WO2017113831A1 - 手持式背散射成像仪及其成像方法 - Google Patents

手持式背散射成像仪及其成像方法 Download PDF

Info

Publication number
WO2017113831A1
WO2017113831A1 PCT/CN2016/096654 CN2016096654W WO2017113831A1 WO 2017113831 A1 WO2017113831 A1 WO 2017113831A1 CN 2016096654 W CN2016096654 W CN 2016096654W WO 2017113831 A1 WO2017113831 A1 WO 2017113831A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
modulator
pixel
image
detector
Prior art date
Application number
PCT/CN2016/096654
Other languages
English (en)
French (fr)
Inventor
陈志强
李元景
赵自然
吴万龙
唐乐
金颖康
王璞
Original Assignee
清华大学
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 同方威视技术股份有限公司 filed Critical 清华大学
Priority to BR112017025704-1A priority Critical patent/BR112017025704B1/pt
Priority to EP16880624.8A priority patent/EP3399303B1/en
Publication of WO2017113831A1 publication Critical patent/WO2017113831A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/203Measuring back scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/222Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays measuring scattered radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/301Accessories, mechanical or electrical features portable apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
    • G01N2223/3301Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts beam is modified for scan, e.g. moving collimator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
    • G01N2223/3302Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts object and detector fixed

Definitions

  • the invention relates to the field of X-ray imaging applications, in particular to backscatter detection imaging of an object and an imaging method thereof.
  • the object here can be baggage, vehicle, building wall surface and various types of internal structure and internal article safety identification. Object.
  • the most commonly used scanning method is flying spot scanning, that is, the ray is modulated and collimated into a ray pen beam (flying point) to scan rapidly point by point in the first dimension.
  • the object to be tested; the beam plane of the beam is relatively translated with the object along the second dimension along the second dimension; the velocity of the second dimension is much lower than the velocity of the first dimension, and the direction of the second dimension and the direction of the first dimension
  • the detector receives the scattered light from the object as the signal of the scanning point at the time, and the data processing processes the scanning position and the signal point to obtain a two-dimensional backscattering image reflecting the object information.
  • the flying spot scanning mode In backscattering applications, the flying spot scanning mode is very classic and has been widely used, but it has a natural drawback: low scanning efficiency.
  • the reason is that the flying spot scanning belongs to the point scanning (scanning one point at the same time), compared with the line scanning (scanning one line at the same time) and the surface scanning (scanning one surface at the same time), the efficiency is the lowest, the scanning speed is the lowest, and the cost is the same. The longest time.
  • the characteristics of backscattering result in a low dose of radiation, and the signal received by the detector is low and large, which causes the final image noise to be of poor quality.
  • the usual means may be to increase the X-ray machine voltage and current parameters or to reduce the scanning speed which is not so fast (ie further extend the scanning time).
  • the X-ray machine in space and weight, and the power is small, which means that the X-ray machine voltage and current can only be set to a small parameter value.
  • the image quality and scanning time are in a dilemma. If the image quality is guaranteed, the extremely low scanning speed will inevitably test the operator's smoothness and durability at low speed, which seriously affects the operation experience; if the scanning speed is low, Image quality will in turn affect the accuracy of the results of the charter.
  • handheld backscatter imagers do not require the operator to maintain a long scan time, so low image quality is the result in most cases.
  • At least one object of the present invention is to provide a hand-held backscatter imager and an imaging method thereof, which solve the contradiction between image quality and scanning time by a special "flying line" scanning mode. problem.
  • a hand-held backscatter imager comprising:
  • At least one collimator for collimation of X-rays At least one collimator for collimation of X-rays
  • a modulator configured to be disposed about the X-ray source and rotatable about the X-ray source, wherein the modulator is formed with X-rays corresponding to pixel points of more than one imaged image At least one X-ray passing region through which the beam passes;
  • a detector configured to receive scattered X-rays obtained by scattering an X-ray beam modulated by a modulator by an object to be inspected, and generate a corresponding scattered signal
  • a controller configured to acquire angle information of the X-ray passage zone and a scatter signal from the detector.
  • the controller is further configured to: calculate a difference value between the currently obtained scatter signal and the previously obtained scatter signal based on the successive differentiation algorithm; calculate a spatial angle of the current X-ray exit based on the currently obtained angle information Information, and determining, according to the spatial angle information, a pixel point position on the imaged image corresponding to the current X-ray and a corresponding compensation value; and determining, according to the difference value and the corresponding compensation value, a current X-ray corresponding The pixel value at the pixel position; thus the final scanned image.
  • the controller is further configured to control rotation of the modulator.
  • the modulator has a circular ring shape with the central axis of the X-ray source as an axis, and the at least one X-ray passing region is formed on the annular surface of the annular shape.
  • the at least one collimator corresponds to the at least one X-ray passage zone, each of the collimators having a fan shape and being disposed at a corresponding X-ray of the X-ray source and the modulator Between the zones, the corresponding X-ray passage zone is designed to be perpendicular to the sector of the collimator.
  • the at least one X-ray passage zone is designed in the form of an elongated slot.
  • the at least one X-ray passage region is designed in the form of an elongated through-hole array formed by a series of through holes.
  • the at least one X-ray passage zone is designed in the form of an elongated channel having a shorter diameter end.
  • the at least one X-ray passage region is designed in the form of an elongated through-hole array formed by a series of through-holes including short-diameter pores.
  • a backscatter imaging method comprising:
  • the angle information of the modulator and the scatter signal from the detector are acquired by a controller.
  • the controller calculates a difference value between the currently obtained scatter signal and the previously obtained scatter signal based on the successive differentiation algorithm; calculates spatial angle information of the current X-ray exit based on the currently obtained angle information, and The spatial angle information determines a pixel point position on the imaged image corresponding to the current X-ray and a corresponding compensation value; and, based on the difference value and the corresponding compensation value, determines a pixel point position corresponding to the current X-ray The pixel value; thus the final scanned image.
  • the controller is further configured to control rotation of the modulator.
  • the at least one X-ray passage zone is designed in the form of an elongated slot.
  • the aspect ratio of the collimating slit on the collimator is n
  • the aspect ratio of the at least one X-ray passing region is m, 2 ⁇ m ⁇ n/2, and, i
  • the pixel values for display on the final scanned image are set to P 1 , P 2 , ..., P n
  • the calculation formula of the pixel value is as follows:
  • the at least one X-ray passage region is designed in the form of an elongated through-hole array formed by a series of through holes.
  • the aspect ratio of the collimating slit on the collimator is n
  • the aspect ratio of the at least one X-ray passing region is m, 2 ⁇ m ⁇ n/2, and, i a pixel number value of the imaged image corresponding to the single X-ray beam stream
  • the at least one X-ray passage zone is designed in the form of an elongated channel having a shorter diameter end.
  • the aspect ratio of the collimating slit on the collimator is n
  • the aspect ratio of the at least one X-ray passing region is m, 2 ⁇ m ⁇ n/2
  • the aspect ratio coefficient of the short diameter end portion is ⁇
  • i is the pixel number value of the imaged image corresponding to the single X-ray beam stream, when the at least one X-ray passing region begins to enter the collimating slit range
  • the signals collected by the detector are set to S 1 , S 2 , ..., S n
  • the pixel values for display on the final scanned image are set to P 1 , P 2 , ..., P n , then
  • the calculation formula of the pixel value is as follows:
  • the at least one X-ray passage region is designed in the form of an elongated through-hole array formed by a series of through-holes including short-diameter pores.
  • the aspect ratio of the collimating slit on the collimator is n
  • the aspect ratio of the at least one X-ray passing region is m, 2 ⁇ m ⁇ n/2
  • the ratio of the diameter ratio of the short-diameter fine hole to the normal through-hole is ⁇
  • i is the value of the pixel number of the imaged image corresponding to the single-shot X-ray beam
  • the at least one X-ray passing region just starts to enter the collimation
  • the signals collected by the detector are set to S 1 , S 2 , ..., S n
  • the pixel values for display on the final scanned image are set to P 1 , P 2 , ..., P. n , then, the calculation formula of the pixel
  • the present invention proposes a unique "flying line" scanning mode that is suitable for backscatter scanning imaging of articles.
  • handheld devices are operated by humans, which means that it is not possible to require the operator to maintain too long scan times, tending to reduce scan time; on the other hand, weight and space limitations are usually It is decided that the power of the X-ray machine is very small, which means that the emission dose of the X-ray machine will be very low, and in order to improve the image quality, it is necessary to increase the scanning time.
  • the present invention addresses this contradiction.
  • the "flying line" scanning mode actually greatly increases the emission dose of the X-ray machine while keeping the scanning time constant. Since the object to be scanned is that the item is not a person, the large dose of the shot does not cause radiation safety pressure of the object to be inspected.
  • the multiplication of the dose fundamentally helps to reduce the random fluctuation of the signal and improve the signal-to-noise ratio of the signal.
  • FIG. 1 shows an overall structural diagram of a hand-held backscatter imager according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing the structure of main internal components of the hand-held backscatter imager shown in FIG. 1;
  • FIG. 3 is a schematic structural view of a modulator in the handheld backscatter imager shown in FIG. 1;
  • Figure 4a is a schematic view showing the structure of the modulator shown in Figure 3 in a slotted manner
  • Figure 4b is a schematic view showing the structure of the modulator shown in Figure 3 in an open mode
  • Figure 4c is a schematic view showing the structure of the modulator shown in Figure 3 in another slotting mode
  • Fig. 4d is a schematic view showing the structure of the modulator shown in Fig. 3 in another aperture mode.
  • the invention provides a hand-held backscatter imager and an imaging method thereof.
  • the handheld backscatter imager 100 of the present invention mainly includes an X-ray source 1, a collimator 2, a modulator 3, a detector 4, a motor 5, and a controller 6.
  • the X-ray source 1 is a device that generates X-rays.
  • the X-ray source 1 is typically an X-ray machine.
  • the collimator 2 is used to constrain the rays emitted by the X-ray source 1 into a fan beam.
  • the collimator 2 is made of an X-ray shielding material such as lead, tungsten, copper, steel, lead oxide, tungsten oxide, or the like having a sufficient thickness, or a mixture of the foregoing materials.
  • the collimator 2 is provided with a collimating slit of a certain width so that X-rays can pass through the collimating slit unimpeded to form a fan beam.
  • Modulator 3 is a means of forming a spatially modulated beam current.
  • Modulator 3 is generally in the shape of a ring, ring
  • An X-ray passing region 30 (a blank region having a certain geometry for X-rays to pass through) is opened, so that more than one image pixel point can pass unimpeded correspondingly to the actual size of the X-ray beam.
  • the modulator 3 is made of an X-ray shielding material such as lead, tungsten, copper, steel, lead oxide, tungsten oxide, or the like of a sufficient thickness, or a mixture of the foregoing materials.
  • An X-ray passing region 30 is opened in the ring of the modulator 3.
  • the modulator 3 can be rotated with its axis of rotation perpendicular to the plane of the fan beam.
  • the passage zone 30 is a blank area of a certain geometry that is open to the shield material for unobstructed passage of X-rays.
  • the passing zone 30 is a plurality of sets of uniform and uniform through-grooves 31 having a certain length.
  • the length-to-width ratio of each set of through-grooves may be determined according to actual needs, and may range from 2:1 to 50:1, and the length direction and the rotation of the ring.
  • the line speed direction is uniform; for example, the through area 30 is a plurality of sets of adjacent through holes 32, and the number of each set of holes may range from 2 to 50, and the arrangement direction of the holes is consistent with the direction of the rotational linear velocity of the ring.
  • a designed beam beam having a shape is formed; when the modulator 3 is rotated, the beam beam can be spatially Continuous change, that is, spatial modulation is achieved.
  • the traditional "flying spot” scan is a spatially modulated beam that forms a "point”, and the present invention forms a "line” of spatially modulated beam currents, so it is called a "flying line” scan.
  • the dose of the "flying line” mode is several times that of the "flying point” mode.
  • the multiplication of the dose fundamentally helps to reduce the random fluctuation of the signal. Improve the signal to noise ratio of the signal.
  • the detector 4 receives X-rays scattered on the object to be inspected and generates a scattering signal.
  • the detector 4 absorbs the "flying line" beam and scatters the radiation scattered on the object to be inspected and further converts it into a digital signal that can be used for processing in accordance with the angle of rotation of the modulator 3.
  • the motor 5 is used to provide power, for example, to drive the modulator 3 to rotate at a certain angular velocity.
  • the controller 6 controls the rotation of the modulator 3 and acquires the angle information of the modulator 3 and the scattered signal of the detector 4.
  • the controller 6 directly controls the motor 5 to control the rotational angular velocity of the modulator 3 while acquiring the angle information of the modulator 3 and the scattered signal of the detector 4.
  • the "flying line” is equivalent to having several “flying points” simultaneously hitting the object to be inspected at the same time, so the scanning position and the scattering signal in the conventional "flying point” scanning mode are The simple one-to-one correspondence to reconstruct the image is obviously not available, and the real signal at each position in the signal needs to be decomposed.
  • the imaging method is as follows:
  • Each acquired detector signal represents the sum of several image pixels; the value of each image pixel is decomposed from the detector signal by an imaging algorithm.
  • the final scanned image is obtained by calculating the acquired angle information and the scattered signal according to an imaging algorithm.
  • the imaging algorithm runs inside the controller 6, and the acquired angle information and the scatter signal operation are obtained according to the successive differentiation algorithm to obtain the final scanned image.
  • the controller 6 calculates a difference value between the currently obtained scatter signal and the previously obtained scatter signal based on the successive differentiation algorithm; calculates the spatial angle information of the current X-ray exit based on the currently obtained angle information, and, according to the space
  • the angle information determines a pixel point position on the imaged image corresponding to the current X-ray and a corresponding compensation value; and determines a pixel point value at a pixel point position corresponding to the current X-ray based on the difference value and the corresponding compensation value; The final scanned image.
  • a hand-held backscatter imager 100 and an imaging method therefor according to the present invention, wherein an implementation of an algorithm regarding the structure of the X-ray passing region 30 on the modulator 3 and the pixel point value in the imaging method is as follows.
  • the X-ray passing region 30 on the modulator 3 is in a slotted manner.
  • the number of points per scan line is n
  • the maximum number of points that the fly line can cover is m.
  • i is the number of pixel points of the imaged image corresponding to a single X-ray.
  • the signal collected by the detector 3 is set to S 1 , S 2 , ..., S n from the beginning of the narrow slit groove 31, and the pixel value for display on the final image.
  • P 1 , P 2 , ..., P n are set , the calculation formula of the pixel value is as follows.
  • the X-ray passing region 30 on the modulator 3 adopts an aperture type.
  • the number of points per scan line is n
  • the maximum number of points that the fly line can cover is m.
  • i is the number of pixel points of the imaged image corresponding to a single X-ray.
  • the signal collected by the detector 3 is set to S 1 , S 2 , ..., S n from the beginning of the through-hole row 32, and the pixel value for display on the final image.
  • S 1 , S 2 , ..., P n the calculation formula of the imaging algorithm is as follows.
  • the X-ray pass zone 30 on the modulator 3 is in another slotted manner.
  • the aspect ratio n of the collimating slit on the collimator 2 is designed as an elongated slot 31 through the region 30, and a "short tail" slot 310 is added to the end end in the reverse direction of rotation (ie, having a shorter diameter end)
  • the portion 310) has a length equal to the width of the elongated slot 31 and a width smaller than the width of the elongated slot 31, and the proportionality coefficient is ⁇ ( ⁇ 1).
  • the total aspect ratio m, 2 ⁇ m ⁇ n/2, of the narrow slot 31 and the "short tail" slot 310 are combined.
  • the number of points per scan line is n
  • the maximum number of points that the fly line can cover is m.
  • i is the number of pixel points of the imaged image corresponding to a single X-ray.
  • the signal collected by the detector 3 is set to S 1 , S 2 , ..., S n from the beginning of the through slot 31 to enter the collimation slot range, and the pixel value for display on the final image is set.
  • the calculation formula of the pixel value is as follows.
  • This method can quickly reduce the influence of the pre-detector signal on the late signal, and the image effect is better.
  • the X-ray passing region 3 on the modulator 3 adopts another opening method.
  • the aspect ratio n of the collimating slit on the collimator 2 is designed to be adjacent to the elongated through-hole row 32 through the region 30, and a short-diameter fine hole 320 is added to the end end in the reverse direction of rotation, the fine hole 320
  • the diameter is smaller than the normal hole 32, and the proportional coefficient is ⁇ ( ⁇ 1).
  • the total number m of normal holes 32 and shorter diameter pores 320 in the row of through holes is 2 ⁇ m ⁇ n/2.
  • the number of points per scan line is n
  • the maximum number of points that the fly line can cover is m.
  • i is the number of pixel points of the imaged image corresponding to a single X-ray.
  • the signal collected by the detector 3 is set to S 1 , S 2 , ..., S n from the beginning of the through-hole row 32, and the pixel value for display on the final image.
  • S 1 , S 2 , ..., P n the signal collected by the detector 3 is set to S 1 , S 2 , ..., S n from the beginning of the through-hole row 32, and the pixel value for display on the final image.
  • P 1 , P 2 , ..., P n and the calculation formula of the pixel value is as follows.
  • This method can quickly reduce the influence of the pre-detector signal on the late signal, and the image effect is better.
  • the hand-held backscatter imager and the imaging method provided by the invention substantially increase the emission dose of the X-ray machine through the "flying line" scanning mode, and can keep the scanning time unchanged. Since the object to be scanned is that the item is not a person, the large dose will not cause the object to be Check the radiation safety pressure of the object.
  • the multiplication of the dose fundamentally helps to reduce the random fluctuation of the signal and improve the signal-to-noise ratio of the signal.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

一种手持式背散射成像仪(100)和背散射成像方法,背散射成像仪(100)包括用于产生X射线的X射线源(1);用于X射线的准直的至少一个准直器(2);被构造成环绕X射线源(1)设置并且能够绕着X射线源(1)旋转的调制器(3),调制器(3)上形成有供多于一个成像图像像素点所对应的X射线束流通过的至少一个X射线通过区(30);探测器(4),该探测器(4)被构造成接收经由调制器(3)调制的X射线束流被待检查物体散射后得到的散射X射线,并且生成相应的散射信号;以及被构造成获取X射线通过区(30)的角度信息和来自探测器(4)的散射信号的控制器(6)。

Description

手持式背散射成像仪及其成像方法 技术领域
本发明涉及X射线成像应用领域,特别涉及物体的背散射检测成像及其成像方法,此处的物体可以是行李、车辆、建筑物墙面及各类需要对内部结构和内部物品安全性进行鉴别的物体。
背景技术
背散射检测成像应用中,根据背散射信号的特点,最普遍采用的扫描方式是飞点扫描,即:射线经调制准直成为射线笔束(飞点)在第一维方向上逐点快速扫描被检物;射线笔束平面随着探测器一起沿着第二维方向与被检物相对平移;第二维运动速度远低于第一维运动速度,并且第二维方向与第一维方向大致垂直;同时探测器接收物体上散射回来的射线作为当时扫描点的信号,数据处理时将扫描位置和信号点点对应即可得到反映物体信息的二维背散射图像。
在背散射应用技术中,飞点扫描模式非常经典并已被广泛应用,不过它具有一个天然缺点:扫描效率低。原因在于,飞点扫描属于点扫描(同一时刻扫描一个点),相比于线扫描(同一时刻扫描一条线)和面扫描(同一时刻扫描一个面),效率是最低的,扫描速度最低,花费时间最长。
另外,背散射的特点导致了射线剂量低,探测器接收的信号低涨落大,这就会造成最终图像噪声大质量差。为了增强探测器信号,通常的手段可以是增大X光机电压电流参数或者降低本就不算快的扫描速度(即进一步延长扫描时间)。
在某些应用场合中,增大X光机电压电流参数有困难,此时要想保证一定的图像质量,就必须延长扫描时间,或者要想保证较短的扫描时间,就必须牺牲一定的图像质量。图像质量和扫描时间就仿佛是一个跷跷板的两端,设计人员不得不在两者之间作出平衡或取舍。
比如在手持式背散射成像仪中,X光机因为空间和重量都受到限制,功率会很小,这就意味着X光机电压电流都只能定于一个较小的参数值。 此时图像质量和扫描时间就处于两难的局面,如果保图像质量,极低的扫描速度势必会考验操作人员在低速下动作的平稳度和持久度,严重影响操作体验;如果保扫描速度,低图像质量又会影响看图人员判图结果的准确性。而通常手持式背散射成像仪无法要求操作人员维持较长的扫描时间,因此低图像质量也就是大多情况下的结果。
发明内容
鉴于现有技术中存在的上述缺陷和问题,本发明的至少一个目的在于提供手持式背散射成像仪及其成像方法,其通过特殊的“飞线”扫描模式来解决图像质量和扫描时间的矛盾问题。
根据本发明的一个方面,提供了一种手持式背散射成像仪,所述手持式背散射成像仪包括:
X射线源,用于产生X射线;
至少一个准直器,用于X射线的准直;
调制器,所述调制器被构造成环绕所述X射线源设置并且能够绕着所述X射线源旋转,其中,所述调制器上形成有供多于一个成像图像像素点所对应的X射线束流通过的至少一个X射线通过区;
探测器,所述探测器被构造成接收经由调制器调制的X射线束流被待被检查物体散射后得到的散射X射线,并且生成相应的散射信号;以及
控制器,所述控制器被构造成获取所述X射线通过区的角度信息和来自所述探测器的散射信号。
优选地,所述控制器还被构造成:基于逐次微分算法,计算当前获得的散射信号与前一次获得的散射信号之间的差异值;基于当前获得的角度信息计算当前X射线出射的空间角度信息,并且,根据所述空间角度信息确定当前X射线所对应的成像图像上的像素点位置以及相应的补偿值;以及,基于所述差异值以及所述相应的补偿值确定当前X射线所对应的像素点位置处的像素点值;从而得出最终的扫描图像。
优选地,所述控制器还被构造成控制所述调制器的旋转。
优选地,所述调制器呈以所述X射线源中心轴线为轴线的圆环形状,而所述至少一个X射线通过区形成在所述圆环形状的环面上。
优选地,所述至少一个准直器对应于所述至少一个X射线通过区,每个所述准直器呈扇形形状并且被设置在所述X射线源与所述调制器的对应的X射线通过区之间,其中对应的所述X射线通过区被设计成垂直于所述准直器的扇面。
优选地,所述至少一个X射线通过区被设计成狭长通槽形式。
优选地,所述至少一个X射线通过区被设计成由一系列通孔相连形成的狭长通孔列形式。
优选地,所述至少一个X射线通过区被设计成具有较短直径端部的狭长通槽形式。
优选地,所述至少一个X射线通过区被设计成包括较短直径细孔的由一系列通孔相连形成的狭长通孔列形式。
根据本发明的另一个方面,提供了一种背散射成像方法,所述方法包括:
由X射线源产生X射线;
通过准直器对所述X射线进行准直;
使供多于一个成像图像像素点所对应的X射线束流通过调制器的至少一个X射线通过区,其中,所述调制器被构造成环绕所述X射线源设置并且能够绕着所述X射线源旋转,并且,所述调制器上形成有所述至少一个X射线通过区;
由探测器接收经由调制器调制的X射线束流被待被检查物体散射后得到的散射X射线,并且生成相应的散射信号;
由控制器获取所述调制器的角度信息和来自所述探测器的散射信号。
优选地,所述控制器基于逐次微分算法,计算当前获得的散射信号与前一次获得的散射信号之间的差异值;基于当前获得的角度信息计算当前X射线出射的空间角度信息,并且,根据所述空间角度信息确定当前X射线所对应的成像图像上的像素点位置以及相应的补偿值;以及,基于所述差异值以及所述相应的补偿值确定当前X射线所对应的像素点位置处的像素点值;从而得出最终的扫描图像。
优选地,所述控制器还被构造成控制所述调制器的旋转。
优选地,所述至少一个X射线通过区被设计成狭长通槽形式。在前述 优选示例中,假设所述准直器上准直缝的长宽比为n,而所述至少一个X射线通过区的长宽比为m,2≤m<n/2,并且,i为单次X射线所对应的成像图像像素点数量值;当所述至少一个X射线通过区刚开始进入准直缝范围开始,所述探测器采集到的信号设为S1、S2、……、Sn,而最终的扫描图像上显示用的像素点值设为P1、P2、……、Pn,那么,所述像素点值的计算公式如下:
Figure PCTCN2016096654-appb-000001
优选地,所述至少一个X射线通过区被设计成由一系列通孔相连形成的狭长通孔列形式。在前述优选示例中,假设所述准直器上准直缝的长宽比为n,而所述至少一个X射线通过区的长宽比为m,2≤m<n/2,并且,i为单次X射线束流所对应的成像图像的像素点数量值;当所述至少一个X射线通过区刚开始进入准直缝范围开始,所述探测器采集到的信号设为S1、S2、……、Sn,而最终的扫描图像上显示用的像素点值设为P1、P2、……、Pn,那么,所述像素点值的计算公式如下:
Figure PCTCN2016096654-appb-000002
优选地,所述至少一个X射线通过区被设计成具有较短直径端部的狭长通槽形式。在前述优选示例中,假设所述准直器上准直缝的长宽比为n,而所述至少一个X射线通过区的长宽比为m,2≤m<n/2,所述较短直径端部的长宽比系数为α,并且,i为单次X射线束流所对应的成像图像的像素点数量值,当所述至少一个X射线通过区刚开始进入准直缝范围开始,所述探测器采集到的信号设为S1、S2、……、Sn,而最终的扫描图像上显示用的像素点值设为P1、P2、……、Pn,那么,所述像素点值的计算公式如下:
Figure PCTCN2016096654-appb-000003
优选地,所述至少一个X射线通过区被设计成包括较短直径细孔的由一系列通孔相连形成的狭长通孔列形式。在前述优选示例中,假设所述准直器上准直缝的长宽比为n,而所述至少一个X射线通过区的长宽比为m,2≤m<n/2,所述较短直径细孔与正常通孔的直径比系数为α,并且,i 为单次X射线束流所对应的成像图像的像素点数量值,当所述至少一个X射线通过区刚开始进入准直缝范围开始,所述探测器采集到的信号设为S1、S2、……、Sn,而最终的扫描图像上显示用的像素点值设为P1、P2、……、Pn,那么,所述像素点值的计算公式如下:
Figure PCTCN2016096654-appb-000004
本发明至少取得了如下技术效果:
本发明提出了一种独特的“飞线”扫描模式,该模式适用于物品背散射扫描成像。
具体地,在手持背散射扫描应用中,手持设备由人来操作,这意味着不可能要求操作人员维持太长的扫描时间,倾向于减小扫描时间;另一方面,重量和空间的限制通常决定了X光机的功率很小,这也就意味着X光机的出射剂量会很低,为了提高图像质量,又需要增大扫描时间。
本发明解决了这个矛盾。通过“飞线”扫描模式实际极大地增加了X光机的出射剂量,同时能保持扫描时间不变。由于扫描的对象是物品不是人,因此出射剂量大不会造成被检查物体的辐射安全压力。
同时由于“飞线”扫描模式出射的剂量是“飞点”扫描模式的数倍,剂量的成倍数提升从根本上有助于降低信号的随机涨落、提高信号的信噪比。
本发明能够实现的其它发明目的以及可以取得的其它技术效果将在下述的具体实施方式中结合对具体实施例的描述和附图的示意进行阐述。
附图说明
为了让本发明的上述和其它目的、特征及优点能更加明显易懂,下面结合附图和具体实施方式对本发明作进一步说明。
图1显示了根据本发明实施例的手持式背散射成像仪的整体结构示意图;
图2显示了图1所示的手持式背散射成像仪的主要内部组成部件的结构示意图;
图3显示了图1所示的手持式背散射成像仪中的调制器的结构示意图;
图4a显示了图3所示的调制器采用一种开槽方式时的结构示意图;
图4b显示了图3所示的调制器采用一种开孔方式时的结构示意图;
图4c显示了图3所示的调制器采用另一种开槽方式时的结构示意图;以及
图4d显示了图3所示的调制器采用另一种开孔方式时的结构示意图。
图中标号
100-手持式背散射成像仪,1-X射线源,2-准直器,3-调制器,30-通过区,31-狭长通槽,32-狭长通孔列,310-“短尾”槽,320-细孔,4-探测器,5-电机,以及,6-控制器。
具体实施方式
下面详细描述本发明的具体实施例,所述具体实施例的示例在附图中示出,其中自始至终相同的标号表示相同或相似的元件。下面参考附图描述的具体实施例是示例性的,旨在解释本发明,而不能解释为对本发明的一种限制。
本发明提供了一种手持式背散射成像仪及其成像方法。
部件与构造
如图1-3所示,本发明提供的手持式背散射成像仪100,主要包括:X射线源1、准直器2、调制器3、探测器4、电机5和控制器6。
X射线源1是产生X射线的装置。X射线源1通常是X光机。
准直器2用于把X射线源1发出的射线约束成扇束。准直器2由X射线屏蔽材料制成,如足够厚度的铅、钨、铜、钢、氧化铅、氧化钨等,或前述几种材料的混合物。准直器2上开有一定宽度的准直缝,以使X射线可以无阻挡地通过该准直缝,形成扇束。
调制器3是形成空间调制束流的装置。调制器3总体呈圆环形状,环 上开有X射线通过区30(供X射线无阻挡通过的具有一定几何形状的空白区域),能使多于一个图像像素点对应实际大小的X射线束流无阻挡地通过。调制器3由X射线屏蔽材料制成,如足够厚度的铅、钨、铜、钢、氧化铅、氧化钨等,或前述几种材料的混合物。调制器3的圆环上开有X射线通过区30。调制器3可以旋转,其旋转轴垂直于扇束平面。
通过区30是屏蔽材料上打通的供X射线无阻挡通过的具有一定几何形状的空白区域。例如,通过区30是几组具有一定长度的粗细均匀的通槽31,每组通槽的长宽比根据实际需要而定,范围可以为2∶1~50∶1,长度方向与环的旋转线速度方向一致;再例如,通过区30是几组一定数量的紧邻的通孔32,每组孔的数量范围可以为2~50,孔的排列方向与环的旋转线速度方向一致。
经过准直器2的扇束再经过调制器3的通过区30后,便形成了设计好的具有一定形状的射线束流;当调制器3旋转起来时,该射线束流便能在空间上持续变化,即实现了空间调制。
传统的“飞点”扫描是形成了一个“点”的空间调制束流,而本发明是形成了一条“线”的空间调制束流,故称为“飞线”扫描。
由于一次性打出了数个“点”的束流,因此“飞线”模式出射的剂量是“飞点”模式的数倍,剂量的成倍数提升从根本上有助于降低信号的随机涨落、提高信号的信噪比。
探测器4接收被检查物体上散射的X射线并生成散射信号。例如,探测器4吸收“飞线”束流打在被检查物体上散射的射线,并按照调制器3的旋转角度进一步转换成能用于处理的数字信号。
电机5用来提供动力,例如,驱动调制器3按照一定的角速度旋转。
控制器6控制调制器3的旋转,并获取调制器3的角度信息和探测器4的散射信号。例如,控制器6直接控制电机5来控制调制器3的旋转角速度,同时获取调制器3的角度信息和探测器4的散射信号。
成像方法简述
根据本发明提供的手持式背散射成像仪100中,“飞线”相当于同时有数个“飞点”同时打在被检查物体上,因此传统的“飞点”扫描模式中扫描位置与散射信号简单的一一对应来重建图像的方式显然已不可用,需要把信号中每一个位置的真实信号分解出来。成像方法如下:
通过调制器使多于一个图像像素点对应实际大小的X射线束流出射(传统的“飞点”扫描模式下,通过飞点调制装置出束的笔形束流大小,就是一个图像像素点对应的实际大小);
每一次获取的探测器信号代表了数个图像像素点的和;通过成像算法,把每一个图像像素点的值从探测器信号里分解出来。
根据本发明提供的手持式背散射成像仪100的成像方法,通过把获取的角度信息和散射信号根据成像算法进行运算,得到最终的扫描图像。例如,成像算法运行于控制器6内部,把获取的角度信息和散射信号运算根据逐次微分算法得到最终的扫描图像。具体地,控制器6基于逐次微分算法,计算当前获得的散射信号与前一次获得的散射信号之间的差异值;基于当前获得的角度信息计算当前X射线出射的空间角度信息,并且,根据空间角度信息确定当前X射线所对应的成像图像上的像素点位置以及相应的补偿值;以及,基于差异值以及相应的补偿值确定当前X射线所对应的像素点位置处的像素点值;从而得出最终的扫描图像。
根据本发明提供的手持式背散射成像仪100及其成像方法,其中关于调制器3上的X射线通过区30的结构以及成像方法中像素点值的算法的实施例如下。
实施例1
调制器3上的X射线通过区30采用一种开槽方式。
准直器2上准直缝的长宽比n,通过区30设计成狭长通槽31形式,长宽比为m,2≤m<n/2(当m=1时就是开方孔的常规飞点扫描模式)。换句话说,每条扫描线的点数是n,飞线能覆盖的最大点数是m。并且,i为单次X射线所对应的成像图像像素点数量值。
调制器3旋转时,从狭长通槽31刚开始进入准直缝范围开始,探测器3采集到的信号设为S1、S2、……、Sn,最终图像上显示用的像素点值设为P1、P2、……、Pn,那么,像素点值的计算公式如下。
Figure PCTCN2016096654-appb-000005
实施例2
调制器3上的X射线通过区30采用一种开孔方式。
准直器2上准直缝的长宽比n,通过区30设计成由一系列通孔相连形成的狭长通孔列32,通孔数量为m,2≤m<n/2(当m=1时就是开圆孔的常规飞点扫描模式)。换句话说,每条扫描线的点数是n,飞线能覆盖的最大点数是m。并且,i为单次X射线所对应的成像图像像素点数量值。
调制器3旋转时,从通孔列32刚开始进入准直缝范围开始,探测器3采集到的信号设为S1、S2、……、Sn,最终图像上显示用的像素点值设为P1、P2、……、Pn,成像算法的计算公式如下。
Figure PCTCN2016096654-appb-000006
实施例3
调制器3上的X射线通过区30采用另一种开槽方式。
准直器2上准直缝的长宽比n,通过区30设计成狭长通槽31,并沿着旋转逆方向在末尾端加上一个“短尾”槽310(即,具有较短直径端部310),该“短尾”槽310的长度等于狭长通槽31的宽度,宽度小于狭长通槽31的宽度,比例系数为α(α<1)。狭长通槽31与“短尾”槽310合起来的总长宽比m,2≤m<n/2。换句话说,每条扫描线的点数是n,飞线能覆盖的最大点数是m。并且,i为单次X射线所对应的成像图像像素点数量值。
调制器3旋转时,从通槽31刚开始进入准直缝范围开始,探测器3 采集到的信号设为S1、S2、……、Sn,最终图像上显示用的像素点值设为P1、P2、……、Pn,像素点值的计算公式如下。
Figure PCTCN2016096654-appb-000007
该方式能迅速减小探测器前期信号对后期信号的影响,图像效果更好。
实施例4
调制器3上的X射线通过区30采用另一种开孔方式。
准直器2上准直缝的长宽比n,通过区30设计成紧邻的狭长通孔列32,并沿着旋转逆方向在末尾端加上一个较短直径细孔320,该细孔320直径小于正常孔32,比例系数为α(α<1)。通孔列中正常孔32与较短直径细孔320合起来的总数量m,2≤m<n/2。换句话说,每条扫描线的点数是n,飞线能覆盖的最大点数是m。并且,i为单次X射线所对应的成像图像像素点数量值。
调制器3旋转时,从通孔列32刚开始进入准直缝范围开始,探测器3采集到的信号设为S1、S2、……、Sn,最终图像上显示用的像素点值设为P1、P2、……、Pn,像素点值的计算公式如下。
Figure PCTCN2016096654-appb-000008
该方式能迅速减小探测器前期信号对后期信号的影响,图像效果更好。
由上可知,本发明提供的一种手持式背散射成像仪及其成像方法,通过“飞线”扫描模式实际极大地增加了X光机的出射剂量,同时能保持扫描时间不变。由于扫描的对象是物品不是人,因此出射剂量大不会造成被 检查物体的辐射安全压力。
同时由于“飞线”扫描模式出射的剂量是“飞点”扫描模式的数倍,剂量的成倍数提升从根本上有助于降低信号的随机涨落、提高信号的信噪比。
上述本发明的具体实施例仅例示性的说明了本发明的原理及其功效,而非用于限制本发明,熟知本领域的技术人员应明白,在不偏离本发明的精神和范围的情况下,对本发明所作的任何改变和改进都在本发明的范围内。本发明的权利保护范围,应如本申请的申请专利范围所界定的为准。

Claims (20)

  1. 一种手持式背散射成像仪,其特征在于,所述手持式背散射成像仪包括:
    X射线源,用于产生X射线;
    至少一个准直器,用于X射线的准直;
    调制器,所述调制器被构造成环绕所述X射线源设置并且能够绕着所述X射线源旋转,其中,所述调制器上形成有供多于一个成像图像像素点所对应的X射线束流通过的至少一个X射线通过区;
    探测器,所述探测器被构造成接收经由调制器调制的X射线束流被待被检查物体散射后得到的散射X射线,并且生成相应的散射信号;以及
    控制器,所述控制器被构造成获取所述X射线通过区的角度信息和来自所述探测器的散射信号。
  2. 如权利要求1所述的手持式背散射成像仪,其特征在于,
    所述控制器还被构造成:基于逐次微分算法,计算当前获得的散射信号与前一次获得的散射信号之间的差异值;基于当前获得的角度信息计算当前X射线出射的空间角度信息,并且,根据所述空间角度信息确定当前X射线所对应的成像图像上的像素点位置以及相应的补偿值;以及,基于所述差异值以及所述相应的补偿值确定当前X射线所对应的像素点位置处的像素点值;从而得出最终的扫描图像。
  3. 如权利要求1所述的手持式背散射成像仪,其特征在于,
    所述控制器还被构造成控制所述调制器的旋转。
  4. 如权利要求1-3中任一所述的手持式背散射成像仪,其特征在于,
    所述调制器呈以所述X射线源中心轴线为轴线的圆环形状,而所述至少一个X射线通过区形成在所述圆环形状的环面上。
  5. 如权利要求4所述的手持式背散射成像仪,其特征在于:
    所述至少一个准直器对应于所述至少一个X射线通过区,每个所述准直器呈扇形形状并且被设置在所述X射线源与所述调制器的对应的X射线通过区之间,其中对应的所述X射线通过区被设计成垂直于所述准直器的扇面。
  6. 如权利要求5所述的手持式背散射成像仪,其特征在于,
    所述至少一个X射线通过区被设计成狭长通槽形式。
  7. 如权利要求5所述的手持式背散射成像仪,其特征在于,
    所述至少一个X射线通过区被设计成由一系列通孔相连形成的狭长通孔列形式。
  8. 如权利要求5所述的手持式背散射成像仪,其特征在于,
    所述至少一个X射线通过区被设计成具有较短直径端部的狭长通槽形式。
  9. 如权利要求5所述的手持式背散射成像仪,其特征在于,
    所述至少一个X射线通过区被设计成包括较短直径细孔的由一系列通孔相连形成的狭长通孔列形式。
  10. 一种背散射成像方法,其特征在于,所述方法包括:
    由X射线源产生X射线;
    通过准直器对所述X射线进行准直;
    使供多于一个成像图像像素点所对应的X射线束流通过调制器的至少一个X射线通过区,其中,所述调制器被构造成环绕所述X射线源设置并且能够绕着所述X射线源旋转,并且,所述调制器上形成有所述至少一个X射线通过区;
    由探测器接收经由调制器调制的X射线束流被待被检查物体散射后得到的散射X射线,并且生成相应的散射信号;
    由控制器获取所述调制器的角度信息和来自所述探测器的散射信号。
  11. 如权利要求10所述的成像方法,其特征在于,
    所述控制器基于逐次微分算法,计算当前获得的散射信号与前一次获得的散射信号之间的差异值;基于当前获得的角度信息计算当前X射线出射的空间角度信息,并且,根据所述空间角度信息确定当前X射线所对应的成像图像上的像素点位置以及相应的补偿值;以及,基于所述差异值以及所述相应的补偿值确定当前X射线所对应的像素点位置处的像素点值;从而得出最终的扫描图像。
  12. 如权利要求11所述的成像方法,其特征在于,
    所述控制器还被构造成控制所述调制器的旋转。
  13. 如权利要求12所述的成像方法,其特征在于,
    所述至少一个X射线通过区被设计成狭长通槽形式。
  14. 如权利要求13所述的成像方法,其特征在于,
    假设所述准直器上准直缝的长宽比为n,而所述至少一个X射线通过区的长宽比为m,2≤m<n/2,并且,i为单次X射线所对应的成像图像像素点数量值;当所述至少一个X射线通过区刚开始进入准直缝范围开始,所述探测器采集到的信号设为S1、S2、……、Sn,而最终的扫描图像上显示用的像素点值设为P1、P2、……、Pn,那么,所述像素点值的计算公式如下:
    Figure PCTCN2016096654-appb-100001
  15. 如权利要求12所述的成像方法,其特征在于,
    所述至少一个X射线通过区被设计成由一系列通孔相连形成的狭长通孔列形式。
  16. 如权利要求15所述的成像方法,其特征在于,
    假设所述准直器上准直缝的长宽比为n,而所述至少一个X射线通过 区的长宽比为m,2≤m<n/2,并且,i为单次X射线束流所对应的成像图像的像素点数量值;当所述至少一个X射线通过区刚开始进入准直缝范围开始,所述探测器采集到的信号设为S1、S2、……、Sn,而最终的扫描图像上显示用的像素点值设为P1、P2、……、Pn,那么,所述像素点值的计算公式如下:
    Figure PCTCN2016096654-appb-100002
  17. 如权利要求12所述的成像方法,其特征在于,
    所述至少一个X射线通过区被设计成具有较短直径端部的狭长通槽形式。
  18. 如权利要求17所述的成像方法,其特征在于,
    假设所述准直器上准直缝的长宽比为n,而所述至少一个X射线通过区的长宽比为m,2≤m<n/2,所述较短直径端部的长宽比系数为α,并且,i为单次X射线束流所对应的成像图像的像素点数量值,当所述至少一个X射线通过区刚开始进入准直缝范围开始,所述探测器采集到的信号设为S1、S2、……、Sn,而最终的扫描图像上显示用的像素点值设为P1、P2、……、Pn,那么,所述像素点值的计算公式如下:
    Figure PCTCN2016096654-appb-100003
  19. 如权利要求12所述的成像方法,其特征在于,
    所述至少一个X射线通过区被设计成包括较短直径细孔的由一系列通孔相连形成的狭长通孔列形式。
  20. 如权利要求19所述的成像方法,其特征在于,
    假设所述准直器上准直缝的长宽比为n,而所述至少一个X射线通过区的长宽比为m,2≤m<n/2,所述较短直径细孔与正常通孔的直径比系数为α,并且,i为单次X射线束流所对应的成像图像的像素点数量值, 当所述至少一个X射线通过区刚开始进入准直缝范围开始,所述探测器采集到的信号设为S1、S2、……、Sn,而最终的扫描图像上显示用的像素点值设为P1、P2、……、Pn,那么,所述像素点值的计算公式如下:
    Figure PCTCN2016096654-appb-100004
PCT/CN2016/096654 2015-12-29 2016-08-25 手持式背散射成像仪及其成像方法 WO2017113831A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112017025704-1A BR112017025704B1 (pt) 2015-12-29 2016-08-25 Dispositivo e método de formação de imagem de retrodifusão portátil
EP16880624.8A EP3399303B1 (en) 2015-12-29 2016-08-25 Handheld backscatter imager and imaging method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511009171.1 2015-12-29
CN201511009171.1A CN105445303B (zh) 2015-12-29 2015-12-29 手持式背散射成像仪及其成像方法

Publications (1)

Publication Number Publication Date
WO2017113831A1 true WO2017113831A1 (zh) 2017-07-06

Family

ID=55555748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096654 WO2017113831A1 (zh) 2015-12-29 2016-08-25 手持式背散射成像仪及其成像方法

Country Status (4)

Country Link
EP (1) EP3399303B1 (zh)
CN (1) CN105445303B (zh)
BR (1) BR112017025704B1 (zh)
WO (1) WO2017113831A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109142404A (zh) * 2018-11-01 2019-01-04 同方威视技术股份有限公司 背散射成像系统、扫描检查系统和背散射图像成像方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105445303B (zh) * 2015-12-29 2019-02-19 清华大学 手持式背散射成像仪及其成像方法
CN109471186A (zh) * 2018-12-18 2019-03-15 东莞深圳清华大学研究院创新中心 一种飞点扫描安检仪及其扫描方法
CN114166875B (zh) * 2020-09-11 2024-01-12 同方威视技术股份有限公司 背散射检查系统
CN113552643A (zh) * 2021-09-06 2021-10-26 山东医工健康科技有限公司 一种用于x射线源的飞点扫描装置
US20240013947A1 (en) * 2022-07-07 2024-01-11 Viken Detection Corporation Rotating Hoop Chopper Wheel for X-Ray Imagers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202177591U (zh) * 2011-07-07 2012-03-28 董明 X射线转盘式断路飞点形成装置
CN103063691A (zh) * 2011-10-18 2013-04-24 北京睿思厚德辐射信息科技开发有限公司 双飞线多缝扫描背散射平面成像立体成像和自扫描成像装置
CN103901064A (zh) * 2012-12-27 2014-07-02 清华大学 射线发射装置、成像系统及检查方法
US9204848B2 (en) * 2015-01-26 2015-12-08 Martin Annis Patent Trust—2009 Low-dose X-ray backscatter system for three dimensional medical imaging using a conventional X-ray tube
CN105445303A (zh) * 2015-12-29 2016-03-30 清华大学 手持式背散射成像仪及其成像方法
CN205484137U (zh) * 2015-12-29 2016-08-17 清华大学 手持式背散射成像仪

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1107882C (zh) * 1999-08-25 2003-05-07 沈阳师范学院 多功能工业x射线成像系统
US20060245548A1 (en) * 2005-04-22 2006-11-02 Joseph Callerame X-ray backscatter inspection with coincident optical beam
CN102565110B (zh) * 2010-12-31 2015-04-01 同方威视技术股份有限公司 一种背散射成像用射线束的扫描装置和方法
US9151721B2 (en) * 2011-06-20 2015-10-06 The Boeing Company Integrated backscatter X-ray system
RU151218U1 (ru) * 2012-01-27 2015-03-27 Американ Сайенс Энд Энджиниринг, Инк. Портативное устройство рентгеновского формирования изображения обратного рассеяния
FR3000211B1 (fr) * 2012-12-20 2015-12-11 Commissariat Energie Atomique Dispositif d'eclairage par balayage , dispositif d'imagerie le comportant et procede de mise en oeurvre
US9020103B2 (en) * 2013-02-15 2015-04-28 American Science And Engineering, Inc. Versatile beam scanner with fan beam

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202177591U (zh) * 2011-07-07 2012-03-28 董明 X射线转盘式断路飞点形成装置
CN103063691A (zh) * 2011-10-18 2013-04-24 北京睿思厚德辐射信息科技开发有限公司 双飞线多缝扫描背散射平面成像立体成像和自扫描成像装置
CN103901064A (zh) * 2012-12-27 2014-07-02 清华大学 射线发射装置、成像系统及检查方法
US9204848B2 (en) * 2015-01-26 2015-12-08 Martin Annis Patent Trust—2009 Low-dose X-ray backscatter system for three dimensional medical imaging using a conventional X-ray tube
CN105445303A (zh) * 2015-12-29 2016-03-30 清华大学 手持式背散射成像仪及其成像方法
CN205484137U (zh) * 2015-12-29 2016-08-17 清华大学 手持式背散射成像仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3399303A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109142404A (zh) * 2018-11-01 2019-01-04 同方威视技术股份有限公司 背散射成像系统、扫描检查系统和背散射图像成像方法
CN109142404B (zh) * 2018-11-01 2024-06-11 同方威视技术股份有限公司 背散射成像系统、扫描检查系统和背散射图像成像方法

Also Published As

Publication number Publication date
BR112017025704B1 (pt) 2023-04-18
BR112017025704A2 (pt) 2018-08-07
CN105445303A (zh) 2016-03-30
EP3399303B1 (en) 2021-04-28
CN105445303B (zh) 2019-02-19
EP3399303A1 (en) 2018-11-07
EP3399303A4 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
WO2017113831A1 (zh) 手持式背散射成像仪及其成像方法
US11561320B2 (en) Hand-held portable backscatter inspection system
US7023950B1 (en) Method and apparatus for determining the position of an x-ray cone beam produced by a scanning electron beam
AU2011349928B2 (en) Scanning device and method for back-scatter imaging with a radiation beam
US20100172470A1 (en) Three-dimensional contents determination method using transmitted x-ray
WO2017101471A1 (zh) 液体检测方法和系统
KR102033233B1 (ko) 멀티 모달 검출 시스템 및 방법
WO2011079603A1 (zh) 一种背散射成像用射线束的扫描装置和方法
CN105764422B (zh) 成像装置和方法
JPS6411296B2 (zh)
US20060245547A1 (en) Increased detectability and range for x-ray backscatter imaging systems
US7660391B2 (en) Compact e-beam source for generating X-rays
JP2007528253A (ja) フォーカスしたコヒーレント散乱コンピュータ断層撮影
CN106572823A (zh) 投影数据采集装置
KR101259430B1 (ko) 영상화 단층 촬영 방법 및 장치
US6687332B2 (en) Method and apparatus for patient-in-place measurement and real-time control of beam-spot position and shape in a scanning electron beam computed tomographic system
US7340030B2 (en) Asymmetric cone beam
US10728996B2 (en) Circular x-ray tube and an x-ray instrument comprising the circular x-ray tube
JP5616436B2 (ja) トモグラフィ装置及びトモグラフィ方法
CN108078580B (zh) 放射成像方法及其系统
CN205484137U (zh) 手持式背散射成像仪
CN216449466U (zh) 一种背散射成像装置及背散射检测系统
JP2011232226A (ja) X線発生装置及びx線検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880624

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017025704

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112017025704

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171129