WO2017118433A1 - 电池充放电方法及电路 - Google Patents

电池充放电方法及电路 Download PDF

Info

Publication number
WO2017118433A1
WO2017118433A1 PCT/CN2017/070510 CN2017070510W WO2017118433A1 WO 2017118433 A1 WO2017118433 A1 WO 2017118433A1 CN 2017070510 W CN2017070510 W CN 2017070510W WO 2017118433 A1 WO2017118433 A1 WO 2017118433A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
battery pack
node
charging
battery
Prior art date
Application number
PCT/CN2017/070510
Other languages
English (en)
French (fr)
Inventor
杨锐
刘建业
郑红利
彭雁飞
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017118433A1 publication Critical patent/WO2017118433A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • H02J2007/0067

Definitions

  • the present disclosure relates to the field of electronic technology, for example, to a battery charging and discharging method and circuit.
  • the iron-lithium battery In the system in which the iron-lithium battery is used as the backup power source, according to the characteristics of the iron-lithium battery, it is necessary to control the charging and discharging of the battery more finely than the conventional lead-acid battery, and the iron-lithium battery cannot be floated for a long time and the battery is connected during the battery.
  • the large current brings uncontrollable safety problems to the charging and discharging of the battery, which is the key point and difficulty of the charge and discharge management of the iron-lithium battery.
  • the technical problem to be solved by the present disclosure is to provide a method and a circuit for charging and discharging a lithium-iron battery, which can effectively solve the problem that the lithium-ion battery cannot be floated for a long time and the transient large current during the battery is turned on causes the charge and discharge to be uncontrollable.
  • a battery charging and discharging circuit including a power source, a load, and at least one battery pack, a first pole of the power source is coupled to a first pole of the load to a first node, and a second pole of the power source is a second pole of the load is connected to the second node, the charging and discharging circuit further includes a loop circuit corresponding to the battery pack, the first pole of the battery pack is connected to the first node, a loop circuit is located between the second pole of the battery pack and the second node, the loop component includes: a first switch, a second switch, a diode,
  • the first end of the first switch and the first end of the second switch are both connected to the second pole of the battery pack, and the second end of the second switch is opposite to the first pole of the diode Connected, the second end of the first switch and the second pole of the diode are connected to the third node.
  • the loop component can also include:
  • Voltage detection module voltage current detection module and measurement and control module
  • the voltage detecting module is connected to the second pole of the battery pack and configured to detect the The voltage of the battery pack;
  • the voltage current detecting module is located between the third node and the second node, and configured to detect a voltage of the second node and a charging and discharging current of the battery group;
  • the measurement and control module is configured to control closing or turning off of the first switch and the second switch according to detection results of the voltage detecting module and the voltage current detecting module.
  • the charge and discharge circuit may include a battery pack and a loop assembly.
  • a positive pole of the power source, a positive pole of the battery pack and a positive pole of the load are connected to a first node, a negative pole of the power source and a negative pole of the load are connected to a second node, and a first end of the first switch a first end of the second switch is connected to a negative pole of the battery pack, a second end of the second switch is connected to a cathode of the diode, a second end of the first switch, the diode
  • the anode is connected to the third node, and the voltage detecting module is connected to the negative pole of the battery pack.
  • the charging and discharging circuit may include a plurality of battery packs and a plurality of loop components corresponding to the battery pack in one-to-one correspondence.
  • a positive pole of the power source, a positive pole of the battery pack and a positive pole of the load are connected to a first node, a negative pole of the power source and a negative pole of the load are connected to a second node, in each loop component, the first a first end of a switch, a first end of the second switch are connected to a negative pole of a corresponding battery pack, a second end of the second switch is connected to a cathode of the diode, and a second end of the first switch
  • the anode of the diode is connected to the third node, and the voltage detecting module is connected to the negative pole of the corresponding battery pack.
  • the charge and discharge circuit may include a battery pack and a loop assembly.
  • a negative pole of the power source, a negative pole of the battery pack and a negative pole of the load are connected to a first node, a positive pole of the power source and a positive pole of the load are connected to a second node, and a first end of the first switch
  • the first end of the second switch is connected to the positive pole of the battery pack
  • the second end of the second switch is connected to the anode of the diode
  • the second end of the first switch the diode
  • the cathode is connected to the third node
  • the voltage detecting module is connected to the anode of the battery pack.
  • the charging and discharging circuit may include a plurality of battery packs and a plurality of loop components corresponding to the battery pack in one-to-one correspondence.
  • a negative pole of the power source, a negative pole of the battery pack and a negative pole of the load are connected to a first node, and a positive pole of the power source and a positive pole of the load are connected to a second node, in each loop component, the first a first end of a switch, a first end of the second switch are connected to a positive pole of a corresponding battery pack, a second end of the second switch is connected to an anode of the diode, and a second end of the first switch
  • the cathode of the diode is connected to the third node, and the voltage detecting module is connected to the anode of the corresponding battery pack.
  • the measurement and control module may be configured to, when charging is performed and the first switch is turned off, if a difference between a voltage of the battery pack and a voltage of the second node reaches a first preset value, control The first switch is closed;
  • the first switch may be a contactor, a relay, a metal-oxide semiconductor field effect transistor MOSFET, a triode, or an insulated gate bipolar transistor IGBT;
  • the second switch is a contactor, a relay, a MOSFET, a triode, or an IGBT.
  • the battery pack may be a lithium iron battery pack.
  • the embodiment of the present disclosure further provides a battery charging and discharging method, which is applied to the battery charging and discharging circuit as described above, and the method includes:
  • the first switch and the second switch are controlled to be closed or closed by the measurement and control module according to the detection results of the voltage detection module and the voltage current detection module.
  • the method can include:
  • the first switch is turned off by the measurement and control module, and the second switch is closed;
  • the second switch When the second switch is closed and discharging is performed, determining whether the discharge current of the battery pack is less than a second preset value, and maintaining, by the measurement and control module, when the discharge current of the battery pack is less than a second preset value Closing the second switch; determining whether the discharge current of the battery pack is greater than a third preset value, When the discharge current of the battery pack is greater than a third preset value, the first switch is controlled to be closed by the measurement and control module; and determining whether the discharge current of the battery pack is greater than a fourth preset value, in the battery pack When the discharge current is greater than the fourth predetermined value, the first switch and the second switch are controlled to be turned off.
  • Embodiments of the present disclosure also provide a non-transitory computer readable storage medium storing computer executable instructions arranged to perform the above method.
  • An embodiment of the present disclosure further provides an electronic device, including:
  • At least one processor At least one processor
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to cause the at least one processor to perform the method described above.
  • the unidirectional conductivity of the diode is combined with the switch in series to form a loop circuit, and then connected in parallel with the switch, and the data is detected in real time according to the loop voltage and current, and combined into a battery charging and discharging circuit, which can effectively solve the problem that the iron-lithium battery cannot be floated for a long time.
  • the transient high current during the charging and discharging of the battery leads to safety problems caused by uncontrollable charging and discharging.
  • FIG. 1 is a schematic structural view of a battery charging and discharging circuit according to Embodiment 1 of the present disclosure
  • FIG. 2 is a schematic structural view of a battery charging and discharging circuit according to Embodiment 2 of the present disclosure
  • FIG. 3 is a schematic structural diagram of a battery charging and discharging circuit according to Embodiment 3 of the present disclosure
  • FIG. 4 is a schematic structural diagram of a battery charging and discharging circuit according to Embodiment 4 of the present disclosure
  • FIG. 5 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • Embodiments of the present disclosure provide a method and a circuit for charging and discharging a lithium-iron battery, which can effectively solve the problem that the lithium-ion battery cannot be floated for a long period of time and the transient large current during the battery is turned on causes the charge and discharge to be uncontrollable.
  • Embodiments of the present disclosure provide a battery charging and discharging circuit including a power source, a load, and at least one battery pack, a first pole of the power source and a first pole of the load being connected to a first node, and a second pole of the power source Connected to the second node of the load, the charging and discharging circuit further includes a loop circuit corresponding to the battery pack, the first pole of the battery pack is connected to the first node, The loop circuit is located between the second pole of the battery pack and the second node, and the loop component comprises: a first switch, a second switch, a diode,
  • the first end of the first switch and the first end of the second switch are both connected to the second pole of the battery pack, and the second end of the second switch is opposite to the first pole of the diode Connected, the second end of the first switch and the second pole of the diode are connected to the third node.
  • the loop component can also include:
  • Voltage detection module voltage current detection module and measurement and control module
  • the voltage detecting module is connected to the second pole of the battery pack and configured to detect a voltage of the battery pack;
  • the voltage current detecting module is located between the third node and the second node, and configured to detect a voltage of the second node and a charging and discharging current of the battery group;
  • the measurement and control module is configured to control closing or turning off of the first switch and the second switch according to detection results of the voltage detecting module and the voltage current detecting module.
  • the unidirectional conductivity of the diode is combined with the switch in series to form a loop circuit, and then connected in parallel with the switch, and the data is detected in real time according to the loop voltage and current, and combined into a battery charging and discharging circuit, which can effectively solve the problem that the iron-lithium battery cannot be floated for a long time.
  • the transient high current during the period when the battery is connected causes safety problems caused by uncontrollable charging and discharging.
  • the charge and discharge circuit may include a battery pack and a loop assembly.
  • a positive pole of the power source, a positive pole of the battery pack and a positive pole of the load are connected to a first node, a negative pole of the power source and a negative pole of the load are connected to a second node, and a first end of the first switch a first end of the second switch is connected to a negative pole of the battery pack, a second end of the second switch is connected to a cathode of the diode, a second end of the first switch, the diode
  • the anode is connected to the third node, and the voltage detecting module is connected to the negative pole of the battery pack.
  • the charging and discharging circuit may include a plurality of battery packs and a plurality of loop components corresponding to the battery pack in one-to-one correspondence.
  • a positive pole of the power source, a positive pole of the battery pack and a positive pole of the load are connected to a first node, a negative pole of the power source and a negative pole of the load are connected to a second node, in each loop component, the first a first end of a switch, a first end of the second switch are connected to a negative pole of a corresponding battery pack, a second end of the second switch is connected to a cathode of the diode, and a second end of the first switch
  • the anode of the diode is connected to the third node, and the voltage detecting module is connected to the negative pole of the corresponding battery pack.
  • the charge and discharge circuit may include a battery pack and a loop assembly.
  • a negative pole of the power source, a negative pole of the battery pack and a negative pole of the load are connected to a first node, a positive pole of the power source and a positive pole of the load are connected to a second node, and a first end of the first switch
  • the first end of the second switch is connected to the positive pole of the battery pack
  • the second end of the second switch is connected to the anode of the diode
  • the second end of the first switch the diode
  • the cathode is connected to the third node
  • the voltage detecting module is connected to the anode of the battery pack.
  • the charging and discharging circuit may include a plurality of battery packs and a plurality of loop components corresponding to the battery pack in one-to-one correspondence.
  • a negative pole of the power source, a negative pole of the battery pack and a negative pole of the load are connected to a first node, and a positive pole of the power source and a positive pole of the load are connected to a second node, in each loop component, the first a first end of a switch, a first end of the second switch are connected to a positive pole of a corresponding battery pack, a second end of the second switch is connected to an anode of the diode, and a second end of the first switch
  • the cathode of the diode is connected to the third node, and the voltage detecting module is connected to the anode of the corresponding battery pack.
  • the measurement and control module may be configured to, when charging is performed and the first switch is turned off, if a difference between a voltage of the battery pack and a voltage of the second node reaches a first preset value, control The first switch is closed;
  • the first switch may be a contactor, a relay, a metal-oxide semiconductor field effect transistor MOSFET, a triode, or an insulated gate bipolar transistor IGBT;
  • the second switch is a contactor, a relay, a MOSFET, a triode, or an IGBT.
  • the battery pack may be a lithium iron battery pack.
  • the embodiment of the present disclosure further provides a battery charging and discharging method, which is applied to the battery charging and discharging circuit as described above, and the method includes:
  • the first switch and the second switch are controlled to be closed or closed by the measurement and control module according to the detection results of the voltage detection module and the voltage current detection module.
  • the method can include:
  • the first switch is turned off by the measurement and control module, and the second switch is closed;
  • the second switch When the second switch is closed and discharging is performed, determining whether the discharge current of the battery pack is less than a second preset value, and maintaining, by the measurement and control module, when the discharge current of the battery pack is less than a second preset value
  • the second switch is closed; determining whether the discharge current of the battery pack is greater than a third preset value, and when the discharge current of the battery pack is greater than a third preset value, the first control is performed by the measurement and control module
  • the switch is closed; determining whether the discharge current of the battery pack is greater than a fourth preset value, and controlling the first switch and the second switch to be turned off when the discharge current of the battery pack is greater than a fourth preset value.
  • the unidirectional conductivity of the diode is combined with the switch in series to form a loop circuit, and then connected in parallel with the switch, and the data is detected in real time according to the loop voltage and current, and combined into a battery charging and discharging circuit, which can effectively solve the problem that the iron-lithium battery cannot be long-term. Transient high current during floating charge and battery turn-on causes safety problems caused by uncontrollable charge and discharge.
  • the embodiment provides a charging and discharging circuit for the iron-lithium battery, which uses the unidirectional conductivity of the diode and the switch to be combined in series to form an auxiliary discharge circuit, and then is connected in parallel with the main circuit switch, and according to the loop voltage and current Time detection data to control the charging and discharging of the iron-lithium battery. As shown in FIG.
  • the lithium-ion battery charging and discharging circuit of this embodiment comprises two switches and one diode: a main switch S1 connected to the negative pole of the battery pack, and the other end of the S1 and a common negative pole of the power source and the load (generally referred to as The negative row is connected, the main circuit of the battery charge and discharge passes through the switch S1; the switch S2 and the diode VD1 are connected in series to form an auxiliary discharge circuit, the auxiliary discharge circuit is connected in parallel with the switch S1, the switch S2 is connected to the negative pole of the battery pack, and the other end of the S2 is connected to the cathode of the diode VD1;
  • the anode of VD1 is connected to the common negative row, and the connection point is also connected to the other end of S1; S1 and S2 are controllable switching components whose control terminals are connected with control signals.
  • the diode VD1 and the switch S2 are connected in series to form a single-direction discharge loop, which serves as a discharge auxiliary loop.
  • the positional order of the two can be interchanged, and the function is still the same; the diode VD1 and the switch S2 are connected in series, and then connected in parallel with the S1, and the S1 constitutes
  • the main circuit for charging and discharging; the common connection end of the anode direction of VD1 (such as the common connection terminals of VD1 and S1 in Fig. 1) is connected to the common negative row, and the common end of the cathode of VD1 (such as S1 and S2 in Fig. 1)
  • the common connection end is connected to the negative pole of the battery pack; the charge and discharge loop switch S1 and the discharge loop switch S2 are controlled by the switch state.
  • the switch S2 When the charging is completed, the switch S2 is turned on, and the switch S1 is turned off. This state can allow discharging, but cannot be charged; thus solving the problem of long-term floating charging.
  • the discharge circuit switch S2 When entering the discharge phase, if the discharge current is less than the agreed value Iz, the discharge circuit switch S2 is kept turned on; if the discharge current is greater than the agreed value Iz, the main circuit of the switch S1 is turned on; if the discharge current is too large, in order to protect the device and the line It can turn off S1 and S2; through the transition of switch S2, the existence of a certain pressure difference is retained, thereby solving the problem of large current discharge at the moment of main circuit S1 being turned on.
  • the switches S1 and S2 can be any controlled switching characteristic components, including but not limited to contactors, relays, MOSFETs (metal-oxide semiconductor field effect transistors), transistors, IGBTs (insulated gate bipolar type). Transistor).
  • the iron-lithium battery pack is used as the backup power supply
  • the iron-lithium battery pack circuit (in the dotted line frame) is connected in parallel with the Y1 main power supply circuit, and the positive pole is used as the negative-discharge common end to supply the equivalent load RL. .
  • the iron-lithium battery pack circuit the positive end of the battery pack U1 is connected with the positive pole of the power source Y1, the battery pack
  • the other end of U1 is connected to one end of main switch S1, and the connection point is connected with one end of auxiliary switch S2, and the connection point is also connected with voltage detecting module D1; the other end of S2 is connected with cathode of diode VD1; the other end of S1 is connected with VD1
  • the anode is connected, and the connection point is connected with one end of the voltage and current detecting module D2; the other end of the voltage current detecting module D2 is connected with the negative pole of the negative terminal of the other end of the power source; the output end of the voltage detecting module D1 is connected with the measuring and controlling module U2, and the voltage current detecting module
  • the output end of D2 is connected to the measurement and control module U2, and the control output of the measurement and control module U2 is respectively connected to the control ends of the switch S1 and the switch S2.
  • the voltage detecting module D1 detects the voltage of the negative pole of the battery pack, that is, the voltage of the battery pack; the voltage current detecting module D2 detects the current of the battery pack loop and the voltage of the negative row negative pole; the measurement and control module U2 calculates according to the obtained current and voltage values.
  • the control strategy is controlled to control the charge and discharge switches S1 and S2, respectively.
  • diode VD1 and switch S2 are connected in series to form a single-direction discharge loop, which serves as a discharge auxiliary loop. The positional order of the two can be interchanged. After diode VD1 and switch S2 are connected in series, they are connected in parallel with S1.
  • S1 constitutes the main charge and discharge. Loop; the positive pole of the power supply is connected to the positive pole of the battery pack, the positive pole is used as the common terminal; D1 detects the negative voltage of the battery pack, that is, the voltage of the battery pack; D2 detects the negative discharge voltage of the power supply, that is, the negative discharge voltage; D2 also detects the charging current and discharge current of the battery pack circuit.
  • D2 can be two function modules of current detection and voltage detection, or one module can complete two functions; U2 measurement and control module can process the detection data of voltage and current, and control the charging circuit switch S1 and the discharge circuit switch S2.
  • the power source Y1 is configured to be charged and powered, and the load RL is the equivalent load of the actual power supply object.
  • the switches S1 and S2 may be any of the controlled switching characteristic devices including, but not limited to, contactors, relays, MOSFET tubes, transistors, IGBTs, and the like.
  • the unidirectional conductivity of the diode is combined with the switch in series to form an auxiliary discharge circuit, and then
  • the main circuit switch is connected in parallel, and the main circuit is controlled to be disconnected and the auxiliary circuit is turned on to discharge in one direction without being charged, which effectively solves the problem that the iron-lithium battery cannot be floated for a long time; and according to the real-time detection data of the voltage and current of the charging and discharging circuit, it is judged When the voltage difference between the battery voltage and the negative discharge voltage meets a certain value, the main circuit charging switch is turned on, thereby solving the problem of large current charging at the moment of switching on; the main components of the circuit in this embodiment are two switches and one diode, and the scheme is simple. , high reliability and low cost.
  • a plurality of parallel iron-lithium battery pack circuits can be arranged to form a plurality of sets of iron-lithium battery packs, and the corresponding working mode is the same as that in the second embodiment. . Due to the existence of the diode unidirectional discharge auxiliary circuit, the multiple battery packs can be turned on and the auxiliary circuit can be turned on first, and the battery pack with low voltage cannot be charged. After the two sets of battery voltages are close, the main circuit is turned on, thereby avoiding the connection. The problem of charging another battery pack through one battery pack in the process.
  • the negative pole of the power supply can also be used as a common terminal.
  • the iron-lithium battery pack is used as a backup power supply, and the iron-lithium battery pack circuit (in the dotted line frame) is connected in parallel with the Y1 main power supply circuit, and the negative pole.
  • the equivalent load RL is supplied with power.
  • the iron-lithium battery pack circuit, the negative end of the battery unit U1 is connected to the negative pole of the power source Y1, the anode of the other end of the battery pack U1 is connected with one end of the main switch S1, and the connection point is connected with one end of the auxiliary switch S2, and the connection point is also connected with the voltage.
  • the detection module D1 is connected; the other end of the S2 is connected to the anode of the diode VD1; the other end of the S1 is connected to the cathode of the VD1, and the connection point is connected to one end of the voltage current detecting module D2; the other end of the voltage current detecting module D2 is negatively connected with the other end of the power supply.
  • the positive terminal is connected; the output end of the voltage detecting module D1 is connected to the measuring and controlling module U2, and the output end of the voltage and current detecting module D2 is connected to the measuring and controlling module U2, and the control output of the measuring and controlling module U2 is respectively connected with the control ends of the switch S1 and the switch S2.
  • Embodiments of the present disclosure also provide a non-transitory computer readable storage medium storing computer executable instructions arranged to perform the method of any of the above embodiments.
  • the embodiment of the present disclosure further provides a schematic structural diagram of an electronic device.
  • the electronic device includes:
  • At least one processor 50 exemplified by a processor 50 in FIG. 5; and a memory (memory) 51 may also include a communication interface (Communications Interface) 52 and a bus 53.
  • the processor 50, the communication interface 52, and the memory 51 can complete communication with each other through the bus 53.
  • Communication interface 52 can be used for information transmission.
  • Processor 50 can invoke logic instructions in memory 51 to perform the methods of the above-described embodiments.
  • logic instructions in the memory 51 described above may be implemented in the form of software functional units and sold or used as separate products, and may be stored in a computer readable storage medium.
  • the memory 51 is used as a computer readable storage medium for storing software programs, computer executable programs, and program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 50 executes the function application and the data processing by executing the software programs, the instructions, and the modules stored in the memory 51, that is, the battery charging and discharging method in the above method embodiments.
  • the memory 51 may include a storage program area and an storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to use of the terminal device, and the like. Further, the memory 51 may include a high speed random access memory, and may also include a nonvolatile memory.
  • the technical solution of the embodiments of the present disclosure may be embodied in the form of a software product stored in a storage medium, including one or more instructions for causing a computer device (which may be a personal computer, a server, or a network) The device or the like) performs all or part of the steps of the method described in the embodiments of the present disclosure.
  • the foregoing storage medium may be a non-transitory storage medium, including: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like.
  • modules may be implemented in software for execution by various types of processors.
  • an identified executable code module can include one or more physics of computer instructions Or a logic block, for example, can be constructed as an object, procedure, or function. Nevertheless, the executable code of the identified modules need not be physically located together, but may include different instructions stored in different physicalities. When these instructions are logically combined, they form a module and implement the specified function of the module. .
  • the executable code module can be a single instruction or a plurality of instructions, and can even be distributed across multiple different code segments, distributed among different programs, and distributed across multiple memory devices.
  • operational data may be identified within the modules and may be implemented in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed at different locations (including on different storage devices), and may at least partially exist as an electronic signal on a system or network.
  • the module can be implemented by software, considering the level of the existing hardware process, the module can be implemented in software, and the technician can construct a corresponding hardware circuit to implement the corresponding function without considering the cost.
  • the hardware circuitry includes conventional Very Large Scale Integration (VLSI) circuits or gate arrays as well as existing semiconductors such as logic chips, transistors, or other discrete components.
  • VLSI Very Large Scale Integration
  • the modules can also be implemented with programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices, and the like.
  • the battery charging and discharging method and circuit provided by the present disclosure can effectively solve the problem that the iron-lithium battery cannot be floated for a long time and the transient large current during the battery is turned on causes the charge and discharge to be uncontrollable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电池充放电方法及电路,属于电子技术领域。该电池充放电电路包括电源、负载和至少一个电池组,电源的第一极与负载的第一极连接于第一节点,电源的第二极与负载的第二极连接于第二节点,该充放电电路还包括与电池组一一对应的回路电路,电池组的第一极与第一节点连接,回路电路位于电池组的第二极与第二节点之间,回路组件包括:第一开关、第二开关、二极管,其中,第一开关的第一端、第二开关的第一端均与电池组的第二极连接,第二开关的第二端与二极管的第一极连接,第一开关的第二端、二极管的第二极连接于第三节点。该技术方案能够有效解决铁锂电池不能长期浮充和电池接通期间瞬态大电流导致充放电不可控的问题。

Description

电池充放电方法及电路 技术领域
本公开涉及电子技术领域,例如涉及一种电池充放电方法及电路。
背景技术
在铁锂电池作为备用电源供电的系统中,根据铁锂电池特性,需要对电池充电和放电进行比传统铅酸电池更为精细化的控制,铁锂电池不能长期浮充和电池接通期间瞬态大电流给电池充放电带来不可控的安全问题,是铁锂电池充放电管理的关键点和难点。
发明内容
本公开要解决的技术问题是提供一种铁锂电池充放电方法及电路,能够有效解决铁锂电池不能长期浮充和电池接通期间瞬态大电流导致充放电不可控的问题。
为解决上述技术问题,本公开的实施例提供技术方案如下:
一方面,提供一种电池充放电电路,包括电源、负载和至少一个电池组,所述电源的第一极与所述负载的第一极连接于第一节点,所述电源的第二极与所述负载的第二极连接于第二节点,所述充放电电路还包括与所述电池组一一对应的回路电路,所述电池组的第一极与所述第一节点连接,所述回路电路位于所述电池组的第二极与所述第二节点之间,所述回路组件包括:第一开关、第二开关、二极管,
其中,所述第一开关的第一端、所述第二开关的第一端均与所述电池组的第二极连接,所述第二开关的第二端与所述二极管的第一极连接,所述第一开关的第二端、所述二极管的第二极连接于第三节点。
所述回路组件还可以包括:
电压检测模块、电压电流检测模块和测控模块,
其中,所述电压检测模块与所述电池组的第二极连接,被配置为检测所述 电池组的电压;
所述电压电流检测模块位于所述第三节点与所述第二节点之间,被配置为检测所述第二节点的电压、以及所述电池组的充放电电流;
所述测控模块,被配置为根据所述电压检测模块和所述电压电流检测模块的检测结果控制所述第一开关和所述第二开关的闭合或关断。
所述充放电电路可以包括一个电池组和一个回路组件,
所述电源的正极、所述电池组的正极与所述负载的正极连接于第一节点,所述电源的负极与所述负载的负极连接于第二节点,所述第一开关的第一端、所述第二开关的第一端均与所述电池组的负极连接,所述第二开关的第二端与所述二极管的阴极连接,所述第一开关的第二端、所述二极管的阳极连接于第三节点,所述电压检测模块与所述电池组的负极连接。
所述充放电电路可以包括多个电池组和与电池组一一对应的多个回路组件,
所述电源的正极、所述电池组的正极与所述负载的正极连接于第一节点,所述电源的负极与所述负载的负极连接于第二节点,每一回路组件中,所述第一开关的第一端、所述第二开关的第一端均与对应电池组的负极连接,所述第二开关的第二端与所述二极管的阴极连接,所述第一开关的第二端、所述二极管的阳极连接于第三节点,所述电压检测模块与对应电池组的负极连接。
所述充放电电路可以包括一个电池组和一个回路组件,
所述电源的负极、所述电池组的负极与所述负载的负极连接于第一节点,所述电源的正极与所述负载的正极连接于第二节点,所述第一开关的第一端、所述第二开关的第一端均与所述电池组的正极连接,所述第二开关的第二端与所述二极管的阳极连接,所述第一开关的第二端、所述二极管的阴极连接于第三节点,所述电压检测模块与所述电池组的正极连接。
所述充放电电路可以包括多个电池组和与电池组一一对应的多个回路组件,
所述电源的负极、所述电池组的负极与所述负载的负极连接于第一节点,所述电源的正极与所述负载的正极连接于第二节点,每一回路组件中,所述第一开关的第一端、所述第二开关的第一端均与对应电池组的正极连接,所述第二开关的第二端与所述二极管的阳极连接,所述第一开关的第二端、所述二极管的阴极连接于第三节点,所述电压检测模块与对应电池组的正极连接。
所述测控模块可以被配置为在进行充电且所述第一开关关断时,若所述电池组的电压与所述第二节点的电压之间的差值达到第一预设值时,控制所述第一开关闭合;
在充电结束后,控制所述第一开关关断,所述第二开关闭合;
在所述第二开关闭合,进行放电时,若所述电池组的放电电流小于第二预设值,维持所述第二开关的闭合;若所述电池组的放电电流大于第三预设值,控制所述第一开关闭合;若所述电池组的放电电流大于第四预设值,控制所述第一开关和所述第二开关关断。
所述第一开关可以为接触器、继电器、金属-氧化物半导体场效应晶体管MOSFET、三极管、或绝缘栅双极型晶体管IGBT;
所述第二开关为接触器、继电器、MOSFET管、三极管、或IGBT。
所述电池组可以为铁锂电池组。
本公开实施例还提供了一种电池充放电方法,应用于如上所述的电池充放电电路,所述方法包括:
通过所述电压检测模块检测所述电池组的电压;
通过所述电压电流检测模块检测所述第二节点的电压、以及所述电池组的充放电电流;
根据所述电压检测模块和所述电压电流检测模块的检测结果,通过所述测控模块控制所述第一开关和所述第二开关的闭合或关断。
所述方法可以包括:
在进行充电且所述第一开关关断时,通过所述测控模块判断所述电池组的电压与所述第二节点的电压之间的差值是否达到第一预设值,在所述差值达到第一预设值时,控制所述第一开关闭合;
在充电结束后,通过所述测控模块控制所述第一开关关断,所述第二开关闭合;
在所述第二开关闭合,进行放电时,判断所述电池组的放电电流是否小于第二预设值,在所述电池组的放电电流小于第二预设值时,通过所述测控模块维持所述第二开关的闭合;判断所述电池组的放电电流是否大于第三预设值, 在所述电池组的放电电流大于第三预设值时,通过所述测控模块控制所述第一开关闭合;判断所述电池组的放电电流是否大于第四预设值,在所述电池组的放电电流大于第四预设值时,控制所述第一开关和所述第二开关关断。
本公开实施例还提供了一种非暂态计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述方法。
本公开实施例还提供了一种电子设备,包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器执行上述的方法。
本公开的实施例具有以下有益效果:
上述方案中,利用二极管的单向导电性与开关串联组合成回路电路,再与开关并联,并根据回路电压和电流实时检测数据,组合成电池充放电电路,能够有效解决铁锂电池不能长期浮充和电池接通期间瞬态大电流导致充放电不可控带来的安全问题。
附图概述
图1为本公开实施例一的电池充放电电路结构示意图;
图2为本公开实施例二的电池充放电电路结构示意图;
图3为本公开实施例三的电池充放电电路结构示意图;
图4为本公开实施例四的电池充放电电路结构示意图;以及
图5是本公开实施例提供的电子设备的结构示意图。
具体实施方式
为使本公开的实施例要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及实施例进行详细描述。
本公开的实施例提供一种铁锂电池充放电方法及电路,能够有效解决铁锂电池不能长期浮充和电池接通期间瞬态大电流导致充放电不可控的问题。
本公开实施例提供一种电池充放电电路,包括电源、负载和至少一个电池组,所述电源的第一极与所述负载的第一极连接于第一节点,所述电源的第二极与所述负载的第二极连接于第二节点,所述充放电电路还包括与所述电池组一一对应的回路电路,所述电池组的第一极与所述第一节点连接,所述回路电路位于所述电池组的第二极与所述第二节点之间,所述回路组件包括:第一开关、第二开关、二极管,
其中,所述第一开关的第一端、所述第二开关的第一端均与所述电池组的第二极连接,所述第二开关的第二端与所述二极管的第一极连接,所述第一开关的第二端、所述二极管的第二极连接于第三节点。
所述回路组件还可以包括:
电压检测模块、电压电流检测模块和测控模块,
所述电压检测模块与所述电池组的第二极连接,被配置为检测所述电池组的电压;
所述电压电流检测模块位于所述第三节点与所述第二节点之间,被配置为检测所述第二节点的电压、以及所述电池组的充放电电流;
所述测控模块,被配置为根据所述电压检测模块和所述电压电流检测模块的检测结果控制所述第一开关和所述第二开关的闭合或关断。
本实施例利用二极管的单向导电性与开关串联组合成回路电路,再与开关并联,并根据回路电压和电流实时检测数据,组合成电池充放电电路,能够有效解决铁锂电池不能长期浮充和电池接通期间瞬态大电流导致充放电不可控带来的安全问题。
所述充放电电路可以包括一个电池组和一个回路组件,
所述电源的正极、所述电池组的正极与所述负载的正极连接于第一节点,所述电源的负极与所述负载的负极连接于第二节点,所述第一开关的第一端、所述第二开关的第一端均与所述电池组的负极连接,所述第二开关的第二端与所述二极管的阴极连接,所述第一开关的第二端、所述二极管的阳极连接于第三节点,所述电压检测模块与所述电池组的负极连接。
所述充放电电路可以包括多个电池组和与电池组一一对应的多个回路组件,
所述电源的正极、所述电池组的正极与所述负载的正极连接于第一节点,所述电源的负极与所述负载的负极连接于第二节点,每一回路组件中,所述第一开关的第一端、所述第二开关的第一端均与对应电池组的负极连接,所述第二开关的第二端与所述二极管的阴极连接,所述第一开关的第二端、所述二极管的阳极连接于第三节点,所述电压检测模块与对应电池组的负极连接。
所述充放电电路可以包括一个电池组和一个回路组件,
所述电源的负极、所述电池组的负极与所述负载的负极连接于第一节点,所述电源的正极与所述负载的正极连接于第二节点,所述第一开关的第一端、所述第二开关的第一端均与所述电池组的正极连接,所述第二开关的第二端与所述二极管的阳极连接,所述第一开关的第二端、所述二极管的阴极连接于第三节点,所述电压检测模块与所述电池组的正极连接。
所述充放电电路可以包括多个电池组和与电池组一一对应的多个回路组件,
所述电源的负极、所述电池组的负极与所述负载的负极连接于第一节点,所述电源的正极与所述负载的正极连接于第二节点,每一回路组件中,所述第一开关的第一端、所述第二开关的第一端均与对应电池组的正极连接,所述第二开关的第二端与所述二极管的阳极连接,所述第一开关的第二端、所述二极管的阴极连接于第三节点,所述电压检测模块与对应电池组的正极连接。
所述测控模块可以被配置为在进行充电且所述第一开关关断时,若所述电池组的电压与所述第二节点的电压之间的差值达到第一预设值时,控制所述第一开关闭合;
在充电结束后,控制所述第一开关关断,所述第二开关闭合;
在所述第二开关闭合,进行放电时,若所述电池组的放电电流小于第二预设值,维持所述第二开关的闭合;若所述电池组的放电电流大于第三预设值,控制所述第一开关闭合;若所述电池组的放电电流大于第四预设值,控制所述第一开关和所述第二开关关断。
所述第一开关可以为接触器、继电器、金属-氧化物半导体场效应晶体管MOSFET、三极管、或绝缘栅双极型晶体管IGBT;
所述第二开关为接触器、继电器、MOSFET管、三极管、或IGBT。
所述电池组可以为铁锂电池组。
本公开实施例还提供了一种电池充放电方法,应用于如上所述的电池充放电电路,所述方法包括:
通过所述电压检测模块检测所述电池组的电压;
通过所述电压电流检测模块检测所述第二节点的电压、以及所述电池组的充放电电流;
根据所述电压检测模块和所述电压电流检测模块的检测结果,通过所述测控模块控制所述第一开关和所述第二开关的闭合或关断。
所述方法可以包括:
在进行充电且所述第一开关关断时,通过所述测控模块判断所述电池组的电压与所述第二节点的电压之间的差值是否达到第一预设值,在所述差值达到第一预设值时,控制所述第一开关闭合;
在充电结束后,通过所述测控模块控制所述第一开关关断,所述第二开关闭合;
在所述第二开关闭合,进行放电时,判断所述电池组的放电电流是否小于第二预设值,在所述电池组的放电电流小于第二预设值时,通过所述测控模块维持所述第二开关的闭合;判断所述电池组的放电电流是否大于第三预设值,在所述电池组的放电电流大于第三预设值时,通过所述测控模块控制所述第一开关闭合;判断所述电池组的放电电流是否大于第四预设值,在所述电池组的放电电流大于第四预设值时,控制所述第一开关和所述第二开关关断。
本实施例中,利用二极管的单向导电性与开关串联组合成回路电路,再与开关并联,并根据回路电压和电流实时检测数据,组合成电池充放电电路,能够有效解决铁锂电池不能长期浮充和电池接通期间瞬态大电流导致充放电不可控带来的安全问题。
下面结合实施例对本公开的电池充放电电路进行介绍:
实施例一
本实施例提供一种铁锂电池充放电电路,利用二极管的单向导电性与开关串联组合成辅助放电回路,再与主回路开关并联,并根据回路电压和电流的实 时检测数据,来对铁锂电池充电和放电进行控制。如图1所示,本实施例的铁锂电池充放电电路包含两个开关和一个二极管:与电池组负极连接的主开关S1,S1的另一端与电源和负载的公共负极(一般称之为负排)相连,电池充放电主回路经过开关S1;开关S2和二极管VD1串联构成辅助放电回路,辅助放电回路与开关S1并联,开关S2与电池组负极相连,S2另一端与二极管VD1阴极相连;VD1的阳极与公共负排相连,同时该连接点与S1的另一端也是相连的;S1和S2是可以受控制的开关元器件,其控制端连接控制信号。
逻辑上,二极管VD1和开关S2串联,构成单方向放电回路,用作放电辅助回路,二者位置顺序可以互换,功能仍是一样;二极管VD1和开关S2串联后,再与S1并联,S1构成充电和放电的主回路;VD1的阳极方向公共连接端(如图1中的VD1和S1的公共连接端)与公共负排相连,VD1的阴极方向公共端(如图1中的S1和S2的公共连接端)与电池组负极相连;充放电回路开关S1和放电回路开关S2,其开关状态受控制而定。
在S1关断的状态下,当需要进入充电阶段,判断电池组电压和负排电压压差满足一定值,即可接通开关S1进行充电,形成低压差接入,从而解决了开关S1接通瞬间大电流充电的问题;若充电电流还是过大,为了保护设备和线路,可以关断S1。
当充电结束,接通开关S2,关断开关S1,此状态可以允许放电,但不能充电;从而解决了长期浮充的问题。
当进入放电阶段,若放电电流小于约定值Iz,就维持放电回路开关S2接通;若放电电流大于约定值Iz,则接通开关S1主回路放电;若放电电流过大,为了保护设备和线路,可关断S1和S2;通过开关S2过渡,保留有一定压差的存在,从而解决了主回路S1接通瞬间大电流放电的问题。
其中,开关S1和S2,可以是任何一种受控的开关特性元器件,包括但不限于接触器、继电器、MOSFET(金属-氧化物半导体场效应晶体管)、三极管、IGBT(绝缘栅双极型晶体管)等。
实施例二
如图2所示,本实施例中,铁锂电池组作为备用供电电源,铁锂电池组回路(虚线框内)与Y1主电源回路并联,正极作为负排公共端,对等效负载RL供电。其中铁锂电池组回路,电池组U1正极一端与电源Y1正极连接,电池组 U1另一端负极与主开关S1一端连接,同时该连接点与辅助开关S2一端连接,同时该连接点还和电压检测模块D1连接;S2另一端与二极管VD1阴极连接;S1的另一端与VD1的阳极连接,同时该连接点与电压电流检测模块D2一端连接;电压电流检测模块D2另一端与电源另一端负排负极连接;电压检测模块D1的输出端与测控模块U2连接,同时电压电流检测模块D2的输出端与测控模块U2连接,测控模块U2的控制输出分别与开关S1和开关S2的控制端连接。
如图2中所示关系,由于S1和S2的存在,电池组负极电压和负排负极电压在开关关断期间不相同,所以必须分别检测。电压检测模块D1检测电池组负极的电压,即电池组的电压;电压电流检测模块D2检测的是电池组回路的电流和负排负极的电压;测控模块U2根据得到的电流、电压值,运算得出控制策略,分别控制充放电开关S1和S2。
逻辑上,二极管VD1和开关S2串联,构成单方向放电回路,用作放电辅助回路,二者位置顺序可以互换;二极管VD1和开关S2串联后,再与S1并联,S1构成充电和放电的主回路;电源正极与电池组正极连接,正极作为公共端;D1检测电池组负极电压,即电池组电压;D2检测电源负排电压,即负排电压;D2还检测电池组回路充电电流和放电电流;D2可以是电流检测和电压检测两个功能模块,也可以是一个模块完成两个功能;U2测控模块运算处理电压、电流的检测数据,并控制充电回路开关S1和放电回路开关S2。
在S1关断的状态下,当需要进入充电阶段,判断电池组电压和负排电压压差满足一定值,即可接通开关S1充电,从而解决了开关S1接通瞬间大电流充电的问题;若充电电流还是过大,为了保护设备和线路,可以关断S1;当充电结束,接通开关S2,关断开关S1,此状态可以允许放电,但不能充电;从而解决了长期浮充的问题;当进入放电阶段,若放电电流小于约定值Iz,就维持放电回路开关S2接通;若放电电流大于约定值Iz,则接通开关S1主回路放电;若放电电流过大,为了保护设备和线路,可关断S1和S2;通过开关S2过渡,保留有一定压差的存在,从而解决了主回路S1接通瞬间大电流放电的问题。
其中,电源Y1被配置为充电和供电,负载RL为实际供电对象的等效负载。所述开关S1和S2,可以是任何一种受控的开关特性器件,包括但不限于接触器、继电器、MOSFET管、三极管、IGBT等。
本实施例利用二极管的单向导电性与开关串联组合成辅助放电回路,再与 主回路开关并联,控制断开主回路并接通辅助回路即可以单向放电而不能充电,有效解决了铁锂电池不能长期浮充的问题;另外根据充放电回路电压和电流实时检测数据,判断电池电压和负排电压压差满足一定值,才接通主回路充电开关,从而解决了开关接通瞬间大电流充电的问题;本实施例的回路主要器件为两个开关和一个二极管,方案简单,可靠性高,成本低。
实施例三
如图3所示,在实施例二的基础上,还可以设置多个并联的铁锂电池组回路,形成多组铁锂电池组备电工作,相应的工作方式同实施例二,不再赘述。由于二极管单向放电辅助回路的存在,多个电池组放电接通过程可以先接通辅助回路,电压低的电池组不能被充电,等两组电池电压接近后再接通主回路,从而避免接通过程中一个电池组给另一个电池组充电的问题。
实施例四
在实施例二的基础上,还可以将电源负极作为公共端,如图4所示,铁锂电池组作为备用供电电源,铁锂电池组回路(虚线框内)与Y1主电源回路并联,负极作为负排公共端,对等效负载RL供电。其中铁锂电池组回路,电池组U1负极一端与电源Y1负极连接,电池组U1另一端正极与主开关S1一端连接,同时该连接点与辅助开关S2一端连接,同时该连接点还和电压检测模块D1连接;S2另一端与二极管VD1阳极连接;S1的另一端与VD1的阴极连接,同时该连接点与电压电流检测模块D2一端连接;电压电流检测模块D2另一端与电源另一端负排正极连接;电压检测模块D1的输出端与测控模块U2连接,同时电压电流检测模块D2的输出端与测控模块U2连接,测控模块U2的控制输出分别与开关S1和开关S2的控制端连接。
本实施例的工作方式同实施例二,不再赘述。
本公开实施例还提供了一种非暂态计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述任一实施例中的方法。
本公开实施例还提供了一种电子设备的结构示意图。参见图5,该电子设备包括:
至少一个处理器(processor)50,图5中以一个处理器50为例;和存储器 (memory)51,还可以包括通信接口(Communications Interface)52和总线53。其中,处理器50、通信接口52、存储器51可以通过总线53完成相互间的通信。通信接口52可以用于信息传输。处理器50可以调用存储器51中的逻辑指令,以执行上述实施例的方法。
此外,上述的存储器51中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器51作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器50通过运行存储在存储器51中的软件程序、指令以及模块,从而执行功能应用以及数据处理,即实现上述方法实施例中的电池充放电方法。
存储器51可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器51可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
此说明书中所描述的许多功能部件都被称为模块,以便更加特别地强调其实现方式的独立性。
本公开实施例中,模块可以用软件实现,以便由各种类型的处理器执行。举例来说,一个标识的可执行代码模块可以包括计算机指令的一个或多个物理 或者逻辑块,举例来说,其可以被构建为对象、过程或函数。尽管如此,所标识模块的可执行代码无需物理地位于一起,而是可以包括存储在不同物理上的不同的指令,当这些指令逻辑上结合在一起时,其构成模块并且实现该模块的规定作用。
实际上,可执行代码模块可以是单条指令或者是许多条指令,并且甚至可以分布在多个不同的代码段上,分布在不同程序当中,以及跨越多个存储器设备分布。同样地,操作数据可以在模块内被识别,并且可以依照任何适当的形式实现并且被组织在任何适当类型的数据结构内。所述操作数据可以作为单个数据集被收集,或者可以分布在不同位置上(包括在不同存储设备上),并且至少部分地可以仅作为电子信号存在于系统或网络上。
在模块可以利用软件实现时,考虑到现有硬件工艺的水平,所以可以以软件实现的模块,在不考虑成本的情况下,本领域技术人员都可以搭建对应的硬件电路来实现对应的功能,所述硬件电路包括常规的超大规模集成(VLSI)电路或者门阵列以及诸如逻辑芯片、晶体管之类的现有半导体或者是其它分立的元件。模块还可以用可编程硬件设备,诸如现场可编程门阵列、可编程阵列逻辑、可编程逻辑设备等实现。
在本公开各方法实施例中,所述各步骤的序号并不能用于限定各步骤的先后顺序,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,对各步骤的先后变化也在本公开的保护范围之内。
以上所述是本公开的实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开实施例范围的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。
工业实用性
本公开提供的电池充放电方法及电路能够有效解决铁锂电池不能长期浮充和电池接通期间瞬态大电流导致充放电不可控的问题。

Claims (12)

  1. 一种电池充放电电路,包括电源、负载和至少一个电池组,所述电源的第一极与所述负载的第一极连接于第一节点,所述电源的第二极与所述负载的第二极连接于第二节点,所述充放电电路还包括与所述电池组一一对应的回路电路,所述电池组的第一极与所述第一节点连接,所述回路电路位于所述电池组的第二极与所述第二节点之间,所述回路组件包括:第一开关、第二开关、二极管,
    其中,所述第一开关的第一端、所述第二开关的第一端均与所述电池组的第二极连接,所述第二开关的第二端与所述二极管的第一极连接,所述第一开关的第二端、所述二极管的第二极连接于第三节点。
  2. 根据权利要求1所述的电池充放电电路,其中,所述回路组件还包括:
    电压检测模块、电压电流检测模块和测控模块,
    其中,所述电压检测模块与所述电池组的第二极连接,被配置为检测所述电池组的电压;
    所述电压电流检测模块位于所述第三节点与所述第二节点之间,被配置为检测所述第二节点的电压、以及所述电池组的充放电电流;
    所述测控模块,被配置为根据所述电压检测模块和所述电压电流检测模块的检测结果控制所述第一开关和所述第二开关的闭合或关断。
  3. 根据权利要求2所述的电池充放电电路,其中,所述充放电电路包括一个电池组和一个回路组件,
    所述电源的正极、所述电池组的正极与所述负载的正极连接于第一节点,所述电源的负极与所述负载的负极连接于第二节点,所述第一开关的第一端、所述第二开关的第一端均与所述电池组的负极连接,所述第二开关的第二端与 所述二极管的阴极连接,所述第一开关的第二端、所述二极管的阳极连接于第三节点,所述电压检测模块与所述电池组的负极连接。
  4. 根据权利要求2所述的电池充放电电路,其中,所述充放电电路包括多个电池组和与电池组一一对应的多个回路组件,
    所述电源的正极、所述电池组的正极与所述负载的正极连接于第一节点,所述电源的负极与所述负载的负极连接于第二节点,每一回路组件中,所述第一开关的第一端、所述第二开关的第一端均与对应电池组的负极连接,所述第二开关的第二端与所述二极管的阴极连接,所述第一开关的第二端、所述二极管的阳极连接于第三节点,所述电压检测模块与对应电池组的负极连接。
  5. 根据权利要求2所述的电池充放电电路,其中,所述充放电电路包括一个电池组和一个回路组件,
    所述电源的负极、所述电池组的负极与所述负载的负极连接于第一节点,所述电源的正极与所述负载的正极连接于第二节点,所述第一开关的第一端、所述第二开关的第一端均与所述电池组的正极连接,所述第二开关的第二端与所述二极管的阳极连接,所述第一开关的第二端、所述二极管的阴极连接于第三节点,所述电压检测模块与所述电池组的正极连接。
  6. 根据权利要求2所述的电池充放电电路,其中,所述充放电电路包括多个电池组和与电池组一一对应的多个回路组件,
    所述电源的负极、所述电池组的负极与所述负载的负极连接于第一节点,所述电源的正极与所述负载的正极连接于第二节点,每一回路组件中,所述第一开关的第一端、所述第二开关的第一端均与对应电池组的正极连接,所述第二开关的第二端与所述二极管的阳极连接,所述第一开关的第二端、所述二极管的阴极连接于第三节点,所述电压检测模块与对应电池组的正极连接。
  7. 根据权利要求2-6中任一项所述的电池充放电电路,其中,
    所述测控模块被配置为在进行充电且所述第一开关关断时,若所述电池组的电压与所述第二节点的电压之间的差值达到第一预设值时,控制所述第一开关闭合;
    在充电结束后,控制所述第一开关关断,所述第二开关闭合;
    在所述第二开关闭合,进行放电时,若所述电池组的放电电流小于第二预设值,维持所述第二开关的闭合;若所述电池组的放电电流大于第三预设值,控制所述第一开关闭合;若所述电池组的放电电流大于第四预设值,控制所述第一开关和所述第二开关关断。
  8. 根据权利要求1-6中任一项所述的电池充放电电路,其中,
    所述第一开关为接触器、继电器、金属-氧化物半导体场效应晶体管MOSFET、三极管、或绝缘栅双极型晶体管IGBT;
    所述第二开关为接触器、继电器、MOSFET管、三极管、或IGBT。
  9. 根据权利要求1-6中任一项所述的电池充放电电路,其中,所述电池组为铁锂电池组。
  10. 一种电池充放电方法,应用于如权利要求2-9中任一项所述的电池充放电电路,所述方法包括:
    通过所述电压检测模块检测所述电池组的电压;
    通过所述电压电流检测模块检测所述第二节点的电压、以及所述电池组的充放电电流;
    根据所述电压检测模块和所述电压电流检测模块的检测结果,通过所述测控模块控制所述第一开关和所述第二开关的闭合或关断。
  11. 根据权利要求10所述的电池充放电方法,其中,所述方法包括:
    在进行充电且所述第一开关关断时,通过所述测控模块判断所述电池组的电压与所述第二节点的电压之间的差值是否达到第一预设值,在所述差值达到第一预设值时,控制所述第一开关闭合;
    在充电结束后,通过所述测控模块控制所述第一开关关断,所述第二开关闭合;
    在所述第二开关闭合,进行放电时,判断所述电池组的放电电流是否小于第二预设值,在所述电池组的放电电流小于第二预设值时,通过所述测控模块维持所述第二开关的闭合;判断所述电池组的放电电流是否大于第三预设值,在所述电池组的放电电流大于第三预设值时,通过所述测控模块控制所述第一开关闭合;判断所述电池组的放电电流是否大于第四预设值,在所述电池组的放电电流大于第四预设值时,控制所述第一开关和所述第二开关关断。
  12. 一种非暂态计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行权利要求10或11所述的方法。
PCT/CN2017/070510 2016-01-08 2017-01-06 电池充放电方法及电路 WO2017118433A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610013431.0 2016-01-08
CN201610013431.0A CN106961127A (zh) 2016-01-08 2016-01-08 电池充放电方法及电路

Publications (1)

Publication Number Publication Date
WO2017118433A1 true WO2017118433A1 (zh) 2017-07-13

Family

ID=59273295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070510 WO2017118433A1 (zh) 2016-01-08 2017-01-06 电池充放电方法及电路

Country Status (2)

Country Link
CN (1) CN106961127A (zh)
WO (1) WO2017118433A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107154665A (zh) * 2017-07-20 2017-09-12 山东圣阳电源股份有限公司 一种充放电合路器及供电系统
CN107453452A (zh) * 2017-09-25 2017-12-08 启攀微电子(上海)有限公司 一种基于负载开关的多电芯串联锂电池
CN107947330A (zh) * 2017-12-28 2018-04-20 杭州创乐电子科技有限公司 多组电池供电自动切换装置及控制方法
CN108110862A (zh) * 2017-11-29 2018-06-01 北京杉杉凯励新能源科技有限公司 通信基站中梯次锂电池的充放电控制系统
CN108390444A (zh) * 2018-05-11 2018-08-10 江苏盐开电气有限公司 自动放电装置及其控制方法
CN108891262A (zh) * 2018-06-27 2018-11-27 珠海银隆电器有限公司 一种高压控制电路以及高压控制箱
CN110843599A (zh) * 2019-11-26 2020-02-28 安徽合力股份有限公司 一种大容量锂电池组充放电控制系统及其控制方法
CN113141032A (zh) * 2020-01-18 2021-07-20 九阳股份有限公司 一种便携式食品加工机
CN114142543A (zh) * 2020-09-04 2022-03-04 北京小米移动软件有限公司 电池充放电回路、充电方法及装置、电子设备
CN114497765A (zh) * 2021-12-13 2022-05-13 珠海格力电器股份有限公司 一种电池网络控制方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108390434B (zh) * 2018-03-19 2024-07-09 深圳市新威尔电子有限公司 基于电池充放电的保护电路
CN111384736A (zh) * 2018-12-29 2020-07-07 中兴通讯股份有限公司 充放电装置、控制方法及装置、电池装置、存储介质
CN110994781B (zh) * 2019-12-28 2024-05-03 广州宝狮新能源有限公司 Ups锂电池一体化电源系统
CN113561846A (zh) * 2020-04-29 2021-10-29 微宏动力系统(湖州)有限公司 一种电池组充电控制方法和放电控制方法
CN112039157A (zh) * 2020-09-01 2020-12-04 桑顿新能源科技(长沙)有限公司 一种多电池子系统并联的控制系统、方法及装置
CN112787373A (zh) * 2020-12-30 2021-05-11 重庆峘能电动车科技有限公司 电池组充放电方法、电路、系统及设备
CN112968485B (zh) * 2021-02-03 2023-10-03 苏州清陶新能源科技有限公司 Ups锂电池浮充控制电路、锂电池系统、ups锂电池充电控制方法
CN116454851A (zh) * 2023-06-19 2023-07-18 国网天津市电力公司信息通信公司 用于蓄电池组日常运行的可控组间电流抑制电路及其方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6023149A (en) * 1996-08-19 2000-02-08 The United States Of America As Represented By The Secretary Of The Army Charge or discharge circuit
CN201750183U (zh) * 2010-07-28 2011-02-16 深圳市科列技术有限公司 一种通信基站用磷酸铁锂电池充电保护装置
CN201918770U (zh) * 2011-02-14 2011-08-03 中国移动通信集团吉林有限公司 一种直流充放电系统
CN202550664U (zh) * 2012-05-10 2012-11-21 四川电力科学研究院 一种基于铁锂电池的非浮充式变电站直流电源系统
CN103855768A (zh) * 2014-02-26 2014-06-11 成都信息工程学院 蓄电池非浮充热备用技术

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6260106B2 (ja) * 2013-04-25 2018-01-17 株式会社Gsユアサ 蓄電装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6023149A (en) * 1996-08-19 2000-02-08 The United States Of America As Represented By The Secretary Of The Army Charge or discharge circuit
CN201750183U (zh) * 2010-07-28 2011-02-16 深圳市科列技术有限公司 一种通信基站用磷酸铁锂电池充电保护装置
CN201918770U (zh) * 2011-02-14 2011-08-03 中国移动通信集团吉林有限公司 一种直流充放电系统
CN202550664U (zh) * 2012-05-10 2012-11-21 四川电力科学研究院 一种基于铁锂电池的非浮充式变电站直流电源系统
CN103855768A (zh) * 2014-02-26 2014-06-11 成都信息工程学院 蓄电池非浮充热备用技术

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107154665A (zh) * 2017-07-20 2017-09-12 山东圣阳电源股份有限公司 一种充放电合路器及供电系统
CN107154665B (zh) * 2017-07-20 2024-01-02 山东圣阳电源股份有限公司 一种充放电合路器及供电系统
CN107453452A (zh) * 2017-09-25 2017-12-08 启攀微电子(上海)有限公司 一种基于负载开关的多电芯串联锂电池
CN107453452B (zh) * 2017-09-25 2023-11-21 启攀微电子(上海)有限公司 一种基于负载开关的多电芯串联锂电池
CN108110862A (zh) * 2017-11-29 2018-06-01 北京杉杉凯励新能源科技有限公司 通信基站中梯次锂电池的充放电控制系统
CN107947330B (zh) * 2017-12-28 2023-09-19 杭州创乐电子科技有限公司 多组电池供电自动切换装置及控制方法
CN107947330A (zh) * 2017-12-28 2018-04-20 杭州创乐电子科技有限公司 多组电池供电自动切换装置及控制方法
CN108390444A (zh) * 2018-05-11 2018-08-10 江苏盐开电气有限公司 自动放电装置及其控制方法
CN108891262A (zh) * 2018-06-27 2018-11-27 珠海银隆电器有限公司 一种高压控制电路以及高压控制箱
CN110843599A (zh) * 2019-11-26 2020-02-28 安徽合力股份有限公司 一种大容量锂电池组充放电控制系统及其控制方法
CN113141032A (zh) * 2020-01-18 2021-07-20 九阳股份有限公司 一种便携式食品加工机
CN114142543A (zh) * 2020-09-04 2022-03-04 北京小米移动软件有限公司 电池充放电回路、充电方法及装置、电子设备
CN114497765A (zh) * 2021-12-13 2022-05-13 珠海格力电器股份有限公司 一种电池网络控制方法

Also Published As

Publication number Publication date
CN106961127A (zh) 2017-07-18

Similar Documents

Publication Publication Date Title
WO2017118433A1 (zh) 电池充放电方法及电路
CN103713255B (zh) 一种电路故障检测方法、系统以及控制器
EP2966743B1 (en) Protection device and method for preventing power source voltage of microcontroller from dropping in electronic cigarette
EP3922503B1 (en) Load access detection method, switch circuit and battery management system
JP6068366B2 (ja) 蓄電システム及び二次電池パックの制御方法
EP2894758A1 (en) Power supply, power supply charging circuit, power supply charging method and terminal device
WO2012017728A1 (ja) 二次電池パック接続制御方法、蓄電システム、および二次電池パック
RU2012149725A (ru) Преобразователь, переключающая ячейка и способ управления преобразователем
CN104701927A (zh) 二次保护ic、二次保护ic的控制方法、保护模块及电池组
CN102368630A (zh) 一种两组直流电源的无缝无环流切换系统
CN113745673A (zh) 电池簇上电方法与系统、电池管理系统与电池簇
KR20160125297A (ko) 배터리 장치
WO2015156202A1 (ja) 電池監視装置
CN105610233B (zh) 多电源并联供电系统及电源短路保护电路
KR102433848B1 (ko) 스위치 진단 장치 및 방법
WO2022057194A1 (zh) 防反接保护电路、方法、电化学装置及储能系统
CN205563548U (zh) 一种热插拔电路
US9735415B2 (en) Battery pack and protection method using the same
US9455703B2 (en) FET array bypass module
TW202101854A (zh) 電源控制電路與電源控制方法
CN103078154A (zh) 新能源锂离子电池组0功耗控制前置电子开关与控制方法
US10097177B2 (en) Switch device, control method of the same, and control method of transfer switch system using the same
CN106655107A (zh) 大功率锂电池保护器
CN109638930B (zh) 电池充电控制方法及供电系统
CN203519738U (zh) 锂电池保护板测试系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17735871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17735871

Country of ref document: EP

Kind code of ref document: A1