WO2017118387A1 - 光波导组件 - Google Patents

光波导组件 Download PDF

Info

Publication number
WO2017118387A1
WO2017118387A1 PCT/CN2017/070171 CN2017070171W WO2017118387A1 WO 2017118387 A1 WO2017118387 A1 WO 2017118387A1 CN 2017070171 W CN2017070171 W CN 2017070171W WO 2017118387 A1 WO2017118387 A1 WO 2017118387A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
positioning
connecting portion
printed board
optical
Prior art date
Application number
PCT/CN2017/070171
Other languages
English (en)
French (fr)
Inventor
陈勋
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017118387A1 publication Critical patent/WO2017118387A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3834Means for centering or aligning the light guide within the ferrule
    • G02B6/3838Means for centering or aligning the light guide within the ferrule using grooves for light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls

Definitions

  • the present invention relates to the field of radio technologies, and in particular to an optical waveguide assembly.
  • optical interconnects have evolved from rack-to-rack interconnects to single-board to single-board interconnects, even to chip-to-chip interconnects.
  • the embedded optical waveguide printed board includes a base layer 3, a waveguide layer 4, and a surface layer 5 from bottom to top.
  • the coupling technology of embedded optical waveguide to optical fiber is roughly divided into two types: vertical coupling mode and parallel coupling mode.
  • the vertical coupling mode refracts the optical signal in the optical waveguide 4 into the optical fiber 1 by adding the prism 2 at the end face of the embedded optical waveguide 4. Due to the difficulty in designing the prism, the low density and the difficulty of alignment, it is not productive and cannot be used on a scale.
  • the parallel coupling method precisely adjusts the alignment precision of the optical fiber 1 and the optical waveguide 4 by means of a six-dimensional adjustment frame, and then uses the glue to cure the optical fiber adapter. This method has high requirements for aligning equipment, difficulty in operation, and the optical fiber is difficult to be inserted and removed, and the colloid is colloidal. 6 alignment deviation caused by aging.
  • the main purpose of the embodiments of the present invention is to provide an optical waveguide assembly to solve the problems of complicated structure and low alignment precision of the coupling technology of the optical waveguide and the optical fiber in the prior art.
  • an embodiment of the present invention provides an optical waveguide assembly, including: an optical waveguide printed board, an optical waveguide disposed on the optical waveguide printed board; a first connecting portion; a connecting optical fiber, and a connecting optical fiber disposed at the first
  • the first connecting portion is disposed on the optical waveguide printed board such that the first end of the connecting fiber opposes the optical waveguide, and the first connecting portion interfaces with the fiber end to connect the second end of the connecting fiber to the optical fiber.
  • the end of the optical waveguide printed board has a mounting slot, and the first connecting portion is mounted in the mounting slot.
  • the mounting slot extends through both surfaces of the optical waveguide printed board.
  • an end of the mounting slot remote from the optical waveguide extends to an end face of the optical waveguide printed board.
  • the optical waveguide printed board has a positioning groove
  • the first connecting portion has a first positioning post that cooperates with the positioning groove
  • the positioning slot is located on one side of the optical waveguide.
  • the first connecting portion comprises a connecting base block and a positioning block
  • the positioning block is connected on a side of the connecting base block
  • the connecting optical fiber is disposed on the connecting base block
  • the first positioning post is disposed on the positioning block.
  • the first positioning post is disposed on a bottom surface of the positioning block.
  • the optical waveguide printed board has a first positioning post, and the first connecting portion has a positioning groove that cooperates with the first positioning post.
  • the first positioning post is located on one side of the optical waveguide.
  • the first connecting portion includes a connecting base block and a positioning block.
  • the positioning block is connected to the side of the connecting base block, and the connecting optical fiber is disposed on the connecting base block, and the positioning slot is disposed on the positioning block.
  • the positioning groove is disposed on the bottom surface of the positioning block.
  • the optical waveguide assembly further includes a fixing portion disposed on the optical waveguide printed board, and the first connecting portion is located between the optical waveguide printed board and the fixing portion.
  • the optical waveguide assembly further includes a second connecting portion connected to the fixing portion, the second connecting portion having a mounting through hole configured to mount the fiber end.
  • one end of the first connecting portion remote from the optical waveguide has a second positioning post, and the optical fiber end has a positioning hole that cooperates with the second positioning post.
  • one end of the first connecting portion away from the optical waveguide has a positioning hole
  • the fiber end has a second positioning post that cooperates with the positioning hole
  • the first connecting portion and the connecting optical fiber are disposed on the optical waveguide printed board, and the connecting optical fiber is disposed on the first connecting portion, and the first connecting portion is docked with the optical fiber end, so that the connecting optical fiber is connected
  • the first end is connected to the optical waveguide, and the second end of the connecting optical fiber is connected to the optical fiber.
  • FIG. 1 is a schematic view showing a first structure of coupling of an optical waveguide and a fiber in the prior art
  • FIG. 2 is a schematic view showing a second structure of coupling of an optical waveguide and a fiber in the prior art
  • Figure 3 is a perspective perspective view showing the first embodiment of the optical waveguide assembly according to the present invention.
  • FIG. 4 is a schematic structural view of an optical waveguide printed board of the optical waveguide assembly of FIG. 3;
  • Figure 5 is a partial top plan view of the optical waveguide printed board of Figure 4.
  • Figure 6 is a schematic view showing the structure of the first connecting portion of the optical waveguide assembly of Figure 3;
  • Figure 7 is a schematic view showing the structure of the second connecting portion and the fixing portion of the optical waveguide assembly of Figure 3;
  • Figure 8 is a top plan view showing an optical waveguide printed board of Embodiment 2 of the optical waveguide assembly according to the present invention.
  • Figure 9 is a top plan view showing an optical waveguide printed board of Embodiment 3 of the optical waveguide assembly according to the present invention.
  • Figure 10 is a top plan view showing an optical waveguide printed board of Embodiment 4 of the optical waveguide assembly according to the present invention.
  • Figure 11 is a perspective view showing the optical waveguide printed board of Embodiment 5 of the optical waveguide assembly according to the present invention.
  • the optical waveguide assembly of the first embodiment includes an optical waveguide printed board 10, a first connecting portion 20, and a connecting optical fiber 30.
  • the optical waveguide printed board 10 is provided with an optical waveguide 40, and the optical fiber 30 is connected.
  • the first connecting portion 20 is disposed on the optical waveguide printed board 10 such that the first end of the connecting optical fiber 30 is docked with the optical waveguide 40, and the first connecting portion 20 is docked with the optical fiber end 50.
  • the second end of the connecting fiber 30 is interfaced with the optical fiber 60.
  • the first connecting portion 20 and the connecting optical fiber 30 are disposed on the optical waveguide printed board 10, and the connecting optical fiber 30 is disposed on the first connecting portion 20, the first connecting portion 20 and the optical fiber end 50, such that the first end of the connecting optical fiber 30 is docked with the optical waveguide 40, and the second end of the connecting optical fiber 30 is connected to the optical fiber 60.
  • the above structure is simple, and the first connecting portion 20 and the connecting optical fiber 30 are not easily deteriorated, thereby effectively improving the pair. Quasi-precision.
  • the end of the optical waveguide printed board 10 has a mounting groove 11, and the first connecting portion 20 is mounted in the mounting groove 11.
  • the mounting groove 11 can facilitate mounting the first connecting portion 20 on the optical waveguide printed board 10, and the mounting groove 11 can also function as a positioning so that the first end of the connecting optical fiber 30 is aligned with the optical waveguide 40.
  • the alignment of the connecting optical fiber 30 and the optical waveguide 40 is completed by ensuring the accuracy of the mounting groove 11, the alignment precision of the connecting optical fiber 30 and the optical waveguide 40 is improved, the alignment equipment is required to be low, the operation is simple, the processing is convenient, and the manufacturing cost is reduced.
  • the mounting groove 11 is a recess recessed in the surface of the optical waveguide printed board 10.
  • the connecting optical fiber 30 is disposed in the first connecting portion 20 and penetrates the end faces of both ends of the first connecting portion 20, that is, the connecting optical fiber 30 corresponding to the size of the optical waveguide 40 is embedded in the first connecting portion 20.
  • the first connecting portion 20 is placed to the optical waveguide
  • the mounting slot 11 of the printed board 10 is such that the end of the optical waveguide 40 is aligned with the end of the end of the optical fiber 30, and the other end of the connecting optical fiber 30 can support the connection of a standard optical fiber connector.
  • one end of the mounting groove 11 remote from the optical waveguide 40 extends to the end surface of the optical waveguide printed board 10. This makes it easy to process the mounting groove 11, and it is also convenient to install the first connecting portion 20, which is easy to operate and reduces the labor intensity of the operator.
  • the optical waveguide printed board 10 has a positioning slot 12, and the first connecting portion 20 has a positioning slot 12
  • the first positioning post 221 is matched.
  • the first connecting portion 20 and the optical waveguide printed board 10 are positioned by the positioning groove 12 and the first positioning post 221, thereby effectively improving the alignment accuracy of the connecting optical fiber 30 and the optical waveguide 40, and the operation is simple.
  • the positioning groove 12 is a groove recessed in the surface of the optical waveguide printed board 10.
  • the positioning slot 12 is located on one side of the optical waveguide 40.
  • the positioning slots 12 are two, and the two positioning slots 12 are located on opposite sides of the optical waveguide 40. That is to say, grooves are formed on the surfaces of the optical waveguide printed board 10 on both sides of the path of the optical waveguide 40, and the recesses are rectangular grooves on the left and right sides.
  • the positioning groove 12 can be in the waveguide layer of the optical waveguide printed board 10, and a rectangular recess is formed by the laser.
  • the number of the positioning slots 12 may be set in a specific case, and is not limited thereto.
  • the first connecting portion 20 includes a connecting base block 21 and a positioning block 22, the positioning block 22 is connected to the side of the connecting base block 21, and the connecting optical fiber 30 is disposed on the connecting base block 21, and the first positioning post 221 is disposed at Positioning block 22.
  • the connecting block 21 is mounted in the mounting groove 11, and the first positioning post 221 is mounted in the positioning groove 12.
  • the first connecting portion 20 has a simple structure, is convenient to process, and has low cost.
  • the extending direction of the positioning groove 12 is parallel to the extending direction of the optical waveguide 40.
  • the first positioning post (rectangular protrusion) of the positioning block 22 is embedded in a rectangular recess on the optical waveguide printed board 10 and the connecting base 21 is embedded in a mounting groove on the optical waveguide printed board 10, and then coated
  • the first connecting portion 20 is fixed to the optical waveguide printed board 10 in a manner of glue.
  • the first connecting portion 20 is embedded in the mounting groove of the optical waveguide printed board 10 by ultraviolet glue curing.
  • the manner in which the first connecting portion 20 is fixed to the optical waveguide printed board 10 is not limited thereto.
  • the tops of the opposite sides of the connecting block 21 and the positioning block 22 are provided with protrusions, and the bottom surface of the protrusions is in contact with the surface of the optical waveguide printed board 10. That is, the bumps are located on opposite sides of the connecting fiber 30.
  • the positioning slot 12 is in communication with the mounting slot 11.
  • the processing is convenient, the manufacturing is simple, and the cost is low.
  • the first positioning post 221 is disposed on the bottom surface of the positioning block 22 .
  • the bottom surface of the positioning block 22 is placed in contact with the surface of the optical waveguide printed board 10.
  • the first positioning post 221 can also be disposed on the side of the positioning block 22.
  • the optical waveguide assembly further includes a fixing portion 70 disposed on the optical waveguide printed board 10 , and the first connecting portion 20 is located between the optical waveguide printed board 10 and the fixed portion 70 .
  • the fixing portion 70 can fix the first connecting portion 20 more firmly on the optical waveguide printed board 10, and the fixing is more firm and reliable, effectively preventing the first connecting portion 20 from moving, and effectively ensuring that the connecting optical fiber 30 is always in contact with the light.
  • the waveguide 40 is docked to effectively ensure the normal transmission of the optical signal.
  • the fixing portion 70 is fixed to the optical waveguide printed board 10 by a fastener.
  • the fixing portion 70 is provided with a through hole through which the fastener is inserted, and the optical waveguide printed board 10 is provided with a fixing hole 13 provided with a fastener.
  • the through hole on the fixing portion 70 is aligned with the fixing hole 13 on the optical waveguide printed board 10, and then fixed by a fastener.
  • the optical waveguide assembly further includes a second connecting portion 80 connected to the fixing portion 70, and the second connecting portion 80 has a mounting through hole 81 for mounting the fiber end 50.
  • the optical fiber 60 in the optical fiber end 50 is connected to the connecting optical fiber 30 in the first connecting portion 20 through the mounting through hole 81.
  • the through hole 81 can be conveniently used to fix the optical fiber end 50.
  • the standard fiber end 50 can be plugged and unplugged, and the standard fiber end 50 can be an MPO interface or an MT-RJ interface.
  • the second connecting portion 80 and the fixing portion 70 are a unitary structure, the structure is simple, the manufacturing is simple, and the cost is reduced.
  • the first connecting portion 20 is reinforced by the mounting of the second connecting portion 80 and the fixing portion 70, and the second connecting portion 80 can improve the standard optical fiber interface.
  • the fastener is a screw.
  • the first positioning post 221 of the first connecting portion 20 is aligned with the positioning slot 12, and after the first connecting portion 20 is mounted, the fixing portion 70 and the second connecting portion 80 are then disposed on the upper surface of the first connecting portion 20 so as to be fixed.
  • the portion 70 and the second connecting portion 80 are attached to the first connecting portion 20, and finally the screw is tightened.
  • one end of the first connecting portion 20 remote from the optical waveguide 40 has a second positioning post 211, and the optical fiber end 50 has a positioning hole 51 that cooperates with the second positioning post 211.
  • the first connecting portion 20 and the fiber end 50 are matched by the second positioning post 211 and the positioning hole 51, so that the alignment accuracy of the optical fiber 60 and the optical waveguide 40 can be improved.
  • a positioning hole may be disposed at an end of the first connecting portion 20 away from the optical waveguide 40, and the fiber end 50 has a second positioning post that cooperates with the positioning hole.
  • the optical waveguide printed board 10 includes a base layer, a waveguide layer and a surface layer.
  • the base layer and the surface layer may be made of a metal layer or an epoxy sheet, such as copper, gold, silver, and an epoxy material FR4.
  • the waveguide layer is a waveguide material.
  • the end face of the connecting block 21 away from the end of the optical waveguide 40 is in a plane with the end face of the optical waveguide printed board 10.
  • An end surface of the second connecting portion 80 near one end of the optical waveguide 40 is placed in contact with an end surface of the optical waveguide printed board 10.
  • the fixing portion 70 includes a fixing base block and a fixing protrusion connected to opposite sides of the fixing base block.
  • the fixing hole is disposed on the fixing protrusion, and the bottom surface of the fixing base block has a cooperation with the first connecting portion 20 Install the through slot.
  • the extending direction of the mounting through groove is along the extending direction of the optical waveguide 40, and the fixing bumps are located on opposite sides of the connecting optical fiber.
  • the optical waveguide assembly of the second embodiment differs from the first embodiment in the shape of the positioning groove 12.
  • the positioning groove 12 is a rectangular groove.
  • the positioning groove 12 is a V-shaped groove, and the opening of the V-shaped groove faces the first connecting portion 20.
  • the configuration of the positioning groove 12 is not limited thereto, as long as it can function as a positioning.
  • the optical waveguide assembly of the third embodiment differs from the first embodiment in the shape of the positioning groove 12 and the structure of the end portion of the optical waveguide printed board 10.
  • the positioning groove 12 is in communication with the mounting groove 11, and the end portion of the optical waveguide printed board 10 has no exposed waveguide layer 14.
  • the positioning slot 12 is not in communication with the mounting slot 11, and the waveguide layer 14 at the end of the optical waveguide printed board 10 is partially exposed, that is, the end portion of the optical waveguide printed board 10 has no surface layer.
  • the exposed waveguide layer 14 is located on both sides of the optical waveguide 40, and the positioning groove 12 is machined on the exposed waveguide layer 14.
  • two square positioning grooves 12 are formed on both sides of the optical waveguide 40, and a square protrusion is formed on the corresponding first connecting portion 20, and the square protrusion forms a first positioning post.
  • FIG. 10 shows the structure of the fourth embodiment of the optical waveguide assembly of the present application.
  • the optical waveguide assembly of the fourth embodiment differs from the third embodiment in that the positions of the positioning groove and the second positioning post are different and different in shape.
  • the positioning groove is disposed on the optical waveguide printed board 10
  • the second positioning post is disposed on the first connecting portion 20, and the positioning groove is square.
  • the positioning groove is disposed on the first connecting portion 20, and the second positioning post is disposed on the optical waveguide printed board 10. That is, a plurality of rectangular parallelepiped protrusions are formed on both sides of the optical waveguide 40 by coating the waveguide material a plurality of times on the exposed waveguide layer 14, and a rectangular groove is formed on the corresponding first connecting portion 20.
  • the optical waveguide assembly of the fifth embodiment differs from the first embodiment in the structure of the mounting groove 11.
  • the mounting groove 11 does not penetrate both surfaces of the optical waveguide printed board 10
  • the mounting groove 11 penetrates both surfaces of the optical waveguide printed board 10, that is, A concave groove is formed through the edge of the board of the optical waveguide printed board 10. This is convenient to process and reduces the difficulty of processing.
  • the present application proposes a design of a connector for connecting an optical waveguide and an optical fiber, the connector comprising a first connecting portion, a fixing portion and a second connecting portion, the connector being mounted on the optical waveguide printed board,
  • the optical waveguide printed circuit board processes the mounting groove and the positioning groove, and the mounting groove and the positioning groove respectively correspond to the connecting base block and the first positioning post, so that the optical waveguide in the optical waveguide printed board is aligned with the connecting optical fiber in the first connecting portion .
  • the first connecting portion is secondarily fixed on the optical waveguide printed board through the fixing portion, and the standard pluggable optical fiber end interface is realized through the second connecting portion.
  • the above structure processing method is simple and effective, and the alignment process of the optical waveguide and the optical fiber is not required by means of a structure such as a bracket, and the second connecting portion supports the flexible insertion and removal of the standard fiber end, and the optical signal transmitted by the embedded waveguide is coupled through the connector. Enter the fiber for transmission.
  • the end of the mounting groove away from the optical waveguide has a distance from the end face of the optical waveguide printed board, so that the end of the mounting groove away from the optical waveguide and the optical waveguide printed board are required.
  • the end face defines a through hole for mounting the fiber end, and the fiber end is insertably inserted in the through hole.
  • the first connecting portion and the connecting optical fiber are disposed on the optical waveguide printed board, and the connecting optical fiber is disposed on the first connecting portion, and the first connecting portion is docked with the optical fiber end, so that the connecting optical fiber is connected
  • the first end is connected to the optical waveguide, and the second end of the connecting optical fiber is connected to the optical fiber.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光波导组件,光波导组件包括:光波导印制板(10),光波导印制板(10)上设有光波导(40);第一连接部(20);连接光纤(30),连接光纤(30)设置在第一连接部(20)上,第一连接部(20)设置在光波导印制板(10)上以使连接光纤(30)的第一端与光波导(40)对接,第一连接部(20)与光纤端头(50)对接以使连接光纤(30)的第二端与光纤(60)对接。上述光波导组件有效地解决了现有技术中光波导和光纤的耦合技术结构复杂、对准精度低的问题。

Description

光波导组件 技术领域
本发明涉及无线电技术领域,具体而言,涉及一种光波导组件。
背景技术
目前,通讯系统领域高互连带宽需求的不断增长,促使光学互连技术的不断发展。随着数据流量的不断提高,设备数据处理容量越来越大,单线速率不断提高。伴随着光学互联成本的下降,光学互连逐步从机架到机架互连发展到单板到单板互连,甚至应用到了芯片到芯片互连。
近年来,基于光波导(optical waveguide)理论的嵌入式光波导印制板(embedded waveguide PCB)互连技术逐步发展,得到了国内外广泛研究。相对于电互连技术,嵌入式光波导印制板具有支持高速率数据传输、绿色节能、低成本高密度等优势。目前,嵌入式波导印制板的研究热点主要集中在传输性能的提高以及嵌入式光波导到光纤的连接技术上。如图1所示,嵌入式波导印制板包括从下至上的基层3、波导层4和表层5。
目前嵌入式光波导到光纤的耦合技术大体分为垂直耦合方式和平行耦合方式两类。如图1所示,垂直耦合方式通过在嵌入式光波导4端面处增加棱镜2,将光波导4中光信号折射到光纤1中进行传输。由于棱镜设计加工难度大,密度低,对准困难,因而不具有生产性,不可规模使用。如图2所示,平行耦合方式借助六维调整架精确调节光纤1和光波导4的对准精度,再利用胶固化光纤适配器,此方式对准设备要求高,操作困难,光纤不易插拔,胶体6老化带来的对准偏差。
发明内容
本发明实施例的主要目的在于提供一种光波导组件,以解决现有技术中光波导和光纤的耦合技术结构复杂、对准精度低的问题。
为了实现上述目的,本发明实施例提供了一种光波导组件,包括:光波导印制板,光波导印制板上设有光波导;第一连接部;连接光纤,连接光纤设置在第一连接部上,第一连接部设置在光波导印制板上以使连接光纤的第一端与光波导对接,第一连接部与光纤端头对接以使连接光纤的第二端与光纤对接。
可选地,光波导印制板的端部具有安装槽,第一连接部安装在安装槽中。
可选地,安装槽贯穿光波导印制板的两个表面。
可选地,安装槽的远离光波导的一端延伸至光波导印制板的端面。
可选地,光波导印制板具有定位槽,第一连接部具有与定位槽配合的第一定位柱。
可选地,定位槽位于光波导的一侧。
可选地,第一连接部包括连接基块和定位块,定位块连接在连接基块的侧面上,连接光纤设置在连接基块上,第一定位柱设置在定位块上。
可选地,第一定位柱设置在定位块的底面上。
可选地,光波导印制板具有第一定位柱,第一连接部具有与第一定位柱配合的定位槽。
可选地,第一定位柱位于光波导的一侧。
可选地,第一连接部包括连接基块和定位块,定位块连接在连接基块的侧面上,连接光纤设置在连接基块上,定位槽设置在定位块上。
可选地,定位槽设置在定位块的底面上。
可选地,光波导组件还包括固定部,固定部设置在光波导印制板上,第一连接部位于光波导印制板和固定部之间。
可选地,光波导组件还包括第二连接部,第二连接部连接在固定部上,第二连接部具有设置为安装光纤端头的安装通孔。
可选地,第一连接部的远离光波导的一端具有第二定位柱,光纤端头具有与第二定位柱配合的定位孔。
可选地,第一连接部的远离光波导的一端具有定位孔,光纤端头具有与定位孔配合的第二定位柱。
应用本发明实施例的技术方案,通过在光波导印制板上设置第一连接部和连接光纤,连接光纤设置在第一连接部上,第一连接部与光纤端头对接,这样使得连接光纤的第一端与光波导对接,连接光纤的第二端与光纤对接,上述结构简单,第一连接部和连接光纤不易老化,有效地提高对准精度。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了现有技术中的光波导与光纤耦合的第一种结构示意图;
图2示出了现有技术中的光波导与光纤耦合的第二种结构示意图;
图3示出了根据本发明的光波导组件的实施例一的立体透视示意图;
图4示出了图3的光波导组件的光波导印制板的结构示意图;
图5示出了图4的光波导印制板的局部俯视示意图;
图6示出了图3的光波导组件的第一连接部的结构示意图;
图7示出了图3的光波导组件的第二连接部和固定部的结构示意图;
图8示出了根据本发明的光波导组件的实施例二的光波导印制板的俯视示意图;
图9示出了根据本发明的光波导组件的实施例三的光波导印制板的俯视示意图;
图10示出了根据本发明的光波导组件的实施例四的光波导印制板的俯视示意图;以及
图11示出了根据本发明的光波导组件的实施例五的光波导印制板的立体结构示意图。
其中,上述附图包括以下附图标记:
1、光纤;2、棱镜;3、基层;4、波导层;5、表层;6、胶体;10、光波导印制板;11、安装槽;12、定位槽;13、固定孔;14、波导层;20、第一连接部;21、连接基块;211、第二定位柱;22、定位块;221、第一定位柱;30、连接光纤;40、光波导;50、光纤端头;51、定位孔;60、光纤;70、固定部;80、第二连接部;81、安装通孔。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
如图3和图4所示,实施例一的光波导组件包括光波导印制板10、第一连接部20和连接光纤30,光波导印制板10上设有光波导40,连接光纤30设置在第一连接部20上,第一连接部20设置在光波导印制板10上以使连接光纤30的第一端与光波导40对接,第一连接部20与光纤端头50对接以使连接光纤30的第二端与光纤60对接。
应用本实施例的光波导组件,通过在光波导印制板10上设置第一连接部20和连接光纤30,连接光纤30设置在第一连接部20上,第一连接部20与光纤端头50对接,这样使得连接光纤30的第一端与光波导40对接,连接光纤30的第二端与光纤60对接,上述结构简单,第一连接部20和连接光纤30不易老化,有效地提高对准精度。
如图5所示,可选地,光波导印制板10的端部具有安装槽11,第一连接部20安装在安装槽11中。安装槽11可以方便将第一连接部20安装在光波导印制板10上,安装槽11还可以起到定位的作用,使得连接光纤30的第一端与光波导40对齐。这样通过保证安装槽11的精度完成连接光纤30与光波导40的对齐,提高了连接光纤30与光波导40的对准精度,对准设备要求低,操作简便,加工方便,降低制造成本。优选地,安装槽11为凹陷于光波导印制板10的表面的凹槽。
可选地,连接光纤30设置在第一连接部20中并贯穿第一连接部20的两端的端面,即在第一连接部20上埋置了与光波导40尺寸相对应的连接光纤30。第一连接部20放置到光波导 印制板10的安装槽11中,从而将光波导40的端部与连接光纤30的一端的端部对准,连接光纤30的另一端可以支持标准光纤接头的连接。
可选地,安装槽11的远离光波导40的一端延伸至光波导印制板10的端面。这样可以方便加工安装槽11,也可以方便安装第一连接部20,操作简便,降低操作人员的劳动强度。
为了进一步地提高连接光纤30与光波导40的对准精度,如图5和图6所示,可选地,光波导印制板10具有定位槽12,第一连接部20具有与定位槽12配合的第一定位柱221。第一连接部20与光波导印制板10通过定位槽12和第一定位柱221定位,有效地提高了连接光纤30与光波导40的对准精度,操作简便。定位槽12为凹陷于光波导印制板10的表面的凹槽。
可选地,定位槽12位于光波导40的一侧。优选地,定位槽12为两个,两个定位槽12位于光波导40的相对的两侧。也就说,在光波导40的路径的两侧从光波导印制板10的表面开设凹槽,凹槽为左右各一个矩形凹槽。定位槽12可以在光波导印制板10的波导层,通过激光器开设矩形凹槽。当然,也可以具体情况设置定位槽12的个数,并不限于此。
可选地,第一连接部20包括连接基块21和定位块22,定位块22连接在连接基块21的侧面上,连接光纤30设置在连接基块21上,第一定位柱221设置在定位块22上。连接基块21安装在安装槽11中,第一定位柱221安装在定位槽12中。第一连接部20的结构简单,加工方便,成本低廉。优选地,定位槽12的延伸方向平行于光波导40的延伸方向。将定位块22的第一定位柱(矩形凸起)嵌入在光波导印制板10上的矩形凹槽中及连接基块21嵌入在光波导印制板10上的安装槽中,然后通过涂胶的方式将第一连接部20固定在光波导印制板10上。优选地,第一连接部20通过紫外胶固化嵌入至光波导印制板10的安装槽中。当然,第一连接部20固定在光波导印制板10上方式也不限于此。
可选地,连接基块21和定位块22的相对的两侧的顶部均设有凸起,凸起的底面与光波导印制板10的表面贴合。也就是说,凸起位于连接光纤30的相对的两侧。
可选地,定位槽12与安装槽11连通。这样加工方便,制造简便,成本低廉。可选地,第一定位柱221设置在定位块22的底面上。定位块22的底面与光波导印制板10的表面贴合设置。当然,第一定位柱221也可以设置在定位块22的侧面上。
如图7所示,可选地,光波导组件还包括固定部70,固定部70设置在光波导印制板10上,第一连接部20位于光波导印制板10和固定部70之间。固定部70可以将第一连接部20更牢固地固定在光波导印制板10上,固定更牢固可靠,有效地防止第一连接部20发生移动的情况,有效地保证连接光纤30始终与光波导40对接,有效地保证光信号的正常传输。
优选地,固定部70通过紧固件固定在光波导印制板10上。固定部70上设有供紧固件穿设的通孔,光波导印制板10上设有设置为安装紧固件的固定孔13。固定部70上的通孔对准光波导印制板10上的固定孔13,然后通过紧固件进行固定。
可选地,光波导组件还包括第二连接部80,第二连接部80连接在固定部70上,第二连接部80具有用于安装光纤端头50的安装通孔81。当需要将光纤60与光波导40耦合时,光纤端头50中的光纤60穿过安装通孔81与第一连接部20中的连接光纤30对接,安装通孔81可以方便固定光纤端头50,可以支持标准光纤端头50的插拔,标准光纤端头50可以采用MPO接口或MT-RJ接口。优选地,第二连接部80和固定部70是一体结构,结构简单,制造简便,降低成本。利用第二连接部80与固定部70的安装加固第一连接部20,第二连接部80可以提高标准光纤接口。
优选地,紧固件为螺钉。先将第一连接部20的第一定位柱221对准定位槽12,安装第一连接部20后,然后将固定部70和第二连接部80设置在第一连接部20的上面,使得固定部70和第二连接部80与第一连接部20贴合设置,最后将螺钉拧紧即可。
可选地,第一连接部20的远离光波导40的一端具有第二定位柱211,光纤端头50具有与第二定位柱211配合的定位孔51。第一连接部20与光纤端头50通过第二定位柱211和定位孔51配合,可以提高光纤60与光波导40的对准精度。当然,也可以在第一连接部20的远离光波导40的一端设有定位孔,光纤端头50具有与定位孔配合的第二定位柱。
光波导印制板10包括基层、波导层和表层,基层和表层都可以采用金属层或者环氧板材,例如铜、金、银以及环氧材料FR4等,波导层为波导材料。
可选地,连接基块21的远离光波导40的一端的端面与光波导印制板10的端面在一个平面上。第二连接部80的靠近光波导40的一端的端面与光波导印制板10的端面贴合设置。
可选地,固定部70包括固定基块及连接在固定基块的相对的两侧的固定凸块,固定孔设置在固定凸块上,固定基块的底面具有与第一连接部20配合的安装通槽。安装通槽的延伸方向沿光波导40的延伸方向,固定凸块位于连接光纤的相对的两侧。
图8示出了本申请的光波导组件的实施例二的结构,实施例二的光波导组件与实施例一的区别在于定位槽12的形状不同。在实施例一中,定位槽12为矩形槽。而在实施例二中,定位槽12为V形槽,V形槽的开口朝向第一连接部20。当然,定位槽12的结构也并不限于此,只要能够起到定位的作用的结构即可。
图9示出了本申请的光波导组件的实施例三的结构,实施例三的光波导组件与实施例一的区别在于定位槽12的形状和光波导印制板10的端部的结构不同。在实施例一中,定位槽12与安装槽11连通,光波导印制板10的端部没有裸露的波导层14。而在实施例三中,定位槽12不与安装槽11连通,在光波导印制板10的端部的波导层14局部裸露,也就是说光波导印制板10的端部局部没有表层,裸露的波导层14位于光波导40的两侧,在裸露的波导层14上加工定位槽12。
在实施例二中,在光波导40的两侧各开两个正方形的定位槽12,在对应的第一连接部20上加工正方体凸起,正方体凸起形成第一定位柱。
图10示出了本申请的光波导组件的实施例四的结构,实施例四的光波导组件与实施例三的区别在于定位槽和第二定位柱的位置不同及形状不同。在实施例三中,定位槽设置在光波导印制板10,第二定位柱设置在第一连接部20上,定位槽呈正方形。而在实施例四中,定位槽设置在第一连接部20上,第二定位柱设置在光波导印制板10上。也就是说,在裸露的波导层14上通过多次涂覆波导材料,在光波导40的两侧形成多个长方体凸起,在对应的第一连接部20上加工矩形凹槽。
图11示出了本申请的光波导组件的实施例五的结构,实施例五的光波导组件与实施例一的区别在于安装槽11的结构不同。在实施例一中,安装槽11并没有贯穿光波导印制板10的两个表面,而在实施例五中,安装槽11贯穿光波导印制板10的两个表面,也就是说,在贯穿光波导印制板10的板边处开一个凹形槽。这样加工方便,降低加工难度。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
本申请提出了一种用于连接光波导和光纤的连接器的设计,该连接器包括第一连接部、固定部和第二连接部,该连接器安装在光波导印制板上,需要在光波导印制板上加工安装槽和定位槽,安装槽和定位槽分别对应于连接基块和第一定位柱,使得光波导印制板中的光波导与第一连接部中的连接光纤对齐。再通过固定部将第一连接部二次固定在光波导印制板上,通过第二连接部实现了标准可插拔光纤端头接口。上述结构加工方法简单有效,不需要借助支架等结构完成光波导和光纤的对准过程,第二连接部支持了标准光纤端头的灵活插拔,实现了嵌入式波导传输光信号通过连接器耦合进入光纤进行传输。
在图中未示出的实施例中,安装槽的远离光波导的一端与光波导印制板的端面之间具有距离,这样就需要在安装槽的远离光波导的一端与光波导印制板的端面开设用于安装光纤端头的通孔,光纤端头可插拔地安装在通孔中。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
应用本发明实施例的技术方案,通过在光波导印制板上设置第一连接部和连接光纤,连接光纤设置在第一连接部上,第一连接部与光纤端头对接,这样使得连接光纤的第一端与光波导对接,连接光纤的第二端与光纤对接,上述结构简单,第一连接部和连接光纤不易老化,有效地提高对准精度。

Claims (16)

  1. 一种光波导组件,包括:
    光波导印制板(10),所述光波导印制板(10)上设有光波导(40);
    第一连接部(20);
    连接光纤(30),所述连接光纤(30)设置在所述第一连接部(20)上,所述第一连接部(20)设置在所述光波导印制板(10)上以使所述连接光纤(30)的第一端与所述光波导(40)对接,所述第一连接部(20)与光纤端头(50)对接以使所述连接光纤(30)的第二端与光纤(60)对接。
  2. 根据权利要求1所述的光波导组件,其中,所述光波导印制板(10)的端部具有安装槽(11),所述第一连接部(20)安装在所述安装槽(11)中。
  3. 根据权利要求2所述的光波导组件,其中,所述安装槽(11)贯穿所述光波导印制板(10)的两个表面。
  4. 根据权利要求2所述的光波导组件,其中,所述安装槽(11)的远离所述光波导(40)的一端延伸至所述光波导印制板(10)的端面。
  5. 根据权利要求2所述的光波导组件,其中,所述光波导印制板(10)具有定位槽(12),所述第一连接部(20)具有与所述定位槽(12)配合的第一定位柱(221)。
  6. 根据权利要求5所述的光波导组件,其中,所述定位槽(12)位于所述光波导(40)的一侧。
  7. 根据权利要求5所述的光波导组件,其中,所述第一连接部(20)包括连接基块(21)和定位块(22),所述定位块(22)连接在所述连接基块(21)的侧面上,所述连接光纤(30)设置在所述连接基块(21)上,所述第一定位柱(221)设置在所述定位块(22)上。
  8. 根据权利要求7所述的光波导组件,其中,所述第一定位柱(221)设置在所述定位块(22)的底面上。
  9. 根据权利要求2所述的光波导组件,其中,所述光波导印制板(10)具有第一定位柱,所述第一连接部(20)具有与所述第一定位柱配合的定位槽。
  10. 根据权利要求9所述的光波导组件,其中,所述第一定位柱位于所述光波导(40)的一侧。
  11. 根据权利要求9所述的光波导组件,其中,所述第一连接部(20)包括连接基块(21)和定位块(22),所述定位块(22)连接在所述连接基块(21)的侧面上,所述连接光纤(30)设置在所述连接基块(21)上,所述定位槽设置在所述定位块(22)上。
  12. 根据权利要求11所述的光波导组件,其中,所述定位槽设置在所述定位块(22)的底面上。
  13. 根据权利要求1所述的光波导组件,其中,所述光波导组件还包括固定部(70),所述固定部(70)设置在所述光波导印制板(10)上,所述第一连接部(20)位于所述光波导印制板(10)和所述固定部(70)之间。
  14. 根据权利要求13所述的光波导组件,其中,所述光波导组件还包括第二连接部(80),所述第二连接部(80)连接在所述固定部(70)上,所述第二连接部(80)具有设置为安装所述光纤端头(50)的安装通孔(81)。
  15. 根据权利要求1所述的光波导组件,其中,所述第一连接部(20)的远离所述光波导(40)的一端具有第二定位柱(211),所述光纤端头(50)具有与所述第二定位柱(211)配合的定位孔(51)。
  16. 根据权利要求1所述的光波导组件,其中,所述第一连接部(20)的远离所述光波导(40)的一端具有定位孔,所述光纤端头(50)具有与所述定位孔配合的第二定位柱。
PCT/CN2017/070171 2016-01-06 2017-01-04 光波导组件 WO2017118387A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610010207.6A CN106950652A (zh) 2016-01-06 2016-01-06 光波导组件
CN201610010207.6 2016-01-06

Publications (1)

Publication Number Publication Date
WO2017118387A1 true WO2017118387A1 (zh) 2017-07-13

Family

ID=59273269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070171 WO2017118387A1 (zh) 2016-01-06 2017-01-04 光波导组件

Country Status (2)

Country Link
CN (1) CN106950652A (zh)
WO (1) WO2017118387A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3809177B1 (en) 2018-07-12 2023-09-06 Huawei Technologies Co., Ltd. Optical coupling device, packaging method for same, optical module, and communication apparatus
WO2020024284A1 (en) * 2018-08-03 2020-02-06 Lumentum Operations Llc Laser welding for planar lightwave circuit–fiber packaging
CN112327417B (zh) * 2020-11-03 2022-03-15 中航光电科技股份有限公司 一种低损耗多芯阵列光波导连接器
CN112327420B (zh) * 2020-11-03 2022-06-28 中航光电科技股份有限公司 一种波导通过光纤对准耦合传输结构及生产工艺
CN112859238B (zh) * 2021-02-09 2022-11-29 西安理工大学 一种光纤阵列与光波导无源端面耦合方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5574811A (en) * 1994-09-07 1996-11-12 Northern Telecom Limited Method and apparatus for providing optical coupling between optical components
CN102890317A (zh) * 2011-07-21 2013-01-23 西铁城控股株式会社 光模块
CN102998751A (zh) * 2012-11-27 2013-03-27 孙麦可 平面光波导与光纤耦合方法和结构
CN103185928A (zh) * 2011-12-29 2013-07-03 鸿富锦精密工业(深圳)有限公司 光纤耦合连接器及其公连接器与母连接器
CN104238029A (zh) * 2013-06-07 2014-12-24 鸿富锦精密工业(深圳)有限公司 光纤耦合连接器
CN106199832A (zh) * 2015-05-08 2016-12-07 中兴通讯股份有限公司 光波导板与光纤耦合连接方法、光波导板和通信传输系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201637891U (zh) * 2010-02-04 2010-11-17 富士康(昆山)电脑接插件有限公司 光电路板
CN102183829A (zh) * 2011-05-03 2011-09-14 苏州旭创科技有限公司 用于宽带并行光学的光收发组件
US8781267B2 (en) * 2012-01-27 2014-07-15 Telefonaktiebolaget L M Ericsson Optical physical interface module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5574811A (en) * 1994-09-07 1996-11-12 Northern Telecom Limited Method and apparatus for providing optical coupling between optical components
CN102890317A (zh) * 2011-07-21 2013-01-23 西铁城控股株式会社 光模块
CN103185928A (zh) * 2011-12-29 2013-07-03 鸿富锦精密工业(深圳)有限公司 光纤耦合连接器及其公连接器与母连接器
CN102998751A (zh) * 2012-11-27 2013-03-27 孙麦可 平面光波导与光纤耦合方法和结构
CN104238029A (zh) * 2013-06-07 2014-12-24 鸿富锦精密工业(深圳)有限公司 光纤耦合连接器
CN106199832A (zh) * 2015-05-08 2016-12-07 中兴通讯股份有限公司 光波导板与光纤耦合连接方法、光波导板和通信传输系统

Also Published As

Publication number Publication date
CN106950652A (zh) 2017-07-14

Similar Documents

Publication Publication Date Title
WO2017118387A1 (zh) 光波导组件
US20190384007A1 (en) Universal photonic adaptor for coupling an optical connector to an optoelectronic substrate
US9134487B2 (en) Optical connector with alignment structure
US6843608B2 (en) Transparent substrate and hinged optical assembly
US10488602B2 (en) Fiber-to-waveguide optical interface devices and coupling devices with lenses for photonic systems
US11782225B2 (en) Multi-fiber interface apparatus for photonic integrated circuit
US10168492B2 (en) Optical coupling assemblies for coupling optical cables to silicon-based laser sources
US10191216B2 (en) Fiber-to-waveguide optical interface device and components for photonic systems
US10795103B2 (en) Optoelectronic device with a support member
CN106199832B (zh) 光波导板与光纤耦合连接方法、光波导板和通信传输系统
US10295762B2 (en) Silicon-based optical ports providing passive alignment connectivity
CN110764196B (zh) 用于光纤阵列与平面光波导耦合的无导销可插拔对准结构
US20030031431A1 (en) Assembly for aligning an optical array with optical fibers
US20190196121A1 (en) A Parallel Optical Fiber Transceiver Module
US20110188817A1 (en) Optical board having separated light circuit holding member and optical layer
US11275222B2 (en) Solder-aligned optical socket with interposer reference and methods of assembly thereof
JP2005292379A (ja) 光結合装置及びその製造方法
JP2019530021A (ja) 屈曲型光学モジュールおよびこれを製造する方法
CN210109384U (zh) 光传输装置及光传输系统
TW201409105A (zh) 光纖耦合透鏡及光學通訊模組
US20210080662A1 (en) Alignment features for fiber to chip alignment
CN203311044U (zh) 可无源耦合的多路并行光组件
TWI571664B (zh) 矽工作台
JP6083437B2 (ja) 位置決め部材、レセプタクル及び光伝送モジュール
US20230194806A1 (en) Method of making and using a backside optical coupler for coupling of single-mode fiber to a silicon photonics chip

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17735825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17735825

Country of ref document: EP

Kind code of ref document: A1