WO2017113165A1 - 一种 3d 打印机 - Google Patents
一种 3d 打印机 Download PDFInfo
- Publication number
- WO2017113165A1 WO2017113165A1 PCT/CN2015/099820 CN2015099820W WO2017113165A1 WO 2017113165 A1 WO2017113165 A1 WO 2017113165A1 CN 2015099820 W CN2015099820 W CN 2015099820W WO 2017113165 A1 WO2017113165 A1 WO 2017113165A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nozzle
- cylinder
- eccentric
- valve needle
- rotating shaft
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C67/00—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
Definitions
- the present invention relates to the field of 3D printing technologies, and in particular, to a 3D printer.
- 3D printer also known as 3D printer, is an additive manufacturing technology, a machine for rapid prototyping technology. It is based on a digital model file and can be glued with special wax, powder metal or plastic. A composite material that produces a three-dimensional object by printing a layer of bonding material. At this stage, 3D printers are used to manufacture products. It is a technique of constructing objects by layer-by-layer printing. The principle of the 3D printer is to put the data and raw materials into the 3D printer, and the machine will build the product layer by layer according to the program.
- the metering and extrusion device in the prior art 3D printer is driven by a roller or a gear, and the output of the roller device is relatively uniform, and is mainly used for printing of a wire, so the selection range is relatively narrow, too soft, too soft, and brittle.
- the material can not be used, and its driving force is based on the friction between the roller and the wire. It is easy to slip and the output is not accurate.
- the way in which the gear meshes to convey the melted slurry is to use the gear gap to convey one by one.
- the amount of output of the material is periodically changed, so that the 3D printer cannot accurately control the amount of printing of the slurry, and the discharge port of the nozzle device is of a certain specific value, and the diameter cannot be automatically changed, and the measuring device is inaccurate. In this case, it is impossible to eject a slurry of a specific outer diameter, so that the 3D printer cannot meet the requirement that the external needs are accurate and the internal needs high-efficiency thick line filling.
- the present application provides a 3D printer with high precision printing and the ability to adapt to different printing needs.
- a 3D printer which includes at least two head devices, a metering and extruding device, a pressing device and a driving device, and the pressing device is used for closing the nozzle device, and the driving device is used for Feeding the metering extrusion device to feed the nozzle device, at least two nozzle devices respectively have discharge holes of a predetermined aperture;
- the metering extrusion device comprises a wheel axle, a chassis and an isolation mechanism, the axle includes a rotating shaft and at least two eccentric wheels, In the axial direction of the rotating shaft, at least two eccentric wheels are eccentrically spaced and evenly distributed on the rotating shaft, the output end of the driving device is connected with the rotating shaft, and the driving device drives the rotating shaft to rotate;
- the chassis is provided with a plurality of eccentricities for accommodating The cavity of the wheel;
- the casing is provided with a total feeding port and a total discharging hole, and the plurality of cavities respectively have a sub-feeding port communicating with the total feeding port and a
- the axle includes four eccentric wheels, and the angle between the vertical line of the center point of the eccentric wheel to the central axis of the rotating shaft and the vertical line of the center points of the other three eccentric wheels to the central axis of the rotating shaft respectively It is 90. 180. And 270. .
- the chassis includes an upper cover and a lower cover, the upper cover and the lower cover are fixed together, and the upper cover and the lower cover are combined to form a plurality of cavities for accommodating the eccentric, and the upper cover is provided with a total inlet a total discharge hole, a sub-feed port and a discharge hole, the upper cover is provided with a groove for accommodating the isolation mechanism between the feed port and the discharge hole, and the baffle is fixed in the groove by the telescopic member, Under the extrusion of the telescopic member, the partition is always in contact with the eccentric.
- the four nozzle devices are included, and the nozzle device includes:
- a support base which is provided with a guide hole
- a cylinder body movably mounted on the support base, a side of the cylinder body is provided with a feed inlet, and the feed inlet is in communication with the guide hole;
- valve needle which is accommodated in the cavity formed by the nozzle and the cylinder body, the valve needle is fixed on the support seat by the fixing member, the valve needle forms a throttle valve with the movable nozzle, the throttle is moved, and the nozzle moves To contact with the valve needle, the end of the valve pin blocks the discharge hole of the nozzle
- the nozzle device further includes a sealing ring and a cover plate, the cover plate is provided with a groove, the sealing ring is set at a joint of the cylinder body and the support base, the cover plate is fixed on the support base, and the sealing ring is fixed on the In the groove.
- the nozzle device further includes a spring and a spacer, and the other end of the cylinder is provided with a boss on the other end of the discharge hole, the gasket is fixed on the support seat, and the spring is installed between the boss and the block, In the absence of external force, the spring-driven cylinder is in contact with the valve needle, so that the discharge hole of one cylinder is always blocked by the valve needle.
- the pad is provided with an annular groove for mounting the spring.
- the cylinder body is provided with a relief port for mounting the valve needle, and one end of the valve needle is fixed on the support base by a fixing member.
- the fixing member comprises a mounting block and a screw, and the mounting block is fixed on the support base by screws, and the valve needle is fixed on the mounting block by the screw passing through the escape opening of the cylinder body.
- the 3D printer further includes a frame, and the head device, the metering and extrusion device, and the driving device are respectively mounted on the frame.
- the nozzle device since there are a plurality of nozzle devices with preset aperture discharge holes, the nozzle device has a plurality of cavities in the casing of the metering and extruding device, and the cavity is internally cut therein.
- the eccentric wheel from the axial direction of the rotating shaft, a plurality of eccentric wheels are uniformly distributed on the rotating shaft, and the amount of slurry extruded by each eccentric wheel complements each other, which reduces the fluctuation of the total amount of the total extruded slurry, and the 3D printer passes the control device Controlling the metering and extruding device to output the preset pressure slurry to the nozzle device, and matching the discharge hole of the preset aperture, so that the nozzle device can spray the preset outer diameter slurry for printing, and accurately discharge the required outer diameter
- the slurry not only improves the accuracy of printing, but also meets the needs of both high efficiency and high precision printing. Greatly improved efficiency
- FIG. 1 is a structural block diagram of a 3D printer according to the present invention.
- FIG. 2 is a partial structural schematic view of a 3D printer according to the present invention.
- FIG. 3 is a schematic structural view of a head device of a 3D printer according to the present invention.
- Figure 4 is a cross-sectional view taken along line A-A of Figure 3;
- FIG. 5 is a schematic exploded view of a metering extrusion device of a 3D printer according to the present invention.
- FIG. 6 is a schematic exploded view of a metering extrusion device of a 3D printer according to the present invention.
- FIG. 7 is a cross-sectional view of a metering and extrusion device of a 3D printer of the present invention.
- FIG. 8 is a schematic diagram of extrusion of a metering and extrusion device of a 3D printer according to the present invention.
- a 3D printer As shown in FIG. 1, in the embodiment of the present invention, a 3D printer is provided, and the 3D printer includes a nozzle device.
- the pressing device 3 and the driving device 4 are respectively mounted on the frame; the pressing device 3 is a cylinder, and the output end thereof is The nozzle device 1 is connected, and the nozzle device 1 is squeezed to drive the nozzle device 1; the driving device 4 is a motor, and the output end thereof is connected to the metering and extruding device 2, and the metering and extrusion device 2 is driven to feed the nozzle device 1.
- the 3D printer further includes control means electrically coupled to the pressing means 3 and the driving means 4 for controlling the driving of the pressing means 3 and the driving means 4, respectively.
- FIG. 2 As shown in FIG. 2, four side-by-side nozzle devices 1 of the 3D printer provided in this embodiment are fixed on the metering and extruding device 2. In other embodiments, the number of the nozzle devices 1 can be set according to actual needs. And installation arrangement.
- the head device 1 includes a support base 11, a barrel 12, a nozzle 13 and a valve needle 14.
- the support base 11 can mount and fix the entire head unit to the 3D printer.
- the support base 11 has a convex cantilever beam, and the cantilever beam is provided with a cavity at both ends.
- the support base 11 is provided with a guide hole 111. One end of the guide hole 111 is connected to the metering and extrusion device, and the other end extends into the cavity of the cantilever beam.
- the side wall of the barrel 12 is provided with a feeding port 121, and the end of the nozzle 13 is provided with a discharge hole 131.
- the nozzle 13 is detachably mounted on the end of the barrel 12 by threads, and the barrel 12 and the nozzle 13 are surrounded.
- a synthesis chamber is in communication with the feed port 121 and the discharge opening 131.
- the barrel 12 is movably mounted on the bracket 11.
- the side of the cylinder 12 is provided with a feed port 121, and the inlet 121 of the cylinder 12 communicates with the guide hole 111 of the support base 11, so that material can be introduced into the cylinder 12 through the guide hole 111 for 3D printing.
- the cylinder 12 is movably mounted so that the 3D printer mounted with the plurality of cylinders 12 is operated, the other cylinders 12 for printing can be avoided by moving the cylinder 12 without requiring other movements.
- the mechanism moves the cylinder 12 that does not work.
- the nozzle 3 and the barrel 12 are detachably mounted together, which facilitates the installation of the valve needle 14, and facilitates the cleaning and maintenance of the cylinder 12. If the discharge hole 131 or the inside of the cylinder 12 is blocked, it is only required to be disassembled. The nozzle 3 enables quick dredging maintenance. The nozzle 3 has a discharge hole 131. If other discharge holes 131 are replaced, it is only necessary to replace the corresponding nozzle 3.
- the diameter of the inlet 121 of the cylinder 12 is larger than the diameter of the guide hole 111 that is butted against the inlet, and the cylinder 12 is ensured to be within the range of the movement.
- the guide hole 111 is always connected to the inlet 121. Fully docked, ensuring that the guide hole 111 is completely in communication with the feed port 121, and even during the movement, the pair of conductive material of the guide hole 111 is not blocked by the side wall of the moving cylinder 12.
- the valve needle 14 is a cylinder having a conical end, and the valve needle 14 is received in a cavity formed by the cylinder 12 and the nozzle 13.
- the valve needle 14 has a gap with the inner wall of the cavity, and the gap is a cylinder.
- the feed port 121 of the body 12 communicates with the discharge hole 131 of the nozzle 13, and the conical end of the valve needle 14 is disposed in alignment with the center of the discharge hole 131 of the nozzle 13.
- the cylinder body 12 is provided with a relief hole for escaping the valve needle 14. The screw passes through the relief hole to suspend the valve needle 14 on the support base 11, and the escape hole of the cover plate 15 is mounted on the valve needle. The 14 is blocked, and the escape hole of the cylinder 12 is correspondingly enlarged to meet the demand for the movement of the valve needle 14.
- the shaft diameter of the other end of the valve needle 14 with respect to the conical end is equal to or slightly smaller than the inner diameter of the cavity, and is provided on the end.
- the groove is disposed facing the feeding port 121, so that the valve needle 14 is suspended from the mounting port, and only needs to be fixed directly from the outside by screws, and the same is provided with the feeding inlet 121 and the discharging hole 131. Groove clearance.
- the other end of the cylinder 12 relative to the nozzle 3 is connected to the cylinder of the pressing device, the cylinder driving cylinder 12 is moved, and the moving stroke of the cylinder 12 is between 2 and 4 mm.
- the example is preferably 3 mm, the cylinder driving cylinder 12 is moved upward by 3 mm in the orientation shown in FIG. 1, and the conical end of the valve needle 14 is inserted into the discharge hole 131 of the cylinder 12 to block the discharge hole 131;
- the cylinder drive cylinder 12 is moved downward by 3 mm, and the conical end portions of the valve needle 14 are all withdrawn from the discharge hole 131, and the discharge holes 131 are all turned on.
- the showerhead device 1 further includes two cover plates 15 and two sealing rings 16, which are fixed to the outlets at both ends of the cavity of the support base 11, and are sleeved on the cylindrical body 12.
- the cover plate 15 is provided with a groove for mounting the sealing ring 16, and the groove of the cover plate 15 is disposed facing the support base 11.
- the sealing ring 16 is received in the groove of the cover plate 15, and the sealing ring 16 blocks the tube The gap between the body 12 and the support base 11 prevents leakage of material from the cavity to the outside.
- the fixing member 17 includes a mounting block and a screw, and the mounting block is fixed to the support base 11 by screws, and the valve needle 14 is fixed to the mounting block by screws, that is, the valve needle 14 is fixed to the support base 11 by a mounting block and a screw. on. And the mounting block extends into the support base 11 to achieve sealing of the escape hole.
- the nozzle device of the 3D printer provided by the embodiment has a throttling working principle: when the cartridge is to be printed, the cylinder driving cylinder 12 moves downward, so that the discharge hole 131 of the nozzle 3 is completely turned on, and then passes through The metering and extruding device introduces the material melted at a high temperature into the cylinder 12 from the guide hole 111, and finally extrudes the layer-by-layer 3D printing from the discharge hole 131; when the printer prints out, or temporarily stops printing during printing Nozzle device shift After the next printing position is started, the material remaining outside the discharge hole 131 after the printing is completed is sucked back through the metering extrusion device or the pumping device connected to the guiding hole, and then the cylinder 12 is moved upward by the cylinder driving cylinder 12 3 mm, the cylindrical end of the valve needle 14 is blocked by the discharge hole 131 to achieve throttling.
- a boss 122 is provided at an end of the cylinder 12 opposite to the other end of the discharge hole, and a spacer 19 is provided on the cover plate 15, and the spring 18 is sleeved on the convex portion of the cylinder 12.
- the spring 18 is in a compressed state, and in the absence of an external force, the spring 18 applies a thrust to the boss 122 of the barrel 12 in a direction away from the block 9, so that the barrel 12 is ejected.
- the orifice 131 is blocked by the valve needle 14.
- the cover plate 15 is provided with an annular groove.
- the spring 18 is snapped onto the annular groove to provide a more secure mounting of the spring 18.
- the nozzle device of the 3D printer provided by the embodiment has the spring 18, and the automatic reset of the nozzle device is realized, which replaces the work of the driving device, thereby saving operating cost.
- valve needle 14 and the movable cylinder 12 constitute a throttle valve
- the valve needle 14 can block the discharge hole 131 of the cylinder body 12; when the nozzle device 1 is in the printing process, when the nozzle device 1 finishes printing Or pause the printing and move to another position to continue printing, the valve needle 14 can block the discharge hole 131 of the nozzle 13, thereby realizing the throttling of the slurry, and avoiding the leakage of the slurry, especially the barrel 12 of the large 3D printer. In the long-distance movement process, it is possible to avoid waste caused by a large amount of slurry leakage and damage the product.
- the metering and extrusion device 2 includes an axle 21, a chassis 22, and four isolation mechanisms 23.
- the axle 21 and the isolation mechanism 23 are mounted on the chassis 22, respectively.
- the axle 21 includes a rotating shaft 211 and four eccentric wheels 212, and the four eccentric wheels 212 have the same size, that is, the diameter and the thickness are equal.
- the four eccentric wheels 212 are equally spaced on the rotating shaft 211.
- the four eccentric wheels 212 are eccentrically spaced and evenly distributed on the rotating shaft 211.
- the rotating shaft 211 and the four eccentric wheels 212 are of a one-piece structure and are processed by turning chips.
- the angle between the center line of the adjacent two eccentric wheels 212 to the vertical line of the central axis of the rotating shaft 211 is 90°, and the vertical line of the center point of any one of the eccentric wheels 212 to the central axis of the rotating shaft 211 and the center points of the other three eccentric wheels 212 are
- the angle between the vertical lines of the central axis of the rotating shaft 211 is 90°, 180° and 270°, and the four eccentric wheels 212 are evenly respectively on the rotating circumference, and the four eccentric wheels 212 are at
- the order of arrangement on the rotating shaft 211 can be arbitrarily changed.
- the chassis 22 includes an upper cover 221 and a lower cover 222, and the upper cover 221 is fixed to the lower cover 222 by screws.
- the upper cover 221 and the lower cover 222 are respectively provided with grooves for mounting and accommodating the axle 21, and the grooves of the upper cover 221 and the lower cover 222 are enclosed into four cavities 223, and the four cavities 223 are arranged equidistantly in a straight line.
- the upper cover 221 is provided with a total feed port 2211 and a total discharge hole 2212.
- the main feed port 2211 is connected to the feeding device, and the other end is connected to the cavity 223 through four sub-feed ports 2213 for introducing the melted slurry into the cavity 223.
- the total discharge hole 2212 is connected to the nozzle device, and the other end is connected to the four chambers 223 through the four outlet holes 22 14 for squeezing the melted slurry into the nozzle device for feeding.
- the total feeding port 2211 and the total discharging hole 2212 of the upper cover 221 are symmetrically arranged symmetrically, and the inlet opening 2213 and the separating hole 2214 have the same symmetrical apertures, and the apertures are equal to ensure the smooth conduction of the inlet and outlet.
- the symmetrical setting is beneficial to the mold or processing production and reduces the production cost.
- the upper cover 221 is further provided with four recesses 2215 for mounting the partitions 23, and the recesses 2215 are located between the sub-feeds 2223 and the splitting holes 2214, and communicate with the cavity 223, four recesses.
- the position of 2215 within the four cavities 223 is uniform.
- the upper cover 221 in order to install the partition 23, is provided with a through groove, and the cover 23 is mounted in the through groove in cooperation with the cover. The cover and the through groove are combined with the structure of the recess 2215 of the embodiment.
- the mounting shaft ⁇ , the rotating shaft 211 of the axle 21 is mounted on the upper cover 221 and the lower cover 222 of the chassis 22. Both ends of the rotating shaft 211 are rotatably mounted by bearings, and one end of the rotating shaft 211 passes through the chassis 22 and The output of the external drive unit is connected.
- the four eccentric wheels 212 are respectively accommodated in the four cavities 223, and the eccentric 212 and the cavity 223 are always in in-line contact, and the thickness of the eccentric 212 is equal to the width of the cavity 223, so that the eccentricity
- the wheel 212 forms an extrusion cavity within the cylindrical cavity.
- the isolation mechanism 23 includes a partition 231 and a spring 232.
- the partition 231 is movably fixed to the recess 2215 by a spring 232.
- the partition 23 partially projects into the cavity 223 to contact the eccentric 212, and the partition 231 There is no gap with the groove 2215.
- the partition plate 231 is always in contact with the eccentric wheel 212, so that the partition plate 231 separates the eccentric wheel 212 into an extrusion cavity formed in the cylindrical cavity into the feed.
- the space between the chamber and the discharge chamber, the feed chamber and the discharge chamber are alternately changed to achieve the extrusion.
- a groove or a ridge is provided on the partition 23, and the partition 23 is connected to the spring 232 through a groove or a rib.
- the eccentric wheels 212 are respectively cut into the four cavities 223, and the center line of one eccentric wheel 212 is perpendicular to the central axis of the rotating shaft 211.
- the angles from the center line of the other three eccentric wheels 212 to the vertical line of the central axis of the rotating shaft 211 are 90°, 180° and 270°, respectively, that is, the four eccentric wheels 212 are evenly distributed on the rotating circumference, and the four eccentric wheels 12 are
- the total amount of material extruded in a unit driven at a constant speed is constant, so that the metering and extrusion device can accurately control the flow output to meet high-precision 3D printing.
- the total feed port 2211, the total discharge hole 2212, the split feed port 2213, the split discharge port 22 14 and the partition plate 23 are disposed on the lower cover 222, and the material introduction can also be realized. Extrusion.
- the discharge holes 131 of the four head devices 1 have apertures of 2 mm, 4 mm, 6 mm, and 8 mm, respectively.
- the outer diameter of the slurry sprayed by the head device 1 under a specific pressure is different, and the high temperature melted slurry is extruded from the discharge hole 131 to form a columnar body larger than the discharge hole 131, and can be formed under high pressure.
- the discharge hole 131 has a columnar body with a double aperture. Therefore, the 3D printer can control the metering and extruding device 2 to provide a preset pressure to the nozzle device 1 through the control device 3, so that the nozzle device 1 sprays the slurry of the preset outer diameter.
- the apertures of the discharge nozzles L131 of the four nozzle devices 1 are 2 mm, 4 mm, 6 mm and 8 mm, respectively, so that the 3D printer can at least spray slurry of any outer diameter between 2 and 10 mm to meet different printing requirements.
- the aperture of the discharge hole 131 of the nozzle device 1 can be set as needed, and the tapered end of the valve needle 14 is adjusted accordingly, so that the valve needle 14 and the discharge hole 131 are throttled. valve.
- the control device 3 is respectively connected to the electric motor signals of the cylinder of the nozzle device 1 and the metering and extrusion device 2, and the control device 3 controls the rotation speed of the motor to control the feeding speed and the amount of the feeding device 2, and provides a certain amount.
- the pressure introduces the slurry into the head device 1.
- the control unit 3 controls the output of the cylinder to drive the opening and closing of the discharge port 131 on the head unit 1.
- the control device 3 controls the nozzle device 1 and the metering and extruding device 2 to realize automatic 3D printing of slurry of any outer diameter between 2 and 10 mm.
- a pressure device may be added, the pressure device being disposed between the nozzle device 1 and the metering and extruding device 2, providing positive pressure and negative pressure to the showerhead device 1, positive pressure for making the slurry A larger outer diameter slurry is formed after extrusion and a negative pressure is used to suck back the slurry.
- the pressure device is connected to the control device 3 and the control device 3 controls the output of the pressure device.
- the four eccentric wheels compensate each other, so that the principle that the coextruded slurry is constant at any engraving is as follows: [0071] As shown in FIG. 8, the large circle is A, and the small circle is B. The big circle is fixed, and the small circle is centered on point A. Row rotation, doing eccentric motion. Point C is the intersection of the small circular symmetry axis and the large circular symmetry axis, and the intersection of the large circular symmetry axis and the small circle. The length of AB is the eccentricity.
- the line CD is an isolating device, separating the two sides.
- This function represents the correspondence between the area of the extrusion cavity and the angle alfa
- This function represents the relationship between the velocity of the area change in the extrusion chamber and the angle alfa, that is, the flow velocity of the fluid as a function of alfa.
- the initial angles of each device are: 0, PI/2, PI, 3pi/2
- beta asin((R-r)/r *sin(alfa) );
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Coating Apparatus (AREA)
Abstract
一种3D打印机,包括若干喷头装置(1)、计量挤出装置(2)、挤压装置(3)和驱动装置(4)。喷头装置具有预设孔径的出料孔(131);计量挤出装置包括轮轴(21)、机箱(22)和隔离机构(23)。轮轴上均匀分布有若干偏心轮(212);机箱内设有若干腔体(223),各偏心轮分别内切于各腔体内,与腔体形成挤压腔;机箱设有总进料口(2211)和总出料孔(2212),各腔体分别设有与总进料口联通的分进料口(2213)和与总出料孔联通的分出料孔(2214);隔离机构包括隔板(231)和伸缩件(232),隔板通过伸缩件可移动地安装在机箱腔体内的分进料口和分出料孔之间,并在伸缩件的作用下,始终与偏心轮接触,将分进料口和分出料孔隔离。每个偏心轮挤出的浆料量相互弥补,减小了浆料挤出总量波动,配合预设孔径的出料孔,不仅提高了打印精度,还满足了不同的打印需求。
Description
一种 3D打印机
技术领域
[0001] 本发明涉及 3D打印技术领域, 具体涉及一种 3D打印机。
[0002]
[0003] 背景技术
[0004] 3D打印机又称三维打印机, 是一种增材制造技术, 即快速成形技术的一种机器 , 它是一种数字模型文件为基础, 运用特殊蜡材、 粉末状金属或塑料等可粘合 材料, 通过打印一层层的粘合材料来制造三维的物体。 现阶段三维打印机被用 来制造产品。 是逐层打印的方式来构造物体的技术。 3D打印机的原理是把数据 和原料放进 3D打印机中, 机器会按照程序把产品一层层造出来。
[0005] 现有技术的 3D打印机中的计量挤出装置采用辊轮或齿轮啮合驱动, 辊轮装置的 输出比较均匀, 主要用于线材的打印, 因此选材范围比较狭窄, 过硬过软以及 脆性的材料都不能使用, 而且其驱动力是靠辊轮与线材之间的摩擦力, 很容易 打滑导致输出不精确, 而齿轮啮合输送融化的浆料的方式, 是利用齿轮间隙一 份一份的输送材料的, 输出的量是呈周期性变化的, 使得 3D打印机无法精确控 制浆料的打印量, 并且喷头装置的出料口为若干特定值, 不能自动改变口径, 在计量挤出装置不精确的情况下, 无法喷出特定外径的浆料, 使得 3D打印机无 法满足外部需要精确而内部需要高效粗线条填充的需求。
[0006] 发明内容
[0007] 本申请提供一种具有高精度打印及能够适用不同打印需求的 3D打印机。
[0008] 一种实施例中提供一种 3D打印机, 其包括至少两个喷头装置、 计量挤出装置、 挤压装置和驱动装置, 挤压装置用于挤压喷头装置的幵闭, 驱动装置用于驱动 计量挤出装置给喷头装置送料, 至少两个喷头装置分别具有预设孔径的出料孔 ; 计量挤出装置包括括轮轴、 机箱和隔离机构, 轮轴包括转轴和至少两个偏心 轮, 在转轴轴向上, 至少两个偏心轮等偏心距且均匀分布在转轴上, 驱动装置 的输出端与转轴连接, 驱动装置驱动转轴旋转; 机箱设有若干个用于容置偏心
轮的腔体; 机箱设有总进料口和总出料孔, 若干个腔体分别设有与总进料口联 通的分进料口和与总出料孔联通的分出料孔; 偏心轮内切于腔体内, 偏心轮与 腔体形成挤压腔; 隔离机构包括隔板和伸缩件, 隔板通过伸缩件可移动地安装 在机箱的腔体内, 隔板设置在分进料口和分出料孔之间, 在伸缩件的作用下, 隔板始终与偏心轮接触, 将分进料口和分出料孔隔离。
[0009] 进一步地, 轮轴包括四个偏心轮, 四个偏心轮中任一个偏心轮中心点到转轴 中轴线的垂直线与其他三个偏心轮中心点到转轴中轴线的垂直线的夹角分别为 9 0。、 180。和 270。。
[0010] 进一步地, 机箱包括上盖和下盖, 上盖和下盖固定在一起, 上盖和下盖围合 成若干个用于容置偏心轮的腔体, 上盖设有总进料口、 总出料孔、 分进料口和 分出料孔, 上盖在进料口和出料孔之间设有用于容置隔离机构的凹槽, 隔板通 过伸缩件固定在凹槽内, 在伸缩件的挤压下, 隔板始终与偏心轮接触。
[0011] 进一步地, 包括四个喷头装置, 喷头装置包括:
[0012] 支撑座, 其设有导料孔;
[0013] 筒体, 其可移动地安装在支撑座上, 筒体侧面设有进料口, 进料口与导料孔联 通;
[0014] 喷嘴, 其可拆卸地安装在筒体上, 喷嘴端部设有出料孔;
[0015] 以及阀针, 其容置于喷嘴与筒体围合成的腔体内, 阀针通过固定件固定在支撑 座上, 阀针与可移动的喷嘴形成节流阀, 节流吋, 喷嘴移动至与阀针接触, 阀 针端部封堵住喷嘴的出料孔
[0016] 进一步地, 喷头装置还包括密封圈和盖板, 盖板设有凹槽, 密封圈套装在筒体 与支撑座的连接处, 盖板固定在支撑座上, 并且将密封圈固定在凹槽中。
[0017] 进一步地, 喷头装置还包括弹簧和垫块, 筒体相对出料孔的另一端上设有凸台 , 垫片固定在支撑座上, 弹簧安装在凸台与垫块之间, 在无外力的情况下, 弹 簧驱动筒体与阀针接触, 使得一筒体的出料孔被始终被阀针封堵住。
[0018] 进一步地, 垫块上设有用于安装弹簧的环形凹槽。
[0019] 进一步地, 筒体上设有用于安装阀针的避让口, 阀针一端通过固定件固定在支 撑座上。
[0020] 进一步地, 固定件包括安装块和螺钉, 安装块通过螺钉固定在支撑座上, 阀针 通过螺钉穿过筒体的避让口固定在安装块上。
[0021] 进一步地, 3D打印机还包括机架, 喷头装置、 计量挤出装置挤压装置和驱动装 置分别安装在机架上。
[0022] 依据上述实施例的一种 3D打印机, 由于设有若干个预设孔径出料孔的喷头装置 , 喷头装置计量挤出装置的机箱内设有若干个腔体, 腔体内分别内切有偏心轮 , 从转轴轴向上, 若干个偏心轮均匀分布在转轴上, 每个偏心轮挤出的浆料量 相互弥补, 减小了总挤出的浆料总量波动, 3D打印机通过控制装置控制计量挤 出装置输出预设压力的浆料给喷头装置, 配合预设孔径的出料孔, 使得喷头装 置可喷出预设外径的浆料用于打印, 精确的喷出需求外径的浆料不仅提高了打 印的精度, 还同吋满足了高效和高精两种不同的打印需求。 极大的提高了效率
[0023]
[0024] 附图说明
[0025] 图 1为本发明一种 3D打印机的结构框图;
[0026] 图 2为本发明一种 3D打印机的局部结构示意图;
[0027] 图 3为本发明一种 3D打印机的喷头装置的结构示意图;
[0028] 图 4为图 3的 A- A剖视图;
[0029] 图 5为本发明一种 3D打印机的计量挤出装置的爆炸结构示意图;
[0030] 图 6为本发明一种 3D打印机的计量挤出装置的爆炸结构示意图;
[0031] 图 7为本发明一种 3D打印机的计量挤出装置的截面剖视图;
[0032] 图 8为本发明一种 3D打印机的计量挤出装置的挤出原理图。
[0033]
[0034] 具体实施方式
[0035] 下面通过具体实施方式结合附图对本发明作进一步详细说明。
[0036] 如图 1所示, 在本发明实施例中提供了一种 3D打印机, 3D打印机包括喷头装置
1、 计量挤出装置 2、 挤压装置 3、 驱动装置 4和机架。 喷头装置 1、 计量挤出装置
2、 挤压装置 3和驱动装置 4分别安装在机架上; 挤压装置 3为气缸, 其输出端与
喷头装置 1连接, 挤压驱动喷头装置 1的幵闭; 驱动装置 4为电机, 其输出端与计 量挤出装置 2连接, 驱动计量挤出装置 2给喷头装置 1送料。 在其他实施例中, 3D 打印机还包括控制装置, 控制装置分别与挤压装置 3和驱动装置 4电信号连接, 用于分别控制挤压装置 3和驱动装置 4的驱动。
[0037] 如图 2所示, 本实施例提供的 3D打印机的四个并排设置的喷头装置 1固定在计量 挤出装置 2上, 在其他实施例中, 可根据实际需求设置喷头装置 1的数量及安装 排列方式。
[0038] 如图 3和图 4所示, 喷头装置 1, 其包括支撑座 11、 筒体 12、 喷嘴 13和阀针 14。
[0039] 支撑座 11可将整个喷头装置安装固定到 3D打印机上。 支撑座 11具有凸出的悬臂 梁, 悬臂梁上设有两端幵口的腔体。 支撑座 11上设有导料孔 111, 导料孔 111的 一端与计量挤出装置连接, 另一端延伸到悬臂梁的腔体内。
[0040] 筒体 12侧壁上设有进料口 121, 喷嘴 13端部设有出料孔 131, 喷嘴 13通过螺纹可 拆卸地安装在筒体 12的端部, 筒体 12和喷嘴 13围合成腔体, 该腔体与进料口 121 和出料孔 131联通。
[0041] 筒体 12可移动地安装在支架 11上。 筒体 12的侧面设有进料口 121, 筒体 12的进 料口 121与支撑座 11的导料孔 111联通, 使得物料能够通过导料孔 111导入到筒体 12中进行 3D打印。
[0042] 由于筒体 12为可移动安装设置, 使得在安装有多个筒体 12的 3D打印机工作吋, 可通过移动筒体 12避让其他在进行打印的筒体 12, 而不需要其他的移动机构将 不工作的筒体 12移幵。
[0043] 喷嘴 3和筒体 12可拆卸安装在一起, 可便于阀针 14的安装, 并且有利于筒体 12 清洁维护, 若筒体 12的出料孔 131或内部被堵塞, 只需通过拆卸喷嘴 3便能进行 快速疏通维护。 喷嘴 3上具有出料孔 131, 若更换其他口径的出料孔 131吋, 只需 更换相应的喷嘴 3即可。
[0044] 优选的, 筒体 12的进料口 121的孔径大于与之对接的导料孔 111的孔径, 并且保 证筒体 12在移动的行程范围内, 导料孔 111始终与进料口 121完全对接, 保证导 料孔 111与进料口 121完全联通, 即使在移动过程中, 导料孔 111的导通物料的对 接口也不会被移动中的筒体 12的侧壁阻挡住。
[0045] 阀针 14为具有圆锥形端部的圆柱体, 阀针 14容置于筒体 12和喷嘴 13围合成的腔 体内, 阀针 14与腔体内壁之间具有间隙, 该间隙将筒体 12的进料口 121和喷嘴 13 的出料孔 131联通, 且阀针 14的圆锥形端部与喷嘴 13的出料孔 131中心对齐设置 。 为了安装阀针 14, 筒体 12上设有避让阀针 14安装的避让孔, 螺钉穿过该避让 孔将阀针 14悬挂固定在支撑座 11上, 并且盖板 15的避让孔在安装阀针 14被封堵 住, 而筒体 12的避让孔相应的扩大, 以满足阀针 14移动的需求。
[0046] 优选的, 为了方便阀针 14的安装及利于筒体 12的移动, 阀针 14相对圆锥形端部 的另一端的轴径等于或略小于腔体的内径, 并且在该端上设有径向的凹槽, 凹 槽面对进料口 121设置, 使得阀针 14悬挂安装吋, 只需从外部直接通过螺钉固定 , 同吋留有导通进料口 121和出料孔 131的凹槽间隙。
[0047] 在本实施例中, 筒体 12相对喷嘴 3的另一端与挤压装置气缸连接, 气缸驱动筒 体 12移动, 筒体 12的移动行程在 2~4毫米之间均可, 本实施例优选为 3毫米, 气 缸驱动筒体 12向图 1所示方位向上移动 3毫米, 阀针 14的圆锥形端部插入筒体 12 的出料孔 131中将出料孔 131封堵住; 相反气缸驱动筒体 12向下移动 3毫米, 阀针 14的圆锥形端部全部退出出料孔 131, 出料孔 131被全部导通。
[0048] 在本实施例中, 因筒体 12为可移动件, 筒体 12穿过支撑座 11的腔体, 必然支撑 座 11和筒体 12中间存在一定间隙, 故为了防止物料外泄, 喷头装置 1还包括两个 盖板 15和两个密封圈 16, 盖板 15固定在支撑座 11的腔体两端出口上, 并且套设 在筒体 12上。 盖板 15的设有安装密封圈 16的凹槽, 安装吋, 盖板 15的凹槽面向 支撑座 11设置, 密封圈 16容置于盖板 15的凹槽内, 密封圈 16封堵住筒体 12与支 撑座 11的间隙, 避免了料从腔体内向外部泄漏。
[0049] 固定件 17包括安装块和螺钉, 安装块通过螺钉固定在支撑座 11上, 阀针 14则通 过螺钉固定在安装块上, 即阀针 14通过安装块和螺钉安装固定在支撑座 11上。 并且安装块延伸到支撑座 11内, 实现对避让孔的密封。
[0050] 本实施例提供的 3D打印机的喷头装置, 其节流工作原理为: 当需打印吋, 气缸 驱动筒体 12向下移动, 使得喷嘴 3的出料孔 131被全部导通, 再通过计量挤出装 置将高温融化的物料从导料孔 111中导入筒体 12内, 最后从出料孔 131挤出进行 逐层的 3D打印; 当打印机打印完成, 或打印途中需暂吋停止打印将喷头装置移
动下一个打印位置吋, 先通过计量挤出装置或者与导料孔连接的回抽装置, 将 完成打印后还留在出料孔 131外的物料吸回, 再通气缸驱动筒体 12向上移动 3毫 米, 使得阀针 14的圆柱形端部封堵住出料孔 131, 实现节流。
[0051] 为了固定弹簧 18, 在筒体 12相对出料孔的另一端的端部设有凸台 122, 设有垫 块 19固定在盖板 15上, 弹簧 18套设在筒体 12的凸台 122与盖板 15之间, 弹簧 18处 于被压缩的状态, 在无外力的情况下, 弹簧 18将筒体 12的凸台 122向远离垫块 9 的方向施加推力, 使得筒体 12的出料孔 131被阀针 14封堵住。
[0052] 若进行 3D打印, 则需通过外界驱动装置给筒体 12施加推力, 使得筒体 12向下移 动, 出料孔 131被导通。 若打印结束或需暂停打印吋, 只需撤去外界驱动装置给 筒体 12施加的推力, 在弹簧 18的作用下, 筒体 12被退回到原来被封堵的位置。
[0053] 在其他实施例中, 盖板 15上设有环形凹槽。 弹簧 18卡设在环形凹槽上, 使得弹 簧 18的安装更稳固。
[0054] 本实施例提供的 3D打印机的喷头装置, 由于设有弹簧 18, 实现了喷头装置的自 动复位, 代替了驱动装置的做功, 节约了运行成本。
[0055] 由于阀针 14和可移动的筒体 12组成节流阀, 使得阀针 14可封堵住筒体 12的出料 孔 131 ; 喷头装置 1在打印过程中, 当喷头装置 1结束打印或暂停打印移动到其他 位置继续打印吋, 阀针 14可封堵住喷嘴 13的出料孔 131, 实现了浆料的节流, 避 免了浆料的泄露, 特别是大型 3D打印机的筒体 12在长距离移动过程中, 能够避 免大量浆料泄露导致的浪费及破坏产品。
[0056] 如图 5和图 6所示, 计量挤出装置 2, 其包括轮轴 21、 机箱 22和四个隔离机构 23 。 轮轴 21和隔离机构 23分别安装机箱 22上。
[0057] 具体的, 轮轴 21包括转轴 211和四个偏心轮 212, 四个偏心轮 212的大小一致, 即直径和厚度均相等。 优选的, 四个偏心轮 212等间距设置在转轴 211上, 从转 轴 211的轴向上看, 四个偏心轮 212等偏心距且均匀分布在转轴 211上。 转轴 211 和四个偏心轮 212为一体式结构, 通过车屑加工而成。 相邻两个偏心轮 212中心 点到转轴 211中轴线的垂直线的夹角为 90°, 且任一个偏心轮 212中心点到转轴 211 中轴线的垂直线与其他三个偏心轮 212中心点到转轴 211中轴线的垂直线的夹角 为 90°、 180°和 270°, 四个偏心轮 212均匀分别在旋转圆周上, 四个偏心轮 212在
转轴 211上的排列顺序可任意调换。
[0058] 机箱 22包括上盖 221和下盖 222, 上盖 221通过螺钉固定在下盖 222上。 上盖 221 和下盖 222上分别设有安装及容置轮轴 21的凹槽, 上盖 221和下盖 222的凹槽围合 成四个腔体 223, 四个腔体 223沿直线等距排列。
[0059] 上盖 221上设有总进料口 2211和总出料孔 2212。 总进料口 2211—端与给料装置 连接, 另一端通过四个分进料口 2213分别与腔体 223联通, 用于将融化的浆料导 入腔体 223中。 总出料孔 2212—端与喷头装置连接, 另一端通过四个分出料孔 22 14分别与四个腔体 223联通, 用于将融化的浆料挤送到喷头装置中, 实现送料。 优选的, 上盖 221上的总进料口 2211和总出料孔 2212孔径相等对称设置, 且分进 料口 2213与分出料孔 2214孔径相等对称设置, 孔径相等保证了进出量平稳导通 , 对称设置有利于模具或加工生产, 降低生产成本。
[0060] 上盖 221上还设有安装隔板 23的四个凹槽 2215, 凹槽 2215位于分进料口 2213与 分出料孔 2214的中间, 并与腔体 223联通, 四个凹槽 2215在四个腔体 223内的位 置是一致的。 在其他实施例中, 为了安装隔板 23, 上盖 221上设有通槽, 并配合 封盖将隔板 23安装在通槽内, 封盖和通槽组合成本实施例的凹槽 2215结构。
[0061] 如图 7所示, 安装吋, 轮轴 21的转轴 211安装在机箱 22的上盖 221和下盖 222上, 转轴 211两端通过轴承可旋转安装, 转轴 211的一端穿出机箱 22与外界驱动装置 的输出端连接。
[0062] 四个偏心轮 212轮分别容置于四个腔体 223内, 并偏心轮 212与腔体 223始终保持 内切接触, 又偏心轮 212的厚度与腔体 223的宽度相等, 使得偏心轮 212在圆柱形 腔体内形成挤压腔。
[0063] 隔离机构 23包括隔板 231和弹簧 232, 隔板 231通过弹簧 232可移动地固定在凹槽 2215上, 隔板 23部分伸入腔体 223内与偏心轮 212接触, 并隔板 231与凹槽 2215没 有间隙。 偏心轮 212在做偏心转动过程中, 在弹簧 232的挤压作用下, 隔板 231始 终与偏心轮 212接触, 使得隔板 231将偏心轮 212在圆柱形腔体内形成挤压腔分隔 成进料腔和出料腔, 进料腔和出料腔的空间大小交替变换, 实现挤料。
[0064] 优选的, 为了方便隔板 23的安装, 在隔板 23上设有凹槽或凸条, 隔板 23通过凹 槽或凸条与弹簧 232连接。
[0065] 由于计量挤出装置 2的机箱 22内设有四个腔体 223, 四个腔体 223内分别内切有 偏心轮 212, 且一个偏心轮 212中心点到转轴 211中轴线的垂直线与其他三个偏心 轮 212中心点到转轴 211中轴线的垂直线的夹角分别为 90°、 180°和 270°, 即四个 偏心轮 212均匀分布在旋转圆周上, 四个偏心轮 12在匀速驱动的单位吋间内挤出 的物料总量是恒定的, 使得计量挤出装置可对流量输出做精确控制, 满足高精 度的 3D打印。
[0066] 在其他实施例中, 总进料口 2211、 总出料孔 2212、 分进料口 2213、 分出料孔 22 14和隔板 23设置在下盖 222上, 同样能够实现物料的导入及挤出。
[0067] 四个喷头装置 1的出料孔 131的孔径分别为 2mm、 4mm、 6mm和 8mm。 喷头装置 1在特定的压力下喷出的浆料的外径是不同的, 高温融化的浆料从出料孔 131挤 出后会形成大于出料孔 131的柱状体, 并且在高压下可形成出料孔 131两倍孔径 的柱状体, 故本 3D打印机可通过控制装置 3控制计量挤出装置 2给喷头装置 1提供 预设的压力, 使得喷头装置 1喷出预设外径的浆料, 并且四个喷头装置 1的出料 孑 L131的孔径分别为 2mm、 4mm、 6mm和 8mm, 使得 3D打印机至少可实现喷出 2- 10mm之间任意外径的浆料, 用于满足不同打印需求。
[0068] 在其他实施例中, 喷头装置 1的出料孔 131孔径可根据需要设置, 对于的阀针 14 的锥形端部做相应的调整, 使得阀针 14与出料孔 131形成节流阀。
[0069] 控制装置 3分别与喷头装置 1的气缸和计量挤出装置 2的电机电信号连接, 控制 装置 3控制电机的转速控制计量挤出装置 2的送料速度及送料的量, 并提供一定 的压力将浆料导入喷头装置 1中。 控制装置 3控制气缸的输出, 驱动喷头装置 1上 出料孔 131的幵启和闭合。 控制装置 3同吋控制喷头装置 1和计量挤出装置 2实现 自动的 3D打印出 2-10mm之间任意外径的浆料。 在其他实施例中, 为了加强压力 的控制, 可增加压力装置, 压力装置设置在喷头装置 1和计量挤出装置 2之间, 为喷头装置 1提供正压和负压, 正压用于使得浆料挤出后形成更大外径的浆料, 负压用于回吸浆料。 压力装置与控制装置 3电信号连接, 控制装置 3控制压力装 置的输出。
[0070] 四个偏心轮相互弥补, 使得共同挤出的浆料在任意吋刻为恒定值的原理如下: [0071] 如图 8所示, 大圆圆形为 A, 小圆圆形为 B.大圆固定不动, 小圆以 A点为中心进
行旋转, 做偏心运动。 C点为小圆对称轴与大圆对称轴交叉角度为 P的吋候, 大 圆对称轴与小圆的交点。 AB的长为偏心距。 直线 CD处为隔离装置, 将两边分隔 幵。
[0072] 计算过程:
[0073] 设大圆半径为 R,小圆半径为 r,角 P的值为 alfa (弧度) ,角 N的值为 beta则挤出区域 瞬吋面积表达式为:
[0074] S =大圆面积-小圆面积 -CDE三个点包围的面积
[0075] CDE三个点包围的面积 =扇形 ADE-扇形 BCE-三角形 ABC
[0076] 所以:
[0077] S =大圆面积-小圆面积 - (扇形 ADE -扇形 BCE -三角形 ABC)
[0078] 即:
[0079] s=(pi*R*R-pi*r*r)-(alfa/(2*pi)*pi*R*R-(alfa+beta)/(2*pi)*pi*r*r-0.5*(R-r)*r*sin(al fa+beta) ); (方程 1)
[0080] 通过正弦定理可得 alfa与 beta的关系
[0081] beta=asin((R-r)/r *sin(alfa) ); (方程 2)
[0082] 联立方程 1与 2, 消除 beta。 可得 S相对于 alfa为自变量的函数 F(alfa),R与 r为常数
[0083] 即: S= F(alfa)取值范围: [0, 2*PI]
[0084] 这个函数代表了挤出腔内面积与角度 alfa的对应关系
[0085] 对这个一元函数求导, Sd = F' (alfa)取值范围: [0, 2*PI]
[0086] 这个函数代表了挤出腔内面积变化速度与角度 alfa的对应关系, 也就是流体的 流速与 alfa的函数关系。
[0087] 使用四个同样的装置, 每个装置的初始角度分别为: 0, PI/2, PI, 3pi/2
[0088] 也就是流体的流速与 alfa的函数分别为:
[0089] Sd = F'(alfa) ;
[0090] Sdl = F'(alfa+pi/2) ;
[0091] Sd2 = F'(alfa+pi) ;
[0092] Sd3 = F'(alfa+3*pi/2);
[0093] 则四个的合成速度为:
[0094] Final—Sum = F, (alfa) + F, (alfa+pi/2)+ F, (alfa+pi) + F, (alfa+3*pi/2);
[0095] 以圆半径参数, 进过计算, 此吋 SUM = 2*rA2 - 2*RA2
[0096] 当大小圆半径确定的吋候, SUM为一常量, 故挤出的浆料在任意吋刻为恒定值
[0097] 公式的详细计算过程推导如下:
[0098] beta=asin((R-r)/r *sin(alfa) );
[0099] s=(pi*R*R-pi*r*r)-(alfa/(2*pi)*pi*R*R-(alfa+beta)/(2*pi)*pi*r*r-0.5*(R-r)*r*sin(al fa+beta) );
[0100] sd = rA2*((cos(alfa)*(R - r))/(2*r*(l - (sin(alfa)A2*(R - Γ)λ2)/Γλ2)λ(1/2)) + 1/2) - RA2/2 + r*cos(alfa + asin((sin(alfa)*(R - r))/r))*((cos(alfa)*(R - r))/(r*(l - (sin(alfa)A2*(R - Γ)λ2)/Γλ2)λ(1/2)) + l)*(R/2 - r/2);
[0101] sdl= rA2*((cos(pi/2 + alfa)*(R - r))/(2*r*(- (sin(pi/2 + alfa)A2*(R - r)A2)/rA2 +
1)Λ(1/2)) + 1/2) - RA2/2 + r*cos(pi/2 + alfa + asin((sin(pi/2 + alfa)*(R - r))/r))*(R/2 - r/2)*((cos(pi/2 + alfa)*(R - r))/(r*(- (sin(pi/2 + alfa)A2*(R - r)A2)/rA2 + 1)Λ(1/2)) + 1);
[0102] sd2= r*cos(asin((sin(alfa)*(R - r))/r) - alfa)*((cos(alfa)*(R - r))/(r*(l -
(sin(alfa)A2*(R - Γ)λ2)/Γλ2)λ(1/2)) - l)*(R/2 - r/2) - RA2/2 - rA2*((cos(alfa)*(R - r))/(2*r*(l - (sin(alfa)A2*(R - Γ)λ2)/Γλ2)λ(1/2)) - 1/2)
[0103] sd3=rA2*((cos((3*pi)/2 + alfa)*(R - r))/(2*r*(- (sin((3*pi)/2 + alfa)A2*(R - r)A2)/rA2 + 1)Λ(1/2)) + 1/2) - RA2/2 + r*cos((3*pi)/2 + alfa + asin((sin((3*pi)/2 + alfa)*(R - r))/r))*(R/2 - r/2)*((cos((3*pi)/2 + alfa)*(R - r))/(r*(- (sin((3*pi)/2 + alfa)A2*(R - r)A2)/rA2 + 1)Λ(1/2)) + 1);
[0104] sum—halfl = sd + sd2=-2*(R - r)*(R - R*cos(alfa)A2 + r*cos(alfa)A2)
[0105] sum_half2 = sdl + sd3=-2*(R - r)*(R + r*sin(alfa)A2 - R*sin(alfa)A2)
[0106] final—sum = sum—halfl + sum_half2= 2*rA2 - 2*RA2。
[0107] 以上应用了具体个例对本发明进行阐述, 只是用于帮助理解本发明, 并不用以 限制本发明。 对于本发明所属技术领域的技术人员, 依据本发明的思想, 还可 以做出若干简单推演、 变形或替换。
技术问题 问题的解决方案 发明的有益效果
Claims
[权利要求 1] 一种 3D打印机, 其包括至少两个喷头装置、 计量挤出装置、 挤压装 置和驱动装置, 所述挤压装置用于挤压所述喷头装置的幵闭, 所述驱 动装置用于驱动所述计量挤出装置给喷头装置送料, 其特征在于, 至 少两个所述喷头装置分别具有预设孔径的出料孔; 所述计量挤出装置 包括括轮轴、 机箱和隔离机构, 所述轮轴包括转轴和至少两个偏心轮 , 在所述转轴轴向上, 至少两个所述偏心轮等偏心距且均匀分布在所 述转轴上, 所述驱动装置的输出端与所述转轴连接, 所述驱动装置驱 动所述转轴旋转; 所述机箱设有若干个用于容置所述偏心轮的腔体; 所述机箱设有总进料口和总出料孔, 若干个所述腔体分别设有与所述 总进料口联通的分进料口和与所述总出料孔联通的分出料孔; 所述偏 心轮内切于所述腔体内, 所述偏心轮与腔体形成挤压腔; 所述隔离机 构包括隔板和伸缩件, 所述隔板通过所述伸缩件可移动地安装在所述 机箱的腔体内, 所述隔板设置在所述分进料口和分出料孔之间, 在所 述伸缩件的作用下, 所述隔板始终与所述偏心轮接触, 将所述分进料 口和分出料孔隔离。
[权利要求 2] 如权利要求 1所述的 3D打印机, 其特征在于, 所述轮轴包括四个偏心 轮, 四个所述偏心轮中任一个所述偏心轮中心点到所述转轴中轴线的 垂直线与其他三个所述偏心轮中心点到所述转轴中轴线的垂直线的夹 角分别为 90°、 180°和 270°。
[权利要求 3] 如权利要求 2所述的 3D打印机, 其特征在于, 所述机箱包括上盖和下 盖, 所述上盖和下盖固定在一起, 所述上盖和下盖围合成若干个用于 容置所述偏心轮的腔体, 所述上盖设有总进料口、 总出料孔、 分进料 口和分出料孔, 所述上盖在进料口和出料孔之间设有用于容置所述隔 离机构的凹槽, 所述隔板通过伸缩件固定在所述凹槽内, 在所述伸缩 件的挤压下, 所述隔板始终与所述偏心轮接触。
[权利要求 4] 如权利要求 3所述的 3D打印机, 其特征在于, 包括四个所述喷头装置
, 所述喷头装置包括:
支撑座, 其设有导料孔;
筒体, 其可移动地安装在所述支撑座上, 所述筒体侧面设有进料口, 所述进料口与所述导料孔联通;
喷嘴, 其可拆卸地安装在所述筒体上, 所述喷嘴端部设有出料孔; 以及阀针, 其容置于所述喷嘴与筒体围合成的腔体内, 所述阀针通过 固定件固定在所述支撑座上, 所述阀针与可移动的所述喷嘴形成节流 阀, 节流吋, 所述喷嘴移动至与所述阀针接触, 所述阀针端部封堵住 所述喷嘴的出料孔。
如权利要求 4所述的 3D打印机, 其特征在于, 所述喷头装置还包括密 封圈和盖板, 所述盖板设有凹槽, 所述密封圈套装在所述筒体与支撑 座的连接处, 所述盖板固定在所述支撑座上, 并且将所述密封圈固定 在所述凹槽中。
如权利要求 5所述的 3D打印机, 其特征在于, 所述喷头装置还包括弹 簧和垫块, 所述筒体相对出料孔的另一端上设有凸台, 所述垫片固定 在所述支撑座上, 所述弹簧安装在所述凸台与垫块之间, 在无外力的 情况下, 所述弹簧驱动所述筒体与阀针接触, 使得所述一筒体的出料 孔被始终被所述阀针封堵住。
如权利要求 6所述的 3D打印机, 其特征在于, 所述垫块上设有用于安 装所述弹簧的环形凹槽。
如权利要求 7所述的 3D打印机, 其特征在于, 所述筒体上设有用于安 装所述阀针的避让口, 所述阀针一端通过所述固定件固定在所述支撑 座上。
如权利要求 8所述的 3D打印机, 其特征在于, 所述固定件包括安装块 和螺钉, 所述安装块通过螺钉固定在所述支撑座上, 所述阀针通过螺 钉穿过所述筒体的避让口固定在所述安装块上。
如权利要求 1至 9任一项所述的 3D打印机, 其特征在于, 还包括机架 , 所述喷头装置、 计量挤出装置、 挤压装置和驱动装置分别安装在所 述机架上。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2015/099820 WO2017113165A1 (zh) | 2015-12-30 | 2015-12-30 | 一种 3d 打印机 |
CN201611119802.XA CN106827528A (zh) | 2015-12-30 | 2016-12-08 | 一种3d打印机 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2015/099820 WO2017113165A1 (zh) | 2015-12-30 | 2015-12-30 | 一种 3d 打印机 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017113165A1 true WO2017113165A1 (zh) | 2017-07-06 |
Family
ID=59140174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/099820 WO2017113165A1 (zh) | 2015-12-30 | 2015-12-30 | 一种 3d 打印机 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106827528A (zh) |
WO (1) | WO2017113165A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11668314B2 (en) | 2020-11-10 | 2023-06-06 | Greenheck Fan Corporation | Efficient fan assembly |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107570663B (zh) * | 2017-09-15 | 2019-04-30 | 杭州喜马拉雅信息科技有限公司 | 一种双喷头异孔径喷嘴的砂型打印方法 |
CN111907059B (zh) * | 2019-05-08 | 2022-05-31 | 高雄科技大学 | 积层成形系统 |
CN115288445B (zh) * | 2022-07-08 | 2024-02-02 | 山东理工大学 | 一种具有可变弧度的建筑3d打印喷头装置及方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101815607A (zh) * | 2007-09-04 | 2010-08-25 | 阿斯卡姆私人基金会 | 选择性沉积熔态塑性材料的设备及装置和通过选择性沉积的制造方法 |
CN201685457U (zh) * | 2010-06-02 | 2010-12-29 | 研能科技股份有限公司 | 立体成型机构 |
WO2012171647A1 (de) * | 2011-06-16 | 2012-12-20 | Arburg Gmbh + Co. Kg | Vorrichtung zur herstellung eines dreidimensionalen gegenstandes |
US20140120197A1 (en) * | 2010-09-22 | 2014-05-01 | Stratasys, Inc. | Liquefier assembly for use in extrusion-based additive manufacturing systems |
DE202014103023U1 (de) * | 2014-07-02 | 2014-08-08 | Michael Schillinger | Extruderanordnung für einen 3D-Drucker |
DE102013207523A1 (de) * | 2013-04-25 | 2014-10-30 | Robert Bosch Gmbh | Vorrichtung und Verfahren zur Herstellung dreidimensionaler Objekte |
CN204172351U (zh) * | 2014-08-27 | 2015-02-25 | 三亚思海创新机电工程设计有限公司 | 3d打印机用打印头 |
-
2015
- 2015-12-30 WO PCT/CN2015/099820 patent/WO2017113165A1/zh active Application Filing
-
2016
- 2016-12-08 CN CN201611119802.XA patent/CN106827528A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101815607A (zh) * | 2007-09-04 | 2010-08-25 | 阿斯卡姆私人基金会 | 选择性沉积熔态塑性材料的设备及装置和通过选择性沉积的制造方法 |
CN201685457U (zh) * | 2010-06-02 | 2010-12-29 | 研能科技股份有限公司 | 立体成型机构 |
US20140120197A1 (en) * | 2010-09-22 | 2014-05-01 | Stratasys, Inc. | Liquefier assembly for use in extrusion-based additive manufacturing systems |
WO2012171647A1 (de) * | 2011-06-16 | 2012-12-20 | Arburg Gmbh + Co. Kg | Vorrichtung zur herstellung eines dreidimensionalen gegenstandes |
DE102013207523A1 (de) * | 2013-04-25 | 2014-10-30 | Robert Bosch Gmbh | Vorrichtung und Verfahren zur Herstellung dreidimensionaler Objekte |
DE202014103023U1 (de) * | 2014-07-02 | 2014-08-08 | Michael Schillinger | Extruderanordnung für einen 3D-Drucker |
CN204172351U (zh) * | 2014-08-27 | 2015-02-25 | 三亚思海创新机电工程设计有限公司 | 3d打印机用打印头 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11668314B2 (en) | 2020-11-10 | 2023-06-06 | Greenheck Fan Corporation | Efficient fan assembly |
US11971047B2 (en) | 2020-11-10 | 2024-04-30 | Greenheck Fan Corporation | Efficient fan assembly |
Also Published As
Publication number | Publication date |
---|---|
CN106827528A (zh) | 2017-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017113165A1 (zh) | 一种 3d 打印机 | |
JP6092424B2 (ja) | 動作材料のためのスイッチ | |
US2400485A (en) | Two-gear metering pump | |
WO2017113172A1 (zh) | 一种 3d 打印机的喷头装置 | |
KR930000735B1 (ko) | 급변화 다이 조립체 | |
US5723157A (en) | Extrusion head for producing hose- or pipe-shaped preforms from extrudable plastics | |
US20230330929A1 (en) | Method and apparatus for the additive manufacture of a product | |
WO2020133871A1 (zh) | 巧克力3d打印挤料装置 | |
CN110920065A (zh) | 一种快速成形大型制品的喷头可换式3d打印机头 | |
CN205498067U (zh) | 一种3d打印机 | |
CN110114201B (zh) | 包括改进的挤出头的挤出设备 | |
JP2013107370A (ja) | ゴム部材の製造装置及びゴム部材の製造方法 | |
CN110087854B (zh) | 包括改进的挤出头的挤出设备 | |
JP2019155764A (ja) | 押出成形物の切断装置 | |
CN112917900B (zh) | 一种空压式熔融沉积型3d打印喷头 | |
KR20220014478A (ko) | 3d 프린터용 원료 압출 장치 | |
US3413684A (en) | Extrusion machine with variable discharge | |
CN108748992B (zh) | 一种基于3d打印机喷头的驱动系统 | |
CN207842006U (zh) | 一种板材挤塑机的挤出头 | |
CN111376407A (zh) | 一种送料混合装置 | |
JP2009202357A (ja) | ゴム押出装置及びゴム押出方法 | |
WO2017113169A1 (zh) | 一种 3d 打印机的计量挤出装置 | |
CN112672871A (zh) | 用于弹性体配混物的共挤出设备,以及用于制造成型元件条带的方法 | |
KR20190126788A (ko) | 반응 성형기를 위한 노즐 유닛 및 플라스틱 부품을 제조하기 위한 방법 | |
CN104473767B (zh) | 一种制丸机出条装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15911794 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS TO RULE 112(1) EPC |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15911794 Country of ref document: EP Kind code of ref document: A1 |