WO2017114079A1 - 一种汽车增压涡轮的制备方法 - Google Patents

一种汽车增压涡轮的制备方法 Download PDF

Info

Publication number
WO2017114079A1
WO2017114079A1 PCT/CN2016/107878 CN2016107878W WO2017114079A1 WO 2017114079 A1 WO2017114079 A1 WO 2017114079A1 CN 2016107878 W CN2016107878 W CN 2016107878W WO 2017114079 A1 WO2017114079 A1 WO 2017114079A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparing
sand
wax
mold shell
coating
Prior art date
Application number
PCT/CN2016/107878
Other languages
English (en)
French (fr)
Inventor
张建勋
侯晓翠
Original Assignee
张建勋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张建勋 filed Critical 张建勋
Publication of WO2017114079A1 publication Critical patent/WO2017114079A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C3/00Selection of compositions for coating the surfaces of moulds, cores, or patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • B22C9/28Moulds for peculiarly-shaped castings for wheels, rolls, or rollers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process

Definitions

  • the invention belongs to the technical field of metal investment precision casting, and in particular relates to a preparation method of a car turbocharger.
  • Die precision casting is an advanced casting forming process, which is used to realize complex, thin-walled, precision turbomachinery. It has great advantages in precision jewelry, aero-engines and other precision molded parts.
  • a fusible model (such as a melting mold) is made of a fusible material (such as a wax), and a plurality of special refractory coatings are applied thereon, dried and hardened to form an integral module, and then from the module.
  • ceramic sand is often used in the production process of investment casting. The mold shell broken after casting is difficult to recover from sand and has great environmental pollution. Therefore, it is very necessary to find a high-performance and environmentally-friendly mold preparation method. Is necessary.
  • the gasoline engine can reach 1050 °C
  • the size of the turbocharger impeller and the turbine is not large, the diameter is generally less than 100mm, but the rotation speed is very high, up to 250,000r/min, continuous high-speed work under the harsh working environment, so the material And performance requirements are very high.
  • the present invention discloses a preparation method of an environmentally-friendly precision casting mold shell, which can efficiently obtain a casting mold shell, and adopts environmentally friendly materials to protect the environment and resources.
  • (1) preparing a mold shell comprising: a. preparing a corresponding wax mold, a pouring system, a riser according to the shape of the turbocharger to be obtained, and bonding into a wax module; b. using a suitable ratio of zircon powder, Silica sol, fine wood chips, n-octanol, cobalt aluminate mixed to obtain a surface coating, coated with a wax module after the surface sand, the surface sand component is alumina sand and fine wood chips, c.
  • the back layer coating is prepared by mixing and stirring the bark powder, the mullite powder, the crop straw fiber and the ethyl silicate hydrolyzate, and the backing sand is applied after the wax module is applied, and the sand is repeatedly suspended after several times of sealing, d.
  • the wax is fired to obtain a mold shell.
  • alloying ingredients wherein the alloy contains, by atomic percentage, chemical composition: Al: 40.0 to 43.0 at%, V: 0.6 to 1.3 at%, Cr: 0.4 to 1.6 at%, Nb: 2 to 6 at%, B : 0.2 to 0.8 at%, C: 1.0 to 1.3 at%, and the balance is Ti.
  • step (3) smelting casting, adding the alloy component described in step (2) to the crucible of the induction melting furnace, evacuating to 10 -4 Pa, blowing in argon gas protection, loading power to 350-400 KW, heating 20- After 25 minutes, the temperature reached 1600-1800 ° C, the alloy material was completely melted and then kept for 10 minutes, then the crucible was turned over, the crucible was turned in a vacuum induction melting furnace, and the alloy liquid was poured into the mold shell obtained in the step (1).
  • the invention adopts fine wood chips and crop straw fiber as the shell material, reduces the use amount of the refractory material, is beneficial to environmental protection, and adopts a reasonable ratio, and increases the ventilation under the premise of ensuring the strength of the shell.
  • the attapulgite in the back coating is a porous material, which is favorable for exhausting, reduces the defects of the pressurized turbine pores, increases the yield, and at the same time reduces the weight of the mold shell, and the raw materials are easily available.
  • (1) preparing a mold shell comprising: a. preparing a corresponding wax mold, a pouring system, a riser according to the shape of the turbocharger to be obtained, and bonding into a wax module; b. using a suitable ratio of zircon powder, Silica sol, fine wood chips, n-octanol, cobalt aluminate mixed to obtain a surface coating, coated with a wax module after the surface sand, the surface sand component is alumina sand and fine wood chips, c.
  • the back layer coating is prepared by mixing and stirring the bark powder, the mullite powder, the crop straw fiber and the ethyl silicate hydrolyzate, and the backing sand is applied after the wax module is applied, and the sand is repeatedly suspended after several times of sealing, d.
  • the wax is fired to obtain a mold shell.
  • alloying ingredients wherein the alloy contains, by atomic percentage, chemical composition: Al: 40.0 to 43.0 at%, V: 0.6 to 1.3 at%, Cr: 0.4 to 1.6 at%, Nb: 2 to 6 at%, B : 0.2 to 0.8 at%, C: 1.0 to 1.3 at%, and the balance is Ti.
  • step (3) smelting casting, adding the alloy component described in step (2) to the crucible of the induction melting furnace, evacuating to 10 -4 Pa, blowing in argon gas protection, loading power to 350-400 KW, heating 20- After 25 minutes, the temperature reached 1600-1800 ° C, the alloy material was completely melted and then kept for 10 minutes, then the crucible was turned over, the crucible was turned in a vacuum induction melting furnace, and the alloy liquid was poured into the mold shell obtained in the step (1).
  • the surface coating is prepared by mixing zircon powder, silica sol, fine wood chips, n-octanol and cobalt aluminate.
  • the zircon powder has a particle size of 300 mesh and the fine wood chip size is 240.
  • the aluminum sand has a particle size of 80-100 mesh, and the fine wood chip has a particle size of 160-200 mesh; the wax module coated with the facial sand is dried for 12-18 h, preferably 15 h;
  • the attapulgite powder particle size is 240 mesh
  • Molai The stone particle size is 240 mesh
  • the straw fiber diameter of the crop is 2-3 mm
  • the silica content of the ethyl silicate hydrolyzate is 20%.
  • step (4) and step (5) repeating step (4) and step (5) 2-4 times until the thickness of the mold shell reaches 6-10 mm, preferably 8 mm, and is dried after sealing;
  • the mold shell after step (6) is dried by steam dewaxing, the dewaxing pressure is 0.4 MPa to 0.8 MPa, the dewaxing time is 6 min to 8 min, and sent to a high temperature resistance furnace at 2-4 ° C.
  • the heating rate of /min is raised to 300-450 ° C, and kept for 1.5 h, then heated to 750-800 ° C at a heating rate of 6-10 ° C / min, held for 1.5 h, and then heated at a heating rate of 2-4 ° C / min.
  • To 1100-1250 ° C heat preservation for 4h, with the furnace cooling, get environmentally friendly casting mold shell.

Abstract

一种汽车增压涡轮的制备方法,包括制备模壳,合金配料,熔炼浇注,冷却,后处理等步骤,该方法采用TiAl基的钛铝化合物作为增压涡轮材料,可在高温下长时间连续工作,提高了性能和使用寿命,采用细木屑、农作物秸秆纤维作为制壳材料,降低了耐火材料的使用量,既有利于环保,并采用合理的配比,在保证型壳强度的前提下增加了透气性,并采用多孔材料凹凸棒土,有利于排气,降低了增压涡轮气孔缺陷,增加了成品率,同时使模壳降低了重量。

Description

一种汽车增压涡轮的制备方法 技术领域
本发明属于金属熔模精密铸造技术领域,尤其是涉及一种汽车增压涡轮的制备方法。
背景技术
模精密铸造是一种先进的铸造成形工艺,多用于实现复杂、薄壁、精密增压涡轮成形,在精密首饰、航空发动机以及其他精密成型件方面具有巨大的优势,传统的熔模精密铸造工艺是用易熔的材料(如蜡料)制成可熔性模型(简称熔模),在其上涂覆若干层特制的耐火涂料,经过干燥和硬化形成一个整体模组,再从模组中熔失熔模从而获得中空的模壳,然后将模壳进行高温烧结,最后在其中浇注熔融的金属而得到的增压涡轮的方法。目前在熔模精密铸造的生产过程中多用陶瓷砂,铸造结束后打碎的模壳存在着型砂回收困难,对环境污染大的问题,因此,寻找一种高性能、环保的模壳制备方法非常有必要。
全球汽车产量仍在持续增长,由于降低油耗和改善城市空气质量的要求,对低能耗高性能发动机需求量也在日益增大,涡轮增压器能显著提高发动机功率、改善排放、降低油耗,因而采用带涡轮增压器的小型发动机来替代自然吸气的发动机是现代汽车工业的一个基本趋势,由于涡轮增压涡轮承受的是发动机高温高压的废气,乘用车柴油机排放废气温度最高大约为850℃,而汽油机则可达1050℃,增压器叶轮和涡轮尺寸不大,一般直径不超过100mm,但转速很高,最高达250000r/min,在恶劣的工作环境下连续高速工作,所以对材料和性能的要求非常高。
发明内容
基于以上技术问题,本发明公开了一种环保精铸模壳的制备方法,可以高效的得到铸造模壳,并且采用环保材料,保护了环境与资源。
本发明完整的技术方案包括:
(1)制备模壳,包括:a.根据所要得到增压涡轮的形状制备相应的蜡模、浇注系统、冒口,并粘结成蜡模组;b.采用合适配比的锆英粉,硅溶胶,细木屑,正辛醇,铝酸钴混合搅拌制得面层涂料,涂覆蜡模组后挂面砂,面砂组分为氧化铝砂和细木屑,c.采用合适配比的凹凸棒土粉、莫来石粉、农作物秸秆纤维、硅酸乙酯水解液混合搅拌制得背层涂料,涂覆蜡模组后挂背砂,重复挂背砂数次后封浆干燥,d.脱蜡焙烧得到模壳。
(2)合金配料,所述的合金按原子百分比的化学成分包含:Al:40.0~43.0at%、V:0.6~1.3at%、Cr:0.4~1.6at%、Nb:2~6at%,B:0.2~0.8at%,C:1.0~1.3at%,其余为Ti。
(3)熔炼浇注,将步骤(2)中所述的合金组分加入感应熔炼炉的坩埚中,抽真空到10-4Pa,吹入氩气保护,加载功率至350-400KW,加热20-25min后温度到达1600-1800℃,合金材料完全融化后保温10分钟,随后翻转坩埚,在真空感应熔炼炉中翻转坩埚,将合金液浇注至步骤(1)所得模壳中。
(4)冷却至室温后破真空,将模壳打破,得到增压涡轮。
(5)对增压涡轮进行热处理,表面喷砂清理等工序后得到成品。
(6)对部件表面沉积涂层,所述涂层按原子百分比的化学成分包含B:12.0~14.0at%,C:36.0~44.0at%,V:8.0~12.0at%,Cr:10.0~14.0at%、Nb:5.0~6.0at%,H:6.0~13.0at%。
本发明相对现有技术,采用细木屑、农作物秸秆纤维作为制壳材料,降低了耐火材料的使用量,既有利于环保,并采用合理的配比,在保证型壳强度的前提下增加了透气性,背层涂料中的凹凸棒土为多孔材料,有利于排气,降低了增压涡轮气孔缺陷,增加了成品率,同时使模壳降低了重量,并且原料易得。
具体实施方式
下面结合具体实施方式对本发明做进一步说明。
(1)制备模壳,包括:a.根据所要得到增压涡轮的形状制备相应的蜡模、浇注系统、冒口,并粘结成蜡模组;b.采用合适配比的锆英粉,硅溶胶,细木屑,正辛醇,铝酸钴混合搅拌制得面层涂料,涂覆蜡模组后挂面砂,面砂组分为氧化铝砂和细木屑,c.采用合适配比的凹凸棒土粉、莫来石粉、农作物秸秆纤维、硅酸乙酯水解液混合搅拌制得背层涂料,涂覆蜡模组后挂背砂,重复挂背砂数次后封浆干燥,d.脱蜡焙烧得到模壳。
(2)合金配料,所述的合金按原子百分比的化学成分包含:Al:40.0~43.0at%、V:0.6~1.3at%、Cr:0.4~1.6at%、Nb:2~6at%,B:0.2~0.8at%,C:1.0~1.3at%,其余为Ti。
(3)熔炼浇注,将步骤(2)中所述的合金组分加入感应熔炼炉的坩埚中,抽真空到10-4Pa,吹入氩气保护,加载功率至350-400KW,加热20-25min后温度到达1600-1800℃,合金材料完全融化后保温10分钟,随后翻转坩埚,在真空感应熔炼炉中翻转坩埚,将合金液浇注至步骤(1)所得模壳中。
(4)冷却至室温后破真空,将模壳打破,得到增压涡轮。
(5)对增压涡轮进行热处理,表面喷砂清理等工序后得到成品。
(6)对部件表面沉积涂层,所述涂层按原子百分比的化学成分包含B:12.0~14.0at%,C:36.0~44.0at%,V:8.0~12.0at%,Cr:10.0~14.0at%、Nb:5.0~6.0at%,H:6.0~13.0at%。
另外,具体的,所述的模壳的具体制备工艺为:
(1)制备蜡模,根据所要得到增压涡轮的形状制备相应的蜡模、浇注系统、冒口,并粘结成蜡模组;
(2)面层涂料制备,将锆英粉、硅溶胶、细木屑、正辛醇、铝酸钴混合搅拌制得面层涂料,所述的锆英粉粒度为300目,细木屑粒度为240目,上述涂料组分的重量配比为:锆英粉:硅溶胶:细木屑:正辛醇:铝酸钴=(1800-2000):(140-160):(100-200):(1-2):(2-5);
(3)挂面砂:将所述蜡模组浸入面层涂料池中,随后取出,在旋转条件下向其表面吹风使其涂覆均匀,所述的吹风时间为30s-60s,优选为40s;随后在旋转条件下向其表面洒面砂,所述的面砂为面砂组分为氧化铝砂和细木屑,重量配比为氧化铝砂:细木屑=(10-15):1,氧化铝砂的粒度为80-100目,细木屑粒度为160-200目;将涂挂好面砂的蜡模组干燥12-18h,优选为15h;
(4)背层涂料制备,将凹凸棒土粉、莫来石粉、农作物秸秆纤维、硅酸乙酯水解液混合搅拌制得背层涂料,所述的凹凸棒土粉粒度为240目,莫来石粒度为240目,农作物秸秆纤维直径为2-3mm,硅酸乙酯水解液二氧化硅含量为20%,上述涂料组分的重量配比为:凹凸棒土粉:莫来石粉:农作物秸秆纤维:硅酸乙酯水解液=(350-500):(1800-2000):(50-120):(2-4);
(5)挂背砂,将步骤(3)中干燥后的蜡模组浸入背层涂料池中,随后取出,在旋转条件下向其表面吹风使其涂覆均匀,所述的吹风时间为40s-80s,优选为60s;随后在旋转条件下向其表面洒背砂,所述的背砂组分为莫来石粗粉和农作物秸秆纤维,重量配比为莫来石粗粉:农作物秸秆纤维=(10-15):1,莫来石粗粉的粒度为40-60目,农作物秸秆纤维直径为4-6mm;将涂挂好背砂的蜡模组干燥12-18h,优选为15h;
(6)重复步骤(4)和步骤(5)2-4次,直到模壳厚度达到6-10mm,优选为8mm,封浆后干燥;
(7)将步骤(6)封浆干燥后的模壳进行蒸汽脱蜡,脱蜡压力为0.4MPa~0.8MPa,脱蜡时间为6min~8min,送入高温电阻炉中,以2-4℃/min的升温速率升温至300-450℃,保温1.5h,随后以6-10℃/min的升温速率升温至750-800℃,保温1.5h,随后以2-4℃/min的升温速率升温至1100-1250℃,保温4h,随炉冷却,得到环保精铸模壳。

Claims (1)

  1. 一种汽车增压涡轮的制备方法,其特征在于,包括如下步骤:
    (1)制备模壳,包括:a.根据所要得到增压涡轮的形状制备相应的蜡模、浇注系统、冒口,并粘结成蜡模组;b.采用合适配比的锆英粉,硅溶胶,细木屑,正辛醇,铝酸钴混合搅拌制得面层涂料,涂覆蜡模组后挂面砂,面砂组分为氧化铝砂和细木屑,c.采用合适配比的凹凸棒土粉、莫来石粉、农作物秸秆纤维、硅酸乙酯水解液混合搅拌制得背层涂料,涂覆蜡模组后挂背砂,重复挂背砂数次后封浆干燥,d.脱蜡焙烧得到模壳。
    (2)合金配料,所述的合金按原子百分比的化学成分包含:Al:40.0~43.0at%、V:0.6~1.3at%、Cr:0.4~1.6at%、Nb:2~6at%,B:0.2~0.8at%,C:1.0~1.3at%,其余为Ti。
    (3)熔炼浇注,将步骤(2)中所述的合金组分加入感应熔炼炉的坩埚中,抽真空到10-4Pa,吹入氩气保护,加载功率至350-400KW,加热20-25min后温度到达1600-1800℃,合金材料完全融化后保温10分钟,随后翻转坩埚,在真空感应熔炼炉中翻转坩埚,将合金液浇注至步骤(1)所得模壳中。
    (4)冷却至室温后破真空,将模壳打破,得到增压涡轮。
    (5)对增压涡轮进行热处理,表面喷砂清理等工序后得到成品。
    (6)对部件表面沉积涂层,所述涂层按原子百分比的化学成分包含B:12.0~14.0at%,C:36.0~44.0at%,V:8.0~12.0at%,Cr:10.0~14.0at%、Nb:5.0~6.0at%,H:6.0~13.0at%。
PCT/CN2016/107878 2015-12-30 2016-11-30 一种汽车增压涡轮的制备方法 WO2017114079A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511022918.7 2015-12-30
CN201511022918.7A CN105618679A (zh) 2015-12-30 2015-12-30 一种汽车增压涡轮的制备方法

Publications (1)

Publication Number Publication Date
WO2017114079A1 true WO2017114079A1 (zh) 2017-07-06

Family

ID=56034236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107878 WO2017114079A1 (zh) 2015-12-30 2016-11-30 一种汽车增压涡轮的制备方法

Country Status (2)

Country Link
CN (1) CN105618679A (zh)
WO (1) WO2017114079A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105618676A (zh) * 2015-12-29 2016-06-01 青岛博泰美联化工技术有限公司 一种汽车发动机壳体的环保型制备方法
CN105618678A (zh) * 2015-12-29 2016-06-01 青岛博泰美联化工技术有限公司 一种环保精铸模壳的制备方法
CN105483440B (zh) * 2015-12-29 2018-02-23 东莞市兆财实业有限公司 一种汽车发动机叶片的环保型制备方法
CN105506377A (zh) * 2015-12-29 2016-04-20 青岛博泰美联化工技术有限公司 一种汽车增压涡轮的环保型制备方法
CN105441715A (zh) * 2015-12-29 2016-03-30 青岛博泰美联化工技术有限公司 一种汽车增压涡轮
CN105618677A (zh) * 2015-12-29 2016-06-01 青岛博泰美联化工技术有限公司 一种环保铸造材料的制备方法
CN105624465A (zh) * 2015-12-29 2016-06-01 青岛博泰美联化工技术有限公司 一种汽车发动机叶片
CN105522111A (zh) * 2015-12-29 2016-04-27 青岛博泰美联化工技术有限公司 一种透气型壳的制备方法
CN105537518A (zh) * 2015-12-30 2016-05-04 青岛博泰美联化工技术有限公司 一种发动机部件的制备方法
CN105618679A (zh) * 2015-12-30 2016-06-01 青岛博泰美联化工技术有限公司 一种汽车增压涡轮的制备方法
CN111906247A (zh) * 2020-07-01 2020-11-10 无锡范尼韦尔工程有限公司 一种国六排放重型柴油机用增压器涡轮的制备工艺

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102065992A (zh) * 2008-04-21 2011-05-18 联邦科学及工业研究组织 用于形成钛-铝基合金的方法和设备
CN203737936U (zh) * 2014-03-15 2014-07-30 内蒙古工业大学 纤维增强熔模铸造复合型壳
CN104001857A (zh) * 2014-06-06 2014-08-27 哈尔滨鑫润工业有限公司 一种燃气轮机涡轮导叶片及其精铸工艺
CN105441715A (zh) * 2015-12-29 2016-03-30 青岛博泰美联化工技术有限公司 一种汽车增压涡轮
CN105483440A (zh) * 2015-12-29 2016-04-13 青岛博泰美联化工技术有限公司 一种汽车发动机叶片的环保型制备方法
CN105506377A (zh) * 2015-12-29 2016-04-20 青岛博泰美联化工技术有限公司 一种汽车增压涡轮的环保型制备方法
CN105522111A (zh) * 2015-12-29 2016-04-27 青岛博泰美联化工技术有限公司 一种透气型壳的制备方法
CN105537518A (zh) * 2015-12-30 2016-05-04 青岛博泰美联化工技术有限公司 一种发动机部件的制备方法
CN105618679A (zh) * 2015-12-30 2016-06-01 青岛博泰美联化工技术有限公司 一种汽车增压涡轮的制备方法
CN105618677A (zh) * 2015-12-29 2016-06-01 青岛博泰美联化工技术有限公司 一种环保铸造材料的制备方法
CN105624465A (zh) * 2015-12-29 2016-06-01 青岛博泰美联化工技术有限公司 一种汽车发动机叶片
CN105618676A (zh) * 2015-12-29 2016-06-01 青岛博泰美联化工技术有限公司 一种汽车发动机壳体的环保型制备方法
CN105618678A (zh) * 2015-12-29 2016-06-01 青岛博泰美联化工技术有限公司 一种环保精铸模壳的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2896711B1 (fr) * 2006-01-31 2008-07-25 Marc Lebreton Nouveau procede de moulage.
CN103409722B (zh) * 2013-07-15 2015-04-15 北京航空航天大学 一种在航空发动机压气机叶片表面制备抗侵蚀涂层的方法
CN104152745A (zh) * 2014-08-25 2014-11-19 钢铁研究总院 铸造高铌钛铝基合金及其制备方法
CN104475682B (zh) * 2014-12-17 2016-08-24 北京航空航天大学 一种基于组合式蜡模的耐热铸钢薄壁涡轮壳熔模精铸方法
CN104923729B (zh) * 2015-06-24 2017-01-25 西安航空动力股份有限公司 一种大型扩压器精铸件复合型壳的制造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102065992A (zh) * 2008-04-21 2011-05-18 联邦科学及工业研究组织 用于形成钛-铝基合金的方法和设备
CN203737936U (zh) * 2014-03-15 2014-07-30 内蒙古工业大学 纤维增强熔模铸造复合型壳
CN104001857A (zh) * 2014-06-06 2014-08-27 哈尔滨鑫润工业有限公司 一种燃气轮机涡轮导叶片及其精铸工艺
CN105522111A (zh) * 2015-12-29 2016-04-27 青岛博泰美联化工技术有限公司 一种透气型壳的制备方法
CN105483440A (zh) * 2015-12-29 2016-04-13 青岛博泰美联化工技术有限公司 一种汽车发动机叶片的环保型制备方法
CN105506377A (zh) * 2015-12-29 2016-04-20 青岛博泰美联化工技术有限公司 一种汽车增压涡轮的环保型制备方法
CN105441715A (zh) * 2015-12-29 2016-03-30 青岛博泰美联化工技术有限公司 一种汽车增压涡轮
CN105618677A (zh) * 2015-12-29 2016-06-01 青岛博泰美联化工技术有限公司 一种环保铸造材料的制备方法
CN105624465A (zh) * 2015-12-29 2016-06-01 青岛博泰美联化工技术有限公司 一种汽车发动机叶片
CN105618676A (zh) * 2015-12-29 2016-06-01 青岛博泰美联化工技术有限公司 一种汽车发动机壳体的环保型制备方法
CN105618678A (zh) * 2015-12-29 2016-06-01 青岛博泰美联化工技术有限公司 一种环保精铸模壳的制备方法
CN105537518A (zh) * 2015-12-30 2016-05-04 青岛博泰美联化工技术有限公司 一种发动机部件的制备方法
CN105618679A (zh) * 2015-12-30 2016-06-01 青岛博泰美联化工技术有限公司 一种汽车增压涡轮的制备方法

Also Published As

Publication number Publication date
CN105618679A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
WO2017114068A1 (zh) 一种汽车发动机叶片的环保型制备方法
WO2017114079A1 (zh) 一种汽车增压涡轮的制备方法
WO2017114078A1 (zh) 一种发动机部件的制备方法
WO2017114066A1 (zh) 一种汽车发动机壳体的环保型制备方法
WO2017114070A1 (zh) 一种汽车增压涡轮的环保型制备方法
WO2017114064A1 (zh) 一种环保精铸模壳的制备方法
WO2017114065A1 (zh) 一种环保铸造材料的制备方法
KR101364563B1 (ko) 주형 및 그 제조 방법
WO2017114071A1 (zh) 一种透气型壳的制备方法
CN103042195B (zh) 一种伪合金增强环槽活塞的挤压铸造制造方法
CN102861905B (zh) 一种氧化铝金属陶瓷增强铁基复合材料的制备方法
CN1876272A (zh) 用于钛及钛合金精密铸造的氮化硼陶瓷型壳的制备方法
CN108002842B (zh) 一种复杂形状多孔氮化硅件的制备方法
CN109365749B (zh) 熔模精密制造真空热成形生产工艺
CN102962401A (zh) 一种用于钛及钛合金精密铸造的SrZrO3型壳及其制备方法
WO2021174375A1 (zh) 一种大型复杂腔道钛合金铸件精密成形方法
CN111203514A (zh) 一种高温合金复杂薄壁铸件精密铸造方法
CN103509978B (zh) 一种精密铸造用铝合金的热处理方法
CN109022923B (zh) 一种低钴高温合金增压涡轮的合金成分及其制备方法
CN113523291A (zh) 一种气雾化制备a100超高强度合金钢粉末的方法
CN104014747B (zh) 一种重力铸造涡轮增压器压气机壳的工艺
CN110976843A (zh) 一种燃气轮机涡轮叶片铸造生产工艺流程
CN110976773A (zh) 一种提高镍基合金铸件性能的方法
CN114178486B (zh) 一种改善高温合金浇注后表面粘砂的型壳及其制备方法
CN114192743A (zh) 一种制备汽车用钛铝基合金增压涡轮的工艺方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16880869

Country of ref document: EP

Kind code of ref document: A1