WO2017115886A1 - 해안 침식 측정 장치 및 해안 침식 복구 시스템 - Google Patents

해안 침식 측정 장치 및 해안 침식 복구 시스템 Download PDF

Info

Publication number
WO2017115886A1
WO2017115886A1 PCT/KR2015/014418 KR2015014418W WO2017115886A1 WO 2017115886 A1 WO2017115886 A1 WO 2017115886A1 KR 2015014418 W KR2015014418 W KR 2015014418W WO 2017115886 A1 WO2017115886 A1 WO 2017115886A1
Authority
WO
WIPO (PCT)
Prior art keywords
coastal
erosion
image
specific time
unit
Prior art date
Application number
PCT/KR2015/014418
Other languages
English (en)
French (fr)
Inventor
안경모
탁승호
Original Assignee
한동대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한동대학교 산학협력단 filed Critical 한동대학교 산학협력단
Publication of WO2017115886A1 publication Critical patent/WO2017115886A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/18Reclamation of land from water or marshes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present invention relates to coastal erosion measurement techniques, and more particularly to coastal erosion measurement devices and coastal erosion recovery systems.
  • Korean Patent Registration No. 10-1480171 (December 31, 2014) proposes an automatic shoreline extraction apparatus and method using a pixel information change pattern by pixel information and moving average of an image.
  • Coastal erosion occurs due to high tide, low tide and waves caused by the rotation and orbit of the earth, the sun and the moon.
  • the present inventors have been able to easily measure the coastal erosion using coastal images photographed by the drone, and to study a technique for efficiently recovering the coastal erosion based on the measured coastal erosion result.
  • the present invention has been invented under the above-described object, and an object of the present invention is to provide a coastal erosion measuring apparatus that can easily measure the erosion and sedimentation of coastal land landforms and shallow seabeds in shallow waters using coastal images photographed by drones. It is done.
  • the left and right red wavelengths from the two shore images each having a left and right visual difference photographed by a plurality of high-resolution cameras are installed by a plurality of high-resolution cameras spaced apart at specific intervals at the same shooting angle
  • a filter unit which extracts a band image
  • a first synthesis unit which synthesizes the left and right red wavelength band images extracted by the filter unit to generate a 3D coastal image of the red wavelength band
  • 3D by synthesizing the 3D coastal image of the red wavelength band synthesized by the first synthesis unit and the thermal imager coastal image photographed by a thermal imaging camera installed between the plurality of high resolution cameras at the same photographing angle as the plurality of high resolution cameras.
  • a second synthesis unit generating a coastal correction image;
  • a coastal image and a thermal image taken at a specific time interval by the plurality of high-resolution cameras and thermal imaging cameras have a specific time interval generated by processing through the filter unit, the first synthesis unit and the second synthesis unit
  • the plurality of high resolution cameras and the thermal imaging cameras start coastal photographing at the low tide start point and the high tide end point, respectively.
  • the plurality of high resolution cameras and the thermal imaging cameras respectively start coastal photographing at the start of the storm or typhoon and at the end of the storm or typhoon.
  • the plurality of high resolution cameras and the thermal imaging camera are installed in a drone.
  • the coastal erosion recovery system is a drone for flying over the coast at the same altitude and trajectory at a specific time interval, the aerial image taken by the coast and wireless transmission; Receive aerial images taken at specific time intervals wirelessly transmitted by the drone, and compare the aerial images taken at specific time intervals received to measure shoreline and coastal topography due to coastal erosion and sedimentation.
  • a control server for generating and transmitting a coastal erosion recovery event according to a measurement result of a coastline and coastal topography;
  • An erosion recovery apparatus for wirelessly receiving the coastal erosion recovery event wirelessly transmitted by the control server, and recovering the coastal erosion by sucking sand from the sea and discharging it to the eroded shore according to the wirelessly received coastal erosion recovery event; It is characterized by comprising.
  • the drone is a plurality of high-resolution camera spaced apart at a certain interval at the same shooting angle;
  • a thermal imaging camera installed between the plurality of high resolution cameras at the same shooting angle as the plurality of high resolution cameras;
  • a wireless communication unit for wirelessly transmitting a coastal image photographed at a specific time interval by the plurality of high resolution cameras and a thermal image coastal image photographed at a specific time interval by the thermal imaging camera; It is characterized by including.
  • the drone is a control unit for controlling the coastal flight with the same altitude and the trajectory according to the coast photographing event that is wirelessly transmitted at a specific time interval from the control server; It further comprises.
  • a wireless communication apparatus including: a wireless communication unit configured to wirelessly receive aerial photographed coastal images at a specific time interval during which the control server is wirelessly transmitted by the drone; A coastal erosion measuring unit configured to measure coastal erosion by comparing aerial images taken at a specific time interval wirelessly received by the wireless communication unit; An erosion control unit for generating a coastal erosion recovery event and transmitting the coastal erosion recovery event to the erosion recovery device through the wireless communication unit according to the coastal erosion measurement result measured by the coastal erosion measurement unit; It is characterized by including.
  • Wealth A first synthesis unit which synthesizes the left and right red wavelength band images extracted by the filter unit to generate a 3D coastal image of the red wavelength band; 3D by synthesizing the 3D coastal image of the red wavelength band synthesized by the first synthesis unit and the thermal imager coastal image photographed by a thermal imaging camera installed between the plurality of high resolution cameras at the same photographing angle as the plurality of high resolution cameras.
  • a second synthesis unit generating a coastal correction image;
  • a coastal image and a thermal image taken at a specific time interval by the plurality of high-resolution cameras and thermal imaging cameras have a specific time interval generated by processing through the filter unit, the first synthesis unit and the second synthesis unit
  • the erosion control unit generates a coastal shooting event at a specific time interval and transmits the radio to the drone through the wireless communication unit.
  • the erosion control unit is characterized in that for generating a coastal shooting event at the start of the ebb tide and the end of the high tide.
  • the erosion control unit is characterized in that for generating a coastal shooting event at the time of the storm or typhoon start and the end of the storm or typhoon, respectively.
  • the erosion recovery apparatus comprises: a water jet pump for sucking seawater and sand from the seabed; A transfer pipe for transporting seawater and sand sucked by the water jet pump to discharge seawater and sand to the eroded shore; It is characterized by including.
  • the erosion recovery apparatus includes an underwater camera for monitoring the operation of a water jet pump; It further comprises.
  • the present invention has an effect that can easily measure the coastal erosion by using the coastal images taken by the drone.
  • FIG. 1 is a block diagram showing the configuration of one embodiment of a coastal erosion recovery system according to the present invention.
  • FIG. 2 is a view showing the configuration of one embodiment of the drone of the coastal erosion recovery system according to the present invention.
  • Figure 3 is a block diagram showing the configuration of an embodiment of a control server of the coastal erosion recovery system according to the present invention.
  • Figure 4 is a block diagram showing the configuration of an embodiment of a coastal erosion measuring apparatus implemented in the control server of the coastal erosion recovery system according to the present invention.
  • FIG. 5 is a diagram illustrating an extraction of a red wavelength band image from a coastal image.
  • FIG. 6 is a diagram illustrating a 3D coastal correction image obtained by combining a 3D coastal image and a thermal image coastal image of a red wavelength band.
  • FIG. 7 is a view showing the configuration of an embodiment of the erosion recovery apparatus of the coastal erosion recovery system according to the present invention.
  • the coastal erosion recovery system according to the present invention includes a drone 100, a control server 200, and an erosion recovery apparatus 300.
  • the drone 100 flies over the coast at the same altitude and trajectory at specific time intervals, and wirelessly photographs the coast image.
  • the drone may be implemented to wirelessly transmit a coastal image photographed in a beacon manner.
  • the drone 100 includes a plurality of high resolution cameras 110a and 110b, a thermal imaging camera 120, and a wireless communication unit 130.
  • the plurality of high resolution cameras 110a and 110b are spaced apart at specific intervals at the same photographing angle. Since the plurality of high resolution cameras 110a and 110b spaced apart at specific intervals have left and right disparity as human eyes, the two high-resolution cameras 110a and 110b are respectively 3D coastal images when the two coastal images photographed are synthesized using a stereo vision technique. .
  • the thermal imaging camera 120 is installed between the plurality of high resolution cameras at the same photographing angle as the plurality of high resolution cameras 110a and 110b.
  • the thermal imaging camera 120 acquires a thermal imaging coastal image according to the surface temperature of the shore and the water temperature.
  • the wireless communication unit 130 is a coastal image photographed at a specific time interval by the plurality of high resolution cameras (110a, 110b), respectively, and a thermal image photographed at a specific time interval by the thermal imager 120 Wirelessly transmit shoreline images.
  • the wireless communication unit 130 may be implemented to transmit the high resolution coastal image and the thermal image coastal image to the control server 200 in a beacon manner.
  • the plurality of high resolution cameras 110a and 110b and the thermal imaging camera 120 respectively start coastal photographing at a low tide start point and a high tide end point, or coastal photographing at a storm or typhoon start point and a storm or typhoon end point, respectively.
  • By controlling to start the image can be taken coastal image at a specific time interval.
  • the drone 100 may further include a control unit 140.
  • the controller 140 performs drone control including controlling coastal flight at the same altitude and driving trajectory according to the coast photographing event transmitted wirelessly at a specific time interval from the control server 200.
  • the controller 140 controls hardware such as a gyroscope (not shown), a GPS satellite navigation device (not shown), an engine (not shown), and allows the drone to fly wirelessly.
  • a gyroscope not shown
  • GPS satellite navigation device not shown
  • an engine not shown
  • the control server 200 receives aerial images of coastal images taken at a specific time interval wirelessly transmitted by the drone 100, and measures coastal erosion by comparing aerial images of coastal images at a specific time interval received. Then, the coastal erosion recovery event is generated and wirelessly transmitted according to the coastal erosion measurement result.
  • FIG. 3 is a block diagram showing the configuration of an embodiment of a control server of the coastal erosion recovery system according to the present invention.
  • the control server 200 includes a wireless communication unit 210, a coastal erosion measuring unit 220, and an erosion control unit 230.
  • the wireless communication unit 210 wirelessly receives aerial images of coastal images taken at a specific time interval wirelessly transmitted by the drone 100.
  • the wireless communication unit 210 may be implemented to wirelessly receive images wirelessly transmitted by the drone 100 in a beacon manner.
  • the coastal erosion measurement unit 220 compares aerial images taken at a specific time interval wirelessly received by the wireless communication unit 210 to measure the shoreline and coastal topography changes due to coastal erosion and deposition.
  • coastal topography includes land and topographic changes in shallow water depth.
  • the coastal erosion measuring unit 220 is a coastal erosion measuring device implemented in the control server 200.
  • the coastal erosion measurement device may be implemented in software or hardware mounted on a computer, or a combination thereof.
  • FIG. 4 is a block diagram showing the configuration of an embodiment of a coastal erosion measuring apparatus implemented in the control server of the coastal erosion recovery system according to the present invention.
  • the coastal erosion measuring unit 220 which is a coastal erosion measuring apparatus, includes a filter unit 221, a first synthesis unit 222, a second synthesis unit 223, and a controller 224. It is made, including.
  • the filter unit 221 extracts left and right red wavelength band images from two coastal images having left and right visual differences, respectively, captured by a plurality of high resolution cameras 110a and 110b spaced apart at specific intervals at the same photographing angle.
  • 5 is a diagram illustrating an extraction of a red wavelength band image from a coastal image.
  • the first synthesis unit 222 synthesizes the left and right red wavelength band images extracted by the filter unit 221 to generate a 3D coastal image of the red wavelength band. Since the plurality of high resolution cameras 110a and 110b spaced apart at specific intervals have a left and right parallax like a human eye, the left and right red wavelength band images extracted from the two coastal images respectively photographed by the stereo vision technique are used. When combined, it becomes a 3D coastal image of the red wavelength band.
  • the second synthesizing unit 223 is a 3D coastal image of the red wavelength band synthesized by the first synthesizing unit 222 and a thermal imaging camera installed between the plurality of high resolution cameras at the same shooting angle as the plurality of high resolution cameras.
  • the 3D coastal correction image is generated by synthesizing the thermal image coastal image photographed by.
  • FIG. 6 is a diagram illustrating a 3D coastal correction image obtained by combining a 3D coastal image and a thermal image coastal image of a red wavelength band.
  • the control unit 224 may include the filter unit 221 and the coast image and the thermal image coastal image photographed by the plurality of high resolution cameras 110a, 11b and the thermal imaging camera 120 at a specific time interval. Comparing two 3D coastal correction images having a specific time interval generated by processing through the first synthesis unit 222 and the second synthesis unit 223 to detect the shoreline and coastal topography changes, and to detect the detected shoreline and coastal topography changes. Therefore, analyze coastal erosion and sedimentation.
  • Two 3D coastal correction images with a specific time step created from a coastal image and a thermal image taken at a certain time interval due to erosion caused by high tide and ebb, storms, or typhoons, are the boundary between the ground and the sea. There is a difference in the coastal part or sandbar generating part forming.
  • the controller 224 may detect coastline erosion by analyzing pixel values of two 3D coastal correction images to obtain a pixel distribution having a pixel value difference, thereby determining coastal erosion. Accordingly, the coastal erosion can be easily measured using the coastal images photographed by the drone.
  • the erosion control unit 230 generates a coastal erosion recovery event according to the coastal erosion measurement result measured by the coastal erosion measurement unit 220 and transmits the coastal erosion recovery event to the erosion recovery unit 300 through the wireless communication unit 210. do.
  • the erosion control unit 230 may be implemented to generate a coastal shooting event at a specific time interval to wirelessly transmit to the drone through the wireless communication unit 210.
  • the erosion control unit 230 may generate a coastal shooting event at the beginning of the low tide and the end of the high tide, or generate a coastal shooting event at the beginning of the storm or typhoon and the end of the storm or typhoon, respectively. have.
  • the erosion recovery apparatus 300 wirelessly receives a coastal erosion recovery event wirelessly transmitted by the control server 200, inhales sand from the sea according to the wirelessly received coastal erosion recovery event, and discharges it to the eroded coastal shore. Restores erosion
  • the erosion recovery apparatus 300 may be mounted on a ship or the like and, as illustrated in FIG. 7, includes a water jet pump 310 and a transfer pipe 320.
  • the water jet pump 310 sucks sea water and sand from the sea bottom.
  • water is injected into the circular nozzle 313 of the circular waterjet cylinder 312 by the interface effect pump 311 of the water jet pump 310, seawater, sand, gravel, and the like are sucked through the inlet of the waterjet cylinder 312.
  • the transfer pipe 320 transfers seawater and sand sucked by the water jet pump 310 to discharge seawater and sand on the eroded coast. Accordingly, the coastal erosion can be efficiently recovered at low cost based on the coastal erosion result measured using the coastal images taken by the drone.
  • the erosion recovery device 300 may further include an underwater camera 330.
  • the underwater camera 330 is for monitoring the operation of the water jet pump.
  • the underwater camera 330 receives an image photographed by the underwater camera 330 and displays the image on the control screen (not shown) of the erosion recovery apparatus 300. Make sure you know what's going on and how well your water jet pump is working.
  • the present invention can easily measure coastal erosion using coastal images photographed by the drone, and efficiently and efficiently coastal erosion based on the coastal erosion results measured using the coastal images photographed by the drone. Since it can be recovered, it is possible to achieve the object of the present invention presented above.
  • the present invention is industrially applicable in the coastal erosion measurement art and its application field.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Graphics (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mining & Mineral Resources (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Image Processing (AREA)
  • Processing Or Creating Images (AREA)
  • Image Analysis (AREA)

Abstract

본 발명은 해안 침식 측정 장치 및 해안 침식 복구 시스템에 관한 것으로, 드론에 의해 촬영된 해안 이미지들을 이용해 간편하게 해안의 육역 지형과 해역 얕은 수심의 해저지형의 침식과 퇴적을 측정할 수 있고, 드론에 의해 촬영된 해안 이미지들을 이용해 측정된 해안 침식 결과에 기초하여 해안 침식을 저비용으로 효율적으로 복구할 수 있도록 한 것이다.

Description

해안 침식 측정 장치 및 해안 침식 복구 시스템
본 발명은 해안 침식 측정 기술에 관련한 것으로, 특히 해안 침식 측정 장치 및 해안 침식 복구 시스템에 관한 것이다.
대한민국 등록특허 제10-1480171호(2014. 12. 31)에서 영상의 픽셀정보 및 이동평균에 의한 픽셀정보 변화 패턴을 이용한 해안선 자동추출 장치 및 방법을 제안하고 있다.
지구와 해와 달의 자전과 공전으로 인해 발생하는 밀물과 썰물, 파도 등에 의해 해안선의 침식이 발생하므로, 매년 해수욕장에 침식된 모래를 보충하는데 막대한 비용이 소요되고 있다.
침식이 지속적으로 발생할 경우 지형이 변하기 때문에 침식을 방지하기 위해 인공적인 콘크리트 구조물을 설치하거나 방파제를 설치하는데, 콘크리트 구조물을 설치하거나 방파제를 설치해도 콘크리트 구조물이나 방파제의 밑 부분이 침식되거나 인근의 해안선이 침식되는 현상을 막을 수 없는 실정이다.
따라서, 본 발명자는 드론에 의해 촬영된 해안 이미지들을 이용해 간편하게 해안 침식을 측정할 수 있고, 측정된 해안 침식 결과에 기초하여 해안 침식을 효율적으로 복구할 수 있는 기술에 대한 연구를 하게 되었다.
본 발명은 상기한 취지하에 발명된 것으로, 드론에 의해 촬영된 해안 이미지들을 이용해 간편하게 해안의 육역 지형과 해역 얕은 수심의 해저지형의 침식과 퇴적을 측정할 수 있는 해안 침식 측정 장치를 제공함을 그 목적으로 한다.
본 발명의 또 다른 목적은 드론에 의해 촬영된 해안 이미지들을 이용해 측정된 해안 침식 결과에 기초하여 해안 침식을 효율적으로 복구할 수 있는 해안 침식 복구 시스템을 제공하는 것이다.
상기한 목적을 달성하기 위한 본 발명의 일 양상에 따르면, 해안 침식 측정 장치가 동일 촬영 각도로 특정 간격으로 이격 설치되는 복수의 고해상도 카메라에 의해 촬영된 좌우 시각차를 가진 두 해안 이미지로부터 각각 좌우 적색 파장 대역 이미지를 추출하는 필터부와; 상기 필터부에 의해 추출된 좌우 적색 파장 대역 이미지를 합성하여 적색 파장 대역의 3D 해안 이미지를 생성하는 제1합성부와; 상기 제1합성부에 의해 합성된 적색 파장 대역의 3D 해안 이미지와, 복수의 고해상도 카메라와 동일 촬영 각도로 복수의 고해상도 카메라 사이에 설치되는 열화상 카메라에 의해 촬영된 열화상 해안 이미지를 합성하여 3D 해안 보정 이미지를 생성하는 제2합성부와; 상기 복수의 고해상도 카메라 및 열화상 카메라에 의해 특정 시간 간격을 가지고 촬영된 해안 이미지 및 열화상 해안 이미지를 상기 필터부와, 제1합성부 및 제2합성부를 통해 처리하여 생성된 특정 시간 간격을 가진 두 3D 해안 보정 이미지를 비교하여 해안선과 해안 지형 변화를 검출하고, 검출된 해안선과 해안 지형 변화에 따라 해안 침식을 분석하는 제어부를; 포함하여 이루어지는 것을 특징으로 한다.
본 발명의 부가적인 양상에 따르면, 상기 복수의 고해상도 카메라와, 열화상 카메라가 썰물 시작 시점과 밀물 종료 시점에 각각 해안 촬영을 개시하는 것을 특징으로 한다.
본 발명의 부가적인 양상에 따르면, 상기 복수의 고해상도 카메라와, 열화상 카메라가 폭풍 또는 태풍 시작 시점과 폭풍 또는 태풍 종료 시점에 각각 해안 촬영을 개시하는 것을 특징으로 한다.
본 발명의 부가적인 양상에 따르면, 상기 복수의 고해상도 카메라와, 열화상 카메라가 드론에 설치되는 것을 특징으로 한다.
본 발명의 또 다른 양상에 따르면, 해안 침식 복구 시스템이 특정 시간 간격을 두고 동일한 고도 및 운행궤도로 해안을 비행하며 해안 이미지를 항공 촬영하여 무선 전송하는 드론과; 상기 드론에 의해 무선 전송되는 특정 시간 간격을 두고 항공 촬영된 해안 이미지들을 수신하고, 수신된 특정 시간 간격을 두고 항공 촬영된 해안 이미지들을 비교하여 해안 침식과 퇴적에 따른 해안선과 해안 지형 변화를 측정하고, 해안선과 해안 지형 변화 측정 결과에 따라 해안 침식 복구 이벤트를 발생시켜 무선 전송하는 관제 서버와; 상기 관제 서버에 의해 무선 전송되는 해안 침식 복구 이벤트를 무선 수신하고, 무선 수신된 해안 침식 복구 이벤트에 따라 바다로부터 모래를 흡입하여 침식된 해안에 배출하여 해안 침식을 복구하는 침식 복구장치를; 포함하여 이루어지는 것을 특징으로 한다.
본 발명의 부가적인 양상에 따르면, 상기 드론이 동일 촬영 각도로 특정 간격으로 이격 설치되는 복수의 고해상도 카메라와; 상기 복수의 고해상도 카메라와 동일 촬영 각도로 복수의 고해상도 카메라 사이에 설치되는 열화상 카메라와; 상기 복수의 고해상도 카메라에 의해 각각 특정 시간 간격을 두고 촬영된 해안 이미지와, 상기 열화상 카메라에 의해 특정 시간 간격을 두고 촬영된 열화상 해안 이미지를 무선 송신하는 무선 통신부를; 포함하는 것을 특징으로 한다.
본 발명의 부가적인 양상에 따르면, 상기 드론이 관제 서버로부터 특정 시간 간격을 두고 무선 전송되는 해안 촬영 이벤트에 따라, 동일한 고도 및 운행궤도로 해안 비행을 제어하는 제어부를; 더 포함하는 것을 특징으로 한다.
본 발명의 부가적인 양상에 따르면, 상기 관제 서버가 상기 드론에 의해 무선 전송되는 특정 시간 간격을 두고 항공 촬영된 해안 이미지들을 무선 수신하는 무선 통신부와; 상기 무선 통신부에 의해 무선 수신된 특정 시간 간격을 두고 항공 촬영된 해안 이미지들을 비교하여 해안 침식을 측정하는 해안 침식 측정부와; 상기 해안 침식 측정부에 의해 측정된 해안 침식 측정 결과에 따라, 해안 침식 복구 이벤트를 발생시켜 상기 무선 통신부를 통해 침식 복구장치로 전송하는 침식 관제부를; 포함하는 것을 특징으로 한다.
본 발명의 부가적인 양상에 따르면, 상기 해안 침식 측정부가 동일 촬영 각도로 특정 간격으로 이격 설치되는 복수의 고해상도 카메라에 의해 촬영된 좌우 시각차를 가진 두 해안 이미지로부터 각각 좌우 적색 파장 대역 이미지를 추출하는 필터부와; 상기 필터부에 의해 추출된 좌우 적색 파장 대역 이미지를 합성하여 적색 파장 대역의 3D 해안 이미지를 생성하는 제1합성부와; 상기 제1합성부에 의해 합성된 적색 파장 대역의 3D 해안 이미지와, 복수의 고해상도 카메라와 동일 촬영 각도로 복수의 고해상도 카메라 사이에 설치되는 열화상 카메라에 의해 촬영된 열화상 해안 이미지를 합성하여 3D 해안 보정 이미지를 생성하는 제2합성부와; 상기 복수의 고해상도 카메라 및 열화상 카메라에 의해 특정 시간 간격을 가지고 촬영된 해안 이미지 및 열화상 해안 이미지를 상기 필터부와, 제1합성부 및 제2합성부를 통해 처리하여 생성된 특정 시간 간격을 가진 두 3D 해안 보정 이미지를 비교하여 해안선과 해안 지형 변화를 검출하고, 검출된 해안선과 해안 지형 변화에 따라 해안 침식을 분석하는 제어부를; 포함하는 것을 특징으로 한다.
본 발명의 부가적인 양상에 따르면, 상기 침식 관제부가 특정 시간 간격을 두고 해안 촬영 이벤트를 발생시켜 무선 통신부를 통해 드론으로 무선 송신하는 것을 특징으로 한다.
본 발명의 부가적인 양상에 따르면, 상기 침식 관제부가 썰물 시작 시점과 밀물 종료 시점에 각각 해안 촬영 이벤트를 발생시키는 것을 특징으로 한다.
본 발명의 부가적인 양상에 따르면, 상기 침식 관제부가 폭풍 또는 태풍 시작 시점과 폭풍 또는 태풍 종료 시점에 각각 해안 촬영 이벤트를 발생시키는 것을 특징으로 한다.
본 발명의 부가적인 양상에 따르면, 상기 침식 복구장치가 해저로부터 해수와 모래를 흡입하는 워터 제트 펌프와; 상기 워터 제트 펌프에 의해 흡입된 해수와 모래를 이송하여 침식된 해안에 해수와 모래를 배출하는 이송관을; 포함하는 것을 특징으로 한다.
본 발명의 부가적인 양상에 따르면, 상기 침식 복구장치가 워터 제트 펌프의 동작 감시를 위한 수중 카메라를; 더 포함하는 것을 특징으로 한다.
본 발명은 드론에 의해 촬영된 해안 이미지들을 이용해 간편하게 해안 침식을 측정할 수 있는 효과가 있다.
또한, 드론에 의해 촬영된 해안 이미지들을 이용해 측정된 해안 침식과 퇴적 결과에 기초하여 해안 침식을 저비용으로 효율적으로 복구할 수 있는 효과가 있다.
도 1 은 본 발명에 따른 해안 침식 복구 시스템의 일 실시예의 구성을 도시한 블럭도이다.
도 2 는 본 발명에 따른 해안 침식 복구 시스템의 드론의 일 실시예의 구성을 도시한 도면이다.
도 3 은 본 발명에 따른 해안 침식 복구 시스템의 관제 서버의 일 실시예의 구성을 도시한 블럭도이다.
도 4 는 본 발명에 따른 해안 침식 복구 시스템의 관제 서버에 구현된 해안 침식 측정 장치의 일 실시예의 구성을 도시한 블럭도이다.
도 5 는 해안 이미지로부터 적색 파장 대역 이미지를 추출한 것을 예시한 도면이다.
도 6 은 적색 파장 대역의 3D 해안 이미지와 열화상 해안 이미지가 합성된 3D 해안 보정 이미지를 예시한 도면이다.
도 7 은 본 발명에 따른 해안 침식 복구 시스템의 침식 복구장치의 일 실시예의 구성을 도시한 도면이다.
이하, 첨부된 도면을 참조하여 기술되는 바람직한 실시예를 통하여 본 발명을 당업자가 용이하게 이해하고 재현할 수 있도록 상세히 기술하기로 한다.
본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명 실시예들의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.
본 발명 명세서 전반에 걸쳐 사용되는 용어들은 본 발명 실시예에서의 기능을 고려하여 정의된 용어들로서, 사용자 또는 운용자의 의도, 관례 등에 따라 충분히 변형될 수 있는 사항이므로, 이 용어들의 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
도 1 은 본 발명에 따른 해안 침식 복구 시스템의 일 실시예의 구성을 도시한 블럭도이다. 도 1 에 도시한 바와 같이, 본 발명에 따른 해안 침식 복구 시스템은 드론(100)과, 관제 서버(200)와, 침식 복구장치(300)를 포함하여 이루어진다.
상기 드론(100)은 특정 시간 간격을 두고 동일한 고도 및 운행궤도로 해안을 비행하며 해안 이미지를 항공 촬영하여 무선 전송한다. 예컨대, 드론이 비콘(Beacon) 방식으로 촬영된 해안 이미지를 무선 전송하도록 구현될 수 있다.
도 2 는 본 발명에 따른 해안 침식 복구 시스템의 드론의 일 실시예의 구성을 도시한 도면이다. 도 2 에 도시한 바와 같이, 드론(100)은 복수의 고해상도 카메라(110a)(110b)와, 열화상 카메라(120)와, 무선 통신부(130)를 포함한다.
상기 복수의 고해상도 카메라(110a)(110b)는 동일 촬영 각도로 특정 간격으로 이격 설치된다. 특정 간격으로 이격 설치된 복수의 고해상도 카메라(110a)(110b)는 사람의 눈과 같이 좌우 시차를 가지므로, 이에 의해 각각 촬영되는 두 해안 이미지를 스테레오 시각 기법 등을 이용해 합성할 경우 3D 해안 이미지가 된다.
상기 열화상 카메라(120)는 상기 복수의 고해상도 카메라(110a)(110b)와 동일 촬영 각도로 복수의 고해상도 카메라 사이에 설치된다. 이 열화상 카메라(120)에 의해 해안의 지표면 온도와 수온에 따른 열화상 해안 이미지가 획득된다.
상기 무선 통신부(130)는 상기 복수의 고해상도 카메라(110a)(110b)에 의해 각각 특정 시간 간격을 두고 촬영된 해안 이미지와, 상기 열화상 카메라(120)에 의해 특정 시간 간격을 두고 촬영된 열화상 해안 이미지를 무선 송신한다. 예컨대, 무선 통신부(130)가 고해상도 해안 이미지와, 열화상 해안 이미지를 비콘(Beacon) 방식으로 관제 서버(200)로 전송하도록 구현될 수 있다.
상기 복수의 고해상도 카메라(110a)(110b)와, 열화상 카메라(120)가 썰물 시작 시점과 밀물 종료 시점에 각각 해안 촬영을 개시하거나, 폭풍 또는 태풍 시작 시점과 폭풍 또는 태풍 종료 시점에 각각 해안 촬영을 개시하도록 제어함으로써 특정 시간 간격을 두고 해안 이미지를 촬영할 수 있다.
한편, 상기 드론(100)이 제어부(140)를 더 포함할 수 있다. 제어부(140)는 관제 서버(200)로부터 특정 시간 간격을 두고 무선 전송되는 해안 촬영 이벤트에 따라, 동일한 고도 및 운행궤도로 해안 비행을 제어하는 것을 포함하는 드론 제어를 수행한다.
이 제어부(140)에 의해 자이로스코프(도면 도시 생략), GPS 위성 항법장치(도면 도시 생략), 엔진(도면 도시 생략) 등의 하드웨어가 제어되어 드론이 무선 비행하게 된다. 드론의 무선 비행 제어와 관련해서는 이 출원 전에 이미 다양하게 공지된 통상의 사항이므로, 이에 대한 설명은 생략한다.
상기 관제 서버(200)는 상기 드론(100)에 의해 무선 전송되는 특정 시간 간격을 두고 항공 촬영된 해안 이미지들을 수신하고, 수신된 특정 시간 간격을 두고 항공 촬영된 해안 이미지들을 비교하여 해안 침식을 측정하고, 해안 침식 측정 결과에 따라 해안 침식 복구 이벤트를 발생시켜 무선 전송한다.
도 3 은 본 발명에 따른 해안 침식 복구 시스템의 관제 서버의 일 실시예의 구성을 도시한 블럭도이다. 도 3 에 도시한 바와 같이, 관제 서버(200)는 무선 통신부(210)와, 해안 침식 측정부(220)와, 침식 관제부(230)를 포함한다.
상기 무선 통신부(210)는 상기 드론(100)에 의해 무선 전송되는 특정 시간 간격을 두고 항공 촬영된 해안 이미지들을 무선 수신한다. 예컨대, 상기 무선 통신부(210)가 비콘(Beacon) 방식으로 드론(100)에 의해 무선 전송되는 이미지들을 무선 수신하도록 구현될 수 있다.
상기 해안 침식 측정부(220)는 상기 무선 통신부(210)에 의해 무선 수신된 특정 시간 간격을 두고 항공 촬영된 해안 이미지들을 비교하여 해안 침식 및 퇴적에 따른 해안선 및 해안 지형 변화를 측정한다. 여기서 해안 지형 변화라 함은 육역 지형과 해역 얕은 수심의 해저 지형 변화를 포함한다.
이 해안 침식 측정부(220)가 관제 서버(200)에 구현된 해안 침식 측정 장치이다. 해안 침식 측정 장치는 컴퓨터에 탑재되는 소프트웨어 또는 하드웨어 또는 이들이 결합된 형태로 구현될 수 있다.
도 4 는 본 발명에 따른 해안 침식 복구 시스템의 관제 서버에 구현된 해안 침식 측정 장치의 일 실시예의 구성을 도시한 블럭도이다. 도 4 에 도시한 바와 같이, 해안 침식 측정 장치인 해안 침식 측정부(220)는 필터부(221)와, 제1합성부(222)와, 제2합성부(223)와, 제어부(224)를 포함하여 이루어진다.
상기 필터부(221)는 동일 촬영 각도로 특정 간격으로 이격 설치되는 복수의 고해상도 카메라(110a)(110b)에 의해 촬영된 좌우 시각차를 가진 두 해안 이미지로부터 각각 좌우 적색 파장 대역 이미지를 추출한다. 도 5 는 해안 이미지로부터 적색 파장 대역 이미지를 추출한 것을 예시한 도면이다.
상기 제1합성부(222)는 상기 필터부(221)에 의해 추출된 좌우 적색 파장 대역 이미지를 합성하여 적색 파장 대역의 3D 해안 이미지를 생성한다. 특정 간격으로 이격 설치된 복수의 고해상도 카메라(110a)(110b)는 사람의 눈과 같이 좌우 시차를 가지므로, 이에 의해 각각 촬영되는 두 해안 이미지로부터 추출된 좌우 적색 파장 대역 이미지를 스테레오 시각 기법 등을 이용해 합성할 경우 적색 파장 대역의 3D 해안 이미지가 된다.
상기 제2합성부(223)는 상기 제1합성부(222)에 의해 합성된 적색 파장 대역의 3D 해안 이미지와, 복수의 고해상도 카메라와 동일 촬영 각도로 복수의 고해상도 카메라 사이에 설치되는 열화상 카메라에 의해 촬영된 열화상 해안 이미지를 합성하여 3D 해안 보정 이미지를 생성한다. 도 6 은 적색 파장 대역의 3D 해안 이미지와 열화상 해안 이미지가 합성된 3D 해안 보정 이미지를 예시한 도면이다.
상기 제어부(224)는 상기 복수의 고해상도 카메라(110a)(11b) 및 열화상 카메라(120)에 의해 특정 시간 간격을 가지고 촬영된 해안 이미지 및 열화상 해안 이미지를 상기 필터부(221)와, 제1합성부(222) 및 제2합성부(223)를 통해 처리하여 생성된 특정 시간 간격을 가진 두 3D 해안 보정 이미지를 비교하여 해안선과 해안 지형 변화를 검출하고, 검출된 해안선과 해안 지형 변화에 따라 해안 침식과 퇴적을 분석한다.
밀물과 썰물이나 폭풍 또는 태풍 등에 의한 파도의 영향으로 발생한 침식에 의해 특정 시간 간격을 가지고 촬영된 해안 이미지 및 열화상 해안 이미지로부터 생성된 특정 시간 간격을 가진 두 3D 해안 보정 이미지는 지면과 바다가 경계를 이루는 해안 부분이나 모래톱 발생 부분 등에서 차이가 있다.
상기 제어부(224)는 두 3D 해안 보정 이미지의 픽셀값들을 분석하여 픽셀값 차이가 있는 픽셀 분포를 구함으로써 해안선 변화를 검출할 수 있어 해안 침식을 판단할 수 있다. 이에 따라, 드론에 의해 촬영된 해안 이미지들을 이용해 간편하게 해안 침식을 측정할 수 있다.
상기 침식 관제부(230)는 상기 해안 침식 측정부(220)에 의해 측정된 해안 침식 측정 결과에 따라, 해안 침식 복구 이벤트를 발생시켜 상기 무선 통신부(210)를 통해 침식 복구장치(300)로 전송한다.
또한, 상기 침식 관제부(230)가 특정 시간 간격을 두고 해안 촬영 이벤트를 발생시켜 무선 통신부(210)를 통해 드론으로 무선 송신하도록 구현될 수 있다. 예컨대, 상기 침식 관제부(230)가 썰물 시작 시점과 밀물 종료 시점에 각각 해안 촬영 이벤트를 발생시키거나, 폭풍 또는 태풍 시작 시점과 폭풍 또는 태풍 종료 시점에 각각 해안 촬영 이벤트를 발생시키도록 구현될 수 있다.
상기 침식 복구장치(300)는 상기 관제 서버(200)에 의해 무선 전송되는 해안 침식 복구 이벤트를 무선 수신하고, 무선 수신된 해안 침식 복구 이벤트에 따라 바다로부터 모래를 흡입하여 침식된 해안에 배출하여 해안 침식을 복구한다.
도 7 은 본 발명에 따른 해안 침식 복구 시스템의 침식 복구장치의 일 실시예의 구성을 도시한 도면이다. 침식 복구장치(300)는 선박 등에 탑재될 수 있으며, 도 7 에 도시한 바와 같이, 워터 제트 펌프(310)와, 이송관(320)을 포함한다.
상기 워터 제트 펌프(310)는 해저로부터 해수와 모래를 흡입한다. 워터 제트 펌프(310)의 경계면효과 펌프(311)로 원형 워터젯 실린더(312)의 원형 노즐(313)로 물을 분사하면 워터젯 실린더(312) 입구를 통해 해수 및 모래, 자갈 등이 흡입된다.
상기 이송관(320)은 상기 워터 제트 펌프(310)에 의해 흡입된 해수와 모래를 이송하여 침식된 해안에 해수와 모래를 배출한다. 이에 따라, 드론에 의해 촬영된 해안 이미지들을 이용해 측정된 해안 침식 결과에 기초하여 해안 침식을 저비용으로 효율적으로 복구할 수 있다.
한편, 상기 침식 복구장치(300)가 수중 카메라(330)를 더 포함할 수 있다. 상기 수중 카메라(330)는 워터 제트 펌프의 동작 감시를 위한 것으로, 수중 카메라(330)에 의해 촬영되는 영상을 수신하여 침식 복구장치(300)의 관제 화면(도면 도시 생략)에 표시함으로써 관리자가 해저 상황이나, 워터 제트 펌프가 잘 동작하고 있는지 등을 파악할 수 있도록 한다.
이상에서 설명한 바와 같이, 본 발명은 드론에 의해 촬영된 해안 이미지들을 이용해 간편하게 해안 침식을 측정할 수 있고, 드론에 의해 촬영된 해안 이미지들을 이용해 측정된 해안 침식 결과에 기초하여 해안 침식을 저비용으로 효율적으로 복구할 수 있으므로, 상기에서 제시한 본 발명의 목적을 달성할 수 있다.
본 발명은 첨부된 도면에 의해 참조되는 바람직한 실시예를 중심으로 기술되었지만, 이러한 기재로부터 후술하는 특허청구범위에 의해 포괄되는 범위내에서 본 발명의 범주를 벗어남이 없이 다양한 변형이 가능하다는 것은 명백하다.
본 발명은 해안 침식 측정 기술분야 및 이의 응용 기술분야에서 산업상으로 이용 가능하다.

Claims (14)

  1. 동일 촬영 각도로 특정 간격으로 이격 설치되는 복수의 고해상도 카메라에 의해 촬영된 좌우 시각차를 가진 두 해안 이미지로부터 각각 좌우 적색 파장 대역 이미지를 추출하는 필터부와;
    상기 필터부에 의해 추출된 좌우 적색 파장 대역 이미지를 합성하여 적색 파장 대역의 3D 해안 이미지를 생성하는 제1합성부와;
    상기 제1합성부에 의해 합성된 적색 파장 대역의 3D 해안 이미지와, 복수의 고해상도 카메라와 동일 촬영 각도로 복수의 고해상도 카메라 사이에 설치되는 열화상 카메라에 의해 촬영된 열화상 해안 이미지를 합성하여 3D 해안 보정 이미지를 생성하는 제2합성부와;
    상기 복수의 고해상도 카메라 및 열화상 카메라에 의해 특정 시간 간격을 가지고 촬영된 해안 이미지 및 열화상 해안 이미지를 상기 필터부와, 제1합성부 및 제2합성부를 통해 처리하여 생성된 특정 시간 간격을 가진 두 3D 해안 보정 이미지를 비교하여 해안선과 해안 지형 변화를 검출하고, 검출된 해안선과 해안 지형 변화에 따라 해안 침식을 분석하는 제어부를;
    포함하여 이루어지는 것을 특징으로 하는 해안 침식 측정 장치.
  2. 제 1 항에 있어서,
    상기 복수의 고해상도 카메라와, 열화상 카메라가:
    썰물 시작 시점과 밀물 종료 시점에 각각 해안 촬영을 개시하는 것을 특징으로 하는 해안 침식 측정 장치.
  3. 제 1 항에 있어서,
    상기 복수의 고해상도 카메라와, 열화상 카메라가:
    폭풍 또는 태풍 시작 시점과 폭풍 또는 태풍 종료 시점에 각각 해안 촬영을 개시하는 것을 특징으로 하는 해안 침식 측정 장치.
  4. 제 1 항에 있어서,
    상기 복수의 고해상도 카메라와, 열화상 카메라가:
    드론에 설치되는 것을 특징으로 하는 해안 침식 측정 장치.
  5. 특정 시간 간격을 두고 동일한 고도 및 운행궤도로 해안을 비행하며 해안 이미지를 항공 촬영하여 무선 전송하는 드론과;
    상기 드론에 의해 무선 전송되는 특정 시간 간격을 두고 항공 촬영된 해안 이미지들을 수신하고, 수신된 특정 시간 간격을 두고 항공 촬영된 해안 이미지들을 비교하여 해안 침식을 측정하고, 해안 침식 측정 결과에 따라 해안 침식 복구 이벤트를 발생시켜 무선 전송하는 관제 서버와;
    상기 관제 서버에 의해 무선 전송되는 해안 침식 복구 이벤트를 무선 수신하고, 무선 수신된 해안 침식 복구 이벤트에 따라 바다로부터 모래를 흡입하여 침식된 해안에 배출하여 해안 침식을 복구하는 침식 복구장치를;
    포함하여 이루어지는 것을 특징으로 하는 해안 침식 복구 시스템.
  6. 제 5 항에 있어서,
    상기 드론이:
    동일 촬영 각도로 특정 간격으로 이격 설치되는 복수의 고해상도 카메라와;
    상기 복수의 고해상도 카메라와 동일 촬영 각도로 복수의 고해상도 카메라 사이에 설치되는 열화상 카메라와;
    상기 복수의 고해상도 카메라에 의해 각각 특정 시간 간격을 두고 촬영된 해안 이미지와, 상기 열화상 카메라에 의해 특정 시간 간격을 두고 촬영된 열화상 해안 이미지를 무선 송신하는 무선 통신부를;
    포함하는 것을 특징으로 하는 해안 침식 복구 시스템.
  7. 제 6 항에 있어서,
    상기 드론이:
    관제 서버로부터 특정 시간 간격을 두고 무선 전송되는 해안 촬영 이벤트에 따라, 동일한 고도 및 운행궤도로 해안 비행을 제어하는 제어부를;
    더 포함하는 것을 특징으로 하는 해안 침식 복구 시스템.
  8. 제 6 항에 있어서,
    상기 관제 서버가:
    상기 드론에 의해 무선 전송되는 특정 시간 간격을 두고 항공 촬영된 해안 이미지들을 무선 수신하는 무선 통신부와;
    상기 무선 통신부에 의해 무선 수신된 특정 시간 간격을 두고 항공 촬영된 해안 이미지들을 비교하여 해안 침식을 측정하는 해안 침식 측정부와;
    상기 해안 침식 측정부에 의해 측정된 해안 침식 측정 결과에 따라, 해안 침식 복구 이벤트를 발생시켜 상기 무선 통신부를 통해 침식 복구장치로 전송하는 침식 관제부를;
    포함하는 것을 특징으로 하는 해안 침식 복구 시스템.
  9. 제 8 항에 있어서,
    상기 해안 침식 측정부가:
    동일 촬영 각도로 특정 간격으로 이격 설치되는 복수의 고해상도 카메라에 의해 촬영된 좌우 시각차를 가진 두 해안 이미지로부터 각각 좌우 적색 파장 대역 이미지를 추출하는 필터부와;
    상기 필터부에 의해 추출된 좌우 적색 파장 대역 이미지를 합성하여 적색 파장 대역의 3D 해안 이미지를 생성하는 제1합성부와;
    상기 제1합성부에 의해 합성된 적색 파장 대역의 3D 해안 이미지와, 복수의 고해상도 카메라와 동일 촬영 각도로 복수의 고해상도 카메라 사이에 설치되는 열화상 카메라에 의해 촬영된 열화상 해안 이미지를 합성하여 3D 해안 보정 이미지를 생성하는 제2합성부와;
    상기 복수의 고해상도 카메라 및 열화상 카메라에 의해 특정 시간 간격을 가지고 촬영된 해안 이미지 및 열화상 해안 이미지를 상기 필터부와, 제1합성부 및 제2합성부를 통해 처리하여 생성된 특정 시간 간격을 가진 두 3D 해안 보정 이미지를 비교하여 해안선과 해안 지형 변화를 검출하고, 검출된 해안선과 해안 지형 변화에 따라 해안 침식을 분석하는 제어부를;
    포함하는 것을 특징으로 하는 해안 침식 복구 시스템.
  10. 제 8 항에 있어서,
    상기 침식 관제부가:
    특정 시간 간격을 두고 해안 촬영 이벤트를 발생시켜 무선 통신부를 통해 드론으로 무선 송신하는 것을 특징으로 하는 해안 침식 복구 시스템.
  11. 제 10 항에 있어서,
    상기 침식 관제부가:
    썰물 시작 시점과 밀물 종료 시점에 각각 해안 촬영 이벤트를 발생시키는 것을 특징으로 하는 해안 침식 복구 시스템.
  12. 제 10 항에 있어서,
    상기 침식 관제부가:
    폭풍 또는 태풍 시작 시점과 폭풍 또는 태풍 종료 시점에 각각 해안 촬영 이벤트를 발생시키는 것을 특징으로 하는 해안 침식 복구 시스템.
  13. 제 5 항에 있어서,
    상기 침식 복구장치가:
    해저로부터 해수와 모래를 흡입하는 워터 제트 펌프와;
    상기 워터 제트 펌프에 의해 흡입된 해수와 모래를 이송하여 침식된 해안에 해수와 모래를 배출하는 이송관을;
    포함하는 것을 특징으로 하는 해안 침식 복구 시스템.
  14. 제 13 항에 있어서,
    상기 침식 복구장치가:
    워터 제트 펌프의 동작 감시를 위한 수중 카메라를;
    더 포함하는 것을 특징으로 하는 해안 침식 복구 시스템.
PCT/KR2015/014418 2015-12-29 2015-12-29 해안 침식 측정 장치 및 해안 침식 복구 시스템 WO2017115886A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150188504A KR101760785B1 (ko) 2015-12-29 2015-12-29 해안 침식 측정 장치 및 해안 침식 복구 시스템
KR10-2015-0188504 2015-12-29

Publications (1)

Publication Number Publication Date
WO2017115886A1 true WO2017115886A1 (ko) 2017-07-06

Family

ID=59224834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014418 WO2017115886A1 (ko) 2015-12-29 2015-12-29 해안 침식 측정 장치 및 해안 침식 복구 시스템

Country Status (2)

Country Link
KR (1) KR101760785B1 (ko)
WO (1) WO2017115886A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252488A (zh) * 2021-05-28 2021-08-13 郑州铁路职业技术学院 一种桥墩水下检测装置
CN113252489A (zh) * 2021-05-28 2021-08-13 郑州铁路职业技术学院 一种桥墩侵蚀检测装置
CN113536836A (zh) * 2020-04-15 2021-10-22 宁波弘泰水利信息科技有限公司 一种基于无人机遥感技术监测河湖水域侵占方法
CN116136893A (zh) * 2023-04-20 2023-05-19 自然资源部第一海洋研究所 海岸侵蚀灾变预警线划定与位置范围计算的方法及系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102118347B1 (ko) * 2019-04-09 2020-06-29 제이씨현시스템주식회사 드론의 열화상정보를 활용한 위험지역 자율비행 감시시스템
KR102085091B1 (ko) * 2020-02-13 2020-03-05 한국해양과학기술원 소파블록 사이 추락사고 방지 장치 및 이의 설치방법
KR102219969B1 (ko) * 2020-05-11 2021-02-25 (주)동명기술공단종합건축사사무소 모래유실 방지장치를 이용한 해안침식방지방법
KR102351117B1 (ko) * 2021-03-25 2022-01-13 아주대학교산학협력단 모래 유실 정보를 제공하는 방법, 이를 이용하는 서버 및 시스템

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070044610A (ko) * 2005-10-25 2007-04-30 (주)지오시스템리서치 비디오 카메라를 이용한 실시간의 파랑 및 해안선 변화의정보 추출 시스템
KR20120090491A (ko) * 2011-02-08 2012-08-17 경북대학교 산학협력단 정지장면의 연속프레임 영상에 기반한 영상분할장치 및 방법
KR20150100589A (ko) * 2015-08-13 2015-09-02 윤통우 민간경비 드론 시스템

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070044610A (ko) * 2005-10-25 2007-04-30 (주)지오시스템리서치 비디오 카메라를 이용한 실시간의 파랑 및 해안선 변화의정보 추출 시스템
KR20120090491A (ko) * 2011-02-08 2012-08-17 경북대학교 산학협력단 정지장면의 연속프레임 영상에 기반한 영상분할장치 및 방법
KR20150100589A (ko) * 2015-08-13 2015-09-02 윤통우 민간경비 드론 시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE KANG SUN ET AL.: "Method of Extract Coatline Changes Using Unnamed Aerial Vehicule", JOURNAL OF THE KOREAN GEOGRAPHICAL SOCIETY, vol. 50, no. 5, October 2015 (2015-10-01), pages 475 - 482, XP055599606, Retrieved from the Internet <URL:http://www.dbpia.co.kr/Journal/PDFView?id=NODE06546573> *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113536836A (zh) * 2020-04-15 2021-10-22 宁波弘泰水利信息科技有限公司 一种基于无人机遥感技术监测河湖水域侵占方法
CN113252488A (zh) * 2021-05-28 2021-08-13 郑州铁路职业技术学院 一种桥墩水下检测装置
CN113252489A (zh) * 2021-05-28 2021-08-13 郑州铁路职业技术学院 一种桥墩侵蚀检测装置
CN113252489B (zh) * 2021-05-28 2023-10-20 郑州铁路职业技术学院 一种桥墩侵蚀检测装置
CN113252488B (zh) * 2021-05-28 2023-10-24 郑州铁路职业技术学院 一种桥墩水下检测装置
CN116136893A (zh) * 2023-04-20 2023-05-19 自然资源部第一海洋研究所 海岸侵蚀灾变预警线划定与位置范围计算的方法及系统
CN116136893B (zh) * 2023-04-20 2024-02-13 自然资源部第一海洋研究所 海岸侵蚀灾变预警线划定与位置范围计算的方法及系统

Also Published As

Publication number Publication date
KR101760785B1 (ko) 2017-07-25
KR20170078204A (ko) 2017-07-07

Similar Documents

Publication Publication Date Title
WO2017115886A1 (ko) 해안 침식 측정 장치 및 해안 침식 복구 시스템
JP5213880B2 (ja) パノラマ画像処理システム
WO2019093532A1 (ko) 스트레오 카메라 드론을 활용한 무기준점 3차원 위치좌표 취득 방법 및 시스템
CN103398710B (zh) 一种夜雾天况下的舰船进出港导航系统及其构建方法
CN111435081B (zh) 海面测量系统、海面测量方法以及存储介质
CN107133987B (zh) 无重叠视场的相机阵列优化标定方法
WO2006115470A1 (en) Multiple angle display produced from remote optical sensing devices
KR101880437B1 (ko) 실제카메라 영상과 가상카메라 영상을 활용하여 넓은 시야각을 제공하는 무인선 관제시스템
WO2017115947A1 (ko) 해양 감시 시스템
JP6482855B2 (ja) 監視システム
JP5152913B2 (ja) 洋上監視システムおよび方法
KR20180135146A (ko) 3d 정보를 이용한 드론 탐지장치 및 그 방법
KR20120121163A (ko) 웹 3d를 이용한 실시간 해양공간정보 제공시스템 및 그 방법
CN113406014A (zh) 一种基于多光谱成像设备的溢油监测系统及方法
KR102004455B1 (ko) 증강현실을 이용한 항로표지 관제 시스템 및 방법
WO2018101746A2 (ko) 도로면 폐색 영역 복원 장치 및 방법
JP2016118995A (ja) 監視システム
CN114332652A (zh) 信息处理系统、信息处理装置、及信息处理方法
KR20150026102A (ko) 해저 케이블 감시 장치 및 방법
CN102768054A (zh) 基于监控视频及激光标识的水位测量装置及测量方法
JP2018159578A (ja) モニタリング装置
KR101576167B1 (ko) 해수면 흐름 모니터링 장치
KR20240021673A (ko) 미확인 객체에 대한 정보를 제공하는 객체 모니터링 장치
JP2021176209A (ja) 水中調査システム
WO2024106582A1 (ko) 해상 영상 데이터를 기반으로 한 수상 드론의 해저 측량 데이터 제공 장치 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15912122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15912122

Country of ref document: EP

Kind code of ref document: A1