WO2017114518A1 - Verfahren und wärmeaustauscher zur rückgewinnung von kälte bei der regasifizierung tiefkalter flüssigkeiten - Google Patents

Verfahren und wärmeaustauscher zur rückgewinnung von kälte bei der regasifizierung tiefkalter flüssigkeiten Download PDF

Info

Publication number
WO2017114518A1
WO2017114518A1 PCT/DE2016/000253 DE2016000253W WO2017114518A1 WO 2017114518 A1 WO2017114518 A1 WO 2017114518A1 DE 2016000253 W DE2016000253 W DE 2016000253W WO 2017114518 A1 WO2017114518 A1 WO 2017114518A1
Authority
WO
WIPO (PCT)
Prior art keywords
coiled tubing
heat exchanger
intermediate medium
container
liquid
Prior art date
Application number
PCT/DE2016/000253
Other languages
German (de)
English (en)
French (fr)
Inventor
Rainer Braun
Peter Otto
Original Assignee
Eco ice Kälte GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eco ice Kälte GmbH filed Critical Eco ice Kälte GmbH
Priority to DE112016006090.4T priority Critical patent/DE112016006090A5/de
Priority to EP16742154.4A priority patent/EP3397912B1/de
Publication of WO2017114518A1 publication Critical patent/WO2017114518A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/022Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of two or more media in heat-exchange relationship being helically coiled, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0066Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications with combined condensation and evaporation

Definitions

  • the invention relates to the recovery of cold in the regasification of cryogenic liquids, in particular liquefied natural gas
  • LNG Liquefied Natural Gas at -162 ° C and 1 bar atmospheric pressure
  • LN2 Liquefied Nitrogen
  • L02 Liquefied Oxygen
  • the heat exchanger is for, although relatively small in comparison to the fuel energy, so valuable
  • Natural gas can be transferred under atmospheric pressure after cooling to -162 ° C and subsequent removal of the heat of condensation from the gaseous to the liquid phase. This is the reduction of the volume on the
  • Liquefied natural gas can thus be stored in an attractive manner and transported over long distances.
  • the equally costly and value-adding process chain to be realized ranges from extraction and processing via liquefaction, storage, long-distance transport with tankers, re-storage in large tanks and repeated transport to the user until regasification. The end of this chain very often forms one
  • satellite system namely a double-walled
  • Vacuum-insulated LNG storage without liquefaction facility Vacuum-insulated LNG storage without liquefaction facility.
  • the satellite system has a regasification device,
  • LNG liquefied natural gas
  • PCM Phase Change Material
  • the cold of the LNG is transferred to a liquid refrigerant, which is to be used down to the temperature level of about -60 ° C, without pumping phase change and thus remains safe.
  • a liquid refrigerant which is to be used down to the temperature level of about -60 ° C, without pumping phase change and thus remains safe.
  • Therminol D12 a synthetic liquid based on aliphatic hydrocarbons.
  • Heat transfer properties propane is preferably used as the intermediate medium.
  • This heat exchanger is expediently designed as a cylinder in vertical alignment and closed at the top and bottom by dished ends.
  • the container thus realized contains at least one in the upper part
  • this is filled with the intermediate medium, preferably propane, which is securely encapsulated.
  • the propane is in the lower part to the level of a boiling liquid and in the upper region above the filling level condensing saturated steam.
  • Both surface heat exchangers are designed as tube helices.
  • the heat transfer from the upper coiled tubing to the deep-frozen liquid to be evaporated is particularly effective because of the long flow path and the resulting on a circular path secondary flow in the interior of the coiled tubing.
  • the largest transport resistance the reduction of which has a particularly positive effect on the entire heat transfer result.
  • the use of a turbulator can further reduce this transport resistance.
  • in the lower part of the cylindrical container further tube spirals protruding freely from below into the inner space, but at least one coiled tubing, are located.
  • the brine gives the evaporation of the
  • the cylindrical container is after its evacuation with the
  • Intermediate medium preferably propane, taking into account temperature, density and mass sustainably filled so that the upper tube coils remain free at each subsequent operating state, while the lower tube coils of liquid intermediate medium in the boiling state are completely flooded.
  • This distance can be calculated with the help of the material values of the intermediate medium. It corresponds approximately to the diameter of the coiled tubing.
  • Boiling state are in phase equilibrium.) Approximately 9.6 bar. The density of the liquid is then about 492 kg / m 3 .
  • the density of the liquid phase is then about 612 kg / m 3 .
  • the following embodiments are related to the regasification of cryogenic liquefied natural gas LNG (Liquefied Natural Gas) stored in a satellite tank farm.
  • LNG Liquified Natural Gas
  • Heat exchangers for brine temperature levels above -60 ° C and for cooling capacities in the range below 100 kW explained in more detail with reference to drawings.
  • the heat exchangers used differ in their design.
  • FIG. 1 A heat exchanger according to the invention is shown in FIG. 1 as a section along its vertical system axis.
  • a coiled tubing 6 and at the lower dished bottom 3 a coiled tubing 7 is arranged directly or indirectly in each case in freely projecting into the container interior.
  • the attachment to the container 1 is realized only on one side.
  • the intermediate medium 8 namely propane 8, which is thus securely encapsulated.
  • the level 9 of the liquid intermediate medium 8 in the container 1 is adjusted so that the upper tube coil 6 is surrounded in each operating state of gaseous intermediate medium 8.1 and the lower tube coil 7 is flooded with liquid intermediate medium 8.2.
  • the two coiled tubing 6 and 7 a
  • the container 1 and the tube coils 6 and 7 are advantageously made of stainless steel. Thus, a sufficient Tiefkaltzähmaschine and a high
  • Therminol D12 is used as a refrigerant.
  • FIG. 2 Another heat exchanger according to the invention is also shown in FIG. 2 as a section along its vertical system axis.
  • both the coiled tubing 6 and the coiled tubing 7 are present in multiple arrangement in the container 1 in otherwise analogous construction.
  • seven tube coils 6 and 7 are arranged in each case. All other features are taken apart from structural adjustments.
  • the inflow 12 of the refrigerant to the coiled tubing 7 is also carried out with the interposition of a manifold 15 directly, while the drain 13 is realized via a further manifold 16 in the lower part of the container 1.
  • the two manifolds 16 may alternatively be arranged outside the container 1. It is recommended to use the headers 16 for each one-sided attachment of the coiled tubing 6 and 7 on the container 1. Depending on the conditions of use, the upper and / or lower tube coils 6 and 7 can be connected individually or in bundles.
  • Heat exchanger effective heat transfer from the refrigerant to be cooled to the boiling intermediate medium 8.2 in the lower
  • the natural circulation of the intermediate medium comes by the dripping of the condensate of the or the upper
  • intermediate medium for example propane, gaseous, condensing
  • intermediate medium for example propane, liquid or boiling

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
PCT/DE2016/000253 2015-12-28 2016-06-17 Verfahren und wärmeaustauscher zur rückgewinnung von kälte bei der regasifizierung tiefkalter flüssigkeiten WO2017114518A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112016006090.4T DE112016006090A5 (de) 2015-12-28 2016-06-17 Verfahren und Wärmeaustauscher zur Rückgewinnung von Kälte bei der Regasifizierung tiefkalter Flüssigkeiten
EP16742154.4A EP3397912B1 (de) 2015-12-28 2016-06-17 Verfahren und wärmeaustauscher zur rückgewinnung von kälte bei der regasifizierung tiefkalter flüssigkeiten

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102015016889.4 2015-12-28
DE102015016889 2015-12-28
DE102016006121.9A DE102016006121A1 (de) 2015-12-28 2016-05-18 Verfahren und Wärmeaustauscher zur Rückgewinnung von Kälte bei der Regasifizierung tiefkalter Flüssigkeiten
DE102016006121.9 2016-05-18

Publications (1)

Publication Number Publication Date
WO2017114518A1 true WO2017114518A1 (de) 2017-07-06

Family

ID=59010575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2016/000253 WO2017114518A1 (de) 2015-12-28 2016-06-17 Verfahren und wärmeaustauscher zur rückgewinnung von kälte bei der regasifizierung tiefkalter flüssigkeiten

Country Status (4)

Country Link
EP (1) EP3397912B1 (zh)
DE (2) DE102016006121A1 (zh)
TW (1) TW201730475A (zh)
WO (1) WO2017114518A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109751508A (zh) * 2017-11-02 2019-05-14 浙江三花智能控制股份有限公司 液化天然气气化器
CN112556244A (zh) * 2020-12-29 2021-03-26 浙江大学常州工业技术研究院 一种lng空调用高效换热器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017007009A1 (de) 2017-07-25 2019-01-31 Eco ice Kälte GmbH Kälteversorgungsanlage, gekoppelt an die Regasifizierungseinrichtung eines Liquified Natural Gas Terminals
DE102017012125A1 (de) * 2017-12-29 2019-07-04 Eco ice Kälte GmbH Wärmeübertragungseinrichtung für die Kältebereitstellung in Kühlfahrzeugen, deren Kraftfahrzeugmotor mit LNG angetrieben wird
DE102020001338A1 (de) 2020-02-29 2021-09-02 REGASCOLD GmbH Wärmeübertrager für die Rückgewinnung von Kälteleistung aus der Regasifizierung tiefkalter verflüssigter Gase

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6089022A (en) 1998-03-18 2000-07-18 Mobil Oil Corporation Regasification of liquefied natural gas (LNG) aboard a transport vessel
US6367265B1 (en) 1999-06-28 2002-04-09 Kabushiki Kaisha Kobe Seiko Sho. Vaporizer for a low temperature liquid
US6367429B2 (en) 2000-01-18 2002-04-09 Kabushiki Kaisha Kobe Seiko Sho Intermediate fluid type vaporizer
WO2004031644A1 (en) 2002-10-04 2004-04-15 Hamworthy Kse A.S. Regasification system and method
DE102008031041A1 (de) * 2008-06-30 2009-12-31 Aprovis Energy Systems Gmbh Wärmetauscher zur Porzessgasaufbereitung
US20120318017A1 (en) * 2011-06-20 2012-12-20 Cheng Alan T System and method for cryogenic condensing
DE102011081673A1 (de) 2011-08-26 2013-02-28 Siemens Aktiengesellschaft Verfahren und Anlage zur Regasifizierung von Flüssigerdgas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6089022A (en) 1998-03-18 2000-07-18 Mobil Oil Corporation Regasification of liquefied natural gas (LNG) aboard a transport vessel
US6367265B1 (en) 1999-06-28 2002-04-09 Kabushiki Kaisha Kobe Seiko Sho. Vaporizer for a low temperature liquid
US6367429B2 (en) 2000-01-18 2002-04-09 Kabushiki Kaisha Kobe Seiko Sho Intermediate fluid type vaporizer
WO2004031644A1 (en) 2002-10-04 2004-04-15 Hamworthy Kse A.S. Regasification system and method
DE102008031041A1 (de) * 2008-06-30 2009-12-31 Aprovis Energy Systems Gmbh Wärmetauscher zur Porzessgasaufbereitung
US20120318017A1 (en) * 2011-06-20 2012-12-20 Cheng Alan T System and method for cryogenic condensing
DE102011081673A1 (de) 2011-08-26 2013-02-28 Siemens Aktiengesellschaft Verfahren und Anlage zur Regasifizierung von Flüssigerdgas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109751508A (zh) * 2017-11-02 2019-05-14 浙江三花智能控制股份有限公司 液化天然气气化器
CN109751508B (zh) * 2017-11-02 2021-06-11 浙江三花智能控制股份有限公司 液化天然气气化器
CN112556244A (zh) * 2020-12-29 2021-03-26 浙江大学常州工业技术研究院 一种lng空调用高效换热器

Also Published As

Publication number Publication date
EP3397912B1 (de) 2019-11-13
DE102016006121A1 (de) 2017-06-29
TW201730475A (zh) 2017-09-01
DE112016006090A5 (de) 2019-01-10
EP3397912A1 (de) 2018-11-07

Similar Documents

Publication Publication Date Title
EP3397912B1 (de) Verfahren und wärmeaustauscher zur rückgewinnung von kälte bei der regasifizierung tiefkalter flüssigkeiten
DE202015008836U1 (de) Wärmeaustauscher zur Rückgewinnung von Kälte bei der Regasifizierung tiefkalter Flüssigkeiten
AT411107B (de) Prozesskomponenten, behälter und rohre, geeignet zum aufnehmen und transportieren von fluiden kryogener temperatur
DE60220573T2 (de) Pumpanlage und Verfahren zum Pumpen von Flüssigkeiten
DE102011078608A1 (de) Kryostatanordnung
EP3361137B1 (de) Transportbehälter
EP3676529B1 (de) Verfahren zum befüllen eines mobilen kältemitteltanks mit einem kryogenen kältemittel
DE19946557B4 (de) Verfahren zum Eliminieren der Verdunstung von in einem dichten und isothermischen Tank enthaltenem Flüssiggas sowie eine Vorrichtung zur Durchführung des Verfahrens
DE68908197T2 (de) Verfahren und Apparat zum Aufbewahren von kryogenen Flüssigkeiten.
DE10142757C1 (de) Betankungseinrichtung und Verfahren zur Betankung von kryokraftstoffbetriebenen Fahrzeugen
DE2929709A1 (de) Vorrichtung zum unterkuehlen von unter druck stehenden, tiefsiedenden verfluessigten gasen
DE2821010A1 (de) Tank fuer fluessiggas und verfahren zu dessen fuellen
EP3658816B1 (de) Kälteversorgungsanlage, gekoppelt an die regasifizierungseinrichtung eines liquified natural gas terminals
WO2019110146A1 (de) Transportbehälter mit kühlbarem, thermischen schild
DE2139586B1 (de) Verfahren und Anlage zum Verflüssigen und Wiederverdampfen von Erdgas oder Methan
DE202006020562U1 (de) Schiffe für Flüssiggastransport
EP2899116A2 (de) Verfahren und Tankvorrichtung zur Rückverflüssigung und Kühlung von Flüssigerdgas in Tanksystemen
DE19719376C2 (de) Verfahren und Vorrichtung zum Anwärmen eines aus einem Speicherbehälter abgezogenen verflüssigten Gases oder Gasgemisches
EP2292969B1 (de) Vorrichtung zum Speichern und Transportieren von kryogen verflüssigten Gasen
WO2013182907A2 (de) Verfahren und vorrichtung zum regasifizieren von tiefkalt verflüssigtem gas
DE3327428C2 (de) Vorrichtung zum Rückkondensieren der Verdampfungsverluste eines verflüssigten Gases
DE102011115987B4 (de) Erdgasverflüssigung
AT512979B1 (de) Verfahren und Vorrichtung zum Regasifizieren von tiefkalt verflüssigtem Gas
KR20240131528A (ko) 저온 액화가스 처리 장치 및 저온 액화가스용 화물탱크 시스템
DE19853531C2 (de) Vorrichtung zur Entnahme eines unter Druck stehenden flüssigen Gasstromes aus einem Druckbehälter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16742154

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112016006090

Country of ref document: DE