WO2017117857A1 - 移动终端运动轨迹的匹配方法及装置 - Google Patents
移动终端运动轨迹的匹配方法及装置 Download PDFInfo
- Publication number
- WO2017117857A1 WO2017117857A1 PCT/CN2016/075246 CN2016075246W WO2017117857A1 WO 2017117857 A1 WO2017117857 A1 WO 2017117857A1 CN 2016075246 W CN2016075246 W CN 2016075246W WO 2017117857 A1 WO2017117857 A1 WO 2017117857A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- track
- time
- trajectory
- distance
- motion
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
Definitions
- the present invention relates to the field of communications technologies, and in particular, to a method and apparatus for matching a motion track of a mobile terminal.
- Point matching Discretize the trajectory into a series of space-time point sequences, and transform the problem of matching trajectories into the matching problem of space-time points; when the coordinates of the empty points are the same, it is regarded as point matching; when the number of matching points is sufficient Can be regarded as matching two tracks;
- Cosine matching Discretize the trajectory of the target in a period of time into a sequence of time-space points, and then convert it into the number of times that each time-space point is accessed by the target during this time. At this time, the trajectory of the target during this time is represented by a vector. Each dimension of the vector is the time and space point, and the value in each dimension is the number of times the space is accessed. Calculate the cosine of the angle between the two vectors. The larger the cosine value, the higher the trajectory matching degree of the two vectors.
- a main object of the embodiments of the present invention is to provide a method and a device for matching a motion track of a mobile terminal.
- the accuracy of the positioning data of the mobile terminal is not high, the time-ordered track matching can be effectively analyzed.
- a method for matching a motion track of a mobile terminal includes the following steps:
- the spatiotemporal coordinate point includes a positioning time point in the positioning data and position information corresponding to the positioning time point;
- the step of acquiring the positioning data generated by the mobile terminal in the preset time to form the motion track of the mobile terminal in the preset time comprises:
- the passive positioning data generated when the mobile terminal uses the wireless communication network in a preset time is collected, and the motion track of the mobile terminal in the preset time is formed according to the passive positioning data.
- the location information comprises longitude, latitude and/or altitude.
- the step of calculating a relative spatial distance between motion trajectories of different mobile terminals according to a plurality of spatiotemporal coordinate points in motion trajectories of different mobile terminals comprises:
- a relative spatial distance between motion trajectories of different mobile terminals is calculated based on the spatial distance.
- the step of calculating a relative spatial distance between motion trajectories of different mobile terminals based on the spatial distance comprises:
- the sum of the distances of a track as the second total distance, the first total distance is added to the second total distance, and the average value is taken as the first track and the second track.
- An average distance between the time points of the space-time coordinate point on the first track and the space-time coordinate point on the second track a minimum value of the distance;
- a distance from the space-time coordinate point on the second track to the first track is a spatial distance from a space-time coordinate point on the second track to each space-time coordinate point on the first track Minimum value
- the step of matching the motion trajectories of different mobile terminals based on the relative spatial distance comprises:
- the relative spatial distance is greater than a preset threshold, it is determined that the motion trajectories of different mobile terminals do not match.
- an embodiment of the present invention further provides a matching device for a motion track of a mobile terminal, where the device for matching a motion track of the mobile terminal includes:
- Obtaining a module configured to acquire positioning data generated by the mobile terminal in a preset time, to form a motion track of the mobile terminal in a preset time;
- a discrete module configured to discretize the motion trajectory into a plurality of spatiotemporal coordinate points, wherein the spatiotemporal coordinate point includes a positioning time point in the positioning data and position information corresponding to the positioning time point;
- a calculation module configured to calculate a relative spatial distance between motion trajectories of different mobile terminals according to a plurality of spatiotemporal coordinate points in motion trajectories of different mobile terminals;
- the matching module is configured to match motion trajectories of different mobile terminals based on the relative spatial distance.
- the obtaining module is further configured to:
- the passive positioning data generated when the mobile terminal uses the wireless communication network in a preset time is collected, and the motion track of the mobile terminal in the preset time is formed according to the passive positioning data.
- the location information comprises longitude, latitude and/or altitude.
- the calculation module is further configured to:
- the calculation module is further configured to:
- the sum of the distances of a track as the second total distance, the first total distance is added to the second total distance, and the average value is taken as the first track and the second track.
- An average distance between the time points of the space-time coordinate point on the first track and the space-time coordinate point on the second track a minimum value of the distance;
- a distance from the space-time coordinate point on the second track to the first track is a spatial distance from a space-time coordinate point on the second track to each space-time coordinate point on the first track Minimum value
- the matching module comprises:
- Comparing unit configured to compare the relative spatial distance with a preset threshold
- the determining unit is configured to determine that the motion trajectories of different mobile terminals match when the relative spatial distance is less than a preset threshold; if the relative spatial distance is greater than a preset threshold, determine a motion trajectory of different mobile terminals Mismatch.
- a method and device for matching a motion track of a mobile terminal discretizing a motion track of the mobile terminal in a preset time into a plurality of space-time coordinate points including a positioning time point and position information; Calculating a relative spatial distance between motion trajectories of different mobile terminals according to a plurality of spatiotemporal coordinate points in motion trajectories of different mobile terminals; and matching motion trajectories of different mobile terminals based on the relative spatial distances.
- the positioning time points and the position information are comprehensively considered to calculate the relative spatial distance between different motion trajectories when the motion trajectories of different mobile terminals are matched, the space-time coordinate points of different motion trajectories are not required to be identical, and the mobile terminal is The accuracy of the positioning data is not high, and since the positioning time is considered, the temporally ordered motion track matching can be effectively analyzed.
- FIG. 1 is a schematic flow chart of an embodiment of a method for matching a motion track of a mobile terminal according to the present invention
- FIG. 2 is a schematic diagram of a refinement process of step S40 in FIG. 1;
- FIG. 3 is a flowchart of a specific implementation of matching a track 1 and a track 2 in an embodiment of a method for matching a motion track of a mobile terminal according to an embodiment of the present invention
- FIG. 4 is a schematic diagram of functional modules of an embodiment of a matching apparatus for a motion track of a mobile terminal according to the present invention
- FIG. 5 is a schematic diagram of the refinement function module of the matching module 04 in FIG.
- Embodiments of the present invention provide a method for matching a motion track of a mobile terminal.
- FIG. 1 is a schematic flowchart diagram of an embodiment of a method for matching a motion track of a mobile terminal according to an embodiment of the present invention.
- the method for matching the motion track of the mobile terminal includes:
- Step S10 Acquire positioning data generated by the mobile terminal in a preset time, and form a motion track of the mobile terminal in a preset time;
- the mobile terminal such as a mobile phone
- the positioning manner for the mobile terminal may include the following three types:
- GPS positioning positioning is performed by the GPS module provided by the mobile terminal, and the positioning data is directly reported to the mobile terminal.
- GPS Global Positioning System
- the GPS system consists of 24 GPS working satellites, which together form a GPS satellite constellation. Each GPS working satellite emits a signal for navigation and positioning. GPS users use these signals to work.
- the user part of the GPS consists of a GPS receiver, data processing software and corresponding user equipment such as computer meteorological instruments. Its role is to receive signals from GPS satellites and use these signals for navigation and positioning.
- the satellite signals received by the GPS receiver can be converted into the distance from the receiver to each satellite. These distances can be used to determine the position of the GPS receiver so that the mobile terminal can be positioned by its own GPS module.
- Active positioning Proactively initiate a positioning request for a selected user name (such as the mobile phone number of the mobile terminal), and obtain the location of the mobile terminal through the wireless communication network of the operator.
- the active positioning system wants to query the location of a preset mobile phone number, and the mobile communication network uses the signal delay to convert and measure the distance of the mobile phone number to one or several neighboring base stations, and then calculates the latitude and longitude coordinates of the base stations. The location of the mobile number.
- Passive positioning Collecting the location data generated by the mobile terminal when using the wireless communication network, without actively initiating a positioning request to the mobile terminal; obtaining the location of all mobile terminals in the network without pre-selecting a mobile phone number.
- the network needs to suggest from which base station the mobile terminal obtains the service, and the mobile terminal also reports its location to the network so that it can be found when it is called. In this process, a large amount of signaling data related to the location of the mobile terminal is generated. By recording and analyzing these data, the passive positioning platform can know the location of all mobile terminals in the network. As long as the mobile terminal is using a mobile communication network, its location data is continuously generated.
- the positioning data generated by the mobile terminal in a preset time can be acquired, and the motion track of the mobile terminal in a preset time is formed.
- a specific application scenario such as when the mobile terminal needs to perform technical investigation in the public security field, it is necessary to perform trajectory matching on the two motion trajectories in the same time period for processing the tracking behavior and the like.
- GPS positioning the location data obtained by the mobile terminal through the GPS module provided by the mobile terminal is directly reported to the mobile terminal, and is not uploaded to other positioning platforms, and cannot be used for technical investigation.
- active positioning the mobile phone number of the mobile terminal must be known in advance, otherwise it cannot be located and is not suitable for technical investigation.
- Passive positioning does not need to pre-specify the mobile phone number of the mobile terminal. As long as the mobile terminal accesses the wireless communication network, location data is generated, and the location data of the mobile terminal of the entire network of the operator can be continuously collected, which can provide perfect technology detection. data support.
- the positioning data generated by the mobile terminal in the preset time period is specifically described by taking passive positioning data as an example.
- the positioning data is not limited to other types of positioning data.
- Step S20 discretizing the motion trajectory into a plurality of spatiotemporal coordinate points, wherein the spatiotemporal coordinate point includes a positioning time point in the positioning data and position information corresponding to the positioning time point;
- the motion track may be discretized into a plurality of space-time coordinate points.
- the space-time coordinate point is defined as a coordinate including a positioning time point in the passive positioning data and position information corresponding to the positioning time point.
- the mobile terminal actively reports its position when using the wireless communication network, and the number of times of reporting and the time interval are not fixed, but the reported passive positioning data includes the current positioning time point and the current location information. Therefore, the motion trajectory of the mobile terminal in a preset time may be discretized into a plurality of spatiotemporal coordinate points, where the spatiotemporal coordinate points may be represented by (positioning time point, location information) to describe that the mobile terminal is located at the positioning time point. Location information.
- the location information may represent a base station sector, and may include location attribute information such as latitude and longitude, altitude, direction, radius, etc.
- location attribute information such as latitude and longitude, altitude, direction, radius, etc.
- the location information is limited to longitude, Latitude and height, that is, the spatiotemporal coordinate point may be defined as (positioning time point, longitude, latitude, height), and of course, the position information may not include other position attribute information except longitude, latitude and altitude. .
- Step S30 calculating a relative spatial distance between motion trajectories of different mobile terminals according to a plurality of spatiotemporal coordinate points in motion trajectories of different mobile terminals;
- the motion trajectories of different mobile terminals may be discretized into a plurality of spatiotemporal coordinate points (positioning time points, position information) within a preset time, and different movements according to preset time
- a plurality of spatiotemporal coordinate points (positioning time points, position information) in the motion track of the terminal calculate a relative spatial distance between motion trajectories of different mobile terminals.
- the space-time coordinate point is defined as (positioning time point, longitude, latitude, altitude)
- the Euclidean distance in the four-dimensional space can be calculated by calculating the space-time coordinate points of the motion trajectories of different mobile terminals, and the motion of different mobile terminals will be calculated.
- the average distance between the trajectories, the minimum distance, or the average distance from the length of the trajectory is used as the relative spatial distance, which is not limited herein.
- Step S40 matching motion trajectories of different mobile terminals based on the relative spatial distance.
- the positioning time point in the passive positioning data reported by the mobile terminal and the position information corresponding to the positioning time point are comprehensively considered, that is,
- the relative spatial distance between the motion trajectories of different mobile terminals is calculated by considering the time and space distance, so that the correlation performance between the motion trajectories of different mobile terminals is relatively reasonable quantitative judgment based on the relative spatial distance.
- the relative spatial distance is compared with a preset threshold; if the relative spatial distance is less than a preset threshold, it may be determined that the motion trajectories of different mobile terminals match; if the relative spatial distance is If it is greater than the preset threshold, it can be judged that the motion trajectories of different mobile terminals do not match. Thereby, the passive positioning data is effectively processed to determine whether the temporally ordered motion trajectories match.
- the motion track of the mobile terminal in a preset time is discretized into a plurality of spatiotemporal coordinate points including the positioning time point and the position information; and the time and space coordinate points in the motion track of different mobile terminals to be matched are calculated.
- the positioning time points and the position information are comprehensively considered to calculate the relative spatial distance between different motion trajectories when the motion trajectories of different mobile terminals are matched, the space-time coordinate points of different motion trajectories are not required to be identical, and the mobile terminal is The accuracy of the positioning data is not high, and since the positioning time is considered, the temporally ordered motion track matching can be effectively analyzed.
- step S30 may include:
- a relative spatial distance between motion trajectories of different mobile terminals is calculated based on the spatial distance.
- the step of calculating a relative spatial distance between motion trajectories of different mobile terminals based on the spatial distance includes:
- the sum of the distances of a track as the second total distance, the first total distance is added to the second total distance, and the average value is taken as the first track and the second track.
- An average distance between the time points of the space-time coordinate point on the first track and the space-time coordinate point on the second track a minimum value of the distance;
- a distance from the space-time coordinate point on the second track to the first track is a spatial distance from a space-time coordinate point on the second track to each space-time coordinate point on the first track Minimum value
- the average distance between the first trajectory and the second trajectory is calculated according to the positioning time point and the position information, and the calculated time-sorted calculation is also considered.
- the average length of the first trajectory and the second trajectory, and finally the relative spatial distance between the first trajectory and the second trajectory is determined according to a ratio of the average distance to the average length. Since the time and space distance are comprehensively considered, the passive positioning data with lower precision can be processed better, so that the correlation between the first trajectory and the second trajectory can be quantitatively determined and can be effectively determined. Whether there is a match between the first track and the second track that are temporally ordered.
- FIG. 2 is a specific implementation flowchart for matching the track 1 and the track 2 in an embodiment of the method for matching the motion track of the mobile terminal according to the present invention.
- the space-time coordinate point is defined as (positioning time point, longitude, latitude, height)
- subsequent calculations can be defined first, such as defining a point-to-point distance: defining the distance between two points in four-dimensional space Euclidean distance, of which two The time difference between points is multiplied by the moving speed and can be converted into length units.
- a trajectory is a combination of multiple spatiotemporal coordinate points. Define the distance from the point to the trajectory: the minimum distance between the point and the points that make up the trajectory.
- the average distance between two tracks if there are two tracks respectively, track 1 and track 2, then the sum of the distances from each point on track 1 to track 2, plus the sum of the distances from point to track 1 on track 2 And then take the mean value, which is the average distance between track 1 and track 2.
- the length of a track sort the points on the track by time, and record them as point 1, point 2, point 3, ..., point n.
- the track length is the sum of the spatial distances of the adjacent space-time coordinate points, that is, point 1 to The distance of point 2, plus the distance from point 2 to point 3, ..., plus the distance from point n-1 to point n.
- the correlation of two trajectories the distance between two trajectories divided by the average length of the two trajectories, the lower the value obtained, the higher the correlation.
- Track 1 and Track 2 when matching Track 1 and Track 2, it may include:
- Step S1 selecting the i-th point of the track 1;
- Step S2 selecting the jth point of the track 2;
- Step S3 multiplying the time difference between the i point and the j point by the speed, and replacing it with the length unit;
- Step S4 calculating the distance between point i and point j by the Euclidean distance formula; j traversing all points of the track 2;
- Step S5 calculating the minimum value of the distance from point i to track 2, and recording the distance from point i to track 2;
- Step S6 calculating the sum of the distances of the points on the track 1 to the track 2, adding the sum of the distances of the points on the track 2 to the track 1, and taking the average value, which is recorded as the average distance of the track 1 to the track 2;
- Step S7 calculating an average length of the track 1 and the track 2;
- Step S8 the average distance from track 1 to track 2: the average length of track 1 and track 2, and the correlation between track 1 and track 2 is evaluated by this ratio.
- step S40 may include:
- Step S401 comparing the relative spatial distance with a preset threshold
- Step S402 if the relative spatial distance is less than a preset threshold, determining that motion trajectories of different mobile terminals match;
- Step S403 if the relative spatial distance is greater than a preset threshold, it is determined that the motion trajectories of different mobile terminals do not match.
- the embodiment of the invention further provides a matching device for the motion track of the mobile terminal.
- FIG. 4 is a schematic diagram of functional modules of an embodiment of a matching apparatus for a motion track of a mobile terminal according to the present invention.
- the matching device of the motion track of the mobile terminal includes:
- the obtaining module 01 is configured to acquire positioning data generated by the mobile terminal in a preset time, and form a motion track of the mobile terminal in a preset time;
- the mobile terminal such as a mobile phone
- the positioning manner for the mobile terminal may include the following three types:
- GPS positioning positioning is performed by the GPS module provided by the mobile terminal, and the positioning data is directly reported to the mobile terminal.
- GPS Global Positioning System
- the GPS system consists of 24 GPS working satellites, which together form a GPS satellite constellation. Each GPS working satellite emits a signal for navigation and positioning. GPS users use these signals to work.
- the user part of the GPS consists of a GPS receiver, data processing software and corresponding user equipment such as computer meteorological instruments. Its role is to receive signals from GPS satellites and use these signals for navigation and positioning.
- the satellite signals received by the GPS receiver can be converted into the distance from the receiver to each satellite. These distances can be used to determine the position of the GPS receiver so that the mobile terminal can be positioned by its own GPS module.
- Active positioning Proactively initiate a positioning request for a selected user name (such as the mobile phone number of the mobile terminal), and obtain the location of the mobile terminal through the wireless communication network of the operator.
- the active positioning system wants to query the location of a preset mobile phone number, and the mobile communication network uses the signal delay to convert and measure the distance of the mobile phone number to one or several neighboring base stations, and then calculates the latitude and longitude coordinates of the base stations. The location of the mobile number.
- Passive positioning Collecting the location data generated by the mobile terminal when using the wireless communication network, without actively initiating a positioning request to the mobile terminal; obtaining the location of all mobile terminals in the network without pre-selecting a mobile phone number.
- the network needs to suggest from which base station the mobile terminal obtains the service, and the mobile terminal also reports its location to the network so that it can be found when it is called. In this process, a large amount of signaling data related to the location of the mobile terminal is generated. By recording and analyzing these data, the passive positioning platform can know the location of all mobile terminals in the network. As long as the mobile terminal is using a mobile communication network, its location data is continuously generated.
- the positioning data generated by the mobile terminal in a preset time can be acquired, and the motion track of the mobile terminal in a preset time is formed.
- a specific application scenario such as when the mobile terminal needs to perform technical investigation in the public security field, it is necessary to perform trajectory matching on the two motion trajectories in the same time period for processing the tracking behavior and the like.
- GPS positioning the location data obtained by the mobile terminal through the GPS module provided by the mobile terminal is directly reported to the mobile terminal, and is not uploaded to other positioning platforms, and cannot be used for technical investigation.
- active positioning the mobile phone number of the mobile terminal must be known in advance, otherwise it cannot be located and is not suitable for technical investigation.
- Passive positioning does not need to pre-specify the mobile phone number of the mobile terminal. As long as the mobile terminal accesses the wireless communication network, location data is generated, and the location data of the mobile terminal of the entire network of the operator can be continuously collected, which can provide perfect technology detection. data support.
- the positioning data generated by the mobile terminal in the preset time period is specifically described by taking passive positioning data as an example.
- the positioning data is not limited to other types of positioning data.
- a discrete module 02 configured to discretize the motion trajectory into a plurality of spatiotemporal coordinate points, wherein the spatiotemporal coordinate point And including a positioning time point in the positioning data and position information corresponding to the positioning time point;
- the motion track may be discretized into a plurality of space-time coordinate points, wherein the space-time coordinate point is defined to include a positioning time point in the passive positioning data and The coordinates of the position information corresponding to the positioning time point.
- the passive positioning the mobile terminal actively reports its position when using the wireless communication network, and the number of times of reporting and the time interval are not fixed, but the reported passive positioning data includes the current positioning time point and the current location information. Therefore, the motion trajectory of the mobile terminal in a preset time may be discretized into a plurality of spatiotemporal coordinate points, where the spatiotemporal coordinate points may be represented by (positioning time point, location information) to describe that the mobile terminal is located at the positioning time point.
- the location information may represent a base station sector, and may include location attribute information such as latitude and longitude, altitude, direction, radius, etc.
- location attribute information such as latitude and longitude, altitude, direction, radius, etc.
- the location information is limited to longitude, Latitude and height, that is, the spatiotemporal coordinate point may be defined as (positioning time point, longitude, latitude, height), and of course, the position information may not include other position attribute information except longitude, latitude and altitude. .
- the calculating module 03 is configured to calculate a relative spatial distance between motion trajectories of different mobile terminals according to a plurality of spatiotemporal coordinate points in motion trajectories of different mobile terminals;
- the motion trajectories of different mobile terminals may be discretized into a plurality of spatiotemporal coordinate points (positioning time points, position information) within a preset time, and different movements according to preset time
- a plurality of spatiotemporal coordinate points (positioning time points, position information) in the motion track of the terminal calculate a relative spatial distance between motion trajectories of different mobile terminals.
- the space-time coordinate point is defined as (positioning time point, longitude, latitude, altitude)
- the Euclidean distance in the four-dimensional space can be calculated by calculating the space-time coordinate points of the motion trajectories of different mobile terminals, and the motion of different mobile terminals will be calculated.
- the average distance between the trajectories, the minimum distance, or the average distance from the length of the trajectory is used as the relative spatial distance, which is not limited herein.
- the matching module 04 is configured to match the motion trajectories of different mobile terminals based on the relative spatial distance.
- the positioning time point in the passive positioning data reported by the mobile terminal and the position information corresponding to the positioning time point are comprehensively considered, that is,
- the relative spatial distance between the motion trajectories of different mobile terminals is calculated by considering the time and space distance, so that the correlation performance between the motion trajectories of different mobile terminals is relatively reasonable quantitative judgment based on the relative spatial distance.
- the relative spatial distance is compared with a preset threshold; if the relative spatial distance is less than a preset threshold, it may be determined that the motion trajectories of different mobile terminals match; if the relative spatial distance is If it is greater than the preset threshold, it can be judged that the motion trajectories of different mobile terminals do not match. Thereby, the passive positioning data is effectively processed to determine whether the temporally ordered motion trajectories match.
- the motion track of the mobile terminal in a preset time is discretized into a plurality of spatiotemporal coordinate points including the positioning time point and the position information; and the time and space coordinate points in the motion track of different mobile terminals to be matched are calculated.
- the accuracy of the positioning data of the mobile terminal is not high, and since the positioning time is considered, the temporally ordered motion track matching can be effectively analyzed.
- the foregoing calculating module 03 may be configured to:
- a relative spatial distance between motion trajectories of different mobile terminals is calculated based on the spatial distance.
- the step of calculating a relative spatial distance between motion trajectories of different mobile terminals based on the spatial distance includes:
- the sum of the distances of a track as the second total distance, the first total distance is added to the second total distance, and the average value is taken as the first track and the second track.
- An average distance between the time points of the space-time coordinate point on the first track and the space-time coordinate point on the second track a minimum value of the distance;
- a distance from the space-time coordinate point on the second track to the first track is a spatial distance from a space-time coordinate point on the second track to each space-time coordinate point on the first track Minimum value
- the average distance between the first trajectory and the second trajectory is calculated according to the positioning time point and the position information, and the calculated time-sorted calculation is also considered.
- the average length of the first trajectory and the second trajectory, and finally the relative spatial distance between the first trajectory and the second trajectory is determined according to a ratio of the average distance to the average length. Since the time and space distance are comprehensively considered, the passive positioning data with lower precision can be processed better, so that the correlation between the first trajectory and the second trajectory can be quantitatively determined and can be effectively determined. Whether there is a match between the first track and the second track that are temporally ordered.
- the space-time coordinate point is defined as (positioning time point, longitude, latitude, height)
- subsequent calculations can be defined first, such as defining a point-to-point distance: defining the distance between two points in four-dimensional space Euclidean distance, of which two The time difference between points is multiplied by the moving speed and can be converted into length units.
- a trajectory is a combination of multiple spatiotemporal coordinate points. Define the distance from the point to the trajectory: the minimum distance between the point and the points that make up the trajectory.
- the average distance between two tracks if there are two tracks respectively, track 1 and track 2, then the sum of the distances from each point on track 1 to track 2, plus the sum of the distances from point to track 1 on track 2 And then take the mean value, which is the average distance between track 1 and track 2.
- the length of a track sort the points on the track by time, and record them as point 1, point 2, point 3, ..., point n.
- the track length is the sum of the spatial distances of the adjacent space-time coordinate points, that is, point 1 to The distance of point 2, plus the distance from point 2 to point 3, ..., plus the distance from point n-1 to point n.
- the correlation of two trajectories the distance between two trajectories divided by the average length of the two trajectories, the lower the value obtained, the higher the correlation.
- the i-th point of track 1 can be selected; the j-th point of track 2 is selected; the time difference between point i and point j is multiplied by the speed, replaced by the length unit; i is calculated by the Euclidean distance formula Point and j point distance; j traverses all points of track 2; calculates the minimum distance of point from i point to track 2, recorded as the distance from point i to track 2; calculates the distance from point to track 2 on track 1 And, plus the sum of the distances from the points on track 2 to track 1, and then take the mean, which is recorded as the average distance from track 1 to track 2; calculate the average length of track 1 and track 2; the average distance from track 1 to track 2 : The average length of track 1 and track 2, with which the correlation of track 1 and track 2 is evaluated.
- the foregoing matching module 04 may include:
- Comparing unit 041 configured to compare the relative spatial distance with a preset threshold
- the determining unit 042 is configured to determine that the motion trajectories of different mobile terminals match when the relative spatial distance is less than a preset threshold; and determine the motion trajectory of different mobile terminals if the relative spatial distance is greater than a preset threshold There is no match between.
- the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
- a storage medium such as ROM/RAM, disk,
- the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
- modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
- the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
- the invention is not limited to any specific combination of hardware and software.
- the embodiments of the present invention can be applied to the field of communication technologies.
- the positioning time points and position information are comprehensively considered to calculate the relative spatial distance between different motion trajectories, without requiring
- the spatio-temporal coordinate points of different motion trajectories are exactly the same, and the accuracy of the positioning data of the mobile terminal is not high, and since the positioning time is considered, the temporally ordered motion trajectory matching can be effectively analyzed.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Automation & Control Theory (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- General Engineering & Computer Science (AREA)
- Navigation (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
公开了一种移动终端运动轨迹的匹配方法,包括:获取移动终端在预设时间内生成的定位数据,形成所述移动终端在预设时间内的运动轨迹(S10);将所述运动轨迹离散化为若干时空坐标点,所述时空坐标点包括所述定位数据中的定位时间点及与所述定位时间点相对应的位置信息(S20);根据不同移动终端的运动轨迹中的若干时空坐标点计算不同移动终端的运动轨迹之间的相对空间距离(S30);基于所述相对空间距离对不同移动终端的运动轨迹进行匹配(S40)。该方法无需要求不同运动轨迹的时空坐标点完全相同,对移动终端的定位数据精度要求不高,且由于考虑了定位时间,能有效地分析时间上有序的运动轨迹匹配。
Description
本发明涉及通信技术领域,尤其涉及一种移动终端运动轨迹的匹配方法及装置。
现有技术中在需要对同一时间段内移动终端的两条运动轨迹进行轨迹匹配时,通常有如下两种匹配方式:
1、点位匹配:将轨迹离散化为一串时空点序列,将匹配轨迹的问题转化为时空点的匹配问题;当时空点坐标相同时,则视为点匹配;当匹配的点数量足够多时,可视为两条轨迹匹配;
2、余弦匹配:将一段时间中目标的轨迹离散化为一串时空点序列,再转化为这段时间中各个时空点被目标访问的次数。此时,这段时间中目标的轨迹由一个向量来表示。向量的各个维度即为各个时空点,各维度上的值即为访问此时空点的次数。计算2个向量夹角的余弦值,余弦值越大,则这2个向量对应的轨迹匹配度越高。
然而,点位匹配要求时空点坐标相同,对于时间、空间精度的要求很高,在实际应用中移动终端的定位数据精度不高时,在两条轨迹中相同的时空点几乎找不到,无法进行轨迹匹配。余弦匹配描述的是一段时间中目标行为模式的匹配,是一个总体概念,无法用于分析时间上有序的轨迹匹配。
发明内容
本发明实施例的主要目的在于提供一种移动终端运动轨迹的匹配方法及装置,旨在移动终端的定位数据精度不高时,能有效地分析时间上有序的轨迹匹配。
为实现上述目的,本发明实施例提供的一种移动终端运动轨迹的匹配方法,所述方法包括以下步骤:
获取移动终端在预设时间内生成的定位数据,形成所述移动终端在预设时间内的运动轨迹;
将所述运动轨迹离散化为若干时空坐标点,其中,所述时空坐标点包括所述定位数据中的定位时间点及与所述定位时间点相对应的位置信息;
根据不同移动终端的运动轨迹中的若干时空坐标点计算不同移动终端的运动轨迹之间的相对空间距离;
基于所述相对空间距离对不同移动终端的运动轨迹进行匹配。
优选地,所述获取移动终端在预设时间内生成的定位数据,形成所述移动终端在预设时间内的运动轨迹的步骤包括:
收集移动终端在预设时间内使用无线通信网络时生成的被动定位数据,并根据所述被动定位数据形成所述移动终端在预设时间内的运动轨迹。
优选地,所述位置信息包括经度、纬度和/或高度。
优选地,所述根据不同移动终端的运动轨迹中的若干时空坐标点计算不同移动终端的运动轨迹之间的相对空间距离的步骤包括:
将不同移动终端的运动轨迹中的两个时空坐标点之间的时间差与移动终端的移动速度的乘积设定为长度单位,并基于所述长度单位及所述位置信息计算不同移动终端的运动轨迹中的两个时空坐标点之间的欧氏距离,将所述欧氏距离作为不同移动终端的运动轨迹中的两个时空坐标点之间的空间距离;
基于所述空间距离计算不同移动终端的运动轨迹之间的相对空间距离。
优选地,所述基于所述空间距离计算不同移动终端的运动轨迹之间的相对空间距离的步骤包括:
获取第一终端的第一轨迹上各时空坐标点到第二终端的第二轨迹的距离之和作为第一总距离,获取第二终端的第二轨迹上各时空坐标点到第一终端的第一轨迹的距离之和作为第二总距离,将所述第一总距离与所述第二总距离相加后取平均值,将所述平均值作为所述第一轨迹与所述第二轨迹之间的平均距离;其中,所述第一轨迹上一时空坐标点到所述第二轨迹的距离为所述第一轨迹上一时空坐标点到所述第二轨迹上各时空坐标点的空间距离中的最小值;所述第二轨迹上一时空坐标点到所述第一轨迹的距离为所述第二轨迹上一时空坐标点到所述第一轨迹上各时空坐标点的空间距离中的最小值;
将所述第一轨迹上各时空坐标点按时间排序,并计算各相邻时空坐标点的空间距离之和作为第一轨迹长度;将所述第二轨迹上各时空坐标点按时间排序,并计算各相邻时空坐标点的空间距离之和作为第二轨迹长度;将所述第一轨迹长度与所述第二轨迹长度相加后取平均长度,将所述平均长度作为所述第一轨迹与所述第二轨迹的平均长度;
将所述第一轨迹与所述第二轨迹之间的平均距离除以所述第一轨迹与所述第二轨迹的平均长度,得到所述第一轨迹与所述第二轨迹之间的相对空间距离。
优选地,所述基于所述相对空间距离对不同移动终端的运动轨迹进行匹配的步骤包括:
将所述相对空间距离与预设阈值进行比较;
若所述相对空间距离小于预设阈值,则判断不同移动终端的运动轨迹之间相匹配;
若所述相对空间距离大于预设阈值,则判断不同移动终端的运动轨迹之间不匹配。
此外,为实现上述目的,本发明实施例还提供一种移动终端运动轨迹的匹配装置,所述移动终端运动轨迹的匹配装置包括:
获取模块,设置为获取移动终端在预设时间内生成的定位数据,形成所述移动终端在预设时间内的运动轨迹;
离散模块,设置为将所述运动轨迹离散化为若干时空坐标点,其中,所述时空坐标点包括所述定位数据中的定位时间点及与所述定位时间点相对应的位置信息;
计算模块,设置为根据不同移动终端的运动轨迹中的若干时空坐标点计算不同移动终端的运动轨迹之间的相对空间距离;
匹配模块,设置为基于所述相对空间距离对不同移动终端的运动轨迹进行匹配。
优选地,所述获取模块还设置为:
收集移动终端在预设时间内使用无线通信网络时生成的被动定位数据,并根据所述被动定位数据形成所述移动终端在预设时间内的运动轨迹。
优选地,所述位置信息包括经度、纬度和/或高度。
优选地,所述计算模块还设置为:
将不同移动终端的运动轨迹中的两个时空坐标点之间的时间差与移动终端的移动速度的乘积设定为长度单位,并基于所述长度单位及所述位置信息计算不同移动终端的运动轨迹中的两个时空坐标点之间的欧氏距离,将所述欧氏距离作为不同移动终端的运动轨迹中的两个时空坐标点之间的空间距离;基于所述空间距离计算不同移动终端的运动轨迹之间的相对空间距离。
优选地,所述计算模块还设置为:
获取第一终端的第一轨迹上各时空坐标点到第二终端的第二轨迹的距离之和作为第一总距离,获取第二终端的第二轨迹上各时空坐标点到第一终端的第一轨迹的距离之和作为第二总距离,将所述第一总距离与所述第二总距离相加后取平均值,将所述平均值作为所述第一轨迹与所述第二轨迹之间的平均距离;其中,所述第一轨迹上一时空坐标点到所述第二轨迹的距离为所述第一轨迹上一时空坐标点到所述第二轨迹上各时空坐标点的空间距离中的最小值;所述第二轨迹上一时空坐标点到所述第一轨迹的距离为所述第二轨迹上一时空坐标点到所述第一轨迹上各时空坐标点的空间距离中的最小值;
将所述第一轨迹上各时空坐标点按时间排序,并计算各相邻时空坐标点的空间距离之和作为第一轨迹长度;将所述第二轨迹上各时空坐标点按时间排序,并计算各相邻时空坐标点的空间距离之和作为第二轨迹长度;将所述第一轨迹长度与所述第二轨迹长度相加后取平均长度,将所述平均长度作为所述第一轨迹与所述第二轨迹的平均长度;
将所述第一轨迹与所述第二轨迹之间的平均距离除以所述第一轨迹与所述第二轨迹的平
均长度,得到所述第一轨迹与所述第二轨迹之间的相对空间距离。
优选地,所述匹配模块包括:
比较单元,设置为将所述相对空间距离与预设阈值进行比较;
判断单元,设置为若所述相对空间距离小于预设阈值,则判断不同移动终端的运动轨迹之间相匹配;若所述相对空间距离大于预设阈值,则判断不同移动终端的运动轨迹之间不匹配。
本发明实施例提出的一种移动终端运动轨迹的匹配方法及装置,将所述移动终端在预设时间内的运动轨迹离散化为包括定位时间点及位置信息的若干时空坐标点;根据待匹配的不同移动终端的运动轨迹中的若干时空坐标点计算不同移动终端的运动轨迹之间的相对空间距离;基于所述相对空间距离对不同移动终端的运动轨迹进行匹配。由于在对不同移动终端的运动轨迹进行匹配时,综合考虑了定位时间点及位置信息来计算不同运动轨迹之间的相对空间距离,无需要求不同运动轨迹的时空坐标点完全相同,对移动终端的定位数据精度要求不高,且由于考虑了定位时间,能有效地分析时间上有序的运动轨迹匹配。
图1为本发明移动终端运动轨迹的匹配方法一实施例的流程示意图;
图2为图1中步骤S40的细化流程示意图;
图3为本发明移动终端运动轨迹的匹配方法一实施例中对轨迹1和轨迹2进行匹配的具体实现流程图;
图4为本发明移动终端运动轨迹的匹配装置一实施例的功能模块示意图;
图5为图4中匹配模块04的细化功能模块示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供一种移动终端运动轨迹的匹配方法。
参照图1,图1为本发明移动终端运动轨迹的匹配方法一实施例的流程示意图。
在一实施例中,该移动终端运动轨迹的匹配方法包括:
步骤S10,获取移动终端在预设时间内生成的定位数据,形成所述移动终端在预设时间内的运动轨迹;
本实施例中,移动终端如手机等在使用过程中一般会有定位功能,对移动终端的定位方式可包括如下3种:
1、GPS定位:通过移动终端自带的GPS模块进行定位,定位数据直接报告给移动终端。其中,GPS(Global Positioning System,全球定位系统)是美国研制的卫星导航定位系统。GPS系统包含24颗GPS工作卫星,这些GPS工作卫星共同组成了GPS卫星星座。每颗GPS工作卫星都发出用于导航定位的信号。GPS用户正是利用这些信号来进行工作的。GPS的用户部分由GPS接收机、数据处理软件及相应的用户设备如计算机气象仪器等所组成。它的作用是接收GPS卫星所发出的信号,利用这些信号进行导航定位等工作。GPS接收机收到的卫星信号可以换算成接收机到各个卫星的距离。用这些距离可以确定GPS接收机的位置,从而使移动终端通过自带的GPS模块进行定位。
2、主动定位:对一个选定的用户名(如移动终端的手机号)主动发起定位请求,通过运营商的无线通信网络获取此移动终端的位置。主动定位系统欲查询一个预设的手机号码的位置,移动通信网络会利用信号延时进行换算、测量此手机号码到一个或几个邻近基站的距离,再根据这些基站的经纬度坐标,计算出此手机号码的位置。
3、被动定位:收集移动终端在使用无线通信网络时附带产生的位置数据,无需主动向移动终端发起定位请求;可以获取网络中所有移动终端的位置,且无需预先选定一个手机号码。在移动终端使用移动通信网络时,网络需要建议移动终端从哪个基站获取服务,移动终端也会向网络报告自身位置以便自身被呼叫时能被找到。在这个过程中,会产生大量与移动终端位置相关的信令数据。通过记录和分析这些数据,被动定位平台可以获知网络中所有移动终端的位置。只要移动终端在使用移动通信网络,其位置数据就会不断产生。
在上述3种定位方式中,均能获取到移动终端在预设时间内生成的定位数据,并形成所述移动终端在预设时间内的运动轨迹。然而,在特定的应用场景如在需要对移动终端进行公安领域的技术侦查时,对处理跟踪行为等需要对同一时间段内的两条运动轨迹进行轨迹匹配。而对于GPS定位,往往是将移动终端通过自带的GPS模块进行定位获取的位置数据直接报告给移动终端,不会上传到其他的定位平台,也无法供技术侦查时使用。对于主动定位,则必须要预先获知移动终端的手机号码,否则无法定位,也不适用于技术侦查使用。而被动定位则无需预先指定移动终端的手机号码,只要移动终端接入无线通信网络就会产生位置数据,即可不断收集运营商全网的在网移动终端位置数据,能为技术侦查提供完善的数据支持。
本实施例中,移动终端在预设时间内生成的定位数据以被动定位数据为例进行具体说明,当然,也不限定该定位数据为其他类型的定位数据。当需要对预设时间内的不同运动轨迹进行轨迹匹配时,首先收集移动终端在预设时间内使用无线通信网络时生成的被动定位数据,并根据所述被动定位数据形成所述移动终端在预设时间内的运动轨迹。
步骤S20,将所述运动轨迹离散化为若干时空坐标点,其中,所述时空坐标点包括所述定位数据中的定位时间点及与所述定位时间点相对应的位置信息;
获取移动终端在预设时间内的运动轨迹后,可将所述运动轨迹离散化为若干时空坐标点,
其中,将所述时空坐标点定义为包括被动定位数据中的定位时间点及与所述定位时间点相对应的位置信息的坐标。由于在被动定位中,移动终端在使用无线通信网络时会主动上报自身的位置,上报的次数及时间间隔均不固定,但上报的被动定位数据中包括当前的定位时间点及当前的位置信息。因此,可以将移动终端在预设时间内的运动轨迹离散化为若干时空坐标点,所述时空坐标点可由(定位时间点,位置信息)来表示,以描述移动终端在该定位时间点所处的位置信息。其中,该位置信息可以代表一个基站扇区,可包括经纬度、高度、方向、半径等位置属性信息,本实施例中综合考虑轨迹匹配的精确度及便于后续计算,将该位置信息限定为经度、纬度和高度,即所述时空坐标点可定义为(定位时间点,经度,纬度,高度),当然,也不限定将该位置信息还可包括除经度、纬度和高度之外的其他位置属性信息。
步骤S30,根据不同移动终端的运动轨迹中的若干时空坐标点计算不同移动终端的运动轨迹之间的相对空间距离;
在对不同移动终端的运动轨迹进行匹配时,可在将预设时间内不同移动终端的运动轨迹均离散化为若干时空坐标点(定位时间点,位置信息)之后,根据预设时间内不同移动终端的运动轨迹中的若干时空坐标点(定位时间点,位置信息)计算不同移动终端的运动轨迹之间的相对空间距离。如在时空坐标点定义为(定位时间点,经度,纬度,高度)时,可计算不同移动终端的运动轨迹中各自的时空坐标点计算在四维空间中的欧氏距离,将不同移动终端的运动轨迹之间的平均距离、最小距离或相对于运动轨迹长度的平均距离等作为相对空间距离,在此不作限定。
步骤S40,基于所述相对空间距离对不同移动终端的运动轨迹进行匹配。
由于在计算不同移动终端的运动轨迹之间的相对空间距离时,综合考虑了预设时间内移动终端上报的被动定位数据中的定位时间点及与所述定位时间点相对应的位置信息,即综合考虑了时间和空间距离计算得到不同移动终端的运动轨迹之间的相对空间距离,使得不同移动终端的运动轨迹之间的相关性能基于所述相对空间距离得到比较合理的量化判断。如可预设阈值,将所述相对空间距离与预设阈值进行比较;若所述相对空间距离小于预设阈值,则可判断不同移动终端的运动轨迹之间相匹配;若所述相对空间距离大于预设阈值,则可判断不同移动终端的运动轨迹之间不匹配。从而实现有效地处理被动定位数据,以确定时间上有序的运动轨迹是否匹配。
本实施例中将所述移动终端在预设时间内的运动轨迹离散化为包括定位时间点及位置信息的若干时空坐标点;根据待匹配的不同移动终端的运动轨迹中的若干时空坐标点计算不同移动终端的运动轨迹之间的相对空间距离;基于所述相对空间距离对不同移动终端的运动轨迹进行匹配。由于在对不同移动终端的运动轨迹进行匹配时,综合考虑了定位时间点及位置信息来计算不同运动轨迹之间的相对空间距离,无需要求不同运动轨迹的时空坐标点完全相同,对移动终端的定位数据精度要求不高,且由于考虑了定位时间,能有效地分析时间上有序的运动轨迹匹配。
进一步地,在一种实施方式中,上述步骤S30可以包括:
将不同移动终端的运动轨迹中的两个时空坐标点之间的时间差与移动终端的移动速度的乘积设定为长度单位,并基于所述长度单位及所述位置信息计算不同移动终端的运动轨迹中的两个时空坐标点之间的欧氏距离,将所述欧氏距离作为不同移动终端的运动轨迹中的两个时空坐标点之间的空间距离;
基于所述空间距离计算不同移动终端的运动轨迹之间的相对空间距离。
进一步地,所述基于所述空间距离计算不同移动终端的运动轨迹之间的相对空间距离的步骤包括:
获取第一终端的第一轨迹上各时空坐标点到第二终端的第二轨迹的距离之和作为第一总距离,获取第二终端的第二轨迹上各时空坐标点到第一终端的第一轨迹的距离之和作为第二总距离,将所述第一总距离与所述第二总距离相加后取平均值,将所述平均值作为所述第一轨迹与所述第二轨迹之间的平均距离;其中,所述第一轨迹上一时空坐标点到所述第二轨迹的距离为所述第一轨迹上一时空坐标点到所述第二轨迹上各时空坐标点的空间距离中的最小值;所述第二轨迹上一时空坐标点到所述第一轨迹的距离为所述第二轨迹上一时空坐标点到所述第一轨迹上各时空坐标点的空间距离中的最小值;
将所述第一轨迹上各时空坐标点按时间排序,并计算各相邻时空坐标点的空间距离之和作为第一轨迹长度;将所述第二轨迹上各时空坐标点按时间排序,并计算各相邻时空坐标点的空间距离之和作为第二轨迹长度;将所述第一轨迹长度与所述第二轨迹长度相加后取平均长度,将所述平均长度作为所述第一轨迹与所述第二轨迹的平均长度;
将所述第一轨迹与所述第二轨迹之间的平均距离除以所述第一轨迹与所述第二轨迹的平均长度,得到所述第一轨迹与所述第二轨迹之间的相对空间距离。
本实施例中,在计算相对空间距离时根据定位时间点及所述位置信息计算得到所述第一轨迹与所述第二轨迹之间的平均距离,还考虑了按时间排序计算得到的所述第一轨迹与所述第二轨迹的平均长度,最后根据平均距离与平均长度的比值确定所述第一轨迹与所述第二轨迹之间的相对空间距离。由于综合考虑了时间与空间距离,能较好的处理精度较低的被动定位数据,使得所述第一轨迹与所述第二轨迹之间的相关性得到比较合理的量化判断,能有效地确定时间上有序的所述第一轨迹与所述第二轨迹之间是否匹配。
为了进一步进行解释说明,图2为本发明移动终端运动轨迹的匹配方法一实施例中对轨迹1和轨迹2进行匹配的具体实现流程图。
在时空坐标点定义为(定位时间点,经度,纬度,高度)的基础上,可先对后续的计算进行定义,如可定义点到点的距离:定义两个点的距离为四维空间中的欧氏距离,其中,两
点之间的时间差乘以移动速度,可换算为长度单位。定义轨迹:轨迹是多个时空坐标点的组合。定义点到轨迹的距离:点与组成轨迹各点距离的最小值。定义两条轨迹的平均距离:如有两条轨迹分别为轨迹1与轨迹2,则轨迹1上各点到轨迹2的距离之和,再加上轨迹2上各点到轨迹1的距离之和,再取均值,即为轨迹1与轨迹2的平均距离。定义一条轨迹的长度:将轨迹上各点按时间排序,记为点1,点2,点3,…,点n,轨迹长度为各相邻时空坐标点的空间距离之和,即点1到点2的距离,加上点2到点3的距离,…,加上点n-1到点n的距离。定义两条轨迹的相关性:两条轨迹的距离除以两条轨迹的平均长度,得到的值越低,则相关性越高。
如图2中所示,在对轨迹1和轨迹2进行匹配时,可包括:
步骤S1,选择轨迹1的第i点;
步骤S2,选择轨迹2的第j点;
步骤S3,把i点与j点时间差乘以速度,替换为长度单位;
步骤S4,以欧式距离公式计算i点与j点距离;j遍历轨迹2的所有点;
步骤S5,计算i点到轨迹2中各点距离的最小值,记为点i到轨迹2的距离;
步骤S6,计算轨迹1上各点到轨迹2的距离之和,加上轨迹2上各点到轨迹1的距离之和,再取均值,记为轨迹1到轨迹2的平均距离;
步骤S7,计算轨迹1和轨迹2的平均长度;
步骤S8,轨迹1到轨迹2的平均距离:轨迹1和轨迹2的平均长度,以这个比值评估轨迹1与轨迹2的相关性。
进一步地,如图3所示,上述步骤S40可以包括:
步骤S401,将所述相对空间距离与预设阈值进行比较
步骤S402,若所述相对空间距离小于预设阈值,则判断不同移动终端的运动轨迹之间相匹配;
步骤S403,若所述相对空间距离大于预设阈值,则判断不同移动终端的运动轨迹之间不匹配。
本发明实施例进一步提供一种移动终端运动轨迹的匹配装置。
参照图4,图4为本发明移动终端运动轨迹的匹配装置一实施例的功能模块示意图。
在一实施例中,该移动终端运动轨迹的匹配装置包括:
获取模块01,设置为获取移动终端在预设时间内生成的定位数据,形成所述移动终端在预设时间内的运动轨迹;
本实施例中,移动终端如手机等在使用过程中一般会有定位功能,对移动终端的定位方式可包括如下3种:
1、GPS定位:通过移动终端自带的GPS模块进行定位,定位数据直接报告给移动终端。其中,GPS(Global Positioning System,全球定位系统)是美国研制的卫星导航定位系统。GPS系统包含24颗GPS工作卫星,这些GPS工作卫星共同组成了GPS卫星星座。每颗GPS工作卫星都发出用于导航定位的信号。GPS用户正是利用这些信号来进行工作的。GPS的用户部分由GPS接收机、数据处理软件及相应的用户设备如计算机气象仪器等所组成。它的作用是接收GPS卫星所发出的信号,利用这些信号进行导航定位等工作。GPS接收机收到的卫星信号可以换算成接收机到各个卫星的距离。用这些距离可以确定GPS接收机的位置,从而使移动终端通过自带的GPS模块进行定位。
2、主动定位:对一个选定的用户名(如移动终端的手机号)主动发起定位请求,通过运营商的无线通信网络获取此移动终端的位置。主动定位系统欲查询一个预设的手机号码的位置,移动通信网络会利用信号延时进行换算、测量此手机号码到一个或几个邻近基站的距离,再根据这些基站的经纬度坐标,计算出此手机号码的位置。
3、被动定位:收集移动终端在使用无线通信网络时附带产生的位置数据,无需主动向移动终端发起定位请求;可以获取网络中所有移动终端的位置,且无需预先选定一个手机号码。在移动终端使用移动通信网络时,网络需要建议移动终端从哪个基站获取服务,移动终端也会向网络报告自身位置以便自身被呼叫时能被找到。在这个过程中,会产生大量与移动终端位置相关的信令数据。通过记录和分析这些数据,被动定位平台可以获知网络中所有移动终端的位置。只要移动终端在使用移动通信网络,其位置数据就会不断产生。
在上述3种定位方式中,均能获取到移动终端在预设时间内生成的定位数据,并形成所述移动终端在预设时间内的运动轨迹。然而,在特定的应用场景如在需要对移动终端进行公安领域的技术侦查时,对处理跟踪行为等需要对同一时间段内的两条运动轨迹进行轨迹匹配。而对于GPS定位,往往是将移动终端通过自带的GPS模块进行定位获取的位置数据直接报告给移动终端,不会上传到其他的定位平台,也无法供技术侦查时使用。对于主动定位,则必须要预先获知移动终端的手机号码,否则无法定位,也不适用于技术侦查使用。而被动定位则无需预先指定移动终端的手机号码,只要移动终端接入无线通信网络就会产生位置数据,即可不断收集运营商全网的在网移动终端位置数据,能为技术侦查提供完善的数据支持。
本实施例中,移动终端在预设时间内生成的定位数据以被动定位数据为例进行具体说明,当然,也不限定该定位数据为其他类型的定位数据。当需要对预设时间内的不同运动轨迹进行轨迹匹配时,首先收集移动终端在预设时间内使用无线通信网络时生成的被动定位数据,并根据所述被动定位数据形成所述移动终端在预设时间内的运动轨迹。
离散模块02,设置为将所述运动轨迹离散化为若干时空坐标点,其中,所述时空坐标点
包括所述定位数据中的定位时间点及与所述定位时间点相对应的位置信息;
获取移动终端在预设时间内的运动轨迹后,可将所述运动轨迹离散化为若干时空坐标点,其中,将所述时空坐标点定义为包括被动定位数据中的定位时间点及与所述定位时间点相对应的位置信息的坐标。由于在被动定位中,移动终端在使用无线通信网络时会主动上报自身的位置,上报的次数及时间间隔均不固定,但上报的被动定位数据中包括当前的定位时间点及当前的位置信息。因此,可以将移动终端在预设时间内的运动轨迹离散化为若干时空坐标点,所述时空坐标点可由(定位时间点,位置信息)来表示,以描述移动终端在该定位时间点所处的位置信息。其中,该位置信息可以代表一个基站扇区,可包括经纬度、高度、方向、半径等位置属性信息,本实施例中综合考虑轨迹匹配的精确度及便于后续计算,将该位置信息限定为经度、纬度和高度,即所述时空坐标点可定义为(定位时间点,经度,纬度,高度),当然,也不限定将该位置信息还可包括除经度、纬度和高度之外的其他位置属性信息。
计算模块03,设置为根据不同移动终端的运动轨迹中的若干时空坐标点计算不同移动终端的运动轨迹之间的相对空间距离;
在对不同移动终端的运动轨迹进行匹配时,可在将预设时间内不同移动终端的运动轨迹均离散化为若干时空坐标点(定位时间点,位置信息)之后,根据预设时间内不同移动终端的运动轨迹中的若干时空坐标点(定位时间点,位置信息)计算不同移动终端的运动轨迹之间的相对空间距离。如在时空坐标点定义为(定位时间点,经度,纬度,高度)时,可计算不同移动终端的运动轨迹中各自的时空坐标点计算在四维空间中的欧氏距离,将不同移动终端的运动轨迹之间的平均距离、最小距离或相对于运动轨迹长度的平均距离等作为相对空间距离,在此不作限定。
匹配模块04,设置为基于所述相对空间距离对不同移动终端的运动轨迹进行匹配。
由于在计算不同移动终端的运动轨迹之间的相对空间距离时,综合考虑了预设时间内移动终端上报的被动定位数据中的定位时间点及与所述定位时间点相对应的位置信息,即综合考虑了时间和空间距离计算得到不同移动终端的运动轨迹之间的相对空间距离,使得不同移动终端的运动轨迹之间的相关性能基于所述相对空间距离得到比较合理的量化判断。如可预设阈值,将所述相对空间距离与预设阈值进行比较;若所述相对空间距离小于预设阈值,则可判断不同移动终端的运动轨迹之间相匹配;若所述相对空间距离大于预设阈值,则可判断不同移动终端的运动轨迹之间不匹配。从而实现有效地处理被动定位数据,以确定时间上有序的运动轨迹是否匹配。
本实施例中将所述移动终端在预设时间内的运动轨迹离散化为包括定位时间点及位置信息的若干时空坐标点;根据待匹配的不同移动终端的运动轨迹中的若干时空坐标点计算不同移动终端的运动轨迹之间的相对空间距离;基于所述相对空间距离对不同移动终端的运动轨迹进行匹配。由于在对不同移动终端的运动轨迹进行匹配时,综合考虑了定位时间点及位置信息来计算不同运动轨迹之间的相对空间距离,无需要求不同运动轨迹的时空坐标点完全相
同,对移动终端的定位数据精度要求不高,且由于考虑了定位时间,能有效地分析时间上有序的运动轨迹匹配。
进一步地,在一种实施方式中,上述计算模块03可以设置为:
将不同移动终端的运动轨迹中的两个时空坐标点之间的时间差与移动终端的移动速度的乘积设定为长度单位,并基于所述长度单位及所述位置信息计算不同移动终端的运动轨迹中的两个时空坐标点之间的欧氏距离,将所述欧氏距离作为不同移动终端的运动轨迹中的两个时空坐标点之间的空间距离;
基于所述空间距离计算不同移动终端的运动轨迹之间的相对空间距离。
进一步地,所述基于所述空间距离计算不同移动终端的运动轨迹之间的相对空间距离的步骤包括:
获取第一终端的第一轨迹上各时空坐标点到第二终端的第二轨迹的距离之和作为第一总距离,获取第二终端的第二轨迹上各时空坐标点到第一终端的第一轨迹的距离之和作为第二总距离,将所述第一总距离与所述第二总距离相加后取平均值,将所述平均值作为所述第一轨迹与所述第二轨迹之间的平均距离;其中,所述第一轨迹上一时空坐标点到所述第二轨迹的距离为所述第一轨迹上一时空坐标点到所述第二轨迹上各时空坐标点的空间距离中的最小值;所述第二轨迹上一时空坐标点到所述第一轨迹的距离为所述第二轨迹上一时空坐标点到所述第一轨迹上各时空坐标点的空间距离中的最小值;
将所述第一轨迹上各时空坐标点按时间排序,并计算各相邻时空坐标点的空间距离之和作为第一轨迹长度;将所述第二轨迹上各时空坐标点按时间排序,并计算各相邻时空坐标点的空间距离之和作为第二轨迹长度;将所述第一轨迹长度与所述第二轨迹长度相加后取平均长度,将所述平均长度作为所述第一轨迹与所述第二轨迹的平均长度;
将所述第一轨迹与所述第二轨迹之间的平均距离除以所述第一轨迹与所述第二轨迹的平均长度,得到所述第一轨迹与所述第二轨迹之间的相对空间距离。
本实施例中,在计算相对空间距离时根据定位时间点及所述位置信息计算得到所述第一轨迹与所述第二轨迹之间的平均距离,还考虑了按时间排序计算得到的所述第一轨迹与所述第二轨迹的平均长度,最后根据平均距离与平均长度的比值确定所述第一轨迹与所述第二轨迹之间的相对空间距离。由于综合考虑了时间与空间距离,能较好的处理精度较低的被动定位数据,使得所述第一轨迹与所述第二轨迹之间的相关性得到比较合理的量化判断,能有效地确定时间上有序的所述第一轨迹与所述第二轨迹之间是否匹配。
在时空坐标点定义为(定位时间点,经度,纬度,高度)的基础上,可先对后续的计算进行定义,如可定义点到点的距离:定义两个点的距离为四维空间中的欧氏距离,其中,两
点之间的时间差乘以移动速度,可换算为长度单位。定义轨迹:轨迹是多个时空坐标点的组合。定义点到轨迹的距离:点与组成轨迹各点距离的最小值。定义两条轨迹的平均距离:如有两条轨迹分别为轨迹1与轨迹2,则轨迹1上各点到轨迹2的距离之和,再加上轨迹2上各点到轨迹1的距离之和,再取均值,即为轨迹1与轨迹2的平均距离。定义一条轨迹的长度:将轨迹上各点按时间排序,记为点1,点2,点3,…,点n,轨迹长度为各相邻时空坐标点的空间距离之和,即点1到点2的距离,加上点2到点3的距离,…,加上点n-1到点n的距离。定义两条轨迹的相关性:两条轨迹的距离除以两条轨迹的平均长度,得到的值越低,则相关性越高。
在对轨迹1和轨迹2进行匹配时,可选择轨迹1的第i点;选择轨迹2的第j点;把i点与j点时间差乘以速度,替换为长度单位;以欧式距离公式计算i点与j点距离;j遍历轨迹2的所有点;计算i点到轨迹2中各点距离的最小值,记为点i到轨迹2的距离;计算轨迹1上各点到轨迹2的距离之和,加上轨迹2上各点到轨迹1的距离之和,再取均值,记为轨迹1到轨迹2的平均距离;计算轨迹1和轨迹2的平均长度;轨迹1到轨迹2的平均距离:轨迹1和轨迹2的平均长度,以这个比值评估轨迹1与轨迹2的相关性。
进一步地,如图5所示,上述匹配模块04可以包括:
比较单元041,设置为将所述相对空间距离与预设阈值进行比较;
判断单元042,设置为若所述相对空间距离小于预设阈值,则判断不同移动终端的运动轨迹之间相匹配;若所述相对空间距离大于预设阈值,则判断不同移动终端的运动轨迹之间不匹配。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等
同替换、改进等,均应包含在本发明的保护范围之内。
上述的本发明实施例,可以应用于通信技术领域,由于在对不同移动终端的运动轨迹进行匹配时,综合考虑了定位时间点及位置信息来计算不同运动轨迹之间的相对空间距离,无需要求不同运动轨迹的时空坐标点完全相同,对移动终端的定位数据精度要求不高,且由于考虑了定位时间,能有效地分析时间上有序的运动轨迹匹配。
Claims (12)
- 一种移动终端运动轨迹的匹配方法,所述方法包括以下步骤:获取移动终端在预设时间内生成的定位数据,形成所述移动终端在预设时间内的运动轨迹;将所述运动轨迹离散化为若干时空坐标点,其中,所述时空坐标点包括所述定位数据中的定位时间点及与所述定位时间点相对应的位置信息;根据不同移动终端的运动轨迹中的若干时空坐标点计算不同移动终端的运动轨迹之间的相对空间距离;基于所述相对空间距离对不同移动终端的运动轨迹进行匹配。
- 如权利要求1所述的移动终端运动轨迹的匹配方法,其中,所述获取移动终端在预设时间内生成的定位数据,形成所述移动终端在预设时间内的运动轨迹的步骤包括:收集移动终端在预设时间内使用无线通信网络时生成的被动定位数据,并根据所述被动定位数据形成所述移动终端在预设时间内的运动轨迹。
- 如权利要求1或2所述的移动终端运动轨迹的匹配方法,其中,所述位置信息包括经度、纬度和/或高度。
- 如权利要求3所述的移动终端运动轨迹的匹配方法,其中,所述根据不同移动终端的运动轨迹中的若干时空坐标点计算不同移动终端的运动轨迹之间的相对空间距离的步骤包括:将不同移动终端的运动轨迹中的两个时空坐标点之间的时间差与移动终端的移动速度的乘积设定为长度单位,并基于所述长度单位及所述位置信息计算不同移动终端的运动轨迹中的两个时空坐标点之间的欧氏距离,将所述欧氏距离作为不同移动终端的运动轨迹中的两个时空坐标点之间的空间距离;基于所述空间距离计算不同移动终端的运动轨迹之间的相对空间距离。
- 如权利要求4所述的移动终端运动轨迹的匹配方法,其中,所述基于所述空间距离计算不同移动终端的运动轨迹之间的相对空间距离的步骤包括:获取第一终端的第一轨迹上各时空坐标点到第二终端的第二轨迹的距离之和作为第一总距离,获取第二终端的第二轨迹上各时空坐标点到第一终端的第一轨迹的距离之和作为第二总距离,将所述第一总距离与所述第二总距离相加后取平均值,将所述平均值作为所述第一轨迹与所述第二轨迹之间的平均距离;其中,所述第一轨迹上一时空坐标点到所述第二轨迹的距离为所述第一轨迹上一时空坐标点到所述第二轨迹上各时空坐标点的空间距离中的最小值;所述第二轨迹上一时空坐标点到所述第一轨迹的距离为所述第二轨迹上一时空坐标点到所述第一轨迹上各时空坐标点的空间距离中的最小值;将所述第一轨迹上各时空坐标点按时间排序,并计算各相邻时空坐标点的空间距离之和作为第一轨迹长度;将所述第二轨迹上各时空坐标点按时间排序,并计算各相邻时 空坐标点的空间距离之和作为第二轨迹长度;将所述第一轨迹长度与所述第二轨迹长度相加后取平均长度,将所述平均长度作为所述第一轨迹与所述第二轨迹的平均长度;将所述第一轨迹与所述第二轨迹之间的平均距离除以所述第一轨迹与所述第二轨迹的平均长度,得到所述第一轨迹与所述第二轨迹之间的相对空间距离。
- 如权利要求1所述的移动终端运动轨迹的匹配方法,其中,所述基于所述相对空间距离对不同移动终端的运动轨迹进行匹配的步骤包括:将所述相对空间距离与预设阈值进行比较;若所述相对空间距离小于预设阈值,则判断不同移动终端的运动轨迹之间相匹配;若所述相对空间距离大于预设阈值,则判断不同移动终端的运动轨迹之间不匹配。
- 一种移动终端运动轨迹的匹配装置,所述移动终端运动轨迹的匹配装置包括:获取模块,设置为获取移动终端在预设时间内生成的定位数据,形成所述移动终端在预设时间内的运动轨迹;离散模块,设置为将所述运动轨迹离散化为若干时空坐标点,其中,所述时空坐标点包括所述定位数据中的定位时间点及与所述定位时间点相对应的位置信息;计算模块,设置为根据不同移动终端的运动轨迹中的若干时空坐标点计算不同移动终端的运动轨迹之间的相对空间距离;匹配模块,设置为基于所述相对空间距离对不同移动终端的运动轨迹进行匹配。
- 如权利要求7所述的移动终端运动轨迹的匹配装置,其中,所述获取模块还设置为:收集移动终端在预设时间内使用无线通信网络时生成的被动定位数据,并根据所述被动定位数据形成所述移动终端在预设时间内的运动轨迹。
- 如权利要求7或8所述的移动终端运动轨迹的匹配装置,其中,所述位置信息包括经度、纬度和/或高度。
- 如权利要求9所述的移动终端运动轨迹的匹配装置,其中,所述计算模块还设置为:将不同移动终端的运动轨迹中的两个时空坐标点之间的时间差与移动终端的移动速度的乘积设定为长度单位,并基于所述长度单位及所述位置信息计算不同移动终端的运动轨迹中的两个时空坐标点之间的欧氏距离,将所述欧氏距离作为不同移动终端的运动轨迹中的两个时空坐标点之间的空间距离;基于所述空间距离计算不同移动终端的运动轨迹之间的相对空间距离。
- 如权利要求10所述的移动终端运动轨迹的匹配装置,其中,所述计算模块还设置为:获取第一终端的第一轨迹上各时空坐标点到第二终端的第二轨迹的距离之和作为第 一总距离,获取第二终端的第二轨迹上各时空坐标点到第一终端的第一轨迹的距离之和作为第二总距离,将所述第一总距离与所述第二总距离相加后取平均值,将所述平均值作为所述第一轨迹与所述第二轨迹之间的平均距离;其中,所述第一轨迹上一时空坐标点到所述第二轨迹的距离为所述第一轨迹上一时空坐标点到所述第二轨迹上各时空坐标点的空间距离中的最小值;所述第二轨迹上一时空坐标点到所述第一轨迹的距离为所述第二轨迹上一时空坐标点到所述第一轨迹上各时空坐标点的空间距离中的最小值;将所述第一轨迹上各时空坐标点按时间排序,并计算各相邻时空坐标点的空间距离之和作为第一轨迹长度;将所述第二轨迹上各时空坐标点按时间排序,并计算各相邻时空坐标点的空间距离之和作为第二轨迹长度;将所述第一轨迹长度与所述第二轨迹长度相加后取平均长度,将所述平均长度作为所述第一轨迹与所述第二轨迹的平均长度;将所述第一轨迹与所述第二轨迹之间的平均距离除以所述第一轨迹与所述第二轨迹的平均长度,得到所述第一轨迹与所述第二轨迹之间的相对空间距离。
- 如权利要求7所述的移动终端运动轨迹的匹配装置,其中,所述匹配模块包括:比较单元,设置为将所述相对空间距离与预设阈值进行比较;判断单元,设置为若所述相对空间距离小于预设阈值,则判断不同移动终端的运动轨迹之间相匹配;若所述相对空间距离大于预设阈值,则判断不同移动终端的运动轨迹之间不匹配。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610015496.9 | 2016-01-08 | ||
CN201610015496.9A CN106959113A (zh) | 2016-01-08 | 2016-01-08 | 移动终端运动轨迹的匹配方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017117857A1 true WO2017117857A1 (zh) | 2017-07-13 |
Family
ID=59273365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/075246 WO2017117857A1 (zh) | 2016-01-08 | 2016-03-01 | 移动终端运动轨迹的匹配方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106959113A (zh) |
WO (1) | WO2017117857A1 (zh) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109543312A (zh) * | 2018-11-27 | 2019-03-29 | 珠海市新德汇信息技术有限公司 | 一种时空侦查分析方法及系统 |
CN111436017A (zh) * | 2018-12-25 | 2020-07-21 | 北京融信数联科技有限公司 | 一种基于聚类算法的移动用户一人多卡识别方法 |
CN111460328A (zh) * | 2020-03-27 | 2020-07-28 | 杭州华量软件有限公司 | 一种基于陀螺仪的渔船时空轨迹修正方法及装置 |
CN111553732A (zh) * | 2020-04-24 | 2020-08-18 | 北京爱笔科技有限公司 | 移动轨迹的处理方法和装置 |
CN111949699A (zh) * | 2019-05-14 | 2020-11-17 | 西安光启未来技术研究院 | 一种基于多重验证的轨迹碰撞方法及系统 |
CN112653990A (zh) * | 2020-09-18 | 2021-04-13 | 武汉爱迪科技股份有限公司 | 一种密切接触人员的筛选算法及系统 |
CN112798006A (zh) * | 2021-01-13 | 2021-05-14 | 北京中交兴路信息科技有限公司 | 一种不同路径的差异点分析方法、装置、存储介质及终端 |
CN113408973A (zh) * | 2020-03-17 | 2021-09-17 | 北京京东振世信息技术有限公司 | 生成轨迹数据的方法和装置 |
CN113516690A (zh) * | 2020-10-26 | 2021-10-19 | 阿里巴巴集团控股有限公司 | 图像检测方法、装置、设备和存储介质 |
CN114071347A (zh) * | 2020-07-28 | 2022-02-18 | 中移(苏州)软件技术有限公司 | 一种多信令轨迹的时空匹配方法及装置 |
CN114297328A (zh) * | 2021-12-28 | 2022-04-08 | 杭州电子科技大学 | 基于时空缓冲区的轨迹数据补全及交通流预测方法 |
CN114374941A (zh) * | 2021-12-17 | 2022-04-19 | 智慧足迹数据科技有限公司 | 基于信令数据的轨迹匹配方法及相关装置 |
CN117357880A (zh) * | 2023-12-07 | 2024-01-09 | 深圳失重魔方网络科技有限公司 | 一种基于智能设备的运动状态识别方法及系统 |
EP3598359B1 (en) * | 2018-07-20 | 2024-09-18 | BlackBerry Limited | Method and system for asset tracking |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109471518A (zh) * | 2017-09-08 | 2019-03-15 | 比亚迪股份有限公司 | 一种车载终端及其控制方法与装置、计算机可读存储介质 |
CN110309434B (zh) * | 2018-10-10 | 2023-10-13 | 腾讯大地通途(北京)科技有限公司 | 一种轨迹数据处理方法、装置以及相关设备 |
CN114879696A (zh) * | 2019-05-15 | 2022-08-09 | 百度在线网络技术(北京)有限公司 | 轨迹匹配方法、装置、设备和介质 |
CN110555061B (zh) * | 2019-09-06 | 2022-04-05 | 北京百度网讯科技有限公司 | 轨迹相似度确定方法和装置 |
CN110927768A (zh) * | 2019-11-08 | 2020-03-27 | 广东高驰运动科技有限公司 | 基于移动坐标定位的测距方法及便携式终端设备 |
CN111414444A (zh) * | 2020-03-02 | 2020-07-14 | 北京明略软件系统有限公司 | 一种时空轨迹信息的处理方法和装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102203554A (zh) * | 2008-10-29 | 2011-09-28 | 泰为信息科技公司 | 具有过滤机制的导航系统及操作该导航系统的方法 |
CN102646070A (zh) * | 2012-02-29 | 2012-08-22 | 武汉大学 | 一种基于区域的时空轨迹数据存储方法 |
CN103079013A (zh) * | 2013-01-17 | 2013-05-01 | 广东欧珀移动通信有限公司 | 一种移动终端的应用操作方法、装置及移动终端 |
CN104541282A (zh) * | 2014-05-14 | 2015-04-22 | 华为技术有限公司 | 解锁方法、装置及设备 |
CN104796468A (zh) * | 2015-04-14 | 2015-07-22 | 蔡宏铭 | 实现同行人即时通讯及同行信息共享的方法和系统 |
CN104933201A (zh) * | 2015-07-15 | 2015-09-23 | 蔡宏铭 | 基于同行信息的内容推荐方法及系统 |
-
2016
- 2016-01-08 CN CN201610015496.9A patent/CN106959113A/zh active Pending
- 2016-03-01 WO PCT/CN2016/075246 patent/WO2017117857A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102203554A (zh) * | 2008-10-29 | 2011-09-28 | 泰为信息科技公司 | 具有过滤机制的导航系统及操作该导航系统的方法 |
CN102646070A (zh) * | 2012-02-29 | 2012-08-22 | 武汉大学 | 一种基于区域的时空轨迹数据存储方法 |
CN103079013A (zh) * | 2013-01-17 | 2013-05-01 | 广东欧珀移动通信有限公司 | 一种移动终端的应用操作方法、装置及移动终端 |
CN104541282A (zh) * | 2014-05-14 | 2015-04-22 | 华为技术有限公司 | 解锁方法、装置及设备 |
CN104796468A (zh) * | 2015-04-14 | 2015-07-22 | 蔡宏铭 | 实现同行人即时通讯及同行信息共享的方法和系统 |
CN104933201A (zh) * | 2015-07-15 | 2015-09-23 | 蔡宏铭 | 基于同行信息的内容推荐方法及系统 |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3598359B1 (en) * | 2018-07-20 | 2024-09-18 | BlackBerry Limited | Method and system for asset tracking |
CN109543312B (zh) * | 2018-11-27 | 2023-04-07 | 珠海市新德汇信息技术有限公司 | 一种时空侦查分析方法及系统 |
CN109543312A (zh) * | 2018-11-27 | 2019-03-29 | 珠海市新德汇信息技术有限公司 | 一种时空侦查分析方法及系统 |
CN111436017B (zh) * | 2018-12-25 | 2023-11-10 | 北京融信数联科技有限公司 | 一种基于聚类算法的手机用户一人多卡识别方法 |
CN111436017A (zh) * | 2018-12-25 | 2020-07-21 | 北京融信数联科技有限公司 | 一种基于聚类算法的移动用户一人多卡识别方法 |
CN111949699A (zh) * | 2019-05-14 | 2020-11-17 | 西安光启未来技术研究院 | 一种基于多重验证的轨迹碰撞方法及系统 |
CN113408973A (zh) * | 2020-03-17 | 2021-09-17 | 北京京东振世信息技术有限公司 | 生成轨迹数据的方法和装置 |
CN111460328A (zh) * | 2020-03-27 | 2020-07-28 | 杭州华量软件有限公司 | 一种基于陀螺仪的渔船时空轨迹修正方法及装置 |
CN111460328B (zh) * | 2020-03-27 | 2023-04-18 | 杭州华量软件有限公司 | 一种基于陀螺仪的渔船时空轨迹修正方法及装置 |
CN111553732A (zh) * | 2020-04-24 | 2020-08-18 | 北京爱笔科技有限公司 | 移动轨迹的处理方法和装置 |
CN111553732B (zh) * | 2020-04-24 | 2024-02-23 | 北京爱笔科技有限公司 | 移动轨迹的处理方法和装置 |
CN114071347A (zh) * | 2020-07-28 | 2022-02-18 | 中移(苏州)软件技术有限公司 | 一种多信令轨迹的时空匹配方法及装置 |
CN114071347B (zh) * | 2020-07-28 | 2024-04-09 | 中移(苏州)软件技术有限公司 | 一种多信令轨迹的时空匹配方法及装置 |
CN112653990A (zh) * | 2020-09-18 | 2021-04-13 | 武汉爱迪科技股份有限公司 | 一种密切接触人员的筛选算法及系统 |
CN113516690A (zh) * | 2020-10-26 | 2021-10-19 | 阿里巴巴集团控股有限公司 | 图像检测方法、装置、设备和存储介质 |
CN112798006B (zh) * | 2021-01-13 | 2022-11-25 | 北京中交兴路信息科技有限公司 | 一种不同路径的差异点分析方法、装置、存储介质及终端 |
CN112798006A (zh) * | 2021-01-13 | 2021-05-14 | 北京中交兴路信息科技有限公司 | 一种不同路径的差异点分析方法、装置、存储介质及终端 |
CN114374941A (zh) * | 2021-12-17 | 2022-04-19 | 智慧足迹数据科技有限公司 | 基于信令数据的轨迹匹配方法及相关装置 |
CN114297328B (zh) * | 2021-12-28 | 2023-02-03 | 杭州电子科技大学 | 基于时空缓冲区的轨迹数据补全及交通流预测方法 |
CN114297328A (zh) * | 2021-12-28 | 2022-04-08 | 杭州电子科技大学 | 基于时空缓冲区的轨迹数据补全及交通流预测方法 |
CN117357880A (zh) * | 2023-12-07 | 2024-01-09 | 深圳失重魔方网络科技有限公司 | 一种基于智能设备的运动状态识别方法及系统 |
CN117357880B (zh) * | 2023-12-07 | 2024-02-09 | 深圳失重魔方网络科技有限公司 | 一种基于智能设备的运动状态识别方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN106959113A (zh) | 2017-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017117857A1 (zh) | 移动终端运动轨迹的匹配方法及装置 | |
US7471245B2 (en) | Method and apparatus for estimating geolocations | |
US11419088B2 (en) | Radiation source positioning method based on radio spectrum monitoring big data processing | |
US8918103B2 (en) | Location data regression | |
US9125067B2 (en) | System and method for mobile location using ranked parameter labels | |
US20120185458A1 (en) | Clustering crowd-sourced data to identify event beacons | |
AU2018222821A1 (en) | Trajectory analysis through fusion of multiple data sources | |
CN108834077B (zh) | 基于用户移动特性的跟踪区划分方法、装置及电子设备 | |
Picard et al. | Time difference localization in the presence of outliers | |
Hashemi | Reusability of the output of map-matching algorithms across space and time through machine learning | |
US20070146198A1 (en) | Method and apparatus for detecting emitter movement | |
US20120040637A1 (en) | Dynamic Tag Control and Fingerprinting Event Localization | |
CN114430814A (zh) | 用于用户设备定位的方法、装置和计算机程序 | |
Huang et al. | CTS: A cellular-based trajectory tracking system with GPS-level accuracy | |
CN114222365A (zh) | 一种基于单基站的超宽带定位方法、装置、计算单元、系统 | |
Zheng et al. | RSS-based indoor passive localization using clustering and filtering in a LTE network | |
Kim et al. | Cooperative localization considering estimated location uncertainty in distributed ad hoc networks | |
Khandker et al. | Positioning error prediction and training data evaluation in rf fingerprinting method | |
Abdelbar et al. | Improving cellular positioning indoors through trajectory matching | |
Li et al. | Validation of a probabilistic approach to outdoor localization | |
CN109115219A (zh) | 一种基于场景系数的室内三维定位方法 | |
US7456788B2 (en) | Method and apparatus for reducing geolocation ambiguity in signal tracking | |
US10996310B2 (en) | Estimated user location from cellular telephony data | |
Gosai et al. | Real time location based tracking using WiFi Signals | |
KR102580937B1 (ko) | 위치 기반 서비스를 위한 측위 데이터 보정 장치, 방법 및 이를 이용한 측위 데이터 제공 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16883002 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16883002 Country of ref document: EP Kind code of ref document: A1 |