WO2017116106A1 - High moisture- and gas-barrier flexible film of multilayer structure not using adhesive, and manufacturing method therefor - Google Patents

High moisture- and gas-barrier flexible film of multilayer structure not using adhesive, and manufacturing method therefor Download PDF

Info

Publication number
WO2017116106A1
WO2017116106A1 PCT/KR2016/015291 KR2016015291W WO2017116106A1 WO 2017116106 A1 WO2017116106 A1 WO 2017116106A1 KR 2016015291 W KR2016015291 W KR 2016015291W WO 2017116106 A1 WO2017116106 A1 WO 2017116106A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
composite film
gas
manufacturing
metal
Prior art date
Application number
PCT/KR2016/015291
Other languages
French (fr)
Korean (ko)
Inventor
서용석
김정철
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160178090A external-priority patent/KR101878572B1/en
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2017116106A1 publication Critical patent/WO2017116106A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes

Definitions

  • the present invention relates to a barrier film, and more particularly, to a plastic nanocomposite film in which nanoparticles, such as clay, are dispersed, and a process of bonding a metal film or sheet thereto without using an adhesive and an organo-metal prepared by using the same. Or it relates to a water and gas high barrier flexible film composed of a multilayer structure of an organic-metal-organic film and a method of manufacturing the same.
  • the inorganic particles are dispersed in a polymer resin to prepare a composite film; Treating the metal film with an ion beam or plasma; And stacking and compressing the composite film and the surface treated metal film, and a display device using the same as an encapsulant or a backsheet packaging material, and a method of manufacturing a moisture and gas-high barrier multilayer composite film. It relates to a light emitting device or a solar cell device.
  • Moisture and gas barrier films in which thin films of metal oxides such as aluminum oxide, magnesium oxide, and silicon oxide are formed on the surface of a plastic substrate or film are used for packaging articles that require the blocking of various gases such as water vapor and oxygen. It is widely used for packaging to prevent alteration of food, industrial goods and pharmaceuticals, and is used in liquid crystal display devices, solar cells, organic electroluminescence substrates, electrode packaging materials and the like.
  • the method of forming a gas barrier layer mainly by plasma CVD method apply
  • the conventional plate glass used in the display field is easy to break, there is no bending, there is a large specific gravity, there is a limit to the thin and light, so that the plastic film is used as a substitute for the plate glass in the manufacture of flexible displays.
  • Plastic film is a lightweight and flexible material that is easy to bend, hard to break, and easy to thin, so it is an effective material that is applied to large-sized display devices, but due to its own free volume, it is displayed due to high oxygen or water vapor transmission. There is a problem that the light emitting performance of the device is likely to be poor.
  • organic light emitting diodes which are applied in various fields such as portable devices, monitors, notebooks, and TVs, and thus, low power consumption, fast response speed display, and easy thinning compared to conventional light sources.
  • space utilization is excellent due to process application, organic materials and metal electrodes included in OLEDs are easily oxidized by external factors such as moisture, and products containing OLEDs are very sensitive to environmental factors. It causes problems in the durability of the equipment used.
  • OLEDs are becoming more versatile, ranging from small cell phones to 55-inch TVs. OLEDs are very sensitive to moisture, allowing a water vapor transmission rate (WVTR) of 10 -6 g / m2day (per day per square meter of substrate). Amount of moisture) At present, OLED uses glass substrate, so there is no problem of moisture permeation of the substrate itself, but this type of product is not flexible, and the latest flexible electronic products use plastic (polymer), not glass, as a substrate. That is, since the plastic substrate is composed of a structure having a free volume with low density between molecules, a large amount of moisture enters the device through the substrate itself, and the moisture permeation amount is more than 10 g / m 2 day. do.
  • WVTR water vapor transmission rate
  • inorganic materials such as silicon oxide, aluminum oxide, tantalum oxide, titanium oxide, and the like are mainly used as the gas barrier film.
  • These gas barrier thin films are coated on the surface of the plastic film by a vacuum deposition method such as plasma chemical vapor deposition, sputtering, or the sol-gel method in a high vacuum state.
  • a vacuum deposition method such as plasma chemical vapor deposition, sputtering, or the sol-gel method in a high vacuum state.
  • a multilayer structure in which the same structure is repeated many times is common, or in general, one or more inorganic layers are usually present in the gas barrier thin film.
  • the organic layer serves to prevent the defect of the thin film, which may occur in the inorganic layer, rather than the gas barrier property, from propagating to the next inorganic layer.
  • a dry barrier layer deposited by an inorganic compound is provided on one side of a base film, and a gas barrier layer formed by a polyurethane resin is installed on the dry barrier layer, and on the gas barrier layer.
  • an overcoat layer formed of a polyester resin and / or a polyacrylic resin is provided.
  • Korean Patent Laid-Open Publication No. 2005-0010375 discloses a bonded plastic film, and a first organic-inorganic hybrid buffer layer, a gas barrier layer, and a second organic-inorganic hybrid buffer layer are sequentially stacked on both sides of the bonded plastic film. It provides a multi-layered plastic substrate forming a symmetrical structure around the center. However, this multilayer structure has a disadvantage in that a process such as coating or laminating is added. Japanese Patent Laid-Open No.
  • 2011-161891 proposes a polysilazane film in many layers of two or more layers to complement pinholes and cracks in a gas barrier sheet, thereby minimizing the occurrence of pinholes or cracks that pass through all silica films and providing rapid gas barrier properties. It is mentioned that deterioration can be prevented. However, the method may cause cracks due to an increase in thickness compared to silazane monolayers. In addition, the coating process is increased and the water vapor transmission rate is 0.5 g / m 2 / day, which is not suitable for use as a gas barrier film.
  • the conventional invention is to deposit and apply a multilayer coating of silazane or a mixture of an organic layer and an inorganic layer.
  • the method is modified due to a large difference in coefficient of linear expansion of the dry barrier layer. Cracking and peeling of the inorganic thin film may occur. Therefore, the design of the appropriate multilayer structure and the adhesion between the coating layers is very important to minimize the stress at the interface of each layer.
  • to bond a plastic film and a metal film dispersed with a nano-material without an adhesive to produce a flexible composite film having a high barrier of water and gas that conventional materials did not achieve.
  • OLEDs organic light emitting diodes
  • OLEDs organic light emitting diodes
  • OLED is excellent in space utilization, and is applied in various fields including various portable devices, monitors, notebooks, and TVs, but in the commercialization and use of OLEDs, the main problem is durability.
  • OLEDs Organic materials and metal electrodes included in OLEDs are easily oxidized by external factors such as moisture, and products including OLEDs are highly sensitive to environmental factors. In other words, OLEDs are very sensitive to moisture, so the water vapor transmission rate (WVTR) tolerance is less than 10 -6 g / m 2 day (amount of moisture transmitted per day per square meter of substrate).
  • WVTR water vapor transmission rate
  • OLED uses glass substrate, so there is no problem of moisture permeation of the substrate itself, and it solves the water permeation problem by improving the barrier property of the packaging material and the sealing material.
  • the display device using the plastic film as a substrate has a problem in that the light emitting performance of the display device is easily degraded due to oxygen or water vapor permeation. That is, since the plastic substrate is composed of a structure having a free volume of low intermolecular density, a large amount of moisture enters the device through the substrate itself, and the moisture permeation amount may be more than 10 g / m 2 / day. do. This value is 10 7 times the water permeability tolerance required for OLED display devices. Therefore, it is required to develop a moisture and gas high barrier flexible film that can effectively block the penetration of moisture while reducing damage to organic electronic devices and secure long-term reliability.
  • the present invention was developed to solve the above problems, by introducing a polar functional group on the surface by functionalizing the metal film surface and then thermally crimped without the adhesive and the polymer film dispersed nanoclay (clay plate) particles and organic-inorganic nano It is an object of the present invention to provide a method for producing a high barrier multilayer flexible film in which a composite film and a metal film are bonded, and thus, a multilayer organic-inorganic / metal flexible film having improved gas and moisture barrier properties.
  • the present invention after treating both sides of the metal film with an ion beam or plasma to which a reactive agent is added to generate functional groups on both sides of the metal film, the polymer film in which the metal film and the nanoclay (clay plate) particles are evenly dispersed is separated from the metal and the cross section or the like.
  • the present invention provides a method of manufacturing a multilayer structure flexible film without using an adhesive by pressing the both sides using a thermal pressurization process and having no pin-hole and exhibiting high barrier against moisture and gas.
  • the present invention in order to solve the above problems by dispersing the inorganic particles in the polymer resin to produce a composite film; Treating the metal film with an ion beam or plasma; And it provides a method for producing a water and gas high barrier multi-layered composite film comprising the step of laminating and pressing the composite film and the surface treated metal film.
  • before the pressing step may further comprise the step of treating the surface of the composite film with an ion beam or plasma.
  • the inorganic particles include montmorillonite, bentonite, kaolinite, saponite, hectorite, baydelite, halosite, vermiculite, margite, sukconite, volconscote and kenyarite It may be selected from the group consisting of nano smectite clay, carbon material containing graphene, fullerene and carbon nanotubes, or nanometal plate mexene having a calcium carbonate or planar structure or a mixture thereof.
  • the polymer is a polyester containing polyamide, polyethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate or polyethylene naphthalate or maleic anhydride, amine, hydroxyl group
  • the step of preparing the composite film may use a polymer resin containing a polar group in the molecule or may further mix 5% by weight or less of a compatibilizer.
  • the composite film manufactured according to the manufacturing method of the present invention may be used as an encapsulant or a back sheet packaging material of a display device, an organic light emitting device, or a solar cell.
  • the polymer nanocomposite film itself has high gas and moisture barrier properties, gas and moisture are permeated after a long time. However, when used in a display, a battery electrode, or a solar cell, the life is affected. When the composite film and the metal film are laminated in a multi-layer structure, due to the synergistic effect (synergy), it shows a superior barrier property than the original metal film or nano composite film.
  • an object of the present invention can be produced a multi-layered film showing a high barrier properties and flexibility at the same time by showing excellent bonding properties.
  • nylon or polyester film in which nanoparticles are evenly dispersed, it shows excellent blocking properties, but it cannot satisfy the high barrier properties required in electronic devices, solar cells, batteries, and the like. It exhibits extreme moisture barrier and gas barrier properties much higher than nanocomposite or metal films.
  • This process can be easily applied to a general polymer film or a metal film, it is possible to manufacture a high-breaking film in a continuous process without using an adhesive has the advantage of significantly reducing the time and cost of the processing process.
  • FIG. 1 is a schematic diagram of a multi-layered composite film manufacturing process according to an embodiment of the present invention.
  • Figure 2 is a transmission electron micrograph showing a nano-composite film dispersed in clay according to an embodiment of the present invention.
  • FIG. 3 is a scanning electron micrograph showing a bonding cross section of the nanocomposite film and the metal film according to an embodiment of the present invention.
  • Figure 4 is a result of measuring the water transmittance of the multi-layered film according to an embodiment of the present invention.
  • FIG. 5 is a result showing the light emission of the same brightness when the multi-layered film according to an embodiment of the present invention is attached to the rear of the OLED display device as a blocking film when the switch is turned on 6 months after the performance.
  • the present invention in order to solve the above problems by dispersing the inorganic particles in the polymer resin to produce a composite film; Treating the metal film with an ion beam or plasma; And it provides a method for producing a water and gas high barrier multi-layered composite film comprising the step of laminating and pressing the composite film and the surface treated metal film.
  • 30% by weight (preferably up to 10% by weight, more preferably up to 5% by weight) of fillers are extruded together with a compatibilizing agent in an extruder to produce a film, or mixed in an internal mixer, and then the composite is made into small particles and put into an extruder, followed by extrusion.
  • the pressing step may further comprise the step of treating the surface of the composite film with an ion beam or plasma.
  • the metal film 10 is a vacuum chamber 40 with an ion beam generator 20 or a plasma generator 30 in succession
  • the surface of the metal film is treated by ion beam or plasma by supplying argon 21 or oxygen 31 into the vacuum chamber.
  • the composite film 40 prepared by dispersing the inorganic particles in the polymer resin is continuously supplied, pressed by the press 50, and then wound on a roller to obtain a multilayer structure composite film 60.
  • the inorganic particles include montmorillonite, bentonite, kaolinite, saponite, hectorite, baydelite, halosite, vermiculite, margite, sukconite, volconscote and kenyarite It may be selected from the group consisting of nano smectite clay, carbon material containing graphene, fullerene and carbon nanotubes, or nanometal plate mexene having a calcium carbonate or planar structure or a mixture thereof.
  • the polymer is a polyester containing polyamide, polyethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate or polyethylene naphthalate or maleic anhydride, amine, hydroxyl group
  • the step of preparing the composite film may use a polymer resin containing a polar group in the molecule or may further mix 5% by weight or less of a compatibilizer.
  • the polymer may contain a polar group in the molecule or, in the case of a non-polar polymer, 5 wt% or less (preferably 1 wt% or less) of a compatibilizer to prepare a crystalline or amorphous thermoplastic polymer composite so that the filler is evenly dispersed.
  • Organic complexes containing fillers act as barriers to the passage of gases and moisture, increasing the passage of these permeable molecules indefinitely, and blocking the extremely small amount of permeation by bonding metal films without pinholes to one or both sides.
  • the organic nanocomposite film and the metal film are compressed at room temperature or below the glass transition temperature of the mother resin, and the film is compressed evenly in all areas to block pinholes through which gas or moisture can pass.
  • the flexible composite film is formed by applying an ion beam or plasma process to generate a polar group on the surface of the organic composite film, and has a covalent bond by interacting with or reacting with a polar group present on the surface of the metal film treated in this manner. This causes adhesion on both sides, which blocks the path for gas or moisture to pass through.
  • the composite film manufactured according to the manufacturing method of the present invention may be used as an encapsulant or a back sheet packaging material of a display device, an organic light emitting device, or a solar cell.
  • Emulsifiers or compatibilizers may be mixed in a mixer and then injected into a film in which nanoclay particles are evenly dispersed. Both sides of the metal film or sheet are added with reactive gases (oxygen, ammonia, etc.) in small portions on the film, treated with an ion beam or plasma-treated to generate a reactor on the metal surface.
  • the above-mentioned clay particles are characterized in that they are selected from the group consisting of montmorillonite, bentonite, kaolinite, mica, hectorite, stevensite, vermiculite, halosite, volconcite, marganite, kenyalite, and mixtures thereof.
  • the compatibilizer interacts with the ionic groups of the clay organicized in the polymer backbone or side chains to open up the clay layers and at the same time allow the high pressure foam fluid to enter between these open clays and easily adsorb on the clay surface.
  • Reactors formed on the metal surface were measured by X-ray spectroscopy (XPS), and moisture and gas permeability were measured by a mocon meter and a moisture permeability meter of the Institute of Standards and Science.
  • An important process variable in achieving the object of the present invention is the adhesion strength of the metal surface and the nanocomposite.
  • the adhesive is not used at all, but the reactor generated on the metal surface reacts with the reactor of the nanocomposite resin or has strong interaction (hydrogen interaction), thereby uniformly bonding all the surfaces. By removing the space through which gas or moisture can permeate, high fluidity is exhibited by preventing the diffusion of the fluid.
  • the embodiment of the present invention is an environmentally friendly by not using an adhesive and by using oxygen as a reaction gas, the reaction occurs well, but the reaction occurs only on the surface is almost no change in the properties of the metal film itself.
  • the ion beam is injected at a constant flow rate of 3 ml / min in a vacuum chamber equipped with a cold-hollow cathode ion gun to generate an ion beam having a low energy of about 1 keV. Generates an ion beam with energy as low as 1 keV and scans the ion beam under high precision (300 microamperes per unit cm 2 ).
  • the reactive gas added with the ion beam uses oxygen or ammonia and the injection amount is 0.2 to 6 ml. / min, preferably about 3 ml / min is suitable.
  • the clay / nylon composite film prepared on both sides of the treated aluminum film or prior to the cross-section is put together in a press (compress), pressed at 150 ° C for 10 minutes to 30 minutes, taken out, stored in a vacuum oven, and then sized as needed.
  • the oxygen permeability and water vapor transmission rate were measured by cutting. Oxygen permeability was measured using MOCON's OX-TRAN instrument at a relative humidity of 0% at room temperature using the method of ASTM D 3985.
  • Water vapor transmission rate was measured at 100% relative humidity using the method of ASTM F 1249 using Illinois Instrument Inc 7001. For 48 hours at room temperature, the values below 10 -4 g / m 2 / day were measured using a standard measuring instrument. In addition, the measurement was performed twice about two test pieces about each Example, and the average value of four measured values in total was obtained.
  • the nylon composite film of Example 1 was placed on both sides of an aluminum film (12 ⁇ m), pressed at 150 ° C. for about 20 minutes, taken out, stored in a vacuum oven, and cut to an appropriate size as needed to measure oxygen permeability and water vapor transmission rate. .
  • Figure 2 is a transmission electron micrograph showing a nano-composite film dispersed in clay prepared according to Example 1 of the present invention.
  • the nylon composite prepared in Examples of the present invention it can be seen from the transmission electron microscope that the clay particles are well dispersed at a single monolayer particle level and are oriented regularly.
  • Figure 3 is a scanning electron micrograph showing the bonding cross section of the nanocomposite film and the metal film according to an embodiment of the present invention when the fracture surface of the bilayer composite film is observed with a scanning electron microscope, the two films are perfectly attached to each other You can see it.
  • Figure 4 is a graph of the results of measuring the water transmittance of the multi-layered film according to an embodiment of the present invention. Examining this as shown in Table 1, which summarizes the barrier properties of the nylon composite film in which the clay particles are dispersed, the oxygen permeability is reduced to less than 1% and the moisture permeability is also reduced by more than 70%. You can see the evenly distributed effect.
  • Aluminum film has excellent self-shielding properties and hardly differs depending on aluminum thickness. In the case of a double layer film in which a nylon composite film and aluminum are bonded, a range of performances suitable for most applications is shown.
  • the composite film has a water transmittance of 3x10 -3 g / mm / m 2 day or less, and in the case of the double-sided bonded film of Example 2, 1x10 -7 g / mm / m 2 day or less (measured by the Institute) (Figure 4).
  • Figure 4 shows the world's highest level of flexible film blocking performance.
  • a polyamide (nylon) system in which clay (clay plate) particles are evenly dispersed without using an adhesive by functionalizing both surfaces of a metal film or sheet to generate reactive polar groups on the surface thereof.
  • Nanocomposite films polyester films such as polyethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate or polyethylene naphthalate, or polystyrene containing reactive functional groups (such as maleic hydride, amine, hydroxyl group)
  • Nano such as polyacrylates, polycarbonates, polyacrylates such as polymethacrylates, cyclic olefin copolymers, polynorbornenes, aromatic florene polyesters, polyesulfones, polyimides, epoxy resins or polyfunctional acrylates Composite film and thermocompression
  • a multilayered composite film having an organic composite-metal film (or organic composite-
  • FIG. 5 is attached to the back of the OLED display device (FIG. 5 a, b) with a blocking film according to an embodiment of the present invention (Fig. 5 c) by attaching epoxy to the edge UV curing (Fig. 5d) 6 months later, when the switch is turned on again, the result shows the same brightness of light emission (FIG. 5 e).
  • the multi-layered composite film produced from the above results has excellent barrier properties against moisture and gas, and it can be seen that it can be used as a flexible substrate material without deterioration in performance even when used as a back substrate material of the OLED for a long time.

Landscapes

  • Laminated Bodies (AREA)

Abstract

The present invention relates to a barrier film and, more particularly, to a plastic nano composite film in which clay (clay tablets) particles are dispersed, a process for bonding a metal film or sheet to the plastic nano composite film without using an adhesive, and the manufacture of a high moisture- and gas-barrier flexible film formed into a multilayer structure of an organic composite-metal or (organic composite-metal-organic composite) film manufactured by the process. The high moisture- and gas-barrier flexible film according to the present invention causes a chemical reaction or exhibits a polar interaction between a matrix resin of a nanocomposite and a reactive group of having a metal surface, such that a metal film and the nanocomposite are uniformly bonded to the entire area, thereby removing a space for gas and moisture to penetrate therethrough.

Description

접착제를 사용하지 않는 다층구조의 수분 및 기체 고차단성 유연필름 및 그 제조방법Multi-layered moisture and gas high barrier flexible film without adhesive and its manufacturing method
본원 발명은 배리어 필름에 관한 것으로, 보다 상세하게는 클레이 등의 나노입자가 분산된 플라스틱 나노 복합필름과 여기에 금속필름 또는 쉬트를 접착제를 사용하지 않고 접합시키는 공정 및 이를 이용하여 제조된 유기-금속 또는 유기-금속-유기필름의 다층 구조로 이루어진 수분 및 기체 고차단성 유연필름 및 그 제조 방법에 관한 것이다.The present invention relates to a barrier film, and more particularly, to a plastic nanocomposite film in which nanoparticles, such as clay, are dispersed, and a process of bonding a metal film or sheet thereto without using an adhesive and an organo-metal prepared by using the same. Or it relates to a water and gas high barrier flexible film composed of a multilayer structure of an organic-metal-organic film and a method of manufacturing the same.
보다 구체적으로는 무기입자를 고분자 수지에 분산시켜 복합필름을 제조하는 단계; 금속 필름을 이온빔 또는 플라즈마로 표면을 처리하는 단계; 및 상기 복합필름과 표면 처리된 금속 필름을 적층하여 압착하는 단계를 포함하는 것을 특징으로 하는 수분 및 기체 고차단성 다층구조 복합필름의 제조방법 및 이를 봉지재 또는 백시트 포장재로 사용하는 디스플레이 소자, 유기발광 소자 또는 태양전지 소자에 대한 것이다.More specifically, the inorganic particles are dispersed in a polymer resin to prepare a composite film; Treating the metal film with an ion beam or plasma; And stacking and compressing the composite film and the surface treated metal film, and a display device using the same as an encapsulant or a backsheet packaging material, and a method of manufacturing a moisture and gas-high barrier multilayer composite film. It relates to a light emitting device or a solar cell device.
본 출원은 2015년 12월 31일에 출원된 한국 특허출원 제10-2015-0191351호 및 2016년 12월 23일에 출원된 한국 특허출원 10-2016-0178090호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.This application claims priority based on Korean Patent Application No. 10-2015-0191351, filed December 31, 2015 and Korean Patent Application No. 10-2016-0178090, filed December 23, 2016. All content disclosed in the specification and drawings of the present invention is integrated in this application.
플라스틱 기판이나 필름의 표면에 산화알루미늄, 산화마그네슘, 산화규소 등의 금속 산화물의 박막을 형성한 수분 및 기체 배리어성 필름은, 수증기나 산소 등의 각종 가스의 차단을 필요로 하는 물품의 포장 용도나, 식품, 공업용품 및 의약품 등의 변질을 방지하기 위한 포장 용도로 널리 사용되고 있으며, 액정 표시 소자, 태양 전지, 유기 발광(Organic Electroluminescence) 기판, 전극포장재 등에서 사용되고 있다. Moisture and gas barrier films in which thin films of metal oxides such as aluminum oxide, magnesium oxide, and silicon oxide are formed on the surface of a plastic substrate or film are used for packaging articles that require the blocking of various gases such as water vapor and oxygen. It is widely used for packaging to prevent alteration of food, industrial goods and pharmaceuticals, and is used in liquid crystal display devices, solar cells, organic electroluminescence substrates, electrode packaging materials and the like.
이러한 가스 배리어성 필름을 제조하는 방법으로는, 주로 플라즈마 CVD법에 의해 가스 배리어층을 형성하는 방법이나, 폴리실라잔을 주성분으로 하는 도포액을 도포한 후, 표면 처리 방법, 또는 그것들을 병용하는 방법이 알려져 있다. 더욱이 디스플레이분야에서 사용되던 종래의 판유리는 파손되기 쉽고, 굴곡성이 없으며, 비중이 크고, 얇고 가벼움에는 한계가 있어서 유연 디스플레이 제조에서 판유리를 대신하는 재료로서 플라스틱 필름을 이용하고 있다. 플라스틱 필름은 경량으로 유연하여 굴곡화가 쉽고 파손되기 어려우며 박막화도 용이하기 때문에 표시소자의 대형화에도 적용되고 있는 유효한 재료이지만 그 자체의 자유부피로 인하여 유리 기판에 비교하여 높은 산소나 수증기의 투과로 인하여 표시소자의 발광성능이 떨어지기 쉽다는 문제가 있다. 이는 각종 휴대용 기기, 모니터, 노트북 및 TV에 걸친 다양한 분야에서 적용되고 있는 유기발광다이오드(OLED: Organic Light Emitting Didoe)의 경우에도 마찬가지여서 기존 광원 대비하여 저전력 소모량, 빠른 응답 속도 표시장치 그리고 용이한 박형화 공정 적용으로 인한 공간 활용성이 우수한 장점이지만 OLED에 포함된 유기재료 및 금속전극 등은 수분 등의 외부적 요인에 의해 매우 쉽게 산화되며, OLED를 포함하는 제품은 환경적 요인에 크게 민감하여 장기적으로 사용되는 기기의 내구성에 문제를 야기한다. As a method of manufacturing such a gas barrier film, the method of forming a gas barrier layer mainly by plasma CVD method, apply | coating the coating liquid which has a polysilazane as a main component, and then apply a surface treatment method or them together Methods are known. In addition, the conventional plate glass used in the display field is easy to break, there is no bending, there is a large specific gravity, there is a limit to the thin and light, so that the plastic film is used as a substitute for the plate glass in the manufacture of flexible displays. Plastic film is a lightweight and flexible material that is easy to bend, hard to break, and easy to thin, so it is an effective material that is applied to large-sized display devices, but due to its own free volume, it is displayed due to high oxygen or water vapor transmission. There is a problem that the light emitting performance of the device is likely to be poor. The same is true for organic light emitting diodes (OLEDs), which are applied in various fields such as portable devices, monitors, notebooks, and TVs, and thus, low power consumption, fast response speed display, and easy thinning compared to conventional light sources. Although space utilization is excellent due to process application, organic materials and metal electrodes included in OLEDs are easily oxidized by external factors such as moisture, and products containing OLEDs are very sensitive to environmental factors. It causes problems in the durability of the equipment used.
OLED는 소형 휴대폰에서부터 55인치 TV까지 응용범위가 더욱 다양해지고 있는데 OLED는 수분에 매우 민감하여 수분투과도(WVTR, water vapor transmission rate) 허용치가 10-6g/㎡day (기판 1 평방미터당 하루 동안 투과된 수분의 양)이하이다. 현재 OLED는 유리 기판을 사용하므로 기판 자체의 수분투과도 문제는 없지만 이런 형태의 제품은 유연하지 못하며 최신 유연 전자제품은 유리가 아닌 플라스틱(폴리머)을 기판으로 사용하기 때문에 큰 문제가 발생한다. 즉, 플라스틱 기판은 분자 간의 치밀도가 낮은 공간(free volume)을 갖는 구조로 구성되어 있기 때문에 많은 양의 수분들이 기판 자체를 통하여 디바이스 안으로 들어오게 되며, 수분 투과량이 10 g/㎡day 이상이 되기도 한다. 이 수치는 OLED 디스플레이에 요구되는 수분투과도 허용치의 107배 값이다. 따라서 플라스틱 기판 위에 다양한 형태의 배리어막을 올려 수분투과율(WVTR)을 방지하는 기술들이 개발되고 있으며, 이를 위해 SiOx 나 AlOy와 같은 조성을 갖는 세라믹 가스 차단층을 고분자 필름위에 증착하여 제조한 다층막 구조가 대표적이다 이는 전극물질이나 태양전지의 백 시트 등에서도 공통적인 문제이다. 따라서 산소 및 수분의 침투를 효과적으로 차단함으로써 유기전자장치의 손상을 줄이고 기기의 내구성을 확보할 수 있는 차단재 개발이 요구되고 있다. OLEDs are becoming more versatile, ranging from small cell phones to 55-inch TVs. OLEDs are very sensitive to moisture, allowing a water vapor transmission rate (WVTR) of 10 -6 g / ㎡day (per day per square meter of substrate). Amount of moisture) At present, OLED uses glass substrate, so there is no problem of moisture permeation of the substrate itself, but this type of product is not flexible, and the latest flexible electronic products use plastic (polymer), not glass, as a substrate. That is, since the plastic substrate is composed of a structure having a free volume with low density between molecules, a large amount of moisture enters the device through the substrate itself, and the moisture permeation amount is more than 10 g / m 2 day. do. This figure is 10 7 times the water permeability tolerance required for OLED displays. Therefore, technologies for preventing moisture transmittance (WVTR) by placing various types of barrier films on plastic substrates have been developed. For this purpose, a multilayer film structure manufactured by depositing a ceramic gas barrier layer having a composition such as SiO x or AlO y on a polymer film is used. This is a common problem in electrode materials and solar cell back sheets. Accordingly, there is a demand for developing a blocking material that effectively blocks the penetration of oxygen and moisture, thereby reducing damage to organic electronic devices and ensuring durability of the device.
기존에 잘 알려져 있는 플라스틱 필름 상에 무기물의 증착이나 첨가를 통하여 산소나 수증기 등의 침투를 최소화하는 공정이 적용되고 있다. 이러한 가스 배리어 필름으로 일반적으로 산화규소, 산화알루미늄, 산화탄탈륨, 산화 티탄늄 등과 같은 무기물이 주로 사용되고 있다. 이들 가스 배리어 박막은 고진공 상태에서 플라즈마 화학증착법, 스퍼터링법 등의 진공 증착법이나 졸-겔 법을 이용하여 플라스틱 필름의 표면에 코팅된다. 이러한 가스 배리어 박막의 형태로는, 같은 구조가 수차례 반복되는 다층 구조형태가 보통이거나 또한, 가스 배리어 박막 내에 보통 한층 이상의 무기층이 존재하는 것이 일반적이다. 여기서 유기층은 가스 배리어 특성보다는 무기층에서 발생할 수 있는 박막의 결함이 그 다음 무기층으로 전파되는 것을 방지하는 역할을 수행한다. 한국 공개특허 제2009-0007590호에는 기재 필름의 한쪽 면에 무기 화합물에 의해 증착된 건식 배리어층이 설치되고 상기 건식 배리어층 상에 폴리우레탄 수지에 의해 형성된 가스 배리어층이 설치되고 상기 가스 배리어층 상에 폴리에스테르 수지 및/또는 폴리아크릴 수지에 의해 형성된 오버코팅층이 설치된 구조를 개시하고 있다. 그런데 이러한 수지를 사용한 오버코팅층의 경우 건식 배리어층과 오버코팅층의 큰 선팽창계수 차이에 따른 유기기재의 변형과 무기 박막의 크랙 및 박리가 발생할 수 있다. 따라서 각층의 계면에서의 응력을 최소화할 수 있는 적절한 다층 구조의 설계와 코팅 층간의 접착성이 매우 중요하다. 또한, 두께가 약 1㎛인 경우 수증기 투과율이 0.3g/m2/day로 가스 배리어 필름으로 사용하기에는 적절하지 못하다. 미국 등록특허 제7,638,925호에서는 유기층 위에 스퍼터링 방법으로 건식 배리어층을 제조하는 과정을 반복하여 다층구조 플라스틱 기판을 제조하여 우수한 수증기 투과율을 보였다. 그러나 이러한 다층구조로 인해 공정이 복잡해지고 두께가 증가하며 열팽창계수의 차이로 인한 크랙이 발생할 수 있다. 한국 공개특허 제2005-0010375호에는 접합된 플라스틱 필름, 및 상기 접합된 플라스틱 필름의 양 측면에 제1 유기-무기 하이브리드 버퍼층, 가스배리어층 및 제2 유기-무기 하이브리드 버퍼층이 순차적으로 적층되어 플라스틱 필름을 중심으로 대칭 구조를 이루는 다층구조 플라스틱 기판을 제공한다. 그러나 이러한 다층구조로 인해 코팅, 합지 과정 등의 공정이 추가되는 단점을 갖는다. 일본 공개특허 특개2011-161891호에는 가스 배리어 시트의 핀홀 및 크랙을 보완하기 위해 폴리실라잔막을 2층 이상의 많은 층구조로 제안하여 모든 실리카막을 통과하는 핀홀 또는 크랙의 발생을 최소화하고 급격한 가스배리어 성의 열화를 막을 수 있다고 언급하고 있다. 그러나 상기 방법은 실라잔 단일층에 비해 두께가 증가함으로 인한 크랙이 발생할 수 있다. 또한, 코팅공정을 증가시키며 수증기 투과율이 0.5g/m2/day로 가스 배리어 필름으로 사용하기에는 적절하지 못하다. The process of minimizing the penetration of oxygen or water vapor through the deposition or addition of inorganic material on the well-known plastic film has been applied. In general, inorganic materials such as silicon oxide, aluminum oxide, tantalum oxide, titanium oxide, and the like are mainly used as the gas barrier film. These gas barrier thin films are coated on the surface of the plastic film by a vacuum deposition method such as plasma chemical vapor deposition, sputtering, or the sol-gel method in a high vacuum state. In the form of such a gas barrier thin film, a multilayer structure in which the same structure is repeated many times is common, or in general, one or more inorganic layers are usually present in the gas barrier thin film. Here, the organic layer serves to prevent the defect of the thin film, which may occur in the inorganic layer, rather than the gas barrier property, from propagating to the next inorganic layer. In Korean Patent Laid-Open Publication No. 2009-0007590, a dry barrier layer deposited by an inorganic compound is provided on one side of a base film, and a gas barrier layer formed by a polyurethane resin is installed on the dry barrier layer, and on the gas barrier layer. Discloses a structure in which an overcoat layer formed of a polyester resin and / or a polyacrylic resin is provided. However, in the case of the overcoating layer using such a resin, deformation of the organic substrate and cracking and peeling of the inorganic thin film may occur due to a large linear expansion coefficient difference between the dry barrier layer and the overcoating layer. Therefore, the design of the appropriate multilayer structure and the adhesion between the coating layers is very important to minimize the stress at the interface of each layer. In addition, when the thickness is about 1 μm, the water vapor transmission rate is 0.3 g / m 2 / day, which is not suitable for use as a gas barrier film. In US Patent No. 7,638,925, a process of manufacturing a dry barrier layer by sputtering on an organic layer was repeated to produce a multilayered plastic substrate, which showed excellent water vapor transmission rate. However, due to the multilayer structure, the process may be complicated, the thickness may be increased, and cracks may occur due to a difference in the coefficient of thermal expansion. Korean Patent Laid-Open Publication No. 2005-0010375 discloses a bonded plastic film, and a first organic-inorganic hybrid buffer layer, a gas barrier layer, and a second organic-inorganic hybrid buffer layer are sequentially stacked on both sides of the bonded plastic film. It provides a multi-layered plastic substrate forming a symmetrical structure around the center. However, this multilayer structure has a disadvantage in that a process such as coating or laminating is added. Japanese Patent Laid-Open No. 2011-161891 proposes a polysilazane film in many layers of two or more layers to complement pinholes and cracks in a gas barrier sheet, thereby minimizing the occurrence of pinholes or cracks that pass through all silica films and providing rapid gas barrier properties. It is mentioned that deterioration can be prevented. However, the method may cause cracks due to an increase in thickness compared to silazane monolayers. In addition, the coating process is increased and the water vapor transmission rate is 0.5 g / m 2 / day, which is not suitable for use as a gas barrier film.
이처럼 기존의 발명은 핀홀이나 크랙 등의 단점을 보완하기 위해 실라잔을 다층 코팅하거나 유기층, 무기층을 혼합하여 증착 및 도포하고 있으나 상기 방법은 건식 배리어층의 큰 선팽창계수 차이로 인해 유기기재의 변형과 무기 박막의 크랙 및 박리가 발생할 수 있다. 따라서 각층의 계면에서의 응력을 최소화할 수 있는 적절 한 다층 구조의 설계와 코팅 층간의 접착성이 매우 중요하다. 본원 발명에서는 나노물질을 분산시킨 플라스틱 필름과 금속필름을 접착제 없이 접착시켜 기존의 재료들이 이루지 못했던 수분 및 가스의 고차단성을 지닌 유연 복합필름을 제조하고자 한다.As described above, in order to make up for the shortcomings of pinholes and cracks, the conventional invention is to deposit and apply a multilayer coating of silazane or a mixture of an organic layer and an inorganic layer. However, the method is modified due to a large difference in coefficient of linear expansion of the dry barrier layer. Cracking and peeling of the inorganic thin film may occur. Therefore, the design of the appropriate multilayer structure and the adhesion between the coating layers is very important to minimize the stress at the interface of each layer. In the present invention, to bond a plastic film and a metal film dispersed with a nano-material without an adhesive to produce a flexible composite film having a high barrier of water and gas that conventional materials did not achieve.
한편, 최근 디스플레이 분야에서 중요하게 부각되고 있는 유기발광다이오드 (OLED: Organic Light Emitting Didoe)는 기존 광원에 비하여, 전력 소모량이 적고, 응답 속도가 빠르며, 표시장치 또는 조명의 박형화에 유리하다. 또한, OLED는 공간 활용성이 우수하여, 각종 휴대용 기기, 모니터, 노트북 및 TV에 걸친 다양한 분야에서 적용되고 있으나 OLED의 상용화 및 용도 확대에 있어서, 가장 주요한 문제점은 내구성 문제이다. On the other hand, organic light emitting diodes (OLEDs), which have recently emerged as important in the display field, have low power consumption, fast response speed, and are advantageous for thinning a display device or lighting as compared to existing light sources. In addition, OLED is excellent in space utilization, and is applied in various fields including various portable devices, monitors, notebooks, and TVs, but in the commercialization and use of OLEDs, the main problem is durability.
OLED에 포함된 유기재료 및 금 속 전극 등은 수분 등의 외부적 요인에 의해 매우 쉽게 산화되며, OLED를 포함하는 제품은 환경적 요인에 크게 민감하다. 즉 OLED는 수분에 매우 민감하여 수분투과도 (WVTR, water vapor transmission rate) 허용치가 10-6g/㎡day (기판 1 평방미터당 하루 동안 투과된 수분의 양) 이하이다. 현재 OLED는 유리기판을 사용하므로 기판 자체의 수분투과도 문제는 없으며, 패키징 소재 및 씰링 소재의 배리어 특성을 향상시켜 수분투과 문제를 중점적으로 해결하고 있다. Organic materials and metal electrodes included in OLEDs are easily oxidized by external factors such as moisture, and products including OLEDs are highly sensitive to environmental factors. In other words, OLEDs are very sensitive to moisture, so the water vapor transmission rate (WVTR) tolerance is less than 10 -6 g / m 2 day (amount of moisture transmitted per day per square meter of substrate). Currently, OLED uses glass substrate, so there is no problem of moisture permeation of the substrate itself, and it solves the water permeation problem by improving the barrier property of the packaging material and the sealing material.
그러나 향후 시장에서 중요한 위치를 차지할 것으로 예상되는 유연한 (Flexible) 형태를 갖는 플렉시블 디스플레이나 전자종이 등의 디바이스는 유리가 아닌 플라스틱(폴리머)을 기판으로 사용하기 때문에 큰 문제가 발생한다. 또 판유리는 파손되기 쉽고, 굴곡성이 없으며, 비중이 크고, 얇고 가벼움에는 한계가 있다. 유연소자기판을 제조하기 위해서는 판유리 대신 유연성이 좋은 플라스틱 필름이 주목을 끌고 있다. 플라스틱 필름은 경량으로 파손되기 어려우며 박막화도 용이하고 유연하기 때문에 표시소자의 대형화에도 대응할 수 있는 유효한 재료이다. 그러나 플라스틱 필름은 유리에 비교하여 가스(gas) 투과성이 높기 때문에 플라스틱 필름을 기재에 이용한 표시 소자는 산소나 수증기의 투과로 인하여 표시소자의 발광성능이 떨어지기 쉽다는 문제가 있다. 즉, 플라스틱 기판은 분자간의 치밀도가 낮은 공간 (free volume)을 갖는 구조로 구성되어 있기 때문에 많은 양의 수분들이 기판자체를 통하여 디바이스 안으로 들어오게 되며, 수분 투과량이 10g/㎡/day 이상이 되기도 한다. 이 수치는 OLED 표시소자에 요구되는 수분투과도 허용치의 107배 값이다. 따라서 수분의 침투를 효과적으로 차단하면서 유기전자장치의 손상을 줄일 수 있고 장기 신뢰성을 확보할 수 있는 수분 및 기체 고차단성 유연필름의 개발이 요구되고 있다.However, devices such as flexible displays and electronic papers, which are expected to occupy an important position in the market in the future, have a big problem because they use plastic (polymer) as a substrate rather than glass. In addition, the plate glass is easy to break, there is no bending, there is a limit in the specific gravity is large, thin and light. In order to manufacture flexible device substrates, plastic films having good flexibility instead of plate glass are attracting attention. Plastic films are lightweight and difficult to break, and are thin and easy to be flexible, which is an effective material that can cope with the increase in size of display devices. However, since the plastic film has a higher gas permeability than glass, the display device using the plastic film as a substrate has a problem in that the light emitting performance of the display device is easily degraded due to oxygen or water vapor permeation. That is, since the plastic substrate is composed of a structure having a free volume of low intermolecular density, a large amount of moisture enters the device through the substrate itself, and the moisture permeation amount may be more than 10 g / m 2 / day. do. This value is 10 7 times the water permeability tolerance required for OLED display devices. Therefore, it is required to develop a moisture and gas high barrier flexible film that can effectively block the penetration of moisture while reducing damage to organic electronic devices and secure long-term reliability.
본원 발명은 상기 문제점들을 해결하기 위해 개발된 것으로, 금속필름 표면을 기능화하여 표면에 극성관능기를 도입한 후 이를 나노클레이(점토판)입자가 분산된 고분자 필름과 접착제 없이 열압착을 시킴으로서 유-무기 나노 복합필름과 금속필름이 접합된 고차단성 다층구조 유연 필름을 제조하는 방법 및 이에 따라 기체 및 수분 차단특성이 향상된 다층구조 유-무기/금속 유연필름을 제공하는 것을 목적으로 한다.The present invention was developed to solve the above problems, by introducing a polar functional group on the surface by functionalizing the metal film surface and then thermally crimped without the adhesive and the polymer film dispersed nanoclay (clay plate) particles and organic-inorganic nano It is an object of the present invention to provide a method for producing a high barrier multilayer flexible film in which a composite film and a metal film are bonded, and thus, a multilayer organic-inorganic / metal flexible film having improved gas and moisture barrier properties.
또한, 본원 발명에서는 금속필름 양면을 반응기체를 첨가하는 이온빔 또는 플라즈마로 처리하여 금속 필름 양면에 관능기를 생성시킨 후 이 금속필름과 나노클레이(점토판)입자가 고르게 분산된 고분자필름을 금속과 단면 또는 양면에 열 가압공정을 이용하여 압착시켜서 핀홀(pin-hole)이 없으며 수분 및 기체에 대하여 고차단성을 보이는 다층구조 유연필름을 접착제를 사용하지 않고 제조하는 방법을 제공하고자 한다.In addition, in the present invention, after treating both sides of the metal film with an ion beam or plasma to which a reactive agent is added to generate functional groups on both sides of the metal film, the polymer film in which the metal film and the nanoclay (clay plate) particles are evenly dispersed is separated from the metal and the cross section or the like. The present invention provides a method of manufacturing a multilayer structure flexible film without using an adhesive by pressing the both sides using a thermal pressurization process and having no pin-hole and exhibiting high barrier against moisture and gas.
본원 발명에서는 상기 과제를 해결하기 위하여 무기입자를 고분자 수지에 분산시켜 복합필름을 제조하는 단계; 금속 필름을 이온빔 또는 플라즈마로 표면을 처리하는 단계; 및 상기 복합필름과 표면 처리된 금속 필름을 적층하여 압착하는 단계를 포함하는 수분 및 기체 고차단성 다층구조 복합필름의 제조방법을 제공한다.In the present invention, in order to solve the above problems by dispersing the inorganic particles in the polymer resin to produce a composite film; Treating the metal film with an ion beam or plasma; And it provides a method for producing a water and gas high barrier multi-layered composite film comprising the step of laminating and pressing the composite film and the surface treated metal film.
본원 발명에 따른 제조방법에 있어서, 상기 압착하는 단계 이전에 상기 복합필름을 이온빔 또는 플라즈마로 표면을 처리하는 단계를 더 포함할 수 있다.In the manufacturing method according to the present invention, before the pressing step may further comprise the step of treating the surface of the composite film with an ion beam or plasma.
본원 발명에 따른 제조방법에 있어서, 상기 무기입자는 몬모릴로나이트, 벤토나이트, 카오리나이트, 사포나이트, 헥토라이트, 베이델라이트, 할로사이트, 버미큘라이트, 마가다이트, 석코나이트, 볼콘스코이트 및 케냐라이트를 포함하는 나노스멕타이트 클레이거나, 그라펜, 풀러렌 및 탄소나노튜브를 포함하는 탄소소재이거나, 칼슘카보네이트 또는 평면구조를 가지는 나노금속판 멕센 또는 이들의 혼합물로 이루어진 군에서 선택될 수 있다.In the production method according to the present invention, the inorganic particles include montmorillonite, bentonite, kaolinite, saponite, hectorite, baydelite, halosite, vermiculite, margite, sukconite, volconscote and kenyarite It may be selected from the group consisting of nano smectite clay, carbon material containing graphene, fullerene and carbon nanotubes, or nanometal plate mexene having a calcium carbonate or planar structure or a mixture thereof.
본원 발명에 따른 제조방법에 있어서, 상기 고분자는 폴리아마이드, 폴리에틸렌 테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리헥사메틸렌 테레프탈레이트 또는 폴리에틸렌나프탈레이트를 포함하는 폴리에스터이거나 말레익안하이드라이드, 아민, 하이드록실기를 포함하는 반응성 관능기를 함유하는 폴리스티렌, 폴리아릴레이트, 폴리카보네이트, 폴리아크릴레이트, 환상형 올레핀 공중합체, 폴리노보넨, 아로마틱 플로렌 폴리에스터, 폴리이써설폰, 폴리이미드, 에폭시레진 또는 다관능성 아크릴레이트 중에서 선택될 수 있다.In the production method according to the present invention, the polymer is a polyester containing polyamide, polyethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate or polyethylene naphthalate or maleic anhydride, amine, hydroxyl group Polystyrene, polyarylate, polycarbonate, polyacrylate, cyclic olefin copolymer, polynorbornene, aromatic florene polyester, polyisulfone, polyimide, epoxy resin or polyfunctional acrylic containing reactive functional groups, including Can be selected from among the rates.
본원 발명에 따른 제조방법에 있어서, 상기 복합필름을 제조하는 단계는 분자 내에 극성기를 함유하는 고분자 수지를 사용하거나 또는 5 중량% 이하의 상용화제를 더 혼합할 수 있다.In the manufacturing method according to the present invention, the step of preparing the composite film may use a polymer resin containing a polar group in the molecule or may further mix 5% by weight or less of a compatibilizer.
본원 발명의 제조방법에 따라 제조된 복합필름은 디스플레이 소자, 유기발광 소자 또는 태양전지의 봉지재 또는 백시트 포장재로 사용될 수 있다.The composite film manufactured according to the manufacturing method of the present invention may be used as an encapsulant or a back sheet packaging material of a display device, an organic light emitting device, or a solar cell.
고분자 나노 복합필름 자체로도 기체 및 수분 차단성이 높지만 오랜 시간이 지나게 되면 기체 및 수분이 투과되어 나오게 되는데 디스플레이나 전지전극 또는 태양전지 등에 사용할 때에는 그 수명에 영향을 주게 되는데 반하여 본원 발명과 같이 나노 복합필름과 금속필름을 다층구조로 접합시킬 경우 동반상승효과(시너지효과)로 인하여 원래 금속필름이나 나노 복합필름보다 월등히 우수한 차단성을 보이게 된다.Although the polymer nanocomposite film itself has high gas and moisture barrier properties, gas and moisture are permeated after a long time. However, when used in a display, a battery electrode, or a solar cell, the life is affected. When the composite film and the metal film are laminated in a multi-layer structure, due to the synergistic effect (synergy), it shows a superior barrier property than the original metal film or nano composite film.
또한, 본원 발명의 목적은 우수한 접합 특성을 보임으로써 고차단성과 동시에 유연성을 보이는 다층구조 필름을 제조할 수 있다.In addition, an object of the present invention can be produced a multi-layered film showing a high barrier properties and flexibility at the same time by showing excellent bonding properties.
나노입자가 고르게 분산된 나일론이나 폴리에스터 필름의 경우 우수한 차단 특성을 보이지만 전자소자나 태양전지, 배터리 등에서 요구되는 고차단성을 만족시킬 수 없었으나, 본원 발명의 공정으로 제조된 다층구조 복합필름은 단순한 나노 복합필름이나 금속필름 보다 훨씬 높은 극한의 수분 차단성과 기체차단성을 보인다. 본 공정은 일반 고분자필름이나 금속필름에 대하여 쉽게 적용할 수 있으며 접착제를 사용하지 않고 연속 공정으로 고차단성 필름을 제조할 수 있어서 가공공정의 시간과 비용을 획기적으로 줄일 수 있는 장점이 있다.In the case of nylon or polyester film in which nanoparticles are evenly dispersed, it shows excellent blocking properties, but it cannot satisfy the high barrier properties required in electronic devices, solar cells, batteries, and the like. It exhibits extreme moisture barrier and gas barrier properties much higher than nanocomposite or metal films. This process can be easily applied to a general polymer film or a metal film, it is possible to manufacture a high-breaking film in a continuous process without using an adhesive has the advantage of significantly reducing the time and cost of the processing process.
도 1은 본원 발명의 일 구현예에 따른 다층구조복합필름 제조공정의 모식도이다.1 is a schematic diagram of a multi-layered composite film manufacturing process according to an embodiment of the present invention.
도 2는 본원 발명의 일 구현예에 따른 클레이가 분산된 나노복합필름을 보여주는 투과전자현미경 사진이다.Figure 2 is a transmission electron micrograph showing a nano-composite film dispersed in clay according to an embodiment of the present invention.
도 3은 본원 발명의 일 구현예에 따른 나노복합필름과 금속필름의 접합 단면을 보여주는 주사전자현미경 사진이다.3 is a scanning electron micrograph showing a bonding cross section of the nanocomposite film and the metal film according to an embodiment of the present invention.
도 4는 본원 발명의 일 구현예에 따른 다층구조 필름의 수분투과율을 측정한 결과도이다.Figure 4 is a result of measuring the water transmittance of the multi-layered film according to an embodiment of the present invention.
도 5는 본원 발명의 일 구현예에 따른 다층구조필름을 OLED표시소자 후면에 차단필름으로 부착하여 성능을 본 후 6개월 뒤에 다시 스위치를 켰을 때 처음과 같은 밝기의 발광을 보여주는 결과이다.5 is a result showing the light emission of the same brightness when the multi-layered film according to an embodiment of the present invention is attached to the rear of the OLED display device as a blocking film when the switch is turned on 6 months after the performance.
이하, 본원 발명에 대해 상세하게 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본원 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in detail. The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
본원 발명에서는 상기 과제를 해결하기 위하여 무기입자를 고분자 수지에 분산시켜 복합필름을 제조하는 단계; 금속 필름을 이온빔 또는 플라즈마로 표면을 처리하는 단계; 및 상기 복합필름과 표면 처리된 금속 필름을 적층하여 압착하는 단계를 포함하는 수분 및 기체 고차단성 다층구조 복합필름의 제조방법을 제공한다.In the present invention, in order to solve the above problems by dispersing the inorganic particles in the polymer resin to produce a composite film; Treating the metal film with an ion beam or plasma; And it provides a method for producing a water and gas high barrier multi-layered composite film comprising the step of laminating and pressing the composite film and the surface treated metal film.
본원 발명에 따르면 유기 또는 무기 결정성 및 비결정성 고분자내에 표면처리된 30중량% (바람직하게는 10중량%, 더 바람직하게는 5중량% 이하의) 충진제 (층상충진제인 클레이,탈크(운모), 그라펜 및 기타 탄소나노튜브, 칼슘카보네이트, 풀러렌 등)를 상용화제와 함께 압출기 내에서 혼합하면서 압출하여 필름을 제조하거나 또는 내부혼합기에서 혼합한 후 이 복합체를 작은 입자로 만들고 압출기내에 투입한 후 압출시켜서 필름으로 가공하여 충진제가 고르게 분산된 유기복합필름을 제조한 후 이를 반응이온빔이나 플라즈마로 처리하여 표면에 극성기를 함유하는 금속필름의 한면 또는 양면에 압착시켜 완전히 접착시킴으로써 기체 또는 수분이 통과할 수 있는 통로를 무한 연장시키거나 차단하는 작용의 상승효과로 수분 및 기체에 대하여 극도의 차단성을 보이는 유연한 유기복합-금속 또는 유기복합-금속-유기복합 구조로 이루어 질 수 있다.According to the invention 30% by weight (preferably up to 10% by weight, more preferably up to 5% by weight) of fillers (clay, talc (mica) as layer fillers) surface-treated in organic or inorganic crystalline and amorphous polymers, Graphene and other carbon nanotubes, calcium carbonate, fullerene, etc.) are extruded together with a compatibilizing agent in an extruder to produce a film, or mixed in an internal mixer, and then the composite is made into small particles and put into an extruder, followed by extrusion. After processing into a film to produce an organic composite film in which the filler is evenly dispersed, it is treated with a reaction ion beam or plasma and compressed to one side or both sides of a metal film containing a polar group on the surface to completely adhere the gas or water. Extremely different from water and gas due to the synergistic effect of infinitely extending or blocking passages Flexible organic compound showing a castle-metal compound or an organic-metal-organic composite structure may be composed.
본원 발명에 따른 제조방법에 있어서, 상기 압착하는 단계 이전에 상기 복합필름을 이온빔 또는 플라즈마로 표면을 처리하는 단계를 더 포함할 수 있다. 금속필름을 연결된 진공챔버 내에서 이온빔이나 플라즈마 처리 후 복합필름과 접착시킨 후 롤러에 감아서 완성되는 다층구조복합필름을 연속제조할 수 있다. 도 1은 본원 발명의 일 구현예에 따른 다층구조복합필름 제조공정의 모식도를 나타낸 것으로, 연속적으로 금속필름(10)이 이온빔 발생기(20) 또는 플라즈마 발생기(30)가 구비된 진공챔버(40)로 공급되고, 진공챔버 안으로는 알곤(21) 또는 산소(31)의 공급에 의하여 금속필름의 표면을 이온빔 또는 플라즈마로 처리된다. 이후 무기입자가 고분자 수지에 분산되어 제조되는 복합필름(40)이 연속적으로 공급되어 프레스(50)에 의하여 압착시킨 후 롤러에 감아서 다층구조복합필름(60)을 얻을 수 있다.In the manufacturing method according to the present invention, before the pressing step may further comprise the step of treating the surface of the composite film with an ion beam or plasma. After the metal film is bonded to the composite film after ion beam or plasma treatment in the connected vacuum chamber, it is possible to continuously manufacture a multi-layered composite film which is completed by winding on a roller. Figure 1 shows a schematic diagram of a multi-layered composite film manufacturing process according to an embodiment of the present invention, the metal film 10 is a vacuum chamber 40 with an ion beam generator 20 or a plasma generator 30 in succession The surface of the metal film is treated by ion beam or plasma by supplying argon 21 or oxygen 31 into the vacuum chamber. Thereafter, the composite film 40 prepared by dispersing the inorganic particles in the polymer resin is continuously supplied, pressed by the press 50, and then wound on a roller to obtain a multilayer structure composite film 60.
본원 발명에 따른 제조방법에 있어서, 상기 무기입자는 몬모릴로나이트, 벤토나이트, 카오리나이트, 사포나이트, 헥토라이트, 베이델라이트, 할로사이트, 버미큘라이트, 마가다이트, 석코나이트, 볼콘스코이트 및 케냐라이트를 포함하는 나노스멕타이트 클레이거나, 그라펜, 풀러렌 및 탄소나노튜브를 포함하는 탄소소재이거나, 칼슘카보네이트 또는 평면구조를 가지는 나노금속판 멕센 또는 이들의 혼합물로 이루어진 군에서 선택될 수 있다. In the production method according to the present invention, the inorganic particles include montmorillonite, bentonite, kaolinite, saponite, hectorite, baydelite, halosite, vermiculite, margite, sukconite, volconscote and kenyarite It may be selected from the group consisting of nano smectite clay, carbon material containing graphene, fullerene and carbon nanotubes, or nanometal plate mexene having a calcium carbonate or planar structure or a mixture thereof.
본원 발명에 따른 제조방법에 있어서, 상기 고분자는 폴리아마이드, 폴리에틸렌 테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리헥사메틸렌 테레프탈레이트 또는 폴리에틸렌나프탈레이트를 포함하는폴리에스터이거나 말레익안하이드라이드, 아민, 하이드록실기를 포함하는 반응성 관능기를 함유하는 폴리스티렌, 폴리아릴레이트, 폴리카보네이트, 폴리아크릴레이트, 환상형 올레핀 공중합체, 폴리노보넨, 아로마틱 플로렌 폴리에스터, 폴리이써설폰, 폴리이미드, 에폭시레진 또는 다관능성 아크릴레이트 중에서 선택될 수 있다.In the production method according to the present invention, the polymer is a polyester containing polyamide, polyethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate or polyethylene naphthalate or maleic anhydride, amine, hydroxyl group Polystyrene, polyarylate, polycarbonate, polyacrylate, cyclic olefin copolymer, polynorbornene, aromatic florene polyester, polyisulfone, polyimide, epoxy resin or polyfunctional acrylic containing reactive functional groups, including Can be selected from among the rates.
본원 발명에 따른 제조방법에 있어서, 상기 복합필름을 제조하는 단계는 분자 내에 극성기를 함유하는 고분자 수지를 사용하거나 또는 5 중량% 이하의 상용화제를 더 혼합할 수 있다. 고분자는 분자 내에 극성기를 함유하거나 또는 비극성 고분자의 경우에는 5중량% 이하 (바람직하게는 1중량% 이하)의 상용화제를 첨가하여 충진제가 고르게 분산되도록 한 결정성이거나 비결정성인 열가소성 고분자 복합체를 제조할 수 있다. 충진제가 함유된 유기복합체는 기체나 수분의 통과 경로에 장벽으로 작용하여 이들 투과분자의 통과 경로를 무한으로 증가시키며 여기에 핀홀이 없는 금속필름을 한면 또는 양면에 접합시킴으로써 극미소량의 투과도 차단하는 극차단성 유연필름이 된다. 유연필름을 제조하기 위하여 상온 또는 모체수지의 유리전이온도 이하의 온도에서 유기 나노 복합필름과 금속필름을 압착시켜서 모든 영역에서 고르게 필름이 압착되어 기체나 수분이 통과할 수 있는 핀홀을 차단할 수 있다.In the manufacturing method according to the present invention, the step of preparing the composite film may use a polymer resin containing a polar group in the molecule or may further mix 5% by weight or less of a compatibilizer. The polymer may contain a polar group in the molecule or, in the case of a non-polar polymer, 5 wt% or less (preferably 1 wt% or less) of a compatibilizer to prepare a crystalline or amorphous thermoplastic polymer composite so that the filler is evenly dispersed. Can be. Organic complexes containing fillers act as barriers to the passage of gases and moisture, increasing the passage of these permeable molecules indefinitely, and blocking the extremely small amount of permeation by bonding metal films without pinholes to one or both sides. It becomes a barrier flexible film. In order to manufacture the flexible film, the organic nanocomposite film and the metal film are compressed at room temperature or below the glass transition temperature of the mother resin, and the film is compressed evenly in all areas to block pinholes through which gas or moisture can pass.
본원 발명에 따르면 유연복합필름을 이온빔이나 플라즈마 공정을 적용하여 유기복합필름의 표면에 극성기가 생성되게 되고 이러한 방법으로 처리된 금속필름의 표면에 존재하는 극성기와 상호작용을 가지거나 반응하여 공유결합을 이룸으로써 두면에서 접착이 일어나게 하여 기체나 수분이 통과할 수 있는 경로가 차단된다.According to the present invention, the flexible composite film is formed by applying an ion beam or plasma process to generate a polar group on the surface of the organic composite film, and has a covalent bond by interacting with or reacting with a polar group present on the surface of the metal film treated in this manner. This causes adhesion on both sides, which blocks the path for gas or moisture to pass through.
본원 발명의 제조방법에 따라 제조된 복합필름은 디스플레이 소자, 유기발광 소자 또는 태양전지의 봉지재 또는 백시트 포장재로 사용될 수 있다.The composite film manufactured according to the manufacturing method of the present invention may be used as an encapsulant or a back sheet packaging material of a display device, an organic light emitting device, or a solar cell.
이하, 본원 발명의 바람직한 실시 예를 첨부한 도면과 같이 본원이 속하는 기술 분야에서 일반적인 지식을 가진 자가 쉽게 실시할 수 있도록 본원의 구현 예 및 실시 예를 상세히 설명한다. 특히 이것에 의해 본원 발명의 기술적 사상과 그 핵심 구성 및 작용이 제한을 받지 않는다. 또한, 본원 발명의 내용은 여러 가지 다른 형태의 장비로 구현될 수 있으며, 여기에서 설명하는 구현 예 및 실시 예에 한정되지 않는다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present disclosure will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present disclosure. In particular, the technical spirit of the present invention and its core configuration and operation are not limited by this. In addition, the content of the present invention may be implemented in various other forms of equipment, not limited to the embodiments and embodiments described herein.
상기한 본원 발명의 목적은 50중량% 미만 (바람직하게는 20중량% 미만 더 바람직하게는 5중량% 미만)의 클레이 입자를 바람직하게는 10중량% 미만 (더 바람직하게는 5중량% 미만)의 유화제 또는 상용화제와 혼합기내에서 혼합한 후 이를 사출하여 나노 클레이 입자가 고르게 분산된 필름으로 제조할 수 있다. 금속필름이나 쉬트의 양면을 반응성 기체(산소, 암모니아 등)를 소량씩 필름위에 추가하면서 이온빔으로 처리하거나 플라즈마 처리를 하여 금속표면에 반응기가 생성되도록 한다. 이후 기능화된 금속필름의 양면 또는 단면에 전술한 나노클레이 입자가 분산된 나노 복합필름을 덧 붙인후 상온이나 고분자 수지의 유리 전이온도보다 낮은 온도에서 압착롤러로 누르면서 접착시켜서 2층 또는 3층 구조의 다층 필름을 제조한다. 나노입자의 분포상태는 주사전자현미경과 투과전자현미경, 소각X선 산란장치를 이용하여 측정 하였다. 전술한 클레이 입자로는 몬모릴로나이트나 벤토나이트, 카올리나이트, 마이카, 헥토라이트, 스티븐사이트, 버미큘라이트, 할로사이트, 볼콘사이트, 마가나이트, 케냐라이트 등의 클레이 및 이들의 혼합물로 이루어진 군에서 선택되는 것을 특징으로 한다. 상용화제는 고분자주쇄 또는 측쇄에 유기화된 클레이의 이온그룹과 서로 상호작용을 가짐으로써 클레이의 층간을 벌려주는 역할을 함과 동시에 고압의 발포유체가 이들 벌려진 클레이 사이로 들어가서 클레이 표면에 쉽게 흡착될 수 있도록 작용한다. 금속표면에 생성된 반응기는 X선분광기(XPS)로 측정하였다, 수분 및 기체투과도는 모콘측정기 및 표준과학연구원의 수분투과도 측정기로 측정하였다.It is an object of the present invention described above that less than 50% by weight (preferably less than 20% by weight more preferably less than 5% by weight) of clay particles is preferably less than 10% by weight (more preferably less than 5% by weight) Emulsifiers or compatibilizers may be mixed in a mixer and then injected into a film in which nanoclay particles are evenly dispersed. Both sides of the metal film or sheet are added with reactive gases (oxygen, ammonia, etc.) in small portions on the film, treated with an ion beam or plasma-treated to generate a reactor on the metal surface. After attaching the nanocomposite film in which the above-mentioned nanoclay particles are dispersed on both sides or the cross-section of the functionalized metal film, and then bonding by pressing with a pressing roller at a temperature lower than the glass transition temperature of the polymer resin or the two-layer or three-layer structure Prepare a multilayer film. The distribution state of nanoparticles was measured by scanning electron microscope, transmission electron microscope, and incineration X-ray scattering apparatus. The above-mentioned clay particles are characterized in that they are selected from the group consisting of montmorillonite, bentonite, kaolinite, mica, hectorite, stevensite, vermiculite, halosite, volconcite, marganite, kenyalite, and mixtures thereof. . The compatibilizer interacts with the ionic groups of the clay organicized in the polymer backbone or side chains to open up the clay layers and at the same time allow the high pressure foam fluid to enter between these open clays and easily adsorb on the clay surface. Works. Reactors formed on the metal surface were measured by X-ray spectroscopy (XPS), and moisture and gas permeability were measured by a mocon meter and a moisture permeability meter of the Institute of Standards and Science.
본원 발명의 목적을 달성하는데 있어서 중요한 공정변수는 금속표면과 나노복합체의 접착강도이다. 본원 발명에서는 접착제를 전혀 사용하지 않지만 금속표면에 생성돤 반응기가 나노 복합체 수지의 반응기와 반응하거나 강한 상호작용(수소상호작용)을 함으로써 모든 면에 걸쳐서 균일하게 접합이 이루어지게 되며 그로 말미암아 전 필름에서 가스나 수분이 투과될 수 있는 공간을 제거함으로서 유체의 확산을 저지하여 고차단성을 나타내게 된다. 본원 발명의 실시예에서는 접착제를 사용하지 않음으로써 환경친화적이고 반응가스로도 산소를 사용함으로써 반응이 잘 일어나면서도 표면에서만 반응을 일으켜서 금속필름 자체의 특성은 거의 변화가 없다는 점이다. 이하 본원 발명은 다음과 같은 실시예로써 더욱 상세히 기술하고자 한다. 그러나 이들 실시예는 본원 발명의 예시에 지나지 않으며 본원 발명이 이들 실시예에 국한되는 것이 아님을 명시하고자 한다. An important process variable in achieving the object of the present invention is the adhesion strength of the metal surface and the nanocomposite. In the present invention, the adhesive is not used at all, but the reactor generated on the metal surface reacts with the reactor of the nanocomposite resin or has strong interaction (hydrogen interaction), thereby uniformly bonding all the surfaces. By removing the space through which gas or moisture can permeate, high fluidity is exhibited by preventing the diffusion of the fluid. In the embodiment of the present invention is an environmentally friendly by not using an adhesive and by using oxygen as a reaction gas, the reaction occurs well, but the reaction occurs only on the surface is almost no change in the properties of the metal film itself. Hereinafter, the present invention will be described in more detail with reference to the following examples. However, these examples are only illustrative of the present invention, and it is intended that the present invention is not limited to these examples.
<실시예 1><Example 1>
미쓰비시사의 나일론 수지인 MXD6 (Metaxylene diamine 6 nylon, 유리전이온도= 85oC, 녹는점= 237oC) 95중량%에 싸던클레이사의 클로이사이트93A (Methyl, dihydrgenated tallow, quaternary ammonium처리) 5중량%를 미리 혼합한 후 혼합물을 일축 압출기 내에서 용융혼합하여 T 다이 압출시 2~3배 정도의 연신을 가하여 클레이가 분산 된 압출 필름을 제조한다. 제조된 필름을 180℃에서 10분간 열처리(annealing)한 후 진공오븐에서 건조시킨다. 알루미늄 필름을 에틸알코올로 세척 후 진공오븐에서 80℃에서 24시간 건조한 후 이온빔 플라즈마 반응기에 장착한다. 젤반응이 끝난 버퍼층 위에 DC/RF 이온빔/플라즈마 반응장치 내에서 5x10- 2Torr의 진공하에서 120 Watt의RF(13.56MHz) power로 산소플라즈마를 발생시켜 10분 정도 알루미늄 필름을 처리한다. 이온빔은 진공반응기 내에서 냉각공동음극이온총(cold-hollow cathode ion gun)이 장착된 진공조 내에서 산소기체를 3ml/분의 유량으로 일정하게 주입하여 1keV정도의 낮은 에너지를 갖는 이온빔을 생성하고 1keV 정도의 낮은 에너지를 갖는 이온빔을 생성하고 이 이온빔을 고정밀도 (300마이크로암페어/단위 cm2) 하에서 시료에 주사하며 이온빔과 함께 첨가되는 반응성 가스는 산소 또는 암모니아를 사용하며 주입량은 0.2 ~ 6 ml/min, 바람직하게는 3 ml/min 정도가 적당하다. 처리된 알루미늄 필름 양면에 또는 단면에 앞서 제조한 클레이/나일론 복합필름을 압착기 (프레스)에 같이 놓고 150℃에서 10분-30분정도 압착시킨 후 꺼내어 진공오븐에 보관한 후 필요에 따라 적당한 크기로 재단하여 산소투과도 및 수증기 투과율을 측정하였다. 산소투과도는 MOCON사의 OX-TRAN기기를 사용하여 ASTM D 3985의 방법으로 상온에서 0%의 상대습도로 측정하였으며 수증기 투과율은 Illinois Instrument Inc 7001을 사용하여 ASTM F 1249의 방법으로 100%의 상대습도로 상온에서 48시간동안 측정하였으며 10-4 g/m2/day 이하의 값은 표준과학원의 측정기기를 이용하여 최저치를 측정하였다. 또한, 측정은 각실시예에 대해서 2장의 시험편에 대해서 2회씩 행하고, 합계 4개의 측정값의 평균값을 얻었다.Mitsubishi's nylon resin MXD6 (Metaxylene diamine 6 nylon, glass transition temperature = 85 o C, melting point = 237 o C) 95% by weight of clay clay's Closite 93A (treated with methyl, dihydrgenated tallow, quaternary ammonium) 5% by weight After mixing in advance, the mixture is melt-mixed in a single screw extruder, and stretched by 2 to 3 times during T die extrusion to prepare an extrusion film in which clay is dispersed. The film thus prepared is annealed at 180 ° C. for 10 minutes and then dried in a vacuum oven. The aluminum film was washed with ethyl alcohol and dried in a vacuum oven at 80 ° C. for 24 hours, and then mounted in an ion beam plasma reactor. On the buffer layer to gel, it reacted in the DC / RF ion / plasma reactor 5x10 - under a vacuum of 2 Torr to generate oxygen plasma with RF (13.56MHz) power of 120 Watt processes the aluminum film for 10 minutes. In the vacuum reactor, the ion beam is injected at a constant flow rate of 3 ml / min in a vacuum chamber equipped with a cold-hollow cathode ion gun to generate an ion beam having a low energy of about 1 keV. Generates an ion beam with energy as low as 1 keV and scans the ion beam under high precision (300 microamperes per unit cm 2 ). The reactive gas added with the ion beam uses oxygen or ammonia and the injection amount is 0.2 to 6 ml. / min, preferably about 3 ml / min is suitable. The clay / nylon composite film prepared on both sides of the treated aluminum film or prior to the cross-section is put together in a press (compress), pressed at 150 ° C for 10 minutes to 30 minutes, taken out, stored in a vacuum oven, and then sized as needed. The oxygen permeability and water vapor transmission rate were measured by cutting. Oxygen permeability was measured using MOCON's OX-TRAN instrument at a relative humidity of 0% at room temperature using the method of ASTM D 3985. Water vapor transmission rate was measured at 100% relative humidity using the method of ASTM F 1249 using Illinois Instrument Inc 7001. For 48 hours at room temperature, the values below 10 -4 g / m 2 / day were measured using a standard measuring instrument. In addition, the measurement was performed twice about two test pieces about each Example, and the average value of four measured values in total was obtained.
<실시예 2><Example 2>
상기 실시예1의 나일론복합필름을 알루미늄 필름(12μm)의 양면에 놓고 150℃에서 20분 정도 압착시킨 후 꺼내어 진공오븐에 보관한 후 필요에 따라 적당한 크기로 재단하여 산소투과도 및 수증기 투과율을 측정하였다.The nylon composite film of Example 1 was placed on both sides of an aluminum film (12 μm), pressed at 150 ° C. for about 20 minutes, taken out, stored in a vacuum oven, and cut to an appropriate size as needed to measure oxygen permeability and water vapor transmission rate. .
도 2는 본원 발명의 실시예 1에 따라서 제조된 클레이가 분산된 나노복합필름을 보여주는 투과전자현미경 사진이다. 본원 발명의 실시예에서 제조된 나일론 복합체의 경우 투과전자현미경으로 보면 클레이 입자가 거의 단층 입자 수준에서 잘 분산되어 있으며 일정하게 잘 배향되어 있음을 알 수 있다. Figure 2 is a transmission electron micrograph showing a nano-composite film dispersed in clay prepared according to Example 1 of the present invention. In the case of the nylon composite prepared in Examples of the present invention, it can be seen from the transmission electron microscope that the clay particles are well dispersed at a single monolayer particle level and are oriented regularly.
또한, 도 3은 본원 발명의 일 구현예에 따른 나노복합필름과 금속필름의 접합 단면을 보여주는 주사전자현미경 사진으로 이층 복합필름의 파단면을 주사전자현미경으로 관찰해 보면 두 필름이 서로 완벽하게 붙어 있는 것을 볼 수 있다.In addition, Figure 3 is a scanning electron micrograph showing the bonding cross section of the nanocomposite film and the metal film according to an embodiment of the present invention when the fracture surface of the bilayer composite film is observed with a scanning electron microscope, the two films are perfectly attached to each other You can see it.
도 4는 본원 발명의 일 구현예에 따른 다층구조 필름의 수분투과율을 측정한 결과 그래프이다. 이를 클레이 입자가 분산된 나일론복합필름의 차단 특성을 정리한 표 1과 같이 검토하여보면, 나일론만의 차단 특성보다 산소투과율은 1%미만으로 감소되었고 수분 투과율도 70%이상 감소된 것에서 클레이 입자가 고르게 분산된 효과를 확인할 수 있다. 알루미늄 필름의 경우 자체 차폐특성이 우수하고 알루미늄 두께에 따른 차이는 거의 나지 않았다. 나일론 복합필름과 알루미늄을 접합시킨 이층필름의 경우 대부분의 응용분야에 적합하게 사용할 수 있는 범위의 성능을 보인다. 특히 복합필름의 경우 수분투과율이 3x10-3 g/mm/m2day 이하이며 실시예 2의 양면접합필름의 경우 1x10-7g/mm/m2day 이하 (표준연구원 측정)로서 (그림 4) 현재 측정된 필름들 중에는 세계 최고수준의 유연필름차단성능을 나타낸다.Figure 4 is a graph of the results of measuring the water transmittance of the multi-layered film according to an embodiment of the present invention. Examining this as shown in Table 1, which summarizes the barrier properties of the nylon composite film in which the clay particles are dispersed, the oxygen permeability is reduced to less than 1% and the moisture permeability is also reduced by more than 70%. You can see the evenly distributed effect. Aluminum film has excellent self-shielding properties and hardly differs depending on aluminum thickness. In the case of a double layer film in which a nylon composite film and aluminum are bonded, a range of performances suitable for most applications is shown. In particular, the composite film has a water transmittance of 3x10 -3 g / mm / m 2 day or less, and in the case of the double-sided bonded film of Example 2, 1x10 -7 g / mm / m 2 day or less (measured by the Institute) (Figure 4). Among the currently measured films, it shows the world's highest level of flexible film blocking performance.
필름film 산소투과율(cc/m2 day)Oxygen transmittance (cc / m 2 day) 수분투과율(g/mm/m2day)Moisture permeability (g / mm / m 2 day)
나일론 (MXD6)Nylon (MXD6) 1 One 1.9 1.9
나일론 복합(+5wt% 클레이)Nylon Composite (+ 5wt% Clay) 0.002 0.002 0.580.58
알루미늄 필름 (12μm)Aluminum film (12μm) 0.0008 이하0.0008 or less 0.0010.001
알루미늄 필름 (18μm)Aluminum film (18μm) 0.0009 이하0.0009 or less 0.0010.001
나일론복합(+5wt% 클레이)+알루미늄 필름 (12μm)Nylon Composite (+ 5wt% Clay) + Aluminum Film (12μm) 1x10-4이하1x10 -4 or less 0.00030.0003
나일론복합(+5wt% 클레이)+알루미늄 필름 (18μm)Nylon Composite (+ 5wt% Clay) + Aluminum Film (18μm) 1x10-4이하1x10 -4 or less 0.00030.0003
나일론복합(+5wt% 클레이)+알루미늄 필름 (12μm)+나일론복합(+5wt% 클레이)(실시예 2)Nylon composite (+5 wt% clay) + Aluminum film (12 μm) + Nylon composite (+5 wt% clay) (Example 2) ~ 0 (1x10-5이하) ~ 0 (1x10 -5 or less) 1x10-7 이하(표준연구원 측정)1x10 -7 or less (Standard Institute Measurement)
이상에서 설명한 바와 같이 본원 발명에 의하면, 금속필름이나 쉬트의 양면을 기능화시켜 표면에 반응성 극성기가 생성되게 하고 이를 이용하여 접착제를 사용하지 않고 클레이 (점토판)입자가 고르게 분산된 폴리아마이드(나일론)계 나노복합체 필름이나 폴리에틸렌 테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리헥사메틸렌 테레프탈레이트 또는 폴리에틸렌나프탈레이트 등의 폴리에스터 필름 또는 반응성 관능기 (말레익안하이드라이드, 아민, 하이드록실그룹 등의)가 함유된 폴리스티렌, 폴리아릴레이트, 폴리카보네이트, 폴리메타아크릴레이트와 같은 폴리아크릴레이트, 환상형 올레핀 공중합체, 폴리노보넨, 아로마틱 플로렌 폴리에스터, 폴리이써설폰, 폴리이미드, 에폭시레진 또는 다관능성 아크릴레이트 등의 나노복합체 필름과 열압착시켜서 전체면에서 반응기 간의 상호작용과 반응으로 인하여, 전면에서 핀홀이 없이 고르게 접착된 유기복합-금속 필름 (또는 유기복합-금속-유기복합 필름) 구조의 다층구조 복합필름을 제조할 수 있으며 제조된 다층구조 복합필름은 수분과 기체에 대하여 원래의 고분자 나노 복합필름이나 금속 쉬트보다 월등히 우수한 차단특성을 갖게 된다.As described above, according to the present invention, a polyamide (nylon) system in which clay (clay plate) particles are evenly dispersed without using an adhesive by functionalizing both surfaces of a metal film or sheet to generate reactive polar groups on the surface thereof. Nanocomposite films, polyester films such as polyethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate or polyethylene naphthalate, or polystyrene containing reactive functional groups (such as maleic hydride, amine, hydroxyl group), Nano, such as polyacrylates, polycarbonates, polyacrylates such as polymethacrylates, cyclic olefin copolymers, polynorbornenes, aromatic florene polyesters, polyesulfones, polyimides, epoxy resins or polyfunctional acrylates Composite film and thermocompression In turn, due to the interaction and reaction between the reactors on the whole surface, it is possible to prepare a multilayered composite film having an organic composite-metal film (or organic composite-metal-organic composite film) structure bonded evenly without pinholes on the front surface. Multi-layered composite films have superior barrier properties to water and gases than the original polymeric nanocomposite films or metal sheets.
도 5는 본원 발명의 일 구현예에 따른 다층구조필름을 OLED표시소자(도 5 a, b)의 후면에 차단필름으로 부착(도 5 c)하여 에폭시를 가장자리에 부착 후 UV경화(도 5d)하고 6개월 뒤에 다시 스위치를 켰을 때 처음과 같은 밝기의 발광(도 5 e)을 보여주는 결과이다. 이상의 결과로 부터 제조된 다층구조 복합필름은 수분과 기체에 대하여 우수한 차단특성을 가지며 OLED의 후면 기판소재로 사용시 장기간 사용시에도 성능의 저하가 없는 유연한 기판소재로 사용이 가능함을 알 수 있다.5 is attached to the back of the OLED display device (FIG. 5 a, b) with a blocking film according to an embodiment of the present invention (Fig. 5 c) by attaching epoxy to the edge UV curing (Fig. 5d) 6 months later, when the switch is turned on again, the result shows the same brightness of light emission (FIG. 5 e). The multi-layered composite film produced from the above results has excellent barrier properties against moisture and gas, and it can be seen that it can be used as a flexible substrate material without deterioration in performance even when used as a back substrate material of the OLED for a long time.

Claims (7)

  1. 무기입자를 고분자 수지에 분산시켜 복합필름을 제조하는 단계;Dispersing inorganic particles in a polymer resin to prepare a composite film;
    금속 필름을 이온빔 또는 플라즈마로 표면을 처리하는 단계; 및Treating the metal film with an ion beam or plasma; And
    상기 복합필름과 표면 처리된 금속 필름을 적층하여 압착하는 단계를 포함하는 것을 특징으로 하는 수분 및 기체 고차단성 다층구조 복합필름의 제조방법.The method of manufacturing a water and gas high barrier multi-layer composite film, characterized in that it comprises the step of laminating the composite film and the surface treated metal film.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 압착하는 단계 이전에 상기 복합필름을 이온빔 또는 플라즈마로 표면을 처리하는 단계를 더 포함하는 것을 특징으로 하는 수분 및 기체 고차단성 다층구조 복합필름의 제조방법.The method of manufacturing a water and gas high barrier multi-layer composite film, characterized in that further comprising the step of treating the surface of the composite film with an ion beam or plasma before the pressing step.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 무기입자는 몬모릴로나이트, 벤토나이트, 카오리나이트, 사포나이트, 헥토라이트, 베이델라이트, 할로사이트, 버미큘라이트, 마가다이트, 석코나이트, 볼콘스코이트 및 케냐라이트를 포함하는 나노스멕타이트 클레이거나, 그라펜, 풀러렌 및 탄소나노튜브를 포함하는 탄소소재이거나, 칼슘카보네이트 또는 평면구조를 가지는 나노금속판 멕센 또는 이들의 혼합물로 이루어진 군에서 선택되는 것을 특징으로 하는 수분 및 기체 고차단성 다층구조 복합필름의 제조방법.The inorganic particles may be montmorillonite, bentonite, kaolinite, saponite, hectorite, baydelite, halosite, vermiculite, margotite, sukconite, volconscote and kenyarite, including nanosmectite clay, graphene, A method of manufacturing a water and gas high barrier multi-layered composite film, wherein the carbon material comprises fullerene and carbon nanotubes, or is selected from the group consisting of calcium carbonate or nanometal plate mexene having a planar structure or a mixture thereof.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 고분자는 폴리아마이드, 폴리에틸렌 테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리헥사메틸렌 테레프탈레이트 또는 폴리에틸렌나프탈레이트를 포함하는 폴리에스터이거나 말레익안하이드라이드, 아민, 하이드록실기를 포함하는 반응성 관능기를 함유하는 폴리스티렌, 폴리아릴레이트, 폴리카보네이트, 폴리아크릴레이트, 환상형 올레핀 공중합체, 폴리노보넨, 아로마틱 플로렌 폴리에스터, 폴리이써설폰, 폴리이미드, 에폭시레진 또는 다관능성 아크릴레이트 중에서 선택되는 것을 특징으로 하는 수분 및 기체 고차단성 다층구조 복합필름의 제조방법.The polymer is a polyester containing polyamide, polyethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate or polyethylene naphthalate or a polystyrene containing reactive functional group containing maleic hydride, amine, hydroxyl group Water, characterized in that selected from polyarylates, polycarbonates, polyacrylates, cyclic olefin copolymers, polynorbornenes, aromatic florene polyesters, polythersulfones, polyimides, epoxy resins or polyfunctional acrylates And a method for manufacturing a gas barrier layered composite film.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 복합필름을 제조하는 단계는 분자 내에 극성기를 함유하는 고분자 수지를 사용하거나 또는 5 중량% 이하의 상용화제를 더 혼합하는 것을 특징으로 하는 수분 및 기체 고차단성 다층구조 복합필름의 제조방법.The preparing of the composite film may include using a polymer resin containing a polar group in a molecule or further mixing 5 wt% or less of a compatibilizer.
  6. 청구항 1 내지 청구항 5 중 어느 한 항의 제조방법에 따라 제조된 복합필름을 봉지재 또는 백시트 포장재로 사용하는 전자 소자.An electronic device using the composite film produced according to any one of claims 1 to 5 as an encapsulant or a backsheet packaging material.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 전자 소자는 디스플레이 소자, 유기발광 소자 또는 태양전지 중 어느 하나인 것을 특징으로 하는 전자 소자.The electronic device is any one of a display device, an organic light emitting device or a solar cell.
PCT/KR2016/015291 2015-12-31 2016-12-26 High moisture- and gas-barrier flexible film of multilayer structure not using adhesive, and manufacturing method therefor WO2017116106A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150191351 2015-12-31
KR10-2015-0191351 2015-12-31
KR1020160178090A KR101878572B1 (en) 2015-12-31 2016-12-23 Adhesive-less multi-layered flexible film having moisture and gas barrier properties and their preparation method
KR10-2016-0178090 2016-12-23

Publications (1)

Publication Number Publication Date
WO2017116106A1 true WO2017116106A1 (en) 2017-07-06

Family

ID=59225182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015291 WO2017116106A1 (en) 2015-12-31 2016-12-26 High moisture- and gas-barrier flexible film of multilayer structure not using adhesive, and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2017116106A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113185544A (en) * 2021-05-25 2021-07-30 吉林奥来德光电材料股份有限公司 Compound for packaging film, ink composition containing compound and packaging structure
CN113813796A (en) * 2021-08-27 2021-12-21 浙江大学 Nano composite dispersion liquid, high-gas-barrier nano composite film and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070051332A (en) * 2004-08-17 2007-05-17 다이니폰 인사츠 가부시키가이샤 Gas barrier multilayer film and method for producing same
KR20110079500A (en) * 2009-12-31 2011-07-07 삼성모바일디스플레이주식회사 Barrier film composites, display apparatus comprising the same, manufacturing method of the barrier film composites, and manufacturing method of display apparatus comprising the same
KR20130018695A (en) * 2010-03-25 2013-02-25 니폰 제온 가부시키가이샤 Gas barrier laminate and circularly polarizing plate
KR20130044948A (en) * 2011-10-25 2013-05-03 엘지이노텍 주식회사 Barrier film comprising polyester-nanocomposite substrate
KR20130091281A (en) * 2012-02-07 2013-08-16 주식회사 엘지화학 Gas barrier film and the method for preparing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070051332A (en) * 2004-08-17 2007-05-17 다이니폰 인사츠 가부시키가이샤 Gas barrier multilayer film and method for producing same
KR20110079500A (en) * 2009-12-31 2011-07-07 삼성모바일디스플레이주식회사 Barrier film composites, display apparatus comprising the same, manufacturing method of the barrier film composites, and manufacturing method of display apparatus comprising the same
KR20130018695A (en) * 2010-03-25 2013-02-25 니폰 제온 가부시키가이샤 Gas barrier laminate and circularly polarizing plate
KR20130044948A (en) * 2011-10-25 2013-05-03 엘지이노텍 주식회사 Barrier film comprising polyester-nanocomposite substrate
KR20130091281A (en) * 2012-02-07 2013-08-16 주식회사 엘지화학 Gas barrier film and the method for preparing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113185544A (en) * 2021-05-25 2021-07-30 吉林奥来德光电材料股份有限公司 Compound for packaging film, ink composition containing compound and packaging structure
CN113813796A (en) * 2021-08-27 2021-12-21 浙江大学 Nano composite dispersion liquid, high-gas-barrier nano composite film and preparation method thereof
CN113813796B (en) * 2021-08-27 2022-11-29 浙江大学 Nano composite dispersion liquid, high-gas-barrier nano composite film and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101878572B1 (en) Adhesive-less multi-layered flexible film having moisture and gas barrier properties and their preparation method
EP3056339B1 (en) Gas barrier laminate having good moisture barrier properties
Kim et al. Al2O3/TiO2 nanolaminate thin film encapsulation for organic thin film transistors via plasma-enhanced atomic layer deposition
KR102161963B1 (en) Transparent stacked film, transparent conductive film, and gas barrier stacked film
WO2018214257A1 (en) Packaging thin film and manufacturing method therefor, and packaging method for oled panel
CN1791510B (en) Transparent gas barrier laminated film, and electroluminescent light-emitting element, electroluminescent display device, and electrophoretic display panel using the same
CN103732391B (en) transparent laminated film
US9574266B2 (en) Laminate body, gas barrier film, and method of manufacturing the same
US20140087162A1 (en) Multi-layered plastic substrate and method for manufacturing the same
JP2011520216A (en) Multilayer film for encapsulating oxygen and / or moisture sensitive electronic devices
JP5424854B2 (en) Gas barrier laminate having a hygroscopic layer
KR101819094B1 (en) Transparent flexible film and method for manufacturing thereof
TWI496826B (en) Sealing material having barrier properties
CN105102215A (en) Gas barrier laminate having excellent moisture barrier properties
JP6603808B2 (en) GAS BARRIER FILM, SOLAR CELL, AND METHOD FOR PRODUCING GAS BARRIER FILM
KR101742955B1 (en) Manufacturing method of barrier film and barrier film
CN104070744B (en) Composite film and method for producing same
WO2017116106A1 (en) High moisture- and gas-barrier flexible film of multilayer structure not using adhesive, and manufacturing method therefor
WO2019151495A1 (en) Gas-barrier film and manufacturing method therefor
CN110053339A (en) Laminated body and its manufacturing method
KR101236072B1 (en) Transparent conductive multilayered body having organic-inorganic hybrid buffer layer
TW201226606A (en) Gas-barrier laminate film
KR101169206B1 (en) Coating layer of multi layer structure containing nanocarbon and polymer, and the coated substrate having the coating layer
JP4830365B2 (en) Flexible display substrate
WO2016171490A1 (en) Gas barrier membrane using graphene oxide prepared by solution mixing method, and method for preparing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16882058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16882058

Country of ref document: EP

Kind code of ref document: A1