WO2017113982A1 - 一种上行信息反馈和下行数据传输方法和设备 - Google Patents

一种上行信息反馈和下行数据传输方法和设备 Download PDF

Info

Publication number
WO2017113982A1
WO2017113982A1 PCT/CN2016/104267 CN2016104267W WO2017113982A1 WO 2017113982 A1 WO2017113982 A1 WO 2017113982A1 CN 2016104267 W CN2016104267 W CN 2016104267W WO 2017113982 A1 WO2017113982 A1 WO 2017113982A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding matrix
terminal
group
moving speed
base station
Prior art date
Application number
PCT/CN2016/104267
Other languages
English (en)
French (fr)
Inventor
苏昕
宋扬
李传军
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to EP16880773.3A priority Critical patent/EP3399658B1/en
Priority to US16/067,122 priority patent/US10554283B2/en
Publication of WO2017113982A1 publication Critical patent/WO2017113982A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting

Definitions

  • the present application relates to the field of communications technologies, and in particular, to an uplink information feedback and downlink data transmission method and device.
  • MIMO Multiple Input Multiple Output
  • LTE Long-term evolution
  • LTE-A Long-term evolution
  • OFDM Orthogonal Frequency Division Multiplexing
  • Rel-9 focuses on multi-user MIMO (Multi-User MIMO, MU-MIMO) technology, and supports up to four downlink data layers in MU-MIMO transmission in Transmission Mode (TM)-8.
  • Rel-10 is further improved by the introduction of 8-port Channel State Information-Reference Signals (CSI-RS), UE-specific Reference Signal (URS) and multi-granularity codebooks.
  • CSI-RS Channel State Information-Reference Signals
  • URS UE-specific Reference Signal
  • the spatial resolution of the channel state information is further extended to the single-user MIMO (Single-User MIMO, SU-MIMO) transmission capability to a maximum of 8 data layers.
  • a base station antenna system using a conventional PAS Passive Antenna System
  • multiple antenna ports (each port corresponding to an independent RF-IF-baseband channel) are horizontally arranged, and each port corresponds to a plurality of vertical dimensions. Connected by RF cable. Therefore, the existing MIMO technology can only optimize the horizontal dimensional characteristics of each terminal signal in the horizontal dimension by adjusting the relative amplitude/phase between different ports. In the vertical dimension, only a uniform sector level shaping can be adopted. .
  • AAS Active Antenna System
  • the base station antenna system can obtain greater freedom in the vertical dimension, and can realize the signal optimization of the user equipment (User Equipment, UE) level in the three-dimensional space.
  • AAS Active Antenna System
  • the transmission quality and interference suppression capability of the data for the traffic channel significantly benefit from the high precoding/beamforming spatial resolution brought about by the expansion of the array size.
  • the channel state information (CSI) reported by the terminal is insufficient to track the change of the upper channel. Therefore, it is difficult for the base station side to accurately match the user channel in time, thereby A serious performance loss is caused when data is transmitted.
  • the CSI reported by the terminal is insufficient to track the change of the upper channel, and the data transmission based on the CSI reported by the terminal may cause a serious performance loss.
  • the embodiment of the present invention provides an uplink information feedback and downlink data transmission method and device, which are used to solve the problem that when the terminal moves at a high speed, the CSI reported by the terminal is insufficient to track the change of the upper channel, and the data is calculated based on the CSI reported by the terminal. A serious performance loss problem occurs when transmitting.
  • each precoding matrix group in the L precoding matrix groups includes At least one precoding matrix, the at least one precoding matrix is derived from a preset codebook, l ⁇ L, and L is a positive integer;
  • the base station sends downlink data to the terminal according to the precoding matrix included in the first level precoding matrix group.
  • the terminal selects a precoding matrix from the preset codebook according to the measurement result of the downlink channel, and selects a first level precoding matrix group from the L precoding matrix groups corresponding to the precoding matrix, where the L
  • Each precoding matrix group in the precoding matrix group includes at least one precoding matrix, the at least one precoding matrix is from the codebook, l ⁇ L, and L is a positive integer;
  • the terminal reports the number of stages l of the selected precoding matrix group to the base station.
  • An acquiring module configured to acquire a precoding matrix of the terminal and a first level precoding matrix group in the L precoding matrix groups corresponding to the precoding matrix, where each of the L precoding matrix groups
  • the coding matrix group includes at least one precoding matrix, the at least one precoding matrix is derived from a preset codebook, l ⁇ L, and L is a positive integer;
  • a transmitting module configured to send downlink data to the terminal according to the precoding matrix included in the first level precoding matrix group.
  • a selection module configured to select a precoding matrix from the preset codebook according to the measurement result of the downlink channel, and select a first level precoding matrix group from the L precoding matrix groups corresponding to the precoding matrix, where Each precoding matrix group in the L precoding matrix groups includes at least one precoding matrix, the at least one precoding matrix is from the codebook, l ⁇ L, and L is a positive integer;
  • the reporting module is configured to report the level 1 of the selected precoding matrix group to the base station.
  • a base station provided by another embodiment of the present application includes: a processor, a memory, a transceiver, and a bus interface;
  • the processor is configured to read a program in the memory and perform the following process:
  • each precoding matrix group in the L precoding matrix groups includes at least a precoding matrix, the at least one precoding matrix is derived from a preset codebook, l ⁇ L, and L is a positive integer;
  • a terminal provided by another embodiment of the present application includes: a processor, a memory, a transceiver, and a bus interface;
  • the processor is configured to read a program in the memory and perform the following process:
  • the number of stages l of the selected precoding matrix group is reported to the base station.
  • the precoding matrix in the codebook is grouped in advance to obtain L precoding matrix groups, and the L precoding matrix groups are used to form a relatively wide beam coverage user, according to each
  • the precoding matrix included in the precoding matrix group pre-codes the downlink data to ensure downlink transmission of the terminal during high-speed movement and improves the reliability of downlink transmission.
  • FIG. 1 is a schematic flowchart of a downlink data transmission method according to Embodiment 1 of the present application;
  • FIG. 2 is a schematic flowchart of an uplink information feedback method according to Embodiment 2 of the present application.
  • FIG. 3 is a schematic diagram of a base station in Embodiment 3 of the present application.
  • FIG. 4 is a schematic diagram of a terminal in Embodiment 4 of the present application.
  • Embodiment 5 is a schematic diagram of another base station in Embodiment 5 of the present application.
  • FIG. 6 is a schematic diagram of another terminal in Embodiment 6 of the present application.
  • the technology provided by the embodiments of the present application can be used in various communication systems, such as current 2G, 3G communication systems and next generation communication systems, such as Global System for Mobile Communications (GSM), code division multiple access (CDMA, Code). Division Multiple Access) system, Time Division Multiple Access (TDMA) system, Wideband Code Division Multiple Access (WCDMA), Frequency Division Multiple Access (FDMA), Frequency Division Multiple Addressing (FDMA) system, positive Orthogonal Frequency-Division Multiple Access (OFDMA) system, single carrier FDMA (SC-FDMA) system, General Packet Radio Service (GPRS) system, Long Term Evolution (LTE) Systems, and other such communication systems.
  • GSM Global System for Mobile Communications
  • CDMA code division multiple access
  • TDMA Time Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • FDMA Frequency Division Multiple Addressing
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • SC-FDMA single carrier FD
  • the user equipment in the embodiment of the present application may be a wireless terminal, and the wireless terminal may be a device that provides voice and/or data connectivity to the user, a handheld device with a wireless connection function, or other processing device connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and with a mobile terminal
  • RAN Radio Access Network
  • the computers for example, can be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices that exchange language and/or data with the wireless access network.
  • a base station in this embodiment of the present application may refer to a device in an access network that communicates with a wireless terminal over one or more sectors on an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station can be a base station in GSM or CDMA (BTS, Base)
  • the Transceiver Station may be a base station (NodeB) in WCDMA, or may be an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in LTE, which is not limited in the embodiment of the present application.
  • a downlink data transmission method As shown in FIG. 1, the method includes:
  • the base station sends downlink data to the terminal according to the precoding matrix included in the obtained first-stage precoding matrix group.
  • the base station acquires a precoding matrix of the terminal, acquires a precoding matrix group corresponding to the precoding matrix, and performs precoding on downlink data that needs to be sent to the terminal according to the precoding matrix included in the obtained precoding matrix group. Encoding processing, and then transmitting the pre-coded downlink data to the terminal. For example, the base station multiplies each precoding matrix included in the obtained first level precoding matrix group by the weight of the precoding matrix, and uses each weighted one included in the first level precoding matrix group. The sum of the precoding matrices is required to transmit downlink data to the terminal for precoding transmission.
  • the embodiment of the present application does not limit the processing in the foregoing manner, and may also adopt other manners, which are not illustrated herein.
  • the base station acquires a precoding matrix group corresponding to the precoding matrix of the terminal, and performs precoding processing on the downlink data that needs to be sent to the terminal according to the precoding matrix included in the obtained precoding matrix group.
  • the precoding matrix in the codebook is grouped in advance, so that any one precoding matrix corresponds to L precoding matrix groups, and the L precoding matrix groups are relatively formed. A wide beam covers the user.
  • the base station selects a first-level precoding matrix group from the L precoding matrix groups corresponding to the precoding according to the precoding matrix corresponding to the terminal downlink channel, according to the moving speed of the terminal, according to the precoding included in the precoding matrix group of the level
  • the coding matrix performs precoding processing on the downlink data, which can ensure downlink transmission of the terminal during high-speed movement and improve the reliability of downlink transmission.
  • the implementation of the application includes the following two application scenarios:
  • Scenario 1 A scenario in which the reciprocity of the uplink channel and the downlink channel is difficult to guarantee, such as a Frequency Division Duplex (FDD) system, or a well-calibrated Time Division Duplex (TDD) system.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the first level precoding matrix group of any precoding matrix in the codebook includes: the distance between the codebook and the any precoding matrix is sorted from small to large.
  • each precoding matrix in the codebook corresponds to L precoding matrix groups, and each precoding matrix group forms a relatively wide beam coverage range.
  • the distance between any two precoding matrices may be the sum of the squares of the modulus values of the two precoding matrices, such as the distance between the precoding matrix and the precoding matrix P 2 is abs (P 1 H *P 2 Where abs represents a modulo operation and P 1 H denotes a conjugate transposed matrix of P 1 , at which point the distance between the two precoding matrices characterizes the similarity of the two precoding matrices.
  • the distance between any two precoding matrices may also be a Euclidean distance, such as the distance between the precoding matrix P1 and the precoding matrix P2 is abs(P 1 -P 2 ) 2 .
  • the embodiment of the present application does not limit the method for calculating the distance between any two precoding matrices.
  • the L precoding matrix groups corresponding to each precoding matrix in the preset codebook may be determined by the base station, and notified to each terminal in the network, for example, notified to each terminal by means of broadcast; Provided in the agreement.
  • the embodiment of the present application is not limited, as long as the base station and the terminal have the same understanding of the L precoding matrix groups corresponding to each precoding matrix in the codebook.
  • the base station obtains the number of stages l of the precoding matrix group corresponding to the precoding matrix of the terminal, and includes the following two implementation manners:
  • the terminal selects a precoding matrix from the preset codebook based on the channel measurement, such as CSI measurement, determines the precoding matrix of the terminal, and reports the index number of the selected precoding matrix to the base station.
  • the base station side is implemented as follows: the base station receives the index number of the precoding matrix reported by the terminal; and when the base station determines that the current moving speed of the terminal is greater than a set threshold, the base station according to the moving speed, the precoding matrix, and the precoding matrix group Pair between series Correspondingly, the current moving speed of the terminal and the number of stages 1 of the precoding matrix group corresponding to the precoding matrix reported by the terminal are determined; the base station obtains according to the index number reported by the terminal and the determined number of stages l.
  • the first level precoding matrix group corresponding to the precoding matrix of the terminal is implemented as follows: the base station receives the index number of the precoding matrix reported by the terminal; and when the base station determines that the current moving speed of the terminal is greater than a set threshold
  • corresponding moving speed information (such as a moving speed value interval) may be set for each precoding matrix group in each of the L precoding matrix groups corresponding to one precoding matrix, and the terminal moves in the corresponding moving speed.
  • the signal to noise ratio obtained when downlink data reception is performed using the precoding matrix group of the level is greater than or equal to a set threshold.
  • the base station may determine a corresponding precoding matrix according to the precoding matrix index number reported by the terminal, and determine L precoding matrix groups corresponding to the precoding matrix, according to the terminal.
  • the current moving speed and each precoding matrix group in the L precoding matrix groups respectively correspond to one moving speed information, and determine a first level precoding matrix group corresponding to the current moving speed of the terminal. For example, if the current moving speed of the terminal falls within a certain moving speed value interval, the precoding matrix group corresponding to the moving speed value interval is selected to perform precoding processing on the downlink data of the terminal.
  • the base station may determine the current moving speed of the terminal according to the downlink channel measurement information reported by the terminal; the base station may also determine the current moving speed of the terminal according to the measurement of the uplink channel of the terminal.
  • the correspondence between the moving speed, the precoding matrix, and the number of stages of the precoding matrix group can be determined by simulation. For example, the correspondence between the maximum Doppler spread and the received signal-to-noise ratio when the terminal moves is counted.
  • a threshold eg, 70% of the ratio of the received signal to noise ratio (SNR) of the received signal to noise ratio relative to the ideal precoding when the first level precoding matrix group of the precoding matrix is used is preset, and is satisfied according to the simulation judgment. The minimum number of levels at this threshold.
  • SNR received signal to noise ratio
  • the minimum number of levels at this threshold is generated.
  • the corresponding L-level precoding matrix groups respectively correspond to a moving speed or a moving speed range.
  • the base station when determining that the current moving speed of the terminal is less than or equal to the set threshold, performs downlink data transmission by using the precoding matrix reported by the terminal.
  • the terminal selects a precoding matrix from the preset codebook based on the channel measurement, determines the precoding matrix of the terminal, and selects from the L precoding matrix groups corresponding to the precoding matrix based on the channel measurement.
  • a precoding matrix group is selected, and the index number of the selected precoding matrix and the number of precoding matrix groups are reported to the base station.
  • the implementation of the base station is as follows: the base station receives the index number of the precoding matrix reported by the terminal and the number of stages 1 of the precoding matrix group; the base station acquires the preamble of the terminal according to the index number and the level l reported by the terminal. The first level precoding matrix group corresponding to the coding matrix.
  • the implementation on the terminal side is specifically as follows: the terminal selects a precoding matrix from the preset codebook according to the measurement result of the downlink channel; the terminal corresponds to the selected precoding matrix according to the measurement result of the downlink channel.
  • the terminal In the L precoding matrix groups, one precoding matrix group is selected; the terminal reports the index number of the selected precoding matrix to the base station. And the number of stages of the selected precoding matrix group.
  • Scenario 2 scenarios in which the upstream channel and the downlink channel reciprocity are available, such as a well-calibrated TDD system.
  • the first level precoding matrix group includes: a distance between the vectors corresponding to the normals of the antenna arrays of the base station in the preset codebook, and the first N l pre-sequences sorted from small to large. Encoding matrix, where N l ⁇ N l+1 .
  • the precoding matrix in the preset codebook is divided into L precoding matrix groups, and each precoding matrix group forms a relatively wide beam coverage range.
  • each precoding matrix group is divided, the distance between each precoding matrix in the codebook and the vector corresponding to the normal direction of the antenna array of the base station is first determined, and the precoding matrix in the codebook is followed. The distance is sorted from small to large; then, the first N 1 precoding matrices are selected as the first level precoding matrix group, and the first N 2 precoding matrices are selected as the second level precoding matrix group, and so on until the selection is made.
  • N L precoding matrices are used as the Lth precoding matrix group, thereby determining L precoding matrix groups.
  • the first l+1 precoding matrix group includes all precoding matrices of the first level precoding matrix group.
  • the vector corresponding to the normal line of the antenna array of the base station includes the same elements, for example, the vector is a vector of all 1, that is, the elements in the vector are all 1.
  • the distance between each precoding matrix and a vector corresponding to the normal direction of the antenna array of the base station may be determined by: respectively calculating between each column vector of the precoding matrix and a vector corresponding to the normal direction The distance, and then the sum of the calculated distances is determined as the distance between the precoding matrix and the vector corresponding to the normal direction of the antenna array of the base station.
  • the method for determining the distance between the vector and the vector is similar to the method for determining the distance between any two precoding matrices. For details, refer to the related description in the scenario 1 above, and details are not described herein again.
  • the L precoding matrix groups corresponding to the preset codebook may be determined by the base station and notified to each terminal in the network, for example, by broadcasting to each terminal; or may be specified in the protocol.
  • the embodiment of the present application is not limited, as long as the base station and the terminal have the same understanding of the L precoding matrix groups corresponding to each precoding matrix in the codebook.
  • the base station obtains the precoding matrix group corresponding to the precoding matrix of the terminal, and includes the following two alternative implementation modes:
  • Manner 1 The base station selects a precoding matrix for the terminal from the preset codebook, and determines a corresponding precoding matrix group according to the correspondence between the moving speed, the precoding matrix, and the number of stages of the precoding matrix group. .
  • the specific implementation is as follows:
  • the base station selects a precoding matrix for the terminal from the codebook according to the measurement of the uplink channel of the terminal; when the base station determines that the current moving speed of the terminal is greater than a set threshold, the base station according to the moving speed and the precoding matrix And the correspondence between the number of stages of the precoding matrix group, determining the current moving speed of the terminal and the selected preprogramming The number of stages of the precoding matrix group corresponding to the code matrix; the base station acquires the first level precoding matrix group corresponding to the precoding matrix of the terminal according to the index number of the selected precoding matrix and the determined number of stages l.
  • the base station may determine a corresponding precoding matrix according to the precoding matrix index number reported by the terminal, and determine L precoding matrix groups corresponding to the precoding matrix, according to the terminal.
  • the current moving speed and each precoding matrix group in the L precoding matrix groups respectively correspond to one moving speed information, and determine a first level precoding matrix group corresponding to the current moving speed of the terminal.
  • Manner 2 The terminal selects a precoding matrix group according to the measurement of the downlink channel, and reports the number of the selected precoding matrix group to the base station; the base station according to the number of stages reported by the terminal and the uplink channel to the terminal The measurement determines a precoding matrix group corresponding to the precoding matrix of the terminal.
  • the specific implementation of the base station side is as follows:
  • the base station receives the number of stages 1 of the precoding matrix group reported by the terminal; the base station selects a precoding matrix for the terminal from the codebook according to the measurement of the uplink channel of the terminal, and reports the terminal to the terminal.
  • the precoding matrix group corresponding to the level l is determined as the first level precoding matrix group corresponding to the precoding matrix of the terminal.
  • the base station sends downlink data to the terminal according to the precoding matrix included in the obtained first-stage precoding matrix group, including: the base station acquires according to the pointing angle of the precoding matrix of the terminal.
  • the pointing angle of each precoding matrix included in the first level precoding matrix group uniformly rotating the pointing angle of the precoding matrix of the terminal; the base station rotates according to the angle included in the obtained first level precoding matrix group a precoding matrix that transmits downlink data to the terminal.
  • the precoding matrix is used for beamforming. After the base station uses the precoding matrix to perform beamforming on the downlink data, the beam transmitted by the base station has a certain angle, and the angle may be referred to as a pointing angle of the precoding matrix.
  • the implementation on the terminal side is specifically as follows: the terminal selects one precoding matrix group from the L precoding matrix groups according to the measurement result of the downlink channel; the terminal reports the number of stages of the selected precoding matrix group to the base station.
  • an uplink information feedback method is provided. As shown in FIG. 2, the method includes:
  • the terminal selects, according to the measurement result of the downlink channel, a precoding matrix group from the L precoding matrix groups, where each precoding matrix group includes at least one precoding matrix in the preset codebook, where L is Positive integer
  • the terminal selects one precoding matrix group from the L precoding matrix groups according to the measurement result of the downlink channel, and reports the number of stages of the selected precoding matrix group to the base station.
  • the precoding matrix in the codebook is grouped in advance to obtain L precoding matrix groups, and the L precoding matrix groups are used to form a relatively wide beam coverage user, according to the preamble included in each precoding matrix group.
  • the coding matrix performs precoding processing on the downlink data, which can ensure downlink transmission of the terminal during high-speed movement and improve the reliability of downlink transmission.
  • the terminal may determine a current moving speed of the terminal; when determining that the current moving speed of the terminal is greater than a set threshold, determining L precoding matrix groups corresponding to the selected precoding matrix, according to the current terminal of the terminal.
  • the moving speed and each precoding matrix group in the L precoding matrix groups respectively correspond to one moving speed information, and select a first level precoding matrix group corresponding to the current moving speed of the terminal.
  • the terminal may perform step S21 and step S22.
  • the determination of the L precoding matrix groups corresponding to the preset codebook may be referred to the related description in the embodiment shown in FIG. 1.
  • the terminal selects a precoding matrix group from the L precoding matrix groups according to the measurement result of the downlink channel, and further includes: the terminal presets according to the measurement result of the downlink channel.
  • the codebook select a precoding matrix
  • the terminal reports the number of stages of the selected precoding matrix group to the base station, and the method further includes: the terminal reporting the index number of the selected precoding matrix to the base station.
  • the above method processing flow can be implemented by a software program, which can be stored in a storage medium, and when the stored software program is called, the above method steps are performed.
  • the base station includes:
  • the obtaining module 31 is configured to acquire a precoding matrix of the terminal and a first level precoding matrix group in the L precoding matrix groups corresponding to the precoding matrix, where each of the L precoding matrix groups
  • the precoding matrix group includes at least one precoding matrix, the at least one precoding matrix is derived from a preset codebook, l ⁇ L, and L is a positive integer;
  • the transmitting module 32 is configured to send downlink data to the terminal according to the precoding matrix included in the obtained first level precoding matrix group.
  • each precoding matrix group in the L precoding matrix groups respectively corresponds to one moving speed information, and the terminal moves at a corresponding moving speed for the moving speed information corresponding to any one of the precoding matrix groups.
  • the signal to noise ratio obtained when downlink data reception is performed using the precoding matrix group of the level is greater than or equal to a set threshold.
  • the obtaining module 31 is specifically configured to: determine, according to the current moving speed of the terminal and each of the precoding matrix groups in the L precoding matrix groups, corresponding to the moving speed information, the first corresponding to the current moving speed of the terminal Level l precoding matrix group.
  • the obtaining module 31 is specifically configured to:
  • the obtaining module 31 is specifically configured to:
  • any precoding matrix in the codebook corresponds to L precoding matrix groups
  • the first precoding matrix group in the L precoding matrix groups includes N l precoding matrices.
  • the N l precoding matrices are the first N l precoding matrices sorted from small to large in the codebook and the precoding matrices, where N l ⁇ N l+1 .
  • the obtaining module 31 is specifically configured to:
  • the obtaining module 31 is specifically configured to:
  • the first stage l precoding matrix group comprising: the distance between the codebook normal to the antenna array of the base station corresponding vector before ascending to the large order of number N l a precoding matrix, where N l ⁇ N l+1 .
  • the transmission module 32 is specifically configured to:
  • the pointing angle of the precoding matrix of the terminal is uniformly rotated, and the pointing angle of the precoding matrix of the terminal is uniformly rotated;
  • the terminal includes:
  • the selecting module 41 is configured to select a precoding matrix from the preset codebook according to the measurement result of the downlink channel, and select a first level precoding matrix group from the L precoding matrix groups corresponding to the precoding matrix,
  • the precoding matrix group of the L precoding matrix groups includes at least one precoding matrix, the at least one precoding matrix is from the codebook, l ⁇ L, and L is a positive integer;
  • the first level precoding matrix group includes: a distance between vectors in the codebook corresponding to a normal line of the antenna array of the base station, and a distance N1 after being sorted from small to large . Precoding matrices, where N l ⁇ N l+1 .
  • the first level precoding matrix group of any precoding matrix in the codebook includes: a distance between the codebook and the any precoding matrix is from small to large.
  • each precoding matrix group in the L precoding matrix groups respectively corresponds to one moving speed information, and the terminal moves at a corresponding moving speed for the moving speed information corresponding to any one of the precoding matrix groups.
  • the signal to noise ratio is greater than or equal to a set threshold.
  • the selection module 41 is specifically used to:
  • the selecting module 41 is further configured to: select a precoding matrix from the preset codebook according to the measurement result of the downlink channel;
  • the reporting module 42 is further configured to: report the index number of the selected precoding matrix to the base station.
  • the base station includes: a receiver 51, and a transmitting Machine 52, processor 53 and memory 54, wherein:
  • the processor 53 is configured to read the program in the memory 54 and perform the following process:
  • each precoding matrix group in the L precoding matrix groups includes at least a precoding matrix, the at least one precoding matrix is derived from a preset codebook, l ⁇ L, and L is a positive integer;
  • the receiver 51 is configured to receive data under the control of the processor 53.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 53 and various circuits of memory represented by memory 54.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Receiver 51 and transmitter 52 provide means for communicating with various other devices on a transmission medium.
  • the processor 53 is responsible for managing the bus and normal processing, and can also provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 54 can be used to store data used by the processor 53 when performing operations.
  • the processor 53 may be a CPU (Central Embedded Device), an Application Specific Integrated Circuit (ASIC), a Field-Programmable Gate Array (FPGA), or a Complex Programmable Logic Device ( Complex Programmable Logic Device, CPLD).
  • CPU Central Embedded Device
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • the processor 53 is configured to read a program in the memory 54, and specifically perform the following processes:
  • the first level precoding matrix group of any precoding matrix in the codebook includes: the distance between the codebook and the any precoding matrix is sorted from small to large.
  • the processor 53 is configured to read a program in the memory 54, and specifically perform the following process:
  • the processor 53 is configured to read the program in the memory 54, and specifically perform the following process:
  • the pointing angle of the precoding matrix of the terminal is uniformly rotated, and the pointing angle of the precoding matrix of the terminal is uniformly rotated;
  • the first stage l precoding matrix group comprising: the distance between the codebook normal to the antenna array of the base station corresponding vector before ascending to the large order of number N l a precoding matrix, where N l ⁇ N l+1 .
  • the terminal includes: a receiver 61, and a transmitting Machine 62, processor 63 and memory 64, wherein:
  • the processor 63 is configured to read the program in the memory 64, and perform the following process: selecting a precoding matrix from the preset codebook according to the measurement result of the downlink channel, and performing L precodings corresponding to the precoding matrix. Selecting a level 1 precoding matrix group in the matrix group, wherein each precoding matrix group in the L precoding matrix groups includes at least one precoding matrix, and the at least one precoding matrix is from the codebook l ⁇ L, L is a positive integer; the number of stages l of the selected precoding matrix group is reported to the base station.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 63 and various circuits of memory represented by memory 64.
  • the bus architecture also links various other circuits such as peripherals, voltage regulators, and power management circuits. It is well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface. Receiver 61 and transmitter 62 provide means for communicating with various other devices on a transmission medium.
  • the user interface 65 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 63 is responsible for managing the bus and normal processing, and can also provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 64 can be used to store data used by the processor 63 when performing operations.
  • the processor 63 may be a CPU, an ASIC, an FPGA, or a CPLD.
  • the first level precoding matrix group includes: a distance between vectors in the codebook corresponding to a normal line of the antenna array of the base station, and a distance N1 after being sorted from small to large . Precoding matrices, where N l ⁇ N l+1 .
  • the first level precoding matrix group of any precoding matrix in the codebook includes: a distance between the codebook and the any precoding matrix is from small to large.
  • the processor 63 is configured to read the program in the memory 64, and further perform the following process: selecting a precoding matrix from the preset codebook according to the measurement result of the downlink channel; controlling the transmitter 62 to The base station reports an index number of the selected precoding matrix.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • These computer program instructions can also be stored in a particular computer capable of booting a computer or other programmable data processing device In a computer readable memory that operates in a computer readable memory, causing instructions stored in the computer readable memory to produce an article of manufacture comprising instruction means implemented in a block or in a flow or a flow diagram and/or block diagram of the flowchart The functions specified in the boxes.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

一种上行信息反馈和下行数据传输方法和设备,用于解决由于终端移动速度高时,终端上报的CSI信息不足以跟踪上信道的变化情况,基于终端上报的信道状态信息进行数据传输时会造成较为严重的性能损失的问题。方法包括:基站获取终端的预编码矩阵以及所述预编码矩阵对应的L个预编码矩阵组中的第l级预编码矩阵组,其中,所述L个预编码矩阵组中的每个预编码矩阵组包含至少一个预编码矩阵,,所述至少一个预编码矩阵来自于预设的码本,l≤L,L为正整数;基站根据获取到的第l级预编码矩阵组中包含的预编码矩阵,向所述终端发送下行数据。通过预编码矩阵组,形成相对较宽的波束覆盖用户,能够保障终端在高速移动时的下行传输,提高了下行传输的可靠性。

Description

一种上行信息反馈和下行数据传输方法和设备
本申请要求在2015年12月28日提交中国专利局、申请号为201511001496.5、申请名称为“一种上行信息反馈和下行数据传输方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种上行信息反馈和下行数据传输方法和设备。
背景技术
鉴于多输入多输出(Multiple Input Multiple Output,MIMO)技术对于提高峰值速率与系统频谱利用率的重要作用,长期演进(Long Term Evolution,LTE)/LTE-A(LTE-Advanced)等无线接入技术标准都是以MIMO+正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术为基础构建起来的。MIMO技术的性能增益来自于多天线系统所能获得的空间自由度,因此MIMO技术在标准化发展过程中的一个最重要的演进方向便是维度的扩展。在LTE Rel-8中,最多可以支持4层的MIMO传输。Rel-9重点对多用户MIMO(Multi-User MIMO,MU-MIMO)技术进行了增强,传输模式(Transmission Mode,TM)-8的MU-MIMO传输中最多可以支持4个下行数据层。Rel-10则通过8端口信道状态信息参考信号(Channel State Information-Reference Signals,CSI-RS)、用户设备专用参考信号(UE-specific Reference Signal,URS)与多颗粒度码本的引入,进一步提高了信道状态信息的空间分辨率,并进一步将单用户MIMO(Single-User MIMO,SU-MIMO)的传输能力扩展至最多8个数据层。
采用传统PAS(Passive Antenna System)结构的基站天线系统中,多个天线端口(每个端口对应着独立的射频-中频-基带通道)水平排列,而每个端口对应的垂直维的多个阵子之间由射频电缆连接。因此现有的MIMO技术只能在水平维通过对不同端口间的相对幅度/相位的调整实现对各个终端信号在水平维空间特性的优化,在垂直维则只能采用统一的扇区级赋形。移动通信系统中引入AAS(Active Antenna System)技术之后,基站天线系统能够在垂直维获得更大的自由度,能够在三维空间实现用户设备(User Equipment,UE)级的信号优化。
在上述研究、标准化与天线技术发展基础之上,产业界正在进一步地将MIMO技术向着三维化和大规模化的方向推进。目前,3GPP正在开展3D信道建模的研究项目,其后预 计还将继续开展8个天线端口及以下的仰角波束赋形(Elevation Beam Forming,EBF)与超过8个端口(如16、32或64)的全维度MIMO(Full Dimension MIMO,FD-MIMO)技术研究与标准化工作。而学术界则更为前瞻地开展了针对基于更大规模天线阵列(包含一百或数百根甚至更多阵子)的MIMO技术的研究与测试工作。学术研究与初步的信道实测结果表明,大规模MIMO(Massive MIMO)技术将能够极大地提升系统频带利用效率,支持更大数量的接入用户。因此各大研究组织均将Massive MIMO技术视为下一代移动通信系统中最有潜力的物理层技术之一。
在Massive MIMO系统中,随着天线数量的增加,对于业务信道而言,数据的传输质量及干扰抑制能力显著地得益于阵列规模扩大所带来的高预编码/波束赋形空间分辨率。但是,当终端移动速度很高时,终端上报的信道状态信息(Channel State Information,CSI)不足以跟踪上信道的变化情况,因此,基站侧很难实现对用户信道及时地高精度匹配,从而在进行数据传输时造成较为严重的性能损失。
综上所述,由于终端移动速度很高时,终端上报的CSI不足以跟踪上信道的变化情况,基于终端上报的CSI进行数据传输时会造成较为严重的性能损失。
发明内容
本申请实施例提供了一种上行信息反馈和下行数据传输方法和设备,用于解决由于终端移动速度很高时,终端上报的CSI不足以跟踪上信道的变化情况,基于终端上报的CSI进行数据传输时会造成较为严重的性能损失的问题。
本申请实施例提供的下行数据传输方法,包括:
基站获取终端的预编码矩阵以及所述预编码矩阵对应的L个预编码矩阵组中的第l级预编码矩阵组,其中,所述L个预编码矩阵组中的每个预编码矩阵组包含至少一个预编码矩阵,所述至少一个预编码矩阵来自于预设的码本,l≤L,L为正整数;
所述基站根据所述第l级预编码矩阵组中包含的预编码矩阵,向所述终端发送下行数据。
本申请另外的实施例提供的上行信息反馈方法,包括:
终端根据下行信道的测量结果,从预设的码本中选择一个预编码矩阵,并从该预编码矩阵对应的L个预编码矩阵组中选择第l级预编码矩阵组,其中,所述L个预编码矩阵组中的每个预编码矩阵组包含至少一个预编码矩阵,所述至少一个预编码矩阵来自于所述码本,l≤L,L为正整数;
所述终端向基站上报所选择的预编码矩阵组的级数l。
本申请实施例提供的基站,包括:
获取模块,用于获取终端的预编码矩阵以及所述预编码矩阵对应的L个预编码矩阵组中的第l级预编码矩阵组,其中,所述L个预编码矩阵组中的每个预编码矩阵组包含至少一个预编码矩阵,所述至少一个预编码矩阵来自于预设的码本,l≤L,L为正整数;
传输模块,用于根据所述第l级预编码矩阵组中包含的预编码矩阵,向所述终端发送下行数据。
本申请实施例提供的终端,包括:
选择模块,用于根据下行信道的测量结果,从预设的码本中选择一个预编码矩阵,并从该预编码矩阵对应的L个预编码矩阵组中选择第l级预编码矩阵组,其中,所述L个预编码矩阵组中的每个预编码矩阵组包含至少一个预编码矩阵,所述至少一个预编码矩阵来自于所述码本,l≤L,L为正整数;
上报模块,用于向基站上报所选择的预编码矩阵组的级数l。
本申请另外的实施例提供的基站,包括:处理器、存储器、收发机以及总线接口;
所述处理器,用于读取存储器中的程序,执行下列过程:
获取终端的预编码矩阵以及所述预编码矩阵对应的L个预编码矩阵组中的第l级预编码矩阵组,其中,所述L个预编码矩阵组中的每个预编码矩阵组包含至少一个预编码矩阵,所述至少一个预编码矩阵来自于预设的码本,l≤L,L为正整数;
根据所述第l级预编码矩阵组中包含的预编码矩阵,向所述终端发送下行数据。
本申请另外的实施例提供的终端,包括:处理器、存储器、收发机以及总线接口;
所述处理器,用于读取存储器中的程序,执行下列过程:
根据下行信道的测量结果,从预设的码本中选择一个预编码矩阵,并从该预编码矩阵对应的L个预编码矩阵组中选择第l级预编码矩阵组,其中,所述L个预编码矩阵组中的每个预编码矩阵组包含至少一个预编码矩阵,所述至少一个预编码矩阵来自于所述码本,l≤L,L为正整数;
向基站上报所选择的预编码矩阵组的级数l。
本申请实施例提供的方案中,预先对码本中的预编码矩阵进行了分组,得到L个预编码矩阵组,通过该L个预编码矩阵组,形成相对较宽的波束覆盖用户,根据每个预编码矩阵组中包含的预编码矩阵,对下行数据进行预编码处理,能够保障终端在高速移动时的下行传输,提高了下行传输的可靠性。
附图说明
图1为本申请实施例一中的一种下行数据传输方法的流程示意图;
图2为本申请实施例二中的一种上行信息反馈方法的流程示意图;
图3为本申请实施例三中的一种基站的示意图;
图4为本申请实施例四中的一种终端的示意图;
图5为本申请实施例五中的另一种基站的示意图;
图6为本申请实施例六中的另一种终端的示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供的技术可用于各种通信系统,例如当前2G,3G通信系统和下一代通信系统,例如全球移动通信系统(GSM,Global System for Mobile communications),码分多址(CDMA,Code Division Multiple Access)系统,时分多址(TDMA,Time Division Multiple Access)系统,宽带码分多址(WCDMA,Wideband Code Division Multiple Access Wireless),频分多址(FDMA,Frequency Division Multiple Addressing)系统,正交频分多址(OFDMA,Orthogonal Frequency-Division Multiple Access)系统,单载波FDMA(SC-FDMA)系统,通用分组无线业务(GPRS,General Packet Radio Service)系统,长期演进(LTE,Long Term Evolution)系统,以及其他此类通信系统。
本申请实施例中的用户设备可以是无线终端,无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(例如,RAN,Radio Access Network)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
本申请实施例中的基站可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(BTS,Base  Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),本申请实施例中并不限定。
下面结合说明书附图对本申请实施例作进一步详细描述。应当理解,此处所描述的实施例仅用于说明和解释本申请,并不用于限定本申请。
本申请实施例一中,提供了一种下行数据传输方法,如图1所示,所述方法包括:
S11、基站获取终端的预编码矩阵对应的第l级预编码矩阵组,其中,所述终端的预编码矩阵对应L个预编码矩阵组,每个预编码矩阵组包含预设的码本中的至少一个预编码矩阵,l=1,...,L,L为正整数;
S12、基站根据获取到的第l级预编码矩阵组中包含的预编码矩阵,向所述终端发送下行数据。
具体的,基站获取终端的预编码矩阵,获取该预编码矩阵对应的预编码矩阵组,根据获取到的预编码矩阵组中包含的预编码矩阵,对需要发送给所述终端的下行数据进行预编码处理,然后向所述终端发送预编码处理后的下行数据。举例说明,基站将获取到的第l级预编码矩阵组中包含的每个预编码矩阵乘以该预编码矩阵的权值,并使用第l级预编码矩阵组中包含的每个加权后的预编码矩阵之和,对需要向所述终端发送下行数据进行预编码传输。当然,本申请实施例不限定采用上述方式进行处理,还可以采用其他方式,此处不再一一举例说明。
本申请实施例中,基站获取终端的预编码矩阵对应的预编码矩阵组,并根据获取到的预编码矩阵组中包含的预编码矩阵,对需要发送给所述终端的下行数据进行预编码处理。本申请实施例提供的方案中,预先对码本中的预编码矩阵进行了分组,使得任一一个预编码矩阵对应L个预编码矩阵组,通过该L个预编码矩阵组,形成相对较宽的波束覆盖用户。基站基于终端下行信道对应的预编码矩阵,根据该终端的移动速度从该预编码所对应的L个预编码矩阵组中选择一级预编码矩阵组,根据该级预编码矩阵组中包含的预编码矩阵,对下行数据进行预编码处理,能够保障终端在高速移动时的下行传输,提高了下行传输的可靠性。
本申请实施例在实施时包括以下两种应用场景:
场景一、上行信道和下行信道互易性难以保障的场景,例如频分双工(Frequency Division Duplex,FDD)系统,或未经过良好校准的时分双工(Time Division Duplex,TDD)系统。
该场景下,所述码本中的任一预编码矩阵的第l级预编码矩阵组中包含:所述码本中 与所述任一预编码矩阵之间的距离按从小到大排序后的前Nl个预编码矩阵,其中,Nl<Nl+1
具体的,码本中的每个预编码矩阵对应L个预编码矩阵组,每个预编码矩阵组形成相对较宽的波束覆盖范围。在划分每个预编码矩阵对应的L个预编码矩阵组时,先确定出该预编码矩阵与码本中除该预编码矩阵之外的预编码矩阵之间的距离,并将得到的距离按照从小到大排序;然后,从剩余的预编码矩阵(即码本中除该预编码矩阵之外的预编码矩阵)中,选择出前N1个预编码矩阵作为该预编码矩阵的第一级预编码矩阵组;从剩余的预编码矩阵(即码本中除该预编码矩阵之外的预编码矩阵)中,选择出前N2个预编码矩阵作为该预编码矩阵的第二级预编码矩阵组;依次类推,直至从剩余的预编码矩阵(即码本中除该预编码矩阵之外的预编码矩阵)中,选择出前NL个预编码矩阵作为该预编码矩阵的第L级预编码矩阵组,从而确定出该预编码矩阵对应的L个预编码矩阵组。其中,N1<N2<...<NL,1≤l≤L,第l+1级预编码矩阵组中包含第l级预编码矩阵组的所有预编码矩阵。
在实施中,任意两个预编码矩阵之间的距离可以为该两个预编码矩阵的模值的平方和,如预编码矩阵与预编码矩阵P2的距离为abs(P1 H*P2),其中,abs表示求模运算,P1 H表示P1的共轭转置矩阵,此时,该两个预编码矩阵之间的距离表征这两个预编码矩阵的相似度。任意两个预编码矩阵之间的距离还可以为欧几里德距离,如预编码矩阵P1与预编码矩阵P2的距离为abs(P1-P2)2。本申请实施例不对计算任意两个预编码矩阵之间的距离的方法进行限定。
需要说明的是,预设的码本中每个预编码矩阵对应的L个预编码矩阵组可以由基站确定,并通知给网络中的每个终端,如通过广播方式通知给各终端;也可以在协议里规定。本申请实施例不作限定,只要保证基站与终端对码本中每个预编码矩阵对应的L个预编码矩阵组的理解一致即可。
该场景下,基站获取终端的预编码矩阵对应的预编码矩阵组的级数l,包括以下两种实现方式:
方式1、由终端基于信道测量,如CSI测量,从预设的码本中选择一个预编码矩阵,确定为该终端的预编码矩阵,并将所选择的预编码矩阵的索引号上报给基站。基站侧的实现具体如下:基站接收终端上报的预编码矩阵的索引号;基站在确定出所述终端当前的移动速度大于设定阈值时,根据移动速度、预编码矩阵、以及预编码矩阵组的级数之间的对 应关系,确定出所述终端当前的移动速度和所述终端上报的预编码矩阵对应的预编码矩阵组的级数l;基站根据所述终端上报的索引号和确定出的级数l,获取所述终端的预编码矩阵对应的第l级预编码矩阵组。
具体地,可针对一个预编码矩阵所对应的L个预编码矩阵组中的每级预编码矩阵组设置对应的移动速度信息(比如移动速度取值区间),终端在相应移动速度移动的情况下使用该级预编码矩阵组进行下行数据接收时得到的信噪比大于等于设定阈值。基站在确定出终端当前的移动速度大于设定阈值时,可根据该终端上报的预编码矩阵索引号确定对应的预编码矩阵,确定该预编码矩阵对应的L个预编码矩阵组,根据该终端当前的移动速度以及该L个预编码矩阵组中的每个预编码矩阵组分别对应一个移动速度信息,确定该终端当前的移动速度对应的第l级预编码矩阵组。比如,如果终端当前的移动速度落入预先设置的某个移动速度取值区间,则选择该移动速度取值区间所对应的预编码矩阵组对该终端的下行数据进行预编码处理。其中,基站可根据终端上报的下行信道测量信息,确定终端当前的移动速度;基站也可以根据对终端的上行信道进行测量,来确定终端当前的移动速度。
该方式下,移动速度、预编码矩阵、以及预编码矩阵组的级数之间的对应关系可以通过仿真确定。举例说明,统计终端移动时最大多普勒扩展与接收信噪比之间的对应关系。对于每个预编码矩阵,预先设定使用该预编码矩阵的第一级预编码矩阵组时接收信噪比相对于理想预编码的信噪比比值的门限(如70%),根据仿真判断满足该门限时的最小级数。由此生成移动速度范围、预编码矩阵与预编码矩阵组的级数l之间的对应关系。其中,对于一个预编码矩阵来说,它所对应的L级预编码矩阵组分别对应一个移动速度或移动速度范围。
作为另一种实现方式,基站在确定出终端当前的移动速度小于或等于设定阈值时,使用终端上报的预编码矩阵进行下行数据传输。
方式2、由终端基于信道测量,从预设的码本中,选择一个预编码矩阵,确定为该终端的预编码矩阵,并基于信道测量从该预编码矩阵对应的L个预编码矩阵组中选择一个预编码矩阵组,并将所选择的预编码矩阵的索引号和预编码矩阵组的级数上报给基站。基站侧的实现具体如下:基站接收所述终端上报的预编码矩阵的索引号和预编码矩阵组的级数l;基站根据所述终端上报的索引号和级数l,获取所述终端的预编码矩阵对应的第l级预编码矩阵组。
该方式下,终端侧的实现具体如下:终端根据下行信道的测量结果,从预设的码本中,选择一个预编码矩阵;终端根据下行信道的测量结果,从所选择的预编码矩阵对应的L个预编码矩阵组中,选择一个预编码矩阵组;终端向基站上报所选择的预编码矩阵的索引号 和所选择的预编码矩阵组的级数。
场景二、上行信道和下行信道互易性可用的场景,例如经过良好校准的TDD系统。
该场景下,第l级预编码矩阵组中包含:预设的码本中与所述基站的天线阵列的法线对应的向量之间的距离按从小到大排序后的前Nl个的预编码矩阵,其中,Nl<Nl+1
具体的,将预设的码本中的预编码矩阵划分为L个预编码矩阵组,每个预编码矩阵组形成相对较宽的波束覆盖范围。在划分每个预编码矩阵组时,先确定出该码本中的每个预编码矩阵与基站的天线阵列的法线方向对应的向量之间的距离,并将码本中的预编码矩阵按照所述距离从小到大排序;然后,选择出前N1个预编码矩阵作为第一级预编码矩阵组,选择出前N2个预编码矩阵作为第二级预编码矩阵组,依次类推,直至选择出前NL个预编码矩阵作为第L级预编码矩阵组,从而确定出L个预编码矩阵组。其中,第l+1级预编码矩阵组中包含第l级预编码矩阵组的所有预编码矩阵。
其中,基站的天线阵列的法线对应的向量中包含的元素相同,如该向量为全1的向量,即该向量中的元素均为1。
在实施中,每个预编码矩阵与基站的天线阵列的法线方向对应的向量之间的距离可以通过以下方法确定:分别计算该预编码矩阵的各列向量与法线方向对应的向量之间的距离,然后将计算得到的各距离之和,确定为该预编码矩阵与基站的天线阵列的法线方向对应的向量之间的距离。其中,向量与向量之间的距离的确定方法与任意两个预编码矩阵之间距离的确定方法相似,具体参见上述场景一中的相关描述,此处不再赘述。
需要说明的是,预设的码本对应的L个预编码矩阵组可以由基站确定,并通知给网络中的每个终端,如通过广播方式通知给各终端;也可以在协议里规定。本申请实施例不作限定,只要保证基站与终端对码本中每个预编码矩阵对应的L个预编码矩阵组的理解一致即可。
该场景下,基站获取终端的预编码矩阵对应的预编码矩阵组,包括以下两种可选的实现方式:
方式一、由基站从预设的码本中为终端选择预编码矩阵,并根据移动速度、预编码矩阵、以及预编码矩阵组的级数之间的对应关系,确定出对应的预编码矩阵组。具体实现如下:
基站根据对终端的上行信道的测量,从所述码本中为所述终端选择一个预编码矩阵;基站在确定出所述终端当前的移动速度大于设定阈值时,根据移动速度、预编码矩阵、以及预编码矩阵组的级数之间的对应关系,确定出所述终端当前的移动速度和所选择的预编 码矩阵对应的预编码矩阵组的级数;基站根据所选择的预编码矩阵的索引号和确定出的级数l,获取所述终端的预编码矩阵对应的第l级预编码矩阵组。具体地,在确定第l级预编码矩阵组的过程中,基站可根据终端上报的预编码矩阵索引号确定对应的预编码矩阵,确定该预编码矩阵对应的L个预编码矩阵组,根据终端当前的移动速度以及该L个预编码矩阵组中的每个预编码矩阵组分别对应一个移动速度信息,确定该终端当前的移动速度对应的第l级预编码矩阵组。
其中,移动速度、预编码矩阵、以及预编码矩阵组的级数之间的对应关系的确定可参见上述方式1中的相关描述。
方式二、由终端根据下行信道的测量,选择一个预编码矩阵组,并将所选择的预编码矩阵组的级数上报给基站;由基站根据所述终端上报的级数和对终端的上行信道的测量,确定出所述终端的预编码矩阵对应的预编码矩阵组。基站侧的具体实现如下:
基站接收所述终端上报的预编码矩阵组的级数l;基站根据对所述终端的上行信道的测量,从所述码本中为所述终端选择一个预编码矩阵,并将所述终端上报的级数l对应的预编码矩阵组,确定为所述终端的预编码矩阵对应的第l级预编码矩阵组。
该场景下,基站根据获取到的第l级预编码矩阵组中包含的预编码矩阵,向所述终端发送下行数据,包括:基站根据所述终端的预编码矩阵的指向角度,将获取到的第l级预编码矩阵组中包含的每个预编码矩阵的指向角度,统一旋转所述终端的预编码矩阵的指向角度;基站根据获取到的第l级预编码矩阵组中包含的角度旋转后的预编码矩阵,向所述终端发送下行数据。其中,预编码矩阵用来进行波束赋形,基站采用预编码矩阵对下行数据进行波束赋形处理后,基站发送的波束具有一定角度,可将该角度称为该预编码矩阵的指向角度。
该方式下,终端侧的实现具体如下:终端根据下行信道的测量结果,从L个预编码矩阵组中,选择一个预编码矩阵组;终端向基站上报所选择的预编码矩阵组的级数。
基于同一申请构思,本申请实施例二中,提供了一种上行信息反馈方法,如图2所示,该方法包括:
S21、终端根据下行信道的测量结果,从L个预编码矩阵组中,选择一个预编码矩阵组,其中,每个预编码矩阵组包含预设的码本中的至少一个预编码矩阵,L为正整数;
S22、终端向基站上报所选择的预编码矩阵组的级数l,其中,l=1,...,L。
本申请实施例中,终端根据下行信道的测量结果,从L个预编码矩阵组中,选择一个预编码矩阵组,并向基站上报所选择的预编码矩阵组的级数。本申请实施例提供的方案中, 预先对码本中的预编码矩阵进行了分组,得到L个预编码矩阵组,通过该L个预编码矩阵组,形成相对较宽的波束覆盖用户,根据每个预编码矩阵组中包含的预编码矩阵,对下行数据进行预编码处理,能够保障终端在高速移动时的下行传输,提高了下行传输的可靠性。具体地,终端可确定该终端当前的移动速度;在确定出所述终端当前的移动速度大于设定阈值时,确定所选择的预编码矩阵对应的L个预编码矩阵组,根据该终端当前的移动速度以及该L个预编码矩阵组中的每个预编码矩阵组分别对应一个移动速度信息,选择该终端当前的移动速度对应的第l级预编码矩阵组。
应用于上述场景二时,终端执行步骤S21和步骤S22即可,该场景下,预设的码本对应的L个预编码矩阵组的确定可参见图1所示的实施例中的相关描述。
可选的,应用于上述场景一时,S21中终端根据下行信道的测量结果,从L个预编码矩阵组中,选择一个预编码矩阵组,还包括:终端根据下行信道的测量结果,从预设的码本中,选择一个预编码矩阵;
S22中终端向基站上报所选择的预编码矩阵组的级数,还包括:终端向所述基站上报所选择的预编码矩阵的索引号。
其中,该场景下,预设的码本中的每个预编码矩阵对应的L个预编码矩阵组的确定可参见图1所示的实施例中的相关描述。
上述方法处理流程可以用软件程序实现,该软件程序可以存储在存储介质中,当存储的软件程序被调用时,执行上述方法步骤。
基于同一申请构思,本申请实施例三中,提供了一种基站,如图3所示,所述基站包括:
获取模块31,用于获取终端的预编码矩阵以及所述预编码矩阵对应的L个预编码矩阵组中的第l级预编码矩阵组,其中,所述L个预编码矩阵组中的每个预编码矩阵组包含至少一个预编码矩阵,所述至少一个预编码矩阵来自于预设的码本,l≤L,L为正整数;
传输模块32,用于根据获取到的第l级预编码矩阵组中包含的预编码矩阵,向所述终端发送下行数据。
作为一种实现方式,所述L个预编码矩阵组中的每个预编码矩阵组分别对应一个移动速度信息,针对任一个预编码矩阵组所对应的移动速度信息,终端在相应移动速度移动的情况下使用该级预编码矩阵组进行下行数据接收时得到的信噪比大于等于设定阈值。获取模块31具体用于:根据所述终端当前的移动速度以及所述L个预编码矩阵组中的每个预编码矩阵组分别对应移动速度信息,确定与所述终端当前的移动速度对应的第l级预编码矩阵组。
作为一种实现方式,所述获取模块31具体用于:
接收所述终端上报的预编码矩阵的索引号;确定所述终端当前的移动速度;在确定出所述终端当前的移动速度大于设定阈值时,所述终端上报的预编码矩阵索引号确定对应的预编码矩阵,确定所述预编码矩阵对应的L个预编码矩阵组,根据所述终端当前的移动速度以及所述L个预编码矩阵组中的每个预编码矩阵组分别对应一个移动速度信息,确定所述终端当前的移动速度对应的第l级预编码矩阵组;
或者,所述获取模块31具体用于:
接收所述终端上报的预编码矩阵的索引号和相应预编码矩阵对应的L个预编码矩阵组中的第l级预编码矩阵组的级数l;根据所述终端上报的索引号和级数l,获取相应预编码矩阵对应的L个预编码矩阵组中的第l级预编码矩阵组。
该方式下,所述码本中的任一预编码矩阵对应L个预编码矩阵组,所述L个预编码矩阵组中的第l级预编码矩阵组中包含Nl个预编码矩阵,所述Nl个预编码矩阵为所述码本中与所述任一预编码矩阵之间的距离按从小到大排序后的前Nl个预编码矩阵,其中,Nl<Nl+1
作为另一种实现方式,所述获取模块31具体用于:
根据对终端的上行信道的测量,从所述码本中为所述终端选择一个预编码矩阵;确定所述终端当前的移动速度;在确定出所述终端当前的移动速度大于设定阈值时,根据所述终端上报的预编码矩阵索引号确定对应的预编码矩阵,确定所述预编码矩阵对应的L个预编码矩阵组,根据所述终端当前的移动速度以及所述L个预编码矩阵组中的每个预编码矩阵组分别对应一个移动速度信息,确定所述终端当前的移动速度对应的第l级预编码矩阵组;
或者,所述获取模块31具体用于:
接收所述终端上报的预编码矩阵组的级数l;根据对所述终端的上行信道的测量,从所述码本中为所述终端选择一个预编码矩阵,根据所述终端上报的级数l,将选择出的预编码矩阵对应的L个预编码矩阵组中的第l级预编码矩阵组,确定为所述终端的预编码矩阵对应的第l级预编码矩阵组。
该方式下,所述第l级预编码矩阵组中包含:所述码本中与所述基站的天线阵列的法线对应的向量之间的距离按从小到大排序后的前Nl个的预编码矩阵,其中,Nl<Nl+1
可选地,所述传输模块32具体用于:
根据所述终端的预编码矩阵的指向角度,将获取到的第l级预编码矩阵组中包含的每个预编码矩阵的指向角度,统一旋转所述终端的预编码矩阵的指向角度;
根据获取到的第l级预编码矩阵组中包含的角度旋转后的预编码矩阵,向所述终端发送下行数据。
基于同一申请构思,本申请实施例四中,提供了一种终端,如图4所示,所述终端包括:
选择模块41,用于根据下行信道的测量结果,从预设的码本中选择一个预编码矩阵,并从该预编码矩阵对应的L个预编码矩阵组中选择第l级预编码矩阵组,其中,所述L个预编码矩阵组中的每个预编码矩阵组包含至少一个预编码矩阵,所述至少一个预编码矩阵来自于所述码本,l≤L,L为正整数;
上报模块42,用于向基站上报所选择的预编码矩阵组的级数l,l=1,...,L。
作为一种实现方式,所述第l级预编码矩阵组中包含:所述码本中与所述基站的天线阵列的法线对应的向量之间的距离按从小到大排序后的前Nl个的预编码矩阵,其中,Nl<Nl+1
作为另一种实现方式,所述码本中的任一预编码矩阵的第l级预编码矩阵组中包含:所述码本中与所述任一预编码矩阵之间的距离按从小到大排序后的前Nl个预编码矩阵,其中,Nl<Nl+1
作为另一种实现方式,所述L个预编码矩阵组中的每个预编码矩阵组分别对应一个移动速度信息,针对任一个预编码矩阵组所对应的移动速度信息,终端在相应移动速度移动的情况下使用该级预编码矩阵组进行下行数据接收时得到的信噪比大于等于设定阈值。选择模块41具体用于:
确定所述终端当前的移动速度;
在确定出所述终端当前的移动速度大于设定阈值时,确定所选择的预编码矩阵对应的L个预编码矩阵组,根据所述终端当前的移动速度以及所述L个预编码矩阵组中的每个预编码矩阵组分别对应一个移动速度信息,选择所述终端当前的移动速度对应的第l级预编码矩阵组。
该方式下,所述选择模块41还用于:根据下行信道的测量结果,从预设的码本中,选择一个预编码矩阵;
所述上报模块42还用于:向所述基站上报所选择的预编码矩阵的索引号。
基于同一申请构思,本申请实施例五中,提供了另一种基站,该基站可执行本申请实施例一中描述的各步骤,如图5所示,所述基站包括:接收机51、发射机52、处理器53和存储器54,其中:
处理器53,用于读取存储器54中的程序,执行下列过程:
获取终端的预编码矩阵以及所述预编码矩阵对应的L个预编码矩阵组中的第l级预编码矩阵组,其中,所述L个预编码矩阵组中的每个预编码矩阵组包含至少一个预编码矩阵,所述至少一个预编码矩阵来自于预设的码本,l≤L,L为正整数;
接收机51,用于在处理器53的控制下接收数据。
其中,在图5中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器53代表的一个或多个处理器和存储器54代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。接收机51和发射机52,提供用于在传输介质上与各种其他装置通信的单元。
处理器53负责管理总线和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器54可以被用于存储处理器53在执行操作时所使用的数据。
可选的,处理器53可以是CPU(中央处埋器)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。
作为一种实现方式,处理器53用于读取存储器54中的程序,具体执行下列过程:
通过接收机51接收所述终端上报的预编码矩阵的索引号;在确定出所述终端当前的移动速度大于设定阈值时,根据移动速度、预编码矩阵、以及预编码矩阵组的级数之间的对应关系,确定出所述终端当前的移动速度和所述终端上报的预编码矩阵对应的预编码矩阵组的级数l;根据所述终端上报的索引号和确定出的级数l,获取所述终端的预编码矩阵对应的第l级预编码矩阵组;
或者
通过接收机51接收所述终端上报的预编码矩阵的索引号和预编码矩阵组的级数l;根据所述终端上报的索引号和级数l,获取所述终端的预编码矩阵对应的第l级预编码矩阵组。
该方式下,所述码本中的任一预编码矩阵的第l级预编码矩阵组中包含:所述码本中 与所述任一预编码矩阵之间的距离按从小到大排序后的前Nl个预编码矩阵,其中,Nl<Nl+1
作为另一种实现方式,处理器53用于读取存储器54中的程序,具体执行下列过程:
根据对终端的上行信道的测量,从所述码本中为所述终端选择一个预编码矩阵;在确定出所述终端当前的移动速度大于设定阈值时,根据移动速度、预编码矩阵、以及预编码矩阵组的级数之间的对应关系,确定出所述终端当前的移动速度和所选择的预编码矩阵对应的预编码矩阵组的级数;根据所选择的预编码矩阵的索引号和确定出的级数l,获取所述终端的预编码矩阵对应的第l级预编码矩阵组;
或者
通过接收机51接收所述终端上报的预编码矩阵组的级数l;根据对所述终端的上行信道的测量,从所述码本中为所述终端选择一个预编码矩阵,并将所述终端上报的级数l对应的预编码矩阵组,确定为所述终端的预编码矩阵对应的第l级预编码矩阵组。
该方式下,处理器53用于读取存储器54中的程序,具体执行下列过程:
根据所述终端的预编码矩阵的指向角度,将获取到的第l级预编码矩阵组中包含的每个预编码矩阵的指向角度,统一旋转所述终端的预编码矩阵的指向角度;
根据获取到的第l级预编码矩阵组中包含的角度旋转后的预编码矩阵,控制所述发射机52向所述终端发送下行数据。
该方式下,所述第l级预编码矩阵组中包含:所述码本中与所述基站的天线阵列的法线对应的向量之间的距离按从小到大排序后的前Nl个的预编码矩阵,其中,Nl<Nl+1
基于同一申请构思,本申请实施例六中,提供了另一种终端,该终端可执行本申请实施例二中描述的各步骤,如图6所示,所述终端包括:接收机61、发射机62、处理器63和存储器64,其中:
处理器63,用于读取存储器64中的程序,执行下列过程:根据下行信道的测量结果,从预设的码本中选择一个预编码矩阵,并从该预编码矩阵对应的L个预编码矩阵组中选择第l级预编码矩阵组,其中,所述L个预编码矩阵组中的每个预编码矩阵组包含至少一个预编码矩阵,所述至少一个预编码矩阵来自于所述码本,l≤L,L为正整数;向基站上报所选择的预编码矩阵组的级数l。
其中,在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器63代表的一个或多个处理器和存储器64代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都 是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。接收机61和发射机62,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口65还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器63负责管理总线和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器64可以被用于存储处理器63在执行操作时所使用的数据。
可选的,处理器63可以是CPU、ASIC、FPGA或CPLD。
作为一种实现方式,所述第l级预编码矩阵组中包含:所述码本中与所述基站的天线阵列的法线对应的向量之间的距离按从小到大排序后的前Nl个的预编码矩阵,其中,Nl<Nl+1
作为另一种实现方式,所述码本中的任一预编码矩阵的第l级预编码矩阵组中包含:所述码本中与所述任一预编码矩阵之间的距离按从小到大排序后的前Nl个预编码矩阵,其中,Nl<Nl+1
该方式下,处理器63用于读取存储器64中的程序,还执行下列过程:根据下行信道的测量结果,从预设的码本中,选择一个预编码矩阵;控制所述发射机62向所述基站上报所选择的预编码矩阵的索引号。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (26)

  1. 一种下行数据传输方法,其特征在于,所述方法包括:
    基站获取终端的预编码矩阵以及所述预编码矩阵对应的L个预编码矩阵组中的第l级预编码矩阵组,其中,所述L个预编码矩阵组中的每个预编码矩阵组包含至少一个预编码矩阵,所述至少一个预编码矩阵来自于预设的码本,l≤L,L为正整数;
    所述基站根据所述第l级预编码矩阵组中包含的预编码矩阵,向所述终端发送下行数据。
  2. 如权利要求1所述的方法,其特征在于,所述L个预编码矩阵组中的每个预编码矩阵组分别对应一个移动速度信息,针对任一个预编码矩阵组所对应的移动速度信息,终端在相应移动速度移动的情况下使用该级预编码矩阵组进行下行数据接收时得到的信噪比大于等于设定阈值;
    基站获取所述预编码矩阵对应的L个预编码矩阵组中的第l级预编码矩阵组,包括:
    所述基站根据所述终端当前的移动速度以及所述L个预编码矩阵组中的每个预编码矩阵组分别对应移动速度信息,确定与所述终端当前的移动速度对应的第l级预编码矩阵组。
  3. 如权利要求1或2所述的方法,其特征在于,所述基站获取终端的预编码矩阵以及所述预编码矩阵对应的L个预编码矩阵组中的第l级预编码矩阵组,包括:
    所述基站接收所述终端上报的预编码矩阵的索引号;
    所述基站确定所述终端当前的移动速度;
    在确定出所述终端当前的移动速度大于设定阈值时,所述基站根据所述终端上报的预编码矩阵索引号确定对应的预编码矩阵,确定所述预编码矩阵对应的L个预编码矩阵组,根据所述终端当前的移动速度以及所述L个预编码矩阵组中的每个预编码矩阵组分别对应一个移动速度信息,确定所述终端当前的移动速度对应的第l级预编码矩阵组;
    或者,所述基站获取终端的预编码矩阵以及所述预编码矩阵对应的L级预编码矩阵组中的第l级预编码矩阵组,包括:
    所述基站接收所述终端上报的预编码矩阵的索引号和相应预编码矩阵对应的L个预编码矩阵组中的第l级预编码矩阵组的级数l;
    所述基站根据所述终端上报的索引号和级数l,获取相应预编码矩阵对应的L个预编码矩阵组中的第l级预编码矩阵组。
  4. 如权利要求3所述的方法,其特征在于,所述码本中的任一预编码矩阵对应L个 预编码矩阵组,所述L个预编码矩阵组中的第l级预编码矩阵组中包含Nl个预编码矩阵,所述Nl个预编码矩阵为所述码本中与所述任一预编码矩阵之间的距离按从小到大排序后的前Nl个预编码矩阵,其中,Nl<Nl+1
  5. 如权利要求1所述的方法,其特征在于,所述基站获取终端的预编码矩阵以及所述预编码矩阵对应的L个预编码矩阵组中的第l级预编码矩阵组,包括:
    所述基站测量所述终端的上行信道,根据测量结果从所述码本中为所述终端选择一个预编码矩阵;
    所述基站确定所述终端当前的移动速度;
    所述基站在确定出所述终端当前的移动速度大于设定阈值时,所述基站根据所述终端上报的预编码矩阵索引号确定对应的预编码矩阵,确定所述预编码矩阵对应的L个预编码矩阵组,根据所述终端当前的移动速度以及所述L个预编码矩阵组中的每个预编码矩阵组分别对应一个移动速度信息,确定所述终端当前的移动速度对应的第l级预编码矩阵组;
    或者,所述基站获取终端的预编码矩阵以及所述预编码矩阵对应的L个预编码矩阵组中的第l级预编码矩阵组,包括:
    所述基站接收所述终端上报的预编码矩阵组的级数l;
    所述基站根据对所述终端的上行信道的测量,从所述码本中为所述终端选择一个预编码矩阵;
    所述基站根据所述终端上报的级数l,将选择出的预编码矩阵对应的L个预编码矩阵组中的第l级预编码矩阵组,确定为所述终端的预编码矩阵对应的第l级预编码矩阵组。
  6. 如权利要求5所述的方法,其特征在于,所述码本中的任一预编码矩阵对应L个预编码矩阵组,所述L个预编码矩阵组中的第l级预编码矩阵组中包含Nl个预编码矩阵,所述Nl个预编码矩阵为所述码本中与所述基站的天线阵列的法线对应的向量之间的距离按从小到大排序后的前Nl个的预编码矩阵,其中,Nl<Nl+1
  7. 如权利要求1至6中任一项所述的方法,其特征在于,所述基站根据所述第l级预编码矩阵组中包含的预编码矩阵,向所述终端发送下行数据,包括:
    所述基站根据所述预编码矩阵的指向角度,将所述第l级预编码矩阵组中包含的每个预编码矩阵的指向角度,统一旋转所述指向角度;
    所述基站根据角度旋转后的第l级预编码矩阵组中的预编码矩阵,向所述终端发送下行数据。
  8. 一种上行信息反馈方法,其特征在于,所述方法包括:
    终端根据下行信道的测量结果,从预设的码本中选择一个预编码矩阵,并从该预编码矩阵对应的L个预编码矩阵组中选择第l级预编码矩阵组,其中,所述L个预编码矩阵组中的每个预编码矩阵组包含至少一个预编码矩阵,所述至少一个预编码矩阵来自于所述码本,l≤L,L为正整数;
    所述终端向基站上报所选择的预编码矩阵组的级数l。
  9. 如权利要求8所述的方法,其特征在于,所述第l级预编码矩阵组中包含:所述码本中与所述基站的天线阵列的法线对应的向量之间的距离按从小到大排序后的前Nl个的预编码矩阵,其中,Nl<Nl+1
  10. 如权利要求8所述的方法,其特征在于,所述码本中的任一预编码矩阵的第l级预编码矩阵组中包含:所述码本中与所述任一预编码矩阵之间的距离按从小到大排序后的前Nl个预编码矩阵,其中,Nl<Nl+1
  11. 如权利要求8至10中任一项所述的方法,其特征在于,所述L个预编码矩阵组中的每个预编码矩阵组分别对应一个移动速度信息,针对任一个预编码矩阵组所对应的移动速度信息,终端在相应移动速度移动的情况下使用该级预编码矩阵组进行下行数据接收时得到的信噪比大于等于设定阈值;
    所述从该预编码矩阵的L个预编码矩阵组中选择第l级预编码矩阵组,包括:
    所述终端确定所述终端当前的移动速度;
    所述终端在确定出所述终端当前的移动速度大于设定阈值时,确定所选择的预编码矩阵对应的L个预编码矩阵组,根据所述终端当前的移动速度以及所述L个预编码矩阵组中的每个预编码矩阵组分别对应一个移动速度信息,选择所述终端当前的移动速度对应的第l级预编码矩阵组。
  12. 如权利要求8至10中任一项所述方法,其特征在于,还包括:
    所述终端向所述基站上报所选择的预编码矩阵的索引号。
  13. 一种基站,其特征在于,所述基站包括:
    获取模块,用于获取终端的预编码矩阵以及所述预编码矩阵对应的L个预编码矩阵组中的第l级预编码矩阵组,其中,所述L个预编码矩阵组中的每个预编码矩阵组包含至少一个预编码矩阵,所述至少一个预编码矩阵来自于预设的码本,l≤L,L为正整数;
    传输模块,用于根据所述第l级预编码矩阵组中包含的预编码矩阵,向所述终端发送下行数据。
  14. 如权利要求13所述的基站,其特征在于,所述L个预编码矩阵组中的每个预编码矩阵组分别对应一个移动速度信息,针对任一个预编码矩阵组所对应的移动速度信息,终端在相应移动速度移动的情况下使用该级预编码矩阵组进行下行数据接收时得到的信噪比大于等于设定阈值;
    所述获取模块具体用于:根据所述终端当前的移动速度以及所述L个预编码矩阵组中的每个预编码矩阵组分别对应移动速度信息,确定与所述终端当前的移动速度对应的第l级预编码矩阵组。
  15. 如权利要求13或14所述的基站,其特征在于,所述获取模块具体用于:
    接收所述终端上报的预编码矩阵的索引号;
    确定所述终端当前的移动速度;
    在确定出所述终端当前的移动速度大于设定阈值时,根据所述终端上报的预编码矩阵索引号确定对应的预编码矩阵,确定所述预编码矩阵对应的L个预编码矩阵组,根据所述终端当前的移动速度以及所述L个预编码矩阵组中的每个预编码矩阵组分别对应一个移动速度信息,确定所述终端当前的移动速度对应的第l级预编码矩阵组;
    或者,所述获取模块具体用于:
    接收所述终端上报的预编码矩阵的索引号和相应预编码矩阵对应的L个预编码矩阵组中的第l级预编码矩阵组的级数l;根据所述终端上报的索引号和级数l,获取相应预编码矩阵对应的L个预编码矩阵组中的第l级预编码矩阵组。
  16. 如权利要求15所述的基站,其特征在于,所述码本中的任一预编码矩阵对应L个预编码矩阵组,所述L个预编码矩阵组中的第l级预编码矩阵组中包含Nl个预编码矩阵,所述Nl个预编码矩阵为所述码本中与所述任一预编码矩阵之间的距离按从小到大排序后的前Nl个预编码矩阵,其中,Nl<Nl+1
  17. 如权利要求13所述的基站,其特征在于,所述获取模块具体用于:
    根据对终端的上行信道的测量,从所述码本中为所述终端选择一个预编码矩阵;
    确定所述终端当前的移动速度;
    在确定出所述终端当前的移动速度大于设定阈值时,根据所述终端上报的预编码矩阵索引号确定对应的预编码矩阵,确定所述预编码矩阵对应的L个预编码矩阵组,根据所述终端当前的移动速度以及所述L个预编码矩阵组中的每个预编码矩阵组分别对应一个移动速度信息,确定所述终端当前的移动速度对应的第l级预编码矩阵组;
    或者,所述获取模块具体用于:
    接收所述终端上报的预编码矩阵组的级数l;根据对所述终端的上行信道的测量,从所述码本中为所述终端选择一个预编码矩阵;根据所述终端上报的级数l,将选择出的预编码矩阵对应的L个预编码矩阵组中的第l级预编码矩阵组,确定为所述终端的预编码矩阵对应的第l级预编码矩阵组。
  18. 如权利要求17所述的基站,其特征在于,所述码本中的任一预编码矩阵对应L个预编码矩阵组,所述L个预编码矩阵组中的第l级预编码矩阵组中包含Nl个预编码矩阵,所述Nl个预编码矩阵为所述码本中与所述基站的天线阵列的法线对应的向量之间的距离按从小到大排序后的前Nl个的预编码矩阵,其中,Nl<Nl+1
  19. 如权利要求13至18中任一项所述的基站,其特征在于,所述传输模块具体用于:
    根据所述预编码矩阵的指向角度,将所述第l级预编码矩阵组中包含的每个预编码矩阵的指向角度,统一旋转所述指向角度;
    根据角度旋转后的第l级预编码矩阵组中的预编码矩阵,向所述终端发送下行数据。
  20. 一种终端,其特征在于,所述终端包括:
    选择模块,用于根据下行信道的测量结果,从预设的码本中选择一个预编码矩阵,并从该预编码矩阵对应的L个预编码矩阵组中选择第l级预编码矩阵组,其中,所述L个预编码矩阵组中的每个预编码矩阵组包含至少一个预编码矩阵,所述至少一个预编码矩阵来自于所述码本,l≤L,L为正整数;
    上报模块,用于向基站上报所选择的预编码矩阵组的级数l。
  21. 如权利要求20所述的终端,其特征在于,所述第l级预编码矩阵组中包含:所述码本中与所述基站的天线阵列的法线对应的向量之间的距离按从小到大排序后的前Nl个的预编码矩阵,其中,Nl<Nl+1
  22. 如权利要求20所述的终端,其特征在于,所述码本中的任一预编码矩阵的第l级预编码矩阵组中包含:所述码本中与所述任一预编码矩阵之间的距离按从小到大排序后的前Nl个预编码矩阵,其中,Nl<Nl+1
  23. 如权利要求20至22中任一项所述的终端,其特征在于,所述L个预编码矩阵组中的每个预编码矩阵组分别对应一个移动速度信息,针对任一个预编码矩阵组所对应的移动速度信息,终端在相应移动速度移动的情况下使用该级预编码矩阵组进行下行数据接收时得到的信噪比大于等于设定阈值;
    所述选择模块具体用于:
    确定所述终端当前的移动速度;
    在确定出所述终端当前的移动速度大于设定阈值时,确定所选择的预编码矩阵对应的L个预编码矩阵组,根据所述终端当前的移动速度以及所述L个预编码矩阵组中的每个预编码矩阵组分别对应一个移动速度信息,选择所述终端当前的移动速度对应的第l级预编码矩阵组。
  24. 如权利要求20至22中任一项所述的终端,其特征在于,所述上报模块还用于:向所述基站上报所选择的预编码矩阵的索引号。
  25. 一种基站,其特征在于,包括:处理器、存储器、收发机以及总线接口;
    所述处理器,用于读取存储器中的程序,执行下列过程:
    获取终端的预编码矩阵以及所述预编码矩阵对应的L个预编码矩阵组中的第l级预编码矩阵组,其中,所述L个预编码矩阵组中的每个预编码矩阵组包含至少一个预编码矩阵,所述至少一个预编码矩阵来自于预设的码本,l≤L,L为正整数;
    根据所述第l级预编码矩阵组中包含的预编码矩阵,向所述终端发送下行数据。
  26. 一种终端,其特征在于,包括:处理器、存储器、收发机以及总线接口;
    所述处理器,用于读取存储器中的程序,执行下列过程:
    根据下行信道的测量结果,从预设的码本中选择一个预编码矩阵,并从该预编码矩阵对应的L个预编码矩阵组中选择第l级预编码矩阵组,其中,所述L个预编码矩阵组中的每个预编码矩阵组包含至少一个预编码矩阵,所述至少一个预编码矩阵来自于所述码本,l≤L,L为正整数;
    向基站上报所选择的预编码矩阵组的级数l。
PCT/CN2016/104267 2015-12-28 2016-11-01 一种上行信息反馈和下行数据传输方法和设备 WO2017113982A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16880773.3A EP3399658B1 (en) 2015-12-28 2016-11-01 Method and device for uplink information feedback and downlink data transmission
US16/067,122 US10554283B2 (en) 2015-12-28 2016-11-01 Method and device for uplink information feedback and downlink data transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511001496.5 2015-12-28
CN201511001496.5A CN106936484B (zh) 2015-12-28 2015-12-28 一种上行信息反馈和下行数据传输方法和设备

Publications (1)

Publication Number Publication Date
WO2017113982A1 true WO2017113982A1 (zh) 2017-07-06

Family

ID=59224644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104267 WO2017113982A1 (zh) 2015-12-28 2016-11-01 一种上行信息反馈和下行数据传输方法和设备

Country Status (4)

Country Link
US (1) US10554283B2 (zh)
EP (1) EP3399658B1 (zh)
CN (1) CN106936484B (zh)
WO (1) WO2017113982A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10715242B1 (en) * 2019-09-25 2020-07-14 Facebook, Inc. Grouping antenna elements to enhanced an antenna array response resolution
WO2021142774A1 (zh) 2020-01-17 2021-07-22 Oppo广东移动通信有限公司 通信方法、装置、终端和存储介质
WO2022077324A1 (en) * 2020-10-15 2022-04-21 Zte Corporation Configuration of channel state information reference signals for wireless communication systems
CN114726698B (zh) * 2022-04-08 2023-04-25 电子科技大学 一种有限块长度内联合角度旋转的符号级预编码方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100027456A1 (en) * 2008-08-01 2010-02-04 Texas Instruments Incorporated Network mimo reporting, control signaling and transmission
CN102104994A (zh) * 2009-12-21 2011-06-22 上海贝尔股份有限公司 在mimo系统中向用户发射数据的方法和基站
CN102163997A (zh) * 2010-02-12 2011-08-24 宏达国际电子股份有限公司 用于多输入多输出系统的无线通信方法、系统及接收器
CN102792605A (zh) * 2010-03-08 2012-11-21 Lg电子株式会社 传送预编码矩阵信息的方法和用户设备以及配置预编码矩阵的方法和基站

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080037669A1 (en) * 2006-08-11 2008-02-14 Interdigital Technology Corporation Wireless communication method and system for indexing codebook and codeword feedback
CN101257367B (zh) * 2007-02-28 2013-03-27 皇家飞利浦电子股份有限公司 选择预编码的方法和装置
PL2086145T3 (pl) * 2008-01-30 2019-06-28 Optis Cellular Technology, Llc Sposób do nadawania informacji sterujących łącza w dół
US8938020B2 (en) * 2010-07-12 2015-01-20 Lg Electronics Inc. Method and device for transmitting/receiving a signal by using a code book in a wireless communication system
US9769677B2 (en) * 2012-07-02 2017-09-19 Industrial Technology Research Institute Method and apparatus for bit-adaptive precoding matrix indicator feedback
TWI489805B (zh) * 2012-07-02 2015-06-21 Ind Tech Res Inst 用於位元自適應預編碼矩陣指示符回饋的方法和裝置
CN105934904A (zh) * 2014-01-22 2016-09-07 日本电气株式会社 用于信道测量和反馈的方法和装置
WO2015152553A1 (ko) * 2014-03-30 2015-10-08 엘지전자 주식회사 무선 통신 시스템에서 제어 정보를 전송하는 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100027456A1 (en) * 2008-08-01 2010-02-04 Texas Instruments Incorporated Network mimo reporting, control signaling and transmission
CN102104994A (zh) * 2009-12-21 2011-06-22 上海贝尔股份有限公司 在mimo系统中向用户发射数据的方法和基站
CN102163997A (zh) * 2010-02-12 2011-08-24 宏达国际电子股份有限公司 用于多输入多输出系统的无线通信方法、系统及接收器
CN102792605A (zh) * 2010-03-08 2012-11-21 Lg电子株式会社 传送预编码矩阵信息的方法和用户设备以及配置预编码矩阵的方法和基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3399658A4 *

Also Published As

Publication number Publication date
CN106936484A (zh) 2017-07-07
EP3399658A4 (en) 2018-12-26
US20190007119A1 (en) 2019-01-03
CN106936484B (zh) 2020-03-24
EP3399658B1 (en) 2023-06-21
US10554283B2 (en) 2020-02-04
EP3399658A1 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
US11064374B2 (en) CSI feedback design for new radio
EP4167629A1 (en) Measurement reporting method and apparatus
EP3641452B1 (en) Method and apparatus for transmitting downlink control information (dci)
KR20190044100A (ko) 5g 다중 입력 다중 출력 송신을 위한 채널 상태 정보 프레임워크 설계
US10804979B2 (en) Method and device for acquiring and feeding back transmission beam information
WO2017193961A1 (zh) 一种信道信息发送方法、数据发送方法和设备
WO2017020749A1 (zh) 一种fd mimo系统信道状态信息反馈方法及相关设备
WO2014062195A1 (en) Csi feedback with elevation beamforming
WO2018028291A1 (zh) 一种波束赋形训练方法、终端和基站
WO2017113982A1 (zh) 一种上行信息反馈和下行数据传输方法和设备
JP2019518350A (ja) 低複雑性マルチ設定csiレポート
JP2019527969A (ja) チャネル情報を伝送する装置および方法、ならびにシステム
WO2017114054A1 (zh) 一种确定模拟波束的方法和设备
US10892805B2 (en) Beam scanning method and related device
EP4325731A1 (en) Communication method and communication device
WO2023202338A1 (zh) 信息传输方法、装置、终端、网络侧设备及介质
WO2022142459A1 (zh) 信号传输方法及装置、终端、接入网设备
JP2024519341A (ja) プリコーディング情報
CN117203905A (zh) 为端口选择码本增强配置W1、W2和Wf的方法和装置
CN115333582A (zh) 预编码信息

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016880773

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016880773

Country of ref document: EP

Effective date: 20180730