WO2017118443A1 - 一种多天线系统中信道信息反馈的方法及终端 - Google Patents

一种多天线系统中信道信息反馈的方法及终端 Download PDF

Info

Publication number
WO2017118443A1
WO2017118443A1 PCT/CN2017/073239 CN2017073239W WO2017118443A1 WO 2017118443 A1 WO2017118443 A1 WO 2017118443A1 CN 2017073239 W CN2017073239 W CN 2017073239W WO 2017118443 A1 WO2017118443 A1 WO 2017118443A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
matrix
terminal
channel
equal
Prior art date
Application number
PCT/CN2017/073239
Other languages
English (en)
French (fr)
Inventor
吴昊
陈艺戬
蔡剑兴
肖华华
李儒岳
鲁照华
李永
王瑜新
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP17735881.9A priority Critical patent/EP3402089A1/en
Priority to US16/068,748 priority patent/US10560170B2/en
Publication of WO2017118443A1 publication Critical patent/WO2017118443A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection

Definitions

  • the present application relates to, but is not limited to, the field of wireless communications, and in particular, to a method and a terminal for channel information feedback in a multi-antenna system.
  • the receiving end and the transmitting end typically use space division multiplexing in a multi-antenna system to achieve a higher transmission rate.
  • the transmitting end usually uses precoding to map the data layer to be transmitted to the antenna port and achieve higher transmission performance.
  • the transmitting end needs to know the full or partial channel state information.
  • the transmitting end can obtain channel state information through the uplink and downlink channel reciprocity; in the FDD (Frequency Division Duplex) system, the receiving end usually needs the channel. Status information is notified to the transmitting end.
  • the channel state information fed back by the terminal usually includes a channel quality indicator (CQI), a precoding matrix indicator (PMI), and a rank indicator.
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • RI rank Indication
  • the CQI indicates the channel quality information
  • the base station configures a modulation and coding scheme (MCS) suitable for the channel quality according to the CQI
  • MCS modulation and coding scheme
  • the RI indicates the rank of the channel
  • the base station configures an appropriate data transmission layer according to the RI
  • the PMI indicates the terminal recommendation.
  • the precoding matrix the base station selects a suitable precoding matrix according to the PMI.
  • the format of the convention is called a codebook.
  • a DFT Discrete Fourier Transform
  • the terminal generates a certain number of DFT vectors according to the parameters configured by the high layer signaling, and then according to the result of the RI and the channel estimation, A better DFT vector is selected, and the index number is reported to the base station as a PMI.
  • the base station can recover the DFT vector recommended by the terminal according to the PMI.
  • the feedback PMI is divided into two parts: long-term feedback and short-term feedback.
  • the long-term feedback remains unchanged on the broadband.
  • the long-term feedback PMI value can determine a DFT vector. Quantity combination, short-term feedback selects the appropriate DFT vector from the set of DFT vectors, and the PMI value changes with the sub-band; after introducing the dual-polarized antenna, the two polarization directions select the same DFT vector, but introduce polarization difference.
  • FD Multiple-Input Multiple Output
  • the number of supported ports is increased to 16 ports, and the codebook is enhanced to the form of the DFT vector Kronecker product.
  • the PMI consists of three parts: the horizontal direction DFT vector for long-term feedback, the vertical direction DFT vector for long-term feedback, and the execution. Column and phase difference selected subband feedback; the base station uses the result of long-term feedback in the vertical direction to generate a set of DFT vectors, the result of long-term feedback in the horizontal direction to generate another set of DFT vectors, and the DFT vectors in the two sets are made in two
  • the Neck product generates a new set of vectores, and then selects the appropriate columns from the newly generated vector groups according to the subband feedback results, and adds the polarization difference to construct the final precoding matrix.
  • This PMI construction and feedback method can simultaneously utilize channel information in the vertical and horizontal dimensions and reduce feedback overhead to some extent.
  • the precoding vector combination generated by long-term feedback contains more vectors. Therefore, if a suitable vector is to be selected for feedback, a large feedback overhead is required.
  • the DFT vector based precoding construction method does not very well quantify the correlation between channels.
  • Embodiments of the present invention provide a method and a terminal for channel information feedback in a multi-antenna system, to reduce Less feedback overhead.
  • An embodiment of the present invention provides a method for channel information feedback in a multi-antenna system, including:
  • CSI-RS channel state information measurement reference signal
  • the terminal performs channel information quantization on the k-th channel by using a predetermined N k -dimensional codebook, and determines a corresponding precoding matrix and precoding matrix indication information PMI k ;
  • the terminal selects a class s channel from the class K channel, and feeds back an index number of the selected channel and a corresponding PMI to the base station.
  • the transformation function Fk is a linear transformation function.
  • the conversion function F k is multiplied by the matrix W k, the matrix W k is a matrix of M rows and N k columns.
  • the elements of the matrix W k to the initial horizontal vertically spaced ports, the number of horizontal port in the vertical direction A perpendicular to the horizontal direction of the port spacing or more parameters are determined by the topology of the M port.
  • K>1 and Nk are not completely equal.
  • K >1, and Greater than or equal to M.
  • the value of K, the value of the N k , and the transformation function F k are determined according to any of the following:
  • the value of K, the value of N k according to the determined base station configuration signaling may include:
  • the value of the K and the value of the N k are determined according to the topology structure of the base station antenna, and are configured by the base station signaling; or
  • the value of the K and the value of the N k are determined according to a codebook configuration type, and are configured by base station signaling.
  • the conversion function F k is determined based on the base station configuration signaling may include: if the conversion function F k is multiplied by the matrix W k, then the matrix W k non-zero elements The location is determined by base station configuration signaling, or the number of rows, columns, or rows and columns of the matrix Wk is determined by base station configuration signaling.
  • the transform function F k is selected by the terminal and fed back to the base station, and may include: if the transform function F k is multiplied by a matrix W k , the matrix W k is not The position of the zero element is selected by the terminal and fed back to the base station, or the number of rows, the number of columns, or the number of rows and columns of the matrix Wk are selected by the terminal and fed back to the base station.
  • the value of the s is agreed by the base station and the terminal; or the value of the s is determined by the configuration of the base station; or the value of the s is selected by the terminal and Feedback to the base station.
  • the embodiment of the invention further provides a terminal, including:
  • An acquiring module configured to receive CSI-RSs of M ports sent by the base station, and perform estimation according to the CSI-RS to obtain M-dimensional downlink channel information
  • a determining module configured to perform channel information quantization on the k-th channel by using a predetermined N k -dimensional codebook, and determine a corresponding precoding matrix and precoding matrix indication information PMI k ;
  • the sending module is configured to select an s-type channel from the class K channel, and feed back an index number of the selected channel and a corresponding PMI to the base station.
  • the transform function F k employed by the transform module is a linear transform function.
  • the transform module uses transform function F k is multiplied by matrix W k, the matrix W k N k is the matrix of M rows and columns of the matrix W k by the elements of the topology of the M ports One or more parameters of the starting port horizontal vertical interval, the horizontal vertical direction port number, and the horizontal vertical direction port spacing are determined.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions, which are implemented by the processor to implement the method for channel information feedback in the multi-antenna system.
  • the embodiments of the present invention provide a method and a terminal for channel information feedback in a multi-antenna system, which can effectively reduce feedback overhead.
  • FIG. 1 is a flowchart of a method for channel information feedback in a multi-antenna system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a dual-polarized antenna numbering manner according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of port grouping according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a terminal according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for channel information feedback in a multi-antenna system according to an embodiment of the present invention. As shown in FIG. 1 , the method includes the following steps:
  • Step 11 The terminal receives a channel state information-reference signal (CSI-RS) of the M ports sent by the base station, and obtains M-dimensional downlink channel information according to the CSI-RS.
  • CSI-RS channel state information-reference signal
  • N 1 , N 2 , ..., N K may not be completely equal, and their sum Can be equal to or can be greater than M.
  • F k may be multiplied by a matrix W k , where W k is a matrix of M rows and N k columns; for example, W k may be a complete antenna port selection
  • W k may be a matrix of M rows and N k columns; for example, W k may be a complete antenna port selection
  • the values of K, the values of N 1 , N 2 , . . . N K , F 1 , F 2 , . . . , F K and their parameters may be configured by the base station and notified to the terminal, or may be terminated by the terminal. Selecting and reporting to the base station can also be determined by the values of other parameters; for example, the value of K, the values of N 1 , N 2 ... N K , F 1 , F 2 , ..., F K can be based on any of the following Item determination:
  • the value of the K and the value of the Nk are determined according to the configuration of the base station configuration, and may include:
  • the value of the K and the value of the N k are determined according to the topology structure of the base station antenna, and are configured by the base station signaling; or
  • the value of the K and the value of the N k are determined according to a codebook configuration type (Codebook-Config), and are configured by base station signaling.
  • Codebook-Config a codebook configuration type
  • the determining function F k is determined according to the base station configuration signaling, and may include:
  • the position of the non-zero element in the matrix W k is determined by the base station configuration signaling, or the number of rows, columns, or rows of the matrix W k The number of columns is determined by base station configuration signaling.
  • Step 13 The terminal uses a predetermined N k -dimensional codebook to perform channel information quantization on the k-th channel, and determines a corresponding precoding matrix and precoding matrix indication information PMI k ;
  • the terminal uses the N 1 -dimensional, N 2 -dimensional, ..., N K -dimensional codebooks agreed by the base station and the terminal to perform channel information on the first type channel, the second type channel, ..., the class K channel, respectively. Quantize to determine the corresponding precoding matrix and index PMI 1 , ..., PMI K .
  • Step 14 The terminal selects a class s channel from the class K channel, and feeds back an index number of the selected channel and a corresponding PMI to the base station.
  • the value of s may be agreed by the base station and the terminal, configured by the base station, or selected by the terminal and fed back to the base station.
  • the feedback precoding indication information is determined by the group number and the group vector number, and the group number change period is long. This configuration can reduce the feedback overhead;
  • each group of N ports may be more suitable than the original M port to use the DFT-based vector to describe the channel correlation.
  • it can bring other gains such as antenna selection gain, so that it can be certain.
  • a relatively stable performance gain is achieved based on overhead.
  • the number of base station antennas is a total of M ports
  • the terminal uses a codebook whose maximum number of supported ports is an N port, N ⁇ M, and can be code-based based on the method given in this embodiment. Precoding construction.
  • W W 0 W 1 ;
  • W 1 is a precoding matrix selected by using an N port codebook
  • W 0 is an antenna port selection matrix
  • Step 100 The terminal receives a CSI-RS of the M ports sent by the base station, and according to the CSI-RS Performing estimation to obtain M-dimensional downlink channel information, and each dimension of downlink channel information corresponds to one port;
  • the M port channel information is divided into K port groups, and each group includes N ports.
  • the collection of K port groups is equal to the original M ports.
  • Figure 3 is an example of grouping mode, in which 16 ports are divided into 8 groups, each group containing 4 ports.
  • the M (for example, 16)-dimensional channel information obtained in step 100 is mapped to K (for example, 8) type channel information
  • the k-th channel information corresponds to channel information of the k-th port group
  • the k-th channel includes N ( For example, 4) dimension channel information, corresponding to N ports in the kth port group.
  • the transformation function F k in this embodiment is equivalent to multiplication by the matrix W 0 .
  • Step 102 In each group, the terminal separately performs channel information quantization on the kth class channel according to the N port codebook, selects a precoding matrix, and uses candidate precoding as a candidate;
  • Step 103 The terminal selects s from the K candidate precoding matrices as a final precoding matrix.
  • Step 104 The terminal feeds back the group number where the selected precoding matrix is located, and the precoding matrix index obtained according to the N port codebook in the group to the base station.
  • the number of ports that the codebook can support is extended to 16 ports, and the concepts of vertical and horizontal dimensions are introduced, so that the codebook can be used for 2D rectangles and 1D lines.
  • Base station topology For a higher number of antenna ports of 32 or 64, the precoding structure based on the existing ⁇ 8, 12, 16 ⁇ port codebook can be performed using the method given in this embodiment.
  • the method used in this embodiment is based on the method described in Embodiment 1, the base station has a total of M antenna ports, and the terminal constructs a precoding codebook based on a codebook whose port number is ⁇ 8, 12, 16 ⁇ .
  • Precoding has the following structure:
  • Step 201 Divide the M antenna ports into K groups, each group comprising ⁇ 8, 12, 16 ⁇ ports, each polarization direction ⁇ 4, 6, 8 ⁇ ports, and the ports may be arranged as ⁇ 4 ⁇ 2, 2 ⁇ 4, 8 ⁇ 1, 2 ⁇ 3, 3 ⁇ 2, 2 ⁇ 2, 4 ⁇ 1 ⁇
  • the determination of the grouping method includes one of the following ways:
  • the base station can determine the topology of the M antenna ports, the codebook configuration type (Codebook-Config), and the DCI (Downlink Control Information) and RRC (Radio Resource Control, Notifying the terminal by means of a radio resource control protocol or the like;
  • the terminal can select the grouping mode according to a certain standard and report it to the base station;
  • Step 202 For each of the K packets, a 16-port precoding codebook is used in each group, and the codebook parameters are configured according to the topology of the ports in the group.
  • the precoding format in each group is:
  • X 1 and X 2 respectively represent horizontal and vertical DFT (Discrete Fourier Transform) vectors
  • e in W 2 contains column selection vectors, from The sub-band with feedback is selected, and ⁇ represents the phase difference between the polarization directions.
  • the horizontal and vertical beams included in the beam are determined by the antenna topology of each packet. For example, when the antenna topology is N 1 ⁇ N 2 , the first column of the N 1 ⁇ L 1 dimensional matrix X 1 is an O 1 times oversampled DFT vector:
  • the first column of the N 2 ⁇ L 2 dimensional matrix X 2 is an O 2 times oversampled DFT vector:
  • the oversampling factor is determined by the port topology, and the relationship is shown in Table 1.
  • Step 203 The terminal selects s from the K candidate precoding matrices as a final precoding matrix.
  • Step 204 The terminal feeds back the group number of the selected precoding matrix and the precoding matrix index obtained according to the N port codebook in the group to the base station.
  • N k may be selected from the set ⁇ 8, 12, 16 ⁇ for the port number contained in the group in which the precoding matrix selected from the K candidate precoding matrices is located.
  • the codebook-based precoding structure and feedback can be implemented by using the method of Embodiment 1, but the characteristics similar to the channel state information of the two polarization directions can be further reduced. Small terminal complexity and feedback overhead. It is assumed that the number of base station antennas is a total of M ports, and each polarization direction is M/2 ports. The numbering manner of the M ports is that the first polarization direction is 1 to M/2, and the second polarization direction is M/2+1 to M, for example, the numbering manner in FIG.
  • the terminal uses the maximum supported port number as the N port codebook, N ⁇ M, and the precoding has the following structure:
  • W W 0 W 1 ;
  • W 1 is a precoding matrix selected by using an N port codebook
  • W 0 is an antenna port selection matrix
  • Step 301 the M ports are divided into K groups, each group comprising N ports, each polarization direction N/2 ports;
  • the transformation function F k in this embodiment is equivalent to multiplication by the matrix W 0 .
  • Step 302 in each group, the terminal selects a precoding matrix according to the N port codebook, and serves as candidate precoding;
  • Step 303 The terminal selects s from the K candidate precoding matrices as a final precoding matrix.
  • Step 304 The terminal feeds back the group number where the selected precoding matrix is located, and the precoding matrix index obtained according to the N port codebook in the group to the base station.
  • N k may be equal (as described in Embodiments 1 and 3), or may be unequal (as described in Embodiment 2).
  • the parameters include K, N 1 , N 2 , ..., the value of N K , the number of channel information reported s, the transformation functions F 1 , F 2 , ..., F K , the topology of each port subset after transformation, If the transformation function F k is a multiplication matrix as described in Embodiments 1, 2, and 3 Then the parameters also include the dimensions of the matrix, the location of non-zero elements in the matrix, and so on.
  • the method for parameter binding by the base station and the terminal includes the following steps:
  • Step 401 The base station configures the parameter, and notifies the terminal, and the manner of notifying the terminal includes DCI delivery or RRC signaling.
  • Step 402 The terminal selects a parameter and reports the parameter to the base station.
  • the base station may determine parameters according to the following manner:
  • Step 411 The base station determines the parameter according to the value of the M, and sends the RRC signaling to notify the terminal by using the DCI.
  • Step 412 The base station determines parameters according to the topology structure of the M antenna ports, and uses the DCI to deliver or configure RRC signaling to notify the terminal.
  • Step 413 The base station determines the parameter according to the RRC parameter Codebook-Config, and uses the DCI to deliver or configure the RRC signaling to notify the terminal.
  • Step 414 The base station sends or configures RRC signaling to notify the terminal by using the DCI according to the feedback mode.
  • the terminal may select a parameter according to a certain indicator, and include the parameter in the UCI, and report it to the base station through a PUSCH (Physical Uplink Shared Channel) or a PUCCH (Physical Uplink Control Channel).
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the transform functions F 1 , F 2 , ..., F K decompose the channel information obtained by the M antenna ports into channel information of the K port sets, and the transform function F k can be multiplied by linearity.
  • matrix Where each matrix The dimension is M ⁇ N k .
  • a more important function is to achieve the choice of antenna port, which has the following properties:
  • N k can be taken from the set ⁇ 2,4,8,12,16 ⁇ .
  • K may be an integer greater than 1, and the larger the K is, the larger the antenna selection gain may be.
  • s the smaller the feedback overhead of the precoding information, and the channel information feedback overhead.
  • Each port subset N k-port topologies with different values of N k has many possibilities.
  • each polarization direction has the same antenna topology, and must be a 1D linear topology or a 2D rectangular/square topology, then each The relationship between the topology of the port subset and N k is shown in Table 2.
  • each antenna port subset is a 1D linear topology or a 2D rectangular/square topology
  • the parameters of the zero-element position of the middle and non-zero include the antenna topology of the M ports, the starting position of the port subset k, the topology, the port spacing, and the like. Therefore, the matrix of four parameters such as the topology of the M port, the horizontal and vertical spacing of the starting position, the number of horizontal and vertical ports, and the horizontal vertical port spacing can be used.
  • the base station needs to notify the terminal through the DCI or RRC, and the terminal reports the selected subset index and the precoding indication of each selected subset; if these parameters are selected by the terminal Then, the terminal needs to report the selected port to the base station by using a bitmap (bitmap) while reporting the PMI.
  • bitmap bitmap
  • a method in which a codebook parameter is configured by a base station is given.
  • the transform functions F 1 , F 2 , ..., F K decompose the channel information obtained by the M antenna ports into channel information of the K port sets, and the transform function F K can be multiplied by a linear matrix. Where each matrix The dimension is M ⁇ N k . A more important function is to achieve the choice of antenna port, which has the following properties:
  • Step 601 The base station estimates an uplink channel according to the uplink reference signal.
  • Step 602 The base station estimates an uplink channel parameter, such as a delay extension, an angle extension, etc., and the base station determines a codebook parameter configuration according to the channel information parameter.
  • an uplink channel parameter such as a delay extension, an angle extension, etc.
  • Step 603 The base station notifies the terminal of the determined codebook parameter configuration.
  • the base station can be achieved in various ways according to the method of channel configuration information parameter codebook parameters, e.g., large angular spread, the topology selected from the farther apart the N k, and K and a relatively large s
  • channel configuration information parameter codebook parameters e.g., large angular spread, the topology selected from the farther apart the N k, and K and a relatively large s
  • This embodiment provides a method for a terminal to determine a codebook parameter.
  • the transform functions F 1 , F 2 , ..., F K decompose the channel information obtained by the M antenna ports into channel information of the K port sets, and the transform function may be multiplied by a linear matrix. Where each matrix The dimension is M ⁇ N k . A more important function is to achieve the choice of antenna port, which has the following properties:
  • N k , K and s, etc. are as follows:
  • Step 701 The terminal estimates a downlink channel according to the downlink reference signal.
  • Step 702 The terminal determines the codebook parameter configuration according to the estimated downlink channel information, such as delay extension, angle expansion, and the like.
  • Step 703 The terminal reports the determined codebook parameter to the base station.
  • the terminal can be accomplished in various ways according to channel information parameter selection method of codebook parameters, e.g., large angular spread, the topology selected from the farther apart the N k, and K and a relatively large s
  • channel information parameter selection method of codebook parameters e.g., large angular spread, the topology selected from the farther apart the N k, and K and a relatively large s
  • the delay spread is small, the channel information is updated faster and the feedback amount is larger, so that smaller K and s can be configured.
  • multiple sets of parameter configurations can be pre-configured, and the terminal configures multiple sets of codebooks and expected performance indicators according to multiple sets of parameters, and selects the best performing precoding matrix from them, and together with the indication information and parameter configuration information. Reported to the base station.
  • This embodiment lists a method for a terminal to report precoding indication information.
  • the transform functions F 1 , F 2 , . . . , F K decompose the channel information obtained by the M antenna ports into channel information of the K-type port set, and the terminal selects the s class reporting base station from the K-type information.
  • the method for reporting the precoding information by the terminal can be divided into the following two types:
  • the method 801 the terminal constructs a K-type sub-codebook according to the parameter configuration according to the decomposed K-type channel information, and selects the s-class from the selected s-type sub-codebook to obtain a pre-coding matrix, and the terminal feeds back the pre-coding matrix.
  • the mode 802 the terminal constructs a large codebook including the K-type channel information according to the decomposed K-type channel information, selects a pre-coding matrix from the large codebook, and feeds back the selected pre-coding matrix in the large codebook. Precoding indication information.
  • FIG. 4 is a schematic diagram of a terminal according to an embodiment of the present invention. As shown in FIG. 4, the terminal in this embodiment includes:
  • the obtaining module 41 is configured to receive a channel state information measurement reference signal (CSI-RS) of the M ports sent by the base station, and obtain an M-dimensional downlink channel information according to the CSI-RS.
  • CSI-RS channel state information measurement reference signal
  • the determining module 43 is configured to perform channel information quantization on the k-th channel by using a predetermined N k -dimensional codebook, and determine a corresponding precoding matrix and precoding matrix indication information PMI k ;
  • the sending module 44 is configured to select an s-type channel from the class K channel, and feed back an index number of the selected channel and a corresponding PMI to the base station.
  • the transformation function F k adopted by the transformation module 42 is a linear transformation function.
  • the transform function F k transform module 42 uses a matrix W k is multiplied by the matrix W k is a matrix of M rows and N k columns, the matrix elements W k by M port One or more parameters of the topology, the horizontal vertical spacing of the starting port, the number of horizontal and vertical ports, and the horizontal and vertical port spacing are determined.
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, which are implemented by the processor to implement the method for channel information feedback in the multi-antenna system.
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules or other data. Sex, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Any other medium used to store the desired information and that can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .
  • the embodiment of the present invention provides a method and a terminal for channel information feedback in a multi-antenna system, which can effectively reduce feedback overhead.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本文提供一种多天线系统中信道信息反馈的方法及终端,该方法包括:终端接收基站发送的M个端口的CSI-RS,并根据所述CSI-RS进行估计获得M维下行信道信息;采用变换函数Fk将所述M维下行信道信息进行线性变换,得到Nk维的第k类信道,其中,k大于或等于1且小于或等于K;M≥Nk,K≥1;采用预定的Nk维的码本分别对所述第k类信道进行信道信息量化,确定对应的预编码矩阵及预编码矩阵指示信息PMIk;从K类信道中选择s类信道,将所选信道的索引号及对应的PMI反馈给所述基站。

Description

一种多天线系统中信道信息反馈的方法及终端 技术领域
本申请涉及但不限于无线通信领域,尤其涉及一种多天线系统中信道信息反馈的方法及终端。
背景技术
无线通信系统中,接收端和发送端通常在多天线系统使用空分复用,以达到更高的传输速率。为了实现空分复用,发射端通常利用预编码将待传输的数据层映射到天线端口上,并取得较高的传输性能。为了实现发射端的预编码,发射端需要知道完全或部分的信道状态信息。在TDD(Time Division Duplexing,时分双工)系统中,发射端可以通过上下行信道互易性得到信道状态信息;在FDD(Frequency Division Duplex,频分双工)系统中,通常需要接收端将信道状态信息通知给发射端。
在LTE(Long Term Evolution,长期演进系统)系统中,终端反馈的信道状态信息通常包含信道质量指示(Channel Quality Indicator,简称CQI)、预编码矩阵指示(Precoding Matrix Indicator,简称PMI)和秩指示(Rank Indication,简称RI)。其中,CQI表示信道质量信息,基站根据CQI配置适合信道质量的调制编码方式(Modulation and Coding Scheme,简称MCS);RI表示信道的秩,基站根据RI配置合适的数据传输层数;PMI表示终端推荐的预编码矩阵,基站根据PMI选择合适的预编码矩阵。协议规定,终端在选择预编码矩阵后,终端以一种约定好的格式反馈PMI,基站可以通过这种格式恢复终端选择的预编码矩阵,这种约定的格式被称为码本。在早期的LTE版本中,使用DFT(Discrete Fourier Transform,离散傅里叶变换)矢量作为码本:终端根据高层信令配置的参数生成一定数量的DFT矢量,再根据RI以及信道估计的结果,从中选择较好的DFT矢量,并将其索引号作为PMI上报给基站,基站根据PMI即可恢复出终端推荐的DFT矢量。随着LTE的演进,码本得到了进一步的增强:反馈的PMI分为长期反馈和短期反馈两部分,长期反馈在宽带上保持不变,长期反馈的PMI值可以确定一个DFT矢 量组合,短期反馈从这组DFT矢量集合中挑选合适的DFT矢量,PMI值并随着子带变化;在引入双极化天线之后,两个极化方向选择相同的DFT矢量,只是引入极化相差。在Rel-13(第13版)中,引入了FD(Frequency Division,频分)MIMO(Multiple-Input Multiple Output,多输入多输出)的概念,允许基站天线阵列排列成2D的拓扑,并将最大可支持的端口数增加到16端口,码本增强为DFT矢量克罗内克积的形式,PMI包含三个部分:长期反馈的水平方向DFT矢量、长期反馈的垂直方向DFT矢量,以及用来执行列和相差选择的子带反馈;基站利用垂直方向长期反馈的结果生成一组DFT矢量、水平方向长期反馈的结果生成另一组DFT矢量,并将这两组中的DFT矢量两两做克罗内克乘积,生成一组新的矢量组,再根据子带反馈结果从新生成的矢量组中选择合适的列,并加上极化相差,从而构造出最终的预编码矩阵。这种PMI构造和反馈方式,可以同时利用垂直和水平维度上的信道信息,并且在一定程度上减小反馈开销。
然而,在将天线端口数扩展到32、64或者更多端口之后,上述方法则会显示出一定的局限性:
a、存在较多可能性的天线拓扑形式,如果针对每种天线拓扑都设计不同的码本,较为繁琐;
b、通过长期反馈生成的预编码矢量组合中,含有较多的矢量,因此,如果要从中选择合适的矢量进行反馈,需要较大的反馈开销;
c、天线阵列规模增大之后,基于DFT矢量的预编码构造方式并不能非常好地量化信道之间的相关性。
基于上述三点,仅将Rel-13中的码本构造和反馈方式应用到32或者更多的天线端口时,会带来较大的反馈开销,而且并不能达到相应的性能增益。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种多天线系统中信道信息反馈的方法及终端,以减 少反馈开销。
本发明实施例提供了一种多天线系统中信道信息反馈的方法,包括:
终端接收基站发送的M个端口的信道状态信息测量参考信号(CSI-RS),并根据所述CSI-RS进行估计获得M维下行信道信息;
所述终端采用变换函数Fk将所述M维下行信道信息进行线性变换,得到Nk维的第k类信道,其中,k=1,……,K;M≥Nk,K≥1;
所述终端采用预定的Nk维的码本分别对所述第k类信道进行信道信息量化,确定对应的预编码矩阵及预编码矩阵指示信息PMIk
所述终端从K类信道中选择s类信道,将所选信道的索引号及对应的PMI反馈给所述基站。
在示例性实施方式中,所述变换函数Fk为线性变换函数。
在示例性实施方式中,所述变换函数Fk为乘以矩阵Wk,所述矩阵Wk为M行Nk列的矩阵。
在示例性实施方式中,所述矩阵Wk的第i列,除了第ki个元素为1,其他元素为0,其中,i=1,……,Nk;ki=1,……,M。
在示例性实施方式中,所述矩阵Wk满足:如果第i列第ki行和第j列第kj行的元素为1,且i不等于j,则ki不等于kj,其中,i、j=1,……,Nk;ki、kj=1,……,M。
在示例性实施方式中,所述矩阵Wk的元素由M端口的拓扑、起始端口水平垂直间隔、水平垂直方向端口数、水平垂直方向端口间距中的一种或多种参数确定。
在示例性实施方式中,K>1,且Nk不完全相等。
在示例性实施方式中,K>1,且
Figure PCTCN2017073239-appb-000001
大于或等于M。
在示例性实施方式中,所述K的取值、所述Nk的取值、所述变换函数Fk是根据以下任一项确定的:
根据M的取值确定;
根据所述基站配置信令确定;
根据反馈模式确定;
由所述终端选择并反馈给所述基站。
在示例性实施方式中,所述K的取值、所述Nk的取值根据所述基站配置信令确定,可以包括:
所述K的取值、所述Nk的取值根据基站天线的拓扑结构决定,并由基站信令配置;或者,
所述K的取值、所述Nk的取值根据码本配置类型决定,并由基站信令配置。
在示例性实施方式中,所述变换函数Fk根据所述基站配置信令确定,可以包括:若所述变换函数Fk为乘以矩阵Wk,则所述矩阵Wk中非零元素的位置由基站配置信令确定,或者,所述矩阵Wk的行数、列数、或行数和列数由基站配置信令确定。
在示例性实施方式中,所述变换函数Fk由所述终端选择并反馈给所述基站,可以包括:若所述变换函数Fk为乘以矩阵Wk,则所述矩阵Wk中非零元素的位置由终端选择并反馈给基站,或者,所述矩阵Wk的行数、列数、或行数和列数由终端选择并反馈给基站。
在示例性实施方式中,所述s的取值由所述基站与所述终端约定;或者,所述s的取值由所述基站配置确定;或者,所述s的取值由终端选择并反馈给基站。
本发明实施例还提供了一种终端,包括:
获取模块,配置为接收基站发送的M个端口的CSI-RS,并根据所述CSI-RS进行估计获取M维下行信道信息;
变换模块,配置为采用变换函数Fk将所述M维下行信道信息进行线性变换,得到Nk维的第k类信道,其中,k=1,……,K;M≥Nk,K≥1;
确定模块,配置为采用预定的Nk维的码本分别对所述第k类信道进行信道信息量化,确定对应的预编码矩阵及预编码矩阵指示信息PMIk
发送模块,配置为从K类信道中选择s类信道,将所选信道的索引号及对应的PMI反馈给所述基站。
在示例性实施方式中,所述变换模块采用的变换函数Fk为线性变换函数。
在示例性实施方式中,所述变换模块采用的变换函数Fk为乘以矩阵Wk,所述矩阵Wk为M行Nk列的矩阵,所述矩阵Wk的元素由M端口的拓扑、起始端口水平垂直间隔、水平垂直方向端口数、水平垂直方向端口间距中的一种或多种参数确定。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述的多天线系统中信道信息反馈的方法。
综上,本发明实施例提供一种多天线系统中信道信息反馈的方法及终端,可以有效减少反馈开销。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例的一种多天线系统中信道信息反馈的方法的流程图;
图2为本发明实施例的双极化天线编号方式的示意图;
图3为本发明实施例的端口分组的示意图;
图4为本发明实施例的终端的示意图。
详述
下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
图1为本发明实施例的一种多天线系统中信道信息反馈的方法的流程图,如图1所示,包含以下步骤:
步骤11、终端接收基站发送的M个端口的信道状态信息测量参考信号(Channel State Information-Reference Signal,简称CSI-RS),并根据所述CSI-RS进行估计获得M维下行信道信息;
步骤12、终端采用变换函数Fk将所述M维下行信道信息进行线性变换, 得到Nk维的第k类信道,其中,k=1,……,K;M≥Nk,K≥1;
其中,对于K>1的情形,N1,N2,……,NK可以不完全相等,它们的和
Figure PCTCN2017073239-appb-000002
可以等于或者可以大于M。
在示例性实施方式中,对于k=1,……,K,Fk可以为乘以矩阵Wk,其中,Wk为M行Nk列的矩阵;比如,Wk可以为完成天线端口选择的矩阵,描述如下:
Wk的第i列,除了第ki个元素为1,其他元素为0,k=1,……,K;i=1,……,Nk;ki=1,……,M;在这种情况下,Wk满足:如果第i列第ki行和第j列第kj行的元素为1,且i不等于j,那么ki也不等于kj,k=1,……,K;i、j=1,……,Nk;ki、kj=1,……,M。
在示例性实施方式中,K的取值,N1,N2……NK的取值,F1、F2、……、FK及其参数可以由基站配置并通知终端,也可由终端选择并上报给基站,也可由其他参数的值确定;例如,K的取值,N1,N2……NK的取值,F1、F2、……、FK可以根据以下任一项确定:
根据M的取值确定;
根据所述基站配置信令确定;
根据反馈模式确定。
其中,所述K的取值、所述Nk的取值根据所述基站配置信令确定,可以包括:
所述K的取值、所述Nk的取值根据基站天线的拓扑结构决定,并由基站信令配置;或者,
所述K的取值、所述Nk的取值根据码本配置类型(Codebook-Config)决定,并由基站信令配置。
其中,所述变换函数Fk根据所述基站配置信令确定,可以包括:
若所述变换函数Fk为乘以矩阵Wk,则所述矩阵Wk中非零元素的位置由基站配置信令确定,或者所述矩阵Wk的行数、列数、或行数和列数由基站配置信令确定。
步骤13、所述终端采用预定的Nk维的码本分别对所述第k类信道进行信道信息量化,确定对应的预编码矩阵及预编码矩阵指示信息PMIk
其中,终端采用基站与终端约定的N1维,N2维,……,NK维的码本分别对所述第一类信道,第二类信道,……,第K类信道进行信道信息量化,确定对应的预编码矩阵及索引PMI1,……,PMIK
步骤14、所述终端从K类信道中选择s类信道,将所选信道的索引号及对应的PMI反馈给所述基站。
其中,s的取值可以由基站与终端约定、基站信令配置或者由终端选择并反馈给基站。
本发明实施例的多天线系统中信道信息反馈的方法具有如下的有益效果:
对于不同天线拓扑的系统,不需要配置不一样的码本参数,简化了码本的配置;
通过合适的分组和选组,反馈的预编码指示信息由组号和组内矢量号决定,组号变化周期较长,这种构造可以减小反馈开销;
通过合适的分组和选组,所得每组N端口可能比原始的M端口更适合利用基于DFT的矢量描述信道相关性,此外,还能带来天线选择增益等其他增益,这样,可以在一定的开销基础上带来相对稳定的性能增益。
以下通过多个实施例对本申请的方法进行详细的说明。
实施例一
在本实施例中,假设基站天线数总共为M端口,而终端使用最大可支持的端口数为N端口的码本,N<M,可以利用本实施例中给出的方法进行基于码本的预编码构造。
本实施例的预编码矩阵具有如下的结构:
W=W0W1
其中,W1为利用N端口码本选择出的预编码矩阵,W0为天线端口选择矩阵,实现M端口和N端口之间的映射。实现方式包含以下步骤:
步骤100,终端接收基站发送的M个端口的CSI-RS,并根据所述CSI-RS 进行估计获得M维下行信道信息,每一维下行信道信息对应一个端口;
步骤101,将M个端口信道信息分为K个端口组,每组包含N个端口。
K个端口组的合集等于原M个端口,图3为分组方式的一个例子,其中,16个端口被分为8个组,每组中包含4个端口。这样,步骤100中得到的M(例如16)维信道信息即被映射为K(例如8)类信道信息,第k类信道信息对应第k个端口组的信道信息;第k类信道包含N(例如4)维信道信息,对应于第k个端口组中N个端口。
本实施例中的变换函数Fk相当于乘以矩阵W0
步骤102,在每组中,终端根据N端口码本分别对所述第k类信道进行信道信息量化,选择预编码矩阵,并作为候选预编码;
步骤103,终端从K个候选预编码矩阵中,选择s个作为最终的预编码矩阵;
步骤104,终端将所选预编码矩阵所在的组号,以及在本组中根据N端口码本得到的预编码矩阵索引反馈给基站。
根据上述描述,W0的构造如下式所示:
Figure PCTCN2017073239-appb-000003
其中,
Figure PCTCN2017073239-appb-000004
表示维度为a×1,第b个元素为1,其他元素为0的矢量;(π1,…,πN)表示(1,…,M)中的N个数组成的排列,其中,π1,…,πN为最终从K个候选预编码矩阵选择的预编码矩阵所在组中包含的端口号。
实施例二
本实施例中,在LTE Rel-13中,基于将码本可以支持的端口数扩展到了16端口,且引入了垂直和水平两个维度的概念,使得该码本可用于2D长方形和1D线形的基站拓扑。对于32或者64等更高的天线端口数,可以使用本实施例给出的方法进行基于已有{8,12,16}端口码本的预编码构造。本实施例中所用方法基于实施例一中所述方法,基站总共M个天线端口,终端基于端口数为{8,12,16}的码本构造预编码码本。预编码具有如下结构:
Figure PCTCN2017073239-appb-000005
其中,
Figure PCTCN2017073239-appb-000006
进行天线端口选择,W1进行宽带波束选择,W2进行子带波束选择。实现方式包含以下步骤:
步骤201,将M个天线端口分为K个组,每组包含{8,12,16}个端口,每个极化方向{4,6,8}个端口,这些个端口的可以排列成{4×2,2×4,8×1,2×3,3×2,2×2,4×1}这几种拓扑结构,分组方式的确定包含如下方式之一:
根据基站的配置信令决定:基站可以通过M个天线端口的拓扑结构、码本配置类型(Codebook-Config)等决定,并通过DCI(Downlink Control Information,下行控制信息)、RRC(Radio Resource Control,无线资源控制协议)等方式通知终端;
根据终端的选择决定:终端可以根据一定的标准自行选择分组的方式,并上报给基站;
根据反馈模式、M的取值等参数决定,并由终端和基站约定。
本实施例中的变换函数Fk相当于乘以矩阵
Figure PCTCN2017073239-appb-000007
步骤202,对于K个分组,在每组中使用16端口的预编码码本,并根据该组中端口的拓扑结构配置码本参数,每组中预编码的形式为:
Figure PCTCN2017073239-appb-000008
其中,W1中的
Figure PCTCN2017073239-appb-000009
表示每个极化方向上宽带反馈的波束组合,X1和X2分别表示水平和垂直方向DFT(Discrete Fourier Transform,离散傅里叶变换)矢量,W2中的e包含列选择向量,从
Figure PCTCN2017073239-appb-000010
中选出子带反馈的波束,α表示极化方向间的相差。
Figure PCTCN2017073239-appb-000011
中包含的水平和垂直方向波束由每个分组的天线拓扑决定。比如,天线拓扑结构为N1×N2时,N1×L1维矩阵X1的第l列为O1倍过采样的DFT矢量:
Figure PCTCN2017073239-appb-000012
N2×L2维矩阵X2的第l列为O2倍过采样的DFT矢量:
Figure PCTCN2017073239-appb-000013
其中,过采样因子由端口拓扑结构决定,关系如表1所示。
表1
Figure PCTCN2017073239-appb-000014
步骤203,终端从K个候选预编码矩阵中,选择s个作为最终的预编码矩阵;
步骤204,终端将所选预编码矩阵所在的组号,以及在本组中根据N端口码本得到的预编码矩阵索引反馈给基站。
根据上述描述,
Figure PCTCN2017073239-appb-000015
的构造如下式所示:
Figure PCTCN2017073239-appb-000016
其中,
Figure PCTCN2017073239-appb-000017
表示维度为a×1,第b个元素为1,其他元素为0的矢量;
Figure PCTCN2017073239-appb-000018
表示(1,…,M)中的Nk个数组成的排列,其中,
Figure PCTCN2017073239-appb-000019
为最终从K个候选预编码矩阵选择的预编码矩阵所在组中包含的端口号,Nk的取值可选自集合{8,12,16}。
实施例三
本实施例中,对于双极化天线系统,使用实施例一的方法可以实现基于码本的预编码构造和反馈,但是,利用两个极化方向的信道状态信息类似的特性,可以进一步地减小终端复杂度和反馈开销。假设基站天线数总共为M端口,每个极化方向M/2个端口。这M个端口的编号方式是第一极化方向为1到M/2,第二极化方向为M/2+1到M,例如图2中的编号方式。
终端使用最大可支持的端口数为N端口的码本,N<M,预编码具有如下 结构:
W=W0W1
其中,W1为利用N端口码本选择出的预编码矩阵,W0为天线端口选择矩阵,实现M端口和N端口之间的映射。实现方式包含以下步骤:
步骤301,将M个端口分为K个组,每组包含N个端口,每个极化方向N/2个端口;
本实施例中的变换函数Fk相当于乘以矩阵W0
步骤302,在每组中,终端根据N端口码本选择预编码矩阵,并作为候选预编码;
步骤303,终端从K个候选预编码矩阵中,选择s个作为最终的预编码矩阵;
步骤304,终端将所选预编码矩阵所在的组号,以及在本组中根据N端口码本得到的预编码矩阵索引反馈给基站。
根据上述描述,W0的构造如下式所示:
Figure PCTCN2017073239-appb-000020
其中,
Figure PCTCN2017073239-appb-000021
表示维度为a×1,第b个元素为1,其他元素为0的矢量;(π1,…,πN/2)表示(1,…,M/2)中选取N/2个数组成的排列,其中,(π1,…,πN/2)为最终预编码矩阵所在组中包含的第一极化方向上端口号。
实施例四
本实施例中,对于基站天线端口数为M的系统,在上述三个实施例中,通过函数Fk将M个天线端口得到的信道信息分解为K个端口集合的信道信息,k=1,……,K,每个端口集合的端口数为Nk
对于不同的k=1,……,K,Nk可能相等(如实施例一、三中所述),也可能不等(如实施例二中所述)。
在进行这样的信道信息反馈之前,基站和终端需要约定好反馈的参数。参数包括K,N1,N2,……,NK的取值,上报信道信息数量s,变换函数F1、F2、……、FK,变换后每个端口子集的拓扑结构,如果变换函数Fk是如实施 例一、二、三所述的乘以矩阵
Figure PCTCN2017073239-appb-000022
那么参数还包括矩阵的维度、矩阵中非零元素的位置等。
其中,基站和终端进行参数约定方式包含以下步骤:
步骤401,基站配置参数,并通知终端,通知终端的方式包括DCI下发或者RRC信令;
步骤402,终端选择参数,并上报基站。
其中,对于步骤401,基站可以根据以下方式确定参数:
步骤411,基站根据M的取值确定参数,利用DCI下发或者配置RRC信令通知终端;
步骤412,基站根据M个天线端口的拓扑结构确定参数,利用DCI下发或者配置RRC信令通知终端;
步骤413,基站根据RRC参数Codebook-Config确定参数,利用DCI下发或者配置RRC信令通知终端;
步骤414,基站根据反馈模式,利用DCI下发或者配置RRC信令通知终端;
对于步骤402,终端可根据一定的指标选择参数,并包含在UCI中,通过PUSCH(Physical Uplink Shared Channel,物理上行共享信道)或者PUCCH(Physical Uplink Control Channel,物理上行控制信道)上报给基站。
实施例五
本实施例中列举了一些重要参数的可能取值。
如实施例一至四所述,变换函数F1、F2、……、FK将M个天线端口得到的信道信息分解为K个端口集合的信道信息,变换函数Fk可以取为乘以线性矩阵
Figure PCTCN2017073239-appb-000023
其中,每个矩阵
Figure PCTCN2017073239-appb-000024
维度为M×Nk
Figure PCTCN2017073239-appb-000025
一种比较重要功能是实现天线端口的选择,具有如下的性质:
Figure PCTCN2017073239-appb-000026
其中,
Figure PCTCN2017073239-appb-000027
表示维度为a×1,第b个元素为1,其他元素为0的矢量;
Figure PCTCN2017073239-appb-000028
表示(1,…,M)中的Nk个数组成的排列,其中,
Figure PCTCN2017073239-appb-000029
为最终从K 个候选预编码矩阵选择的预编码矩阵所在组中包含的端口号。
Nk表示第k个端口子集中的端口数,对于不同的k=1,……,K,Nk可能相等,也可能不等。对于基于LTE码本的信道信息反馈,Nk可以取自集合{2,4,8,12,16}。
端口子集个数K和上报信道信息个数s的取值为K≥1,s≥1。为了实现较大的天线选择增益,可选择K为大于1的整数,K越大可能达到的天线选择增益越大;此外,s越小,预编码信息反馈开销也越小,在信道信息反馈开销的限制很严重时,可选s=1。
每个端口子集中Nk个端口的拓扑结构随着Nk取值的不同,有着多种可能性。对于基于LTE码本的信道信息反馈,如果使用双极化天线的情况下,每个极化方向有着一样的天线拓扑结构,且必须为1D的线性拓扑或者2D的长方形/正方形拓扑,那么,每个端口子集的拓扑结构和Nk之间的关系如表2所示。
表2
Nk 子集端口拓扑
2 (1,1)
4 (2,1)(1,2)
8 (2,2)(4,1)
12 (2,3)(3,2)
16 (2,4)(4,2)(8,1)
如果使用的变换函数是乘以如上文所述的矩阵
Figure PCTCN2017073239-appb-000030
那么,矩阵
Figure PCTCN2017073239-appb-000031
中非零元素的位置是由端口子集中所包含的端口编号决定的。对于基于LTE码本的信道信息反馈,由于每个天线端口子集是1D的线性拓扑或者2D的长方形/正方形拓扑,决定
Figure PCTCN2017073239-appb-000032
中非零元素位置的参数包括M个端口的天线拓扑、端口子集k的起始位置、拓扑结构、端口间距等。因此,可以用M端口的拓扑、起始位置水平垂直间隔、水平垂直方向端口数、水平垂 直方向端口间距等四组参数确定矩阵
Figure PCTCN2017073239-appb-000033
例如,对于32端口的双极化天线系统,拓扑结构为4×4,每个端口子集拓扑为2×2,起始端口间距为(1,2),子集端口间距为(1,1),则K=6,N1,N2,……,NK的和大于32,端口映射如图3所示,其中,每个方格代表同一位置两个极化方向的端口,每个圆圈覆盖的端口为一组端口子集。
如果这些参数由基站配置,那么基站需要将这三组参数通过DCI或RRC通知给终端,并由终端上报选择的子集索引和每个被选子集的预编码指示;如果这些参数由终端选择,那么终端需要在上报PMI的同时,利用bitmap(位图)将被选出的端口上报基站。
实施例六
在本实施例中,给出了一种码本参数由基站配置的方法。本实施例中,变换函数F1、F2、……、FK将M个天线端口得到的信道信息分解为K个端口集合的信道信息,变换函数FK可以取为乘以线性矩阵
Figure PCTCN2017073239-appb-000034
其中,每个矩阵
Figure PCTCN2017073239-appb-000035
维度为M×Nk
Figure PCTCN2017073239-appb-000036
一种比较重要功能是实现天线端口的选择,具有如下的性质:
Figure PCTCN2017073239-appb-000037
其中,
Figure PCTCN2017073239-appb-000038
表示维度为a×1,第b个元素为1,其他元素为0的矢量;
Figure PCTCN2017073239-appb-000039
表示(1,…,M)中的Nk个数组成的排列,其中,
Figure PCTCN2017073239-appb-000040
为最终从K个候选预编码矩阵选择的预编码矩阵所在组中包含的端口号,并从这K个信息中选择s个上报基站。基站配置
Figure PCTCN2017073239-appb-000041
中的参数,例如,Nk、K和s等,步骤如下:
步骤601、基站根据上行参考信号估计上行信道;
步骤602、基站估计上行信道参数,例如时延扩展、角度扩展等,基站根据信道信息参数确定码本参数配置;
步骤603、基站将确定的码本参数配置通知终端。
其中,步骤602中,基站根据信道信息参数配置码本参数的方法可以通过多种方式实现,例如,角度扩展较大时,选择拓扑距离相隔较远的Nk,以及相对较大的K和s;而在时延扩展较小时,信道信息更新较快,反馈量较 大,因此可以配置较小的K和s。
实施例七
本实施例给出了一种终端确定码本参数的方法。如实施例一至六所述,变换函数F1、F2、……、FK将M个天线端口得到的信道信息分解为K个端口集合的信道信息,变换函数可以取为乘以线性矩阵
Figure PCTCN2017073239-appb-000042
其中,每个矩阵
Figure PCTCN2017073239-appb-000043
维度为M×Nk
Figure PCTCN2017073239-appb-000044
一种比较重要功能是实现天线端口的选择,具有如下的性质:
Figure PCTCN2017073239-appb-000045
其中,
Figure PCTCN2017073239-appb-000046
表示维度为a×1,第b个元素为1,其他元素为0的矢量;
Figure PCTCN2017073239-appb-000047
表示(1,…,M)中的Nk个数组成的排列,其中,
Figure PCTCN2017073239-appb-000048
为最终从K个候选预编码矩阵选择的预编码矩阵所在组中包含的端口号,并从这K个信息中选择s个上报基站。终端选择
Figure PCTCN2017073239-appb-000049
中的参数,例如,Nk、K和s等,步骤如下:
步骤701、终端根据下行参考信号估计下行信道;
步骤702、终端根据估计到的下行信道信息,例如时延扩展、角度扩展等,确定码本参数配置;
步骤703、终端将确定的码本参数上报基站。
其中,步骤702中,终端根据信道信息参数选择码本参数的方法可以通过多种方式实现,例如,角度扩展较大时,选择拓扑距离相隔较远的Nk,以及相对较大的K和s;而在时延扩展较小时,信道信息更新较快,反馈量较大,因此可以配置较小的K和s。此外,还可以预先配置多套参数配置,终端根据得到多套参数配置多套码本和预期的性能指标,并从中选择出性能最好的预编码矩阵,并将其指示信息和参数配置信息一起上报给基站。
实施例八
本实施例列举了终端上报预编码指示信息的方法。在本实施例中,变换函数F1、F2、……、FK将M个天线端口得到的信道信息分解为K类端口集合的信道信息,终端从这K类信息中选择s类上报基站。终端上报预编码信息的方法可以分为以下两种:
方式801、终端根据分解出的K类信道信息,根据参数配置构造K类子码本,并从中选择s类,利用选择出的s类子码本得到预编码矩阵,终端反馈该预编码矩阵在每类子码本中指示信息和所在子码本类别的索引号;
方式802、终端根据分解出的K类信道信息,构造包含这K类信道信息的大码本,从这个大码本中选择预编码矩阵,并反馈所选预编码矩阵在这个大码本中的预编码指示信息。
图4为本发明实施例的终端的示意图,如图4所示,本实施例的终端包括:
获取模块41,配置为接收基站发送的M个端口的信道状态信息测量参考信号(CSI-RS),并根据所述CSI-RS进行估计获取M维下行信道信息;
变换模块42,配置为采用变换函数Fk将所述M维下行信道信息进行线性变换,得到Nk维的第k类信道,其中,k=1,……,K;M≥Nk,K≥1;
确定模块43,配置为采用预定的Nk维的码本分别对所述第k类信道进行信道信息量化,确定对应的预编码矩阵及预编码矩阵指示信息PMIk
发送模块44,配置为从K类信道中选择s类信道,将所选信道的索引号及对应的PMI反馈给所述基站。
其中,所述变换模块42采用的变换函数Fk为线性变换函数。
在一示例性实施例中,所述变换模块42采用的变换函数Fk为乘以矩阵Wk,所述矩阵Wk为M行Nk列的矩阵,所述矩阵Wk的元素由M端口的拓扑、起始端口水平垂直间隔、水平垂直方向端口数、水平垂直方向端口间距中的一种或多种参数确定。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述的多天线系统中信道信息反馈的方法。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理单元的划分;例如,一个物理组件可以具有多个功能,或者一 个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上仅为本申请的示例性实施例,本申请还可有其他多种实施例,在不背离本申请精神及其实质的情况下,熟悉本领域的技术人员当可根据本申请作出各种相应的改变和变形,但这些相应的改变和变形都应属于本申请所附的权利要求的保护范围。
工业实用性
本申请实施例提供一种多天线系统中信道信息反馈的方法及终端,可以有效减少反馈开销。

Claims (16)

  1. 一种多天线系统中信道信息反馈的方法,包括:
    终端接收基站发送的M个端口的信道状态信息测量参考信号CSI-RS,并根据所述CSI-RS进行估计获得M维下行信道信息;
    所述终端采用变换函数Fk将所述M维下行信道信息进行线性变换,得到Nk维的第k类信道,其中,k大于或等于1且小于或等于K;M≥Nk,K≥1;
    所述终端采用预定的Nk维的码本分别对所述第k类信道进行信道信息量化,确定对应的预编码矩阵及预编码矩阵指示信息PMIk
    所述终端从K类信道中选择s类信道,将所选信道的索引号及对应的PMI反馈给所述基站。
  2. 根据权利要求1所述的方法,其中,所述变换函数Fk为线性变换函数。
  3. 根据权利要求2所述的方法,其中,所述变换函数Fk为乘以矩阵Wk,所述矩阵Wk为M行Nk列的矩阵。
  4. 根据权利要求3所述的方法,其中,所述矩阵Wk的第i列,除了第ki个元素为1,其他元素为0,其中,i大于或等于1且小于或等于Nk;ki大于或等于1且小于或等于M。
  5. 根据权利要求4所述的方法,其中,所述矩阵Wk满足:如果第i列第ki行和第j列第kj行的元素为1,且i不等于j,则ki不等于kj,其中,i和j均大于或等于1且小于或等于Nk;ki和kj均大于或等于1且小于或等于M。
  6. 根据权利要求5所述的方法,其中,所述矩阵Wk的元素由M端口的拓扑、起始端口水平垂直间隔、水平垂直方向端口数、水平垂直方向端口间距中的一种或多种参数确定。
  7. 根据权利要求1所述的方法,其中,K>1,且Nk不完全相等。
  8. 根据权利要求1所述的方法,其中,K>1,且
    Figure PCTCN2017073239-appb-100001
    大于或等于M。
  9. 根据权利要求1所述的方法,其中,所述K的取值、所述Nk的取值、 所述变换函数Fk是根据以下任一项确定的:
    根据M的取值确定;
    根据所述基站配置信令确定;
    根据反馈模式确定;
    由所述终端选择并反馈给所述基站。
  10. 根据权利要求9所述的方法,其中,所述K的取值、所述Nk的取值根据所述基站配置信令确定,包括:
    所述K的取值、所述Nk的取值根据基站天线的拓扑结构决定,并由基站信令配置;或者,
    所述K的取值、所述Nk的取值根据码本配置类型决定,并由基站信令配置。
  11. 根据权利要求9所述的方法,其中,所述变换函数Fk根据所述基站配置信令确定,包括:
    若所述变换函数Fk为乘以矩阵Wk,则所述矩阵Wk中非零元素的位置由基站配置信令确定,或者,所述矩阵Wk的行数、列数、或行数和列数由基站配置信令确定。
  12. 根据权利要求9所述的方法,其中,所述变换函数Fk由所述终端选择并反馈给所述基站,包括:
    若所述变换函数Fk为乘以矩阵Wk,则所述矩阵Wk中非零元素的位置由终端选择并反馈给基站,或者,所述矩阵Wk的行数、列数、或行数和列数由终端选择并反馈给基站。
  13. 根据权利要求1所述的方法,其中,
    所述s的取值由所述基站与所述终端约定;或者,
    所述s的取值由所述基站配置确定;或者,
    所述s的取值由终端选择并反馈给基站。
  14. 一种终端,包括:
    获取模块,配置为接收基站发送的M个端口的信道状态信息测量参考信 号CSI-RS,并根据所述CSI-RS进行估计获取M维下行信道信息;
    变换模块,配置为采用变换函数Fk将所述M维下行信道信息进行线性变换,得到Nk维的第k类信道,其中,k大于或等于1且小于或等于K;M≥Nk,K≥1;
    确定模块,配置为采用预定的Nk维的码本分别对所述第k类信道进行信道信息量化,确定对应的预编码矩阵及预编码矩阵指示信息PMIk
    发送模块,配置为从K类信道中选择s类信道,将所选信道的索引号及对应的PMI反馈给所述基站。
  15. 根据权利要求14所述的终端,其中,所述变换模块采用的变换函数Fk为线性变换函数。
  16. 根据权利要求15所述的终端,其中,所述变换模块采用的变换函数Fk为乘以矩阵Wk,所述矩阵Wk为M行Nk列的矩阵,所述矩阵Wk的元素由M端口的拓扑、起始端口水平垂直间隔、水平垂直方向端口数、水平垂直方向端口间距中的一种或多种参数确定。
PCT/CN2017/073239 2016-01-07 2017-02-10 一种多天线系统中信道信息反馈的方法及终端 WO2017118443A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17735881.9A EP3402089A1 (en) 2016-01-07 2017-02-10 Method for channel information feedback in multi-antenna system, and terminal
US16/068,748 US10560170B2 (en) 2016-01-07 2017-02-10 Method for channel information feedback in multi-antenna system, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610010307.9A CN106953672B (zh) 2016-01-07 2016-01-07 一种多天线系统中信道信息反馈的方法及终端
CN201610010307.9 2016-01-07

Publications (1)

Publication Number Publication Date
WO2017118443A1 true WO2017118443A1 (zh) 2017-07-13

Family

ID=59273263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073239 WO2017118443A1 (zh) 2016-01-07 2017-02-10 一种多天线系统中信道信息反馈的方法及终端

Country Status (4)

Country Link
US (1) US10560170B2 (zh)
EP (1) EP3402089A1 (zh)
CN (1) CN106953672B (zh)
WO (1) WO2017118443A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108288989B (zh) * 2017-01-09 2020-12-08 华为技术有限公司 信道状态信息反馈方法、用户设备及基站
CN116800311A (zh) * 2017-05-05 2023-09-22 华为技术有限公司 传输预编码矩阵的指示方法和设备
CN109391313B (zh) * 2017-08-11 2021-11-30 展讯通信(上海)有限公司 信道状态信息反馈方法及用户终端、基站及可读存储介质
CN108111281B (zh) * 2017-09-12 2022-03-01 中兴通讯股份有限公司 数据信道参数配置方法及装置
US10659117B2 (en) * 2017-09-22 2020-05-19 Qualcomm Incorporated Codebook restriction and sub-sampling for channel state information reporting
CN110557176B (zh) 2018-06-01 2022-08-02 中兴通讯股份有限公司 信息反馈方法、终端、基站、存储介质、电子设备
EP3905544A4 (en) * 2019-01-28 2021-12-29 Huawei Technologies Co., Ltd. Communication method and apparatus
CN113364503B (zh) * 2019-02-26 2022-12-27 Oppo广东移动通信有限公司 反馈码本的方法、终端设备和网络设备
CN114338293A (zh) * 2020-09-30 2022-04-12 华为技术有限公司 一种通信方法及装置
US11990958B2 (en) 2021-05-10 2024-05-21 Apple Inc. Port selection codebook enhancement
CN117856845A (zh) * 2022-09-30 2024-04-09 大唐移动通信设备有限公司 信道状态信息的上报方法、终端及网络设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103312448A (zh) * 2012-03-16 2013-09-18 上海贝尔股份有限公司 确定信道状态信息的方法与装置
CN103746779A (zh) * 2013-12-31 2014-04-23 上海华为技术有限公司 一种信道状态信息测量、参考信号的发送方法和装置
CN104202073A (zh) * 2014-03-04 2014-12-10 中兴通讯股份有限公司 信道信息的反馈方法、导频及波束发送方法、系统及装置
US20150103933A1 (en) * 2012-04-24 2015-04-16 Ntt Docomo ,Inc. Codebook creating method, codebook creating apparatus and initial codebook creating method
CN104662811A (zh) * 2012-09-18 2015-05-27 Lg电子株式会社 在多天线无线通信系统中发送有效反馈的方法及其设备

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080094281A1 (en) * 2006-10-24 2008-04-24 Nokia Corporation Advanced codebook for multi-antenna transmission systems
US7809074B2 (en) * 2007-03-16 2010-10-05 Freescale Semiconductor, Inc. Generalized reference signaling scheme for multi-user, multiple input, multiple output (MU-MIMO) using arbitrarily precoded reference signals
WO2010002734A2 (en) * 2008-06-30 2010-01-07 Interdigital Patent Holdings, Inc. Method and apparatus to support single user (su) and multiuser (mu) beamforming with antenna array groups
KR101751995B1 (ko) * 2009-06-19 2017-06-28 엘지전자 주식회사 다중 안테나 시스템에서 공간 채널 공분산(spatial channelcovariance)를 이용하여 피드백 오버헤드를 최소화 하는 방법
KR101253197B1 (ko) * 2010-03-26 2013-04-10 엘지전자 주식회사 참조신호 수신 방법 및 사용자기기, 참조신호 전송 방법 및 기지국
US9729273B2 (en) * 2012-03-30 2017-08-08 Sharp Kabushiki Kaisha Collision resolution among transmission schedules of uplink control information (UCI)
WO2013185320A1 (zh) * 2012-06-14 2013-12-19 华为技术有限公司 确定预编码矩阵指示的方法、用户设备、基站演进节点
RU2618508C2 (ru) * 2012-12-27 2017-05-04 Хуавэй Текнолоджиз Ко., Лтд. Способ возвращения информации состояния канала, пользовательское оборудование и базовая станция
KR20140108020A (ko) * 2013-02-28 2014-09-05 한국전자통신연구원 프리코딩 방법 및 장치
JP6199653B2 (ja) * 2013-08-06 2017-09-20 株式会社Nttドコモ 無線通信システムおよびアンテナ構成決定方法
WO2015033661A1 (ja) * 2013-09-03 2015-03-12 ソニー株式会社 通信制御装置、通信制御方法及び端末装置
US20150110210A1 (en) * 2013-10-18 2015-04-23 Nokia Solutions And Networks Oy Channel state information acquisition and feedback for full dimension multiple input multiple output
WO2015109463A1 (en) * 2014-01-22 2015-07-30 Nec Corporation Method and apparatus for channel measurement and feedback
US10158408B2 (en) * 2014-03-27 2018-12-18 Samsung Electronics Co., Ltd. Apparatus and method for channel information feedback in wireless communication system
KR102231078B1 (ko) * 2014-06-03 2021-03-24 삼성전자 주식회사 이동 통신 시스템에서 피드백 송수신 방법 및 장치
US10355763B2 (en) * 2014-07-31 2019-07-16 Lg Electronics Inc. Method for estimating channel and device therefor
EP3185436A4 (en) * 2014-08-01 2018-04-18 LG Electronics Inc. -1- Method for reporting channel state, and device therefor
US20190089441A1 (en) * 2014-10-01 2019-03-21 Nec Corporation Method and system for mimo communication
CN106797649B (zh) * 2014-10-10 2021-06-04 瑞典爱立信有限公司 与灵活的csi配置和关联反馈有关的系统和方法
JP2017228813A (ja) * 2014-11-06 2017-12-28 シャープ株式会社 基地局装置、端末装置および通信方法
US9999073B2 (en) * 2014-11-18 2018-06-12 Telefonaktiebolaget Lm Ericsson (Publ) Signaling adapted CSI-RS periodicities in active antenna systems
US10020860B2 (en) * 2014-12-02 2018-07-10 Samsung Electronics Co., Ltd. Downlink signaling for partially precoded CSI-RS and CSI feedback
WO2016108483A1 (ko) * 2014-12-30 2016-07-07 엘지전자(주) 무선 통신 시스템에서 채널 추정을 수행하기 위한 방법 및 이를 위한 장치
EP3244549B1 (en) * 2015-01-07 2021-03-03 LG Electronics Inc. Method for reporting channel quality information in tdd type wireless communication system, and device therefor
CN113271132A (zh) * 2015-08-12 2021-08-17 苹果公司 多用户多输入多输出通信系统和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103312448A (zh) * 2012-03-16 2013-09-18 上海贝尔股份有限公司 确定信道状态信息的方法与装置
US20150103933A1 (en) * 2012-04-24 2015-04-16 Ntt Docomo ,Inc. Codebook creating method, codebook creating apparatus and initial codebook creating method
CN104662811A (zh) * 2012-09-18 2015-05-27 Lg电子株式会社 在多天线无线通信系统中发送有效反馈的方法及其设备
CN103746779A (zh) * 2013-12-31 2014-04-23 上海华为技术有限公司 一种信道状态信息测量、参考信号的发送方法和装置
CN104202073A (zh) * 2014-03-04 2014-12-10 中兴通讯股份有限公司 信道信息的反馈方法、导频及波束发送方法、系统及装置

Also Published As

Publication number Publication date
US20190020396A1 (en) 2019-01-17
CN106953672A (zh) 2017-07-14
US10560170B2 (en) 2020-02-11
EP3402089A1 (en) 2018-11-14
CN106953672B (zh) 2020-04-14

Similar Documents

Publication Publication Date Title
WO2017118443A1 (zh) 一种多天线系统中信道信息反馈的方法及终端
JP7450625B2 (ja) 無線通信ネットワークにおけるフィードバック報告のための方法および装置
CN107078773B (zh) 使ue能够确定预编码器码本的网络节点、用户设备及其方法
KR102247005B1 (ko) 더 최적화된 오버헤드를 갖는 멀티-빔 코드북들
CN106160926B (zh) 在多输入多输出系统中反馈信道状态信息的方法和装置
CN108111206B (zh) 码本配置方法、端口配置方法及装置
KR102071440B1 (ko) 프리코딩 행렬 지시자를 결정하는 방법, 사용자 장비 및 기지국
KR20220003094A (ko) 무선 통신 시스템에서 csi 보고를 위한 방법 및 장치
KR20180004197A (ko) Mimo 측정 기준 신호 및 피드백을 동작시키기 위한 방법 및 장치
US10574409B2 (en) Information notification method and channel state information process execution method
WO2017167161A1 (zh) 一种实现信道状态信息反馈的方法、装置及计算机存储介质
US20240088954A1 (en) Reference signal port mapping
CN111342913A (zh) 一种信道测量方法和通信装置
KR20230159494A (ko) 선형 조합 포트 선택 코드북에 대한 csi 생략
CN109478955A (zh) 一种反馈参数上报方法和装置
US11949483B2 (en) Methods and apparatuses for codebook restriction for type-II feedback reporting and higher layer configuration and reporting for linear combination codebook in a wireless communications network
CN106685497B (zh) 码书限制信令的发送、信道信息的量化反馈方法及装置
WO2022106730A1 (en) Csi reporting based on linear combination codebook
US20240178899A1 (en) Methods and Apparatuses for Codebook Restriction for Type-II Feedback Reporting and Higher Layer Configuration and Reporting for Linear Combination Codebook in a Wireless Communications Network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17735881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017735881

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017735881

Country of ref document: EP

Effective date: 20180807