WO2017118081A1 - 维修装置及该维修装置的使用方法 - Google Patents
维修装置及该维修装置的使用方法 Download PDFInfo
- Publication number
- WO2017118081A1 WO2017118081A1 PCT/CN2016/098878 CN2016098878W WO2017118081A1 WO 2017118081 A1 WO2017118081 A1 WO 2017118081A1 CN 2016098878 W CN2016098878 W CN 2016098878W WO 2017118081 A1 WO2017118081 A1 WO 2017118081A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- switch
- monitoring device
- storage tank
- unit volume
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/52—Controlling or regulating the coating process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/04—Coating on selected surface areas, e.g. using masks
- C23C14/048—Coating on selected surface areas, e.g. using masks using irradiation by energy or particles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/04—Coating on selected surface areas, e.g. using masks
- C23C16/047—Coating on selected surface areas, e.g. using masks using irradiation by energy or particles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4401—Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45561—Gas plumbing upstream of the reaction chamber
Definitions
- Embodiments of the present disclosure relate to an apparatus and method of using the apparatus.
- Chemical Vapor Deposition (CVD) maintenance equipment is the main maintenance equipment in the field of Thin Film Transistor Liquid Crystal Display (TFT-LCD) panels in the field of arrays, which is used for line defects and dot defects on array substrates. View, judge, and repair.
- the principle is that by the thermal effect and the light effect of the laser, the tungsten powder is deposited to connect the conductive metal wires, and the open circuit is poor.
- the CVD repair equipment can also cut the metal residue of the conductive film on the substrate. After cutting, the tungsten powder can be deposited to bridge the conductive metal wire, and the residual Remain is poor, thereby improving the yield of the product.
- Embodiments of the present disclosure provide a device and a method of using the device, which are used to reduce the probability of failure in repairing a substrate line and improve the quality of the substrate.
- an apparatus in accordance with at least one embodiment of the present disclosure, includes a powder storage tank and a gas chamber, the powder storage tank being provided with an air outlet conduit that is coupled to the gas chamber.
- the device further includes a monitoring device, a first switch disposed between the monitoring device and the air outlet conduit, and a second switch disposed at the monitoring device and the gas chamber Between the bodies;
- the monitoring device is disposed between the powder storage tank and the gas chamber, communicates with the gas outlet pipe, and is configured to monitor the gas outlet pipe when the second switch is closed and the first switch is open.
- the monitoring device includes a powder collection device, a spring, and a pressure sensor.
- the powder collecting device is configured to collect gaseous matter in the gas outlet conduit when the first switch is opened and the second switch is closed, and solidify the collected gaseous matter into a solid matter.
- the pressure sensor is connected to the powder collecting device by the spring, and is configured to convert the pressure of the spring into a number when the gaseous substance solidifies into a solid object by detecting the pressure of the spring.
- the value of the word signal is based on the correspondence between the pre-established pressure and the powder content per unit volume to obtain the content of the powder per unit volume in the gas outlet pipe.
- the powder collection device includes: a hollow cylindrical collector configured to collect solid matter, and a temperature regulating device coupled to the hollow cylindrical collector,
- the temperature adjustment device is configured to cool the hollow cylindrical collector when the first switch is opened and the second switch is closed, so that the gaseous matter solidifies into a solid.
- the temperature adjustment device is further configured to: when the first switch is turned off and the second switch is turned on, heat up the hollow column collector, so that the solid matter collected in the hollow column collector is sublimated It is a gaseous substance.
- the temperature regulating device is a container filled with water
- the temperature of the water is set to a first preset temperature, and at the first preset temperature, the gaseous substance solidifies into a solid state;
- the temperature of the water is set to a second preset temperature, and at the second preset temperature, the solid matter is sublimated into a gaseous state.
- the monitoring device is provided with a recovery pump configured to clean the monitoring device.
- the monitoring device includes: a cooling device, a sampling chamber, and a particle concentration detector;
- the cooling device is disposed adjacent to the sampling chamber, configured to solidify the gaseous matter in the gas outlet pipe into a solid state when the first switch is opened and the second switch is closed;
- the sampling chamber is configured to collect the solid matter
- the particle concentration detector is disposed within the sampling chamber and configured to detect a concentration of the solid matter.
- the bottom end of the powder storage tank is provided as a moving structure configured to adjust the volume of the powder storage tank.
- the apparatus further includes: an alarm adjustment device coupled to the powder storage tank and the monitoring device, the alarm adjustment device configured to receive a content of powder in a unit volume in an outlet conduit fed back by the monitoring device, and to powder the powder per unit volume The content value is compared with a preset range, and when the content value of the powder in the unit volume exceeds the preset range, an alarm is issued and the movement of the moving structure is controlled until the alarm is eliminated.
- the moving structure is a piston.
- the air outlet of the air outlet duct connected to the powder storage tank has a trapezoidal cross-sectional shape.
- the powder storage tank is provided with an intake duct configured to be inert
- the cross-sectional shape of the gas inlet of the intake duct and the powder storage tank is trapezoidal.
- the first switch is an electromagnetic valve
- the second switch is an electromagnetic valve
- the second switch between the control monitoring device and the gas chamber is opened, and the first switch between the monitoring device and the gas outlet pipe is closed, and the gas is output for film deposition.
- the monitoring device includes: a powder collecting device, a spring, and a pressure sensor, the pressure sensor being coupled to the powder collecting device by the spring;
- the content of the powder per unit volume in the monitoring gas outlet pipe includes:
- the powder collecting device collects gaseous substances in the gas pipeline and solidifies the collected gaseous substances into solid matter
- the pressure sensor converts the pressure of the spring into a digital signal by detecting the pressure of the spring, and obtains the content of the powder per unit volume in the gas outlet pipe according to the correspondence between the pre-established pressure and the powder content per unit volume. .
- the bottom end of the powder storage tank is provided as a moving structure configured to adjust the volume of the powder storage tank.
- the apparatus also includes an alarm adjustment device coupled to the powder storage tank and the monitoring device.
- the method further includes: after monitoring the content of the powder in a unit volume in the gas outlet pipe,
- the alarm adjusting device receives the content of the powder in a unit volume in the air outlet pipe fed back by the monitoring device, and compares the content value of the powder in the unit volume with a preset range, when the content value of the powder in the unit volume exceeds the preset range At the time, an alarm is issued and the movement of the moving structure is controlled until the alarm is cleared.
- Figure 1 is a schematic structural view of a CVD maintenance apparatus
- FIG. 2 is a schematic structural diagram of an apparatus according to an embodiment of the present disclosure
- FIG. 3 is a schematic structural diagram of a monitoring apparatus according to Embodiment 1 of the present disclosure.
- FIG. 4(a) and 4(b) are schematic diagrams showing the structure of a powder collecting device according to Embodiment 1 of the present disclosure.
- FIG. 5 is a schematic structural diagram of a monitoring apparatus according to Embodiment 2 of the present disclosure.
- FIG. 6 is a partial structural diagram of a device according to another embodiment of the present disclosure.
- FIG. 7 is a flowchart of a method for using the foregoing apparatus according to an embodiment of the present disclosure.
- Embodiments of the present disclosure provide a device and a method of using the device, which are used to reduce the probability of failure in repairing a substrate line and improve the quality of the substrate.
- the CVD maintenance apparatus includes a heated tungsten powder storage tank, an argon (Ar) intake duct 11 connected to the tungsten powder storage tank, and a heating duct 12, and a gas chamber 14 connected to the heating duct 12.
- the objective lens 15, the lens barrel 16, the separator 17, the wavelength selector 18, and the curved prism 19 can view, judge, and repair the line defects and dot defects of the array substrate 13.
- the inlet and outlet of the tungsten powder storage tank in the CVD maintenance equipment are cylindrical; the inlet is cylindrical and the design has a single blowing direction, and the local gas flow is large, which will lead to the accumulation of tungsten powder at the outlet.
- the partial region cannot be blown to form a saturated tungsten vapor, causing the tungsten powder to crystallize and accumulate; the above will cause the tungsten powder content in the gas chamber to decrease, and the tungsten powder deposition film to be thin.
- the backlight is opaque, the maintenance condition cannot be known.
- the repair fails, and if the light of the backlight does not penetrate the film, it is necessary to ensure the The thickness of the film should not be too thin in the case of opacity, and in this case, the thinning of the tungsten powder deposited film may result in a gradual increase in maintenance failure;
- the tungsten powder pipeline or other position is blocked and the tungsten powder is used at the end, the tungsten powder content in the reaction gas will be reduced and cannot be monitored; in addition, the design of the tungsten powder storage tank is obvious even if the deposited film is found. Thinning, and light transmission, the only means to replace the tungsten powder, the method is single, can not fully confirm the tungsten powder condition, resulting in the waste of tungsten powder, affecting the equipment grafting.
- an exemplary embodiment of the present disclosure provides an apparatus including a powder storage tank 21 and a gas chamber 14, which is provided with an intake duct 22 and an air outlet duct 23, and the intake duct 22 is configured to pass An inert gas is introduced, and the gas outlet conduit 23 is connected to the gas chamber 14.
- the apparatus of the exemplary embodiment of the present disclosure further includes a monitoring device 24, a first switch 25, and a second switch 26,
- the first switch 25 is disposed between the monitoring device 24 and the air outlet conduit 23, and the second switch 26 is disposed between the monitoring device 24 and the gas chamber 14.
- the first switch 25 in the exemplary embodiment of the present disclosure is an electromagnetic valve
- the second switch 26 is an electromagnetic valve, which can control the opening and closing of the electromagnetic valve by power-on and power-off during use, thereby facilitating remote automatic control, but
- the disclosed embodiments are not limited thereto.
- the monitoring device 24 is disposed between the powder storage tank 21 and the gas chamber 14, communicates with the gas outlet conduit 23, and is configured to be closed when the second switch 26 is closed, and the first switch 25 is opened, that is, between the monitoring device 24 and the gas chamber 14.
- the gas path between the two is in the closed state, the content of the powder in the unit volume in the gas outlet pipe 23 is monitored.
- the cross-sectional shape of the intake port to which the intake duct 22 of the present exemplary embodiment is connected to the powder storage tank 21 is trapezoidal; the cross-sectional shape of the air outlet of the outlet duct 23 connected to the powder storage tank 21 is Trapezoidal, however, embodiments of the present disclosure are not limited thereto.
- the powder in the exemplary embodiment of the present disclosure is, for example, tungsten powder, and the exemplary embodiment of the present disclosure sets the inlet and outlet of the tungsten powder storage tank to be compared with the inlet and outlet of the cylindrical tungsten powder storage tank.
- the trapezoidal structure can increase the diameter, diversify the airflow direction of the air inlet, and also prevent the tungsten powder from crystallizing and clogging.
- the monitoring device in the exemplary embodiment of the present disclosure adopts two different settings, which are combined with the following figures. Do not introduce.
- Embodiment 1 is a diagrammatic representation of Embodiment 1:
- the monitoring device 24 of an exemplary embodiment of the present disclosure includes a powder collecting device 27, a spring 29, and a pressure sensor 28.
- the powder collecting device 27 is configured to collect the gaseous matter in the gas line 23 when the first switch 25 is opened and the second switch 26 is closed, and solidify the collected gaseous matter into a solid.
- the pressure sensor 28 is connected to the powder collecting device 27 via a spring 29, and is configured to detect the value of the time-varying pressure converted into a digital signal by detecting the pressure of the spring 29 when the gaseous substance solidifies into a solid state, according to a pre-established pressure and The corresponding relationship of the powder content per unit volume gives the content of the powder per unit volume in the gas outlet pipe 23.
- the gas in the air outlet duct 23 can only enter the monitoring device 24 without entering the gas chamber 14.
- the gas introduced into the intake duct 22 in the exemplary embodiment of the present disclosure is argon (Ar) gas, and the powder storage tank 21 is heated, so that the tungsten powder stored in the powder storage tank 21 becomes gaseous tungsten powder, gaseous state.
- the tungsten powder flows into the gas outlet pipe 23 through the gas outlet under the blowing of the Ar gas, and when the first switch 25 is opened and the second switch 26 is closed, the gaseous tungsten powder enters the monitoring device 24.
- the spring 29 is deformed under the force of the solid tungsten powder, and generates a corresponding pressure, which is pressed by the pressure sensor. 28 sensed, through the processing of the signal converter, signal amplifier and digital processor inside the pressure sensor 28, the time-varying pressure is converted into the value of the digital signal, and then according to the pre-established pressure and the unit volume of the gaseous tungsten powder content. Corresponding relationship, the content of gaseous tungsten powder per unit volume in the gas outlet pipe 23 is obtained.
- an exemplary embodiment of the present disclosure tests a series of powder collection devices by controlling the time at which the first switch 25 is opened and the second switch 26 is closed, and controlling the amount of tungsten powder in the powder storage tank 21.
- Example embodiments of the present disclosure are based on pressure and unit volume of gaseous tungsten powder, and pressure and The one-to-one correspondence database of film thickness and the need to set a suitable tungsten powder content range for monitoring the use of tungsten powder.
- the exemplary embodiment of the present disclosure monitors the tungsten powder content and the use condition by the monitoring device, and greatly improves the stability of the output tungsten powder content compared with the recording device running time and the observation of the tungsten powder deposition film transparency recording tungsten powder use condition. , to ensure the quality of the film during the maintenance process, and improve the success rate of maintenance.
- the powder collecting device 27 in the exemplary embodiment of the present disclosure includes: a collector 41 configured to collect solid matter, and a temperature adjusting device connected to the collector 41 42.
- the temperature adjustment device 42 in the exemplary embodiment of the present disclosure is configured to cool the collector 41 when the first switch 25 is opened and the second switch 26 is closed, so that the gaseous tungsten is made The powder solidifies into solid tungsten powder.
- the temperature adjusting device 42 is a container containing water of a first preset temperature, and at a first preset temperature, the gaseous tungsten powder can be solidified into solid tungsten powder, and the first preset temperature is set according to actual conditions.
- the temperature value, when implemented, the temperature adjustment device 42 is a device that can supply cooling water to the shape collector 41.
- the temperature adjustment device 42 in the exemplary embodiment of the present disclosure is further configured to raise the temperature of the opposite collector 41 when the first switch 25 is closed and the second switch 26 is opened.
- the solid tungsten powder collected in the collector 41 is sublimated into gaseous tungsten powder.
- the temperature adjusting device 42 is a container containing water of a second preset temperature, and at a second preset temperature, the solid tungsten powder can be sublimated into gaseous tungsten powder, and the second preset temperature is set according to actual conditions.
- the temperature value, when implemented, the temperature adjustment device 42 is a device capable of supplying heated water to the collector 41.
- the monitoring device 24 in the exemplary embodiment of the present disclosure is provided with a recovery pump 210 configured to clean the monitoring device 24.
- the collector 41 is supplied with heated water to sublimate the solid tungsten powder in the collector 41 into gaseous tungsten powder; then, the recovery pump 210 is turned on to extract impurities such as tungsten powder in the entire monitoring device 24, and the monitoring device is 24 for cleaning and cleaning.
- the collector 41 is, for example, a hollow column.
- Embodiment 2 is a diagrammatic representation of Embodiment 1:
- the monitoring device in the exemplary embodiment of the present disclosure includes: a temperature lowering device 51, a sampling chamber 52, and a particle concentration detector 53;
- the cooling device 51 is disposed adjacent to the sampling chamber 52, configured to solidify the gaseous matter in the gas outlet pipe 23 into a solid state when the first switch is opened and the second switch is closed;
- a sampling chamber 52 configured to collect solid matter
- a particle concentration detector 53 is disposed in the sampling chamber 52 and configured to detect the concentration of the solid matter.
- the powder in the exemplary embodiment of the present disclosure is exemplified by a tungsten powder.
- the gaseous tungsten powder in the gas outlet pipe 23 is solidified into solid tungsten powder by a cooling device 51 disposed outside the gas outlet pipe 23 and disposed adjacent to the sampling chamber 52.
- the solid tungsten powder is collected in the sampling chamber 52, and the concentration of the solid tungsten powder is detected by the particle concentration detector 53 disposed in the sampling chamber 52.
- the particle concentration detector in the exemplary embodiment of the present disclosure performs the monitoring by automatically detecting the concentration of the cooled tungsten powder particles by the ⁇ -ray absorption principle, thereby estimating the content of the gaseous tungsten powder in the gas outlet.
- the collected data is simple and sensitive.
- one end of the sampling chamber 52 in FIG. 5 is further provided with an exhaust port 54 configured to discharge the tungsten powder discarded in the sampling chamber 52 so that Clean the sampling chamber.
- the bottom end of the powder storage tank 21 in the exemplary embodiment of the present disclosure is provided as a moving structure configured to adjust the volume of the powder storage tank 21.
- the moving structure is a piston, and by moving the piston upward, the volume of the powder storage tank 21 can be reduced, as shown by the dotted arrow below the powder storage tank 21, but the embodiment of the present disclosure is not limited thereto.
- the apparatus in the exemplary embodiment of the present disclosure further includes an alarm adjustment device 62 connected to the powder storage tank 21 and the monitoring device 24.
- the alarm adjusting device 62 is configured to receive the content of the powder in the unit volume in the outlet duct 23 fed back by the monitoring device 24, and compare the content value of the powder in the unit volume with a preset range. When the amount of powder in the unit volume exceeds the preset range, an alarm is issued and the movement of the moving structure is controlled until the alarm is eliminated.
- An exemplary embodiment of the present disclosure sets the bottom end of the powder storage tank as a moving structure to form a powder storage tank of the movable bottom end, and in the case of abnormal powder in the powder storage tank, adjusts the volume of the powder storage tank to maintain the powder in a unit volume The content of the film is unchanged, ensuring the quality of the repair film and improving the success rate of repair.
- the powder in the exemplary embodiment of the present disclosure is exemplified by tungsten powder, and the monitoring device 24 is exemplified by the monitoring device in the first embodiment, and is described with reference to FIG.
- the gaseous tungsten powder 61 in the powder storage tank 21 enters the monitoring device 24 along the air outlet duct 23, and the monitoring device 24 will monitor the air outlet duct 23
- the content of the gaseous tungsten powder per unit volume is fed back to the alarm adjusting device 62, and the alarm adjusting device 62 compares the content of the gaseous tungsten powder in the unit volume with the preset range, and the content of the gaseous tungsten powder per unit volume. When the preset range is exceeded, an alarm is issued and the movement of the moving structure is controlled until the alarm is cleared.
- the preset range in the exemplary embodiment of the present disclosure may be set according to a pre-established pressure and a content of a unit volume of gaseous tungsten powder, and a one-to-one correspondence between pressure and film thickness, and production requirements.
- the second switch 26 can be turned on, the first switch 25 is turned off, and the device operates normally. If the alarm has not been eliminated during the entire process of moving the piston to the preset position, a shutdown check is required to consider replacing the tungsten powder and cleaning the pipe.
- the preset position set in the powder storage tank 21 can be set according to the needs of production.
- the alarm level is divided into 1, 2, 3, and 4 grades. According to different grades, the bottom end of the powder storage tank is adjusted to increase the unit volume. If the tungsten powder content continues to alarm, you need to consider replacing the tungsten powder and cleaning the pipe.
- an exemplary embodiment of the present disclosure further provides a method for using the foregoing apparatus, including:
- the second switch between the control monitoring device and the gas chamber is closed, and the first switch between the monitoring device and the gas outlet pipe is controlled to be opened, and the content of the powder in a unit volume in the gas outlet pipe is monitored;
- S702 control a second switch between the monitoring device and the gas chamber to open, and control a first switch between the monitoring device and the gas outlet to be closed, and output gas for film deposition.
- the monitoring device in the exemplary embodiment of the present disclosure includes a powder collecting device, a spring, and a pressure sensor.
- the pressure sensor is connected to the powder collecting device by a spring, and the setting of the monitoring device is referred to the first exemplary embodiment of the present disclosure.
- Monitoring the content of powder in a unit volume in the gas outlet pipe includes:
- the powder collection device collects gaseous matter in the gas line and solidifies the collected gaseous matter into a solid.
- the pressure sensor obtains the value of the time-varying pressure converted into a digital signal by detecting the pressure of the spring, and obtains the unit in the gas outlet pipe according to the correspondence between the pre-established pressure and the powder content per unit volume. The amount of powder in the volume.
- the bottom end of the powder storage tank of the exemplary embodiment of the present disclosure is provided as a moving structure configured to adjust the volume of the powder storage tank; the apparatus in the exemplary embodiment of the present disclosure further includes a connection with the powder storage tank and the monitoring device Alarm adjustment device.
- the alarm adjusting device receives the content of the powder per unit volume in the outlet pipe fed back by the monitoring device, compares the content value of the powder in the unit volume with a preset range, and issues an alarm when the content of the powder in the unit volume exceeds a preset range, and Controls the movement of the moving structure until the alarm is removed.
- An exemplary embodiment of the present disclosure provides an apparatus including a powder storage tank and a gas chamber, the powder storage tank being provided with an air outlet duct connected to the gas chamber.
- the apparatus also includes a monitoring device, a first switch, and a second switch.
- the first switch is disposed between the monitoring device and the air outlet duct
- the second switch is disposed between the monitoring device and the gas chamber.
- the monitoring device is disposed between the powder storage tank and the gas chamber, communicates with the gas outlet pipe, and is configured to monitor the content of the powder per unit volume in the gas outlet pipe when the second switch is closed and the first switch is opened.
- the exemplary embodiment of the present disclosure monitors the content and use condition of the powder by the monitoring device, and greatly increases the content of the output powder compared with the device that can only record the running time of the device and observe the use condition of the tungsten powder deposited film to record the tungsten powder.
- the stability ensures the quality of the film during the maintenance process and improves the success rate of the repair.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Chemical Vapour Deposition (AREA)
- Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
Abstract
一种装置,包括粉末储藏罐(21)和气体腔体(14),粉末储藏罐(21)设置有出气管道(23),出气管道(23)与气体腔体(14)连接,装置还包括监控装置(24)、第一开关(25)和第二开关(26),监控装置(24)设置在粉末储藏罐(21)和气体腔体(14)之间,与出气管道(23)连通,配置来在监控装置(24)与气体腔体(14)之间的气路处于关闭状态时,监控出气管道(23)中单位体积内粉末的含量;第一开关(25)设置在监控装置(24)与出气管道(23)之间,第二开关(26)设置在监控装置(24)与气体腔体(14)之间。及装置的使用方法。
Description
本公开的实施例涉及一种装置及该装置的使用方法。
化学气相沉积(Chemical Vapor Deposition,CVD)维修设备是薄膜晶体管液晶显示器(Thin Film Transistor Liquid Crystal Display,TFT-LCD)面板领域在阵列段主要的维修设备,用于对阵列基板的线不良和点不良进行查看、判级和维修。其原理是通过激光的热效应和光效应,沉积钨粉对导电金属线进行连接,维修断路(Open)类不良。CVD维修设备也可以对基板上导电薄膜的金属残留物进行切割,切割后可以沉积钨粉对导电金属线进行跨接,维修残留(Remain)类不良,提高产品的良率。
发明内容
本公开实施例提供了一种装置及该装置的使用方法,用以降低对基板线路维修时失败的几率,提高基板的品质。
根据本公开的至少一个实施例,提供一种装置,包括粉末储藏罐和气体腔体,所述粉末储藏罐设置有出气管道,所述出气管道与所述气体腔体连接。该装置还包括监控装置、第一开关和第二开关,所述第一开关设置在所述监控装置与所述出气管道之间,所述第二开关设置在所述监控装置与所述气体腔体之间;
所述监控装置设置在所述粉末储藏罐和所述气体腔体之间,与所述出气管道连通,配置来在所述第二开关关闭,所述第一开关打开时,监控所述出气管道中单位体积内粉末的含量。
例如,所述监控装置包括:粉末收集装置、弹簧和压力传感器。
所述粉末收集装置配置来,在所述第一开关打开,所述第二开关关闭时,收集所述出气管道中的气态物,并将收集到的气态物凝固为固态物。
所述压力传感器通过所述弹簧与所述粉末收集装置连接,配置来在气态物凝固为固态物时,通过检测弹簧的压力,得到随时间变化的压力转化为数
字信号的数值,根据预先建立的压力与单位体积的粉末含量的对应关系,得到出气管道中单位体积内粉末的含量。
例如,所述粉末收集装置包括:配置来收集固态物的空心柱状收集器,以及与所述空心柱状收集器连接的温度调节装置,
所述温度调节装置,配置来在所述第一开关打开,所述第二开关关闭时,对所述空心柱状收集器进行降温,使得气态物凝固为固态物。
例如,所述温度调节装置还配置来,在所述第一开关关闭,所述第二开关打开时,对所述空心柱状收集器进行升温,使得收集在该空心柱状收集器中的固态物升华为气态物。
例如,所述温度调节装置为装有水的容器,
在所述第一开关打开,所述第二开关关闭时,将水的温度设置为第一预设温度,在第一预设温度下,气态物凝固为固态物;
在所述第一开关关闭,所述第二开关打开时,将水的温度设置为第二预设温度,在第二预设温度下,固态物升华为气态物。
例如,所述监控装置中设置有回收泵,配置来对所述监控装置进行清洁。
例如,所述监控装置包括:降温装置、采样室和颗粒浓度检测仪;
所述降温装置紧邻所述采样室设置,配置来在所述第一开关打开,所述第二开关关闭时,将出气管道中的气态物凝固为固态物;
所述采样室,配置来收集所述固态物;
所述颗粒浓度检测仪设置在所述采样室内,配置来检测所述固态物的浓度。
例如,所述粉末储藏罐的底端设置为一移动结构,该移动结构配置来调节所述粉末储藏罐的体积。
该装置还包括:与粉末储藏罐和所述监控装置连接的报警调节装置,所述报警调节装置配置来接收所述监控装置反馈的出气管道中单位体积内粉末的含量,将单位体积内粉末的含量值与预设范围比较,当所述单位体积内粉末的含量值超出所述预设范围时,发出警报,并控制所述移动结构运动,直到警报消除。
例如,所述移动结构为一活塞。
例如,所述出气管道与所述粉末储藏罐连接的出气口的截面形状为梯形。
例如,所述粉末储藏罐设置有进气管道,所述进气管道配置来通入惰性
气体,所述进气管道与所述粉末储藏罐连接的进气口的截面形状为梯形。
例如,所述第一开关为电磁阀门;所述第二开关为电磁阀门。
根据本公开的至少一个实施例,提供了一种上述装置的使用方法,包括:
控制监控装置与气体腔体之间的第二开关关闭,并控制监控装置与出气管道之间的第一开关开启,监控出气管道中单位体积内粉末的含量;
控制监控装置与气体腔体之间的第二开关开启,并控制监控装置与出气管道之间的第一开关关闭,输出气体进行薄膜沉积。
例如,所述监控装置包括:粉末收集装置、弹簧和压力传感器,所述压力传感器通过所述弹簧与所述粉末收集装置连接;
所述监控出气管道中单位体积内粉末的含量包括:
所述粉末收集装置收集出气管道中的气态物,并将收集到的气态物凝固为固态物;
所述压力传感器通过检测所述弹簧的压力,得到随时间变化的压力转化为数字信号的数值,根据预先建立的压力与单位体积的粉末含量的对应关系,得到出气管道中单位体积内粉末的含量。
例如,粉末储藏罐的底端设置为一移动结构,该移动结构配置来调节所述粉末储藏罐的体积。
所述装置还包括:与粉末储藏罐和所述监控装置连接的报警调节装置。所述方法还包括:在监控出气管道中单位体积内粉末的含量后,
报警调节装置接收所述监控装置反馈的出气管道中单位体积内粉末的含量,将单位体积内粉末的含量值与预设范围比较,当所述单位体积内粉末的含量值超出所述预设范围时,发出警报,并控制所述移动结构运动,直到警报消除。
以下将结合附图对本公开的实施例进行更详细的说明,以使本领域普通技术人员更加清楚地理解本公开的实施例,其中:
图1为CVD维修设备的结构示意图;
图2为本公开一实施例提供的装置的结构示意图;
图3为本公开实施例一提供的监控装置的结构示意图;
图4(a)和图4(b)为本公开实施例一提供的粉末收集装置的结构示意
图;
图5为本公开实施例二提供的监控装置的结构示意图;
图6为本公开另一实施例提供的装置的部分结构示意图;
图7为本公开一实施例提供的一种上述装置的使用方法流程图。
本公开实施例提供了一种装置及该装置的使用方法,用以降低对基板线路维修时失败的几率,提高基板的品质。
下面将结合附图对本公开的实施例作进一步地详细描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开的实施例,本领域普通技术人员在无需做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
如图1所示,CVD维修设备包括加热的钨粉储藏罐、与钨粉储藏罐连接的氩气(Ar)的进气管道11,以及加热管道12、与加热管道12连接的气体腔体14、物镜15、镜筒透镜16、分离器17、波长选择器18和弯曲棱镜19,该CVD维修设备可以对阵列基板13的线不良和点不良进行查看、判级和维修。
发明人注意到,采用该CVD维修设备对阵列基板进行维修时,存在以下问题:
CVD维修设备中的钨粉储藏罐的进气口和出气口为圆柱形;进气口为圆柱形的设计吹气方向单一,局部气流量较大,会导致出气口钨粉堆积,另外也会导致部分区域无法吹到,形成饱和钨蒸气,引起钨粉结晶和堆积;以上均会引起气体腔体内钨粉含量降低,钨粉沉积薄膜变薄。在背光不透光情况下,无法知悉维修状况,即,若钨粉沉积薄膜后,背光的光会穿透该薄膜,则说明维修失败,若背光的光不穿透该薄膜,还需要保证该薄膜的厚度在不透光的情况下不能太薄,而在这种情况下,由于钨粉沉积薄膜变薄,则会导致维修失败逐渐增加;
钨粉在使用过程中,只是记录设备的运行时间作为钨粉使用时间,而在设备运行过程中,多数时间钨粉并没在使用,而且每台设备钨粉消耗也不同,因此记录不准确,按照运行时间更换钨粉,大大降低了钨粉使用率,造成钨粉的浪费;
在设备保养或异常停电过程中,钨粉管道或其它位置阻塞以及钨粉使用末期,反应气体中钨粉含量会降低,无法监控;另外,目前钨粉储藏罐的设计,即使发现沉积的薄膜明显变薄,且透光,采取的手段仅仅是更换钨粉,方法单一,不能充分确认钨粉状况,导致钨粉的浪费,影响设备嫁动。
采用这种CVD维修设备对阵列基板进行维修时,钨粉在使用异常时,如:使用耗尽、管道堵塞、钨粉结晶等,钨粉无法被及时监控到,因此导致钨粉沉积的薄膜质量下降,维修失败率上升;另外,在钨粉明显发生异常下,无法进行有效的调整,只能从更换钨粉方面入手,方法单一且影响设备嫁动,影响产能。
下面结合附图详细介绍本公开示例实施例提供的维修装置,该维修装置配置来对基板线路进行维修,但是,本公开的实施例并不限于此。
如图2所示,本公开示例实施例提供了一种装置,包括粉末储藏罐21和气体腔体14,粉末储藏罐21设置有进气管道22和出气管道23,进气管道22配置来通入惰性气体,出气管道23与气体腔体14连接,本公开示例实施例的装置还包括监控装置24、第一开关25和第二开关26,
第一开关25设置在监控装置24与出气管道23之间,第二开关26设置在监控装置24与气体腔体14之间。例如,本公开示例实施例中的第一开关25为电磁阀门,第二开关26为电磁阀门,在使用时可以通过通电和断电控制电磁阀门的开和关,便于远程自动控制,但是,本公开的实施例并不限于此。
监控装置24设置在粉末储藏罐21和气体腔体14之间,与出气管道23连通,配置来在第二开关26关闭,第一开关25打开时,即在监控装置24与气体腔体14之间的气路处于关闭状态时,监控出气管道23中单位体积内粉末的含量。
例如,如图2所示,本公开示例实施例的进气管道22与粉末储藏罐21连接的进气口的截面形状为梯形;出气管道23与粉末储藏罐21连接的出气口的截面形状为梯形,但是,本公开的实施例并不限于此。
本公开示例实施例中的粉末例如为钨粉,与圆柱形的钨粉储藏罐的进气口和出气口相比,本公开示例实施例将钨粉储藏罐的进气口和出气口设置为梯形结构,能够增大口径,使进气口的气流方向多样化,同时也使出气口不会出现钨粉结晶和堵塞的问题。
本公开示例实施例中的监控装置采用两种不同的设置,下面结合附图分
别进行介绍。
实施例一:
如图2所示,本公开示例实施例的监控装置24包括:粉末收集装置27、弹簧29和压力传感器28。
粉末收集装置27配置来,在第一开关25打开,第二开关26关闭时,收集出气管道23中的气态物,并将收集到的气态物凝固为固态物。
压力传感器28通过弹簧29与粉末收集装置27连接,配置来在气态物凝固为固态物时,通过检测弹簧29的压力,得到随时间变化的压力转化为数字信号的数值,根据预先建立的压力与单位体积的粉末含量的对应关系,得到出气管道23中单位体积内粉末的含量。
下面以粉末为钨粉为例,结合附图详细介绍本公开示例实施例监控装置监控钨粉含量时的工作原理。
如图2所示,在第一开关25打开,第二开关26关闭时,出气管道23中的气体只能进入监控装置24,而不进入气体腔体14。实施时,本公开示例实施例中进气管道22通入的气体为氩(Ar)气,并对粉末储藏罐21进行加热,使得粉末储藏罐21中储藏的钨粉变为气态钨粉,气态钨粉在Ar气的吹动下,经过出气口流入出气管道23,在第一开关25打开,第二开关26关闭的情况下,气态钨粉进入监控装置24。
如图3所示,当粉末收集装置27将收集到的气态钨粉凝固为固态钨粉时,弹簧29会在固态钨粉的作用力下发生形变,并产生相应的压力,该压力被压力传感器28所感知,通过压力传感器28内部的信号转换器、信号放大器以及数字处理器的处理,得到随时间变化的压力转化为数字信号的数值,然后根据预先建立的压力与单位体积的气态钨粉含量的对应关系,得到出气管道23中单位体积内气态钨粉的含量。
例如,如图2和图3所示,本公开示例实施例通过控制第一开关25打开和第二开关26关闭的时间,以及控制粉末储藏罐21中钨粉的含量,测试一系列粉末收集装置27的压力变化,在Ar气流量一定且已知的情况下,计算出单位时间单位体积的气态钨粉的含量,再测试对应的钨粉沉积薄膜厚度,得出相应的压力与单位体积的气态钨粉的含量,以及压力与薄膜厚度的一一对应关系数据库。
本公开示例实施例根据压力与单位体积的气态钨粉的含量,以及压力与
薄膜厚度的一一对应关系数据库,以及生产的需要设定合适的钨粉含量范围,对钨粉的使用状况进行监控。
本公开示例实施例通过监控装置监控钨粉含量和使用状况,与只能记录设备运行时间和观察钨粉沉积薄膜透光性记录钨粉使用状况相比,大大提高了输出的钨粉含量稳定性,保证了维修过程中薄膜的质量,提升了维修的成功率。
例如,如图4(a)和图4(b)所示,本公开示例实施例中的粉末收集装置27包括:配置来收集固态物的收集器41,以及与收集器41连接的温度调节装置42。如图2和图4(a)所示,本公开示例实施例中的温度调节装置42,配置来在第一开关25打开,第二开关26关闭时,对收集器41进行降温,使得气态钨粉凝固为固态钨粉。例如,温度调节装置42为装有第一预设温度的水的容器,在第一预设温度下,能够使得气态钨粉凝固为固态钨粉,第一预设温度为根据实际情况设定的温度值,实施时,温度调节装置42为能够为状收集器41提供冷却水的装置。
如图2和图4(b)所示,本公开示例实施例中的温度调节装置42,还配置来在第一开关25关闭,第二开关26打开时,对状收集器41进行升温,使得收集在该收集器41中的固态钨粉升华为气态钨粉。例如,温度调节装置42为装有第二预设温度的水的容器,在第二预设温度下,能够使得固态钨粉升华为气态钨粉,第二预设温度为根据实际情况设定的温度值,实施时,温度调节装置42为能够为收集器41提供加热水的装置。
例如,如图2和图4(b)所示,本公开示例实施例中的监控装置24中设置有回收泵210,配置来对监控装置24进行清洁。实施时,首先,为收集器41提供加热水,使收集器41中的固态钨粉升华为气态钨粉;然后,开启回收泵210,抽出整个监控装置24中的钨粉等杂质,对监控装置24进行清洁清理。
收集器41例如为空心柱状。
实施例二:
如图5所示,本公开示例实施例中的监控装置包括:降温装置51、采样室52和颗粒浓度检测仪53;
降温装置51紧邻采样室52设置,配置来在第一开关打开,第二开关关闭时,将出气管道23中的气态物凝固为固态物;
采样室52,配置来收集固态物;
颗粒浓度检测仪53设置在采样室52内,配置来检测固态物的浓度。
本公开示例实施例中的粉末以钨粉为例进行介绍,例如,通过设置在出气管道23外侧,紧邻采样室52设置的降温装置51将出气管道23中的气态钨粉凝固为固态钨粉,固态钨粉被收集在采样室52内,通过设置在采样室52内的颗粒浓度检测仪53检测固态钨粉的浓度。
本公开示例实施例中的颗粒浓度检测仪是利用β射线吸收原理自动检测经过冷却的钨粉颗粒浓度,从而估算出气管道中气态钨粉的含量,实施监控。采用这种方法进行监控时,采集数据简单、灵敏度高另外,图5中采样室52的一端还设置有排气口54,排气口54配置来将采样室52中废弃的钨粉排出,以便对采样室进行清洁。
如图6所示,本公开示例实施例中的粉末储藏罐21的底端设置为一移动结构,该移动结构配置来调节粉末储藏罐21的体积。例如,该移动结构为一活塞,通过向上移动活塞,可以减小粉末储藏罐21的体积,如图中粉末储藏罐21下方的虚线箭头,但是,本公开的实施例并不限于此。
本公开示例实施例中的装置还包括:与粉末储藏罐21和监控装置24连接的报警调节装置62。报警调节装置62配置来接收监控装置24反馈的出气管道23中单位体积内粉末的含量,将单位体积内粉末的含量值与预设范围比较。当单位体积内粉末的含量超出预设范围时,发出警报,并控制移动结构运动,直到警报消除。
本公开示例实施例将粉末储藏罐的底端设置为一移动结构,形成可移动底端的粉末储藏罐,在粉末储藏罐中粉末异常的情况下,调节粉末储藏罐的体积,维持单位体积内粉末的含量不变,保证维修薄膜的质量,提高维修成功率。
本公开示例实施例中的粉末以钨粉为例,监控装置24以实施例一中的监控装置为例,结合附图6进行介绍。
如图6所示,当第一开关25打开,第二开关26关闭时,粉末储藏罐21中的气态钨粉61沿着出气管道23进入监控装置24,监控装置24将监控到的出气管道23中单位体积内气态钨粉的含量反馈给报警调节装置62,报警调节装置62将接收到单位体积内的气态钨粉的含量值与预设范围比较,当单位体积内的气态钨粉的含量值超出预设范围时,发出警报,并控制移动结构运动,直到警报消除。例如,当单位体积内的气态钨粉的含量值小于预设范围中的
最小值时,发出警报,并控制粉末储藏罐21中的活塞向上运动,以减小粉末储藏罐21的体积。在移动过程中,若警报消失,则控制活塞停止运动。本公开示例实施例中的预设范围可以根据预先建立的压力与单位体积的气态钨粉的含量,以及压力与薄膜厚度的一一对应关系数据库,以及生产的需要进行设置的。
例如,当警报消失,说明钨粉含量正常,之后可以开启第二开关26,关闭第一开关25,装置正常工作。如果在活塞移动到预设位置的整个过程中警报一直未消除,则需要停机检查,考虑更换钨粉和清理管道。在粉末储藏罐21中设置的预设位置可以根据生产的需要进行设置的。
实施时,根据监控装置反馈的出气管道中单位体积内气态钨粉的含量,将报警级别分为1、2、3、4等级,根据不同的等级,调节粉末储藏罐底端面,增加单位体积内的钨粉含量,如果仍然持续报警,需要考虑更换钨粉,清理管道。
如图7所示,本公开示例实施例还提供了一种上述装置的使用方法,包括:
S701、控制监控装置与气体腔体之间的第二开关关闭,并控制监控装置与出气管道之间的第一开关开启,监控出气管道中单位体积内粉末的含量;
S702、控制监控装置与气体腔体之间的第二开关开启,并控制监控装置与出气管道之间的第一开关关闭,输出气体进行薄膜沉积。
例如,本公开示例实施例中的监控装置包括:粉末收集装置、弹簧和压力传感器。压力传感器通过弹簧与粉末收集装置连接,监控装置的设置参见本公开示例实施例一。
监控出气管道中单位体积内粉末的含量包括:
粉末收集装置收集出气管道中的气态物,并将收集到的气态物凝固为固态物。
在气态物凝固为固态物时,压力传感器通过检测弹簧的压力,得到随时间变化的压力转化为数字信号的数值,根据预先建立的压力与单位体积的粉末含量的对应关系,得到出气管道中单位体积内粉末的含量。
例如,本公开示例实施例粉末储藏罐的底端设置为一移动结构,该移动结构配置来调节粉末储藏罐的体积;本公开示例实施例中的装置还包括与粉末储藏罐和监控装置连接的报警调节装置。
本公开示例实施例监控出气管道中单位体积内粉末的含量后,
报警调节装置接收监控装置反馈的出气管道中单位体积内粉末的含量,将单位体积内粉末的含量值与预设范围比较,当单位体积内粉末的含量值超出预设范围时,发出警报,并控制移动结构运动,直到警报消除。
本公开示例实施例提供一种装置,包括粉末储藏罐和气体腔体,粉末储藏罐设置有出气管道,出气管道与气体腔体连接。该装置还包括监控装置、第一开关和第二开关。第一开关设置在监控装置与出气管道之间,第二开关设置在监控装置与气体腔体之间。监控装置设置在粉末储藏罐和气体腔体之间,与出气管道连通,配置来在第二开关关闭,第一开关打开时,监控出气管道中单位体积内粉末的含量。本公开示例实施例通过监控装置监控粉末的含量和使用状况,与只能记录设备运行时间和观察钨粉沉积薄膜透光性记录钨粉使用状况的装置相比,大大提高了输出的粉末的含量稳定性,保证了维修过程中薄膜的质量,提升了维修的成功率。
以上所述,仅为本公开的示例性实施例,但本公开的保护范围并不局限于此,任何熟悉本技术领域的普通技术人员在本公开的实施例揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。
本申请要求于2016年1月4日提交的名称为“一种装置及该装置的使用方法”的中国专利申请No.201610004251.6的优先权,其全文通过引用合并于本文。
Claims (15)
- 一种装置,包括:粉末储藏罐;气体腔体,所述粉末储藏罐设置有出气管道,所述出气管道与所述气体腔体连接;监控装置;第一开关;和第二开关;其中,所述第一开关设置在所述监控装置与所述出气管道之间,所述第二开关设置在所述监控装置与所述气体腔体之间;所述监控装置设置在所述粉末储藏罐和所述气体腔体之间,与所述出气管道连通,配置来在所述第二开关关闭,所述第一开关打开时,监控所述出气管道中单位体积内粉末的含量。
- 根据权利要求1所述的装置,其中,所述监控装置包括:粉末收集装置、弹簧和压力传感器;所述粉末收集装置配置来:在所述第一开关打开,所述第二开关关闭时,收集所述出气管道中的气态物,并将收集到的气态物凝固为固态物;所述压力传感器通过所述弹簧与所述粉末收集装置连接,配置来在气态物凝固为固态物时,通过检测弹簧的压力,得到随时间变化的压力转化为数字信号的数值,根据预先建立的压力与单位体积的粉末含量的对应关系,得到出气管道中单位体积内粉末的含量。
- 根据权利要求1或2所述的装置,其中,所述粉末收集装置包括:配置来收集固态物的空心柱状收集器,以及与所述空心柱状收集器连接的温度调节装置,所述温度调节装置,配置来在所述第一开关打开,所述第二开关关闭时,对所述空心柱状收集器进行降温,使得气态物凝固为固态物。
- 根据权利要求3所述的装置,其中,所述温度调节装置还配置来:在所述第一开关关闭,所述第二开关打开时,对所述空心柱状收集器进行升温,使得收集在该空心柱状收集器中的固态物升华为气态物。
- 根据权利要求3或4所述的装置,其中,所述温度调节装置为装有水 的容器,在所述第一开关打开,所述第二开关关闭时,将水的温度设置为第一预设温度,在第一预设温度下,气态物凝固为固态物;以及在所述第一开关关闭,所述第二开关打开时,将水的温度设置为第二预设温度,在第二预设温度下,固态物升华为气态物。
- 根据权利要求1-5任一项所述的装置,其中,所述监控装置中设置有回收泵,配置来对所述监控装置进行清洁。
- 根据权利要求1-6任一项所述的装置,其中,所述监控装置包括:降温装置、采样室和颗粒浓度检测仪;所述降温装置紧邻所述采样室设置,配置来在所述第一开关打开,所述第二开关关闭时,将出气管道中的气态物凝固为固态物;所述采样室,配置来收集所述固态物;以及所述颗粒浓度检测仪设置在所述采样室内,配置来检测所述固态物的浓度。
- 根据权利要求6或7所述的装置,其中,所述粉末储藏罐的底端设置为一移动结构,该移动结构配置来调节所述粉末储藏罐的体积;所述装置还包括:与粉末储藏罐和所述监控装置连接的报警调节装置,所述报警调节装置配置来接收所述监控装置反馈的出气管道中单位体积内粉末的含量,将单位体积内粉末的含量值与预设范围比较,当所述单位体积内粉末的含量值超出所述预设范围时,发出警报,并控制所述移动结构运动,直到警报消除。
- 根据权利要求8所述的装置,其中,所述移动结构为一活塞。
- 根据权利要求9所述的装置,其中,所述出气管道与所述粉末储藏罐连接的出气口的截面形状为梯形。
- 根据权利要求10所述的装置,其中,所述粉末储藏罐设置有进气管道,所述进气管道配置来通入惰性气体,所述进气管道与所述粉末储藏罐连接的进气口的截面形状为梯形。
- 根据权利要求1-11任一项所述的装置,其中,所述第一开关为电磁阀门;所述第二开关为电磁阀门。
- 一种采用权利要求1-12任一权利要求所述的装置的使用方法,包括:控制监控装置与气体腔体之间的第二开关关闭,并控制监控装置与出气 管道之间的第一开关开启,监控出气管道中单位体积内粉末的含量;以及控制监控装置与气体腔体之间的第二开关开启,并控制监控装置与出气管道之间的第一开关关闭,输出气体进行薄膜沉积。
- 根据权利要求13所述的方法,其中,所述监控装置包括:粉末收集装置、弹簧和压力传感器,所述压力传感器通过所述弹簧与所述粉末收集装置连接;所述监控出气管道中单位体积内粉末的含量包括:所述粉末收集装置收集出气管道中的气态物,并将收集到的气态物凝固为固态物;所述压力传感器通过检测所述弹簧的压力,得到随时间变化的压力转化为数字信号的数值,根据预先建立的压力与单位体积的粉末含量的对应关系,得到出气管道中单位体积内粉末的含量。
- 根据权利要求14所述的方法,其中,粉末储藏罐的底端设置为一移动结构,该移动结构配置来调节所述粉末储藏罐的体积;所述方法还包括:与粉末储藏罐和所述监控装置连接的报警调节装置,在监控出气管道中单位体积内粉末的含量后,报警调节装置接收所述监控装置反馈的出气管道中单位体积内粉末的含量,将单位体积内粉末的含量值与预设范围比较,当所述单位体积内粉末的含量值超出所述预设范围时,发出警报,并控制所述移动结构运动,直到警报消除。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/503,877 US20180119284A1 (en) | 2016-01-04 | 2016-09-13 | Maintenance device and method of using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610004251.6 | 2016-01-04 | ||
CN201610004251.6A CN105624650B (zh) | 2016-01-04 | 2016-01-04 | 一种装置及该装置的使用方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017118081A1 true WO2017118081A1 (zh) | 2017-07-13 |
Family
ID=56039986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/098878 WO2017118081A1 (zh) | 2016-01-04 | 2016-09-13 | 维修装置及该维修装置的使用方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20180119284A1 (zh) |
CN (1) | CN105624650B (zh) |
WO (1) | WO2017118081A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105624650B (zh) * | 2016-01-04 | 2018-11-23 | 京东方科技集团股份有限公司 | 一种装置及该装置的使用方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202110354U (zh) * | 2011-07-07 | 2012-01-11 | 北京京东方光电科技有限公司 | 一种钨粉罐 |
CN103278434A (zh) * | 2013-05-20 | 2013-09-04 | 清华大学 | 测量高温气冷堆一回路管道中石墨粉尘浓度的装置及方法 |
CN204366040U (zh) * | 2014-12-31 | 2015-06-03 | 万全京仪机床有限公司 | 选择性激光烧结机械 |
CN105624650A (zh) * | 2016-01-04 | 2016-06-01 | 京东方科技集团股份有限公司 | 一种装置及该装置的使用方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7638002B2 (en) * | 2004-11-29 | 2009-12-29 | Tokyo Electron Limited | Multi-tray film precursor evaporation system and thin film deposition system incorporating same |
CN102078259A (zh) * | 2010-12-29 | 2011-06-01 | 天津大学 | 一种制备均匀滴丸的设备及方法 |
-
2016
- 2016-01-04 CN CN201610004251.6A patent/CN105624650B/zh not_active Expired - Fee Related
- 2016-09-13 WO PCT/CN2016/098878 patent/WO2017118081A1/zh active Application Filing
- 2016-09-13 US US15/503,877 patent/US20180119284A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202110354U (zh) * | 2011-07-07 | 2012-01-11 | 北京京东方光电科技有限公司 | 一种钨粉罐 |
CN103278434A (zh) * | 2013-05-20 | 2013-09-04 | 清华大学 | 测量高温气冷堆一回路管道中石墨粉尘浓度的装置及方法 |
CN204366040U (zh) * | 2014-12-31 | 2015-06-03 | 万全京仪机床有限公司 | 选择性激光烧结机械 |
CN105624650A (zh) * | 2016-01-04 | 2016-06-01 | 京东方科技集团股份有限公司 | 一种装置及该装置的使用方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105624650A (zh) | 2016-06-01 |
CN105624650B (zh) | 2018-11-23 |
US20180119284A1 (en) | 2018-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1090608A (en) | System for continuous analysis of gases | |
KR100971608B1 (ko) | 초순수 내의 비-휘발성 잔류물을 측정하기 위한 시스템 | |
US20060249023A1 (en) | Filtering particulate materials in continuous emission monitoring systems | |
US20200179842A1 (en) | Coolant liquid processing system | |
WO2017118081A1 (zh) | 维修装置及该维修装置的使用方法 | |
US20020112658A1 (en) | Process for monitoring the gaseous environment of a crystal puller for semiconductor growth | |
KR20150136606A (ko) | 미립자 측정방법 및 미립자 측정 시스템 및 초순수 제조 시스템 | |
JP2010038458A (ja) | 蒸気質のモニタリング装置 | |
CN104597207A (zh) | 吸气式烟雾探测系统 | |
KR20190108614A (ko) | 원심 여과기와 이것을 이용한 액중 미립자의 포착 관찰 방법 | |
CN108592380A (zh) | 商用即热式防干烧热水器及控温控流量防干烧加热方法 | |
CN105136520A (zh) | 一种热电站汽水取样系统 | |
CN205450562U (zh) | 预烘烤机升华物监控收集装置 | |
KR101347600B1 (ko) | 반도체 설비용 자동압력 제어장치 | |
CN214634147U (zh) | 一种丁二酸三级真空连续冷却结晶器 | |
JP2011247675A (ja) | 純水中の微粒子数測定用の濾過装置および微粒子数測定方法 | |
CN109813850A (zh) | 自动控制分析仪预处理装置以及预处理方法 | |
CN204924741U (zh) | 一种热电站汽水取样系统 | |
CN208779683U (zh) | 一种商用即热式防干烧热水器 | |
WO2024087424A1 (zh) | 岩棉电熔炉液位监测装置及方法、岩棉电熔炉 | |
CN220206922U (zh) | 一种基于激光切割过程的气体智能监测系统 | |
JP2012081503A (ja) | クロップ落下検出方法 | |
CN204389250U (zh) | 模块化预处理装置 | |
CN220337997U (zh) | 一种化学工业生产的安全预警装置 | |
KR100186516B1 (ko) | 액체 및 기체용 필터(Filter)의 감시장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 15503877 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16883211 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16883211 Country of ref document: EP Kind code of ref document: A1 |