generated at the terminal is completely absorbed, and the power distribution performance is guaranteed.

以上のように構成されたマイクロ波利用装置について、以下その動作と作用について実施の形態1と相違する点を中心に説明する。   The microwave utilization apparatus configured as described above will be described below with a focus on differences in operation and action from the first embodiment.

まず被加熱物を加熱室10に収納し、その加熱条件を操作部(図示していない)から入力し、加熱開始キーを押す。加熱開始信号を受けた制御手段54の制御出力信号によりマイクロ波発生手段52が動作を開始する。制御手段54は、実施の形態1と同様に加熱初期に発振部18の発振周波数の選択動作を行う。この場合、マイクロ波発生手段52の4つの出力の合計は実施の形態1と同様とし、各出力は実施の形態1の半分の約25Wとしている。   First, an object to be heated is stored in the heating chamber 10, the heating condition is input from an operation unit (not shown), and a heating start key is pressed. In response to the control output signal of the control means 54 that has received the heating start signal, the microwave generating means 52 starts operating. The control means 54 performs the selection operation of the oscillation frequency of the oscillation unit 18 in the initial stage of heating, as in the first embodiment. In this case, the total of the four outputs of the microwave generation means 52 is the same as in the first embodiment, and each output is about 25 W, half of that in the first embodiment.

そして周波数選択のプロセスは実施の形態1と同様の過程を行うが、相違する点は、左
右の放射手段15、16と上下の放射手段50、51とを区分してそれぞれ周波数選択を行うものである。すなわち、左右の放射手段15、16に対しての最適周波数の選択と上下の放射手段50、51に対する最適周波数の選択とを区分して制御手段54は記憶する。
The frequency selection process is the same as that of the first embodiment, except that the left and right radiating means 15 and 16 and the upper and lower radiating means 50 and 51 are divided to perform frequency selection. is there. That is, the control means 54 stores the selection of the optimum frequency for the left and right radiating means 15 and 16 and the selection of the optimum frequency for the upper and lower radiating means 50 and 51 separately.

そして、選択した発振周波数での動作において、左右の放射手段15、16に対する最適周波数と上下の放射手段50、51に対する最適周波数とが略同じ(周波数差は1MHzとする)場合には、制御手段54は、4つの放射手段15、16、50、51のすべてからマイクロ波を加熱室10内に同時に所定の位相差でもって放射させる。選択した発振周波数が異なる場合は、それぞれ一対の放射手段からの放射を交互に実行する。そして、2対同時放射および1対の交互放射の過程において、反射電力の検知は実施の形態1と同様に実行される。   In the operation at the selected oscillation frequency, when the optimum frequency for the left and right radiation means 15 and 16 and the optimum frequency for the upper and lower radiation means 50 and 51 are substantially the same (frequency difference is 1 MHz), the control means 54 radiates microwaves from all of the four radiating means 15, 16, 50, 51 simultaneously into the heating chamber 10 with a predetermined phase difference. When the selected oscillation frequencies are different, the radiation from the pair of radiation means is executed alternately. In the process of two pairs of simultaneous radiation and one pair of alternate radiation, the reflected power is detected in the same manner as in the first embodiment.

このように左右方向または/および上下方向からの放射により、嵩高い被加熱物や容量が大きい被加熱物の加熱に対して均一化をより効果的に実行することができる。   As described above, the radiation from the left-right direction and / or the up-down direction makes it possible to more effectively equalize the heating of the bulky heated object or the heated object having a large capacity.

以上のように本発明によれば、周波数可変可能なマイクロ波発生手段を用い、対向配置の放射手段から放射するマイクロ波の位相を可変制御することで電界集中領域を被加熱物上で確実に移動させて被加熱物の均一な加熱の促進を図る装置構成としたことにより、市販の電子レンジのごとき食品加熱はもとより、洗浄装置、乾燥装置、半導体製造装置などの工業分野での加熱装置にも展開することができる。   As described above, according to the present invention, the electric field concentration region is surely formed on the object to be heated by using the microwave generating means capable of changing the frequency and variably controlling the phase of the microwave radiated from the radiating means arranged oppositely. By adopting a device configuration that promotes uniform heating of the object to be heated, it can be used as a heating device in industrial fields such as washing equipment, drying equipment, and semiconductor manufacturing equipment as well as food heating such as commercially available microwave ovens. Can also be deployed.

本発明の実施の形態1のマイクロ波利用装置の構成図Configuration diagram of microwave utilization apparatus of embodiment 1 of the present invention 同マイクロ波利用装置のマイクロ波発生手段の構成ブロック図Configuration block diagram of microwave generation means of the microwave utilization apparatus 本発明の実施の形態2のマイクロ波利用装置の構成図The block diagram of the microwave utilization apparatus of Embodiment 2 of this invention 同マイクロ波利用装置のマイクロ波発生手段の構成ブロック図Configuration block diagram of microwave generation means of the microwave utilization apparatus

符号の説明Explanation of symbols

10 加熱室
15、16 左右対向配置の放射手段
17、52 マイクロ波発生手段
18 発振部(周波数可変)
19、54、55 電力分配器
20、21、63〜66 初段増幅部(増幅部)
24、25、59〜62 位相可変器
26、27、67〜70 主増幅部(増幅部)
33、54 制御手段
50、51 上下対向配置の放射手段
DESCRIPTION OF SYMBOLS 10 Heating chamber 15, 16 Radiation means 17 and 52 of right-and-left opposing arrangement | positioning 17, 52 Microwave generation means 18 Oscillation part (frequency variable)
19, 54, 55 Power distributor 20, 21, 63-66 First stage amplifier (amplifier)
24, 25, 59 to 62 Phase changer 26, 27, 67 to 70 Main amplifier (amplifier)
33, 54 Control means 50, 51 Radiation means arranged vertically opposite to each other

Claims (9)

被加熱物が収納される加熱室と、前記加熱室に供給するマイクロ波を発生させるマイクロ波発生手段と、前記マイクロ波発生手段から発生したマイクロ波を前記加熱室に供給する複数の放射手段とを備え、前記放射手段は対向配置された一対の放射手段を有し、前記一対の放射手段にそれぞれ伝送するマイクロ波の位相を可変制御するマイクロ波利用装置。 A heating chamber in which an object to be heated is stored, a microwave generating means for generating a microwave to be supplied to the heating chamber, and a plurality of radiating means for supplying the microwave generated from the microwave generating means to the heating chamber; And the radiating means has a pair of radiating means arranged opposite to each other, and variably controls the phase of the microwaves respectively transmitted to the pair of radiating means. 一対の放射手段は、加熱室の左右側面に配設した請求項1に記載のマイクロ波利用装置。 The microwave utilization apparatus according to claim 1, wherein the pair of radiating means are disposed on the left and right side surfaces of the heating chamber. マイクロ波発生手段は、発振部と、前記発振部の出力を複数に等分分配する電力分配器と、前記電力分配器の出力をそれぞれ増幅する増幅部とで構成し、前記電力分配器と前記増幅部との間の伝送路の少なくとも2つの伝送路に位相可変器をそれぞれ配置した構成とした請求項1に記載のマイクロ波利用装置。 The microwave generating means includes an oscillating unit, a power distributor that equally divides the output of the oscillating unit into a plurality, and an amplifying unit that amplifies the output of the power distributor, and the power distributor and the The microwave utilization device according to claim 1, wherein phase shifters are respectively disposed in at least two transmission paths between the amplification sections. 位相可変器を配置した伝送路を経由したマイクロ波は、対向配置された放射手段に導く構成とした請求項3に記載のマイクロ波利用装置。 4. The microwave utilization apparatus according to claim 3, wherein the microwave that has passed through the transmission line in which the phase shifter is arranged is guided to the radiation means arranged oppositely. それぞれの位相可変器に入力するマイクロ波の位相は、90度の位相差を有する構成した請求項3に記載のマイクロ波利用装置。 The microwave utilization apparatus according to claim 3, wherein the phase of the microwave input to each phase variable device has a phase difference of 90 degrees. 一対の放射手段の位相差の可変最大は、少なくとも180度以上とした請求項1に記載のマイクロ波利用装置。 The microwave utilization apparatus according to claim 1, wherein the variable maximum of the phase difference between the pair of radiation means is at least 180 degrees or more. 位相を可変する手段は、電圧可変型とした請求項1に記載のマイクロ波利用装置。 The microwave utilization apparatus according to claim 1, wherein the means for varying the phase is a voltage variable type. 電圧可変型の位相の可変範囲は、すくなくとも90度以上とした請求項7に記載のマイクロ波利用装置。 The microwave utilization device according to claim 7, wherein the variable range of the voltage variable type phase is at least 90 degrees or more. マイクロ波発生手段は、2400MHzから2500MHzまでの周波数を発生できる構成とした請求項1に記載のマイクロ波利用装置。
The microwave utilization apparatus according to claim 1, wherein the microwave generation means is configured to generate a frequency from 2400 MHz to 2500 MHz.
JP2006191401A 2006-07-12 2006-07-12 Microwave equipment Active JP4839994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006191401A JP4839994B2 (en) 2006-07-12 2006-07-12 Microwave equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006191401A JP4839994B2 (en) 2006-07-12 2006-07-12 Microwave equipment

Publications (3)

Publication Number Publication Date
JP2008021493A true JP2008021493A (en) 2008-01-31
JP2008021493A5 JP2008021493A5 (en) 2009-08-20
JP4839994B2 JP4839994B2 (en) 2011-12-21

Family

ID=39077303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006191401A Active JP4839994B2 (en) 2006-07-12 2006-07-12 Microwave equipment

Country Status (1)

Country Link
JP (1) JP4839994B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060016A (en) * 2006-09-04 2008-03-13 Matsushita Electric Ind Co Ltd Microwave utilization device
JP2009238402A (en) * 2008-03-26 2009-10-15 Panasonic Corp Microwave processor
JP2009259511A (en) * 2008-04-15 2009-11-05 Panasonic Corp Microwave processor
JP2009272273A (en) * 2008-05-12 2009-11-19 Panasonic Corp Microwave processing apparatus
JP2012020135A (en) * 2010-07-16 2012-02-02 Vivant Medical Inc Dual antenna assembly with user-controlled phase shifting
JP2014175122A (en) * 2013-03-07 2014-09-22 Toshiba Corp Microwave heating device and exhaust emission control system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102409913B1 (en) 2017-12-06 2022-06-16 삼성전자주식회사 Solder reflow apparatus and method of manufacturing an electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56132793A (en) * 1980-03-19 1981-10-17 Hitachi Netsu Kigu Kk High frequency heater
JPH06326571A (en) * 1993-05-11 1994-11-25 Toyota Motor Corp Phase variable circuit
JPH07130463A (en) * 1993-10-28 1995-05-19 New Japan Radio Co Ltd Microwave oven
JP2000357583A (en) * 1999-06-15 2000-12-26 Mitsubishi Electric Corp Microwave oven
JP2001304769A (en) * 2000-04-26 2001-10-31 Nippon Steel Corp Method for drying monolithic refractory with microwave

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56132793A (en) * 1980-03-19 1981-10-17 Hitachi Netsu Kigu Kk High frequency heater
JPH06326571A (en) * 1993-05-11 1994-11-25 Toyota Motor Corp Phase variable circuit
JPH07130463A (en) * 1993-10-28 1995-05-19 New Japan Radio Co Ltd Microwave oven
JP2000357583A (en) * 1999-06-15 2000-12-26 Mitsubishi Electric Corp Microwave oven
JP2001304769A (en) * 2000-04-26 2001-10-31 Nippon Steel Corp Method for drying monolithic refractory with microwave

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060016A (en) * 2006-09-04 2008-03-13 Matsushita Electric Ind Co Ltd Microwave utilization device
JP2009238402A (en) * 2008-03-26 2009-10-15 Panasonic Corp Microwave processor
JP2009259511A (en) * 2008-04-15 2009-11-05 Panasonic Corp Microwave processor
JP2009272273A (en) * 2008-05-12 2009-11-19 Panasonic Corp Microwave processing apparatus
JP2012020135A (en) * 2010-07-16 2012-02-02 Vivant Medical Inc Dual antenna assembly with user-controlled phase shifting
US9713496B2 (en) 2010-07-16 2017-07-25 Covidien Lp Dual antenna assembly with user-controlled phase shifting
JP2014175122A (en) * 2013-03-07 2014-09-22 Toshiba Corp Microwave heating device and exhaust emission control system

Also Published As

Publication number Publication date
JP4839994B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP5167678B2 (en) Microwave processing equipment
JP5142364B2 (en) Microwave processing equipment
JP5104048B2 (en) Microwave processing equipment
JP4992525B2 (en) Microwave processing equipment
JP4935188B2 (en) Microwave equipment
JP5286905B2 (en) Microwave processing equipment
JP5280372B2 (en) Microwave heating device
JP4940922B2 (en) Microwave processing equipment
JP4839994B2 (en) Microwave equipment
JP5262250B2 (en) Microwave processing equipment
JP5239229B2 (en) Microwave heating device
JP2009252346A5 (en)
JP5169371B2 (en) Microwave processing equipment
JP5127038B2 (en) High frequency processing equipment
JP5195255B2 (en) Microwave heating device
JP5217882B2 (en) Microwave processing equipment
JP2014049276A (en) Microwave processing device
JP5169255B2 (en) Microwave processing equipment
JP2008146966A (en) Microwave generation device and microwave heating apparatus
JP2008060016A (en) Microwave utilization device
JP2007228219A (en) Microwave device
JP5444734B2 (en) Microwave processing equipment
JP5195008B2 (en) Microwave heating device
JP2010073383A (en) Microwave heating apparatus
CN110547044B (en) Microwave processing apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090706

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R151 Written notification of patent or utility model registration

Ref document number: 4839994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3