WO2017115771A1 - ヒートパイプ - Google Patents
ヒートパイプ Download PDFInfo
- Publication number
- WO2017115771A1 WO2017115771A1 PCT/JP2016/088816 JP2016088816W WO2017115771A1 WO 2017115771 A1 WO2017115771 A1 WO 2017115771A1 JP 2016088816 W JP2016088816 W JP 2016088816W WO 2017115771 A1 WO2017115771 A1 WO 2017115771A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wick
- flat
- flat container
- wick structure
- heat pipe
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
- F28D15/046—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0233—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0275—Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/427—Cooling by change of state, e.g. use of heat pipes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/24—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/367—Cooling facilitated by shape of device
- H01L23/3672—Foil-like cooling fins or heat sinks
Definitions
- the present invention relates to a heat pipe having a thin shape having a good maximum heat transport amount and a small heat resistance and excellent heat transport characteristics.
- a heat pipe may be used as a cooling method for electronic components.
- Patent Document 1 since the boundary portion between the first protrusion and the second portion can be disposed at a position far from the heat-generating component, the working fluid evaporated in this direction by increasing the pressure loss in this direction. This prevents the air bubbles from flowing, and thus prevents the working fluid from causing a back flow, and even if a plurality of heat generating components are arranged, a decrease in heat transport efficiency is suppressed.
- an object of the present invention is to provide a heat pipe that has a good maximum heat transport amount even with a thin shape, and further has low heat resistance and excellent heat transport characteristics. .
- An aspect of the present invention is a heat pipe having a heat receiving portion that is to be thermally connected to the heating element in order to absorb heat from the heating element, and has a tubular shape with both ends sealed.
- a flat container having a pair of flat inner surfaces facing each other in the vertical direction in a cross section perpendicular to the longitudinal direction, a wick structure housed in the flat container, and enclosed in the flat container The first wick structure is arranged in the vertical direction in at least one cross section perpendicular to the longitudinal direction of the flat container.
- a second wick structure wherein the first wick structure is in contact with one inner surface of the pair of flat inner surfaces of the flat container and the second wick structure, and Both side surfaces of the first wick structure are not in contact with any inner surface of the flat container, and the second wick structure is the other of the pair of flat inner surfaces of the flat container. In contact with the inner surface, both side surfaces of the second wick structure are not in contact with any inner surface of the flat container, and the wick structures are arranged in the longitudinal direction of the flat container, respectively.
- a first wick portion provided, and a second wick portion connected to the first wick portion and having a maximum width wider than the first wick portion, wherein the second wick portion is the It is the heat pipe formed in the heat receiving part.
- the maximum width of the first wick portion is 40% to 60% and the maximum width of the second wick portion is 60% to 80% with respect to the maximum width of the cross section of the flat container. It is a heat pipe.
- the first wick portion has a maximum width of 40% to 60% with respect to the width in the direction orthogonal to the longitudinal direction inside the flat container (cross section of the flat container).
- the pair of flat inner surfaces of the flat container corresponding to the position of the wick portion includes a portion that is not in contact with the first wick structure or the second wick structure, and the portion is an internal space of the flat container. It is an exposed aspect.
- the second wick portion has a maximum width of 60% to 80% with respect to the width in the direction orthogonal to the longitudinal direction inside the flat container (the cross section of the flat container), so the second wick portion In the pair of the flat inner surfaces of the flat container corresponding to the position of the flat container, there is a portion that is not in contact with the first wick structure or the second wick structure, and the portion is in contact with the inner space of the flat container. It is an exposed aspect. Further, the exposed area of the flat inner surface of the flat container corresponding to the position of the first wick portion is wider than the exposed area of the flat inner surface of the flat container corresponding to the position of the second wick portion. Yes.
- the length of the second wick portion in the longitudinal direction of the flat container is such that the length of the first wick portion in the longitudinal direction of the flat container and the length of the flat container are
- the heat pipe is 2 to 50% of the total length of the second wick portion.
- the cross section of the first wick structure has a convex bottom side and a flat top side
- the cross section of the second wick structure is
- the first wick structure has a flat bottom side and a convex top side
- the convex bottom side of the first wick structure is in contact with the convex top side of the second wick structure.
- the convex bottom side of the first wick structure and the convex top side of the second wick structure are in contact with each other. Except for the portion that is in contact with the convex portion, the shape is exposed to the internal space of the flat container.
- An aspect of the present invention is a heat pipe in which the maximum width of the bottom side or the top side of the second wick portion is 60% to 80% with respect to the maximum width of the cross section of the flat container.
- the first wick portion is arranged at one end portion in the longitudinal direction of the flat container, and the second wick portion is the other end portion in the longitudinal direction of the flat container. It is a heat pipe arranged in.
- first wick portions there are two first wick portions, one of which is arranged at one end in the longitudinal direction of the flat container, and the other is the other in the longitudinal direction of the flat container. It is a heat pipe which is arranged at an end and the second wick part is arranged at a central portion in the longitudinal direction of the flat container.
- the maximum width between the first wick portion and the second wick portion in the longitudinal direction of the flat container is wider than the first wick portion, and the second wick
- a third wick portion having a narrower maximum width than the portion is a heat pipe further provided.
- the both side surfaces of the first wick structure that is not in contact with any inner surface of the flat container have a convex shape, and any inner surface of the flat container
- the both side surfaces of the second wick structure that is not in contact with each other are heat pipes having a convex shape.
- An aspect of the present invention is a heat pipe in which the first wick portion and the second wick portion are metal sintered bodies.
- An aspect of the present invention is a heat pipe in which the metal sintered body of the second wick part is formed of sintered powder having a finer particle diameter than the metal sintered body of the first wick part. is there.
- An aspect of the present invention is a heat pipe in which the pair of flat inner surfaces facing each other are separated vertically by a distance of 1.5 mm or less.
- the flat container has a pair of flat inner surfaces facing each other (one inner surface and the other inner surface facing the one inner surface), and the distance between the facing flat inner surfaces is 1.5 mm. It is as follows.
- the wick structure in all cross sections perpendicular to the longitudinal direction of the flat container, includes the first wick structure and the second wick structure arranged in the vertical direction. It is a heat pipe.
- the first wick structure in all cross sections perpendicular to the longitudinal direction of the flat container, includes one inner surface of the pair of flat inner surfaces of the flat container and the Contacting the second wick structure, both side surfaces of the first wick structure are not in contact with any inner surface of the flat container, and the second wick structure is the flat of the flat container.
- a heat pipe that is in contact with the other inner surface of the pair of inner surfaces, and that both side surfaces of the second wick structure are not in contact with any inner surface of the flat container.
- An aspect of the present invention is a heat pipe in which the heat receiving portion is thermally connected to the heating element via a heat conductive member.
- the heat wick portion having the first wick portion and the second wick portion having the maximum width wider than the first wick portion, which is in contact with the heating element is the heat receiving portion.
- the second wick portion is positioned in the heat receiving portion, even if it is a thin shape, it is excellent in the maximum heat transport amount and can exhibit heat transport characteristics with reduced heat resistance.
- the first wick portion having the maximum width of 40% to 60% with respect to the maximum width of the cross section of the flat container has the maximum width of 60% to 80%.
- the length of the second wick portion in the longitudinal direction of the flat container is the sum of the length of the first wick portion and the length of the second wick portion in the longitudinal direction of the flat container. If it is 2 to 50% of the above, it is possible to reduce the thermal resistance while further improving the maximum heat transport amount.
- the first wick structure has a convex convex bottom side and a flat top side
- the second wick structure has a flat base and a convex top side.
- the maximum width of the bottom or top side of the second wick is 60% to 80% with respect to the maximum width of the cross section of the flat container. Resistance can be reduced.
- (A) is a plan sectional view of a heat pipe according to the first embodiment of the present invention
- (b) is a sectional view taken along the line aa in (a)
- (c) is a sectional view taken along the line b- in (a). It is b sectional drawing.
- (A) is a plan sectional view of a heat pipe according to a second embodiment of the present invention
- (b) is a sectional view taken along the line aa in FIG. (A)
- (c) is a sectional view taken along the line b- in FIG. It is b sectional drawing. It is a plane sectional view of the heat pipe concerning the example of a 3rd embodiment of the present invention.
- FIG. 1 It is a plane sectional view of the heat pipe concerning the example of a 4th embodiment of the present invention.
- (A) is a side view of a heat pipe according to another embodiment of the present invention,
- (b) is a cross-sectional view along line aa in FIG. (A), and
- (c) is a line along bb in (a).
- (A) is a side view of a heat pipe according to another embodiment of the present invention,
- (b) is a cross-sectional view along line aa in FIG. (A), and (c) is a line along bb in (a).
- (A) is a side view of a heat pipe according to another embodiment of the present invention
- (b) is a cross-sectional view along line aa in FIG. (A)
- (c) is a line along bb in (a).
- (A) is a side view of a heat pipe according to another embodiment of the present invention
- (b) is a cross-sectional view along line aa in FIG. (A)
- (c) is a line along bb in (a).
- (A) is a side view of a heat pipe according to another embodiment of the present invention
- (b) is a cross-sectional view along line aa in FIG. (A)
- (c) is a line along bb in (a). It is sectional drawing.
- the heat pipe 1 includes one flat inner surface 11 and the other flat inner surface 12 opposite to the one flat inner surface 11.
- a flat container 10 having a tubular shape, a first wick structure 21 disposed on one flat inner surface 11, a second wick structure 22 disposed on the other flat inner surface 12, And a working fluid (not shown) sealed in the flat container 10.
- the flat container 10 includes one flat inner surface 11, the other flat inner surface 12 facing the one flat inner surface 11, and one flat inner surface.
- 11 is a sealed straight tube material having curved surface portions 13 and 13 ′ formed between 11 and the other flat inner surface 12, and is orthogonal to the longitudinal direction (that is, perpendicular to the longitudinal direction).
- the cross-sectional shape is a flat shape. That is, the flat container 10 has a pair of flat inner surfaces facing each other in the vertical direction in a cross section perpendicular to the longitudinal direction.
- the flat container 10 has a flat shape in the entire longitudinal direction.
- the flat container 10 has the same cross-sectional area of the internal space in the direction perpendicular to the longitudinal direction in any part, and one flat inner surface 11 is opposite to the other flat inner surface 12. It is formed in the parallel direction. Further, the distance between one flat inner surface 11 and the other flat inner surface 12 is not particularly limited, but the flat container 10 has a thin shape of 1.5 mm or less, particularly 1.0 mm or less.
- the heat transport direction of the heat pipe 1 is the longitudinal direction of the flat container 10.
- the first wick structure 21 has a first curved portion 23 that is a convex convex bottom portion protruding from one flat inner surface 11 and a flat upper side portion 25, and the flat upper side portion 25 is One flat inner surface 11 is in contact with a partial region.
- the flat upper side 25 is fixed to one flat inner surface 11.
- the first wick structure 21 is provided at the center in the direction orthogonal to the longitudinal direction of the flat container 10 (cross section of the flat container 10).
- the cross-sectional shape of the first wick structure 21 in the direction orthogonal to the longitudinal direction of the flat container 10 is a semi-elliptical shape.
- the second wick structure 22 is a second convex upper side that protrudes from the other flat inner surface 12 and faces the first curved portion 23 that is a convex convex bottom.
- the curved portion 24 and the flat bottom portion 26 are in contact with a partial region of the other flat inner surface 12.
- the flat bottom portion 26 is fixed to the other flat inner surface 12.
- the second wick structure 22 is provided at the center of the flat container 10 in the direction orthogonal to the longitudinal direction.
- the cross-sectional shape of the second wick structure 22 in the direction orthogonal to the longitudinal direction of the flat container 10 is a semi-elliptical shape.
- the region that is not in contact with the flat bottom portion 26 of the second wick structure 22 and the curved surface portions 13 and 13 ′ of the flat container 10 are both exposed to the internal space of the flat container 10. .
- the first curved portion 23 is in contact with the second curved portion 24 of the second wick structure 22.
- the bottom portion of the first curved portion 23 and the top portion of the second curved portion 24 are in contact with each other.
- the bottom part of the 1st music part 23 and the top part of the 2nd music part 24 are both in the state press-contacted. Therefore, the bottom part of the first music part 23 and the top part of the second music part 24 are compressed and crushed. Thereby, the capillary pressure of the 1st wick structure 21 and the 2nd wick structure 22 improves further, and can return the working fluid of a liquid phase more smoothly.
- a first wick portion 31 including a first wick structure 21 and a second wick structure 22 is formed at one end of the flat container 10. Yes.
- the flat upper side portion 25 that forms the maximum width in the first wick portion 31 with respect to the maximum width in the direction orthogonal to the longitudinal direction of the flat container 10 and the flat The width of the bottom part 26 is 40% to 60%.
- the cross-sectional shape in the direction orthogonal to the longitudinal direction of the flat container 10 has substantially the same shape and dimensions in any part in the longitudinal direction of the flat container 10. . Accordingly, in the first wick portion 31, the widths of the flat upper side portion 25 and the flat bottom side portion 26 are substantially uniform in the longitudinal direction of the flat container 10.
- a second wick portion 32 including a first wick structure 21 and a second wick structure 22 is formed at the other end of the flat container 10.
- the wick structure including the first wick structure 21 and the second wick structure 22 includes the first wick portion 31 and the second wick portion 32.
- the second wick portion 32 forms a maximum width with respect to the maximum width in the direction orthogonal to the longitudinal direction of the flat container 10.
- the widths of the flat upper side 25 and the flat bottom 26 are 60% to 80%.
- the widths of the flat top side 25 and the flat bottom side 26 in the second wick portion 32 are always greater than the widths of the flat top side 25 and the flat bottom side 26 in the first wick portion 31. It is a wide aspect.
- vertical direction with respect to the longitudinal direction of the flat container 10 has the substantially same shape and dimension also in any site
- a flat portion is provided in a portion between one end portion of the flat container 10 and the other end portion, that is, in the central portion of the flat container 10. Similar to one end portion of the mold container 10, a first wick portion 31 including a first wick structure 21 and a second wick structure 22 is formed.
- the second wick part 32 functions as a heat receiving part of the heat pipe 1
- the first wick part 31 functions as a heat radiating part of the heat pipe 1.
- a heating element (not shown) is thermally connected to a predetermined part of the flat container 10.
- heat such as a metal heat receiving plate, a heat conductive rubber, or a thermal rubber is provided between the predetermined portion and the heating element as necessary.
- a conductive member may be provided.
- heat exchange means such as a heat radiating fin or a heat sink is thermally connected to a predetermined portion of the flat container 10.
- the width of the second wick portion 32 is larger than the width of the first wick portion 31, and the second wick portion 32 has 60% of the width of the flat container 10.
- the first wick structure 21 and the second wick structure 22 are both flat containers 10. It extends in a straight line from one end of the container to the other end, that is, in a direction parallel to the longitudinal direction of the flat container 10.
- the first wick structure 21 and the second wick structure 22 are both orthogonal to the longitudinal direction of the flat container 10 of the second wick portion 32.
- the width in the direction is wider than the width of the first wick portion 31, and a step portion 33 is formed at the boundary between the first wick portion 31 and the second wick portion 32.
- the boundary between the first wick portion 31 and the second wick portion 32 may be an aspect in which the width is gradually changed instead of the step.
- the length of the second wick portion 32 in the longitudinal direction of the flat container 10 is not particularly limited, but the length of the first wick portion 31 and the length of the second wick portion 32 in the longitudinal direction of the flat container 10 From the viewpoint of improving the maximum heat transport amount and reducing the thermal resistance in a well-balanced manner, 2 to 50% is preferable. Further, the lengths of the flat upper side 25 and the flat bottom side 26 in the second wick portion 32 in the longitudinal direction of the flat container 10 are not particularly limited, but increase in the maximum heat transport amount and reduction in thermal resistance. Is preferably 1.0 to 5.0 times the length of the heating element thermally connected to the heat receiving portion.
- the width of the flat upper side 25 and the flat bottom 26 in the second wick portion 32 in the direction perpendicular to the longitudinal direction of the flat container 10 is not particularly limited. From the viewpoint of improving the reduction in thermal resistance in a well-balanced manner, 0.50 to 1.5 times the width of the heating element thermally connected to the heat receiving portion is preferable.
- the portion of the internal space of the flat container 10 where the first wick structure 21 and the second wick structure 22 are not arranged is a gas phase.
- a working fluid vapor passage 34 is formed. That is, the region of the one flat inner surface 11 that is not in contact with the first wick structure 21, the surface of the first curved portion 23, and the second wick structure 22 of the other flat inner surface 12.
- a steam channel 34 is formed from the region not in contact with the surface, the surface of the second curved portion 24, and the curved surface portions 13 and 13 ′ of the flat container 10.
- the steam channel 34 extends linearly in a direction parallel to the longitudinal direction of the flat container 10, and the steam channel 34 on the first wick portion 31 side is defined by the stepped portion 33 as a boundary. It is in a mode wider than the steam flow path 34 on the second wick part 32 side. Further, the steam flow path 34 is provided on both sides of the first wick structure 21 and the second wick structure 22.
- the material of the flat container 10 is not particularly limited, and for example, copper can be used from the viewpoint of excellent thermal conductivity, aluminum can be used from the viewpoint of light weight, and stainless steel can be used from the viewpoint of improving strength.
- the material of the 1st wick structure 21 and the 2nd wick structure 22 is not specifically limited, Metal powder, such as copper powder and stainless steel powder, Carbon powder, Mixed powder of copper powder and carbon powder, The said powder It is possible to use a sintered body such as a composite metal obtained by combining a nanoparticle, a metal mesh and a metal powder. The sintered body can be manufactured by sintering the powder and the composite metal and joining the powder, and a porous structure having a capillary pressure is formed by sintering.
- the bonded body is preferably formed of sintered powder having a finer particle diameter than the metal sintered body of the first wick portion 31.
- the working fluid to be sealed in the flat container 10 can be appropriately selected according to the compatibility with the material of the flat container 10, for example, water, alternative CFC, perfluorocarbon, cyclopentane, etc. Can do.
- the heat transport mechanism of the heat pipe 1 When the heat pipe 1 receives heat from a heating element that is thermally connected at the heat receiving portion, the working fluid changes phase from the liquid phase to the gas phase at the heat receiving portion.
- the vapor-phase working fluid flows through the vapor channel 34 in the longitudinal direction of the flat container 10 from the heat receiving portion to the heat radiating portion, so that heat from the heat generating element is transported from the heat receiving portion to the heat radiating portion.
- the heat from the heating element transported from the heat receiving portion to the heat radiating portion is released as latent heat by the gas phase working fluid changing to the liquid phase in the heat radiating portion provided with the heat exchange means.
- the latent heat released in the heat radiating part is released from the heat radiating part to the external environment of the heat pipe 1 by the heat exchange means provided in the heat radiating part.
- the working fluid that has changed to the liquid phase in the heat radiating section is taken into the first wick structure 21 and the second wick structure 22, and the capillaries of the first wick structure 21 and the second wick structure 22.
- the pressure is returned from the heat radiating unit to the heat receiving unit.
- the first wick portion 31 is arranged at one end and the center portion of the flat container 10 in the longitudinal direction, and the second wick portion 32 is arranged at the other end portion.
- the second wick portion 32 is arranged in the center in the longitudinal direction of the flat container 10, and the flat type First wick portions 31 are disposed at both ends of the container 10 in the longitudinal direction. That is, two first wick parts 31 are arranged. Therefore, in the heat pipe 2, the central portion in the longitudinal direction of the flat container 10 is caused to function as a heat receiving portion, and one end portion and the other end portion in the longitudinal direction of the flat container 10 are caused to function as heat radiating portions. Since the first wick portion 31 is provided at both ends of the second wick portion 32, there are two boundary portions between the first wick portion 31 and the second wick portion 32. Two 33 are formed.
- the heat pipe 2 is also capable of exhibiting excellent heat transport properties with excellent thermal transport capacity while being excellent in maximum heat transport.
- the heat pipe 2 can be provided with a plurality of (two in the figure) heat radiating portions, the cooling efficiency of the heating element is further improved.
- the first wick structure 21 and the second wick structure 22 are not provided in the longitudinal end portions of the flat container 10, and the above Although the entire area of both end faces was exposed to the internal space of the flat container 10, instead of this, as shown in FIG. 3, the heat pipe 3 according to the third embodiment has the first wick structure.
- the body 21 and the second wick structure 22 extend to both end faces 14 in the longitudinal direction of the flat container 10. Therefore, the longitudinal end faces of the flat container 10 of the first wick structure 21 and the second wick structure 22 are in contact with the longitudinal end faces 14 of the flat container 10.
- the heat pipe 3 is also capable of exhibiting excellent heat transport properties with excellent heat transfer while being excellent in maximum heat transport.
- the first wick structure 21 and the second wick structure 22 are not provided at the portions of both end faces in the longitudinal direction of the flat container 10. Although the entire area of both end faces was exposed to the internal space of the flat container 10, instead of this, as shown in FIG. 4, in the heat pipe 4 according to the fourth embodiment, the first wick structure The body 21 and the second wick structure 22 extend to both end faces 14 in the longitudinal direction of the flat container 10. Therefore, both end surfaces 14 of the flat container 10 in the longitudinal direction of the first wick structure 21 and the second wick structure 22 are in contact with both end surfaces of the flat container 10 in the longitudinal direction.
- the heat pipe 4 is also capable of exhibiting excellent heat transport properties with excellent thermal transport and reduced heat resistance.
- the manufacturing method is not particularly limited, for example, in the heat pipe according to the first embodiment, a core rod having a notch portion of a predetermined shape is inserted along the longitudinal direction of the circular tube material, A gap formed between the inner wall surface and the outer surface of the notch is filled with a powdered metal material that becomes the first wick structure and the second wick structure.
- the notch portion of the core rod is formed with a small notch portion corresponding to the position of the first wick portion and a large notch portion corresponding to the position of the second wick portion. Yes.
- heat treatment is performed to form a precursor of the first wick structure and a precursor of the second wick structure.
- the heat pipe which has the 1st wick structure and the 2nd wick structure is manufactured by drawing out from the notch part side which notched small core rod, and flattening a pipe material.
- the heat pipe according to the second embodiment can be manufactured in the same manner as the heat pipe according to the first embodiment, but the heat pipe according to the first embodiment is used instead of the core rod used in the heat pipe according to the first embodiment.
- the first core rod in which a small cutout portion corresponding to the position of the first wick portion and a large cutout portion corresponding to the position of the second wick portion are formed is a circle.
- the second core rod having a small cutout corresponding to the position of the first wick portion is inserted from one end portion of the tubular shape tube into the longitudinal center portion. Insert from the other end.
- the first core rod is pulled out from the notched portion side which is cut out in a small size, and the second core rod is pulled out to the other end.
- the heat pipe according to the second embodiment can be manufactured by pulling out from the section side.
- the second wick portion having the wide width is disposed adjacent to the first wick portion having a narrow width in the direction orthogonal to the longitudinal direction of the flat container.
- a third wick between the first wick portion and the second wick portion is further wider than the first wick portion and narrower than the second wick portion.
- a part may be provided.
- variety of a 3rd wick part may be uniform, and the aspect gradually widened toward a 2nd wick part from a 1st wick part may be sufficient.
- the first wick portion having the narrow width is formed in the center portion of the flat container, like the one end portion of the flat container.
- the second wide wick portion may be formed in the same manner as the other end portion of the flat container.
- the first wick portion and the second wick portion are each flat in the longitudinal direction of the flat container in the longitudinal direction of the flat container.
- the width of the upper side portion and the width of the flat bottom side portion are substantially uniform, but instead, if the width is within the above numerical range, for example, the mode of gradually widening and the enlargement and reduction are repeated.
- the aspect may not be substantially uniform.
- the container has a flat shape in the entire longitudinal direction, but instead, a partial region in the longitudinal direction may be a flat shape.
- the cross-sectional shapes of the first wick structure and the second wick structure are semi-elliptical, but the shapes are not particularly limited. Shape may be sufficient.
- the first wick structure and the second wick structure are both provided at the position of the central portion in the direction perpendicular to the longitudinal direction of the flat container.
- the position of the first wick structure and the second wick structure is not particularly limited, and may be other than the central portion (for example, the end portion), and the first wick structure and the second wick structure are: They may be provided at mutually different positions (for example, one of the first wick structure and the second wick structure is the central portion and the other is the end portion).
- the bottom of the convex bottom side and the top of the convex top side are in a state of being in pressure contact with each other, but instead of being in pressure contact with each other. It may be in contact.
- the bottom of the convex bottom side and the top of the convex top side are in pressure contact with each other, but instead, the convex shape of the first wick part.
- the bottom of the bottom and the top of the convex top are in contact with each other, and the bottom of the convex bottom and the top of the convex top are not in contact with each other, or high capillary pressure
- the bottom of the convex bottom side and the top of the convex top side are in contact with each other, and the bottom of the convex bottom side and the top of the convex top side of the first wick part are required.
- the thickness of the flat container differs from the center of the flat container 10 in the longitudinal direction.
- the first wick structure 21 in the first wick structure 21 is first.
- the bent portion 23 of the flat container 10 and the second bent portion 24 of the second wick structure 22 are not in contact with each other, and the end of the flat container 10 with the smaller thickness (as shown in FIG. 5C).
- the first curved portion 23 of the first wick structure 21 and the second wick structure 22 of the second wick structure 22 are connected to each other. It is good also as an aspect in which the curved part 24 is mutually contacting.
- the thickness of the flat container differs from the center of the flat container 10 in the longitudinal direction, and the thickness of the flat container 10 is thick.
- 23 and the second curved portion 24 of the second wick structure 22 are not in contact with each other, and the flat container 10 is thinner (as shown in FIG. 6B).
- the first curved portion 23 of the first wick structure 21 and the second curved portion 24 of the second wick structure 22 are provided. However, it is good also as an aspect which has mutually contact
- the flat container is a pipe material
- the cross-sectional shape thereof is a substantially elliptical shape having a pair of flat inner surfaces facing vertically, but the cross-sectional shape of the flat container is particularly For example, a rectangle with corners may be used.
- the flat container that is a tube material is linear, but the shape of the tube material in the longitudinal direction is not particularly limited.
- the flat container 10 bent into a shape or the like may be used, and heat exchange means such as the radiation fins 101 may be thermally connected to one end, and the heating element 102 may be thermally connected to the other end.
- the shape of the flat container 10 having a uniform thickness may be a shape having a stepped portion 15 at the center in the longitudinal direction of the flat container 10.
- the second curved portion 24 of the structure 22 may be in contact with each other as shown in FIG. 8C, or may not be in contact as shown in FIG. 9C.
- the second curved portion 24 of the second wick structure 22 may not be in contact as shown in FIG. 8B, and may be in contact as shown in FIG. 9B.
- the cross section of the first wick structure and the cross section of the second wick structure are substantially the same size (that is, the width of the flat upper side portion).
- the cross section of the first wick structure 21 and the second wick structure are provided.
- the cross sections 22 may have different sizes, that is, the width of the flat upper side portion 25 and the width of the flat bottom side portion 26 may be different. In this case, as long as the maximum width of the second wick portion 32 is larger than the maximum width of the first wick portion 31, the first wick structure as shown in FIGS.
- the cross section of 21 may be larger than the cross section of the second wick structure 22, that is, the flat upper side 25 may be wider than the flat bottom 26.
- a mode in which the cross section is larger than the cross section of the first wick structure 21, that is, a mode in which the width of the flat bottom side portion 26 is wider than the width of the flat top side portion 25 may be employed.
- the contact area between the first wick structure 21 and the second wick structure 22 and the working fluid can be improved while ensuring the steam flow path 34 more reliably.
- the heat transport property is further improved.
- the distance between one flat inner surface of the flat container and the other flat inner surface that is, the thickness of the flat container is uniform.
- the thickness of the flat container corresponding to the position of the first wick portion and the thickness of the flat container corresponding to the position of the second wick portion are different.
- an aspect in which the thickness of the flat container corresponding to the position of the second wick portion is thinner than the thickness of the flat container corresponding to the position of the first wick portion may be used.
- one second wick portion is arranged at the center, but the number of second wick portions is not particularly limited, and may be plural.
- the first wick portion and / or the third wick portion is arranged between the adjacent second wick portions.
- the same structure as the heat pipe according to the first embodiment was used.
- the maximum widths of the first wick portion and the second wick portion were changed as shown in Table 1 below.
- As the container a tube material having a length of 200 mm and a diameter of 8 mm that was flattened to 1 mm was used.
- a thermocouple was installed in and ⁇ T was measured.
- the maximum width of the first wick portion is 40% to 60% and the maximum width of the second wick portion is 60% to the maximum width in the direction perpendicular to the longitudinal direction of the flat container (cross section).
- the maximum width of the first wick portion is 45% to 55% and the maximum width of the second wick portion is 65% to 75% with respect to the maximum width in the direction orthogonal to the longitudinal direction (cross section) of the flat container.
- evaluation A and extremely excellent heat transport properties were obtained.
- the heat pipe of the present invention has a thin shape, it has a good maximum heat transport amount, and further has a small heat resistance and excellent heat transport characteristics. It has high utility value in the field of cooling electronic parts mounted with high density.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
長手方向に垂直な断面において上下方向に対向している平坦な内面を有する扁平型コンテナ内にウィック構造体を備えたヒートパイプであり、前記ウィック構造体は、上下方向に配置された第1のウィック構造体と第2のウィック構造体からなり、前記第1のウィック構造体は、前記平坦な内面のうちの一方の内面及び前記第2のウィック構造体とそれぞれ接し、且つ前記第1のウィック構造体の両側面は前記扁平型コンテナのどの内面にも接しておらず、前記第2のウィック構造体は、前記平坦な内面のうちの他方の内面と接し、且つ前記第2のウィック構造体の両側面は前記扁平型コンテナのどの内面にも接しておらず、さらに、前記ウィック構造体は、前記扁平型コンテナの前記長手方向において並んで設けられる、第1のウィック部と、該第1のウィック部よりも最大幅が広い第2のウィック部と、を有し、前記第2のウィック部が受熱部に形成されているヒートパイプ。
Description
本発明は、良好な最大熱輸送量を有し、さらには熱抵抗の小さい、優れた熱輸送特性を有する薄型形状のヒートパイプに関するものである。
電気・電子機器に搭載されている半導体素子等の電子部品は、高機能化に伴う高密度搭載等により、発熱量が増大し、その冷却がより重要となっている。電子部品の冷却方法として、ヒートパイプが使用されることがある。
また、上記電子部品の高密度搭載等によるヒートパイプの設置場所の狭小化や上記電子部品の薄型化等から、扁平型ヒートパイプ、例えば、厚さ1.5mm以下の薄型のヒートパイプの使用が要求されることがある。薄型のヒートパイプとして、本体と本体から延びる第1の突出部とを有するウィックを用い、第1の突出部が受熱部の内部を蒸気流路に連通する第1の部分と液戻り流路に連通する第2の部分とに分断し、受熱部は第1の部分と第1の突出部とにまたがる位置で発熱部品に熱的に接続されるものが提案されている(特許文献1)。
特許文献1では、第1の突出部と第2の部分との間の境界部を発熱部品から遠い位置に配置できるので、この方向への圧力損失を大きくして、この方向へ蒸発した作動流体の気泡が流れることが防止され、ひいては、作動流体に逆流を生じてしまうことを防止して、複数の発熱部品を配置しても、熱輸送効率の低下を抑制するものである。
しかし、特許文献1の薄型のヒートパイプでは、最大熱輸送量の向上と熱抵抗の低減とを両立することはできないという問題、すなわち、最大熱輸送量を増大させようとすると熱抵抗も増大し、熱抵抗を低減させようとすると最大熱輸送量も低減してしまうという、ヒートパイプの薄型化において特に顕著に生じる問題が、依然としてあった。
上記事情に鑑み、本発明は、薄型形状であっても、良好な最大熱輸送量を有し、さらには熱抵抗の小さい、優れた熱輸送特性を有するヒートパイプを提供することを目的とする。
本発明の態様は、発熱体から熱を吸収するために該発熱体と熱的に接続されることになる受熱部を有するヒートパイプであって、両端部が封止された管形状を有し、長手方向に垂直な断面において上下方向に相互に対向している平坦な内面のペアを有する扁平型コンテナと、該扁平型コンテナ内に収納されたウィック構造体と、該扁平型コンテナ内に封入された作動流体と、を備えたヒートパイプであり、前記扁平型コンテナの前記長手方向に垂直な断面の少なくとも一断面において、前記ウィック構造体は、上下方向に配置された第1のウィック構造体と第2のウィック構造体からなり、前記第1のウィック構造体は、前記扁平型コンテナの前記平坦な内面のペアのうちの一方の内面及び前記第2のウィック構造体とそれぞれ接し、且つ前記第1のウィック構造体の両側面は前記扁平型コンテナのどの内面にも接しておらず、前記第2のウィック構造体は、前記扁平型コンテナの前記平坦な内面のペアのうちの他方の内面と接し、且つ前記第2のウィック構造体の両側面は前記扁平型コンテナのどの内面にも接しておらず、さらに、前記ウィック構造体は、前記扁平型コンテナの前記長手方向においてそれぞれ並んで設けられる、第1のウィック部と、該第1のウィック部と連結し該第1のウィック部よりも最大幅が広い第2のウィック部と、を有し、前記第2のウィック部が前記受熱部に形成されているヒートパイプである。
本発明の態様は、前記扁平型コンテナの断面の最大幅に対する、前記第1のウィック部の最大幅が40%~60%であり、前記第2のウィック部の最大幅が60%~80%であるヒートパイプである。
上記態様では、第1のウィック部は、扁平型コンテナの、内部における長手方向に対して直交方向(扁平型コンテナの断面)の幅に対し、最大幅が40%~60%なので、第1のウィック部の位置に対応する扁平型コンテナの平坦な内面のペアには、第1のウィック構造体とも第2のウィック構造体とも接していない部位が存在し、該部位は扁平型コンテナの内部空間に対し露出した態様となっている。また、第2のウィック部は、扁平型コンテナの、内部における長手方向に対して直交方向(扁平型コンテナの断面)の幅に対し、最大幅が60%~80%なので、第2のウィック部の位置に対応する扁平型コンテナの平坦な内面のペアには、第1のウィック構造体とも第2のウィック構造体とも接していない部位が存在し、該部位は扁平型コンテナの内部空間に対し露出した態様となっている。さらに、第1のウィック部の位置に対応する扁平型コンテナの平坦な内面の露出領域は、第2のウィック部の位置に対応する扁平型コンテナの平坦な内面の露出領域よりも、広くなっている。
本発明の態様は、前記扁平型コンテナの長手方向における前記第2のウィック部の長さが、前記扁平型コンテナの長手方向における前記第1のウィック部の長さと前記扁平型コンテナの長手方向における前記第2のウィック部の長さとの合計の2~50%であるヒートパイプである。
本発明の態様は、前記少なくとも一断面において、前記第1のウィック構造体の断面が、凸形状の凸状底辺部と平坦な上辺部を有し、前記第2のウィック構造体の断面が、平坦な底辺部と凸形状の凸状上辺部を有し、前記第1のウィック構造体の凸状底辺部が前記第2のウィック構造体の凸状上辺部と接し、前記第1のウィック構造体の平坦な上辺部が前記一方の内面と接し、前記第2のウィック構造体の平坦な底辺部が前記他方の内面と接しているヒートパイプである。
上記態様では、第1のウィック構造体の凸状底辺部と第2のウィック構造体の凸状上辺部とが相互に接しているので、凸状底辺部、凸状上辺部のうち、相手の凸状部と接している部位以外は、扁平型コンテナの内部空間に対し露出した態様となっている。
本発明の態様は、前記扁平型コンテナの断面の最大幅に対する、前記第2のウィック部の前記底辺部または前記上辺部の最大幅が60%~80%であるヒートパイプである。
本発明の態様は、前記第1のウィック部が、前記扁平型コンテナの長手方向の一方の端部に配置され、前記第2のウィック部が、前記扁平型コンテナの長手方向の他方の端部に配置されているヒートパイプである。
本発明の態様は、前記第1のウィック部が二つあり、その一つが前記扁平型コンテナの長手方向の一方の端部に配置され、そのもう一つが前記扁平型コンテナの長手方向の他方の端部に配置され、前記第2のウィック部が、前記扁平型コンテナの長手方向の中央部に配置されているヒートパイプである。
本発明の態様は、前記扁平型コンテナの長手方向における前記第1のウィック部と前記第2のウィック部との間に、前記第1のウィック部よりも最大幅が広く、前記第2のウィック部よりも最大幅が狭い第3のウィック部が、さらに設けられているヒートパイプである。
本発明の態様は、前記少なくとも一断面において、前記扁平型コンテナのどの内面にも接していない前記第1のウィック構造体の前記両側面は凸形状を持っており、前記扁平型コンテナのどの内面にも接していない前記第2のウィック構造体の前記両側面は凸形状を持っているヒートパイプである。
本発明の態様は、前記第1のウィック部及び前記第2のウィック部が、金属焼結体であるヒートパイプである。
本発明の態様は、前記第2のウィック部の前記金属焼結体が、前記第1のウィック部の前記金属焼結体よりも、粒径の細かい焼結粉により形成されているヒートパイプである。
本発明の態様は、相互に対向した前記平坦な内面のペアは、1.5mm以下の距離で上下に離れているヒートパイプである。
上記態様では、扁平型コンテナは相互に対向する平坦な内面のペア(一方の内面と該一方の内面と対向する他方の内面)を有し、対向する平坦な内面間における距離が、1.5mm以下となっている。
本発明の態様は、前記扁平型コンテナの前記長手方向に垂直な全ての断面において、前記ウィック構造体は、上下方向に配置された前記第1のウィック構造体と前記第2のウィック構造体からなるヒートパイプである。
本発明の態様は、前記扁平型コンテナの前記長手方向に垂直な全ての断面において、前記第1のウィック構造体は、前記扁平型コンテナの前記平坦な内面のペアのうちの一方の内面及び前記第2のウィック構造体と接し、前記第1のウィック構造体の両側面は前記扁平型コンテナのどの内面にも接しておらず、前記第2のウィック構造体は、前記扁平型コンテナの前記平坦な内面のペアのうちの他方の内面と接し、且つ前記第2のウィック構造体の両側面は前記扁平型コンテナのどの内面にも接していないヒートパイプである。
本発明の態様は、前記受熱部が、熱伝導性部材を介して前記発熱体と熱的に接続されるヒートパイプである。
本発明の態様によれば、第1のウィック部と、該第1のウィック部よりも最大幅が広い第2のウィック部とを有し、発熱体と接するヒートパイプの部位を受熱部とする場合、第2のウィック部が受熱部に位置することにより、薄型形状であっても、最大熱輸送量に優れ、熱抵抗の低減された熱輸送特性を発揮することができる。
本発明の態様によれば、扁平型コンテナの断面の最大幅に対し、40%~60%の最大幅を有する第1のウィック部を有し、60%~80%の最大幅を有する、第1のウィック部よりも最大幅が広い第2のウィック部が受熱部に形成されることにより、薄型形状であっても、さらに最大熱輸送量に優れつつ熱抵抗の低減された、優れた熱輸送特性を発揮することができる。
本発明の態様によれば、扁平型コンテナの長手方向における第2のウィック部の長さが、扁平型コンテナの長手方向における第1のウィック部の長さと第2のウィック部の長さとの合計の2~50%であることにより、最大熱輸送量をさらに向上させつつ熱抵抗を低減することができる。
本発明の態様によれば、第1のウィック構造体の断面が凸形状の凸状底辺部と平坦な上辺部、第2のウィック構造体の断面が平坦な底辺部と凸形状の凸状上辺部を有し、扁平型コンテナの断面の最大幅に対する、第2のウィック部の底辺部または上辺部の最大幅が60%~80%であることにより、最大熱輸送量をさらに向上させつつ熱抵抗を低減することができる。
以下に、本発明の第1実施形態例に係るヒートパイプについて、図面を用いながら説明する。
図1(a)~(c)に示すように、第1実施形態例に係るヒートパイプ1は、一方の平坦な内面11と一方の平坦な内面11に対向した他方の平坦な内面12とを有する管形状の扁平型コンテナ10と、一方の平坦な内面11に配設された第1のウィック構造体21と、他方の平坦な内面12に配設された第2のウィック構造体22と、扁平型コンテナ10に封入された作動流体(図示せず)とを備えている。
図1(b)、(c)に示すように、扁平型コンテナ10は、一方の平坦な内面11と、一方の平坦な内面11に対向した他方の平坦な内面12と、一方の平坦な内面11と他方の平坦な内面12との間に形成された曲面部13、13’と、を有する密閉された直線状の管材であり、長手方向に対して直交方向(すなわち、長手方向に垂直)の断面形状が、扁平形状となっている。すなわち、扁平型コンテナ10は、長手方向に垂直な断面おいて上下方向に相互に対向している平坦な内面のペアを有している。扁平型コンテナ10は、その長手方向の全域が扁平型となっている。また、扁平型コンテナ10は、長手方向に対して直交方向の内部空間の断面積は、いずれの部位も同一となっており、一方の平坦な内面11は、他方の平坦な内面12に対して平行方向に形成されている。さらに、一方の平坦な内面11と他方の平坦な内面12との距離は、特に限定されないが、扁平型コンテナ10では1.5mm以下、特に1.0mm以下の薄型形状となっている。ヒートパイプ1の熱輸送方向は、扁平型コンテナ10の長手方向である。
第1のウィック構造体21は、一方の平坦な内面11から突出した凸形状の凸状底辺部である第1の曲部23と平坦な上辺部25とを有し、平坦な上辺部25が一方の平坦な内面11の一部領域と接している。ヒートパイプ1では、平坦な上辺部25が一方の平坦な内面11に固着されている。また、第1のウィック構造体21は、扁平型コンテナ10の長手方向に対して直交方向(扁平型コンテナ10の断面)について、その中央部に設けられている。ヒートパイプ1では、扁平型コンテナ10の長手方向に対して直交方向における第1のウィック構造体21の断面形状は、半楕円状となっている。
また、第2のウィック構造体22は、他方の平坦な内面12から突出しかつ凸形状の凸状底辺部である第1の曲部23と対向した、凸形状の凸状上辺部である第2の曲部24と平坦な底辺部26とを有し、平坦な底辺部26が他方の平坦な内面12の一部領域と接している。ヒートパイプ1では、平坦な底辺部26が他方の平坦な内面12に固着されている。また、第2のウィック構造体22は、扁平型コンテナ10の長手方向に対して直交方向について、その中央部に設けられている。ヒートパイプ1では、扁平型コンテナ10の長手方向に対して直交方向における第2のウィック構造体22の断面形状は、半楕円状となっている。
ヒートパイプ1では、扁平型コンテナ10の一方の平坦な内面11のうち第1のウィック構造体21の平坦な上辺部25と接していない領域、扁平型コンテナ10の他方の平坦な内面12のうち第2のウィック構造体22の平坦な底辺部26と接していない領域、及び扁平型コンテナ10の曲面部13、13’は、いずれも、扁平型コンテナ10の内部空間に対して露出している。
第1のウィック構造体21は、第1の曲部23が、第2のウィック構造体22の第2の曲部24と接している。ヒートパイプ1では、第1の曲部23の底部と第2の曲部24の頂部が、相互に接している。また、第1の曲部23の底部と第2の曲部24の頂部が、いずれも圧接された状態となっている。従って、第1の曲部23の底部と第2の曲部24の頂部は、圧縮されてつぶれた状態となっている。これにより、第1のウィック構造体21及び第2のウィック構造体22の毛細管圧力がさらに向上し、液相の作動流体をより円滑に還流させることができる。
また、図1(b)に示すように、扁平型コンテナ10の一方の端部では、第1のウィック構造体21と第2のウィック構造体22からなる第1のウィック部31が形成されている。扁平型コンテナ10の内部空間について、扁平型コンテナ10の長手方向に対して直交方向の幅の最大値に対し、第1のウィック部31において最大幅を形成している平坦な上辺部25及び平坦な底辺部26の上記幅が40%~60%の比率となっている。ヒートパイプ1の第1のウィック部31について、扁平型コンテナ10の長手方向に対して直交方向の断面形状は、扁平型コンテナ10の長手方向のいずれの部位も略同じ形状、寸法となっている。従って、第1のウィック部31では、扁平型コンテナ10の長手方向において、平坦な上辺部25及び平坦な底辺部26の上記幅が、略均一となっている。
これに対し、図1(c)に示すように、扁平型コンテナ10の他方の端部では、第1のウィック構造体21と第2のウィック構造体22からなる第2のウィック部32が形成されている。従って、第1のウィック構造体21と第2のウィック構造体22とからなるウィック構造体は、第1のウィック部31と第2のウィック部32とを有している。扁平型コンテナ10の内部空間について、扁平型コンテナ10の長手方向に対して直交方向の幅の最大値に対し、第2のウィック部32では、第2のウィック部32において最大幅を形成している平坦な上辺部25及び平坦な底辺部26の上記幅が60%~80%の比率となっている。さらに、第2のウィック部32における平坦な上辺部25及び平坦な底辺部26の上記幅は、第1のウィック部31における平坦な上辺部25及び平坦な底辺部26の上記幅よりも、必ず広い態様となっている。ヒートパイプ1の第2のウィック部32について、扁平型コンテナ10の長手方向に対して直交方向の断面形状は、扁平型コンテナ10の長手方向のいずれの部位も略同じ形状、寸法となっている。従って、第2のウィック部32でも、扁平型コンテナ10の長手方向において、平坦な上辺部25及び平坦な底辺部26の上記幅が、略均一となっている。
なお、図1(a)に示すように、ヒートパイプ1では、扁平型コンテナ10の一方の端部と他方の端部との間の部位、すなわち、扁平型コンテナ10の中央部には、扁平型コンテナ10の一方の端部と同様に、第1のウィック構造体21と第2のウィック構造体22からなる第1のウィック部31が形成されている。
ヒートパイプ1では、第2のウィック部32をヒートパイプ1の受熱部として機能させ、第1のウィック部31をヒートパイプ1の放熱部として機能させる。受熱部として機能させるには、扁平型コンテナ10の所定部位に発熱体(図示せず)を熱的に接続させる。扁平型コンテナ10の所定部位に発熱体を熱的に接続させるにあたり、必要に応じて、該所定部位と発熱体との間に、金属製の受熱板、熱伝導性ゴム、サーマルラバー等の熱伝導部材を設けてもよい。また、放熱部として機能させるためには、扁平型コンテナ10の所定部位に、例えば、放熱フィンやヒートシンク等の熱交換手段(図示せず)を熱的に接続させる。
ヒートパイプ1では、第2のウィック部32の上記幅が第1のウィック部31の上記幅よりも寸法が大きく、かつ扁平型コンテナ10の上記幅に対し、第2のウィック部32では60%~80%の上記幅を有し、第1のウィック部31では40%~60%の上記幅を有することにより、薄型形状であっても、最大熱輸送量に優れつつ熱抵抗の低減された、優れた熱輸送特性を発揮することができる。
図1(a)に示すように、ヒートパイプ1では、第1のウィック構造体21と第2のウィック構造体22(図1(a)では図示せず)は、いずれも、扁平型コンテナ10の一方の端部から他方の端部の方向へ、すなわち、扁平型コンテナ10の長手方向に対して平行方向に、直線状に延在している。第1のウィック構造体21と第2のウィック構造体22(図1(a)では図示せず)は、いずれも、第2のウィック部32の、扁平型コンテナ10の長手方向に対して直交方向の幅が、第1のウィック部31の上記幅よりも広く、第1のウィック部31と第2のウィック部32との境界部には段差部33が形成されている。なお、第1のウィック部31と第2のウィック部32との境界部は、上記段差ではなく、上記幅が徐々に変化する態様でもよい。
扁平型コンテナ10の長手方向における第2のウィック部32の長さは、特に限定されないが、扁平型コンテナ10の長手方向における第1のウィック部31の長さと第2のウィック部32の長さとの合計に対して、最大熱輸送量の増大と熱抵抗の低減とをバランスよく向上させる点から、2~50%が好ましい。また、第2のウィック部32における平坦な上辺部25及び平坦な底辺部26の、扁平型コンテナ10の長手方向における長さは、特に限定されないが、最大熱輸送量の増大と熱抵抗の低減とをバランスよく向上させる点から、受熱部に熱的に接続される発熱体の上記長さの1.0~5.0倍が好ましい。また、第2のウィック部32における平坦な上辺部25及び平坦な底辺部26の、扁平型コンテナ10の長手方向に対して直交方向の幅は、特に限定されないが、最大熱輸送量の増大と熱抵抗の低減とをバランスよく向上させる点から、受熱部に熱的に接続される発熱体の上記幅の0.50~1.5倍が好ましい。
図1(a)~(c)に示すように、扁平型コンテナ10の内部空間のうち、第1のウィック構造体21と第2のウィック構造体22の配置されていない部位は、気相の作動流体の蒸気流路34となっている。つまり、一方の平坦な内面11のうちの第1のウィック構造体21と接していない領域と、第1の曲部23表面と、他方の平坦な内面12のうちの第2のウィック構造体22と接していない領域と、第2の曲部24表面と、扁平型コンテナ10の曲面部13、13’から、蒸気流路34が形成されている。従って、蒸気流路34は、扁平型コンテナ10の長手方向に対して平行方向に直線状に延在し、段差部33を境にして、第1のウィック部31側の蒸気流路34は、第2のウィック部32側の蒸気流路34よりも、拡幅された態様となっている。また、蒸気流路34は、第1のウィック構造体21と第2のウィック構造体22の両側に設けられている。
扁平型コンテナ10の材質は、特に限定されず、例えば、熱伝導率に優れた点から銅、軽量性の点からアルミニウム、強度の改善の点からステンレス等を使用することができる。第1のウィック構造体21及び第2のウィック構造体22の材質は、特に限定されず、銅粉及びステンレス粉等の金属粉、カーボン粉、銅粉とカーボン粉との混合粉、上記粉体のナノ粒子、金属メッシュと金属粉を組み合わせた複合金属等の焼結体を使用することができる。焼結体は、上記粉体や複合金属を焼結して粉体を接合することにより製造でき、焼結によって、毛細管圧力を有する多孔質構造が形成される。第2のウィック部32の毛細管力を第1のウィック部31の毛細管力よりも向上させて、液相の作動流体を円滑に受熱部へ還流させる点から、第2のウィック部32の金属焼結体が、第1のウィック部31の金属焼結体よりも、粒径の細かい焼結粉により形成されていることが好ましい。
また、扁平型コンテナ10に封入する作動流体としては、扁平型コンテナ10の材料との適合性に応じて、適宜選択可能であり、例えば、水、代替フロン、パーフルオロカーボン、シクロペンタン等を挙げることができる。
次に、本発明の第1実施形態例に係るヒートパイプ1の熱輸送のメカニズムについて説明する。ヒートパイプ1が、受熱部にて熱的に接続された発熱体から受熱すると、受熱部にて作動流体が液相から気相へ相変化する。この気相の作動流体が、蒸気流路34を、扁平型コンテナ10の長手方向に受熱部から放熱部へと流れることで、発熱体からの熱が受熱部から放熱部へ輸送される。受熱部から放熱部へ輸送された発熱体からの熱は、熱交換手段の設けられた放熱部にて、気相の作動流体が液相へ相変化することで潜熱として放出される。放熱部にて放出された潜熱は、放熱部に設けられた上記熱交換手段によって、放熱部からヒートパイプ1の外部環境へ放出される。放熱部にて液相に相変化した作動流体は、第1のウィック構造体21及び第2のウィック構造体22に取り込まれ、第1のウィック構造体21及び第2のウィック構造体22の毛細管圧力によって、放熱部から受熱部へと返送される。
次に、本発明の第2実施形態例に係るヒートパイプについて、図面を用いながら説明する。なお、第1実施形態例に係るヒートパイプと同じ構成要素については、同じ符号を用いて説明する。
ヒートパイプ1では扁平型コンテナ10の長手方向の一方の端部と中央部に第1のウィック部31が配置され、他方の端部に第2のウィック部32が配置されていたのに代えて、図2(a)~(c)に示すように、第2実施形態例に係るヒートパイプ2では、扁平型コンテナ10の長手方向の中央部に第2のウィック部32が配置され、扁平型コンテナ10の長手方向の両端部には、それぞれ、第1のウィック部31が配置されている。すなわち、第1のウィック部31が、2つ配置されている。従って、ヒートパイプ2では、扁平型コンテナ10の長手方向の中央部を受熱部として機能させ、扁平型コンテナ10の長手方向の一方の端部及び他方の端部を放熱部として機能させる。第2のウィック部32の両端部に第1のウィック部31が設けられているので、第1のウィック部31と第2のウィック部32との境界部は2つ存在し、従って、段差部33が2つ形成されている。
ヒートパイプ2でも、最大熱輸送量に優れつつ熱抵抗の低減された、優れた熱輸送特性を発揮することができる。また、ヒートパイプ2では、複数(図では2つ)の放熱部を設けることができるので、発熱体の冷却効率がさらに向上する。
次に、本発明の第3実施形態例に係るヒートパイプについて、図面を用いながら説明する。なお、第1、第2実施形態例に係るヒートパイプと同じ構成要素については、同じ符号を用いて説明する。
第1実施形態例に係るヒートパイプ1では、扁平型コンテナ10の長手方向の両端面の部位には、第1のウィック構造体21及び第2のウィック構造体22が設けられておらず、上記両端面の全領域が扁平型コンテナ10の内部空間に対し露出していたが、これに代えて、図3に示すように、第3実施形態例に係るヒートパイプ3では、第1のウィック構造体21及び第2のウィック構造体22が扁平型コンテナ10の長手方向の両端面14まで延在している。従って、第1のウィック構造体21及び第2のウィック構造体22の、扁平型コンテナ10の長手方向の両端面が、扁平型コンテナ10の長手方向の両端面14と接している。
ヒートパイプ3でも、最大熱輸送量に優れつつ熱抵抗の低減された、優れた熱輸送特性を発揮することができる。
次に、本発明の第4実施形態例に係るヒートパイプについて、図面を用いながら説明する。なお、第1~第3実施形態例に係るヒートパイプと同じ構成要素については、同じ符号を用いて説明する。
第2実施形態例に係るヒートパイプ2では、扁平型コンテナ10の長手方向の両端面の部位には、第1のウィック構造体21及び第2のウィック構造体22が設けられておらず、上記両端面の全領域が扁平型コンテナ10の内部空間に対し露出していたが、これに代えて、図4に示すように、第4実施形態例に係るヒートパイプ4では、第1のウィック構造体21及び第2のウィック構造体22が扁平型コンテナ10の長手方向の両端面14まで延在している。従って、第1のウィック構造体21及び第2のウィック構造体22の、扁平型コンテナ10の長手方向の両端面14が、扁平型コンテナ10の長手方向の両端面と接している。
ヒートパイプ4でも、最大熱輸送量に優れつつ熱抵抗の低減された、優れた熱輸送特性を発揮することができる。
次に、本発明のヒートパイプの製造方法例について説明する。前記製造方法は特に限定されないが、例えば、第1の実施形態例に係るヒートパイプは、円形状の管材の長手方向に沿って、所定形状の切り欠き部を有する芯棒を挿入し、管材の内壁面と切り欠き部外面との間に形成された空隙部に第1のウィック構造体及び第2のウィック構造体となる粉末状の金属材料を充填する。なお、芯棒の切り欠き部には、第1のウィック部の位置に対応する小さく切り欠いた切り欠き部と第2のウィック部の位置に対応する大きく切り欠いた切り欠き部が形成されている。次に、加熱処理して、第1のウィック構造体の前駆体及び第2のウィック構造体の前駆体を形成する。その後、芯棒を小さく切り欠いた切り欠き部側から引き抜き、管材を扁平加工することにより、第1のウィック構造体及び第2のウィック構造体を有するヒートパイプを製造する。
また、第2の実施形態例に係るヒートパイプは、第1の実施形態例に係るヒートパイプと同様にして製造できるが、第1の実施形態例に係るヒートパイプで使用した上記芯棒に代えて、第1のウィック部の位置に対応する小さく切り欠いた切り欠き部と第2のウィック部の位置に対応する大きく切り欠いた切り欠き部とが形成されている第1の芯棒を円形状の管材の一方の端部から長手方向中央部まで挿入し、第1のウィック部の位置に対応する小さく切り欠いた切り欠き部が形成されている第2の芯棒を円形状の管材の他方の端部から挿入する。粉末状の金属材料の充填及び加熱処理の後、管材の一方の端部側にて、小さく切り欠いた切り欠き部側から第1の芯棒を引き抜くとともに、第2の芯棒を他方の端部側から引き抜くことで、第2の実施形態例に係るヒートパイプを製造できる。
次に、本発明のその他の実施形態例について説明する。上記各実施形態例に係るヒートパイプでは、扁平型コンテナの長手方向に対して直交方向の幅が狭い第1のウィック部に隣接して上記幅が広い第2のウィック部が配置されていたが、これに代えて、第1のウィック部と第2のウィック部との間に、さらに、第1のウィック部よりも上記幅が広く第2のウィック部よりも上記幅が狭い第3のウィック部が設けられてもよい。また、第3のウィック部の上記幅は、均一でもよく、第1のウィック部から第2のウィック部へ向かって次第に拡幅する態様でもよい。
第1の実施形態例に係るヒートパイプでは、扁平型コンテナの中央部には、扁平型コンテナの一方の端部と同様に、上記幅が狭い第1のウィック部が形成されていたが、これに代えて、扁平型コンテナの他方の端部と同様に、上記幅が広い第2のウィック部が形成されてもよい。また、上記各実施形態例に係るヒートパイプでは、第1のウィック部、第2のウィック部は、それぞれ、扁平型コンテナの長手方向において、扁平型コンテナの長手方向に対して直交方向における平坦な上辺部の幅及び平坦な底辺部の幅が、略均一となっていたが、これに代えて、該幅が、上記数値範囲内であれば、例えば、次第に拡幅する態様や拡大と縮小を繰り返す態様等、略均一でなくてもよい。
また、上記各実施形態例に係るヒートパイプでは、コンテナは、その長手方向の全域が扁平型であったが、これに代えて、長手方向の一部領域が扁平型でもよい。
また、上記各実施形態例に係るヒートパイプでは、第1のウィック構造体及び第2のウィック構造体の断面形状は、半楕円状であったが、該形状は特に限定されず、例えば、矩形状でもよい。上記各実施形態例に係るヒートパイプでは、第1のウィック構造体及び第2のウィック構造体は、いずれも、扁平型コンテナの長手方向に対して直交方向の中央部の位置に設けられていたが、第1のウィック構造体及び第2のウィック構造体の位置は特に限定されず、中央部以外(例えば、端部)でもよく、第1のウィック構造体と第2のウィック構造体が、相互に異なる位置(例えば、第1のウィック構造体と第2のウィック構造体のいずれか一方が中央部、他方が端部)に設けられてもよい。上記各実施形態例に係るヒートパイプでは、凸状底辺部の底部と凸状上辺部の頂部が、相互に圧接された状態となっていたが、これに代えて、相互に、圧接されずに接した状態でもよい。
また、上記各実施形態例に係るヒートパイプでは、凸状底辺部の底部と凸状上辺部の頂部が、相互に圧接されていたが、これに代えて、第1のウィック部の、凸状底辺部の底部と凸状上辺部の頂部が、相互に接し、第2のウィック部の、凸状底辺部の底部と凸状上辺部の頂部が、相互に接していない状態や、高い毛細管圧力が要求される第2のウィック部の、凸状底辺部の底部と凸状上辺部の頂部が、相互に接し、第1のウィック部の、凸状底辺部の底部と凸状上辺部の頂部が、相互に接していない状態としてもよい。
この場合、例えば、図5(a)~(c)に示すように、扁平型コンテナ10の長手方向の中央部を境に、扁平型コンテナの厚さが異なっており、扁平型コンテナ10の厚さが厚い方の端部(図5(b)に示すように、放熱フィン101が熱的に接続されている)では、第1のウィック部31における、第1のウィック構造体21の第1の曲部23と第2のウィック構造体22の第2の曲部24が、相互に接しておらず、扁平型コンテナ10の厚さが薄い方の端部(図5(c)に示すように、発熱体102が熱的に接続されている)では、第2のウィック部32における、第1のウィック構造体21の第1の曲部23と第2のウィック構造体22の第2の曲部24が、相互に接している態様としてもよい。
また、図6(a)~(c)に示すように、扁平型コンテナ10の長手方向の中央部を境に、扁平型コンテナの厚さが異なっており、扁平型コンテナ10の厚さが厚い方の端部(図6(c)に示すように、発熱体102が熱的に接続されている)では、第2のウィック部32における、第1のウィック構造体21の第1の曲部23と第2のウィック構造体22の第2の曲部24が、相互に接しておらず、扁平型コンテナ10の厚さが薄い方の端部(図6(b)に示すように、放熱フィン101が熱的に接続されている)では、第1のウィック部31における、第1のウィック構造体21の第1の曲部23と第2のウィック構造体22の第2の曲部24が、相互に接している態様としてもよい。
上記各実施形態例に係るヒートパイプでは、扁平型コンテナは管材であり、その断面形状は上下に対向する平坦な内面のペアを持つ略楕円形状であったが、扁平型コンテナの断面形状は特に限定されず、例えば、角を持った矩形でもよい。
さらに、上記各実施形態例に係るヒートパイプでは、管材である扁平型コンテナは直線状であったが、管材の長手方向の形状は特に限定されず、例えば、図7に示すように、L字状等に曲げ加工された扁平型コンテナ10とし、一方の端部に放熱フィン101等の熱交換手段を、他方の端部に発熱体102を、それぞれ熱的に接続してもよい。
また、図8、図9に示すように、厚さが均一である扁平型コンテナ10の形状は、扁平型コンテナ10の長手方向の中央部に、段状の部位15を有する形状でもよい。この場合、発熱体102が熱的に接続されている扁平型コンテナ10の端部において、第2のウィック部32の、第1のウィック構造体21の第1の曲部23と第2のウィック構造体22の第2の曲部24は、図8(c)に示すように、相互に接してもよく、図9(c)に示すように、接しなくてもよい。同様に、放熱フィン101等の熱交換手段が熱的に接続されている扁平型コンテナ10の端部において、第1のウィック部31の、第1のウィック構造体21の第1の曲部23と第2のウィック構造体22の第2の曲部24は、図8(b)に示すように、接しなくてもよく、図9(b)に示すように、接してもよい。
また、上記第1、第2実施形態例に係るヒートパイプでは、第1のウィック構造体の断面と第2のウィック構造体の断面は、略同じ大きさ(つまり、平坦な上辺部の幅と平坦な底辺部の幅が略同じ)であったが、これに代えて、図10(a)~(c)に示すように、第1のウィック構造体21の断面と第2のウィック構造体22の断面を異なる大きさ、つまり、平坦な上辺部25の幅と平坦な底辺部26の幅が異なる態様としてもよい。この場合、第2のウィック部32の最大幅が第1のウィック部31の最大幅よりも大きい態様であれば、図10(b)、(c)に示すように、第1のウィック構造体21の断面が第2のウィック構造体22の断面よりも大きい態様、つまり、平坦な上辺部25の幅が平坦な底辺部26の幅よりも広い態様でもよく、第2のウィック構造体22の断面が第1のウィック構造体21の断面よりも大きい態様、つまり、平坦な底辺部26の幅が平坦な上辺部25の幅よりも広い態様でもよい。この態様では、蒸気流路34をより確実に確保しつつ、第1のウィック構造体21及び第2のウィック構造体22と作動流体との接触面積を向上させることができる点で、ヒートパイプの熱輸送特性がより向上する。
また、上記第1、第2実施形態例に係るヒートパイプでは、扁平型コンテナの一方の平坦な内面と他方の平坦な内面との距離、すなわち、扁平型コンテナの厚さは均一であったが、これに代えて、均一でなくてもよく、例えば、第1のウィック部の位置に対応する扁平型コンテナの厚さと第2のウィック部の位置に対応する扁平型コンテナの厚さが異なっている態様(例えば、第2のウィック部の位置に対応する扁平型コンテナの厚さが第1のウィック部の位置に対応する扁平型コンテナの厚さよりも薄い態様)でもよい。
上記第2実施形態例に係るヒートパイプでは、中央部に第2のウィック部が1つ配置されていたが、第2のウィック部の設置数は特に限定されず、複数でもよい。この場合、隣接する第2のウィック部の間には、第1のウィック部及び/または第3のウィック部が配置される。
次に、本発明の実施例を説明するが、本発明はその趣旨を超えない限り、これらの例に限定されるものではない。
実施例として、第1実施形態例に係るヒートパイプと同じ構造のものを使用した。ただし、第1のウィック部と第2のウィック部の最大幅は、下記表1のように変更した。コンテナとして、長さ200mm、φ8mmの管材を1mmに扁平加工したものを使用した。発熱体として、10mm×20mm、15Wのものを使用した。この発熱体を第2のウィック部が形成されたコンテナ(ヒートパイプ)の他方の端部に接触させ、第1のウィック部が形成されたコンテナ(ヒートパイプ)の一方の端部から15mmの部位に熱電対を設置し、ΔTを計測した。
ΔTが0℃以上5℃以下を「A」、ΔTが5℃超8℃以下を「B」、ΔTが8℃超10℃以下を「C」、ΔTが10℃超を「D」と評価した。
評価結果を以下表1に示す。
表1から、扁平型コンテナの長手方向に対して直交方向(断面)の最大幅に対する、第1のウィック部の最大幅が40%~60%、第2のウィック部の最大幅が60%~80%で、評価B以上と、良好な最大熱輸送量を有し、熱抵抗の低減された、優れた熱輸送特性が得られた。特に、扁平型コンテナの長手方向に対して直交方向(断面)の最大幅に対する、第1のウィック部の最大幅が45%~55%、第2のウィック部の最大幅が65%~75%で、評価Aと、極めて優れた熱輸送特性が得られた。
本発明のヒートパイプは、薄型形状であっても、良好な最大熱輸送量を有し、さらには熱抵抗の小さい、優れた熱輸送特性を有するので、例えば、薄型の電子部品を冷却する分野や高密度搭載された電子部品を冷却する分野等で利用価値が高い。
1、2 ヒートパイプ
10 扁平型コンテナ
21 第1のウィック構造体
22 第2のウィック構造体
31 第1のウィック部
32 第2のウィック部
10 扁平型コンテナ
21 第1のウィック構造体
22 第2のウィック構造体
31 第1のウィック部
32 第2のウィック部
Claims (15)
- 発熱体から熱を吸収するために該発熱体と熱的に接続されることになる受熱部を有するヒートパイプであって、
両端部が封止された管形状を有し、長手方向に垂直な断面において上下方向に相互に対向している平坦な内面のペアを有する扁平型コンテナと、
該扁平型コンテナ内に収納されたウィック構造体と、
該扁平型コンテナ内に封入された作動流体と、
を備えたヒートパイプであり、
前記扁平型コンテナの前記長手方向に垂直な断面の少なくとも一断面において、前記ウィック構造体は、上下方向に配置された第1のウィック構造体と第2のウィック構造体からなり、前記第1のウィック構造体は、前記扁平型コンテナの前記平坦な内面のペアのうちの一方の内面及び前記第2のウィック構造体とそれぞれ接し、且つ前記第1のウィック構造体の両側面は前記扁平型コンテナのどの内面にも接しておらず、前記第2のウィック構造体は、前記扁平型コンテナの前記平坦な内面のペアのうちの他方の内面と接し、且つ前記第2のウィック構造体の両側面は前記扁平型コンテナのどの内面にも接しておらず、
さらに、前記ウィック構造体は、前記扁平型コンテナの前記長手方向においてそれぞれ並んで設けられる、第1のウィック部と、該第1のウィック部と連結し該第1のウィック部よりも最大幅が広い第2のウィック部と、を有し、
前記第2のウィック部が前記受熱部に形成されているヒートパイプ。 - 前記扁平型コンテナの断面の最大幅に対する、前記第1のウィック部の最大幅が40%~60%であり、前記第2のウィック部の最大幅が60%~80%である請求項1に記載のヒートパイプ。
- 前記扁平型コンテナの長手方向における前記第2のウィック部の長さが、前記扁平型コンテナの長手方向における前記第1のウィック部の長さと前記扁平型コンテナの長手方向における前記第2のウィック部の長さとの合計の2~50%である請求項1または2に記載のヒートパイプ。
- 前記少なくとも一断面において、前記第1のウィック構造体の断面が、凸形状の凸状底辺部と平坦な上辺部を有し、前記第2のウィック構造体の断面が、平坦な底辺部と凸形状の凸状上辺部を有し、前記第1のウィック構造体の凸状底辺部が前記第2のウィック構造体の凸状上辺部と接し、前記第1のウィック構造体の平坦な上辺部が前記一方の内面と接し、前記第2のウィック構造体の平坦な底辺部が前記他方の内面と接している請求項1乃至3のいずれか1項に記載のヒートパイプ。
- 前記扁平型コンテナの断面の最大幅に対する、前記第2のウィック部の前記底辺部または前記上辺部の最大幅が60%~80%である請求項4に記載のヒートパイプ。
- 前記第1のウィック部が、前記扁平型コンテナの長手方向の一方の端部に配置され、前記第2のウィック部が、前記扁平型コンテナの長手方向の他方の端部に配置されている請求項1乃至5のいずれか1項に記載のヒートパイプ。
- 前記第1のウィック部が二つあり、その一つが前記扁平型コンテナの長手方向の一方の端部に配置され、そのもう一つが前記扁平型コンテナの長手方向の他方の端部に配置され、前記第2のウィック部が、前記扁平型コンテナの長手方向の中央部に配置されている請求項1乃至5のいずれか1項に記載のヒートパイプ。
- 前記扁平型コンテナの長手方向における前記第1のウィック部と前記第2のウィック部との間に、前記第1のウィック部よりも最大幅が広く、前記第2のウィック部よりも最大幅が狭い第3のウィック部が、さらに設けられている請求項1乃至7のいずれか1項に記載のヒートパイプ。
- 前記少なくとも一断面において、前記扁平型コンテナのどの内面にも接していない前記第1のウィック構造体の前記両側面は凸形状を持っており、前記扁平型コンテナのどの内面にも接していない前記第2のウィック構造体の前記両側面は凸形状を持っている請求項1乃至8のいずれか1項に記載のヒートパイプ。
- 前記第1のウィック部及び前記第2のウィック部が、金属焼結体である請求項1乃至9のいずれか1項に記載のヒートパイプ。
- 前記第2のウィック部の前記金属焼結体が、前記第1のウィック部の前記金属焼結体よりも、粒径の細かい焼結粉により形成されている請求項10に記載のヒートパイプ。
- 相互に対向した前記平坦な内面のペアは、1.5mm以下の距離で上下に離れている請求項1乃至11のいずれか1項に記載のヒートパイプ。
- 前記扁平型コンテナの前記長手方向に垂直な全ての断面において、前記ウィック構造体は、上下方向に配置された前記第1のウィック構造体と前記第2のウィック構造体からなる請求項1乃至12のいずれか1項に記載のヒートパイプ。
- 前記扁平型コンテナの前記長手方向に垂直な全ての断面において、前記第1のウィック構造体は、前記扁平型コンテナの前記平坦な内面のペアのうちの一方の内面及び前記第2のウィック構造体と接し、前記第1のウィック構造体の両側面は前記扁平型コンテナのどの内面にも接しておらず、前記第2のウィック構造体は、前記扁平型コンテナの前記平坦な内面のペアのうちの他方の内面と接し、且つ前記第2のウィック構造体の両側面は前記扁平型コンテナのどの内面にも接していない請求項1乃至13のいずれか1項に記載のヒートパイプ。
- 前記受熱部が、熱伝導性部材を介して前記発熱体と熱的に接続される請求項1乃至14のいずれか1項に記載のヒートパイプ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201690001496.7U CN208567612U (zh) | 2015-12-28 | 2016-12-27 | 热管 |
JP2017559187A JP6542914B2 (ja) | 2015-12-28 | 2016-12-27 | ヒートパイプ |
US16/021,380 US10782076B2 (en) | 2015-12-28 | 2018-06-28 | Heat pipe |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-255985 | 2015-12-28 | ||
JP2015255985 | 2015-12-28 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/021,380 Continuation US10782076B2 (en) | 2015-12-28 | 2018-06-28 | Heat pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017115771A1 true WO2017115771A1 (ja) | 2017-07-06 |
Family
ID=59225720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/088816 WO2017115771A1 (ja) | 2015-12-28 | 2016-12-27 | ヒートパイプ |
Country Status (5)
Country | Link |
---|---|
US (1) | US10782076B2 (ja) |
JP (1) | JP6542914B2 (ja) |
CN (1) | CN208567612U (ja) |
TW (1) | TWI633266B (ja) |
WO (1) | WO2017115771A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020213463A1 (ja) * | 2019-04-18 | 2020-10-22 | 古河電気工業株式会社 | ヒートシンク |
WO2021149308A1 (ja) * | 2020-01-21 | 2021-07-29 | 株式会社フジクラ | ヒートパイプ |
US12078423B2 (en) * | 2018-05-29 | 2024-09-03 | Furukawa Electric Co., Ltd. | Vapor chamber with multilayer wick |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109065084A (zh) * | 2018-10-12 | 2018-12-21 | 苏州普福斯信息科技有限公司 | 一种高效散热的移动硬盘 |
JP6560425B1 (ja) * | 2018-11-09 | 2019-08-14 | 古河電気工業株式会社 | ヒートパイプ |
JP2021131214A (ja) * | 2020-02-21 | 2021-09-09 | 日本電産株式会社 | 熱伝導部材およびその製造方法 |
CN114184071B (zh) * | 2020-09-15 | 2024-03-12 | 亚浩电子五金塑胶(惠州)有限公司 | 热管 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009180437A (ja) * | 2008-01-31 | 2009-08-13 | Furukawa Electric Co Ltd:The | 薄型ヒートパイプおよびその製造方法 |
US20100266864A1 (en) * | 2009-04-16 | 2010-10-21 | Yeh-Chiang Technology Corp. | Ultra-thin heat pipe |
US20150114604A1 (en) * | 2013-10-29 | 2015-04-30 | Hao Pai | Heat pipe with ultra-thin capillary structure |
US20160153723A1 (en) * | 2014-11-28 | 2016-06-02 | Delta Electronics, Inc. | Heat pipe |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI289653B (en) * | 2006-05-12 | 2007-11-11 | Foxconn Tech Co Ltd | Heat pipe |
JP4399013B2 (ja) | 2008-02-28 | 2010-01-13 | 株式会社東芝 | 電子機器、およびヒートパイプ |
CN102449423A (zh) * | 2009-07-21 | 2012-05-09 | 古河电气工业株式会社 | 扁平性热管及其制造方法 |
TWM375861U (en) * | 2009-11-03 | 2010-03-11 | Chaun Choung Technology Corp | Structure of flat-shaped heat pipe |
CN101900506A (zh) * | 2010-01-15 | 2010-12-01 | 富瑞精密组件(昆山)有限公司 | 扁平薄型热导管 |
US9273909B2 (en) * | 2012-08-23 | 2016-03-01 | Asia Vital Components Co., Ltd. | Heat pipe structure, and thermal module and electronic device using same |
-
2016
- 2016-12-27 CN CN201690001496.7U patent/CN208567612U/zh active Active
- 2016-12-27 WO PCT/JP2016/088816 patent/WO2017115771A1/ja active Application Filing
- 2016-12-27 JP JP2017559187A patent/JP6542914B2/ja active Active
- 2016-12-28 TW TW105143523A patent/TWI633266B/zh active
-
2018
- 2018-06-28 US US16/021,380 patent/US10782076B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009180437A (ja) * | 2008-01-31 | 2009-08-13 | Furukawa Electric Co Ltd:The | 薄型ヒートパイプおよびその製造方法 |
US20100266864A1 (en) * | 2009-04-16 | 2010-10-21 | Yeh-Chiang Technology Corp. | Ultra-thin heat pipe |
US20150114604A1 (en) * | 2013-10-29 | 2015-04-30 | Hao Pai | Heat pipe with ultra-thin capillary structure |
US20160153723A1 (en) * | 2014-11-28 | 2016-06-02 | Delta Electronics, Inc. | Heat pipe |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12078423B2 (en) * | 2018-05-29 | 2024-09-03 | Furukawa Electric Co., Ltd. | Vapor chamber with multilayer wick |
WO2020213463A1 (ja) * | 2019-04-18 | 2020-10-22 | 古河電気工業株式会社 | ヒートシンク |
CN111836517A (zh) * | 2019-04-18 | 2020-10-27 | 古河电气工业株式会社 | 散热器 |
US11085703B2 (en) | 2019-04-18 | 2021-08-10 | Furukawa Electric Co., Ltd. | Heatsink |
CN111836517B (zh) * | 2019-04-18 | 2021-09-21 | 古河电气工业株式会社 | 散热器 |
TWI752468B (zh) * | 2019-04-18 | 2022-01-11 | 日商古河電氣工業股份有限公司 | 散熱裝置 |
WO2021149308A1 (ja) * | 2020-01-21 | 2021-07-29 | 株式会社フジクラ | ヒートパイプ |
Also Published As
Publication number | Publication date |
---|---|
US10782076B2 (en) | 2020-09-22 |
TWI633266B (zh) | 2018-08-21 |
TW201730497A (zh) | 2017-09-01 |
JPWO2017115771A1 (ja) | 2018-10-25 |
US20180306523A1 (en) | 2018-10-25 |
JP6542914B2 (ja) | 2019-07-10 |
CN208567612U (zh) | 2019-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017115772A1 (ja) | ヒートパイプ | |
WO2017115771A1 (ja) | ヒートパイプ | |
JP6560425B1 (ja) | ヒートパイプ | |
US8459340B2 (en) | Flat heat pipe with vapor channel | |
US10184729B2 (en) | Heat pipe | |
US20110174464A1 (en) | Flat heat pipe and method for manufacturing the same | |
WO2011010395A1 (ja) | 扁平型ヒートパイプおよびその製造方法 | |
JP4653187B2 (ja) | 薄型ヒートパイプおよびその製造方法 | |
US11828539B2 (en) | Heat pipe | |
TWI694232B (zh) | 熱管 | |
WO2017047756A1 (ja) | ヒートシンク | |
JP6582114B1 (ja) | ヒートシンク | |
WO2018235936A1 (ja) | ヒートパイプ | |
JP2010025407A (ja) | ヒートパイプコンテナ及びヒートパイプ | |
WO2022185908A1 (ja) | ヒートパイプ | |
JP7426844B2 (ja) | 伝熱部材および伝熱部材を有する冷却装置 | |
WO2024185753A1 (ja) | ヒートパイプ及びヒートシンク | |
JP2017223435A (ja) | ヒートパイプ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16881746 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017559187 Country of ref document: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16881746 Country of ref document: EP Kind code of ref document: A1 |