WO2017113296A1 - 数据传输的方法及装置 - Google Patents

数据传输的方法及装置 Download PDF

Info

Publication number
WO2017113296A1
WO2017113296A1 PCT/CN2015/100126 CN2015100126W WO2017113296A1 WO 2017113296 A1 WO2017113296 A1 WO 2017113296A1 CN 2015100126 W CN2015100126 W CN 2015100126W WO 2017113296 A1 WO2017113296 A1 WO 2017113296A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
terminal device
scheduled
scheduling
indication information
Prior art date
Application number
PCT/CN2015/100126
Other languages
English (en)
French (fr)
Inventor
蔺波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15911922.1A priority Critical patent/EP3383118B1/en
Priority to PCT/CN2015/100126 priority patent/WO2017113296A1/zh
Priority to CN201580084207.4A priority patent/CN108353411B/zh
Priority to JP2018534596A priority patent/JP6616009B2/ja
Publication of WO2017113296A1 publication Critical patent/WO2017113296A1/zh
Priority to US16/019,396 priority patent/US10674523B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of communications technologies, and more particularly to a data transmission method and apparatus.
  • the network architecture is divided into two types: centralized and distributed.
  • the base station includes baseband functions and radio frequency functions.
  • the centralized architecture puts the baseband functions on the baseband.
  • the radio frequency function is placed in a remote radio unit (RRU).
  • the BBU and the RRU need to be connected by a large-capacity transmission medium such as an optical fiber or a microwave.
  • the above two architectures are independent of the terminal device. That is to say, once the architecture is determined, all the terminal devices in a cell are either distributed scheduling or centralized scheduling.
  • the scheduling in the distributed architecture is that each base station schedules itself, and the inter-cell coordination effect between the base stations is not good, so that the interference between the inter-base station cells is relatively large, and the throughput of the terminal equipment located at the cell edge is decreased, but the distributed architecture
  • the advantage is to save the bandwidth of the transmission network, because the BBU and RRU are unified, there is no need for an additional transmission network (Fronthual).
  • the advantage of centralized architecture is that the system performance is good, because the radio resources of multiple cells can be scheduled centrally (for example, by means of CoMP technology), so that the radio resources between multiple cells can be coordinated, the interference is reduced, and the throughput of the cell edge users is improved, but The BBU and the RRU are separated.
  • the transmission network between the BBU and the RRU (commonly referred to as the preamble Frontaul) needs to transmit a large amount of data, and the bandwidth requirement is very large. Further, if the frequency bandwidth supported by the cell increases, the air interface needs to transmit more data, and the corresponding transmission network bandwidth requirement further increases, thereby causing great pressure on the bandwidth of the transmission network.
  • the present invention provides a data communication method and apparatus for reducing the bandwidth of a transmission network while obtaining the gain of centralized scheduling and ensuring system performance.
  • inventions of the present application provide a data transmission method.
  • the method includes at least one first node and at least one second node, wherein the first node and the second node both have a scheduling function, and the second node determines the first according to basic information and/or network information of the terminal device.
  • the first indication information is sent to the first node, where the first indication information is used to indicate that the terminal device is scheduled by the first node or scheduled by the second node, if the first indication information Instructing the terminal device to be scheduled by the first node, the second node sends a data packet that is not processed by the scheduling function of the second node to the first node; or the first indication information indicates The terminal device is scheduled by the second node, and the second node sends the data packet processed by the scheduling function of the second node to the first node.
  • the solution provided by the embodiment of the present invention is to dynamically determine, according to basic information and/or network information of each terminal device, that the terminal device is scheduled by the first node or scheduled by the second node, so that a cell is in a cell.
  • Different terminal devices implement different scheduling modes (ie centralized scheduling or distributed scheduling).
  • centralized scheduling architecture mentioned in the background art since some terminal devices in the cell adopt distributed scheduling, the requirement for transmitting network bandwidth is reduced.
  • the system performance of the cell is improved because the terminal device located at the cell edge can adopt centralized scheduling.
  • the second node negotiates with the first node to change the scheduling node, and the second node changes according to the terminal device.
  • the basic information and/or the network information determines the second indication information, and sends the second indication information to the first node, where the second indication information is used to indicate that the scheduling node of the terminal device is changed from the second node to the second node.
  • the first node scheduling is changed or changed by the first node to be scheduled by the second node. Therefore, after the basic information and/or the network information of each terminal device is changed, the terminal device is dynamically determined to be scheduled by the first node or scheduled by the second node, so that different terminal devices in one cell can implement different scheduling. the way. In the case of obtaining the gain of centralized scheduling, The transmission network bandwidth requirement for each terminal device fixed scheduling node is reduced.
  • the first indication information includes a scheduling indication or a bearer type indication.
  • the first indication information further includes a bearer identifier of the terminal device, where the bearer identifier is used to indicate that data on the bearer corresponding to the bearer identifier of the terminal device is scheduled by the first node. Or scheduled by the second node.
  • the data that has not been processed by the scheduling function of the second node includes a PDCP PDU or an IP PDU.
  • the data processed by the scheduling function of the second node includes MAC PDU or PHY layer data.
  • the second node sends different data packets to the first node, and according to different data types, the first node may be dynamically scheduled according to the actual situation of the terminal device or the actual situation of the network (distributed scheduling) Or second node scheduling (centralized scheduling), when it is determined that the first node is scheduled, the demand for transmitting network bandwidth is reduced; or when it is determined that the second node is scheduled, the system performance of the cell will be improved. This provides a balance between system performance and transmission network bandwidth requirements.
  • the MAC PDU includes a MAC PDU processed by a MAC layer scheduling function; or a MAC PDU processed by a MAC layer scheduling function and a HARQ function of a MAC layer.
  • the terminal device basic information includes: a geographical location of the terminal device, a service QoS information, a measurement report, a capability of the terminal, or priority information of the terminal device.
  • the first indication information or the second indication information is determined according to any of the following conditions:
  • Condition 1 when the geographical location of the terminal device is located at the cell edge, scheduled by the second node, or when the geographical location of the terminal device is located at the non-cell edge, scheduled by the first node; or, condition 2, When the signal strength of the serving cell in the measurement report is less than the first threshold or the signal strength of the neighboring cell is higher than the second threshold, the second node schedules, or when the signal strength of the serving cell in the measurement report is greater than the first threshold or the signal strength of the neighboring cell When the second threshold is less than the second threshold, it is scheduled by the first node; or condition 3, when the capability of the terminal device supports COMP, it is scheduled by the second node, or when the capability of the terminal device does not support COMP, the first node schedules; 4. When the load of the transmission network is light, it is scheduled by the second node, or when the load of the transmission network is heavy, it is scheduled by the first node.
  • condition 1 when scheduling a plurality of terminal devices, determining the first indication information or determining the second indication information according to the first condition and the second condition, where the first condition includes the following Any condition: condition 1, when the geographical location of the terminal device is located at the cell edge, scheduled by the second node, or when the geographical location of the terminal device is located at the non-cell edge, scheduled by the first node; or, condition 2, When the signal strength of the serving cell in the measurement report is less than the first threshold or the signal strength of the neighboring cell is higher than the second threshold, the second node schedules, or when the signal strength of the serving cell in the measurement report is greater than the first threshold or the signal strength of the neighboring cell When the second threshold is less than the second threshold, it is scheduled by the first node; or, when the capability of the terminal device supports COMP, it is scheduled by the second node, or when the capability of the terminal device does not support COMP, it is scheduled by the first node; And the second bar includes scheduling by the second node when the load of the transmission network is light, or
  • inventions of the present application provide another method of data transmission.
  • the method includes at least one first node and at least one second node, wherein the first node and the second node both have a scheduling function, and the first node receives first indication information, where the first indication information is used by Instructing the terminal device to be scheduled by the first node or the second node; if the first indication information indicates that the terminal device is scheduled by the first node, the first node receives the Transmitting, by the second node, a data packet that is not processed by the scheduling function of the second node; or, the first indication information indicates that the terminal device is scheduled by the second node, and the first node receives a data packet sent by the second node and processed by the scheduling function of the second node.
  • the tone can be flexibly determined for each terminal device.
  • Degree node a balance between system performance and transmission network bandwidth requirements.
  • the transmission network bandwidth requirement for the fixed scheduling node of each terminal device is simultaneously reduced.
  • the first node and the second node negotiate to change a scheduling node, and the first node receives the a second indication information that is sent by the second node, where the second indication information is determined by the second node according to the changed basic information and/or network information of the terminal device, where the second indication information is used to indicate the terminal
  • the device is scheduled to be scheduled by the second node to be scheduled by the first node, or changed by the first node to be scheduled by the second node. Therefore, after the basic information or the network information of each terminal device changes, the terminal device is dynamically determined to be scheduled by the first node or scheduled by the second node, so that different terminal devices in one cell can implement different scheduling modes. In the case of obtaining the gain of centralized scheduling, the transmission network bandwidth requirement for the fixed scheduling node for each terminal device is reduced.
  • the first indication information received by the first node further includes a bearer identifier of the terminal device, where the bearer identifier is used to indicate that the data on the bearer corresponding to the bearer identifier of the terminal device is
  • the first node performs scheduling or is scheduled by the second node. Thereby achieving a more fine-grained scheduling, thereby more clearly achieving a balance between system performance and transmission network bandwidth requirements.
  • the first node receives data that is sent by the second node and is not processed by the scheduling function of the second node, and includes: a PDCP PDU or an IP PDU.
  • the first node receives the data that is sent by the second node and is processed by the scheduling function of the second node, and includes: MAC PDU or PHY layer data.
  • the second node sends different data packets to the first node, and according to different data types, the first node may be dynamically scheduled according to the actual situation of the terminal device or the actual situation of the network (distributed scheduling) ) or second node scheduling (centralized scheduling), when determined by the When a node is scheduled, the demand for transmitting network bandwidth is reduced; when it is determined that the second node is scheduled, the system performance of the cell will be improved. This provides a balance between system performance and transmission network bandwidth requirements.
  • the MAC PDU includes: a MAC PDU processed by a MAC layer scheduling function; or a MAC PDU processed by a MAC layer scheduling function and a MAC layer HARQ function.
  • the solution provided by the present invention is to dynamically determine whether the terminal device is a second node scheduling (centralized scheduling) according to basic information and/or network information of each terminal device (such as the Fronthaul transmission network load).
  • First node scheduling distributed scheduling
  • different scheduling modes can be implemented, thereby achieving a balance between system performance and transmission network bandwidth requirements.
  • the scheduling manner of the terminal device may be dynamically determined according to the change of the basic information of the terminal device and/or the network information (such as the Fronthaul transmission network load), that is, the scheduling manner of the terminal device is changed.
  • the solution provided by the embodiment of the present invention can flexibly select a scheduling node for each terminal device, and achieve a balance between system performance and transmission network bandwidth requirements.
  • the transmission network bandwidth requirement for the fixed scheduling node of each terminal device is simultaneously reduced.
  • an embodiment of the present invention provides a data transmission node, which has a function of implementing the behavior of the second node in the above method design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the node includes a processor and a transmitter, and the processor is configured to determine first indication information according to basic information and/or network information of the terminal device, where the first indication information is used by Instructing the terminal device to be scheduled by the first node or scheduled by the node, the transmitter is configured to send the first indication information determined by the processor to the first node, and send the first node to the first node.
  • a data packet processed by a scheduling function of the node or a data packet processed by the scheduling function of the node is sent to the first node.
  • the embodiment of the present invention provides another data transmission node, which has the function of implementing the behavior of the first node in the above method design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the node includes a receiver configured to be used by the root to receive first indication information, where the first indication information is used to indicate that the terminal device is scheduled by the node Or being scheduled by the second node, and configured to receive a data packet sent by the second node that is not processed by the scheduling function of the second node, or used to receive the The data packet processed by the scheduling function of the two nodes.
  • an embodiment of the present invention provides a communication system, including the data transmission node, another data transmission node, and a terminal device according to the foregoing aspect.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use by the base station, including a program designed to perform the above aspects.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions used by the UE, including a program designed to perform the above aspects.
  • the solution provided by the embodiment of the present invention can flexibly determine a scheduling node for each terminal device, and achieve a balance between system performance and transmission network bandwidth requirements. In the case of obtaining the gain of centralized scheduling, the transmission network bandwidth requirement for the fixed scheduling node of each terminal device is simultaneously reduced.
  • FIG. 1 is a schematic diagram of a distributed protocol stack architecture provided by the prior art of the present invention.
  • FIG. 2 is a schematic diagram of a centralized protocol stack architecture provided by the prior art of the present invention.
  • FIG. 3 is a schematic flow chart of an embodiment of a data transmission method according to the present invention.
  • FIG. 3a is a schematic flowchart diagram of an embodiment of a data transmission method according to the present invention.
  • FIG. 3b is a schematic flowchart diagram of an embodiment of a data transmission method according to the present invention.
  • FIG. 4 is a schematic flowchart diagram of another embodiment provided by a data transmission method according to the present invention.
  • FIG. 5 is a schematic flowchart diagram of another embodiment provided by a data transmission method according to the present invention.
  • FIG. 6 is a schematic flowchart diagram of another embodiment provided by a data transmission method according to the present invention.
  • FIG. 7 is a schematic flowchart diagram of another embodiment provided by a data transmission method according to the present invention.
  • FIG. 8 is a schematic flowchart diagram of another embodiment provided by a data transmission method according to the present invention.
  • FIG. 9 is a schematic flowchart diagram of another embodiment provided by a data transmission method according to the present invention.
  • FIG. 10 is a schematic flowchart diagram of another embodiment provided by a data transmission method according to the present invention.
  • FIG. 11 is a schematic flowchart diagram of another embodiment of a data transmission method according to the present invention.
  • FIG. 12 is a schematic flowchart diagram of another embodiment provided by a data transmission method according to the present invention.
  • FIG. 13 is a schematic flowchart diagram of another embodiment provided by a data transmission method according to the present invention.
  • FIG. 14 is a schematic structural diagram of an embodiment of a data transmission node according to the present invention.
  • 14a is a schematic structural diagram of an embodiment of a data transmission node according to the present invention.
  • FIG. 15 is a schematic structural diagram of another embodiment provided by a data transmission node according to the present invention.
  • the LTE system is taken as an example in the foregoing background, the person skilled in the art should know that the present invention is not only applicable to the LTE system, but also applicable to other wireless communication systems, such as the Global System for Global System (Global System for Mobile System). Mobile Communication, GSM), Universal Mobile Telecommunications System (UMTS), Code Division Multiple Access (CDMA) system, and new network systems.
  • GSM Global System for Global System
  • UMTS Universal Mobile Telecommunications System
  • CDMA Code Division Multiple Access
  • the terminal device may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • RAN can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • it may be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with a wireless access network.
  • a wireless terminal may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, an access point, or an access point.
  • Remote Terminal Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
  • the first node or the second node involved in the embodiment of the present invention may be a base station, and the base station may be used to convert the received air frame and the IP packet into each other as a router between the wireless terminal and the rest of the access network.
  • the remainder of the access network may include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station It also coordinates the management of attributes to the air interface.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station (eNB or e-NodeB, evolutional Node B) in LTE. This application is not limited.
  • the second node involved in the embodiment of the present invention may also be a base station controller.
  • the distributed protocol stack architecture places the baseband function and the radio frequency function on the base station, and the base station and the terminal device communicate according to the protocol stack shown in FIG. 1.
  • the centralized protocol stack architecture puts the function of the base station in a baseband control unit (BBU) and places the radio frequency function (RF) in the remote radio unit (RRU).
  • BBU baseband control unit
  • RRU remote radio unit
  • the BBU and the RRU are connected by using an optical fiber to form a communication link of the BBU-RRU-UE.
  • the base station After receiving data from the SGW, the base station passes through a Packet Data Coverage Protocol (PDCP) layer, a Radio Link Control (RLC) layer, and a media access control (Media Access Contronl). After the MAC layer and the PHY layer are processed, they are then sent out through the RF module. Between the BBU and the RRU in the centralized scheduling architecture of the LTE system, the data processed by the PHY layer is transmitted, because the Internet between the SGW and the base station is not processed by the PDCP layer, the RLC layer, the MAC layer, and the PHY layer.
  • PDCP Packet Data Coverage Protocol
  • RLC Radio Link Control
  • Media Access Contronl media access control
  • the BBU and the RRU synthesize a device. After receiving the data from the SGW, the base station processes the PDCP layer, the RLC layer, the MAC layer, and the PHY layer in the base station, and then the RF module sends the required transmission network.
  • the bandwidth is relatively small.
  • the method provided by the embodiment of the present invention introduces a scheduling node for basic information and/or network information of each terminal device.
  • a flexible protocol stack is adopted for each terminal device.
  • the scheduling node of the terminal device is dynamically determined, that is, whether the terminal device is centralizedly scheduled or distributed.
  • the scheduling node may be determined for basic information and/or network information of each of the plurality of terminal devices, that is, different terminal devices in one cell may be implemented.
  • Different scheduling methods centralized scheduling or distributed scheduling. More specifically, some terminal devices in the cell adopt distributed scheduling, which reduces the bandwidth requirement of the transmission network; some terminal devices in the cell adopt centralized scheduling, so that the system performance of the cell is improved. That is to say, the solution provided by the embodiment of the present invention can flexibly determine the scheduling node for each terminal device, and achieve a balance between the system performance and the transmission network bandwidth requirement, and at the same time reduce the gain of the centralized scheduling.
  • the transmission network bandwidth requirement of the fixed scheduling node for each terminal device is mapped to the scheduling.
  • FIG. 3 is a schematic flowchart diagram of an embodiment of a data transmission method according to the present invention.
  • the method relates to at least one first node and at least one second node, wherein the first node and the second node both have a scheduling function.
  • the method includes:
  • the second node determines first indication information according to basic information and/or network information of the terminal device, where the first indication information is used to indicate that the terminal device is scheduled by the first node or scheduled by the second node.
  • the second node sends the first indication information to the first node.
  • the second node sends, to the first node, a data packet that has not been processed by the scheduling function of the second node; or, if the first An indication information indicates that the terminal device is scheduled by the second node, and the second node sends, to the first node, a data packet processed by the scheduling function of the second node.
  • the specific operation may be as follows:
  • the first node receives The data packet that has not been processed by the scheduling function of the second node is processed by the first node, and then sent to the terminal device; or, as shown in FIG. 3b As shown, if the terminal device is scheduled by the second node, the first node receives a data packet processed by the scheduling function of the second node, and the first node performs a scheduling function through the second node. The processed data packet is processed and sent to the terminal device.
  • the solution provided by the present invention determines indication information according to basic information and/or network information of the terminal device, where the indication information is used to indicate a scheduling node of the terminal device, thereby flexibly determining a scheduling node for each terminal device.
  • the indication information is used to indicate a scheduling node of the terminal device, thereby flexibly determining a scheduling node for each terminal device.
  • the second node negotiates with the first node to change the scheduling node, and determines according to the changed basic information and/or network information of the terminal device.
  • the second indication information is sent to the first node, where the second indication information is used to indicate that the terminal device is scheduled by the first node or scheduled by the second node.
  • the first indication information may include: a scheduling indication or a bearer type indication.
  • the first indication information mentioned above further includes a bearer identifier of the terminal device, where the bearer identifier is used to indicate that data on the bearer corresponding to the bearer identifier of the terminal device is scheduled by the first node or performed by the second node. Scheduling.
  • the second node sends a data packet that is not processed by the scheduling function of the second node to the first node, and includes: the second node sends a PDCP PDU or an IP PDU to the first node.
  • the second node sends the data packet processed by the scheduling function of the second node to the first node, where the second node sends a MAC PDU or PHY layer data to the first node.
  • the MAC PDU includes: a MAC PDU processed by a MAC layer scheduling function; or a MAC layer scheduling function or a hybrid automatic repeat request (hybrid automatic repeat request, HARQ) Function processed MAC PDU.
  • MAC PDUs for convenience of description, they are collectively referred to as MAC PDUs in this application.
  • the terminal device basic information includes and is not limited to: a geographical location of the terminal device, service QoS information, a measurement report, a capability of the terminal, or priority information of the terminal device.
  • the network information of the terminal device includes load information that is not limited to the transmission network, such as load information of the Frontuan transmission network.
  • load information that is not limited to the transmission network, such as load information of the Frontuan transmission network.
  • the examples are only for the purpose of illustrating the embodiments of the present invention. As long as the network information of the terminal device can be used as the basis for determining the first indication information or the second indication information, the scope of the present invention is not limited herein.
  • determining the first indication information or determining the second indication information may be determined according to the correspondence in Table 2:
  • the network information includes, but is not limited to, transmission network load information.
  • the network information (such as the Fronthaul transmission network load) may be determined.
  • the terminal device can be determined as a distributed schedule. Refer to Table 3 for specific determinations.
  • the network information may include a load condition of the transmission network, a hardware resource load situation, or integrated load information, that is, information considering hardware and network load conditions.
  • a load condition of the transmission network e.g., a hardware resource load situation
  • integrated load information e.g., information considering hardware and network load conditions.
  • a threshold may be set for the load condition of the transmission network. If the load reaches or exceeds a predefined threshold, the load is considered heavy; if a predefined threshold is not reached, the load is considered to be light.
  • each determination criterion is determined as a certain condition and finally determined by the implementation method.
  • the basic information of the terminal device and the network information can be used in combination.
  • multiple terminal devices such as when the load of the transmission network is heavy, then only a part of the cell edge terminal devices are scheduled by the second node (centralized scheduling), and another part is located at the cell edge terminal device is scheduled by the first node. (distributed scheduling).
  • the load of the transmission network is light, and some terminal devices whose service cell signal strength is greater than the first threshold are scheduled by the second node (centralized scheduling), and another part of the serving cell signal strength is greater than the first threshold.
  • the device is scheduled by the first node (distributed scheduling).
  • the technical solutions described in the present invention can be applied to an LTE system, or other wireless communication systems employing various wireless technologies. It is also applicable to the subsequent evolution systems using the LTE system, such as the fifth generation 5G system. For the sake of clarity, only the LTE system is taken as an example here. In the LTE system, data transmission is performed between the network device and the terminal device.
  • the scheduling function of the present invention may be a scheduling function of the MAC layer, including at least a radio resource allocation function, and further optionally, processing including at least one of the following functions or characteristics: a logical information mapping function, a multiplexing function, and a solution Multiplexing function, scheduling information report, priority processing, logical channel priority or transport format selection function.
  • the data of the terminal device is scheduled by one node. Equivalent to the data being processed by the node scheduling function, or the data is allocated by the node for radio resource allocation.
  • this is only for illustrating an example of the technical solution of the present invention, and the present invention is not limited to the above examples.
  • the solution provided by the present invention is a method for flexibly configuring a protocol stack architecture for each terminal device basic information and/or network information. For example, according to the location or service characteristics of each terminal device, it is determined whether the terminal device performs centralized scheduling or distributed scheduling.
  • the terminal device whose geographical location is located at the edge of the cell may be centrally scheduled by the second node, and the terminal device whose geographical location is located at the non-cell edge is placed in the first node for distributed scheduling, so that the terminal device located at the edge of the cell may be Centralized scheduling reduces inter-cell interference, performance is guaranteed, throughput is improved; data of terminal equipment located at non-cell edge is placed at the first node because of radio frequency, PHY, and/or MAC layer functions, and the demand for transmission network is greatly increased. Reduced.
  • the model evaluated by the system considers that the cell edge terminal equipment accounts for about 20% of the total terminal equipment of the cell.
  • the terminal device when the terminal device is scheduled by the first node, it is distributed scheduling, and when the terminal device is scheduled by the second node, it is centralized scheduling, which is only for A preferred embodiment of the present invention is provided.
  • the present invention is not limited thereto.
  • the method of the present invention can also be applied to multiple terminal devices and/or multiple nodes. Narration.
  • this embodiment provides another method for transmitting data, where when the terminal device is scheduled by the first node, it is distributed scheduling, and when the terminal device is scheduled by the second node, it is centralized scheduling.
  • the method can include the following steps:
  • the second node determines a scheduling indication according to basic information and/or network information of the terminal device 1.
  • the basic information may include a geographical location of the terminal device, service QoS information, a measurement report, a capability of the terminal, or priority information of the terminal device;
  • the network information may include a transmission network load, such as a Fronthaul transmission network load.
  • the second node may determine the scheduling indication according to the basic information of the terminal device in Table 2 above and/or the network information in Table 3 above. I will not repeat them here.
  • the second node sends a scheduling indication to the first node, where the scheduling indication is used to indicate that the terminal device 1 is scheduled by the first node.
  • an inter-node bearer is established between the first node and the second node, a radio bearer is established between the first node and the terminal device 1, and an S1 bearer is established between the second node and the SGW.
  • the second node receives the downlink data packet of the terminal device 1 that is sent by the SGW.
  • the second node processes the downlink data packet by using a PDCP layer to generate a PDCP PDU, and then sends the PDCP PDU to the first node.
  • the second node converts the downlink data of the terminal device 1 into a PDCP PDU, and when the terminal device 1 is changed to be scheduled by the second node, the PDCP layer of the second node may continue to provide the terminal device 1 Service, because the PDCP layer has the SN sequence number, the status report can be used to know the data packet that has been successfully transmitted and the data packet that has not been successfully transmitted, and then continue to transmit the data packet that has not been successfully transmitted, thereby ensuring the service continuity of the terminal device 1.
  • the first node After receiving the PDCP PDU data packet sent by the second node, the first node processes the data packet, and then sends the data packet to the terminal device 1 through a wireless link between the first node and the terminal device 1.
  • the first node is sent to the terminal device 1 through the radio frequency function after being processed by the RLC layer of the first node, the scheduling function of the MAC layer, and the PHY layer.
  • the terminal device 1 receives the data packet processed by the first node and sent by the first node.
  • this embodiment provides another method for transmitting data, which is compared with FIG. 4.
  • the embodiment shown is similar except that:
  • the second node processes the downlink data packet of the terminal device 1 through the IP layer of the second node, and generates an IP PDU, and then sends the IP PDU to the first node.
  • the first node After the first node receives the IP PDU data packet sent by the second node, the first node processes the IP PDU, and then sends the data to the terminal device 1 through the wireless link between the first node and the terminal device 1.
  • the first node is processed by the scheduling function of the PDCP layer, the RLC layer, and the MAC layer of the first node, and processed by the PHY layer, and then sent to the terminal device 1 by using the radio frequency function.
  • the terminal device 1 receives the data packet processed by the first node and sent by the first node.
  • the terminal device When the terminal device is scheduled by the first node, it is distributed scheduling, and when the terminal device is scheduled by the second node, When it is centralized scheduling, the method can include the following steps:
  • the second node determines a scheduling indication according to basic information and/or network information of the terminal device 2.
  • the basic information of the terminal device and/or the content included in the network information refer to the above embodiment.
  • the second node sends a scheduling indication to the first node, where the scheduling indication is used to indicate that the terminal device 2 is scheduled by the second node.
  • the second node establishes a radio bearer with the terminal device 2, and the S1 bearer is established between the second node and the SGW.
  • the second node receives downlink data sent by the SGW.
  • the second node schedules the downlink data in the MAC layer of the second node to generate a MAC PDU.
  • the data may be processed by the PDCP layer of the second node, the RLC layer processing, and the MAC layer. After the scheduling process, a MAC PDU is generated.
  • the second node sends the MAC PDU of the terminal device 2 to the first node.
  • the first node After receiving the MAC PDU of the terminal device 2, the first node processes the MAC PDU of the terminal device 2 through the PHY layer of the first node, and performs radio frequency function processing to pass the wireless between the first node and the terminal device 2. The link is sent to the terminal device 2.
  • the terminal device 2 receives the data processed by the first node sent by the first node.
  • this embodiment provides another method for transmitting data, which is similar to the embodiment shown in FIG. 6, except that:
  • the downlink data of the second node to the terminal device 2 is scheduled in the PHY layer of the second node to generate PHY layer data.
  • the data may be generated by the PDCP layer processing, the RLC layer processing, the MAC layer processing, and the PHY layer processing of the second node to generate PHY layer data.
  • the second node sends the PHY layer data of the terminal device 2 to the first node.
  • the first node After receiving the PHY layer data of the terminal device 2, the first node sends the PHY layer data of the terminal device 2 to the terminal device 2 through a wireless link between the first node and the terminal device 2.
  • the terminal device 2 receives the data sent by the first node.
  • the solution provided by the embodiment shown in FIG. 4 to FIG. 7 is dynamically determined by the first node (distributed scheduling) or by the basic information and/or network information of the terminal device.
  • Two-node scheduling centralized scheduling
  • the scheduling mode of the terminal device in one cell may be changed along with the terminal device or network information (such as the Fronthaul transmission network load). This provides a balance between system performance and transmission network bandwidth requirements.
  • FIG. 9 is another embodiment of a data transmission method according to the present invention, which is shown in FIG. The embodiment is similar except that:
  • the second node determines the bearer type indication according to the basic information and/or the network information of the terminal device 1.
  • the bearer type in the present invention may refer to a type of bearer data carried between the first node and the second node.
  • the bearer between the first node and the second node transmits an IP PDU or a PDCP PDU
  • this bearer type as an IP PDU or a PDCP PDU
  • the transmission is MAC PDU or PHY data, which we refer to here as MAC PDU or PHY data;
  • the bearer type between the first node and the second node is a PDCP PDU or a MAC PDU, that is, a bearer between the first node and the second node is carried.
  • the type of the data is a PDCP PDU or a MAC PDU; this is only for understanding the examples of the present invention, and the present invention is not limited thereto.
  • determining the bearer type indication according to the basic information and/or the network information of the terminal device 1 may be determined according to the correspondence relationship shown in Table 4 and Table 5. That is, when the bearer type is MAC PDU or PHY layer data, the terminal device 1 is scheduled by the second node, and when the bearer type is a PDCP PDU or an IP PDU, the terminal device 1 is scheduled by the first node. Therefore, the first node can acquire scheduling information according to the bearer type.
  • the network information may include a load condition of the transmission network, a hardware resource load condition, or integrated load information, that is, information such as hardware and network load conditions are considered.
  • the second node sends the bearer type indication to the first node, where the data packet type transmitted between the second node and the first node is a PDCP PDU or an IP PDU.
  • the first node can learn that the terminal device 1 is scheduled by the first node.
  • FIG. 10 is a schematic flowchart diagram of another embodiment of a data transmission method according to the present invention. The embodiment is similar to the embodiment shown in FIG. 6 except that:
  • the second node determines the bearer type indication according to the basic information and/or the network information of the terminal device 2.
  • the determining, by the second node, the bearer type indication according to the basic information and/or the network information of the terminal device 2 may be determined according to the correspondence relationship shown in Table 4 and Table 5 above.
  • the second node sends the bearer type indication to the first node, where the data packet type transmitted between the second node and the first node is MAC PDU or PHY layer data.
  • the basic information of the terminal device 1 further includes a bearer identifier, where the bearer identifier is used to indicate that the data on the bearer corresponding to the bearer identifier of the terminal device is first.
  • the node scheduling is also scheduled by the second node; or the bearer identifier is used to indicate that the data type of the data on the bearer corresponding to the bearer identifier of the terminal device is MAC PDU or PHY data, or a PDCP PDU or an IP PDU.
  • the first node may know that the terminal device 1 is scheduled by the second node.
  • the first node can learn that the terminal device 1 is scheduled by the first node.
  • the PDCP PDU is sequentially processed in the RLC layer, the MAC layer processing, and the PHY. After the layer is processed, it is sent to the terminal device through the radio frequency function. Because the MAC layer is responsible for scheduling, including the scheduling function processing procedure, when the bearer type is indicated as a PDCP PDU, the terminal device 1 can be implicitly instructed to be scheduled by the first node. The case where the bearer type is indicated as an IP PDU is also similar and will not be described again.
  • the MAC PDU is processed at the PHY layer and sent to the terminal through the radio frequency function. device. Because the MAC layer is responsible for scheduling, including the scheduling function processing procedure, when the bearer type is indicated as a MAC PDU, it can implicitly indicate that the terminal device 1 has been scheduled by the second node. The case where the bearer type is indicated as PHY data is also similar and will not be described again.
  • FIG. 9 and FIG. 10 may be used alone or in combination, and may be used in combination with other embodiments, and details are not described herein again.
  • the present invention also provides another embodiment, which is similar to the embodiment shown in FIG. 6, except that:
  • the data of the second node to the terminal device 2 is processed in the MAC layer scheduling function to generate a MAC PDU.
  • the scheduling function processing in the present invention may be processed by the scheduling function of the MAC layer, that is, includes at least one of the following functions or features: a logical information mapping function, a multiplexing function, a demultiplexing function, and scheduling information. Reporting, priority processing, logical channel priority, or transport format selection.
  • a logical information mapping function includes at least one of the following functions or features: a logical information mapping function, a multiplexing function, a demultiplexing function, and scheduling information. Reporting, priority processing, logical channel priority, or transport format selection.
  • the functions of the MAC layer are classified into a scheduling function and a HARQ function. It is pre-defined, and can also be specified by agreement, or it can be customized, and will not be described here.
  • the second node sends the MAC PDU of the terminal device 2 to the first node.
  • the first node After receiving the MAC PDU of the terminal device 2, the first node sends the MAC PDU of the terminal device 2 to the terminal device through the radio link between the first node and the terminal device 2 after being processed by the HARQ function of the MAC layer. 2.
  • the present invention also provides another embodiment, which is similar to the embodiment shown in FIG. 6, except that:
  • the second node processes the terminal device 2 at the PHY layer to generate PHY layer data.
  • the downlink data packet is processed by the PDCP layer processing, the RLC layer processing, and the MAC layer scheduling function of the second node, and then processed by the at least one physical layer function to generate PHY layer data:
  • CRC function function channel coding function
  • HARQ processing function of physical layer channel interleaving function
  • scrambling function scrambling function
  • modulation or layer mapping and precoding function channel interleaving function
  • the second node sends the PHY layer data of the terminal device 2 to the first node.
  • the first node After receiving the PHY layer data of the terminal device 2, the first node sends the PHY layer data to the terminal device through the radio link between the first node and the terminal device 2 after being processed by the radio function of the first node. 2.
  • the terminal device 2 receives the data processed by the first node sent by the first node.
  • the present invention further provides another embodiment, which is similar to the embodiment shown in FIG. 12, except that other protocol stack types are used, for example, the PHY layer is divided into two parts, the PHY layer function is neutralized, and the terminal device is used. 2 The related function is reserved in the second node, and the function related to the terminal device 2 in the PHY layer function is placed on the first node.
  • the architecture can reduce the bandwidth requirement of Frontaul.
  • the PDU processed by the MAC layer scheduling function and not processed by the MAC layer HARQ function is also referred to as a MAC PDU in the present invention.
  • the data processed by the partial PHY layer is also referred to as PHY layer data in the present invention.
  • the solution shown in FIG. 9 to FIG. 12 is compared with the prior art, and the solution provided by the present invention is to dynamically determine that the terminal device is based on basic information and/or network information of each terminal device (such as the Fronthaul transmission network load).
  • Centralized scheduling or distributed scheduling Different terminal devices in a cell can implement different scheduling modes (centralized scheduling, or distributed scheduling).
  • the scheduling mode of the terminal equipment in a cell may be changed along with the terminal equipment or network information (such as the Fronthaul transmission network load), thereby achieving a balance between system performance and transmission network bandwidth requirements according to actual network operation conditions.
  • FIG. 4 the embodiment shown in FIG. 4, FIG. 5 or FIG. 9 is referred to as the first method, and FIG. 6, FIG. 7, FIG.
  • the embodiment shown in FIG. 11 or FIG. 12 is referred to as a second method.
  • the first method and the second method may be used alone or in combination.
  • the order of execution may be in no particular order.
  • the method of the embodiment shown in FIG. 4 can be used in combination with the method shown in the embodiment of FIG. 6.
  • FIG. 8. the embodiment shown in FIG. 4 is executed first, and FIG. 6
  • the illustrated embodiments are described hereinafter, which are merely illustrative of the examples provided by the technical solutions of the present invention, and the present invention is not limited thereto.
  • An embodiment of the present invention provides a data transmission method.
  • the application scenario of the embodiment is that after the second node has determined the first indication information according to the basic information and/or the network information of the terminal device, the method includes:
  • the second node After the basic information and/or network information of the terminal device are changed, the second node negotiates to change the scheduling node.
  • the second node may send a change indication to the first node, and the first node returns a change response, and vice versa, the first node may send a change indication to the second node, and the second node feeds back a change response.
  • the content of the specific network information can be referred to the description of the foregoing embodiment.
  • the content of the basic information of the terminal device can also be referred to the description of the foregoing embodiment, and details are not described herein again.
  • the second node determines second indication information according to basic information and/or network information after the terminal device changes.
  • the second indication information may be determined according to the correspondence relationship of the foregoing Table 2 or Table 3; or, the specific indication information may be determined according to the correspondence relationship of the foregoing Table 4 or Table 5, where the second indication information is no longer Narration.
  • the original terminal device is changed from the first node scheduling to being scheduled by the second node; or the original terminal device is scheduled to be changed by the second node to be scheduled by the first node.
  • FIG. 13 which is a further example of the present invention, of course, this is only for the convenience of understanding the example given by the technical solution of the present invention.
  • the specific scheduling method can refer to the above embodiment, and Let me repeat.
  • the second node receives downlink data sent by the SGW.
  • the second node schedules the downlink data of the terminal device 2 at the MAC layer to generate a MAC PDU.
  • the data may be processed by the PDCP layer, the RLC layer processing, and the MAC layer scheduling function to generate a MAC PDU.
  • the second node sends the MAC PDU of the terminal device 2 to the first node.
  • the first node After receiving the MAC PDU of the terminal device 2, the first node passes the MAC PDU of the terminal device 2 to the PHY layer, and then performs the radio frequency function processing, and sends the message to the radio link between the first node and the terminal device 2 to Terminal device 2.
  • the terminal device 2 receives the data processed by the first node sent by the first node.
  • the scheduling manner of the terminal device in a cell may be changed along with the terminal device or the network information (such as the Fronthaul transmission network load), and the solution provided by the invention is based on the basic information of each terminal device. And/or network information (such as Frontaul transport network load), dynamically determine whether the terminal device is centralized or distributed. Different terminal devices in a cell can implement different scheduling modes (centralized scheduling, or distributed scheduling). This in turn achieves a balance between system performance and transmission network bandwidth requirements.
  • the network information such as the Fronthaul transmission network load
  • the embodiment shown in FIG. 13 can be used separately, and the basic information of the terminal device is changed, and the scenario of the scheduling node needs to be re-determined.
  • the embodiment shown in FIG. 4, FIG. 5 or FIG. 9 is referred to as the first method, and the embodiment shown in FIG. 6, FIG. 7, FIG. 10, FIG. 11 or FIG.
  • the second method where the method shown in FIG. 13 is used in combination with the first party and/or the second method, when used in combination, the first method and/or the second method may be performed first, and the method shown in FIG. Behind it.
  • the first indication when the first indication information is used to indicate that the terminal device is scheduled by the second node, the first indication further carries a resource indication, where the first node uses The resource indicates that the indicated resource sends the data processed by the first node to the terminal device.
  • the scheduling involved in the various embodiments of the present invention includes at least the allocation of radio resources.
  • FIG. 14 is a data transmission node according to an embodiment of the present invention.
  • the following transmission node is referred to as the node.
  • the node and the first node have scheduling functions.
  • the node has the function of implementing the behavior of the second node or the second node in the above method design. This embodiment includes:
  • the processing module 1401 is configured to determine first indication information according to basic information and/or network information of the terminal device, where the first indication information is used to indicate that the terminal device is scheduled by the first node or scheduled by the node;
  • the sending module 1402 is configured to send the first indication information determined by the processing module 1401 to the first node;
  • the sending module 1402 is configured to: when the first indication information determined by the processing module 1401 indicates that the terminal device is scheduled by the first node, send, to the first node, a data packet that has not been processed by the scheduling function of the node; Alternatively, the first indication information used by the processing module indicates that the terminal device is scheduled by the node, and sends the data packet processed by the scheduling function of the node to the first node.
  • processing module 1401 is further configured to: when the basic information and/or the network information of the terminal device changes, change the scheduling node by negotiating with the first node, and determine the first information according to the changed basic information and/or network information of the terminal device.
  • Two indication information ;
  • the sending module 1402 is further configured to send, to the first node, second indication information that is determined by the processing module 1401, where the second indication information is used to indicate that the scheduling node of the terminal device is changed by the node to be the first node.
  • the schedule is either changed by the first node to be scheduled by the node.
  • the first indication information sent by the sending module 1402 includes a scheduling indication or a bearer type indication.
  • the first indication information sent by the sending module 1402 further includes a bearer identifier of the terminal device, where the bearer identifier is used to indicate that data on the bearer corresponding to the bearer identifier of the terminal device is scheduled by the first node or performed by the node Scheduling.
  • the sending module is specifically configured to send a PDCP PDU or an IP PDU to the first node; or send a MAC PDU to the first node; or send PHY layer data to the first node.
  • the MAC PDU sent by the sending module to the first node includes: scheduling work by the MAC layer The MAC PDU that can be processed; or the MAC PDU processed by the MAC layer scheduling function and the HARQ function of the MAC layer.
  • the basic information of the terminal device includes: a geographical location of the terminal device, a service QoS information, a measurement report, a capability of the terminal, or priority information of the terminal device; the network information includes: load information of the transmission network.
  • the processing module is specifically configured to determine the first indication information or the second indication information according to any of the following conditions:
  • Condition 2 When the signal strength of the serving cell in the measurement report is less than the first threshold or the signal strength of the neighboring cell is higher than the second threshold, the node schedules, when the signal strength of the serving cell in the measurement report is greater than the first threshold or the signal strength of the neighboring cell When less than the second threshold, scheduled by the first node; or
  • Condition 3 when the capability of the terminal device supports COMP, it is scheduled by the node, and when the capability of the terminal device does not support COMP, it is scheduled by the first node;
  • Condition 4 When the load of the transmission network is light, it is scheduled by the node, and when the load of the transmission network is heavy, it is scheduled by the first node.
  • the processing module is specifically configured to determine, according to the first condition and the second condition, the first indication information or the second indication information when scheduling the multiple terminal devices:
  • the first condition includes any one of the following conditions:
  • Condition 2 When the signal strength of the serving cell in the measurement report is less than the first threshold or the signal strength of the neighboring cell is higher than the second threshold, the node is scheduled. When the signal strength of the serving cell in the measurement report is greater than the first threshold or the signal strength of the neighboring cell is less than The second threshold is scheduled by the first node; or
  • Condition 3 when the capability of the terminal device supports COMP, it is scheduled by the local node, and when the capability of the terminal device does not support COMP, it is scheduled by the first node;
  • the second clause includes scheduling by the local node when the load of the transmission network is light, and is scheduled by the first node when the load of the transmission network is heavy.
  • the node may further include a receiving module 1403, configured to receive downlink data sent by the SGW.
  • the physical device corresponding to the processing module in the embodiment of the present invention may be a processor, and the physical device corresponding to the sending module may be a transmitter.
  • the physical device corresponding to the receiving module may be a receiver.
  • FIG. 15 is another data transmission node according to an embodiment of the present invention.
  • the other data transmission node is simply referred to as the node, and both the node and the second node have a scheduling function, and the node has the foregoing method.
  • the function of the first node or the first node in the design, the node includes:
  • the receiving module 1501 is configured to receive first indication information, where the first indication information is used to indicate that the terminal device is scheduled by the node or scheduled by the second node;
  • the receiving module 1501 is configured to: the first indication information indicates that the terminal device is scheduled by the node, and receives a data packet sent by the second node that is not processed by the scheduling function of the second node; or the first indication information Instructing the terminal device to be scheduled by the second node, and receiving a data packet that is sent by the second node and processed by the scheduling function of the second node;
  • the processing module 1502 is configured to process, by the receiving module, the data packet that is not processed by the scheduling function of the second node, or the scheduling of the second node that is received by the receiving module The processed data packet is processed;
  • the sending module 1503 is configured to send the processed data by the processing module.
  • processing module 1502 is further configured to: when the basic information and/or the network information of the terminal device changes, the node and the second node negotiate to change the scheduling node;
  • the receiving module 1501 is configured to: after the processing module 1502 determines to change the scheduling node, receive the second indication information that is sent by the second node, where the second indication information is basic information that is changed by the second node according to the terminal device. And/or determined by the network information, the second indication information is used to indicate the The terminal device is scheduled to be changed by the second node to the node scheduling, or is changed by the node scheduling to be scheduled by the second node.
  • the first indication information received by the receiving module 1501 further includes a bearer identifier of the terminal device, where the bearer identifier is used to indicate that data on the bearer corresponding to the bearer identifier of the terminal device is scheduled by the node or performed by the second node. Scheduling.
  • the receiving module is specifically configured to: receive a PDCP PDU or an IP PDU sent by the second node; or receive a MAC PDU sent by the second node; or receive PHY layer data sent by the second node.
  • the MAC PDU received by the receiving module includes: a MAC PDU processed by a MAC layer scheduling function; or a MAC PDU processed by a MAC layer scheduling function and a MAC layer HARQ function.
  • the processing module is specifically configured to:
  • the first node receives the MAC PDU, performs processing on the MAC PDU through PHY layer processing and radio frequency function; or if the first node receives PHY layer data, performs radio frequency function processing on the PHY layer data; or If the first node receives the PDCP PDU, performing RLC layer processing, MAC layer scheduling function processing, physical layer processing, and radio frequency function processing on the PDCP PDU; or if the first node receives an IP PDU, The IP PDU performs PDCP layer processing, RLC layer processing, MAC layer scheduling function processing, physical layer processing, and radio frequency function processing.
  • the physical device corresponding to the receiving module in the embodiment of the present invention is a receiver
  • the physical device corresponding to the processing module is a processor
  • the physical device corresponding to the sending module is a transmitter
  • the solution provided in the embodiment shown in FIG. 14, FIG. 14a and FIG. 15 is to dynamically determine that the terminal device is scheduled by the first node or the second according to basic information or network information of each terminal device. Node scheduling, so that different terminal devices in a cell implement different scheduling modes (ie, centralized scheduling or distributed scheduling).
  • the solution provided by the embodiment of the present invention is to dynamically determine, according to basic information and/or network information of each terminal device, that the terminal device is scheduled by the first node or scheduled by the second node, so that a cell is in a cell. Different terminal devices implement different scheduling modes (ie centralized scheduling or distributed scheduling).
  • the system performance of the cell is improved because the terminal device located at the cell edge can adopt centralized scheduling.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware, or may be implemented by a processor executing software instructions.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the user equipment.
  • the processor and the storage medium may also reside as discrete components in the user equipment.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及移动通信领域,尤其涉及一种数据传输方法,包括该第二节点根据终端设备的基本信息和/或网络信息确定第一指示信息,向该第一节点发送第一指示信息,该第一指示信息用于指示该终端设备由该第一节点调度或该第二节点调度;如果该第一指示信息指示该终端设备由该第一节点进行调度,则该第二节点向第一节点发送未经过该第二节点的调度功能处理的数据包;或者,如果该第一指示信息指示该终端设备由该第二节点进行调度,则该第二节点向该第一节点发送经过该第二节点的调度功能处理后的数据包。在得到集中式调度的增益的情况下,同于降低了针对于每个终端设备固定调度节点的传输网络带宽需求。

Description

数据传输的方法及装置 技术领域
本发明涉及通信技术领域,尤指一种数据传输方法及装置。
背景技术
长期演进(Long Term Evolution,LTE)系统中,网络架构分为集中式和分布式两种架构,其中,对于分布式架构,基站包括基带功能和射频功能;而集中式架构是将基带功能放在基带控制单元(baseband control unit,BBU)中,把射频功能放在射频拉远单元(remote radio unit,RRU)中,其中,BBU和RRU之间需要采用光纤或微波等大容量传输介质进行连接。以上两种架构是与终端设备无关的。也就是说一旦确定架构,对于一个小区里的所有的终端设备,要么都是分布式调度,要么都是集中式调度。
分布式架构下的调度是各个基站自己调度,跨基站的小区间协调效果不好,从而使跨基站小区间的干扰比较大,进而导致位于小区边缘终端设备的吞吐量下降,但是,分布式架构的好处是节省传输网络的带宽,因为BBU和RRU合一,就不需要额外的传输网络(前传Fronthual)。集中式架构好处是系统性能好,因为可以集中调度多个小区的无线资源(比如借助于CoMP技术),从而可以协调多个小区间的无线资源,降低干扰,提升小区边缘用户的吞吐量,但是BBU和RRU分离,BBU和RRU之间因为传输的是物理(PHY)层处理后的数据,BBU和RRU之间的传输网络(通常称为前传Fronthaul)需要传输大量数据,带宽需求非常大。进一步的,如果小区支持的频率带宽增大时,空口需要传输更多的数据,对应的传输网络带宽需求也随着进一步增大,从而对传输网络的带宽造成很大压力。
发明内容
本发明提供了一种数据通信方法和装置,用以在获取集中式调度的增益,且保证系统性能情况下,又能降低传输网络带宽的需求。
一方面,本申请的实施例提供了一种数据传输方法。方法包括至少一个第一节点和至少一个第二节点,其中所述第一节点与所述第二节点都具有调度功能,所述第二节点根据终端设备的基本信息和/或网络信息确定第一指示信息,向所述第一节点发送第一指示信息,所述第一指示信息用于指示所述终端设备由所述第一节点调度或所述第二节点调度,如果所述第一指示信息指示所述终端设备由所述第一节点进行调度,则所述第二节点向第一节点发送未经过所述第二节点的调度功能处理的数据包;或者,所述第一指示信息指示所述终端设备由所述第二节点进行调度,则所述第二节点向所述第一节点发送经过所述第二节点的调度功能处理后的数据包。
相较于现有技术,本发明实施例提供的方案是根据每个终端设备的基本信息和/或网络信息,动态的确定该终端设备由第一节点调度或第二节点调度,使一个小区里的不同的终端设备,实现不同的调度方式(即集中式调度或分布式调度)。这样相比于背景技术提到的集中式调度架构,因为小区里某些终端设备采用分布式调度,传输网络带宽的需求就会降低。相比于背景技术提到的分布式调度架构,因为位于小区缘终端设备可以采用集中式调度,小区的系统性能得到了提升。
在一个可能的设计中,当所述终端设备的基本信息和/或网络信息发生变化时,所述第二节点与所述第一节点协商改变调度节点,所述第二节点根据终端设备变化后的基本信息和/或网络信息确定第二指示信息,向所述第一节点发送第二指示信息,所述第二指示信息用于指示所述终端设备的调度节点由第二节点变更为由所述第一节点调度或由第一节点变更为由所述第二节点调度。从而在每个终端设备的基本信息和/或网络信息发生变化后,动态确定该终端设备是由第一节点调度或第二节点调度,使一个小区里的不同的终端设备,可以实现不同的调度方式。在得到集中式调度的增益的情况下,同时 降低了针对于每个终端设备固定调度节点的传输网络带宽需求。
在另一个可能的设计中,所述第一指示信息包括调度指示或者承载类型指示。
在另一个可能的设计中,所述第一指示信息还包括终端设备的承载标识,所述承载标识用于指示所述终端设备的承载标识所对应承载上的数据由所述第一节点进行调度或者由所述第二节点进行调度。从而实现更细粒度的调度,进而更加明确的实现系统性能和传输网络带宽需求之间的平衡。
在另一个可能的设计中,未经过所述第二节点的调度功能处理的数据包括PDCP PDU或者IP PDU。
在另一个可能的设计中,经过所述第二节点的调度功能处理后的数据包括MAC PDU或者PHY层数据。
更确切的说,通过第二节点向第一节点发送不同的数据包,根据不同的数据类型,即可以根据终端设备的实际情况或者网络的实际情况动态的决定被第一节点调度(分布式调度)或第二节点调度(集中式调度),当确定由第一节点调度时,传输网络带宽的需求就会降低;或者当确定由第二节点调度时,小区的系统性能将得到提升。从而实现系统性能和传输网络带宽需求之间的平衡。
在另一个可能的设计中,所述MAC PDU包括由MAC层调度功能处理后的MAC PDU;或者由MAC层调度功能和MAC层的HARQ功能处理后的MAC PDU。
在另一个可能的设计中,所述终端设备基本信息包括:终端设备的地理位置、业务Qos信息、测量报告、终端的能力或终端设备的优先级信息。
在另一个可能设计中,根据以下任一个条件确定所述第一指示信息或者第二指示信息:
条件1,当终端设备的地理位置位于小区边缘时,由第二节点调度,或,当终端设备的地理位置位于非小区边缘时,由第一节点调度;或者,条件2, 测量报告中服务小区信号强度小于第一门限或者相邻小区信号强度高于第二门限时,由第二节点调度,或,当测量报告中服务小区信号强度大于第一门限或者相邻小区信号强度小于第二门限时,由第一节点调度;或者条件3,当终端设备的能力支持COMP时,由第二节点调度,或,当终端设备的能力不支持COMP时,由第一节点调度;条件4,传输网络的负载轻时,由第二节点调度,或,当传输网络的负载重时,由第一节点调度。
在另一个可能的设计中,当对多个终端设备进行调度时,根据第一条件和第二条件确定所述第一指示信息或者确定所述第二指示信息,其中,第一条件包括下述任一种条件:条件1,当终端设备的地理位置位于小区边缘时,由第二节点调度,或,当终端设备的地理位置位于非小区边缘时,由第一节点调度;或者,条件2,测量报告中服务小区信号强度小于第一门限或者相邻小区信号强度高于第二门限时,由第二节点调度,或,当测量报告中服务小区信号强度大于第一门限或者相邻小区信号强度小于第二门限时,由第一节点调度;或者,条件3,当终端设备的能力支持COMP时,由第二节点调度,或,当终端设备的能力不支持COMP时,由第一节点调度;而所述第二条包括当传输网络的负载轻时,由第二节点调度,或,当传输网络的负载重时,由第一节点调度。
另一方面,本申请的实施例提供了另一种数据传输方法。该方法包括至少一个第一节点和至少一个第二节点,其中所述第一节点与所述第二节点都具有调度功能,所述第一节点接收第一指示信息,所述第一指示信息用于指示所述终端设备由所述第一节点调度或所述第二节点调度;如果所述第一指示信息指示所述终端设备由所述第一节点进行调度,则所述第一节点接收所述第二节点发送的未经过所述第二节点的调度功能处理的数据包;或者,所述第一指示信息指示所述终端设备由所述第二节点进行调度,则所述第一节点接收所述第二节点发送的经过所述第二节点的调度功能处理后的数据包。
采用本发明实施例所提供的方案,可以针对每个终端设备灵活的确定调 度节点,在系统性能和传输网络带宽需求之间实现平衡。在得到集中式调度的增益的情况下,同时降低了针对于每个终端设备固定调度节点的传输网络带宽需求。
在一个可能的设计中,当所述终端设备的基本信息和/或网络信息发生变化后,所述第一节点与所述第二节点之间协商改变调度节点,所述第一节点接收所述第二节点发送的第二指示信息,所述第二指示信息为所述第二节点根据终端设备变化后的基本信息和/或网络信息确定的,所述第二指示信息用于指示所述终端设备由所述第二节点调度变更为由所述第一节点调度,或者由所述第一节点调度变更为由所述第二节点调度。从而在每个终端设备的基本信息或网络信息发生变化后,动态确定该终端设备是由第一节点调度或第二节点调度,使一个小区里的不同的终端设备,可以实现不同的调度方式。在得到集中式调度的增益的情况下,同于降低了针对于每个终端设备固定调度节点的传输网络带宽需求。
在另一个可能的设计中,所述第一节点接收的第一指示信息还包括终端设备的承载标识,所述承载标识用于指示所述终端设备的承载标识所对应承载上的数据由所述第一节点进行调度或者由所述第二节点进行调度。从而实现更细粒度的调度,进而更加明确的实现系统性能和传输网络带宽需求之间的平衡。
在另一个可能的设计中,第一节点接收所述第二节点发送的未经过所述第二节点的调度功能处理的数据包括:PDCP PDU或者IP PDU。
在另一个可能的设计中,所述第一节点接收所述第二节点发送的经过所述第二节点的调度功能处理后的数据包括:MAC PDU或者PHY层数据。
更确切的说,通过第二节点向第一节点发送不同的数据包,根据不同的数据类型,即可以根据终端设备的实际情况或者网络的实际情况动态的决定被第一节点调度(分布式调度)或第二节点调度(集中式调度),当确定由第 一节点调度时,传输网络带宽的需求就会降低;当确定由第二节点调度时,小区的系统性能将得到提升。从而实现系统性能和传输网络带宽需求之间的平衡。
在另一个可能的设计中,所述MAC PDU包括:由MAC层调度功能处理后的MAC PDU;或者由MAC层调度功能和MAC层HARQ功能处理后的MAC PDU。
相较于现有技术,本发明提供的方案是根据每个终端设备的基本信息和/或网络信息(比如Fronthaul传输网络负载),动态确定该终端设备是第二节点调度(集中式调度)还是第一节点调度(分布式调度)。针对一个小区里的不同的终端设备,可以实现不同的调度方式,进而实现实现系统性能和传输网络带宽需求之间的平衡。
并且,本发明的提供的技术方案,终端设备的调度方式可以随着终端设备基本信息和/或网络信息(比如Fronthaul传输网络负载)的变更而动态确定,即改变该终端设备的调度方式。
本发明实施例所提供的方案,可以针对每个终端设备灵活选择调度节点,在系统性能和传输网络带宽需求之间实现平衡。在得到集中式调度的增益的情况下,同时降低了针对于每个终端设备固定调度节点的传输网络带宽需求。
另一方面,本发明实施例提供了一种数据传输节点,该节点具有实现上述方法设计中第二节点行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,该节点的结构中包括处理器和发射器,所述处理器被配置为根据终端设备的基本信息和/或网络信息确定第一指示信息,所述第一指示信息用于指示所述终端设备由所述第一节点调度或由所述节点调度,发射器用于向所述第一节点发送所述处理器确定的第一指示信息,以及向第一节点发送未经过所述节点的调度功能处理的数据包;或者向所述第一节点发送经过所述节点的调度功能处理后的数据包。
另一方面,本发明实施例提供了另一种数据传输节点,该节点具有实现上述方法设计中第一节点行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,该节点的结构中包括接收器,所述接收器被配置为根用于接收第一指示信息,所述第一指示信息用于指示所述终端设备由所述节点调度或由所述第二节点调度,以及用于接收所述第二节点发送的未经过所述第二节点的调度功能处理的数据包,或者用于接收所述第二节点发送的经过所述第二节点的调度功能处理后的数据包。
又一方面,本发明实施例提供了一种通信系统,该系统包括上述方面所述的一种数据传输节点、另一种数据传输节点和终端设备。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述基站所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述UE所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
本发明实施例所提供的方案,可以针对每个终端设备灵活确定调度节点,在系统性能和传输网络带宽需求之间实现平衡。在得到集中式调度的增益的情况下,同时降低了针对于每个终端设备固定调度节点的传输网络带宽需求。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面附图中反映的仅仅是本发明的一部分实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得本发明的其他实施方式。而所有这些实施例或实施方式都在本发明的保护范围之内。
图1为本发明现有技术提供的一种分布式协议栈架构示意图;
图2为本发明现有技术提供的一种集中式协议栈架构示意图;
图3为本发明一种数据传输方法提供的一个实施例的流程示意图;
图3a为本发明一种数据传输方法提供的一个实施例的流程示意图;
图3b为本发明一种数据传输方法提供的一个实施例的流程示意图;
图4为本发明一种数据传输方法提供的另一个实施例提供的流程示意图;
图5为本发明一种数据传输方法提供的另一个实施例提供的流程示意图;
图6为本发明一种数据传输方法提供的另一个实施例提供的流程示意图;
图7为本发明一种数据传输方法提供的另一个实施例提供的流程示意图;
图8为本发明一种数据传输方法提供的另一个实施例提供的流程示意图;
图9为本发明一种数据传输方法提供的另一个实施例提供的流程示意图;
图10为本发明一种数据传输方法提供的另一个实施例提供的流程示意图;
图11为本发明一种数据传输方法提供的另一个实施例提供的流程示意图;
图12为本发明一种数据传输方法提供的另一个实施例提供的流程示意图;
图13为本发明一种数据传输方法提供的另一个实施例提供的流程示意图;
图14为本发明一种数据传输节点提供的一个实施例的结构示意图;
图14a为本发明一种数据传输节点提供的一个实施例的结构示意图;
图15为本发明一种数据传输节点提供的另一个实施例的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
虽然在前述背景技术部分以LTE系统为例进行了介绍,但本领域技术人员应当知晓,本发明不仅仅适用于LTE系统,也可以适用于其他无线通信系统,例如全球移动通信系统(Global System for Mobile Communication,GSM),移动通信系统(Universal Mobile Telecommunications Systemc,UMTS),码分多址接入(Code Division Multiple Access,CDMA)系统,以及新的网络系统等。下面以LTE系统为例进行具体实施例的介绍。
本发明实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(PCS,Personal Communication Service)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(WLL,Wireless Local Loop)站、个人数字助理(PDA,Personal Digital Assistant)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户装备(User Equipment)。
本发明实施例所涉及第一节点或第二节点,可以是基站,该基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。该基站 还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNB或e-NodeB,evolutional Node B),本申请并不限定。
本发明实施例所涉及第二节点也可以为基站控制器。
为了更好的说明本发明的技术方案,现在对现有技术中的分布式协议栈架构和集中式协议栈架构进行分别说明:
如图1所示,分布式协议栈架构就是将基带功能、射频功能全部放在基站,由基站和终端设备之间按照图1所示的协议栈进行通信。
如图2所示,集中式协议栈架构就是将基站的功能放在一个基带近控制单元(baseband control unit,BBU)中,将射频功能(RF)放在射频拉远单元(remote radio unit,RRU)中,BBU和RRU之间采用光纤进行连接,形成BBU-RRU-UE的通信链路。
对于现有技术而言,LTE系统中,协议栈每处理一次,就会带来额外的开销。比如下行数据,基站从SGW收到数据后,要经过分组数据汇聚层协议(Packet Data Covergence Protocol,PDCP)层、无线链路控制(Radio Link Control,RLC)层、媒体接入控制(Media Access Contronl,MAC)层和PHY层处理后,然后通过射频模块发送出去。LTE系统的集中式调度架构中的BBU和RRU之间,传输的是PHY层处理后的数据,因为SGW和基站之间传输的是未经PDCP层、RLC层、MAC层和PHY层处理的互联网协议(Internet Protolcol,IP)层数据包,所以传输网络的带宽需求很高。而分布式调度架构中BBU和RRU合成一个设备,基站从SGW收到数据后,在基站内部经过PDCP层、RLC层、MAC层和PHY层处理,然后由射频模块发送出去,所需要的传输网络带宽相对就比较小。
本发明实施例所提供的方法,引入了针对每个终端设备的基本信息和/或网络信息确定调度节点,换句话说,针对每个终端设备采用灵活的协议栈架 构代替传统的固定协议栈架构,即动态确定该终端设备的调度节点,即该终端设备被集中式调度还是还是分布式调度。
另一个方面,当一个小区存在多个终端设备时,可以针对多个终端设备中的每个终端设备的基本信息和/或网络信息确定调度节点,即可以实现一个小区中的不同的终端设备采用不同的调度方式(集中式调度或分布式调度)。更确切的说,小区里部分终端设备采用分布式调度,使传输网络带宽的需求降低;小区里部分终端设备采用集中式调度,使小区的系统性能得到提升。也就是说本发明实施例所提供的方案,可以针对每个终端设备灵活确定调度节点,在系统性能和传输网络带宽需求之间实现平衡,在得到集中式调度的增益的情况下,同时降低了针对于每个终端设备固定调度节点的传输网络带宽需求。
具体的,通过下述不同的实施例对本发明实施例的技术方案进行说明。
图3这本发明一种数据传输方法提供的一个实施例的流程示意图,该方法涉及至少一个第一节点和至少一个第二节点,其中该第一节点与该第二节点都具用调度功能,该方法包括:
301、该第二节点根据终端设备的基本信息和/或网络信息确定第一指示信息,该第一指示信息用于指示该终端设备由该第一节点调度或由该第二节点调度。
302、该第二节点向该第一节点发送第一指示信息。
303、如果该第一指示信息指示该终端设备由该第一节点进行调度,则该第二节点向该第一节点发送未经过该第二节点的调度功能处理的数据包;或者,如果该第一指示信息指示该终端设备由该第二节点进行调度,则该第二节点向该第一节点发送经过该第二节点的调度功能处理后的数据包。
304、在第一节点接收经过调度功能处理后的数据包,或者接收未经调度功能处理后的数据包,具体的可以做如下操作:
如图3a所示,如果该终端设备由该第一节点进行调度,该第一节点接收 未经过该第二节点的调度功能处理的数据包,所述第一节点对所述未经过所述第二节点的调度功能处理的数据包进行处理后,发送给终端设备;或者,如图3b所示,如果该终端设备由该第二节点进行调度,则该第一节点接收经过该第二节点的调度功能处理后的数据包,所述第一节点对经过所述第二节点的调度功能处理后的数据包进行处理后,发送给终端设备。
相较与现有技术,本发明提供的方案根据终端设备的基本信息和/或网络信息确定指示信息,该指示信息用于指示该终端设备的调度节点,从而针对每个终端设备灵活确定调度节点,在保持调度增益的情况下,避免固定协议栈架构下,当小区的传输网络带宽增加时,对传输网络的带宽造成的压力,同时降低了针对于每个终端设备固定调度节点的传输网络带宽需求。
在一个示例中,当终端设备的基本信息和/或网络信息发生变化后,该第二节点与该第一节点之间协商改变调度节点,根据终端设备变化后的基本信息和/或网络信息确定第二指示信息,向该第一节点发送第二指示信息,该第二指示信息用于指示该终端设备由该第一节点调度或该第二节点调度。
在另一个示例中,该第一指示信息可以包括:调度指示或承载类型指示。
其中,上述提到的第一指示信息还包括终端设备的承载标识,该承载标识用于指示该终端设备的承载标识所对应承载上的数据由该第一节点进行调度或者由该第二节点进行调度。
在另一个示例中,该第二节点向该第一节点发送未经过该第二节点的调度功能处理的数据包,包括:该第二节点向该第一节点发送PDCP PDU或者IP PDU。
在另一个示例中,该第二节点向该第一节点发送经过该第二节点的调度功能处理后的数据包,包括:该第二节点向该第一节点发送MAC PDU或者PHY层数据。
其中,该MAC PDU包括:由MAC层调度功能处理后的MAC PDU;或者由MAC层调度功能或混合自动重传请求(hybrid automatic repeat request, HARQ)功能处理后的MAC PDU。为了描述方便,在本申请中统称为MAC PDU。
在另一个示例中,该终端设备基本信息包括并不限于:终端设备的地理位置、业务Qos信息、测量报告、终端的能力或终端设备的优先级信息。当然,这些举例仅是为了说明本发明实施例,只要该终端设备的基本信息能作为确定第一指示信息或第二指示信息的依据,都属于本发明所要保护的范围,在此不再赘述。
该终端设备的网络信息包括并不限于传输网络的负载信息,例如Fronthual的传输网络的负载信息。这些举例仅是为了说明本发明实施例,只要该终端设备的网络信息能作为确定第一指示信息或第二指示信息的依据,都属于本发明所要保护的范围,在此不再赘述。
进一步,确定第一指示信息或确定第二指示信息,皆可以根据表2中的对应关系确定:
Figure PCTCN2015100126-appb-000001
表2
进一步,该网络信息包括并不限于传输网络负载信息,具体的,在确定或者变更终端设备的调度节点时,可以根据网络信息(比如Fronthaul传输网络负载)确定。例如,当传输网络的负载重,那么为了降低fronthaul的带宽,可以把终端设备确定为分布式调度。具体的确定关系可以参考表3。
  由第二节点调度 由第一节点调度
网络信息 传输网络的负载轻 传输网络的负载重
表3
示例性的,所述网络信息可以包括传输网络的负载情况、硬件资源负载情况或者综合负载信息,即考虑了硬件和网络负载情况等信息。具体的确定步骤可以参照上述的表述,在此不再赘述。
具体实现时,可以对传输网络的负载情况设置一个门限,如果负载达到或者超过一个预先定义的门限,认为负载重;如果没达到一个预先定义的门限,认为负载轻。
需要特别强调的是,表2中的地理位置、测量报告或UE的能力与表3中的网络信息可以单独使用,也可以将表2中的地理位置、测量报告或UE的能力信息任一个和表3中的网络信息结合起来使用,结合时,每个确定标准作为一个确定条件,由实现方法最后综合进行确定。
作为一个示例,终端设备的基本信息和网络信息可以结合使用。假设有多个终端设备存在的场景,比如当传输网络的负载重时,那么只选择一部分小区边缘终端设备由第二节点调度(集中式调度),另一部分位于小区边缘终端设备由第一节点调度(分布式调度)。或者,作为另一个示例,比如传输网络的负载轻,选择服务小区信号强度大于第一门限的部分终端设备由第二节点调度(集中式调度),另一部分服务小区信号强度大于第一门限的终端设备由第一节点调度(分布式调度)。
下面结合附图在各具体实施例中对各种可能的实现方式进行详细介绍。
本发明描述的技术方案可以适用于LTE系统,或其他采用各种无线技术的无线通信系统。此外还适用于使用LTE系统后续的演进系统,如第五代5G系统等。为了清楚起见,这里仅以LTE系统为例进行说明,在LTE系统中,网络设备和终端设备之间进行数据传输。
本发明所说的调度功能可以为MAC层的调度功能,至少包括无线资源分配功能,进一步可选的,还包括下述至少一种功能或特性的处理:逻辑信息映射功能、复用功能、解复用功能、调度信息报告、优先级处理、逻辑信道优先级或传输格式选择功能。在本发明中,终端设备的数据由一个节点调度, 等同于该数据经过该节点调度功能处理、或者该数据由该节点进行无线资源分配,当然,这仅是为了说明本发明技术方案所举的例子,本发明包括并不限于上述举例。
本发明所提供的方案是针对每个终端设备基本信息和/或网络信息,灵活配置协议栈架构的方法。例如,根据每个终端设备的位置或者业务特性,确定对该终端设备进行集中式调度还是分布式调度。
比如,可以把地理位置位于小区边缘的终端设备由第二节点进行集中式调度,把地理位置位于非小区边缘的终端设备放在第一节点进行分布式调度,这样位于小区边缘的终端设备可以因为集中式调度降低小区间的干扰,性能得到保障,吞吐量得到提升;位于非小区边缘的终端设备的数据因为射频、PHY和/或MAC层功能放在第一节点,对传输网络的需求就大大降低了。通常系统评估的模型认为,小区边缘终端设备占小区总共终端设备的20%左右。按照这个假设,那么相对于现有技术的静态的集中式调度架构,因为80%的非边缘终端设备采用分布式调度,fronthaul带宽就可以大大降低;因为20%的边缘终端设备采用集中式调度,这些终端设备使用的无线资源就可以得到很好的协调,从而降低了小区间干扰,使得这些边缘终端设备的吞吐量得到保证。
为了更好的说明本发明实施例所涉及的方法,其中,当终端设备由第一节点调度时,是分布式调度,当终端设备由第二节点调度时,是集中式调度,这仅是为了更好的说明本发明实施例所举的例子,本发明包括并不限于此,当然本发明所涉及的方法,也可以适用于多个终端设备和/或多个节点的场景,在此不再赘述。
如图4所示,本实施例提供了另一种传输数据的方法,其中,当终端设备由第一节点调度时,是分布式调度,当终端设备由第二节点调度时,是集中式调度,该方法可以包括以下步骤:
401、第二节点和终端设备1之间建立RRC连接。
402、第二节点根据终端设备1的基本信息和/或网络信息确定调度指示。
需要特别说明的是,该基本信息可以包括终端设备的地理位置、业务Qos信息、测量报告、终端的能力或终端设备的优先级信息;该网络信息可以包括输网络负载,比如Fronthaul传输网络负载。这些仅是本发明所举的例子,本发明包括并不限于此。
例如,第二节点可以根据上述表2中终端设备的基本信息和/或上述表3中网络信息来确定调度指示。在此不再赘述。
403、第二节点向第一节点发送调度指示,该调度指示用于指示终端设备1由第一节点进行调度。
可选的,第一节点与第二节点之间建立节点间承载,第一节点与终端设备1之间的建立无线承载,第二节点与SGW之间建立S1承载。
404、第二节点接收SGW发送的终端设备1的下行数据包。
405、第二节点将该下行数据包经过PDCP层处理,生成PDCP PDU后,将PDCP PDU发送给第一节点。
需要特别说明的是,第二节点将终端设备1的下行数据转换成PDCP PDU后发送,当终端设备1变更为由第二节点调度时,可以由第二节点的PDCP层继续为终端设备1提供服务,因为PDCP层具有SN序列号,通过状态报告就可以获知传输成功的数据包和未传输成功的数据包,进而对未传输成功的数据包继续传输,从而可以保证终端设备1业务连续性。
406、第一节点收到第二节点发送的PDCP PDU数据包后,对该数据包进行处理后,通过第一节点与终端设备1之间的无线链路发送给终端设备1。
具体的,第一节点接收PDCP PDU后,经过第一节点的RLC层、MAC层的调度功能处理和PHY层处理后,通过射频功能发送给终端设备1。
407、终端设备1接收第一节点发送的该第一节点处理后的数据包。
如图5所示,本实施例提供了另一种传输数据的方法,该实施例与图4 所示的实施例类似,不同之处在于:
405a、第二节点将终端设备1的下行数据包经过第二节点的IP层处理,生成IP PDU后,将IP PDU发送给第一节点。
406a、第一节点收到第二节点发送的IP PDU数据包后,第一节点对该IP PDU进行处理后,通过第一节点与终端设备1之间的无线链路发送给终端设备1。
具体的,第一节点接收IP PDU后,经过第一节点的PDCP层、RLC层、MAC层的调度功能处理后和PHY层处理后,通过射频功能发送给终端设备1。
407、终端设备1接收第一节点发送的该第一节点处理后的数据包。
如图6所示,为了更好的说明本发明实施例的技术方案,下面对本发明实施例进一步说明,当终端设备由第一节点调度时,是分布式调度,当终端设备由第二节点调度时,是集中式调度,该方法可以包括以下步骤:
408、终端设备2与第二节点之间建立RRC连接。
409、第二节点根据终端设备2的基本信息和/或网络信息确定调度指示。
具体的,终端设备的基本信息和/或网络信息所包括的内容请参照上述实施例。
具体的,确定调度指示的方法请参照上述实施例,在此不再赘述。
410、第二节点向第一节点发送调度指示,该调度指示用于指示该终端设备2由第二节点进行调度。
可选的,411、第二节点与终端设备2之间建立无线承载,第二节点与SGW之间建立S1承载。
412、第二节点接收SGW发送的下行数据。
413、第二节点对该下行数据在第二节点的MAC层进行调度,生成MAC PDU。
具体的,该数据可以经过第二节点的PDCP层处理、RLC层处理和MAC层 调度处理后,生成MAC PDU。
414、第二节点向第一节点发送终端设备2的MAC PDU。
415、第一节点收到该终端设备2的MAC PDU后,将终端设备2的MAC PDU经过第一节点的PHY层处理后,经过射频功能处理,通过第一节点与终端设备2之间的无线链路发送给终端设备2。
416、终端设备2接收第一节点发送的第一节点处理后的数据。
如图7所示,本实施例提供了另一种传输数据的方法,该实施例与图6所示的实施例类似,不同之处在于:
413a、第二节点对终端设备2的下行数据在第二节点的PHY层进行调度,生成PHY层数据。
具体的,该数据可以经过第二节点的PDCP层处理、RLC层处理、MAC层处理和PHY层处理后,生成PHY层数据。
414a、第二节点向第一节点发送终端设备2的PHY层数据。
415a、第一节点收到该终端设备2的PHY层数据后,将终端设备2的PHY层数据通过第一节点与终端设备2之间的无线链路发送给终端设备2。
416a、终端设备2接收第一节点发送的数据。
相较与现有技术,图4至图7所示的实施例所提供的方案,通过根据终端设备的基本信息和/或网络信息,动态的决定被第一节点调度(分布式调度)或第二节点调度(集中式调度),当确定由第一节点调度时,传输网络带宽的需求就会降低;或者当确定由第二节点调度时,小区的系统性能将得到提升。进一步,并且一个小区里的终端设备的调度方式可以随着终端设备或者网络信息(比如Fronthaul传输网络负载)发生变更。从而实现系统性能和传输网络带宽需求之间的平衡。
图9为本发明一种数据传输方法的另一个实施例,该实施例与图4所示 的实施例类似,不同之处在于:
402c,第二节点根据终端设备1的基本信息和/或网络信息确定承载类型指示。
需要特别说明的是,本发明中的承载类型可以是指第一节点和第二节点之间所承载(bearer)所传输(carry)数据的类型。比如当第一节点和第二节点之间的承载所传输的是IP PDU或PDCP PDU,我们这里称这种承载类型为IP PDU或者PDCP PDU;如果第一节点和第二节点之间的承载所传输的是MAC PDU或PHY数据,我们这里称这种承载类型为MAC PDU或PHY数据;
所以在本发明中实施例中,第一节点和第二节点之间的承载类型为PDCP PDU或MAC PDU,也就是指第一节点和第二节点之间的承载(bearer)所传输(carry)的数据的类型是PDCP PDU或MAC PDU;这仅是为了理解本发明所举的例子,本发明包括并不限于此,对于其他的承载类型,只要能够确定终端设备的调度节点都属于本发明所保护的范围,在此不再赘述。
具体的,根据终端设备1的基本信息和/或网络信息确定承载类型指示皆可以根据表4和表5所示的对应关系确定。也就是说,当承载类型为MAC PDU或PHY层数据时,该终端设备1由第二节点调度,当承载类型为PDCP PDU或者IP PDU时,该终端设备1由第一节点调度。从而第一节点可以根据承载类型获取调度信息。
Figure PCTCN2015100126-appb-000002
表4
Figure PCTCN2015100126-appb-000003
Figure PCTCN2015100126-appb-000004
表5
所述网络信息可以包括传输网络的负载情况、硬件资源负载情况或者综合负载信息,即考虑了硬件和网络负载情况等信息。
403c、第二节点向第一节点发送该承载类型指示,用于指示第二节点与第一节点之间传输的数据包类型为PDCP PDU或IP PDU。
需要特别说明的是,若是第二节点与第一节点之间传输的数据包为PDCP PDU或IP PDU,则第一节点可以获知终端设备1由第一节点进行调度。
图10为本发明一种数据传输方法的另一个实施例的流程示意图,该实施例与图6所示的实施例类似,不同之处在于:
409b、第二节点根据终端设备2的基本信息和/或网络信息确定承载类型指示。
具体的,第二节点根据终端设备2的基本信息和/或网络信息确定承载类型指示皆可以根据上述表4和表5所示的对应关系确定。
410b、第二节点向第一节点发送该承载类型指示,用于指示第二节点与第一节点之间传输的数据包类型为MAC PDU或PHY层数据。
图9或图10所示的实施例,还可以进一步细化为:终端设备1的基本信息进一步包括承载标识,该承载标识用于指示终端设备的承载标识所对应的承载上的数据由第一节点调度还是由第二节点调度;或者,该承载标识用于指示终端设备的承载标识所对应承载上的数据的数据类型为MAC PDU或PHY数据,或者PDCP PDU或者IP PDU。
需要特别说明的是,若是第二节点与第一节点之间传输的数据包为MAC PDU或PHY层数据,则第一节点可以获知终端设备1由第二节点进行调度。
需要特别说明的是,若是第二节点与第一节点之间传输的数据包为PDCP PDU或IP PDU,则第一节点可以获知终端设备1由第一节点进行调度。
如果第二节点与第一节点之间传输的数据包类型为PDCP PDU,当第一节点从第二节点收到PDCP PDU时,就要把该PDCP PDU依次在RLC层处理、MAC层处理、PHY层处理后,经过射频功能发送给终端设备。因为MAC层负责调度,包含调度功能处理过程,所以该承载类型指示为PDCP PDU时,就可以隐含指示终端设备1由第一节点进行调度。承载类型指示为IP PDU的情况也是类似的,不再赘述。
如果第二节点与第一节点之间传输的数据包类型为MAC PDU,当第一节点从第二节点收到MAC PDU时,就要把该MAC PDU在PHY层处理,通过射频功能发送给终端设备。因为MAC层负责调度,包含调度功能处理过程,所以该承载类型指示为MAC PDU时,就可以隐含指示终端设备1已经由第二节点进行了调度。承载类型指示为PHY数据的情况也是类似的,不再赘述。
需要特别说明的是图9与图10所示的实施例可以单独使用,也可以结合使用,也可以与其它实施例组合使用,在此不再赘述。
如图11所示,为了更好的理解本发明,本发明还提供了另一个实施例,该实施例与图6所示的实施例类似,不同之处在于:
413c、第二节点对终端设备2的数据在MAC层调度功能处理,生成MAC PDU。
需要特别说明的是,本发明所说的调度功能处理可以为MAC层的调度功能处理,即包括下述至少一种功能或特性:逻辑信息映射功能、复用功能、解复用功能、调度信息报告、优先级处理、逻辑信道优先级或传输格式选择功能。当然,这仅是为了说明本发明技术方案所举的例子,本发明包括并不限于上述举例。
需要说明的是,MAC层的功能分为调度功能和HARQ功能,这种划分可以 是预先定义的,也是可以协议规定的,也可以是自定义的,在此不再赘述。
414c、第二节点向第一节点发送终端设备2的MAC PDU。
415c、第一节点收到该终端设备2的MAC PDU后,将终端设备2的MAC PDU经过MAC层的HARQ功能处理后,通过第一节点与终端设备2之间的无线链路发送给终端设备2。
如图12所示,为了更好的理解本发明,本发明还提供了另一个实施例,该实施例与图6所示的实施例类似,不同之处在于:
413d、第二节点对终端设备2在PHY层进行处理,生成PHY层数据。
具体的:该下行数据包经过第二节点的PDCP层处理、RLC层处理和MAC层的调度功能处理后,然后经过下述至少一种物理层功能处理后生成PHY层数据:
CRC功能功能、信道编码功能、物理层的HARQ处理功能、信道交织功能、扰码功能、调制或者层映射和预编码功能。
当然,这些仅是为了理解本发明所举的例子,本发明包括并不限于此。
414d、第二节点向第一节点发送终端设备2的PHY层数据。
415d、第一节点收到该终端设备2的PHY层数据后,将该PHY层数据经过第一节点的射频功能处理后,通过第一节点与终端设备2之间的无线链路发送给终端设备2。
416d、终端设备2接收第一节点发送的该第一节点处理后的数据。
本发明还提供了另一个实施例,该实施例与图12所示的实施例类似,不同之处在于,采用其他协议栈类型,比如,将PHY层划分两部分,PHY层功能中和终端设备2相关的功能保留在第二节点,PHY层功能中和终端设备2无关的功能下放到第一节点,这种架构相对于上述完整PHY层数据的方案,可以进一下降低Fronthaul带宽需求。
需要特别说明的是,经过MAC层调度功能处理,且未经MAC层HARQ功能处理后的PDU,在本发明中也称为MAC PDU。
需要特别说明的是,经过部分PHY层处理后的数据,在本发明中也称为PHY层数据。
图9至图12所示的方案,相较于现有技术,本发明提供的方案是根据每个终端设备的基本信息和/或者网络信息(比如Fronthaul传输网络负载),动态确定该终端设备是集中式调度还是分布式调度。一个小区里的不同的终端设备,可以实现不同的调度方式(集中式调度、或分布式调度)。并且一个小区里的终端设备的调度方式可以随着终端设备或者网络信息(比如Fronthaul传输网络负载)发生变更,进而从而实现根据实际网络运行情况在系统性能和传输网络带宽需求之间平衡。
这样相比于背景技术提到的集中式调度架构,因为小区里某些终端设备采用分布式调度,传输网络带宽的需求就会降低。相比于背景技术提到的分布式调度架构,因为小区里某些边缘终端设备可以采用集中式调度,小区的系统性能将得到提升。
为了更好的理解本发明的技术方案,对本发明实施例进行进一步说明,例如将图4、图5或图9所示的实施例称为第一方法,将图6、图7、图10、图11或图12所示的实施例称为第二方法,在此,第一方法与第二方法可以单独使用,也可以结合使用,结合使用时,执行顺序可以不分先后。例如,图4所示实施例的方法可以与图6实施例所示的方法可以结合使用,具体情况如图8所示,图8中,图4所示的实施例执行在前,图6所示的实施例执行在后,这仅是为了说明本发明的技术方案所提供的例子,本发明包括并不限于此。
本发明一种数据传输方法提供的另一个实施例,该实施例的应用场景为第二节点根据终端设备的基本信息和/或网络信息已经确定了第一指示信息后,该方法包括:
1301、当终端设备的基本信息和/网络信息发生变化后,第二节点与第一节点之间协商改变调度节点。
具体的,可以由第二节点向第一节点发送变更指示,第一节点返馈一个变更响应,反之亦然,也可以由第一节点向第二节点发送变更指示,第二节点反馈一个变更响应。
具体的网络信息所包括的内容可以参照上述实施例的介绍,终端设备的基本信息所介绍的内容也可以参照上述实施例的介绍,在此不再赘述。
具体的,可以参照上述实施例中的调度指示、承载类型指示的描述,在此不再赘述。
1302、第二节点根据终端设备变化后的基本信息和/或网络信息确定第二指示信息。
具体的可以根据上述提到的表2或表3的对应关系确定第二指示信息;或者,具体的可以根据上述提到的表4或表5的对应关系确定第二指示信息,在此不再赘述。
1303、向该第一节点发送第二指示信息,该第二指示信息用于指示该终端设备的调度节点变更为由该第一节点调度或由该第二节点调度。
也就是说,原来终端设备由第一节点调度变更为由第二节点进行调度;或者原来终端设备由第二节点进行调度变更为由第一节点进行调度。
为了进一步说明该实例,如图13所示,为本发明的进一步示例,当然这只是为了方便理解发本发明技术方案所举的例子,具体的调度方法是可以参照上述实施例的,在此不再赘述。
1304、第二节点接收SGW发送的下行数据。
1305、第二节点对该终端设备2的下行数据在MAC层进行调度,生成MAC PDU。
具体的,该数据可以经过PDCP层处理、RLC层处理和MAC层调度功能处理后,生成MAC PDU。
1306、第二节点向第一节点发送终端设备2的MAC PDU。
1307、第一节点收到该终端设备2的MAC PDU后,将终端设备2的MAC PDU经过PHY层处理后,经过射频功能处理,通过第一节点与终端设备2之间的无线链路发送给终端设备2。
1308、终端设备2接收第一节点发送的该第一节处理后的数据。
本发明实施例提供的方案,通过并且一个小区里的终端设备的调度方式可以随着终端设备或者网络信息(比如Fronthaul传输网络负载)发生变更,发明提供的方案是根据每个终端设备的基本信息和/或网络信息(比如Fronthaul传输网络负载),动态确定该终端设备是集中式调度还是分布式调度。一个小区里的不同的终端设备,可以实现不同的调度方式(集中式调度、或分布式调度)。进而实现系统性能和传输网络带宽需求之间平衡。
为了更好的理解本发明的技术方案,对本发明实施例进行进一步说明,图13所示的实施例可以单独使用,适用于终端设备的基本信息发生变化,需要重新确定调度节点的场景,也可以与其它实施例结合使用,例如将图4、图5或图9所示的实施例称为第一方法,将图6、图7、图10、图11或图12所示的实施例称为第二方法,在此,图13所示的方法与第一方和/或第二方法结合使用,结合使用时,第一方法和/或第二方法可以执行在前,图13所示的方法执在后。
基于上述所介绍的实施例,示例性的,当所述第一指示信息用于指示所述终端设备由第二节点进行调度时,所述第一指示还携带资源指示,所述第一节点使用该资源指示所指示的资源向终端设备发送第一节点处理后的数据。
在此,需要特别说明的是,本发明各个实施例中所涉及的调度,至少包括无线资源的分配。
图14为本发明实施例所示的一种数据传输节点,为了表述方便,下述将该一种传输节点称为该节点,需要特别说明的是,该节点与第一节点都具有调度功能,该节点具有实现上述方法设计中第二节点或第二节点行为的功能, 该实施例包括:
处理模块1401,用于根据终端设备的基本信息和/或网络信息确定第一指示信息,该第一指示信息用于指示该终端设备由该第一节点调度或由该节点调度;
发送模块1402,用于向该第一节点发送该处理模块1401确定的第一指示信息;
该发送模块1402,用于当该处理模块1401确定的该第一指示息指示该终端设备由该第一节点进行调度时,向第一节点发送未经过该该节点的调度功能处理的数据包;或者,用于当该处理模块确定的该第一指示信息指示该终端设备由该节点进行调度,向该第一节点发送经过该节点的调度功能处理后的数据包。
该实施例的有益效果,请参照上述方法实施例,在此不再赘述。
进一步,该处理模块1401还用于当该终端设备的基本信息和/或网络信息发生变化时,与该第一节点协商改变调度节点,根据终端设备变化后的基本信息和/或网络信息确定第二指示信息;
进一步,该发送模块1402,还用于向该第一节点发送处理模块1401确定的第二指示信息,该第二指示信息用于指示该终端设备的调度节点由该节点变更为由该第一节点调度或由第一节点变更为由该节点调度。
其中,该发送模块1402发送的第一指示信息包括调度指示或者承载类型指示。
进一步,该发送模块1402发送的第一指示信息还包括终端设备的承载标识,该承载标识用于指示该终端设备的承载标识所对应承载上的数据由该第一节点进行调度或者由该节点进行调度。
其中,该发送模块具体用于向该第一节点发送PDCP PDU或者IP PDU;或者向该第一节点发送MAC PDU;或者向该第一节点发送PHY层数据。
其中,该发送模块向该第一节点发送的MAC PDU包括:由MAC层调度功 能处理后的MAC PDU;或者由MAC层调度功能和MAC层的HARQ功能处理后的MAC PDU。
其中,该终端设备基本信息包括:终端设备的地理位置、业务Qos信息、测量报告、终端的能力或终端设备的优先级信息;该网络信息包括:传输网络的负载信息。
其中,该处理模块具体用于根据以下任一条件确定该第一指示信息或者第二指示信息:
条件1,当终端设备的地理位置位于小区边缘时,由该节点调度,当终端设备的地理位置位于非小区边缘时,由第一节点调度;或者
条件2,测量报告中服务小区信号强度小于第一门限或者相邻小区信号强度高于第二门限时,由该节点调度,当测量报告中服务小区信号强度大于第一门限或者相邻小区信号强度小于第二门限时,由第一节点调度;或者
条件3,当终端设备的能力支持COMP时,由该节点调度,当终端设备的能力不支持COMP时,由第一节点调度;
条件4,传输网络的负载轻时,由该节点调度,当传输网络的负载重时,由第一节点调度。
其中,该处理模块具体用于,当对多个终端设备进行调度时,根据第一条件和第二条件确定该第一指示信息或者该第二指示信息:
其中,第一条件包括下述任一种条件:
条件1,当终端设备的地理位置位于小区边缘时,由本装置调度,当终端设备的地理位置位于非小区边缘时,由第一节点调度;或者
条件2,测量报告中服务小区信号强度小于第一门限或者相邻小区信号强度高于第二门限时,由本节点调度,当测量报告中服务小区信号强度大于第一门限或者相邻小区信号强度小于第二门限时,由第一节点调度;或者
条件3,当终端设备的能力支持COMP时,由本节点调度,当终端设备的能力不支持COMP时,由第一节点调度;
第二条包括当传输网络的负载轻时,由本节点调度,当传输网络的负载重时,由第一节点调度。
可选的,如图14a所示,该节点还可以包括接收模块1403,用于接收SGW发送的下行数据。
需要特别说明的是,本发明实施例中的处理模块对应的实体装置可以为处理器,发送模块对应的实体装置可以为发射器,可选的,接收模块对应的实体装置可以为接收器。
图15为本发明实施例提供的另一种数据传输节点,为了表述方例,该另一种数据传输节点简称为该节点,所节点与第二节点都具有调度功能,该节点具有实现上述方法设计中第一节点或第一节点行为的功能,该节点包括:
接收模块1501,用于接收第一指示信息,该第一指示信息用于指示该终端设备由该节点调度或由该第二节点调度;
该接收模块1501,用于该第一指示信息指示该终端设备由该节点进行调度,接收该第二节点发送的未经过该第二节点的调度功能处理的数据包;或者,该第一指示信息指示该终端设备由该第二节点进行调度,接收该第二节点发送的经过该第二节点的调度功能处理后的数据包;
处理模块1502,用于对所述接收模块接收的所述未经过所述第二节点的调度功能处理的数据包进行处理;或者用于对所述接收模块接收的经过所述第二节点的调度功能处理后的数据包进行处理;
发送模块1503,用于发送所述处理模块处理后的数据。
该实施例的有益效果,请参照上述方法实施例,在此不再赘述。
进一步,该处理模块1502,还用于当该终端设备的基本信息和/或网络信息发生变化,该节点与该第二节点之间协商改变调度节点;
进一步,该接收模块1501,用于在该处理模块1502确定改变调度节点后,接收该第二节点发送的第二指示信息,该第二指示信息为该第二节点根据终端设备变化后的基本信息和/或网络信息确定的,该第二指示信息用于指示该 终端设备由该第二节点调度变更为该节点调度,或者由该节点调度变更为由该第二节点调度。
进一步,该接收模块1501接收的第一指示信息还包括终端设备的承载标识,该承载标识用于指示该终端设备的承载标识所对应承载上的数据由该节点进行调度或者由该第二节点进行调度。
其中,该接收模块具体用于:接收第二节点发送的PDCP PDU或者IP PDU;或者接收第二节点发送的MAC PDU;或者接收第二节点发送的PHY层数据。
其中,该接收模块接收的MAC PDU包括:由MAC层调度功能处理后的MAC PDU;或者由MAC层调度功能和MAC层HARQ功能处理后的MAC PDU。
所述处理模块具体用于:
如果所述第一节点接收MAC PDU,则对所述MAC PDU经过PHY层处理和射频功能处理;或者如果所述第一节点接收PHY层数据,则对所述PHY层数据进行射频功能处理;或者如果所述第一节点接收PDCP PDU,则对所述PDCP PDU进行RLC层处理、MAC层调度功能处理、物理层处理和射频功能处理;或者如果所述第一节点接收IP PDU,则对所述IP PDU进行PDCP层处理、RLC层处理、MAC层调度功能处理、物理层处理和射频功能处理。
需要特别说明的是,本发明实施例中的接收模块对应的实体设备为接收器,处理模块对应的实体设备为处理器,发送模块对应的实体设备为发射器。
相较于现有技术,图14、图14a和图15所示实施例所提供的方案是根据每个终端设备的基本信息或网络信息,动态的确定该终端设备由第一节点调度或第二节点调度,从而使一个小区里的不同的终端设备,实现不同的调度方式(即集中式调度或分布式调度)。相较于现有技术,本发明实施例提供的方案是根据每个终端设备的基本信息和/或网络信息,动态的确定该终端设备由第一节点调度或第二节点调度,使一个小区里的不同的终端设备,实现不同的调度方式(即集中式调度或分布式调度)。这样相比于背景技术提到的集中式调度架构,因为小区里某些终端设备采用分布式调度,传输网络带宽的需 求就会降低。相比于背景技术提到的分布式调度架构,因为位于小区缘终端设备可以采用集中式调度,小区的系统性能得到了提升。
结合本发明公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于用户设备中。当然,处理器和存储介质也可以作为分立组件存在于用户设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上该的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上该仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (32)

  1. 一种数据传输方法,其特征在于,包括至少一个第一节点和至少一个第二节点,其中所述第一节点与所述第二节点都具有调度功能,所述方法包括:
    所述第二节点根据终端设备的基本信息和/或网络信息确定第一指示信息,向所述第一节点发送第一指示信息,所述第一指示信息用于指示所述终端设备由所述第一节点调度或所述第二节点调度;
    如果所述第一指示信息指示所述终端设备由所述第一节点进行调度,则所述第二节点向第一节点发送未经过所述第二节点的调度功能处理的数据包;或者,如果所述第一指示信息指示所述终端设备由所述第二节点进行调度,则所述第二节点向所述第一节点发送经过所述第二节点的调度功能处理后的数据包。
  2. 根据权1所述的方法,其特征在于,所述方法还包括:
    当所述终端设备的基本信息和/或网络信息发生变化后,所述第二节点与所述第一节点协商改变调度节点;
    所述第二节点根据终端设备变化后的基本信息和/或网络信息确定第二指示信息,向所述第一节点发送第二指示信息,所述第二指示信息用于指示所述终端设备由所述第二节点调度变更为由所述第二节点调度,或者用于指示所述终端设备由所述第一节点调度变更为由所述第二节点调度。
  3. 根据权1或2所述的方法,其特征在于,所述第一指示信息包括调度指示或者承载类型指示。
  4. 根据权1或2所述的方法,其特征在于,所述第一指示信息还包括终端设备的承载标识,所述承载标识用于指示所述终端设备的 承载标识所对应承载上的数据由所述第一节点进行调度或者由所述第二节点进行调度。
  5. 根据权1至4任一权要所述的方法,其特征在于,所述第二节点向第一节点发送未经过所述第二节点的调度功能处理的数据包,包括:
    所述第二节点向所述第一节点发送PDCP PDU或者IP PDU。
  6. 根据权1至4任一权要所述的方法,其特征在于,所述第二节点向所述第一节点发送经过所述第二节点的调度功能处理后的数据包,包括:
    所述第二节点向所述第一节点发送MAC PDU;或者
    所述第二节点向所述第一节点发送PHY层数据。
  7. 根据权6所述的方法,其特征在于,所述MAC PDU包括:
    所述MAC PDU是由MAC层调度功能处理后的MAC PDU;或者
    所述MAC PDU是由MAC层调度功能和MAC层的HARQ功能处理后的MAC PDU。
  8. 根据权1或者7任一权要所述的方法,其特征在于,所述终端设备基本信息包括:终端设备的地理位置、业务Qos信息、测量报告、终端的能力或终端设备的优先级信息;
    所述网络信息包括:传输网络的负载信息。
  9. 根据权8所述的方法,其特征在于,根据以下任一个条件确定所述第一指示信息或者第二指示信息:
    条件1,当终端设备的地理位置位于小区边缘时,所述终端设备由第二节点调度,当终端设备的地理位置位于非小区边缘时,所述终端设备由第一节点调度;或者
    条件2,测量报告中服务小区信号强度小于第一门限或者相邻小 区信号强度高于第二门限时,所述终端设备由第二节点调度,当测量报告中服务小区信号强度大于第一门限或者相邻小区信号强度小于第二门限时,所述终端设备由第一节点调度;或者
    条件3,当终端设备的能力支持COMP时,所述终端设备由第二节点调度,当终端设备的能力不支持COMP时,所述终端设备由第一节点调度;或者
    条件4,传输网络的负载轻时,所述终端设备由第二节点调度,当传输网络的负载重时,所述终端设备由第一节点调度。
  10. 根据权8所述的方法,其特征在于,当对多个终端设备进行调度时,根据第一条件和第二条件确定所述第一指示信息或者确定所述第二指示信息:
    其中,第一条件包括下述任一种条件:
    条件1,当终端设备的地理位置位于小区边缘时,所述终端设备由第二节点调度,当终端设备的地理位置位于非小区边缘时,所述终端设备由第一节点调度;或者
    条件2,测量报告中服务小区信号强度小于第一门限或者相邻小区信号强度高于第二门限时,所述终端设备由第二节点调度,当测量报告中服务小区信号强度大于第一门限或者相邻小区信号强度小于第二门限时,所述终端设备由第一节点调度;或者
    条件3,当终端设备的能力支持COMP时,所述终端设备由第二节点调度,当终端设备的能力不支持COMP时,所述终端设备由第一节点调度;
    第二条包括当传输网络的负载轻时,所述终端设备由第二节点调度,当传输网络的负载重时,所述终端设备由第一节点调度。
  11. 一种数据传输方法,其特征在于,包括至少一个第一节点和 至少一个第二节点,其中所述第一节点与所述第二节点都具有调度功能,所述方法包括:
    所述第一节点接收第一指示信息,所述第一指示信息用于指示所述终端设备由所述第一节点调度或所述第二节点调度;
    如果所述第一指示信息指示所述终端设备由所述第一节点进行调度,则所述第一节点接收所述第二节点发送的未经过所述第二节点的调度功能处理的数据包,所述第一节点对所述未经过所述第二节点的调度功能处理的数据包进行处理后,发送给终端设备;或者,如果所述第一指示信息指示所述终端设备由所述第二节点进行调度,则所述第一节点接收所述第二节点发送的经过所述第二节点的调度功能处理后的数据包,所述第一节点对经过所述第二节点的调度功能处理后的数据包进行处理后,发送给终端设备。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    当所述终端设备的基本信息和/或网络信息发生变化,所述第一节点与所述第二节点之间协商改变调度节点;
    所述第一节点接收所述第二节点发送的第二指示信息,所述第二指示信息为所述第二节点根据终端设备变化后的基本信息和/或网络信息确定的,所述第二指示信息用于指示所述终端设备由所述第二节点调度变更为由所述第一节点调度,或者由所述第一节点调度变更为由所述第二节点调度。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第一节点接收的第一指示信息还包括终端设备的承载标识,所述承载标识用于指示所述终端设备的承载标识所对应承载上的数据由所述第一节点进行调度或者由所述第二节点进行调度。
  14. 根据权利要求11至13任一权要所述的方法,其特征在于,第一节点接收所述第二节点发送的未经过所述第二节点的调度功能处理的数据包包括:
    所述第一节点接收第二节点发送的PDCP PDU或者IP PDU。
  15. 根据权利要求11至13任一权要所述的方法,其特征在于,所述第一节点接收所述第二节点发送的经过所述第二节点的调度功能处理后的数据包包括:
    所述第一节点接收第二节点发送的MAC PDU;或者
    所述第一节点接收第二节点发送的PHY层数据。
  16. 根据权利要求15所述的方法,其特征在于,所述MAC PDU包括:
    所述MAC PDU是由MAC层调度功能处理后的MAC PDU;或者
    所述MAC PDU是由MAC层调度功能和MAC层HARQ功能处理后的MAC PDU。
  17. 根据权利要求至16任一权要所述的方法,其特征在于,所述第一节点对所述未经过所述第二节点的调度功能处理的数据包进行处理包括:
    如果所述第一节点接收MAC PDU,则所述第一节点对所述MAC PDU经过PHY层处理和射频功能处理;或者
    如果所述第一节点接收PHY层数据,则所述第一节点对所述PHY层数据进行射频功能处理;或者
    如果所述第一节点接收PDCP PDU,则所述第一节点对所述PDCP PDU进行RLC层处理、MAC层调度功能处理、物理层处理和射频功能处理;或者
    如果所述第一节点接收IP PDU,则所述第一节点对所述IP PDU 进行PDCP层处理、RLC层处理、MAC层调度功能处理、物理层处理和射频功能处理。
  18. 一种数据传输节点,其特征在于,所述节点与第一节点都具有调度功能,包括:
    处理模块,用于根据终端设备的基本信息和/或网络信息确定第一指示信息,所述第一指示信息用于指示所述终端设备由所述第一节点调度或由所述节点调度;
    发送模块,用于向所述第一节点发送所述处理模块确定的第一指示信息;
    所述发送模块,用于当所述处理模块确定所述第一指示息为所述终端设备由所述第一节点进行调度时,向第一节点发送未经过所述所述节点的调度功能处理的数据包;或者,用于当所述处理模块确定所述第一指示信息为所述终端设备由所述节点进行调度,向所述第一节点发送经过所述节点的调度功能处理后的数据包。
  19. 根据权利求18所述的节点,其特征在于,所述处理模块还用于当所述终端设备的基本信息和/或网络信息发生变化时,与所述第一节点协商改变调度节点,根据终端设备变化后的基本信息和/或网络信息确定第二指示信息;
    所述发送模块,用于向所述第一节点发送处理模块确定的第二指示信息,所述第二指示信息用于指示所述终端设备由所述第二节点调度变更为由所述第二节点调度,或者用于指示所述终端设备由所述第一节点调度变更为由所述第二节点调度。
  20. 根据权利要求18或19所述的节点,其特征在于,所述发送模块发送的第一指示信息包括调度指示或者承载类型指示。
  21. 根据权利要求18或19所述的节点,其特征在于,所述发送 模块发送的第一指示信息还包括终端设备的承载标识,所述承载标识用于指示所述终端设备的承载标识所对应承载上的数据由所述第一节点进行调度或者由所述节点进行调度。
  22. 根据权利要求18至21任一权要所述的节点,其特征在于,所述发送模块具体用于:
    向所述第一节点发送PDCP PDU或者IP PDU;或者
    向所述第一节点发送MAC PDU;或者
    向所述第一节点发送PHY层数据。
  23. 根据权利要求22所述的节点,其特征在于,所述发送模块向所述第一节点发送的MAC PDU包括:由MAC层调度功能处理后的MAC PDU;或者由MAC层调度功能和MAC层的HARQ功能处理后的MAC PDU。
  24. 根据权利要求19至23任一权要所述的节点,其特征在于,所述终端设备基本信息包括:终端设备的地理位置、业务Qos信息、测量报告、终端的能力或终端设备的优先级信息;
    所述网络信息包括:传输网络的负载信息。
  25. 根据权利要求24所述的节点,其特征在于,所述处理模块具体用于根据以下任一条件确定所述第一指示信息或者第二指示信息:
    条件1,当终端设备的地理位置位于小区边缘时,所述终端设备由所述节点调度,当终端设备的地理位置位于非小区边缘时,所述终端设备由第一节点调度;或者
    条件2,测量报告中服务小区信号强度小于第一门限或者相邻小区信号强度高于第二门限时,所述终端设备由所述节点调度,当测量报告中服务小区信号强度大于第一门限或者相邻小区信号强度小于 第二门限时,所述终端设备由第一节点调度;或者
    条件3,当终端设备的能力支持COMP时,所述终端设备由所述节点调度,当终端设备的能力不支持COMP时,所述终端设备由第一节点调度;或者
    条件4,传输网络的负载轻时,所述终端设备由所述节点调度,当传输网络的负载重时,所述终端设备由第一节点调度。
  26. 根据权利要求24所述的节点,其特征在于,所述处理模块具体用于,当对多个终端设备进行调度时,根据第一条件和第二条件确定所述第一指示信息或者所述第二指示信息:
    其中,第一条件包括下述任一种条件:
    条件1,当终端设备的地理位置位于小区边缘时,所述终端设备由本节点调度,当终端设备的地理位置位于非小区边缘时,所述终端设备由第一节点调度;或者
    条件2,测量报告中服务小区信号强度小于第一门限或者相邻小区信号强度高于第二门限时,所述终端设备由本节点调度,当测量报告中服务小区信号强度大于第一门限或者相邻小区信号强度小于第二门限时,所述终端设备由第一节点调度;或者
    条件3,当终端设备的能力支持COMP时,所述终端设备由本节点调度,当终端设备的能力不支持COMP时,所述终端设备由第一节点调度;
    第二条包括当传输网络的负载轻时,所述终端设备由本节点调度,当传输网络的负载重时,所述终端设备由第一节点调度。
  27. 一种数据传输节点,其特征在于,所述节点与第二节点都具有调度功能,所述节点包括:
    接收模块,用于接收第一指示信息,所述第一指示信息用于指示 所述终端设备由所述节点调度或由所述第二节点调度;
    所述接收模块用于如果所述终端设备由所述节点进行调度,接收所述第二节点发送的未经过所述第二节点的调度功能处理的数据包;或者,如果所述终端设备由所述第二节点进行调度,接收所述第二节点发送的经过所述第二节点的调度功能处理后的数据包;
    处理模块,用于对所述接收模块接收的所述未经过所述第二节点的调度功能处理的数据包进行处理;或者用于对所述接收模块接收的经过所述第二节点的调度功能处理后的数据包进行处理;
    发送模块,用于发送所述处理模块处理后的数据。
  28. 根据权利要求27所述的节点,其特征在于,所述节点还包括:
    处理模块,用于当所述终端设备的基本信息和/或网络信息发生变化,所述节点与所述第二节点之间协商改变调度节点;
    所述接收模块,用于在所述处理模块确定改变调度节点后,接收所述第二节点发送的第二指示信息,所述第二指示信息为所述第二节点根据终端设备变化后的基本信息和/或网络信息确定的,所述第二指示信息用于指示所述终端设备由所述第二节点调度变更为所述节点调度,或者由所述节点调度变更为由所述第二节点调度。
  29. 根据权利要求27或28所述的节点,其特征在于,所述接收模块接收的第一指示信息还包括终端设备的承载标识,所述承载标识用于指示所述终端设备的承载标识所对应承载上的数据由所述节点进行调度或者由所述第二节点进行调度。
  30. 根据权利要求27至29任一权要所述的节点,其特征在于,所述接收模块具体用于:
    接收第二节点发送的PDCP PDU或者IP PDU;或者
    接收第二节点发送的MAC PDU;或者
    接收第二节点发送的PHY层数据。
  31. 根据权利要求30所述的节点,其特征在于,所述接收模块接收的MAC PDU包括:
    由MAC层调度功能处理后的MAC PDU;或者
    由MAC层调度功能和MAC层HARQ功能处理后的MAC PDU。
  32. 根据权利要求27所述的节点,其特征在于,所述处理模块具体用于:
    如果所述第一节点接收MAC PDU,则对所述MAC PDU经过PHY层处理和射频功能处理;或者
    如果所述第一节点接收PHY层数据,则对所述PHY层数据进行射频功能处理;或者
    如果所述第一节点接收PDCP PDU,则对所述PDCP PDU进行RLC层处理、MAC层调度功能处理、物理层处理和射频功能处理;或者
    如果所述第一节点接收IP PDU,则对所述IP PDU进行PDCP层处理、RLC层处理、MAC层调度功能处理、物理层处理和射频功能处理。
PCT/CN2015/100126 2015-12-31 2015-12-31 数据传输的方法及装置 WO2017113296A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15911922.1A EP3383118B1 (en) 2015-12-31 2015-12-31 Data transmission method and apparatus
PCT/CN2015/100126 WO2017113296A1 (zh) 2015-12-31 2015-12-31 数据传输的方法及装置
CN201580084207.4A CN108353411B (zh) 2015-12-31 2015-12-31 数据传输的方法及装置
JP2018534596A JP6616009B2 (ja) 2015-12-31 2015-12-31 データ伝送方法及び装置
US16/019,396 US10674523B2 (en) 2015-12-31 2018-06-26 Centralized scheduling in a data communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/100126 WO2017113296A1 (zh) 2015-12-31 2015-12-31 数据传输的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/019,396 Continuation US10674523B2 (en) 2015-12-31 2018-06-26 Centralized scheduling in a data communication

Publications (1)

Publication Number Publication Date
WO2017113296A1 true WO2017113296A1 (zh) 2017-07-06

Family

ID=59224300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/100126 WO2017113296A1 (zh) 2015-12-31 2015-12-31 数据传输的方法及装置

Country Status (5)

Country Link
US (1) US10674523B2 (zh)
EP (1) EP3383118B1 (zh)
JP (1) JP6616009B2 (zh)
CN (1) CN108353411B (zh)
WO (1) WO2017113296A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10624105B2 (en) * 2017-02-10 2020-04-14 Hon Hai Precision Industry Co., Ltd. Hierarchical resource scheduling method of wireless communication system
CN110383937B (zh) * 2017-02-21 2022-11-25 瑞典爱立信有限公司 用于将ue与ran连接的方法、基带单元、ue和介质
WO2021062679A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 一种通信方法和装置
US11425601B2 (en) * 2020-05-28 2022-08-23 At&T Intellectual Property I, L.P. Pooling of baseband units for 5G or other next generation networks

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2101528A1 (en) * 2008-03-14 2009-09-16 Intel Corporation System, method and apparatus for interference mitigation in a relay-based wireless network
WO2010000094A1 (zh) * 2008-07-01 2010-01-07 上海贝尔阿尔卡特股份有限公司 无线中继网络中为移动终端调度资源的方法和装置
US20130028210A1 (en) * 2008-06-27 2013-01-31 Research In Motion Limited System and Method for MIMO Split-Physical Layer Scheme for a Wireless Network
CN103384406A (zh) * 2012-05-03 2013-11-06 普天信息技术研究院有限公司 一种中继系统的调度方法
CN104811963A (zh) * 2014-01-26 2015-07-29 华为技术有限公司 一种站点协议栈的配置方法及控制器、接入站点

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040228349A1 (en) * 2003-01-10 2004-11-18 Sophie Vrzic Semi-distributed scheduling scheme for the reverse link of wireless systems
GB2437582B (en) * 2006-04-24 2008-07-16 Nec Technologies Localised and distributed scheduling control method and apparatus
ES2369461B1 (es) * 2009-04-08 2012-10-16 Vodafone España, S.A.U. Método y controlador de red para reducir la carga de tráfico de múltiples portadoras para activar el apagado de portadoras en redes móviles de area amplia.
US20120324511A1 (en) * 2011-06-20 2012-12-20 Koh Sih-Ping Apparatus, system for scheduling and broadcasting media, automatic channel scheduling method and recording medium
ES2442974B1 (es) * 2012-05-10 2015-03-06 Vodafone Espana Sau Dispositivo de control de planificacion, analizador de dispositivo de equipo de usuario y metodo de priorizacion de calidad de servicio que hace uso de los mismos
EP3490291B1 (en) * 2012-11-29 2022-01-05 Huawei Technologies Co., Ltd. Data transmission control method, apparatus and system
JP2015076761A (ja) 2013-10-09 2015-04-20 株式会社Nttドコモ 通信制御方法及び通信制御装置
CN104796918B (zh) * 2015-03-17 2018-09-28 无锡北邮感知技术产业研究院有限公司 无线通信组网的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2101528A1 (en) * 2008-03-14 2009-09-16 Intel Corporation System, method and apparatus for interference mitigation in a relay-based wireless network
US20130028210A1 (en) * 2008-06-27 2013-01-31 Research In Motion Limited System and Method for MIMO Split-Physical Layer Scheme for a Wireless Network
WO2010000094A1 (zh) * 2008-07-01 2010-01-07 上海贝尔阿尔卡特股份有限公司 无线中继网络中为移动终端调度资源的方法和装置
CN103384406A (zh) * 2012-05-03 2013-11-06 普天信息技术研究院有限公司 一种中继系统的调度方法
CN104811963A (zh) * 2014-01-26 2015-07-29 华为技术有限公司 一种站点协议栈的配置方法及控制器、接入站点

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3383118A4 *

Also Published As

Publication number Publication date
EP3383118A4 (en) 2018-12-19
CN108353411A (zh) 2018-07-31
US20180317243A1 (en) 2018-11-01
EP3383118A1 (en) 2018-10-03
JP6616009B2 (ja) 2019-12-04
US10674523B2 (en) 2020-06-02
CN108353411B (zh) 2020-11-03
EP3383118B1 (en) 2020-10-07
JP2019504563A (ja) 2019-02-14

Similar Documents

Publication Publication Date Title
US11184886B2 (en) Method, base station, and user equipment for implementing carrier aggregation
US10631296B2 (en) Resource allocation method, apparatus, and wireless access system
US9521674B2 (en) Method and apparatus for transmitting and receiving uplink data in mobile communication system
US10277363B2 (en) Hybrid automatic repeat request acknowledgement transmission method, user equipment, and base station
JP6705004B2 (ja) データ送信方法、ユーザ機器、および基地局
US10165615B2 (en) Communication method, and terminal
WO2013059978A1 (en) Downlink-uplink configuration determination
US11057905B2 (en) Communication method, network device and terminal device
US10674523B2 (en) Centralized scheduling in a data communication
US10411851B2 (en) Wireless communication method, device and system
US10631318B2 (en) Resource division method and apparatus
US20230021043A1 (en) HANDLING OVERLAPPING OF MULTIPLE PHYSICAL UPLINK SHARED CHANNELS (PUSCHs)
TW202224473A (zh) 細胞間干擾敏感的無線資源分配方法及裝置
GB2520944A (en) Method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911922

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015911922

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018534596

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015911922

Country of ref document: EP

Effective date: 20180626