WO2017113930A1 - 指纹识别方法及装置 - Google Patents

指纹识别方法及装置 Download PDF

Info

Publication number
WO2017113930A1
WO2017113930A1 PCT/CN2016/101873 CN2016101873W WO2017113930A1 WO 2017113930 A1 WO2017113930 A1 WO 2017113930A1 CN 2016101873 W CN2016101873 W CN 2016101873W WO 2017113930 A1 WO2017113930 A1 WO 2017113930A1
Authority
WO
WIPO (PCT)
Prior art keywords
fingerprint
damaged
recognition sensor
predetermined threshold
fingerprint recognition
Prior art date
Application number
PCT/CN2016/101873
Other languages
English (en)
French (fr)
Inventor
孙长宇
李志杰
孙伟
Original Assignee
小米科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 小米科技有限责任公司 filed Critical 小米科技有限责任公司
Publication of WO2017113930A1 publication Critical patent/WO2017113930A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2829Testing of circuits in sensor or actuator systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/44Testing lamps
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/2205Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing using arrangements specific to the hardware being tested
    • G06F11/2221Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing using arrangements specific to the hardware being tested to test input/output devices or peripheral units
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/2289Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing by configuration test
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1365Matching; Classification

Definitions

  • the present disclosure relates to the field of fingerprint recognition, and in particular, to a fingerprint identification method and apparatus.
  • Fingerprint recognition technology has been widely used in mobile terminals such as smart phones and tablets.
  • the array on the fingerprint recognition sensor is provided with M*N pixel units.
  • the fingerprint recognition technology collects the fingerprint image of the user through each pixel unit in the fingerprint recognition sensor, and matches the collected fingerprint image with the pre-stored fingerprint template, thereby realizing functions such as screen unlocking and mobile payment.
  • the related art adds a learning function to the fingerprint template, thereby reducing the False Reject Rate (FRR) of the fingerprint recognition sensor, and the rejection rate means the same.
  • FRR False Reject Rate
  • Fingerprint images are identified as different fingerprint images.
  • the learning function adds the pixel feature of the damaged pixel unit in the fingerprint recognition sensor to the fingerprint template. Since the pixel feature is a feature of the fingerprint recognition sensor itself, the false recognition rate of the fingerprint recognition sensor is greatly improved (False Accept Rate) , FAR), the false rate refers to the identification of different fingerprint images into the same fingerprint image, resulting in a security risk in the mobile terminal.
  • the embodiment of the present disclosure provides a Fingerprint identification method and device.
  • the technical solution is as follows:
  • a fingerprint identification method comprising:
  • the damaged pixel unit refers to a pixel unit physically damaged in the fingerprint recognition sensor
  • the fingerprint image collected by the fingerprint recognition sensor is discarded for matching identification.
  • detecting whether the number of damaged pixel units in the fingerprint recognition sensor reaches a predetermined threshold including:
  • detecting whether the number of damaged pixel units in the fingerprint recognition sensor reaches a predetermined threshold including:
  • Defining a custom collection area of the user's fingerprint in the fingerprint recognition sensor and the usual collection area is an area where the probability of collecting the user's fingerprint is greater than a predetermined probability
  • detecting whether the number of damaged pixel units in the fingerprint recognition sensor reaches a predetermined threshold including:
  • a non-habitual collection area of the user fingerprint is determined in the fingerprint recognition sensor, and the non-custom collection area is an area other than the usual coverage area, and the normal collection area is an area where the probability of collecting the user fingerprint is greater than a predetermined probability;
  • detecting whether the number of damaged pixel units in the fingerprint recognition sensor reaches a predetermined threshold including:
  • a custom collection area and a non-habitual collection area of the user fingerprint are determined in the fingerprint recognition sensor, where the probability of collecting the fingerprint of the user is greater than a predetermined probability, and the non-custom collection area is an area other than the usual coverage area;
  • the third predetermined threshold is greater than the second predetermined threshold.
  • the method further includes:
  • the unreliable feature point in the feature point reaches a predetermined number, and the unreliable feature point is a feature point collected by the damaged pixel unit or the pixel unit with abnormal working state;
  • the fingerprint image collected by the fingerprint recognition sensor is discarded for matching identification.
  • a fingerprint identification apparatus comprising:
  • a number detecting module configured to detect whether the number of damaged pixel units in the fingerprint identifying sensor reaches a predetermined threshold, and the damaged pixel unit refers to a pixel unit physically damaged in the fingerprint identifying sensor;
  • the recognition abandonment module is configured to discard the fingerprint image collected by the fingerprint recognition sensor if the number of damaged pixel units reaches a predetermined threshold.
  • the number detection module includes:
  • a first determining submodule configured to determine a coverage area of the user fingerprint in the fingerprint recognition sensor according to the fingerprint image
  • the first detecting submodule is configured to detect whether the number of damaged pixel units in the pixel unit belonging to the coverage area reaches a first predetermined threshold.
  • the number detection module includes:
  • a second determining sub-module configured to determine a custom collection area of the user fingerprint in the fingerprint recognition sensor, where the normal collection area is an area where the probability of collecting the user fingerprint is greater than a predetermined probability;
  • the second detecting submodule is configured to detect whether the number of damaged pixels in the usual acquisition area reaches a second predetermined threshold.
  • the number detection module includes:
  • the third determining sub-module is configured to determine a non-conventional acquisition area of the user fingerprint in the fingerprint recognition sensor, where the non-conventional acquisition area is an area other than the usual coverage area, and the probability of collecting the user fingerprint is greater than the predetermined Area of probability;
  • the third detecting submodule is configured to detect whether the number of damaged pixels in the non-customized acquisition area reaches a third predetermined threshold.
  • the number detection module includes:
  • the fourth determining submodule is configured to determine a normal collection area and a non-custom collection area of the user fingerprint in the fingerprint recognition sensor, where the normal collection area is an area where the probability of collecting the user fingerprint is greater than a predetermined probability, and the non-custom collection area is Areas outside the usual coverage area;
  • a fourth detecting submodule configured to detect whether the number of damaged pixels in the normal collection area reaches a second predetermined threshold, and whether the number of damaged pixels in the non-customized acquisition area reaches a third predetermined threshold;
  • the third predetermined threshold is greater than the second predetermined threshold.
  • the device further includes:
  • a feature extraction module configured to extract a feature point in the fingerprint image if the number of damaged pixel units or the number of damaged pixel units does not reach a predetermined threshold
  • a feature detection module configured to detect whether an unreliable feature point in the feature point reaches a predetermined
  • the number of unreliable feature points is a feature point collected by a damaged pixel unit or a pixel unit having an abnormal working state
  • the matching abandonment module is configured to discard the fingerprint image collected by the fingerprint recognition sensor if the unreliable feature point reaches a predetermined number.
  • a fingerprint identification apparatus comprising:
  • a memory configured to store processor executable instructions
  • processor is configured to:
  • the fingerprint image collected by the fingerprint recognition sensor is discarded for matching identification.
  • the damaged pixel unit refers to a pixel unit physically damaged in the fingerprint recognition sensor; if the number of damaged pixel units reaches a predetermined threshold, the fingerprint is discarded Identifying the fingerprint image collected by the sensor for matching and identifying; solving the learning function increases the pixel feature of the damaged pixel unit in the fingerprint recognition sensor into the fingerprint template, thereby greatly improving the false recognition rate of the fingerprint recognition sensor, resulting in the existence of the mobile terminal.
  • the problem of security risks after the number of damaged pixel units reaches a predetermined threshold, the matching identification of the fingerprint image is abandoned, the false recognition rate of the fingerprint recognition sensor is greatly reduced, and the mobile terminal is prevented from being too high. The effect of the security risks.
  • FIG. 1 is a hardware structural diagram of a mobile terminal according to an exemplary embodiment
  • FIG. 2 is a flowchart of a fingerprint identification method according to an exemplary embodiment
  • FIG. 3A is a flowchart of a fingerprint identification method according to another exemplary embodiment
  • FIG. 3B is a schematic diagram of prompt information sent by a fingerprint recognition sensor according to an exemplary embodiment
  • FIG. 4A is a flowchart of a fingerprint identification method according to still another exemplary embodiment
  • FIG. 4B is a flowchart of a fingerprint identification method according to still another exemplary embodiment
  • FIG. 4C is a flowchart of a fingerprint identification method according to still another exemplary embodiment
  • 4D is a flowchart of a fingerprint identification method according to still another exemplary embodiment
  • FIG. 5 is a block diagram of a fingerprint identification apparatus according to an exemplary embodiment
  • FIG. 6 is a block diagram of a fingerprint identification apparatus according to another exemplary embodiment
  • FIG. 7 is a block diagram of a fingerprint recognition apparatus according to still another exemplary embodiment.
  • FIG. 1 is a hardware structural diagram of a mobile terminal according to an exemplary embodiment.
  • the mobile terminal may be a terminal such as a smart phone, a tablet, an e-book reader.
  • the mobile terminal includes a processor 120, a memory 140 connected to the processor 120, and a fingerprint recognition module 160. among them:
  • Executable instructions of the processor 120 are stored in the memory 140.
  • the fingerprint recognition module 160 is also referred to as a fingerprint recognition sensor.
  • the fingerprint recognition module 160 includes an array of pixel units (not shown); each pixel unit in the fingerprint recognition module 160 is configured to collect fingerprint images of the user, and the fingerprint recognition module 160 collects according to each pixel unit. The obtained fingerprint image is matched with the pre-stored fingerprint template to realize functions such as screen unlocking and mobile payment of the mobile terminal.
  • FIG. 2 is a flowchart of a fingerprint identification method according to an exemplary embodiment. As shown in FIG. 2, the fingerprint identification method is applied to the mobile terminal shown in FIG. 1, and the fingerprint identification method may include the following steps.
  • step 201 it is detected whether the number of damaged pixel units in the fingerprint recognition sensor reaches a predetermined threshold.
  • a pixel unit refers to a pixel in which an array is arranged in a fingerprint recognition sensor.
  • the pixel unit is configured to capture pixel points of the user's fingerprint image.
  • a damaged pixel unit refers to a pixel unit that is physically damaged in the fingerprint recognition sensor.
  • a damaged pixel unit refers to a pixel unit that is physically damaged in a pixel unit arranged in an array.
  • step 202 if the number of damaged pixel units reaches a predetermined threshold, the fingerprint image collected by the fingerprint recognition sensor is discarded for matching recognition.
  • the fingerprint identification method detects whether the number of damaged pixel units in the fingerprint recognition sensor reaches a predetermined threshold, and the damaged pixel unit refers to a pixel unit physically damaged in the fingerprint recognition sensor; If the number of damaged pixel units reaches a predetermined threshold, the fingerprint image collected by the fingerprint recognition sensor is discarded and matched; the learning function is added to add the pixel feature of the damaged pixel unit in the fingerprint recognition sensor to the fingerprint template, Therefore, the false recognition rate of the fingerprint recognition sensor is greatly improved, and the mobile terminal has a safety hazard problem; after the number of damaged pixel units reaches a predetermined threshold, the matching identification of the fingerprint image is abandoned, and the fingerprint recognition sensor is greatly reduced. Leave rate, avoiding movement The effect of the security hazard caused by the terminal's high false positive rate.
  • FIG. 3A is a flowchart of a fingerprint identification method according to another exemplary embodiment. As shown in FIG. 3A , the fingerprint identification method is applied to the mobile terminal shown in FIG. 1 , and the fingerprint identification method may include the following steps. .
  • step 301 information of each pixel unit in the fingerprint recognition sensor is acquired.
  • a pixel unit refers to a pixel in which an array is arranged in a fingerprint recognition sensor.
  • the pixel unit is configured to capture pixel points of the user's fingerprint image.
  • the mobile terminal first acquires information of each pixel unit in the fingerprint recognition sensor before using the fingerprint recognition sensor.
  • each time the mobile terminal is used up the information of each pixel unit in the fingerprint recognition sensor is first acquired.
  • step 302 the number of damaged pixel units in the fingerprint recognition sensor is counted according to the information of the pixel unit.
  • the mobile terminal After acquiring the information of each pixel unit, the mobile terminal counts the number of damaged pixel units in the fingerprint recognition sensor according to the information of each pixel unit.
  • a damaged pixel unit refers to a pixel unit that is physically damaged in the fingerprint recognition sensor.
  • a damaged pixel unit refers to a pixel unit that is physically damaged in a pixel unit arranged in an array.
  • the pixel unit in the fingerprint recognition sensor is physically damaged.
  • the pixels collected by these physically damaged pixel units will have different degrees of defects.
  • the number of damaged pixel units in the statistical fingerprint recognition sensor may include the following sub-steps:
  • the first numerical interval refers to a value range corresponding to the pixel feature of the damaged pixel unit; the number of the pixel units belonging to the first numerical interval is the number of damaged pixel units.
  • the pixel feature collected by the pixel unit appears black, and when the low voltage is input in the fingerprint recognition sensor, the pixel feature collected by the pixel unit appears white. If a high voltage is input in the fingerprint recognition sensor, the pixel feature collected by the pixel unit appears white, and the pixel unit is determined to be a damaged pixel unit.
  • the fingerprint recognition sensor pre-stores a template of the fingerprint image collected by the physically damaged pixel unit, and matches the fingerprint image collected by the fingerprint recognition sensor with the template of the fingerprint image collected by the damaged pixel unit, and statistics are performed.
  • the number of damaged pixel cells is the number of damaged pixel cells.
  • step 303 it is detected whether the number of damaged pixel units in the fingerprint recognition sensor reaches a predetermined threshold.
  • the number of statistics is compared with a predetermined threshold set in advance. It is detected whether the counted number of damaged pixel units reaches a predetermined threshold.
  • step 304 if the number of damaged pixel units reaches a predetermined threshold, the fingerprint image collected by the fingerprint recognition sensor is discarded for matching identification.
  • the fingerprint recognition sensor discards the matching identification of the collected fingerprint images.
  • the fingerprint recognition sensor sends a prompt message to the mobile terminal to prompt the user that the fingerprint recognition sensor has been damaged.
  • the mobile terminal receives the prompt information sent by the fingerprint recognition sensor, wherein the content of the prompt information is: “The pixel unit in the fingerprint recognition sensor has been damaged, please repair it in time. complex”.
  • step 305 if there is no damaged pixel unit or the number of damaged pixel units does not reach a predetermined threshold, the feature points in the fingerprint image are extracted.
  • the feature points in the fingerprint image collected by the fingerprint recognition sensor are extracted.
  • the feature points in the fingerprint image collected by the fingerprint recognition sensor are extracted.
  • the feature points of the fingerprint image are features consisting of information of pixel points acquired by at least one pixel unit. Therefore, the feature point of the fingerprint image may be information of a pixel point collected by one pixel unit, or may be a feature composed of information of a fingerprint image collected by a plurality of pixel units in the fingerprint image.
  • the starting point of the fingerprint image, the end point of the fingerprint image, the bifurcation point of the fingerprint image, and the binding point of the fingerprint image are used as feature points of the fingerprint image.
  • the fingerprint images collected by the adjacent 10 pixel units in the fingerprint image are combined, and the combined features are used as a feature point of the fingerprint image.
  • step 306 it is detected whether the unreliable feature points in the feature points reach a predetermined number.
  • An unreliable feature point is a feature point collected by a damaged pixel unit or a pixel unit having an abnormal working state.
  • a damaged pixel unit refers to a pixel unit physically damaged in the fingerprint recognition sensor; a pixel unit with an abnormal working state refers to a pixel unit in which the fingerprint recognition sensor is not physically damaged, but an abnormality occurs when the pixel is collected.
  • the step of counting the number of unreliable feature points in the feature points of the fingerprint image may include the following sub-steps:
  • the second numerical interval refers to a value range corresponding to the unreliable feature point; and the feature point belonging to the second numerical interval is an unreliable feature point.
  • An unreliable feature point is a feature consisting of information of pixel points acquired by at least one damaged pixel unit. Therefore, the unreliable feature point may be information of a damaged pixel unit or a pixel point collected by a pixel unit having an abnormal working state, or may be a fingerprint of a plurality of damaged pixel units in the fingerprint image or a pixel unit having an abnormal working state. A feature of the image's information.
  • the black and white fringe information is regarded as an unreliable feature point.
  • the unrecognized feature point template of the fingerprint image collected by the physically damaged pixel unit is pre-stored in the fingerprint recognition sensor, and the feature points in the extracted fingerprint image are matched with the unreliable feature point template, and statistics are performed.
  • the number of unreliable feature points in the feature points of the fingerprint image is detected whether the number of unreliable feature points included in the feature points in the fingerprint image reaches a predetermined number set in advance.
  • step 307 if the unreliable feature point reaches a predetermined number, the fingerprint image collected by the fingerprint recognition sensor is discarded for matching identification.
  • the fingerprint recognition sensor discards the matching and identification of the collected fingerprint images.
  • the fingerprint recognition sensor sends a prompt message to the mobile terminal, prompting the user that the fingerprint recognition sensor has be damaged. As shown in Figure 3B.
  • step 308 if there is no unreliable feature point or the unreliable feature point does not reach the predetermined number, the fingerprint image collected by the fingerprint recognition sensor is matched and identified.
  • the fingerprint image collected by the fingerprint recognition sensor is matched and recognized.
  • the fingerprint image collected by the fingerprint recognition sensor is matched and identified.
  • the fingerprint identification method detects whether the number of damaged pixel units in the fingerprint recognition sensor reaches a predetermined threshold, and the damaged pixel unit refers to a pixel unit physically damaged in the fingerprint recognition sensor; If the number of damaged pixel units reaches a predetermined threshold, the fingerprint image collected by the fingerprint recognition sensor is discarded and matched; the learning function is added to add the pixel feature of the damaged pixel unit in the fingerprint recognition sensor to the fingerprint template, Therefore, the false recognition rate of the fingerprint recognition sensor is greatly improved, and the mobile terminal has a safety hazard problem; after the number of damaged pixel units reaches a predetermined threshold, the matching identification of the fingerprint image is abandoned, and the fingerprint recognition sensor is greatly reduced.
  • the falsehood rate avoids the security risks caused by the high false positive rate of mobile terminals.
  • the fingerprint image collected by the damaged pixel in the fingerprint recognition sensor is removed, and the removed fingerprint is removed. Fingerprint images are matched and identified.
  • the fingerprint identification method shown in FIG. 3A is a detection of all the pixel units in the fingerprint recognition sensor. Alternatively, only the pixel unit of the user fingerprint coverage area may be detected, and step 303 in the embodiment of FIG. 3A may be replaced. Implemented as the following steps 303a and 303b, as shown in FIG. 4A Shown. Specific steps are as follows:
  • step 303a a coverage area of the user's fingerprint is determined in the fingerprint recognition sensor based on the fingerprint image.
  • the coverage area of the user fingerprint is determined in the collected fingerprint image. That is, the pixel unit in which the fingerprint image of the user is captured in the fingerprint recognition sensor is determined.
  • step 303b it is detected whether the number of damaged pixel units in the pixel unit belonging to the coverage area reaches a first predetermined threshold.
  • the number of damaged pixel units in the pixel unit of the coverage area is counted, and the number of statistics is compared with a preset first predetermined threshold, and the detection belongs to Whether the number of damaged pixel units in the pixel unit of the coverage area reaches a first predetermined threshold.
  • the fingerprint identification method provided in the embodiment of the present disclosure reduces the detection range by detecting only the number of damaged pixel units in the coverage area of the user fingerprint, and reduces the calculation process of the detection.
  • the fingerprint identification method shown in FIG. 3A is a detection of all the pixel units in the fingerprint recognition sensor. Optionally, only the pixel unit of the normal collection area of the user fingerprint may be detected.
  • Step 303 in the embodiment of FIG. 3A Alternatively, it may be implemented as the following steps 303c and 303d, as shown in FIG. 4B. Specific steps are as follows:
  • a conventional collection area of the user's fingerprint is determined in the fingerprint recognition sensor, and the usual collection area is an area in which the probability of collecting the user's fingerprint is greater than a predetermined probability.
  • the usual collection area of the user fingerprint is determined in the fingerprint recognition sensor, that is, the probability that the fingerprint of the user is collected in the fingerprint recognition sensor is greater than the predetermined one.
  • the pixel unit of probability is determined in the fingerprint recognition sensor, that is, the probability that the fingerprint of the user is collected in the fingerprint recognition sensor is greater than the predetermined one.
  • step 303d it is detected whether the number of damaged pixels in the usual acquisition area reaches the second The threshold is predetermined.
  • the number of the damaged pixel units in the pixel unit of the conventional acquisition area is counted, and the number of statistics is set with a preset second predetermined threshold. A comparison is made to determine whether the number of damaged pixel units in the pixel unit belonging to the conventional acquisition area has reached a second predetermined threshold.
  • the fingerprint identification method provided in the embodiment of the present disclosure reduces the detection range by detecting only the number of damaged pixel units in the usual collection area of the user fingerprint, and reduces the calculation process of the detection.
  • the fingerprint identification method shown in FIG. 3A is a detection of all the pixel units in the fingerprint recognition sensor. Optionally, only the pixel unit of the normal collection area of the user fingerprint may be detected.
  • Step 303 in the embodiment of FIG. 3A Alternatively, it may be implemented as the following steps 303e and 303f, as shown in FIG. 4C. Specific steps are as follows:
  • step 303e a non-conventional acquisition area of the user's fingerprint is determined in the fingerprint recognition sensor.
  • the non-conventional acquisition area is an area other than the usual coverage area
  • the conventional collection area is an area where the probability of collecting the user's fingerprint is greater than a predetermined probability.
  • the non-conventional collection area of the user's fingerprint is determined in the fingerprint recognition sensor by counting the user's habit of using the fingerprint recognition sensor and the size of the user's fingerprint.
  • the non-customized acquisition area refers to an area other than the usual coverage area
  • the conventional collection area refers to an area where the probability of collecting the user's fingerprint is greater than a predetermined probability.
  • the probability of acquiring the user's fingerprint in the fingerprint recognition sensor is less than a predetermined probability.
  • step 303f it is detected whether the number of damaged pixels in the non-customized acquisition area reaches a third predetermined threshold.
  • Determining an image in which the probability of collecting the user's fingerprint in the fingerprint recognition sensor is less than a predetermined probability After the prime unit, the number of damaged pixel units in the pixel unit of the non-conventional acquisition area is counted, and the number of statistics is compared with a preset third predetermined threshold to detect damaged pixels in the pixel unit belonging to the non-custom collection area. Whether the number of cells has reached a third predetermined threshold.
  • Step 303 in the embodiment of FIG. 3A may be replaced by the following steps 303g and 303h, such as Figure 4D shows. Specific steps are as follows:
  • step 303g a custom collection area and a non-custom collection area of the user's fingerprint are determined in the fingerprint recognition sensor.
  • the habitual acquisition area is an area where the probability of collecting the user's fingerprint is greater than a predetermined probability
  • the non-conventional acquisition area is an area other than the usual coverage area.
  • the conventional acquisition area and the non-custom collection area of the user fingerprint are determined in the fingerprint recognition sensor.
  • the pixel unit in which the probability of collecting the user fingerprint in the fingerprint recognition sensor is greater than the predetermined probability is determined as the pixel unit in the usual collection area; and the pixel unit in which the probability of collecting the user fingerprint in the fingerprint recognition sensor is less than the predetermined probability is determined as non- The pixel unit in the usual acquisition area.
  • step 303h it is detected whether the number of damaged pixels in the usual acquisition area reaches a second predetermined threshold, and whether the number of damaged pixels in the non-custom collection area reaches a third predetermined threshold.
  • the third predetermined threshold is greater than the second predetermined threshold.
  • FIG. 5 is a block diagram of a fingerprint identification apparatus according to an exemplary embodiment. As shown in FIG. 5, the fingerprint identification apparatus is applied to the mobile terminal shown in FIG. 1.
  • the fingerprint identification apparatus includes, but is not limited to:
  • the number detecting module 520 is configured to detect whether the number of damaged pixel units in the fingerprint identifying sensor reaches a predetermined threshold, and the damaged pixel unit refers to a pixel unit physically damaged in the fingerprint identifying sensor.
  • the recognition abandonment module 540 is configured to discard the fingerprint image collected by the fingerprint recognition sensor if the number of damaged pixel units reaches a predetermined threshold.
  • the fingerprint identification device detects whether the number of damaged pixel units in the fingerprint recognition sensor reaches a predetermined threshold, and the damaged pixel unit refers to a pixel unit physically damaged in the fingerprint recognition sensor; If the number of damaged pixel units reaches a predetermined threshold, the fingerprint image collected by the fingerprint recognition sensor is discarded and matched; the learning function is added to add the pixel feature of the damaged pixel unit in the fingerprint recognition sensor to the fingerprint template, Therefore, the false recognition rate of the fingerprint recognition sensor is greatly improved, and the mobile terminal has a safety hazard problem; after the number of damaged pixel units reaches a predetermined threshold, the matching identification of the fingerprint image is abandoned, and the fingerprint recognition sensor is greatly reduced.
  • the falsehood rate avoids the security risks caused by the high false positive rate of mobile terminals.
  • FIG. 6 is a block diagram of a fingerprint identification apparatus according to another exemplary embodiment. As shown in FIG. 6, the fingerprint identification apparatus is applied to the mobile terminal shown in FIG. But not limited to:
  • the number detecting module 520 is configured to detect whether the number of damaged pixel units in the fingerprint identifying sensor reaches a predetermined threshold, and the damaged pixel unit refers to a pixel unit physically damaged in the fingerprint identifying sensor.
  • the number detecting module 520 may include: a first determining submodule 521 and a first detecting submodule 522.
  • the first determining submodule 521 is configured to determine a coverage area of the user fingerprint in the fingerprint recognition sensor according to the fingerprint image.
  • the first detecting sub-module 522 is configured to detect whether the number of damaged pixel units in the pixel unit belonging to the coverage area reaches a first predetermined threshold.
  • the number detecting module 520 may include: a second determining submodule 523 and a second detecting submodule 524.
  • the second determining sub-module 523 is configured to determine a custom collection area of the user fingerprint in the fingerprint recognition sensor, where the normal collection area is an area where the probability of collecting the user fingerprint is greater than a predetermined probability.
  • the second detection sub-module 524 is configured to detect whether the number of damaged pixels in the normal acquisition area reaches a second predetermined threshold.
  • the number detecting module 520 may include: a third determining submodule 525 and a third detecting submodule 526.
  • the third determining sub-module 525 is configured to determine a non-conventional collection area of the user fingerprint in the fingerprint recognition sensor, where the non-custom collection area is an area other than the usual coverage area, and the probability of collecting the user fingerprint is greater than the probability of the normal collection area being greater than The area of the predetermined probability.
  • the third detection sub-module 526 is configured to detect whether the number of damaged pixels in the non-customized acquisition area reaches a third predetermined threshold.
  • the number detecting module 520 may include The fourth determining sub-module 527 and the fourth detecting sub-module 528 are included.
  • the fourth determining sub-module 527 is configured to determine a normal collection area and a non-custom collection area of the user fingerprint in the fingerprint recognition sensor, where the probability of collecting the fingerprint of the user is greater than a predetermined probability, and the non-conventional acquisition area is An area other than the usual coverage area.
  • the fourth detection sub-module 528 is configured to detect whether the number of damaged pixels in the normal acquisition area reaches a second predetermined threshold, and whether the number of damaged pixels in the non-custom collection area reaches a third predetermined threshold.
  • the third predetermined threshold is greater than the second predetermined threshold.
  • the recognition abandonment module 540 is configured to discard the fingerprint image collected by the fingerprint recognition sensor if the number of damaged pixel units reaches a predetermined threshold.
  • the apparatus may further include: a feature extraction module 560, a feature detection module 580, and a matching abandonment module 590.
  • the feature extraction module 560 is configured to extract feature points in the fingerprint image if the number of damaged pixel units or the number of damaged pixel units does not reach a predetermined threshold.
  • the feature detection module 580 is configured to detect whether the unreliable feature points in the feature points reach a predetermined number, and the unreliable feature points are feature points collected by the damaged pixel unit or the pixel unit with abnormal working status.
  • the matching abandonment module 590 is configured to abandon the fingerprint identification of the fingerprint image collected by the fingerprint recognition sensor if the unreliable feature point reaches a predetermined number.
  • the fingerprint identification device detects whether the number of damaged pixel units in the fingerprint recognition sensor reaches a predetermined threshold, and the damaged pixel unit refers to a pixel unit physically damaged in the fingerprint recognition sensor; If the number of damaged pixel units reaches a predetermined threshold, the fingerprint image collected by the fingerprint recognition sensor is discarded and matched; the learning function is added to add the pixel feature of the damaged pixel unit in the fingerprint recognition sensor to the fingerprint template, Thereby greatly improving the false recognition rate of the fingerprint recognition sensor, resulting in the presence of the mobile terminal The problem of all hidden dangers; after the number of damaged pixel units reaches a predetermined threshold, the matching identification of the fingerprint image is abandoned, the false recognition rate of the fingerprint recognition sensor is greatly reduced, and the false recognition rate of the mobile terminal is avoided. The effect of the security risks.
  • An exemplary embodiment of the present disclosure provides a fingerprint identification apparatus, which can implement a fingerprint identification method provided by an embodiment of the present disclosure, where the fingerprint identification apparatus includes: a processor, a memory configured to store processor executable instructions;
  • processor is configured to:
  • the damaged pixel unit refers to a pixel unit physically damaged in the fingerprint recognition sensor
  • the fingerprint image collected by the fingerprint recognition sensor is discarded for matching identification.
  • FIG. 7 is a block diagram of a fingerprint identification apparatus, according to an exemplary embodiment.
  • device 700 can be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a gaming console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • apparatus 700 can include one or more of the following components: processing component 702, memory 704, power component 706, multimedia component 708, audio component 710, input/output (I/O) interface 712, sensor component 714, and Communication component 716.
  • Processing component 702 typically controls the overall operation of device 700, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • Processing component 702 can include one or more processors 718 to execute instructions to perform all or part of the steps of the methods described above.
  • processing component 702 can include one or more modules to facilitate interaction between component 702 and other components.
  • processing component 702 can include a multimedia module to facilitate interaction between multimedia component 708 and processing component 702.
  • Memory 704 is configured to store various types of data to support operation at device 700. Examples of such data include instructions, contact data, phone book data, messages, pictures, videos, etc., of any application or method configured to operate on device 700.
  • Memory 704 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory flash memory
  • flash memory magnetic or optical disk.
  • Power component 706 provides power to various components of device 700.
  • Power component 706 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for device 700.
  • the multimedia component 708 includes a screen between the device 700 and the user that provides an output interface.
  • the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor can sense not only the boundaries of the touch or sliding action, but also the duration and pressure associated with the touch or slide operation.
  • the multimedia component 708 includes a front camera and/or a rear camera. When the device 700 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 710 is configured to output and/or input an audio signal.
  • audio component 710 includes a microphone (MIC) when device 700 is in an operational mode, such as a call mode, a recording mode. In the speech and speech recognition modes, the microphone is configured to receive an external audio signal. The received audio signal may be further stored in memory 704 or transmitted via communication component 716.
  • the audio component 710 also includes a speaker configured to output an audio signal.
  • the I/O interface 712 provides an interface between the processing component 702 and the peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • Sensor assembly 714 includes one or more sensors configured to provide a status assessment of various aspects of device 700.
  • sensor component 714 can detect an open/closed state of device 700, relative positioning of components, such as a display and a keypad of device 700, and sensor component 714 can also detect a change in position of device 700 or a component of device 700, user The presence or absence of contact with device 700, device 700 orientation or acceleration/deceleration and temperature variation of device 700.
  • Sensor assembly 714 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor component 714 can also include a light sensor, such as a CMOS or CCD image sensor, configured for use in imaging applications.
  • the sensor component 714 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 716 is configured to facilitate wired or wireless communication between device 700 and other devices.
  • the device 700 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • communication component 716 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel.
  • communication component 716 also includes a near field communication (NFC) module to facilitate short range communication.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 700 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable A logic device (PLD), field programmable gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component implementation configured to perform the fingerprinting method described above.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLD programmable A logic device
  • FPGA field programmable gate array
  • controller microcontroller, microprocessor, or other electronic component implementation configured to perform the fingerprinting method described above.
  • non-transitory computer readable storage medium comprising instructions, such as a memory 704 comprising instructions executable by processor 718 of apparatus 700 to perform the fingerprinting method described above.
  • the non-transitory computer readable storage medium may be a ROM, a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, or the like.
  • the damaged pixel unit refers to a pixel unit physically damaged in the fingerprint recognition sensor; if the number of damaged pixel units reaches If the threshold is predetermined, the fingerprint image collected by the fingerprint recognition sensor is discarded and matched; the learning function is added to increase the pixel feature of the damaged pixel unit in the fingerprint recognition sensor into the fingerprint template, thereby greatly improving the recognition of the fingerprint recognition sensor.
  • the false rate causes the security problem of the mobile terminal; after the number of damaged pixel units reaches a predetermined threshold, the matching identification of the fingerprint image is abandoned, the false recognition rate of the fingerprint recognition sensor is greatly reduced, and the mobile terminal is avoided. The effect of safety hazards due to high falsehood rates.

Abstract

一种指纹识别方法及装置,属于指纹识别领域。所述指纹识别方法包括:通过检测指纹识别传感器中损坏的像素单元的个数是否达到预定阈值(201),损坏的像素单元是指指纹识别传感器中物理损坏的像素单元;若损坏的像素单元的个数达到预定阈值,则放弃对指纹识别传感器采集到的指纹图像进行匹配识别(202)。

Description

指纹识别方法及装置
相关申请的交叉引用
本申请基于申请号为201511009131.7、申请日为2015年12月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及指纹识别领域,特别涉及一种指纹识别方法及装置。
背景技术
指纹识别技术已经在诸如智能手机、平板电脑之类的移动终端上得到广泛应用。指纹识别传感器上阵列设置有M*N个像素单元。指纹识别技术通过指纹识别传感器中的各个像素单元采集用户的指纹图像,通过将采集到的指纹图像与预先存储的指纹模板进行匹配,从而实现屏幕解锁、移动支付等功能。
由于用户的指纹会随着年龄和季节发生变化,因此,相关技术中对指纹模板增加学习功能,从而降低指纹识别传感器的拒真率(False Reject Rate,FRR),拒真率是指将相同的指纹图像识别成不相同的指纹图像。但是,学习功能会将指纹识别传感器中损坏的像素单元的像素特征增加到指纹模板中,由于该像素特征是指纹识别传感器自身的特征,从而大大提高了指纹识别传感器的认假率(False Accept Rate,FAR),认假率是指将不相同的指纹图像识别成相同的指纹图像,导致移动终端存在安全隐患。
发明内容
为了解决学习功能会将指纹识别传感器中损坏的像素单元的像素特征增加到指纹模板中,从而大大提高了指纹识别传感器的认假率,导致移动终端存在安全隐患的问题,本公开实施例提供一种指纹识别方法及装置。所述技术方案如下:
根据本公开实施例的第一方面,提供一种指纹识别方法,该方法包括:
检测指纹识别传感器中损坏的像素单元的个数是否达到预定阈值,损坏的像素单元是指指纹识别传感器中物理损坏的像素单元;
若损坏的像素单元的个数达到预定阈值,则放弃对指纹识别传感器采集到的指纹图像进行匹配识别。
可选的,检测指纹识别传感器中损坏的像素单元的个数是否达到预定阈值,包括:
根据指纹图像在指纹识别传感器中确定出用户指纹的覆盖区域;
检测属于覆盖区域的像素单元中损坏的像素单元的个数是否达到第一预定阈值。
可选的,检测指纹识别传感器中损坏的像素单元的个数是否达到预定阈值,包括:
在指纹识别传感器中确定出用户指纹的惯常采集区域,惯常采集区域是采集到用户指纹的概率大于预定概率的区域;
检测惯常采集区域中损坏的像素的个数是否达到第二预定阈值。
可选的,检测指纹识别传感器中损坏的像素单元的个数是否达到预定阈值,包括:
在指纹识别传感器中确定出用户指纹的非惯常采集区域,非惯常采集区域是除惯常覆盖区域之外的区域,惯常采集区域是采集到用户指纹的概率大于预定概率的区域;
检测非惯常采集区域中损坏的像素的个数是否达到第三预定阈值。
可选的,检测指纹识别传感器中损坏的像素单元的个数是否达到预定阈值,包括:
在指纹识别传感器中确定出用户指纹的惯常采集区域和非惯常采集区域,惯常采集区域是采集到用户指纹的概率大于预定概率的区域,非惯常采集区域是除惯常覆盖区域之外的区域;
检测惯常采集区域中损坏的像素的个数是否达到第二预定阈值,以及非惯常采集区域中损坏的像素的个数是否达到第三预定阈值;
第三预定阈值大于第二预定阈值。
可选的,该方法还包括:
若不存在损坏的像素单元或损坏的像素单元的个数未达到预定阈值,则提取指纹图像中的特征点;
检测特征点中的不可靠特征点是否达到预定个数,不可靠特征点是由损坏的像素单元或者工作状态异常的像素单元所采集到的特征点;
若不可靠特征点达到预定个数,则放弃对指纹识别传感器采集到的指纹图像进行匹配识别。
根据本公开实施例的第二方面,提供一种指纹识别装置,该装置包括:
个数检测模块,被配置为检测指纹识别传感器中损坏的像素单元的个数是否达到预定阈值,损坏的像素单元是指指纹识别传感器中物理损坏的像素单元;
识别放弃模块,被配置为若损坏的像素单元的个数达到预定阈值,则放弃对指纹识别传感器采集到的指纹图像进行匹配识别。
可选的,个数检测模块,包括:
第一确定子模块,被配置为根据指纹图像在指纹识别传感器中确定出用户指纹的覆盖区域;
第一检测子模块,被配置为检测属于覆盖区域的像素单元中损坏的像素单元的个数是否达到第一预定阈值。
可选的,个数检测模块,包括:
第二确定子模块,被配置为在指纹识别传感器中确定出用户指纹的惯常采集区域,惯常采集区域是采集到用户指纹的概率大于预定概率的区域;
第二检测子模块,被配置为检测惯常采集区域中损坏的像素的个数是否达到第二预定阈值。
可选的,个数检测模块,包括:
第三确定子模块,被配置为在指纹识别传感器中确定出用户指纹的非惯常采集区域,非惯常采集区域是除惯常覆盖区域之外的区域,惯常采集区域是采集到用户指纹的概率大于预定概率的区域;
第三检测子模块,被配置为检测非惯常采集区域中损坏的像素的个数是否达到第三预定阈值。
可选的,个数检测模块,包括:
第四确定子模块,被配置为在指纹识别传感器中确定出用户指纹的惯常采集区域和非惯常采集区域,惯常采集区域是采集到用户指纹的概率大于预定概率的区域,非惯常采集区域是除惯常覆盖区域之外的区域;
第四检测子模块,被配置为检测惯常采集区域中损坏的像素的个数是否达到第二预定阈值,以及非惯常采集区域中损坏的像素的个数是否达到第三预定阈值;
第三预定阈值大于第二预定阈值。
可选的,该装置还包括:
特征提取模块,被配置为若不存在损坏的像素单元或损坏的像素单元的个数未达到预定阈值,则提取指纹图像中的特征点;
特征检测模块,被配置为检测特征点中的不可靠特征点是否达到预定 个数,不可靠特征点是由损坏的像素单元或者工作状态异常的像素单元所采集到的特征点;
匹配放弃模块,被配置为若不可靠特征点达到预定个数,则放弃对指纹识别传感器采集到的指纹图像进行匹配识别。
根据本公开实施例的第三方面,提供一种指纹识别装置,该装置还包括:
处理器;
配置为存储处理器可执行指令的存储器;
其中,处理器被配置为:
检测指纹识别传感器中损坏的像素单元的个数是否达到预定阈值,损坏的像素单元是指指纹识别传感器中物理损坏的像素单元;
若损坏的像素单元的个数达到预定阈值,则放弃对指纹识别传感器采集到的指纹图像进行匹配识别。
本公开的实施例提供的技术方案可以包括以下有益效果:
通过检测指纹识别传感器中损坏的像素单元的个数是否达到预定阈值,损坏的像素单元是指指纹识别传感器中物理损坏的像素单元;若损坏的像素单元的个数达到预定阈值,则放弃对指纹识别传感器采集到的指纹图像进行匹配识别;解决了学习功能会将指纹识别传感器中损坏的像素单元的像素特征增加到指纹模板中,从而大大提高了指纹识别传感器的认假率,导致移动终端存在安全隐患的问题;达到了在损坏的像素单元的个数达到预定阈值后,放弃对指纹图像的匹配识别,大大降低了指纹识别传感器的认假率,避免了移动终端因认假率过高带来的安全隐患的效果。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并于说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的移动终端的硬件结构图;
图2是根据一示例性实施例示出的一种指纹识别方法的流程图;
图3A是根据另一示例性实施例示出的一种指纹识别方法的流程图;
图3B是根据一示例性实施例示出的一种指纹识别传感器发送的提示信息的示意图;
图4A是根据再一示例性实施例示出的一种指纹识别方法的流程图;
图4B是根据又一示例性实施例示出的一种指纹识别方法的流程图;
图4C是根据还一示例性实施例示出的一种指纹识别方法的流程图;
图4D是根据又一示例性实施例示出的一种指纹识别方法的流程图;
图5是根据一示例性实施例示出的一种指纹识别装置的框图;
图6是根据另一示例性实施例示出的一种指纹识别装置的框图;
图7是根据再一示例性实施例示出的一种指纹识别装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
图1是根据一示例性实施例示出的移动终端的硬件结构图。如图1所示,该移动终端可以是诸如智能手机、平板电脑、电子书阅读器之类的终端。该移动终端包括处理器120、分别与处理器120相连的存储器140和指纹识别模组160。其中:
存储器140中存储有处理器120的可执行指令。
指纹识别模组160又称指纹识别传感器。指纹识别模组160中包含有阵列排布的像素单元(图中未示出);指纹识别模组160中的各个像素单元配置为采集用户的指纹图像,指纹识别模组160根据各个像素单元采集到的指纹图像与预先存储的指纹模板进行匹配,实现移动终端的屏幕解锁、移动支付等功能。
图2是根据一示例性实施例示出的一种指纹识别方法的流程图,如图2所示,该指纹识别方法应用于图1所示的移动终端中,该指纹识别方法可以包括以下步骤。
在步骤201中,检测指纹识别传感器中损坏的像素单元的个数是否达到预定阈值。
像素单元是指阵列排布在指纹识别传感器中的像素。像素单元配置为采集用户的指纹图像的像素点。
损坏的像素单元是指指纹识别传感器中物理损坏的像素单元。
损坏的像素单元是指阵列排布的像素单元中被物理损坏的像素单元。
在步骤202中,若损坏的像素单元的个数达到预定阈值,则放弃对指纹识别传感器采集到的指纹图像进行匹配识别。
综上所述,本公开实施例中提供的指纹识别方法,通过检测指纹识别传感器中损坏的像素单元的个数是否达到预定阈值,损坏的像素单元是指指纹识别传感器中物理损坏的像素单元;若损坏的像素单元的个数达到预定阈值,则放弃对指纹识别传感器采集到的指纹图像进行匹配识别;解决了学习功能会将指纹识别传感器中损坏的像素单元的像素特征增加到指纹模板中,从而大大提高了指纹识别传感器的认假率,导致移动终端存在安全隐患的问题;达到了在损坏的像素单元的个数达到预定阈值后,放弃对指纹图像的匹配识别,大大降低了指纹识别传感器的认假率,避免了移动 终端因认假率过高带来的安全隐患的效果。
图3A是根据另一示例性实施例示出的一种指纹识别方法的流程图,如图3A所示,该指纹识别方法应用于图1所示的移动终端中,该指纹识别方法可以包括以下步骤。
在步骤301中,获取指纹识别传感器中各个像素单元的信息。
像素单元是指阵列排布在指纹识别传感器中的像素。像素单元配置为采集用户的指纹图像的像素点。
移动终端在使用指纹识别传感器之前首先获取指纹识别传感器中各个像素单元的信息。
可选的,在移动终端每次开机使用时,首先获取指纹识别传感器中各个像素单元的信息。
在步骤302中,根据像素单元的信息,统计指纹识别传感器中损坏的像素单元的个数。
移动终端在获取到各个像素单元的信息后,根据各个像素单元的信息统计该指纹识别传感器中损坏的像素单元的个数。
损坏的像素单元是指指纹识别传感器中物理损坏的像素单元。
损坏的像素单元是指阵列排布的像素单元中被物理损坏的像素单元。
由于外界因素,比如静电、外力按压等会导致指纹识别传感器中的像素单元被物理损坏。这些被物理损坏后的像素单元采集到的像素点会出现不同程度的残缺。
其中,统计指纹识别传感器中损坏的像素单元的个数可以包括如下几个子步骤:
1、分别获取指纹识别传感器在预定拍照环境下采集到的指纹图像中每一个像素单元的像素特征,该像素特征至少包括亮度值和/或对比度;
2、检测上述指纹识别传感器中是否存在像素特征属于第一数值区间的 像素单元;
3、统计上述指纹识别传感器中属于第一数值区间的像素单元的个数。
其中,第一数值区间是指损坏的像素单元的像素特征对应的取值范围;属于第一数值区间的像素单元的个数即为损坏的像素单元的个数。
假定正常情况下,在指纹识别传感器中输入高电压时,像素单元采集到的像素特征呈现黑色,在指纹识别传感器中输入低电压时,像素单元采集到的像素特征呈现白色。若在指纹识别传感器中输入高电压时,像素单元采集到的像素特征呈现白色,则该像素单元被确定为损坏的像素单元。
可选的,指纹识别传感器中预先存储有被物理损坏后的像素单元采集到的指纹图像的模板,将指纹识别传感器采集到的指纹图像与损坏的像素单元采集的指纹图像的模板进行匹配,统计损坏的像素单元的个数。
在步骤303中,检测指纹识别传感器中损坏的像素单元的个数是否达到预定阈值。
在统计指纹识别传感器中损坏的像素单元的个数后,将统计的个数与预先设置的预定阈值进行比较。检测统计到的损坏的像素单元的个数是否达到预定阈值。
在步骤304中,若损坏的像素单元的个数达到预定阈值,则放弃对指纹识别传感器采集到的指纹图像进行匹配识别。
若统计的损坏的像素单元的个数达到了预先设置的预定阈值,则指纹识别传感器放弃对采集到的指纹图像进行匹配识别。
可选的,若统计的损坏的像素单元的个数达到了预先设置的预定阈值,则指纹识别传感器向移动终端发送提示信息,提示用户指纹识别传感器已被损坏。
如图3B所示,移动终端接收到指纹识别传感器发送的提示信息,其中提示信息的内容为:“指纹识别传感器中的像素单元已被损坏,请及时修 复”。
在步骤305中,若不存在损坏的像素单元或损坏的像素单元的个数未达到预定阈值,则提取指纹图像中的特征点。
若不存在损坏的像素单元,则提取指纹识别传感器采集到的指纹图像中的特征点。
可选的,若统计的损坏的像素单元的个数未达到预先设置的预定阈值,则提取指纹识别传感器采集到的指纹图像中的特征点。
指纹图像的特征点是由至少一个像素单元采集到的像素点的信息组成的特征。因此,指纹图像的特征点可以是一个像素单元采集到的像素点的信息,也可以是指纹图像中多个像素单元采集的指纹图像的信息组成的一个特征。
比如:将指纹图像的起始点、指纹图像的终点、指纹图像的分叉点和指纹图像的结合点作为指纹图像的特征点。
比如:将指纹图像中相邻的10个像素单元采集到的指纹图像进行组合,并将组合后的特征作为指纹图像的一个特征点。
在步骤306中,检测特征点中的不可靠特征点是否达到预定个数。
不可靠特征点是由损坏的像素单元或者工作状态异常的像素单元所采集到的特征点。
损坏的像素单元是指指纹识别传感器中物理损坏的像素单元;工作状态异常的像素单元是指指纹识别传感器中未被物理损坏,但采集像素点时会出现异常的像素单元。
损坏的像素单元与工作状态异常的像素单元之间不存在包含关系,两者是并列存在的像素单元。
其中,统计指纹图像的特征点中不可靠特征点个数的步骤可以包括如下几个子步骤:
1、分别获取指纹识别传感器在预定拍照环境下采集到的指纹图像的每一个特征点;
2、统计上述指纹识别传感器中的特征点属于第二数值区间的特征点的个数。
其中,第二数值区间是指不可靠特征点对应的取值范围;属于第二数值区间的特征点即为不可靠特征点。
不可靠特征点是由至少一个损坏的像素单元采集到的像素点的信息组成的特征。因此,不可靠特征点可以是一个损坏的像素单元或者工作状态异常的像素单元采集到的像素点的信息,也可以是指纹图像中多个损坏的像素单元或者工作状态异常的像素单元采集的指纹图像的信息组成的一个特征。
比如:多个被损坏的像素单元采集到的指纹图像会产生黑色和白色相间的条纹信息。因此,将黑色和白色相间的条纹信息作为一种不可靠特征点。
可选的,指纹识别传感器中预先存储有被物理损坏后的像素单元采集到的指纹图像的不可靠特征点模板,将提取到的指纹图像中的特征点与不可靠特征点模板进行匹配,统计指纹图像特征点中不可靠特征点的个数,检测该指纹图像中的特征点中包含的不可靠特征点的个数是否达到预先设置的预定个数。
在步骤307中,若不可靠特征点达到预定个数,则放弃对指纹识别传感器采集到的指纹图像进行匹配识别。
若统计的不可靠特征点的个数达到了预先设置的预定个数,则指纹识别传感器放弃对采集到的指纹图像进行匹配识别。
可选的,若统计的不可靠特征点的个数达到了预先设置的预定个数,则指纹识别传感器向移动终端发送提示信息,提示用户指纹识别传感器已 被损坏。如图3B所示。
在步骤308中,若不存在不可靠特征点或不可靠特征点未达到预定个数,则对指纹识别传感器采集到的指纹图像进行匹配识别。
若不存在不可靠特征点,则对指纹识别传感器采集到的指纹图像进行匹配识别。
可选的,若统计的不可靠特征点的个数未达到预先设置的预定个数,则对指纹识别传感器采集到的指纹图像进行匹配识别。
综上所述,本公开实施例中提供的指纹识别方法,通过检测指纹识别传感器中损坏的像素单元的个数是否达到预定阈值,损坏的像素单元是指指纹识别传感器中物理损坏的像素单元;若损坏的像素单元的个数达到预定阈值,则放弃对指纹识别传感器采集到的指纹图像进行匹配识别;解决了学习功能会将指纹识别传感器中损坏的像素单元的像素特征增加到指纹模板中,从而大大提高了指纹识别传感器的认假率,导致移动终端存在安全隐患的问题;达到了在损坏的像素单元的个数达到预定阈值后,放弃对指纹图像的匹配识别,大大降低了指纹识别传感器的认假率,避免了移动终端因认假率过高带来的安全隐患的效果。
另外,通过提取指纹图像中的特征点,检测指纹图像中不可靠特征点的个数是否达到预定个数,使得对损坏的像素单元进行了双重确定,大大提高了指纹识别传感器的认假率。
需要说明的一点是:作为一种可能的实现方式,当检测出损坏的像素单元的个数达到预定阈值时,对指纹识别传感器中损坏的像素点采集到的指纹图像进行去除,对去除后的指纹图像进行匹配识别。
基于图3A所示的指纹识别方法中,是对指纹识别传感器中所有像素单元的检测,可选的,可以仅对用户指纹覆盖区域的像素单元进行检测,图3A实施例中的步骤303可以替代实现为如下步骤303a和303b,如图4A 所示。具体步骤如下:
在步骤303a中,根据指纹图像在指纹识别传感器中确定出用户指纹的覆盖区域。
根据指纹识别传感器采集到的指纹图像,在采集到的指纹图像中确定出用户指纹的覆盖区域。也即,确定出指纹识别传感器中采集到用户指纹图像的像素单元。
在步骤303b中,检测属于覆盖区域的像素单元中损坏的像素单元的个数是否达到第一预定阈值。
在确定出指纹识别传感器中采集到用户指纹图像的像素单元后,统计覆盖区域的像素单元中损坏的像素单元的个数,将统计的个数与预先设置的第一预定阈值进行比较,检测属于覆盖区域的像素单元中损坏的像素单元的个数是否达到了第一预定阈值。
综上所述,本公开实施例中提供的指纹识别方法,通过仅检测用户指纹的覆盖区域的损坏的像素单元个数,缩小了检测的范围,降低了检测的计算过程。
基于图3A所示的指纹识别方法中,是对指纹识别传感器中所有像素单元的检测,可选的,可以仅对用户指纹的惯常采集区域的像素单元进行检测,图3A实施例中的步骤303可以替代实现为如下步骤303c和303d,如图4B所示。具体步骤如下:
在步骤303c中,在指纹识别传感器中确定出用户指纹的惯常采集区域,惯常采集区域是采集到用户指纹的概率大于预定概率的区域。
通过对用户使用指纹识别传感器的习惯、用户的指纹大小等信息的统计,在指纹识别传感器中确定出用户指纹的惯常采集区域,也即,确定出指纹识别传感器中采集到用户指纹的概率大于预定概率的像素单元。
在步骤303d中,检测惯常采集区域中损坏的像素的个数是否达到第二 预定阈值。
在确定出指纹识别传感器中采集到用户指纹的概率大于预定概率的像素单元后,统计惯常采集区域的像素单元中损坏的像素单元的个数,将统计的个数与预先设置的第二预定阈值进行比较,检测属于惯常采集区域的像素单元中损坏的像素单元的个数是否达到了第二预定阈值。
综上所述,本公开实施例中提供的指纹识别方法,通过仅检测用户指纹的惯常采集区域的损坏的像素单元个数,缩小了检测的范围,降低了检测的计算过程。
基于图3A所示的指纹识别方法中,是对指纹识别传感器中所有像素单元的检测,可选的,可以仅对用户指纹的惯常采集区域的像素单元进行检测,图3A实施例中的步骤303可以替代实现为如下步骤303e和303f,如图4C所示。具体步骤如下:
在步骤303e中,在指纹识别传感器中确定出用户指纹的非惯常采集区域。
非惯常采集区域是除惯常覆盖区域之外的区域,惯常采集区域是采集到用户指纹的概率大于预定概率的区域。
通过对用户使用指纹识别传感器的习惯、用户的指纹大小等信息的统计,在指纹识别传感器中确定出用户指纹的非惯常采集区域。
其中,非惯常采集区域是指除惯常覆盖区域之外的区域,惯常采集区域是指采集到用户指纹的概率大于预定概率的区域。
也即,确定出指纹识别传感器中采集到用户指纹的概率小于预定概率的像素单元。
在步骤303f中,检测非惯常采集区域中损坏的像素的个数是否达到第三预定阈值。
在确定出指纹识别传感器中采集到用户指纹的概率小于预定概率的像 素单元后,统计非惯常采集区域的像素单元中损坏的像素单元的个数,将统计的个数与预先设置的第三预定阈值进行比较,检测属于非惯常采集区域的像素单元中损坏的像素单元的个数是否达到了第三预定阈值。
基于图4B和图4C所示的指纹识别方法,可选的,可以将惯常采集区域和非惯常采集区域进行同时检测,图3A实施例中的步骤303可以替代实现为如下步骤303g和303h,如图4D所示。具体步骤如下:
在步骤303g中,在指纹识别传感器中确定出用户指纹的惯常采集区域和非惯常采集区域。
惯常采集区域是采集到用户指纹的概率大于预定概率的区域,非惯常采集区域是除惯常覆盖区域之外的区域。
通过对用户使用指纹识别传感器的习惯、用户的指纹大小等信息的统计,在指纹识别传感器中确定出用户指纹的惯常采集区域和非惯常采集区域。
也即,将指纹识别传感器中采集到用户指纹的概率大于预定概率的像素单元确定为惯常采集区域中的像素单元;将指纹识别传感器中采集到用户指纹的概率小于预定概率的像素单元确定为非惯常采集区域中的像素单元。
在步骤303h中,检测惯常采集区域中损坏的像素的个数是否达到第二预定阈值,以及非惯常采集区域中损坏的像素的个数是否达到第三预定阈值。
其中,第三预定阈值大于第二预定阈值。
在确定出用户指纹的惯常采集区域的像素单元和非惯常采集区域的像素单元后,分别统计惯常采集区域的像素单元和非惯常采集区域的像素单元中损坏的像素单元的个数,将统计的惯常采集区域的像素单元中损坏的像素单元的个数与预先设置的第二预定阈值进行比较,检测属于惯常采集 区域的像素单元中损坏的像素单元的个数是否达到了第二预定阈值;将统计的非惯常采集区域的像素单元中损坏的像素单元的个数与预先设置的第三预定阈值进行比较,检测属于非惯常采集区域的像素单元中损坏的像素单元的个数是否达到了第三预定阈值。
下述为本公开装置实施例,可以应用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
图5是根据一示例性实施例示出的一种指纹识别装置的框图,如图5所示,该指纹识别装置应用于图1所示的移动终端中,该指纹识别装置包括但不限于:
个数检测模块520,被配置为检测指纹识别传感器中损坏的像素单元的个数是否达到预定阈值,损坏的像素单元是指指纹识别传感器中物理损坏的像素单元。
识别放弃模块540,被配置为若损坏的像素单元的个数达到预定阈值,则放弃对指纹识别传感器采集到的指纹图像进行匹配识别。
综上所述,本公开实施例中提供的指纹识别装置,通过检测指纹识别传感器中损坏的像素单元的个数是否达到预定阈值,损坏的像素单元是指指纹识别传感器中物理损坏的像素单元;若损坏的像素单元的个数达到预定阈值,则放弃对指纹识别传感器采集到的指纹图像进行匹配识别;解决了学习功能会将指纹识别传感器中损坏的像素单元的像素特征增加到指纹模板中,从而大大提高了指纹识别传感器的认假率,导致移动终端存在安全隐患的问题;达到了在损坏的像素单元的个数达到预定阈值后,放弃对指纹图像的匹配识别,大大降低了指纹识别传感器的认假率,避免了移动终端因认假率过高带来的安全隐患的效果。
图6是根据另一示例性实施例示出的一种指纹识别装置的框图,如图6所示,该指纹识别装置应用于图1所示的移动终端中,该指纹识别装置包 括但不限于:
个数检测模块520,被配置为检测指纹识别传感器中损坏的像素单元的个数是否达到预定阈值,损坏的像素单元是指指纹识别传感器中物理损坏的像素单元。
作为第一种可能的实现方式,本实施例中,个数检测模块520,可以包括:第一确定子模块521和第一检测子模块522。
第一确定子模块521,被配置为根据指纹图像在指纹识别传感器中确定出用户指纹的覆盖区域。
第一检测子模块522,被配置为检测属于覆盖区域的像素单元中损坏的像素单元的个数是否达到第一预定阈值。
作为第二种可能的实现方式,本实施例中,个数检测模块520,可以包括:第二确定子模块523和第二检测子模块524。
第二确定子模块523,被配置为在指纹识别传感器中确定出用户指纹的惯常采集区域,惯常采集区域是采集到用户指纹的概率大于预定概率的区域。
第二检测子模块524,被配置为检测惯常采集区域中损坏的像素的个数是否达到第二预定阈值。
作为第三种可能的实现方式,本实施例中,个数检测模块520,可以包括:第三确定子模块525和第三检测子模块526。
第三确定子模块525,被配置为在指纹识别传感器中确定出用户指纹的非惯常采集区域,非惯常采集区域是除惯常覆盖区域之外的区域,惯常采集区域是采集到用户指纹的概率大于预定概率的区域。
第三检测子模块526,被配置为检测非惯常采集区域中损坏的像素的个数是否达到第三预定阈值。
作为第四种可能的实现方式,本实施例中,个数检测模块520,可以包 括:第四确定子模块527和第四检测子模块528。
第四确定子模块527,被配置为在指纹识别传感器中确定出用户指纹的惯常采集区域和非惯常采集区域,惯常采集区域是采集到用户指纹的概率大于预定概率的区域,非惯常采集区域是除惯常覆盖区域之外的区域。
第四检测子模块528,被配置为检测惯常采集区域中损坏的像素的个数是否达到第二预定阈值,以及非惯常采集区域中损坏的像素的个数是否达到第三预定阈值。
第三预定阈值大于第二预定阈值。
识别放弃模块540,被配置为若损坏的像素单元的个数达到预定阈值,则放弃对指纹识别传感器采集到的指纹图像进行匹配识别。
可选的,本实施例中,该装置还可以包括:特征提取模块560、特征检测模块580和匹配放弃模块590。
特征提取模块560,被配置为若不存在损坏的像素单元或损坏的像素单元的个数未达到预定阈值,则提取指纹图像中的特征点。
特征检测模块580,被配置为检测特征点中的不可靠特征点是否达到预定个数,不可靠特征点是由损坏的像素单元或者工作状态异常的像素单元所采集到的特征点。
匹配放弃模块590,被配置为若不可靠特征点达到预定个数,则放弃对指纹识别传感器采集到的指纹图像进行匹配识别。
综上所述,本公开实施例中提供的指纹识别装置,通过检测指纹识别传感器中损坏的像素单元的个数是否达到预定阈值,损坏的像素单元是指指纹识别传感器中物理损坏的像素单元;若损坏的像素单元的个数达到预定阈值,则放弃对指纹识别传感器采集到的指纹图像进行匹配识别;解决了学习功能会将指纹识别传感器中损坏的像素单元的像素特征增加到指纹模板中,从而大大提高了指纹识别传感器的认假率,导致移动终端存在安 全隐患的问题;达到了在损坏的像素单元的个数达到预定阈值后,放弃对指纹图像的匹配识别,大大降低了指纹识别传感器的认假率,避免了移动终端因认假率过高带来的安全隐患的效果。
另外,通过提取指纹图像中的特征点,检测指纹图像中不可靠特征点的个数是否达到预定个数,使得对损坏的像素单元进行了双重确定,大大提高了指纹识别传感器的认假率。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开一示例性实施例提供了一种指纹识别装置,能够实现本公开实施例提供的指纹识别方法,该指纹识别装置包括:处理器、配置为存储处理器可执行指令的存储器;
其中,处理器被配置为:
检测指纹识别传感器中损坏的像素单元的个数是否达到预定阈值,损坏的像素单元是指指纹识别传感器中物理损坏的像素单元;
若损坏的像素单元的个数达到预定阈值,则放弃对指纹识别传感器采集到的指纹图像进行匹配识别。
图7是根据一示例性实施例示出的一种指纹识别装置的框图。例如,装置700可以是移动电话、计算机、数字广播终端、消息收发设备、游戏控制台、平板设备、医疗设备、健身设备、个人数字助理等。
参照图7,装置700可以包括以下一个或多个组件:处理组件702,存储器704,电源组件706,多媒体组件708,音频组件710,输入/输出(I/O)接口712,传感器组件714,以及通信组件716。
处理组件702通常控制装置700的整体操作,诸如与显示、电话呼叫、数据通信、相机操作和记录操作相关联的操作。处理组件702可以包括一个或多个处理器718来执行指令,以完成上述的方法的全部或部分步骤。 此外,处理组件702可以包括一个或多个模块,便于处理组件702和其他组件之间的交互。例如,处理组件702可以包括多媒体模块,以方便多媒体组件708和处理组件702之间的交互。
存储器704被配置为存储各种类型的数据以支持在装置700的操作。这些数据的示例包括配置为在装置700上操作的任何应用程序或方法的指令、联系人数据、电话簿数据、消息、图片、视频等。存储器704可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM)、电可擦除可编程只读存储器(EEPROM)、可擦除可编程只读存储器(EPROM)、可编程只读存储器(PROM)、只读存储器(ROM)、磁存储器、快闪存储器、磁盘或光盘。
电源组件706为装置700的各种组件提供电力。电源组件706可以包括电源管理系统,一个或多个电源,及其他与为装置700生成、管理和分配电力相关联的组件。
多媒体组件708包括在装置700和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件708包括一个前置摄像头和/或后置摄像头。当装置700处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件710被配置为输出和/或输入音频信号。例如,音频组件710包括一个麦克风(MIC),当装置700处于操作模式,如呼叫模式、记录模 式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器704或经由通信组件716发送。在一些实施例中,音频组件710还包括一个扬声器,配置为输出音频信号。
I/O接口712为处理组件702和外围接口模块之间提供接口,上述外围接口模块可以是键盘、点击轮、按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件714包括一个或多个传感器,配置为为装置700提供各个方面的状态评估。例如,传感器组件714可以检测到装置700的打开/关闭状态,组件的相对定位,例如组件为装置700的显示器和小键盘,传感器组件714还可以检测装置700或装置700一个组件的位置改变,用户与装置700接触的存在或不存在,装置700方位或加速/减速和装置700的温度变化。传感器组件714可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件714还可以包括光传感器,如CMOS或CCD图像传感器,配置为在成像应用中使用。在一些实施例中,该传感器组件714还可以包括加速度传感器、陀螺仪传感器、磁传感器、压力传感器或温度传感器。
通信组件716被配置为便于装置700和其他设备之间有线或无线方式的通信。装置700可以接入基于通信标准的无线网络,如Wi-Fi、2G或3G、或它们的组合。在一个示例性实施例中,通信组件716经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件716还包括近场通信(NFC)模块,以促进短程通信。例如,NFC模块可基于射频识别(RFID)技术、红外数据协会(IrDA)技术、超宽带(UWB)技术、蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置700可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程 逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,配置为执行上述指纹识别方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器704,上述指令可由装置700的处理器718执行以完成上述指纹识别方法。例如,非临时性计算机可读存储介质可以是ROM、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开实施例的一般性原理并包括本公开实施例未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
工业实用性
本公开的实施例中,通过检测指纹识别传感器中损坏的像素单元的个数是否达到预定阈值,损坏的像素单元是指指纹识别传感器中物理损坏的像素单元;若损坏的像素单元的个数达到预定阈值,则放弃对指纹识别传感器采集到的指纹图像进行匹配识别;解决了学习功能会将指纹识别传感器中损坏的像素单元的像素特征增加到指纹模板中,从而大大提高了指纹识别传感器的认假率,导致移动终端存在安全隐患的问题;达到了在损坏的像素单元的个数达到预定阈值后,放弃对指纹图像的匹配识别,大大降低了指纹识别传感器的认假率,避免了移动终端因认假率过高带来的安全隐患的效果。

Claims (13)

  1. 一种指纹识别方法,所述方法包括:
    检测指纹识别传感器中损坏的像素单元的个数是否达到预定阈值,所述损坏的像素单元是指所述指纹识别传感器中物理损坏的像素单元;
    若所述损坏的像素单元的个数达到所述预定阈值,则放弃对所述指纹识别传感器采集到的指纹图像进行匹配识别。
  2. 根据权利要求1所述的方法,其中,所述检测指纹识别传感器中损坏的像素单元的个数是否达到预定阈值,包括:
    根据所述指纹图像在所述指纹识别传感器中确定出用户指纹的覆盖区域;
    检测属于所述覆盖区域的所述像素单元中损坏的像素单元的个数是否达到第一预定阈值。
  3. 根据权利要求1所述的方法,其中,所述检测指纹识别传感器中损坏的像素单元的个数是否达到预定阈值,包括:
    在所述指纹识别传感器中确定出用户指纹的惯常采集区域,所述惯常采集区域是采集到用户指纹的概率大于预定概率的区域;
    检测所述惯常采集区域中所述损坏的像素的个数是否达到第二预定阈值。
  4. 根据权利要求1所述的方法,其中,所述检测指纹识别传感器中损坏的像素单元的个数是否达到预定阈值,包括:
    在所述指纹识别传感器中确定出用户指纹的非惯常采集区域,所述非惯常采集区域是除惯常覆盖区域之外的区域,所述惯常采集区域是采集到用户指纹的概率大于预定概率的区域;
    检测所述非惯常采集区域中所述损坏的像素的个数是否达到第三预定阈值。
  5. 根据权利要求1所述的方法,其中,所述检测指纹识别传感器中损坏的像素单元的个数是否达到预定阈值,包括:
    在所述指纹识别传感器中确定出用户指纹的惯常采集区域和非惯常采集区域,所述惯常采集区域是采集到用户指纹的概率大于预定概率的区域,所述非惯常采集区域是除所述惯常覆盖区域之外的区域;
    检测所述惯常采集区域中所述损坏的像素的个数是否达到所述第二预定阈值,以及所述非惯常采集区域中所述损坏的像素的个数是否达到所述第三预定阈值;
    所述第三预定阈值大于所述第二预定阈值。
  6. 根据权利要求1至5任一所述的方法,其中,所述方法还包括:
    若不存在所述损坏的像素单元或所述损坏的像素单元的个数未达到所述预定阈值,则提取所述指纹图像中的特征点;
    检测所述特征点中的不可靠特征点是否达到预定个数,所述不可靠特征点是由所述损坏的像素单元或者工作状态异常的像素单元所采集到的特征点;
    若所述不可靠特征点达到预定个数,则放弃对所述指纹识别传感器采集到的指纹图像进行匹配识别。
  7. 一种指纹识别装置,所述装置包括:
    个数检测模块,被配置为检测指纹识别传感器中损坏的像素单元的个数是否达到预定阈值,所述损坏的像素单元是指所述指纹识别传感器中物理损坏的像素单元;
    识别放弃模块,被配置为若所述损坏的像素单元的个数达到所述预定阈值,则放弃对所述指纹识别传感器采集到的指纹图像进行匹配识别。
  8. 根据权利要求7所述的装置,其中,所述个数检测模块,包括:
    第一确定子模块,被配置为根据所述指纹图像在所述指纹识别传感 器中确定出用户指纹的覆盖区域;
    第一检测子模块,被配置为检测属于所述覆盖区域的所述像素单元中损坏的像素单元的个数是否达到第一预定阈值。
  9. 根据权利要求7所述的装置,其中,所述个数检测模块,包括:
    第二确定子模块,被配置为在所述指纹识别传感器中确定出用户指纹的惯常采集区域,所述惯常采集区域是采集到用户指纹的概率大于预定概率的区域;
    第二检测子模块,被配置为检测所述惯常采集区域中所述损坏的像素的个数是否达到第二预定阈值。
  10. 根据权利要求7所述的装置,其中,所述个数检测模块,包括:
    第三确定子模块,被配置为在所述指纹识别传感器中确定出用户指纹的非惯常采集区域,所述非惯常采集区域是除惯常覆盖区域之外的区域,所述惯常采集区域是采集到用户指纹的概率大于预定概率的区域;
    第三检测子模块,被配置为检测所述非惯常采集区域中所述损坏的像素的个数是否达到第三预定阈值。
  11. 根据权利要求7所述的装置,其中,所述个数检测模块,包括:
    第四确定子模块,被配置为在所述指纹识别传感器中确定出用户指纹的惯常采集区域和非惯常采集区域,所述惯常采集区域是采集到用户指纹的概率大于预定概率的区域,所述非惯常采集区域是除所述惯常覆盖区域之外的区域;
    第四检测子模块,被配置为检测所述惯常采集区域中所述损坏的像素的个数是否达到所述第二预定阈值,以及所述非惯常采集区域中所述损坏的像素的个数是否达到所述第三预定阈值;
    所述第三预定阈值大于所述第二预定阈值。
  12. 根据权利要求7至11任一所述的装置,其中,所述装置还包括:
    特征提取模块,被配置为若不存在所述损坏的像素单元或所述损坏的像素单元的个数未达到所述预定阈值,则提取所述指纹图像中的特征点;
    特征检测模块,被配置为检测所述特征点中的不可靠特征点是否达到预定个数,所述不可靠特征点是由所述损坏的像素单元或者工作状态异常的像素单元所采集到的特征点;
    匹配放弃模块,被配置为若所述不可靠特征点达到预定个数,则放弃对所述指纹识别传感器采集到的指纹图像进行匹配识别。
  13. 一种指纹识别装置,所述装置包括:
    处理器;
    配置为存储所述处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    检测指纹识别传感器中损坏的像素单元的个数是否达到预定阈值,所述损坏的像素单元是指所述指纹识别传感器中物理损坏的像素单元;
    若所述损坏的像素单元的个数达到所述预定阈值,则放弃对所述指纹识别传感器采集到的指纹图像进行匹配识别。
PCT/CN2016/101873 2015-12-29 2016-10-12 指纹识别方法及装置 WO2017113930A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511009131.7 2015-12-29
CN201511009131.7A CN106934320B (zh) 2015-12-29 2015-12-29 指纹识别方法及装置

Publications (1)

Publication Number Publication Date
WO2017113930A1 true WO2017113930A1 (zh) 2017-07-06

Family

ID=57914655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101873 WO2017113930A1 (zh) 2015-12-29 2016-10-12 指纹识别方法及装置

Country Status (4)

Country Link
US (1) US10216976B2 (zh)
EP (1) EP3188078B1 (zh)
CN (1) CN106934320B (zh)
WO (1) WO2017113930A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180034750A (ko) * 2016-09-26 2018-04-05 삼성디스플레이 주식회사 표시장치 및 그의 구동방법
CN106815572A (zh) * 2017-01-03 2017-06-09 广东欧珀移动通信有限公司 用于指纹识别组件的支架、盖板组件及终端
CN109844764B (zh) * 2017-08-31 2021-12-28 华为技术有限公司 指纹传感器功能的验证方法及终端
CN109521899B (zh) * 2017-09-18 2022-03-25 北京小米移动软件有限公司 确定指纹可输入区域的方法及装置
CN107644220B (zh) * 2017-09-30 2021-03-05 上海摩软通讯技术有限公司 移动终端的指纹识别方法及系统
CN107742111B (zh) * 2017-11-03 2021-11-02 北京小米移动软件有限公司 身份识别方法及装置、存储介质
CN108171165B (zh) * 2017-12-28 2021-10-22 北京小米移动软件有限公司 指纹识别方法、装置及计算机可读存储介质
CN108197550A (zh) * 2017-12-28 2018-06-22 北京小米移动软件有限公司 故障提示方法、装置及电子设备
CN108509944B (zh) * 2018-06-25 2022-04-29 北京小米移动软件有限公司 指纹识别方法及装置
KR20200101158A (ko) * 2019-02-19 2020-08-27 삼성전자주식회사 지문 센서를 포함하는 전자 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070177774A1 (en) * 2006-01-30 2007-08-02 Nanogate Optoelectronics Robot, Inc. Fingerprint Recognition System Having Detecting Pore and Method Thereof
CN102693420A (zh) * 2012-05-25 2012-09-26 深圳市亚略特生物识别科技有限公司 一种指纹模板自动更新的方法
CN102708363A (zh) * 2012-05-15 2012-10-03 江苏群雄智能科技有限公司 自适应指纹识别系统
CN104391635A (zh) * 2014-11-26 2015-03-04 小米科技有限责任公司 解锁屏幕的装置及方法
CN104463132A (zh) * 2014-12-17 2015-03-25 浙江维尔科技股份有限公司 一种指纹识别方法及装置
CN105224931A (zh) * 2015-10-19 2016-01-06 广东欧珀移动通信有限公司 一种指纹采集方法及装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563940B2 (en) * 2001-05-16 2003-05-13 New Jersey Institute Of Technology Unauthorized user prevention device and method
US7184580B2 (en) * 2001-07-24 2007-02-27 Laurence Hamid Fingerprint scar recognition method and apparatus
US6545486B2 (en) 2001-08-30 2003-04-08 Stmicroelectronics, Inc. Solution and methodology for detecting surface damage on capacitive sensor integrated circuit
US7272247B2 (en) * 2001-10-10 2007-09-18 Activcard Ireland Limited Method and system for fingerprint authentication
US6754380B1 (en) * 2003-02-14 2004-06-22 The University Of Chicago Method of training massive training artificial neural networks (MTANN) for the detection of abnormalities in medical images
CN1310180C (zh) * 2003-05-06 2007-04-11 祥群科技股份有限公司 一种电容式指纹感测器及其制造方法
EP1624412B1 (en) * 2003-05-15 2008-12-17 Fujitsu Limited Biological information measuring device
US7711158B2 (en) * 2004-12-04 2010-05-04 Electronics And Telecommunications Research Institute Method and apparatus for classifying fingerprint image quality, and fingerprint image recognition system using the same
US20070286464A1 (en) 2006-06-08 2007-12-13 Jayanetti J K D Ruwan System and method for capturing a fingerprint using an electronic sensor
US7841539B2 (en) * 2007-02-15 2010-11-30 Alfred Hewton Smart card with random temporary account number generation
US7584068B2 (en) 2007-02-22 2009-09-01 Teradyne, Inc. Electrically stimulated fingerprint sensor test method
US8411913B2 (en) * 2008-06-17 2013-04-02 The Hong Kong Polytechnic University Partial fingerprint recognition
EP2204979A1 (en) * 2008-12-30 2010-07-07 Irdeto Access B.V. Fingerprinting a data object with multiple watermarks
US8718318B2 (en) * 2008-12-31 2014-05-06 Sonicwall, Inc. Fingerprint development in image based spam blocking
JP5196010B2 (ja) * 2009-04-13 2013-05-15 富士通株式会社 生体情報登録装置、生体情報登録方法及び生体情報登録用コンピュータプログラムならびに生体認証装置、生体認証方法及び生体認証用コンピュータプログラム
JP5445363B2 (ja) * 2010-07-08 2014-03-19 株式会社リコー 画像処理装置、画像処理方法および画像処理プログラム
CN104463129B (zh) * 2014-12-17 2018-03-02 浙江维尔科技股份有限公司 一种指纹注册方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070177774A1 (en) * 2006-01-30 2007-08-02 Nanogate Optoelectronics Robot, Inc. Fingerprint Recognition System Having Detecting Pore and Method Thereof
CN102708363A (zh) * 2012-05-15 2012-10-03 江苏群雄智能科技有限公司 自适应指纹识别系统
CN102693420A (zh) * 2012-05-25 2012-09-26 深圳市亚略特生物识别科技有限公司 一种指纹模板自动更新的方法
CN104391635A (zh) * 2014-11-26 2015-03-04 小米科技有限责任公司 解锁屏幕的装置及方法
CN104463132A (zh) * 2014-12-17 2015-03-25 浙江维尔科技股份有限公司 一种指纹识别方法及装置
CN105224931A (zh) * 2015-10-19 2016-01-06 广东欧珀移动通信有限公司 一种指纹采集方法及装置

Also Published As

Publication number Publication date
CN106934320B (zh) 2020-03-17
EP3188078B1 (en) 2021-07-14
EP3188078A1 (en) 2017-07-05
US20170185820A1 (en) 2017-06-29
US10216976B2 (en) 2019-02-26
CN106934320A (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
WO2017113930A1 (zh) 指纹识别方法及装置
WO2021031609A1 (zh) 活体检测方法及装置、电子设备和存储介质
RU2643473C2 (ru) Способ и аппаратура для идентификации отпечатков пальцев
US20150332439A1 (en) Methods and devices for hiding privacy information
WO2016107030A1 (zh) 通知信息显示方法及装置
WO2017128767A1 (zh) 指纹模板录入方法及装置
WO2017214793A1 (zh) 指纹模板生成方法及装置
CN105491289B (zh) 防止拍照遮挡的方法及装置
WO2018133387A1 (zh) 指纹识别方法及装置
WO2018098865A1 (zh) 消息阅读方法及装置
WO2017031901A1 (zh) 人脸识别方法、装置及终端
JP6391708B2 (ja) 虹彩画像を取得する方法および装置、ならびに虹彩識別機器
US10824891B2 (en) Recognizing biological feature
WO2017140109A1 (zh) 压力检测方法和装置
CN104077563B (zh) 人脸识别方法和装置
WO2017197778A1 (zh) 图像发送方法和装置
WO2016188065A1 (zh) 云名片推荐方法及装置
CN107643818B (zh) 功能开启方法及装置
CN105335714A (zh) 照片处理方法、装置和设备
CN107133551B (zh) 指纹验证方法及装置
CN112241652A (zh) 指纹识别方法和装置
CN110969067B (zh) 用户注册、认证方法及装置
CN108830194B (zh) 生物特征识别方法及装置
CN112437189A (zh) 身份识别方法、装置及介质
CN109426712A (zh) 指纹解锁方法、装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16880722

Country of ref document: EP

Kind code of ref document: A1