WO2024087424A1 - 岩棉电熔炉液位监测装置及方法、岩棉电熔炉 - Google Patents

岩棉电熔炉液位监测装置及方法、岩棉电熔炉 Download PDF

Info

Publication number
WO2024087424A1
WO2024087424A1 PCT/CN2023/077355 CN2023077355W WO2024087424A1 WO 2024087424 A1 WO2024087424 A1 WO 2024087424A1 CN 2023077355 W CN2023077355 W CN 2023077355W WO 2024087424 A1 WO2024087424 A1 WO 2024087424A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid level
furnace
rock wool
wool electric
module
Prior art date
Application number
PCT/CN2023/077355
Other languages
English (en)
French (fr)
Inventor
唐宇
刘春�
石明扬
张健辉
杨威
Original Assignee
南京玻璃纤维研究设计院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京玻璃纤维研究设计院有限公司 filed Critical 南京玻璃纤维研究设计院有限公司
Publication of WO2024087424A1 publication Critical patent/WO2024087424A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/80Arrangements for signal processing

Definitions

  • the present invention relates to the technical field of rock wool production, and in particular to a rock wool electric melting furnace liquid level monitoring device and method, and a rock wool electric melting furnace.
  • rock particles or industrial solid waste particles adjusted according to their composition are fed into a rock wool electric melting furnace, and then electricity is turned on to generate resistance heat to melt the rock into a melt.
  • unstable liquid level control in the furnace will increase power consumption.
  • the existing technology usually uses the method of manually measuring the liquid level in the furnace after timed power off and shutdown to stabilize the furnace condition, so as to achieve the purpose of controlling product costs.
  • This method is relatively cumbersome, and will increase downtime and affect production efficiency.
  • the object of the present invention is to address at least some of the above-mentioned deficiencies and to provide a device and method for monitoring the liquid level of a rock wool electric furnace without shutting down the furnace.
  • the present invention provides a rock wool electric furnace liquid level monitoring device, comprising:
  • the camera channel is located above the furnace cover of the rock wool electric melting furnace, with one end facing the opening of the furnace cover and the other end connected to the camera module, for protecting the camera module and allowing the camera module to capture the furnace wall image inside the rock wool electric melting furnace from the opening;
  • the furnace wall image includes a liquid level line;
  • the calculation module is connected to the camera module, and is used to obtain the furnace wall image, and calculate the liquid level height in the furnace based on multiple frames of the furnace wall image with a preset duration.
  • an optical element is provided in the camera channel to change the propagation direction of the light path.
  • the camera channel uses compressed air to continuously supply air to maintain the channel. Department cleaning.
  • the camera channel includes a water-cooling protection component with a built-in temperature detection device, and the water-cooling protection component is arranged on the periphery of the camera module to provide temperature reduction protection for the camera module.
  • the calculation module calculates the liquid level height in the furnace based on multiple frames of the furnace wall images of a preset duration, including:
  • the solution module obtains multiple frames of the furnace wall images of a preset time length and performs preprocessing
  • the solution module identifies the liquid level height in the furnace based on each frame of the furnace wall image after preprocessing, and determines whether the currently identified liquid level height is credible based on the liquid level height of multiple frames within a preset time length. If so, the identified liquid level height is output; otherwise, it continues to obtain the next multiple frames of the furnace wall image of a preset time length.
  • the camera module includes a high-definition wide-angle camera.
  • the camera channel is connected to a compressed air source, and a manual valve, an electric regulating valve and a rotor flow meter are provided at the connection;
  • the manual valve is used to limit the maximum gas volume
  • the electric regulating valve is used to adjust the real-time gas volume based on visibility
  • the flow meter is used to monitor the real-time gas consumption.
  • the rock wool electric furnace liquid level monitoring device also includes a control module; the control module is connected to the solution module and the camera module, and is used to generate corresponding control instructions and send them to the solution module and the camera module accordingly.
  • the present invention also provides a method for monitoring the liquid level of a rock wool electric furnace, which is implemented by using any of the above-mentioned rock wool electric furnace liquid level monitoring devices, and comprises:
  • the liquid level height in the furnace is identified respectively;
  • the judgment is made based on the liquid level height change rate and the preset slope threshold. If the liquid level height change rate exceeds the preset slope threshold, the data is judged to be incorrect and the current preset duration is deleted. Corresponding to the furnace wall picture, re-obtain the furnace wall picture inside the rock wool electric melting furnace for the next preset time length, otherwise output the liquid level height in the furnace.
  • the present invention also provides a rock wool electric melting furnace, which uses the rock wool electric melting furnace liquid level monitoring device as described in any one of the above items to continuously monitor the liquid level height inside the rock wool electric melting furnace.
  • the present invention provides a rock wool electric furnace liquid level monitoring device and method, and a rock wool electric furnace; the present invention enables the camera module to shoot the furnace wall image inside the rock wool electric furnace from the opening of the furnace cover of the rock wool electric furnace through the optical path in the camera channel.
  • the camera channel can protect the camera module to prevent the hot air overflowing from the rock wool electric furnace from damaging the camera module and affecting the shooting.
  • the solution module solves the liquid level height in the furnace based on the multi-frame furnace wall image within a preset time length obtained by shooting, which can reduce the error introduced by a single frame image and improve the stability and accuracy of the calculation result; the present invention can monitor the internal liquid level height of the rock wool electric furnace in real time and continuously without stopping the machine, so that the rock wool electric furnace does not need to be powered off and shut down, and the liquid level in the furnace can be controlled to be stable based on the monitoring results, thereby achieving continuous production, improving production efficiency, and reducing labor.
  • FIG. 1 is a schematic diagram of the structure of a camera module and a camera channel of a rock wool electric furnace liquid level monitoring device according to an embodiment of the present invention
  • FIG2 is a schematic diagram of a working state of a rock wool electric furnace liquid level monitoring device according to an embodiment of the present invention
  • FIG3 is a schematic diagram of the steps of a method for monitoring the liquid level of a rock wool electric melting furnace according to an embodiment of the present invention.
  • 1 camera module; 2: water cooling protection part; 3: prism; 4: positive pressure cleaning visual channel; 5: furnace wall camera range; 6: furnace top space; 7: dry material pile.
  • the prior art usually uses a method of manually measuring the liquid level after a timed power outage to stabilize the furnace condition. Therefore, it is necessary to propose a technical solution for monitoring the liquid level of a rock wool electric melting furnace without shutting down to reduce downtime.
  • the temperature of the hot zone in the center of the melt exceeds 1500°C
  • the liquid surface temperature in the solid-liquid mixing surface in the furnace exceeds 1000°C.
  • Conventional methods of measuring the liquid level are difficult to use to measure the height of the solid-liquid mixing surface in the furnace.
  • the present invention provides a liquid level monitoring device and method for the rock wool production environment and the characteristics of the mixed liquid level in the furnace.
  • an embodiment of the present invention provides a rock wool electric furnace liquid level monitoring device, including a camera module 1, a camera channel and a solution module (not shown in Figure 1); wherein the camera channel is located above the furnace cover of the rock wool electric furnace, with one end facing the opening of the furnace cover, and the other end connected to the camera module 1, for protecting the camera module 1 and forming an optical path channel, so that the camera module 1 can capture the furnace wall image inside the rock wool electric furnace from the opening; the furnace wall image includes a liquid level line, that is, the intersection line between the liquid surface in the solid-liquid mixing surface in the furnace and the furnace wall; the solution module is connected to the camera module 1, for acquiring the furnace wall image, and based on multiple frames of the furnace wall image with a preset duration, solve the liquid level height in the furnace.
  • the camera module 1 takes a picture of the furnace wall at an inclined angle from the opening of the furnace cover through the optical path inside the camera channel, that is, the camera viewing angle area of the camera module 1 is inclined to one side of the furnace wall, and the furnace wall camera range 5 includes the liquid surface line.
  • the camera module 1 does not directly contact the hot air overflowing from the furnace top space 6 to avoid affecting the shooting and extend the service life of the equipment; and, considering that the material surface inside the rock wool electric melting furnace is a solid-liquid mixed liquid surface, the solid material level cannot express the actual liquid level height, and the liquid liquid surface brightness interference may directly lead to the traditional The distance measurement deviation is large.
  • the present invention calculates the liquid level height in the furnace based on multiple frames of furnace wall images within a preset time length, avoiding the error of a single frame image (such as overexposure, jitter, etc.) affecting the calculation result, and can improve the accuracy and stability of liquid level measurement.
  • an optical element such as a prism 3 is provided in the imaging channel to change the propagation direction of the light path.
  • the propagation direction of the light path in the camera channel can be adjusted so that the camera module 1 can be further away from the opening of the furnace cover to avoid contact with hot air and reduce exposure to heat radiation.
  • the camera channel uses continuous compressed air supply to keep the interior of the channel clean.
  • Continuously supplying compressed air can effectively reduce the interference of smoke, dust and other factors on the camera, and can keep the inside of the channel clean, avoid the accumulation of dirt on the inner wall of the channel and optical components, and extend the service life. At the same time, supplying compressed air can also help reduce the impact of hot air and heat radiation on the camera channel and the camera module 1.
  • the camera channel is connected to a compressed air source, and a manual valve, an electric regulating valve and a rotor flow meter are provided at the connection; wherein the manual valve is used to limit the maximum air volume supplied by the compressed air source to the camera channel, the electric regulating valve is used to adjust the real-time air volume based on the visibility inside the camera channel, and the flow meter is used to monitor the real-time air consumption.
  • the control and feedback signals of the electric regulating valve and the alarm signal of the rotor flow meter can be remotely transmitted to the central control room through the bus for monitoring.
  • the camera channel includes a water-cooling protective member 2 with a built-in temperature detection device, and the water-cooling protective member 2 is arranged on the periphery of the camera module 1 to provide temperature reduction protection for the camera module 1.
  • the temperature detection signal of the temperature detection device and the cooling water flow switch alarm signal of the water-cooling protective member 2 can be remotely transmitted to the central control room through the bus for monitoring.
  • the camera channel of the rock wool electric furnace liquid level monitoring device includes: a water-cooled protective member 2, a prism 3 and a positive pressure clean visual channel 4; wherein the positive pressure clean visual channel 4 is connected to a compressed air source for realizing continuous compressed air supply to keep the inside of the channel clean; the prism 3 is arranged in the positive pressure clean visual channel At one end of the positive pressure clean visual channel 4, the water cooling protective member 2 is a hollow structure, one end of which faces the prism 3, and the other end is connected to the camera module 1, and is sleeved on the periphery of the lens of the camera module 1, so as not to block the normal shooting of the camera module 1.
  • the light When in use, the light is incident on the prism 3 from the positive pressure clean visual channel 4, and the propagation direction of the light path is changed at the prism 3, and passes through the water cooling protective member 2 to be incident on the camera module 1.
  • the water cooling protective member 2 cools down the camera module 1 to reduce the influence of heat radiation, and the water cooling protective member 2 and the positive pressure clean visual channel 4 can prevent hot air from directly contacting the camera module 1.
  • compressed air is continuously supplied inside the positive pressure clean visual channel 4 to reduce smoke and dust, ensuring that the camera module 1 can capture clear pictures.
  • the camera module 1 includes a high-definition wide-angle camera.
  • the calculation module calculates the liquid level height in the furnace based on multiple frames of the furnace wall images of a preset duration, including:
  • the solution module obtains multiple frames of the furnace wall images of a preset time length and performs preprocessing
  • the solving module identifies the liquid level height in the furnace based on each frame of the furnace wall image after preprocessing, and determines whether the currently identified liquid level height is credible based on the multi-frame liquid level height within a preset time length. If so, the identified liquid level height is output; if not, the next multi-frame furnace wall image of a preset time length is obtained, and the above operation is repeated to continue solving the liquid level height in the furnace.
  • the preprocessing includes operations such as filtering and noise reduction to improve the accuracy of identifying the liquid level height.
  • the solution module does not directly output the recognized single-frame liquid level height, but determines whether the currently recognized liquid level height is credible based on the recognized multi-frame liquid level heights to remove interference caused by uncertain factors.
  • the solving module determines whether the currently identified liquid level height is credible according to multiple frames of liquid level height within a preset time length, including:
  • the solution module determines the liquid level change according to the liquid level height of multiple frames within a preset time. rate
  • the solution module determines that if the liquid level height change rate exceeds a preset slope threshold, the currently identified liquid level height is determined to be unreliable, otherwise it is reliable.
  • the liquid level height change rate within a preset time length such as the maximum liquid level height change rate per unit time length corresponding to adjacent frames, or the average liquid level height change rate within a preset time length, can be used for judgment and screening to eliminate inaccurate single-frame recognition results caused by uncertain factors, thereby improving the stability and reliability of the recognized liquid level height.
  • the output of the identified liquid level height includes:
  • the rock wool electric furnace liquid level monitoring device also includes a control module; the control module is connected to the solution module and the camera module, and is used to generate corresponding control instructions and send them to the solution module and the camera module accordingly.
  • control module it is possible to set the shooting parameters of the camera module and the working parameters of the solution module, such as setting a preset duration, a preset slope threshold, etc. Further, the control module can also be connected to the camera channel to set the working parameters of the water cooling protection component, the working parameters of the positive pressure cleaning visual channel, etc. The control module can be set in the central control room, away from the rock wool electric furnace to avoid being affected by high temperature.
  • the present invention further provides a rock wool electric furnace liquid level monitoring method, which is implemented by using the rock wool electric furnace liquid level monitoring device as described in any of the above embodiments, and specifically includes:
  • Step 300 obtaining a plurality of furnace wall images of the rock wool electric melting furnace for a preset time period
  • Step 302 pre-processing the acquired multiple frames of furnace wall images to achieve noise reduction
  • Step 304 based on each frame of the preprocessed furnace wall image, respectively identify the liquid level height in the furnace;
  • Step 306 determining the liquid level change rate based on each liquid level within a preset time period
  • Step 308 making a determination based on the liquid level height change rate and a preset slope threshold.
  • the data is judged to be incorrect and deleted.
  • the furnace wall image inside the rock wool electric melting furnace of the next preset duration is re-obtained, otherwise the liquid level height in the furnace is output.
  • determining the liquid level height change rate includes:
  • the melting characteristics of electric furnaces determine that the liquid level height in the furnace cannot change suddenly. Based on the liquid level height change rate, the inaccurate single-frame recognition results caused by uncertain factors can be effectively eliminated, thereby improving the stability and reliability of the recognized liquid level height.
  • step 308 outputting the identified liquid level height includes:
  • the rock wool electric melting furnace can regulate the production process to stabilize the liquid level in the furnace.
  • the present invention also provides a rock wool electric melting furnace, which uses the rock wool electric melting furnace liquid level monitoring device as described in any of the above embodiments to continuously monitor the liquid level height inside the rock wool electric melting furnace.
  • the above-mentioned rock wool electric furnace can achieve continuous production and effectively reduce the downtime for inspection.
  • the conventional manual power-off inspection has a power outage time of 10 minutes per hour. Calculated based on a 5-minute impact time, it can save a net 2 hours per day. Calculated based on 300 days of effective working time per year, the annual cumulative increase in effective production time is 25 days. Calculated based on an average hourly output of 5 tons, the annual increase can be 3,000 tons, an annual increase of about 10%.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

一种岩棉电熔炉液位监测装置,包括:摄像模块(1)、摄像通道和解算模块;摄像通道位于岩棉电熔炉的炉盖上方,一端朝向所述炉盖的开口处,另一端连接至摄像模块(1),用于保护摄像模块(1),并令摄像模块(1)自开口处拍摄到岩棉电熔炉内部的炉壁画面;炉壁画面包括液面线;解算模块与摄像模块(1)连接,用于获取炉壁画面,并基于预设时长的多帧炉壁画面,解算炉内液位高度,能够在不停机的情况下持续监测岩棉电熔炉内部液位。还涉及一种岩棉电熔炉液位监测方法,以及一种岩棉电熔炉。

Description

岩棉电熔炉液位监测装置及方法、岩棉电熔炉 技术领域
本发明涉及岩棉生产技术领域,尤其涉及一种岩棉电熔炉液位监测装置及方法、岩棉电熔炉。
背景技术
生产岩棉时,将岩石颗粒或者按成分调制过的工业固废颗粒送入岩棉电熔炉内,然后通电产生电阻热,使岩石熔化成熔体。在生产过程中,炉内液面控制不稳定会增加电能消耗。
目前,现有技术通常采用定时断电停机后人工测定炉内液位的方式来稳定炉况,从而达到控制产品成本的目的。这样的方式较为繁琐,且会增加停机时间,影响生产效率。
发明内容
本发明的目的是针对上述至少一部分不足之处,提供一种无需停机即可实现岩棉电熔炉液位监测的装置及方法。
为了实现上述目的,本发明提供了一种岩棉电熔炉液位监测装置,包括:
摄像模块、摄像通道和解算模块;其中,
所述摄像通道位于岩棉电熔炉的炉盖上方,一端朝向所述炉盖的开口处,另一端连接至所述摄像模块,用于保护所述摄像模块,并令所述摄像模块自开口处拍摄到岩棉电熔炉内部的炉壁画面;所述炉壁画面包括液面线;
所述解算模块与所述摄像模块连接,用于获取所述炉壁画面,并基于预设时长的多帧所述炉壁画面,解算炉内液位高度。
可选地,所述摄像通道内设有光学元件,用于改变光路传播方向。
可选地,所述摄像通道采用压缩空气持续送风的方式保持通道内 部清洁。
可选地,所述摄像通道包括内置温度检测装置的水冷保护件,所述水冷保护件设置在所述摄像模块的外围,用于对所述摄像模块进行降温保护。
可选地,所述解算模块基于预设时长的多帧所述炉壁画面,解算炉内液位高度,包括:
所述解算模块获取一段预设时长的多帧所述炉壁画面,并进行预处理;
所述解算模块基于预处理后的每一帧所述炉壁画面分别识别炉内液位高度,并根据预设时长内的多帧液位高度,判定当前识别到的液位高度是否可信,是则输出识别到的液位高度,否则继续获取下一段预设时长的多帧所述炉壁画面。
可选地,所述摄像模块包括高清广角摄像头。
可选地,所述摄像通道与压缩空气源连接,连接处设有手动阀、电动调节阀和转子流量计;
所述手动阀用于限制最大气量,所述电动调节阀用于基于能见度调整实时气量,所述流量计用于监测实时耗气量。
可选地,所述的岩棉电熔炉液位监测装置还包括控制模块;所述控制模块与所述解算模块、所述摄像模块均连接,用于生成相应的控制指令,并对应向所述解算模块、所述摄像模块发送。
本发明还提供了一种岩棉电熔炉液位监测方法,该方法采用上述任一项所述的岩棉电熔炉液位监测装置实现,包括:
获取一段预设时长的岩棉电熔炉内部的多帧炉壁画面;
对获取的多帧炉壁画面进行预处理,实现降噪;
基于预处理后的每一帧炉壁画面,分别识别炉内液位高度;
基于预设时长内的各个液位高度,确定液位高度变化率;
基于所述液位高度变化率和预设斜率阈值进行判定,若所述液位高度变化率超过预设斜率阈值,则判定数据有误,删除当前预设时长 对应的炉壁画面,重新获取下一段预设时长的岩棉电熔炉内部的炉壁画面,否则输出炉内液位高度。
本发明还提供了一种岩棉电熔炉,采用如上述任一项所述的岩棉电熔炉液位监测装置连续监测岩棉电熔炉内部的液位高度。
本发明的上述技术方案具有如下优点:本发明提供了一种岩棉电熔炉液位监测装置及方法、岩棉电熔炉;本发明令摄像模块通过摄像通道内的光路,从岩棉电熔炉炉盖的开口处拍摄岩棉电熔炉内部的炉壁画面,摄像通道能够保护摄像模块,避免岩棉电熔炉溢出的热空气对摄像模块造成伤害,影响拍摄,令解算模块基于拍摄所得的预设时长内的多帧炉壁画面解算炉内液位高度,可以减少单帧画面引入的误差,提高计算结果的稳定性、精确性;本发明能够在不停机的情况下,实时地、持续地监测岩棉电熔炉内部液位高度,使得岩棉电熔炉无需断电停机,即可基于监测结果控制炉内液面稳定,实现持续生产,提高生产效率,并减少人工。
附图说明
图1是本发明实施例中一种岩棉电熔炉液位监测装置的摄像模块和摄像通道结构示意图;
图2是本发明实施例中一种岩棉电熔炉液位监测装置工作状态示意图;
图3是本发明实施例中一种岩棉电熔炉液位监测方法步骤示意图。
图中:1:摄像模块;2:水冷保护件;3:棱镜;4:正压清洁视觉通道;5:炉壁摄像范围;6:炉顶空间;7:干料堆。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没 有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
如前所述,在岩棉生产过程中,炉内液面控制不稳定会增加电能消耗。目前,现有技术通常采用定时断电停机后人工测定液位的方式来稳定炉况。因此,有必要提出一种无需停机即可实现岩棉电熔炉液位监测的技术方案,以减少停机时间。在岩棉电熔炉内部,熔体中心热区温度超过1500℃,炉内固液混合面中液面温度超过1000℃,常规的测量液位方式难以用于测定炉内固液混合面高度。此外,由于炉内空间温度通常为500℃~700℃,生产中持续加入废棉等原料,会导致炉内空间频繁产生烟气,类似的不利因素会干扰视觉拍摄。有鉴于此,本发明提供了一种针对岩棉生产环境及炉内混合液面特点的液位监测装置及方法。
如图1和图2所示,本发明实施例提供的一种岩棉电熔炉液位监测装置,包括摄像模块1、摄像通道和解算模块(图1中未示出);其中,所述摄像通道位于岩棉电熔炉的炉盖上方,一端朝向所述炉盖的开口处,另一端连接至所述摄像模块1,用于保护所述摄像模块1,并形成光路通道,令所述摄像模块1能够自开口处拍摄到岩棉电熔炉内部的炉壁画面;所述炉壁画面包括液面线,即,炉内固液混合面中液面与炉壁的交接线;所述解算模块与所述摄像模块1连接,用于获取所述炉壁画面,并基于预设时长的多帧所述炉壁画面,解算炉内液位高度。
上述实施例在使用时,如图2所示,岩棉电熔炉内部有干料堆7及固液混合形成的液面,摄像模块1通过摄像通道内部的光路,从炉盖的开口处,以倾斜的角度拍摄炉壁画面,即,摄像模块1的摄像视角区域斜向炉壁一侧,炉壁摄像范围5内包括有液面线,摄像模块1不直接与炉顶空间6溢出的热空气接触,避免影响拍摄,延长设备的使用寿命;并且,考虑到岩棉电熔炉内部的料面为固液混合液面,固态物位无法表达实际液位高度,液态液面亮度干扰可能直接导致传统 测距偏差较大,本发明基于预设时长内的多帧所述炉壁画面解算炉内液位高度,避免单帧画面的误差(如画面过曝、抖动等)影响计算结果,可提高液位测量的准确性与稳定性。
可选地,如图1所示,所述摄像通道内设有光学元件,例如棱镜3,用于改变光路传播方向。
通过棱镜等光学元件,可以调整摄像通道内的光路传播方向,使得摄像模块1能够更远离炉盖的开口处,避免接触到热空气,且减少受到热辐射。
可选地,所述摄像通道采用压缩空气持续送风的方式保持通道内部清洁。
利用压缩空气持续送风,能够有效地减少烟气、粉尘等因素对于摄像的干扰,并且可以保持通道内部清洁,避免通道内壁及光学元件等结构积存污浊,延长使用寿命。同时,通过压缩空气送风,也有助于减少热空气与热辐射对摄像通道及摄像模块1的影响。
进一步地,为采用压缩空气持续送风,所述摄像通道与压缩空气源连接,连接处设有手动阀、电动调节阀和转子流量计;其中,所述手动阀用于限制所述压缩空气源向摄像通道内送风的最大气量,所述电动调节阀用于基于摄像通道内部的能见度调整实时气量,所述流量计用于监测实时耗气量。电动调节阀的控制和反馈信号以及转子流量计的报警信号可通过总线远传至中央控制室进行监控。
可选地,所述摄像通道包括内置温度检测装置的水冷保护件2,所述水冷保护件2设置在所述摄像模块1的外围,用于对所述摄像模块1进行降温保护。温度检测装置的温度检测信号及水冷保护件2的冷却水流开关报警信号可通过总线远传至中央控制室进行监控。
在一个具体的实施方式中,如图1所示,岩棉电熔炉液位监测装置的摄像通道包括:水冷保护件2、棱镜3和正压清洁视觉通道4;其中,所述正压清洁视觉通道4与压缩空气源连接,用于实现压缩空气持续送风,以保持通道内部清洁;棱镜3设置在所述正压清洁视觉通 道4的一端,水冷保护件2为中空结构,一端朝向所述棱镜3,另一端连接摄像模块1,套设在摄像模块1的镜头外围,不阻隔摄像模块1的正常拍摄。使用时,光线由所述正压清洁视觉通道4入射至所述棱镜3,在所述棱镜3处改变光路传播方向,穿过水冷保护件2入射至摄像模块1,水冷保护件2对摄像模块1进行降温保护,减少热辐射影响,且水冷保护件2及正压清洁视觉通道4能够避免热空气直接接触到摄像模块1,同时,压缩空气在正压清洁视觉通道4内部持续送风,减少烟尘,确保摄像模块1能拍摄到清晰的画面。
可选地,考虑到摄像模块1需要从炉盖上方由开口处拍摄炉内画面,为实现满足现场检测需求和安装角度需求,摄像模块1包括高清广角摄像头。
可选地,所述解算模块基于预设时长的多帧所述炉壁画面,解算炉内液位高度,包括:
所述解算模块获取一段预设时长的多帧所述炉壁画面,并进行预处理;
所述解算模块基于预处理后的每一帧所述炉壁画面分别识别炉内液位高度,并根据预设时长内的多帧液位高度,判定当前识别到的液位高度是否可信,是,则输出识别到的液位高度,否,则继续获取下一段预设时长的多帧所述炉壁画面,重复上述操作,继续解算炉内液位高度。
可选地,预处理包括滤波、降噪等操作,以提高识别液位高度的准确性。
采用上述实施例,所述解算模块并不直接输出识别到的单帧液位高度,而是根据识别到的多帧液位高度,判定当前识别到的液位高度是否可信,以去除不确定因素造成的干扰。
优选地,所述解算模块根据预设时长内的多帧液位高度,判定当前识别到的液位高度是否可信,包括:
所述解算模块根据预设时长内的多帧液位高度,确定液位高度变 化率;
所述解算模块进行判定,若所述液位高度变化率超过预设斜率阈值,则判定当前识别到的液位高度不可信,否则可信。
电炉熔制特性决定了炉内的液位高度不可突变,因此,通过预设时长内的液位高度变化率,如,相邻帧对应的单位时长液位高度变化率最大值,或,预设时长内的平均液位高度变化率,可进行判定与筛选,去除不确定因素造成的单帧识别结果不准确,进而提高识别到的液位高度稳定性与可靠性。
可选地,所述输出识别到的液位高度,包括:
输出识别到的每帧液位高度,或,输出多帧液位高度的平均值。
可选地,岩棉电熔炉液位监测装置还包括控制模块;所述控制模块与所述解算模块、所述摄像模块均连接,用于生成相应的控制指令,并对应地向所述解算模块、所述摄像模块发送。
通过所述控制模块,可实现设置摄像模块的拍摄参数,以及设置解算模块的工作参数,如设置预设时长、预设斜率阈值等。进一步地,所述控制模块还可连接所述摄像通道,以设置水冷保护件的工作参数、正压清洁视觉通道的工作参数等。控制模块可设置在中央控制室,远离岩棉电熔炉,避免受到高温影响。
如图3所示,本发明还提供了一种岩棉电熔炉液位监测方法,采用如上述任一项实施例所述的岩棉电熔炉液位监测装置实现,具体包括:
步骤300,获取一段预设时长的岩棉电熔炉内部的多帧炉壁画面;
步骤302,对获取的多帧炉壁画面进行预处理,实现降噪;
步骤304,基于预处理后的每一帧炉壁画面,分别识别炉内液位高度;
步骤306,基于预设时长内的各个液位高度,确定液位高度变化率;
步骤308,基于所述液位高度变化率和预设斜率阈值进行判定,
若所述液位高度变化率超过预设斜率阈值,则判定数据有误,删 除当前预设时长对应的炉壁画面,重新获取下一段预设时长的岩棉电熔炉内部的炉壁画面,否则输出炉内液位高度。
可选地,所述步骤306中,确定液位高度变化率,包括:
确定预设时长内相邻帧所对应的单位时长液位高度变化率最大值,或,确定预设时长内的平均液位高度变化率。
电炉熔制特性决定了炉内的液位高度不可突变,基于液位高度变化率,可有效去除不确定因素造成的单帧识别结果不准确,进而提高识别到的液位高度稳定性与可靠性。
可选地,步骤308中,所述输出识别到的液位高度,包括:
输出识别到的每帧液位高度,或,输出多帧液位高度的平均值。
基于输出的液位高度,岩棉电熔炉即可对生产过程进行调控,以稳定炉内液面。
本发明还提供了一种岩棉电熔炉,采用如上述任一项实施例所述的岩棉电熔炉液位监测装置连续监测岩棉电熔炉内部的液位高度。
上述岩棉电熔炉能够实现连续生产,有效减少停机检查时间,常规人工断电检查每小时10分钟停电时间,按5分钟影响时间计算,每天净节省2小时,每年按300天有效工作时间计算,年累计增加25天有效生产时间,按平均小时产量5吨计算,年可增加3000吨,年增产约10%。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种岩棉电熔炉液位监测装置,其特征在于,包括:
    摄像模块、摄像通道和解算模块;其中,
    所述摄像通道位于岩棉电熔炉的炉盖上方,一端朝向所述炉盖的开口处,另一端连接至所述摄像模块,用于保护所述摄像模块,并令所述摄像模块自开口处拍摄到岩棉电熔炉内部的炉壁画面;所述炉壁画面包括液面线;
    所述解算模块与所述摄像模块连接,用于获取所述炉壁画面,并基于预设时长的多帧所述炉壁画面,解算炉内液位高度。
  2. 根据权利要求1所述的岩棉电熔炉液位监测装置,其特征在于:所述摄像通道内设有光学元件,用于改变光路传播方向。
  3. 根据权利要求1所述的岩棉电熔炉液位监测装置,其特征在于:所述摄像通道采用压缩空气持续送风的方式保持通道内部清洁。
  4. 根据权利要求1所述的岩棉电熔炉液位监测装置,其特征在于:所述摄像通道包括内置温度检测装置的水冷保护件,所述水冷保护件设置在所述摄像模块的外围,用于对所述摄像模块进行降温保护。
  5. 根据权利要求1所述的岩棉电熔炉液位监测装置,其特征在于,所述解算模块基于预设时长的多帧所述炉壁画面,解算炉内液位高度,包括:
    所述解算模块获取一段预设时长的多帧所述炉壁画面,并进行预处理;
    所述解算模块基于预处理后的每一帧所述炉壁画面分别识别炉内液位高度,并根据预设时长内的多帧液位高度,判定当前识别到的液 位高度是否可信,是则输出识别到的液位高度,否则继续获取下一段预设时长的多帧所述炉壁画面。
  6. 根据权利要求1所述的岩棉电熔炉液位监测装置,其特征在于:所述摄像模块包括高清广角摄像头。
  7. 根据权利要求3所述的岩棉电熔炉液位监测装置,其特征在于:
    所述摄像通道与压缩空气源连接,连接处设有手动阀、电动调节阀和转子流量计;
    所述手动阀用于限制最大气量,所述电动调节阀用于基于能见度调整实时气量,所述流量计用于监测实时耗气量。
  8. 根据权利要求1所述的岩棉电熔炉液位监测装置,其特征在于:还包括控制模块;所述控制模块与所述解算模块、所述摄像模块均连接,用于生成相应的控制指令,并对应向所述解算模块、所述摄像模块发送。
  9. 一种岩棉电熔炉液位监测方法,其特征在于,采用如权利要求1-8任一项所述的岩棉电熔炉液位监测装置实现,包括:
    获取一段预设时长的岩棉电熔炉内部的多帧炉壁画面;
    对获取的多帧炉壁画面进行预处理,实现降噪;
    基于预处理后的每一帧炉壁画面,分别识别炉内液位高度;
    基于预设时长内的各个液位高度,确定液位高度变化率;
    基于所述液位高度变化率和预设斜率阈值进行判定,若所述液位高度变化率超过预设斜率阈值,则判定数据有误,删除当前预设时长对应的炉壁画面,重新获取下一段预设时长的岩棉电熔炉内部的炉壁画面,否则输出炉内液位高度。
  10. 一种岩棉电熔炉,其特征在于:采用如权利要求1-8任一项所述的岩棉电熔炉液位监测装置连续监测岩棉电熔炉内部的液位高度。
PCT/CN2023/077355 2022-10-28 2023-02-21 岩棉电熔炉液位监测装置及方法、岩棉电熔炉 WO2024087424A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211339188.3 2022-10-28
CN202211339188.3A CN115790767A (zh) 2022-10-28 2022-10-28 岩棉电熔炉液位监测装置及方法、岩棉电熔炉

Publications (1)

Publication Number Publication Date
WO2024087424A1 true WO2024087424A1 (zh) 2024-05-02

Family

ID=85434330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077355 WO2024087424A1 (zh) 2022-10-28 2023-02-21 岩棉电熔炉液位监测装置及方法、岩棉电熔炉

Country Status (2)

Country Link
CN (1) CN115790767A (zh)
WO (1) WO2024087424A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09243434A (ja) * 1996-03-13 1997-09-19 Ngk Insulators Ltd 溶融炉の液面監視方法
JPH11326061A (ja) * 1998-05-20 1999-11-26 Sumitomo Metal Ind Ltd 炉内溶湯の温度測定方法及び装置
CN1384662A (zh) * 2002-06-25 2002-12-11 北京科技大学 一种插入式炉窑摄象仪及图象处理方法
KR20050097240A (ko) * 2004-04-01 2005-10-07 소재춘 노(爐)의 공랭식 내부 감시카메라용 슬리브 하우징
CN101807082A (zh) * 2010-03-18 2010-08-18 重庆市正川玻璃有限公司 玻璃窖炉高温玻液高度摄像控制法
CN103620352A (zh) * 2011-08-09 2014-03-05 旭硝子株式会社 液位检测装置、玻璃制造装置、液位检测方法及玻璃制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09243434A (ja) * 1996-03-13 1997-09-19 Ngk Insulators Ltd 溶融炉の液面監視方法
JPH11326061A (ja) * 1998-05-20 1999-11-26 Sumitomo Metal Ind Ltd 炉内溶湯の温度測定方法及び装置
CN1384662A (zh) * 2002-06-25 2002-12-11 北京科技大学 一种插入式炉窑摄象仪及图象处理方法
KR20050097240A (ko) * 2004-04-01 2005-10-07 소재춘 노(爐)의 공랭식 내부 감시카메라용 슬리브 하우징
CN101807082A (zh) * 2010-03-18 2010-08-18 重庆市正川玻璃有限公司 玻璃窖炉高温玻液高度摄像控制法
CN103620352A (zh) * 2011-08-09 2014-03-05 旭硝子株式会社 液位检测装置、玻璃制造装置、液位检测方法及玻璃制造方法

Also Published As

Publication number Publication date
CN115790767A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
KR101223104B1 (ko) 철강공업로 조업 모니터링 방법 및 장치
TW562866B (en) Temperature measuring apparatus and method for molten metal
WO2024087424A1 (zh) 岩棉电熔炉液位监测装置及方法、岩棉电熔炉
US5694480A (en) Molten slag flow rate measuring device and furnace facilities using the same
CN103063150A (zh) 基于数字图像处理技术的灰渣厚度监测方法及装置
CN109355493B (zh) 生球布料智能控制系统及控制方法
CN110640297A (zh) 一种搅拌摩擦焊瞬态温度在线控制系统及方法
CA2078522A1 (en) Ceramic welding method and apparatus
CN108955550A (zh) 空气预热器弧形板与转子间隙可视化测量装置及其测量方法
CN109164126B (zh) 一种红外转炉下渣检测系统
JPS5855512A (ja) 高炉の炉況判定方法
CN116229854A (zh) 一种液晶显示屏玻璃显示内容异常的监测装置及方法
CN109590638A (zh) 一种用于传感器加工的焊接设备
CN115997096A (zh) 用于监测和控制炉的系统和方法
JP7234753B2 (ja) ダム水位監視システム
KR200379590Y1 (ko) 용광로의 송풍구 원격감시 시스템
JPH01321335A (ja) 晶析槽内の結晶状態監視装置
JP3600262B2 (ja) 溶滓流量の測定装置及びこれを利用した炉設備
JP2001183302A (ja) 鋼帯表面検査装置
CN203613207U (zh) 一种高炉红外成像系统
CN114002901A (zh) 一种投影仪高效的散热系统
WO2017118081A1 (zh) 维修装置及该维修装置的使用方法
JPH05200556A (ja) Tig溶接電極の寿命判断方法及び電極形状検出装置
CN201374762Y (zh) 超广角耐温图像火检探头
JP2005217862A (ja) 監視システム