WO2017113113A1 - 终端设备、网络设备、数据传输方法和无线通信系统 - Google Patents

终端设备、网络设备、数据传输方法和无线通信系统 Download PDF

Info

Publication number
WO2017113113A1
WO2017113113A1 PCT/CN2015/099529 CN2015099529W WO2017113113A1 WO 2017113113 A1 WO2017113113 A1 WO 2017113113A1 CN 2015099529 W CN2015099529 W CN 2015099529W WO 2017113113 A1 WO2017113113 A1 WO 2017113113A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
network device
network
channel information
downlink channel
Prior art date
Application number
PCT/CN2015/099529
Other languages
English (en)
French (fr)
Inventor
张鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15911744.9A priority Critical patent/EP3389327B1/en
Priority to PCT/CN2015/099529 priority patent/WO2017113113A1/zh
Priority to JP2018534113A priority patent/JP6639680B2/ja
Priority to CN201580084329.3A priority patent/CN108353409B/zh
Publication of WO2017113113A1 publication Critical patent/WO2017113113A1/zh
Priority to US16/021,825 priority patent/US20180310287A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control

Definitions

  • the present application relates to the field of wireless communications technologies, and in particular, to a terminal device, a network device, a data transmission method, and a wireless communication system.
  • multi-antenna technology can be adopted, and the spatial domain is expanded by increasing the system capacity by using multiple antennas at the transmitting end and the receiving end simultaneously.
  • Single User-Multiple Input Multiple Output is one of the multi-antenna technologies.
  • multiple data streams are pre-processed by the base station, and multiple antennas of the base station transmit using the same time-frequency resources.
  • the signal sent by the base station is received by multiple antennas on a user equipment (User Equipment, UE).
  • the pre-processing of the base station uses the downlink channel information of the downlink channel between the transmitting antenna of the base station and the receiving antenna of the UE, so that the multi-channel data streams received by the UE have less interference and can be correctly received by the UE.
  • MU-MIMO Multi User-Multiple Input Multiple Output
  • multiple data streams are transmitted to at least 2 UEs (UE1 and UE2).
  • multiple data streams are pre-processed by the base station, and multiple antennas of the base station are transmitted using the same time-frequency resource.
  • the antenna of each UE receives the data stream sent to itself.
  • the pre-processing of the base station uses the downlink channel information between the transmitting antenna of the base station and the receiving antenna of each UE, so that there is less interference between the data streams received by different UEs, and each UE can correctly receive and send it to itself.
  • the data stream uses the downlink channel information between the transmitting antenna of the base station and the receiving antenna of each UE, so that there is less interference between the data streams received by different UEs, and each UE can correctly receive and send it to itself.
  • the base station can simultaneously send multiple data streams to multiple UEs, while SU-MIMO can only send multiple data streams to a single UE, and MU-MIMO usually has a ratio of SU-MIMO. More superior downlink throughput performance.
  • the MU-MIMO may be degraded to SU-MIMO, and the base station cannot use the MU-MIMO technology to deliver the data stream, or even if the MU-MIMO technology can be used. Data flow, but the overall throughput performance of the communication system is not high.
  • a terminal device, a network device, and a data transmission method are provided to implement the MU-MIMO technology to send multiple data streams to a terminal device, thereby improving the throughput of the entire communication system.
  • the application provides a first terminal device, including:
  • a transceiver module configured to receive, by the second terminal device, a data stream of the first terminal device
  • a processing module configured to process a data stream received by the receiving module
  • the second terminal device is configured to receive, by the network device that serves the first terminal device, a data flow of the first terminal device that is sent by the network device by using a multi-user-multiple-input multiple-output MU-MIMO technology. .
  • the second terminal device when the network device sends the data flow of the first terminal device to the first terminal device, the second terminal device also participates in the downlink data transmission of the first terminal device of the MU-MIMO, even if only the first
  • the channel between the second terminal device and the network device is not wasted but is used to assist in transmitting the data stream of the first terminal device.
  • the network device can be prevented from using the MU-MIMO technology to send data streams to multiple terminal devices, which causes the MU-MIMO degradation to occur in the SU-MIMO problem, thereby improving the throughput of the communication system.
  • the processing module is further configured to determine the second terminal device before the transceiver module receives the data stream of the first terminal device.
  • the first terminal device Determining, by the first terminal device, the second terminal device, where the first terminal device can learn Which terminal device assists in forwarding the data stream of the first terminal device, so that the data stream of the first terminal device is received from the terminal device in a targeted manner.
  • the transceiver module is further configured to:
  • the processing module determines the second terminal device, before processing the data stream received by the transceiver module, sending a first auxiliary notification message to the network device;
  • the first auxiliary notification message is used to notify the network device that the second terminal device receives data of the first terminal device from the network device.
  • the second terminal device notifies the network device that the data stream of the first terminal device can be received by the network device, so that the network device can learn the terminal device that can send the data stream to the first terminal device.
  • the transceiver module is further configured to: before the processing module determines the second terminal device, send an auxiliary request message to the at least one terminal device, where the auxiliary request message is used to query whether the at least one terminal device can receive the a data stream of the terminal device, and transmitting the received data stream of the first terminal device to the first terminal device;
  • the processing module is specifically configured to: determine, by the terminal device that sends the auxiliary response message in the at least one terminal device, the second terminal device, where the auxiliary response message is used to notify the first terminal device to issue the auxiliary
  • the terminal device responding to the message can receive the data stream of the first terminal device and send the received data stream of the first terminal device to the first terminal device.
  • the other terminal device is inquired by the first terminal device, so that the first terminal device determines the second terminal device that can receive the data stream for itself.
  • the transceiver module is further configured to: before the processing module determines the second terminal device, receive the And a first control message sent by the network device, where the first control message instructs the first terminal device to determine the second terminal device.
  • the first terminal device is triggered by the network device by sending an indication of the first control message to determine a second terminal device that assists in forwarding the data flow of the first terminal device.
  • the transceiver module is further configured to:
  • the network device Before receiving the data flow of the first terminal device from the second terminal device, transmitting downlink channel information of the second terminal device to the network device, where downlink channel information of the second terminal device is used for The network device sends the data stream of the first terminal device to the second terminal device by using the MU-MIMO technology.
  • the first terminal device sends the downlink channel information of the second terminal device, and the network device can still obtain the second terminal device if the second terminal device cannot send the downlink channel information to the network device.
  • the downlink channel information is used to send the data stream of the first terminal device to the second terminal device by using the MU-MIMO technology according to the obtained downlink channel information of the second terminal device.
  • the transceiver module is further configured to:
  • the first terminal device is triggered to acquire downlink channel information of the second terminal device by receiving a control message of the network device.
  • the transceiver module is further configured to:
  • the second terminal device After the processing module determines the second terminal device, the second terminal device is notified to send the downlink channel information of the second terminal device to the network device.
  • the transceiver module is further configured to:
  • the downlink channel information of the device is used by the network device to send the data flow of the first terminal device to the second terminal device by using a MU-MIMO technology.
  • the network device may obtain the first according to the obtained The downlink channel information of the terminal device is used to reduce interference caused by the downlink channel of the first terminal device when the network device sends the data flow of the first terminal device to the second terminal device by using the MU-MIMO technology.
  • the second terminal device has a data transmission requirement, or the second terminal device has no data transmission demand.
  • the second terminal device may receive the downlink data stream of the first terminal device in addition to receiving the downlink data stream of the second terminal device, and may fully utilize the data of the second terminal device. Transmission capacity to increase the overall throughput of the communication system;
  • the MU-MIMO is actually not implemented. If the second terminal device does not have a data transmission requirement, the second terminal device can transmit the downlink data stream of the first terminal device, so that there are at least two terminals.
  • the device implements MU-MIMO, utilizes the data transmission capability of the second terminal device, and improves the overall throughput of the communication system.
  • the application provides a second terminal device, including:
  • a processing module configured to determine, by the second terminal device, a data stream of the first terminal device that is sent by the network device by using a MU-MIMO technology, from a network device that serves the first terminal device;
  • a receiving module configured to receive a data flow of the first terminal device that is sent by the network device by using a MU-MIMO technology
  • a sending module configured to send, by the receiving module, the data stream of the first terminal device to the first terminal device.
  • the second terminal device participates in the downlink data transmission of the first terminal device of the MU-MIMO, even if only the data flow of the first terminal device or the data transmission amount of the second terminal device is small,
  • the channel between the two terminal devices and the network device is not wasted but is used to assist the transmission of the data stream of the first terminal device, so that the network device cannot use the MU-MIMO technology to send data streams to multiple UEs, thereby causing the MU.
  • - MIMO degradation is the emergence of the SU-MIMO problem, thereby increasing the throughput of the communication system.
  • the data transmission requirements of multiple UEs are avoided at the same time, but some UEs have small data transmission requirements, and do not fully utilize the transmission capability of the UE itself with less data transmission requirements, thereby improving the throughput of the communication system.
  • the sending module is further configured to: send the second to the network device before the receiving module receives the data flow of the first terminal device
  • the downlink channel information of the terminal device, the downlink channel information of the second terminal device is used by the network device to send the data flow of the first terminal device to the second terminal device by using a MU-MIMO technology.
  • the second terminal device sends its own downlink channel information to the network device, regardless of whether the second terminal device has a data transmission requirement, so that the network device can determine whether it can be determined according to the downlink channel information of the second terminal device.
  • the MU-MIMO technology is used to deliver data streams to the first terminal device and the second terminal device in parallel.
  • the receiving module is further configured to: send, by the sending module, the downlink of the second terminal device to the network device Before receiving the channel information, receiving the notification sent by the first terminal device or the network device, where the notification is used to instruct the second terminal device to send downlink channel information of the second terminal device to the network device.
  • the sending module is specifically configured to:
  • the processing module Confirming, by the processing module, that the first terminal device sends the first terminal to the network device After the downlink channel information of the terminal device, the downlink channel information of the second terminal device is sent to the network device, where the downlink channel information of the second terminal device is used by the network device to pass the MU-MIMO technology The second terminal device sends the data stream of the first terminal device.
  • the second terminal device after the second terminal device learns that the first terminal device sends the downlink channel information of the first terminal device to the network device, the second terminal device sends its own downlink channel information to the network device, so as to prevent the second terminal device from sending useless downlink.
  • the channel information wastes the processing capability of the second terminal device and occupies the uplink resource between the second terminal device and the network device.
  • the sending module is further configured to: before the sending module sends the data stream of the first terminal device received by the receiving module to the first terminal device, send a second auxiliary notification message to the network device ;
  • the second auxiliary notification message is configured to notify the network device to receive the data flow of the first terminal device that is sent by the network device by using the MU-MIMO technology, and send the data flow of the first terminal device to the The first terminal device is described.
  • the second terminal device has a data transmission requirement or no data transmission requirement.
  • the second terminal device may receive the downlink data stream of the first terminal device in addition to receiving the downlink data stream of the second terminal device, and may fully utilize the data of the second terminal device. Transmission capacity to increase the overall throughput of the communication system;
  • the second terminal device does not have a data transmission requirement, according to the current LTE system processing mode, when only the first terminal device has a data transmission requirement, the MU-MIMO is actually not implemented. It is possible to fall back to SU-MIMO, and in this possible implementation, even if the second terminal device does not have a data transmission requirement, the second terminal device can be used to transmit the downlink data stream of the first terminal device, so that there are multiple terminal devices. With data transmission requirements, MU-MIMO can be realized, and the data transmission capability of the second terminal device is utilized, and the overall swallowing of the communication system is improved. The amount of spit.
  • the application provides a network device, including:
  • a processing module configured to determine a second terminal device, where the second terminal device is configured to receive, by the network device, a data stream of the first terminal device that is sent by the network device by using a MU-MIMO technology;
  • the transceiver module is configured to send the data stream of the first terminal device to the second terminal device by using a MU-MIMO technology.
  • the second terminal device participates in the downlink data transmission of the first terminal device of the MU-MIMO, even if only the data flow of the first terminal device or the data transmission amount of the second terminal device is small,
  • the channel between the two terminal devices and the network device is not wasted but is used to assist the transmission of the data stream of the first terminal device, so that the network device cannot use the MU-MIMO technology to send data streams to multiple UEs, thereby causing the MU.
  • - MIMO degradation is the emergence of the SU-MIMO problem, thereby increasing the throughput of the communication system.
  • the data transmission requirements of multiple UEs are avoided at the same time, but some UEs have small data transmission requirements, and do not fully utilize the transmission capability of the UE itself with less data transmission requirements, thereby improving the throughput of the communication system.
  • the transceiver module is further configured to: before the processing module determines the second terminal device, send a first control message to the first terminal device, where the first control message instructs the first terminal device to determine the Receiving, by the first terminal device, a first auxiliary notification message sent by the first terminal device in response to the first control message, where the first auxiliary notification message is used to notify the network device Receiving, by the second terminal device, data of the first terminal device from the network device;
  • the processing module is specifically configured to: determine the second terminal device according to the notification message received by the transceiver module.
  • the transceiver module is further configured to: before the determining, by the processing module, the second terminal device, receive a second auxiliary notification message sent by the second terminal device, where the second auxiliary notification message is used to notify the network device
  • the second terminal device is configured to receive the data flow of the first terminal device that is sent by the network device by using the MU-MIMO technology, and send the data flow of the first terminal device to the first terminal device;
  • the processing module is specifically configured to: determine the second terminal device according to the second auxiliary notification message.
  • the transceiver module is further configured to: pass the data flow of the first terminal device to the MU Before the MIMO technology is sent to the second terminal device,
  • the second terminal device receives downlink channel information of the second terminal device that is sent by the first terminal device in response to the second control message, where downlink channel information of the second terminal device is used by the network device to use MU-MIMO technology
  • the second terminal device sends a data stream of the first terminal device.
  • the first terminal device sends the downlink channel information of the second terminal device, and the network device can still obtain the second terminal device if the second terminal device cannot send the downlink channel information to the network device.
  • the downlink channel information is used to send the data stream of the first terminal device to the second terminal device by using the MU-MIMO technology according to the obtained downlink channel information of the second terminal device.
  • the transceiver module is further configured to:
  • the downlink channel information of the second terminal device is used by the network device to send the data flow of the first terminal device to the second terminal device by using a MU-MIMO technology.
  • the transceiver module is further configured to:
  • the downlink channel information of the first terminal device is used by the network device to send the data flow of the first terminal device to the second terminal device by using a MU-MIMO technology.
  • the possible implementation manner is that the network device sends the data flow of the first terminal device to the second terminal device by using the MU-MIMO technology according to the obtained downlink channel information of the first terminal device.
  • the second terminal device has a data transmission requirement, or the second terminal device has no data transmission. demand.
  • the second terminal device may receive the downlink data stream of the first terminal device in addition to receiving the downlink data stream of the second terminal device, and may fully utilize the data of the second terminal device. Transmission capacity to increase the overall throughput of the communication system;
  • the MU-MIMO is actually not implemented. It is possible to fall back to SU-MIMO, and in this possible implementation, even if the second terminal device does not have a data transmission requirement, the second terminal device can be used to transmit the downlink data stream of the first terminal device, so that there are multiple terminal devices. With data transmission requirements, MU-MIMO can be realized, and the data transmission capability of the second terminal device is utilized, thereby improving the overall throughput of the communication system.
  • the first terminal to the third aspect and their respective possible implementations respectively provide a first terminal device, a second terminal device, and a network device.
  • the functions of the respective functional modules can be used as the steps of the data transmission method respectively performed by the first terminal device, the second terminal device, and the network device, and are not described herein again.
  • FIG. 1 is a schematic diagram of a base station adopting SU-MIMO technology for downlink data transmission
  • FIG. 2 is a schematic diagram of a base station adopting MU-MIMO technology for downlink data transmission
  • FIG. 3 is a network architecture diagram of a wireless network provided by the present application.
  • 4A to 4D are schematic diagrams of a terminal device group in the present application.
  • FIG. 5 is a flowchart of a data flow sent by a network device in the present application, and a data flow forwarded by the terminal device;
  • FIG. 6 is a schematic diagram of a simplified scenario to which the present application is applicable.
  • FIG. 7 is a schematic structural diagram of a first terminal device provided by the present application.
  • FIG. 8 is a schematic structural diagram of a first terminal device provided by the present application when a specific implementation manner is adopted;
  • FIG. 9 is a schematic structural diagram of a second terminal device provided by the present application.
  • FIG. 10 is a schematic structural diagram of a second terminal device provided by the present application when a specific implementation manner is adopted;
  • FIG. 11 is a schematic structural diagram of a network device provided by the present application.
  • FIG. 12 is a schematic structural diagram of a network device provided by the present application when a specific implementation manner is adopted.
  • FIG. 3 is a schematic diagram showing the network architecture of a wireless network system to which the present application is applied.
  • the wireless network system 330 comprises: a network device 303, the first terminal device 301 (FIG identified as T), and N second terminal device 302 (FIG identified as A 1, ... A i , ...A N ), N is a positive integer.
  • variable i is used instead of any one of 1 to N, and thus the following statement applies to the case where the variable i is applied to any one of 1 to N for each case of the variable i.
  • FIG. 3 For simplicity of illustration, only one network device 303 is shown in FIG. 3, but in practice, in the wireless network system 30, there may be one or more network devices 303; and only one first terminal device is shown in FIG. 301, but in practice, in the wireless network system 30, there may be one or more first terminal devices 301.
  • the second terminal device 302 can directly communicate with the first terminal device 301 without forwarding through the network device 303.
  • the second terminal device 302 may be based on a Device to Device (D2D) protocol communication of the 3rd Group Partner Project (3GPP), or may be based on the Institute of Electrical and Electronics Engineers (Institute of Electrical and Electronics Engineers (IEEE) Wireless Fidelity (WiFi) protocol communication.
  • D2D Device to Device
  • 3GPP 3rd Group Partner Project
  • IEEE Institute of Electrical and Electronics Engineers
  • WiFi Wireless Fidelity
  • the communication quality may be better than the long-distance communication between the network device 303 and the second terminal device 302, specifically, The data transmission between the second terminal device 302 and the first terminal device 301 may have a higher data transmission rate and/or between the network device and the second terminal device 302 than between the network device and the first terminal device 301. Lower transmit power.
  • the communication system of the wireless communication between the first terminal device 301 and the network device 303, and between the second terminal device 302 and the network device 303 includes but is not limited to:
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • FDD LTE Frequency Division Duplexing-Long Term Evolution
  • LTE-advanced Long Term Evolution-Advanced
  • PHS Personal Handy-phone System
  • WiFi Wireless Fidelity
  • WiMAX Worldwide Interoperability for Microwave Access
  • the first terminal device 301 and the second terminal device 302 may be a wireless terminal, a wireless local area network access point or a relay node.
  • the wireless terminal can be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or other processing device that is connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • it may be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with a wireless access network.
  • the wireless terminal may also be referred to as a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile, a Remote Station, a Remote Terminal, and an Access Terminal.
  • Access Terminal User Terminal
  • User Agent User Device
  • User Equipment User Equipment
  • the network device 303 may include a base station, or a radio resource management device for controlling the base station, or a packet
  • the base station and the radio resource management device for controlling the base station can be a macro station; the base station can also be a small station, such as a small cell access point, a pico cell access point, and the like.
  • the base station may also be a home base station, such as a Home NodeB (HNB), a Home eNodeB (HeNB), or the like.
  • Network device 303 can also be a relay node.
  • the network device 303 in the wireless network system 30 provided by the embodiment of the present invention may be an evolved Node B (eNodeB), a first terminal device 301, and a
  • the second terminal device 302 may be a UE;
  • the network device 303 in the wireless network system 30 provided by the embodiment of the present invention may include: a Node B (NodeB) and/or a radio network controller (Radio Network)
  • the first terminal device 301 and the second terminal device 302 may be UEs.
  • the network device 303 may include a Base Transceiver Station (BTS) and/or The base station controller (BSC); the first terminal device 301 and the second terminal device 302 may be a mobile station (MS); for the WiFi system, the network device 303 may include: an access point (Access Point, The AP) and/or the Access Controller (AC), the first terminal device 301 and the second terminal device 302 may be stations (STAs).
  • BTS Base Transceiver Station
  • BSC Base Transceiver Station Controller
  • MS mobile station
  • the network device 303 may include: an access point (Access Point, The AP) and/or the Access Controller (AC), the first terminal device 301 and the second terminal device 302 may be stations (STAs).
  • the first terminal device 301 receives the first group data stream D 1 and the N second group data streams D 21 , D transmitted by the N second terminal devices 302. 2i , ... D 2N , the N second sets of data streams are N-series data streams D 31 , ... D 3i transmitted by the N second terminal devices in parallel according to the network device 303 by using the MU-MIMO technology, ...D 3N is generated after processing.
  • the N third set of data streams D 31 , ... D 3i , ... D 3N and the N second set of data streams D 21 , ... D 2i , ... D 2N may be the same or different.
  • the second terminal device A i receives the third group of data streams D 3i from the network device 303, and generates D 2i from D 3i and transmits D 2i to the first terminal device T.
  • the N second group data streams D 21 , ... D 2i , ... D 2N and N third sets of data streams D 31 , ... D 3i , ... D 3N may behave as different data streams, but contain information transmitted to the first terminal device 301 regardless of the manifestation. Both are data streams that are sent to the first terminal device 301.
  • the terminal device may be managed by a group.
  • the first terminal device 301 and the second terminal device 302 may be managed according to the D2D protocol specification specified by the 3GPP.
  • the D2D protocol specification refer to the D2D protocol specification.
  • the first terminal device 301 (T) and the N second terminal devices 302 (A 1 , . . . A i , . . . , A N ) belong to the first terminal device group Group 1 as shown in FIG. 4A . All terminal devices in Group1 except the first terminal device 301 satisfy the auxiliary condition. Thus, the N second terminal devices 302 are satisfied with the auxiliary conditions.
  • the N second terminal devices 302 (A 1 , . . . A i , . . . , A N ) belong to the second terminal device group Group 2 , and the first terminal device 301 ( T ) does not belong to the group 2 , as shown in FIG. 4B . All terminal devices in Group2 satisfy the auxiliary conditions.
  • the first terminal device 301 belongs to the N different third terminal device groups (TG 1 , . . . , TG i , . . . TG N ), wherein the third terminal device group TG i corresponds to the second terminal device 302A i , such as Figure 4C shows.
  • the terminal device in the third terminal device group TG i satisfies the target condition.
  • the first terminal device 301 belongs to the N fourth terminal device groups (TAG 1 , . . . , TAG i , . . . , TAG N ), wherein the fourth terminal device group TAG i includes the second terminal device 302A i , as shown in FIG. 4D . Shown.
  • the other terminal devices other than the second terminal device 302A i of the fourth terminal device group TAG i satisfy the target condition, and thus, the first terminal device 301 satisfies the target condition.
  • auxiliary conditions may include one or more of the following conditions:
  • the data transmission rate with the first terminal device 301 is greater than the first data transmission rate threshold
  • the distance from the first terminal device 301 is less than the first distance threshold
  • the remaining charge is greater than the charge threshold.
  • the above target conditions may include one or more of the following conditions:
  • the data transmission rate with the second terminal device 302A i is greater than the second data transmission rate threshold
  • the distance from the second terminal device 302A i is less than the second distance threshold.
  • the foregoing auxiliary conditions and target conditions can ensure that the second terminal device 302 is the first terminal device 301. Forward data streams reliably and efficiently.
  • N second terminal devices A 1 , ... A i , ... A N have data transmission requirements; N second terminal devices A 1 , ... A i , ... A N partial data transmission requirements; or N second Terminal devices A 1 , ... A i , ... A N have no data transmission requirements.
  • FIG. 5 is a schematic flowchart of the network device 303 in the present application transmitting a data stream to the N second terminal devices 302 by using the MU-MIMO technology, and forwarding the data stream by the N second terminal devices 302 to the first terminal device 301.
  • the flow may include the following steps.
  • the network device 303 determines that the M second terminal devices 302 can forward the data stream for the first terminal device 301.
  • the M second terminal devices 302 include the above-mentioned N second terminal devices 302 (A 1 , ... A i , ... A N ). It should be noted that the M second terminal devices 302 are the first terminal devices 301.
  • the first terminal device 301 can forward data streams from the network device 303, and the N second terminal devices 302 of the M second terminal devices are The first terminal device 301 forwards the data stream from the network device 303 while performing downlink data transmission.
  • the network device 303 can determine, by using various optional implementation manners, that the M second terminal devices 302 can send the data flow of the first terminal device 301 to the first terminal device 301, where the following optional implementation manners and optional implementation manners are used.
  • the second is an example.
  • the first terminal device 301 notifies the network device 303 that the M second terminal devices 302 can forward the data stream to the first terminal device 301.
  • the network device 303 can send a first control message to the first terminal device 301, the message indicating that the first terminal device 301 determines the second terminal device 302 that forwards the data stream, and the network device 303 can carry the first terminal device 301 in the first control message.
  • the first terminal device 301 After the first control device receives the first control message, the first terminal device 301 triggers the second terminal device 302 that can forward the data stream for itself according to the identity information carried in the message; the first terminal device 301 responds to First control message
  • the network device 303 sends a first auxiliary notification message, which is used to indicate that the M second terminal devices 302 determined by the first terminal device can forward the data flow of the first terminal device to the first terminal device 301, and the network device After receiving the first auxiliary notification message, the 303 determines that the M second terminal devices 302 can forward the data stream to the first terminal device 301.
  • the first terminal device 301 may also send a first auxiliary notification message to the network device 303 (for example, periodically sending the first auxiliary notification message) to indicate the M second terminal devices determined by the first terminal device.
  • 302 may forward the data stream to the first terminal device 301, and the first auxiliary notification message is not sent after receiving the first control message sent by the network device 303.
  • the first terminal device 301 can determine, by using the following multiple schemes, that the M second terminal devices 302 forward the data stream of the first terminal device to the first terminal device 301. Before the first terminal device 301 determines that it forwards the data stream of the first terminal device from the network device 303, the network device 303 may send a first control message to the first terminal device, where the first control message indicates The first terminal device determines the M second terminal devices 302. If the first terminal device does not receive the first control message, the first terminal device may not be sure of the M second terminal devices 302.
  • the first terminal device 301 broadcasts an auxiliary request message to the at least one peripheral device, and the auxiliary request message is used to query the at least one terminal device who can receive the first terminal device from the network device 303 for the first terminal device 301. Data stream, and forwarded to the first terminal device;
  • the first terminal device 301 receives, from the at least one terminal device, a secondary response message sent by the M second terminal devices 302 in response to the auxiliary request message, where the auxiliary response message is used to notify the first terminal device 301 to issue the
  • the terminal device supporting the response message can forward the data stream to the first terminal device 301; then the first terminal device 301 determines that the M second terminal devices 302 can forward the data stream for the first terminal device.
  • the first terminal device 301 receives the first auxiliary indication message sent by the M second terminal devices 302, where the first auxiliary indication message is used to indicate that the terminal device that sends the first auxiliary indication message can forward the data stream to the first terminal device 301.
  • the first terminal device 301 is based on the received M second terminals.
  • the first auxiliary indication message sent by the device 302 determines that the M second terminal devices 302 can forward the data stream to the first terminal device 301.
  • the second terminal device 302 may determine that the data flow may be forwarded for the first terminal device 301 after receiving the auxiliary acknowledgement message sent by the first terminal device 301 in response to the first auxiliary indication message.
  • the first terminal device 301 receives a second auxiliary indication message sent by the plurality of second terminal devices 302 (the plurality of second terminal devices 302 includes M second terminal devices 302), and the second auxiliary indication message is used to indicate: sending The terminal device of the second auxiliary indication message is expected to forward the data stream for the first terminal device 301;
  • the first terminal device 301 receives the second auxiliary indication message respectively sent by the multiple second terminal devices 302, and determines that the second terminal device 302 can be the second when the second terminal device 302 satisfies the foregoing “auxiliary condition”.
  • a terminal device 301 forwards the data stream.
  • the second terminal device 302 determines that the data flow can be forwarded for the first terminal device 301.
  • the first auxiliary notification message includes at least one of the following information:
  • the network device 303 can determine, according to the information one, and the first terminal device 301 that sends the first auxiliary notification message, that the M second terminal devices 302 can forward the data stream for the first terminal device 301.
  • the network device 303 can know in advance that the first terminal device 301 and the M second terminal devices 302 belong to the first terminal device group Group1, and the network device 303 can determine other terminal devices in the group1 according to the identification information of the first terminal device 301, that is, The M second terminal devices 302 can forward the data stream to the first terminal device 301;
  • the network device 303 knows in advance the M third terminal device groups TG 1 , . . . , TG i , . . . , TG M to which the first terminal device 301 belongs, wherein the third terminal device group TG i corresponds to the second terminal device 302A i .
  • the network device 303 can determine the M third terminal device groups TG 1 , . . . , TG i , . . . TG M according to the identification information of the first terminal device 301, and determine the M third terminal device groups TG 1 , . . . TG i , .
  • the second terminal device 302 corresponding to the TG M respectively can forward the data stream for the first terminal device 301.
  • the network device 303 can know in advance that the first terminal device 301 and the M second terminal devices 302 are included in the Group 1.
  • the network device 303 can know in advance that the Group 2 includes M second terminal devices 302. According to the identification information of the Group 2, it is determined that the first terminal device 301 that sends the first auxiliary notification message can forward the data stream by the M second terminal devices 302 in the Group 2.
  • the M second terminal devices 302 respectively notify the network device 303 that the data flow can be forwarded for the first terminal device 301.
  • the network device 303 can send a second auxiliary information request message to the plurality of second terminal devices 302 (including the M second terminal devices 302), and the M second terminal devices 302 respond to the second auxiliary information request.
  • the message respectively sends a second auxiliary notification message, which is used to indicate that the data stream can be forwarded for the first terminal device 301.
  • the network device 303 determines that the M second terminal devices 302 can forward the data stream to the first terminal device 301.
  • the second terminal device 302 may indicate information of the terminal device that can be forwarded by the second terminal device 302, where the information includes the information of the first terminal device 301, and the network device 303
  • the received second auxiliary notification message includes the information of the first terminal device 301, determining that the second terminal device 302 can forward the data stream for the first terminal device 301; or
  • the M second terminal devices 302 may also send the second auxiliary notification message by themselves (for example, periodically sending the second auxiliary notification message), and do not need to send the second auxiliary after receiving the second auxiliary information request message sent by the network device 303. Notification message.
  • the second auxiliary notification message may include at least one of the following information:
  • the identification information of the second terminal device 302 that sends the second auxiliary notification message can determine, according to the identification information of the second terminal device 302, that the second terminal device 302 can forward the data stream for the first terminal device 301.
  • the identifier information of the first terminal device 301, the network device 303 can determine that the second terminal device 302 can be the first terminal device 301 according to the identifier information of the first terminal device 301 and the second terminal device 302 that sends the second auxiliary notification message. Forward the data stream.
  • the network device 303 knows in advance the correspondence between the third terminal device group and the second terminal device 302, and determines that the second terminal device 302 corresponding to the TG can forward the data stream for the first terminal device 301.
  • the network device 303 knows in advance the correspondence between the TAG and the second terminal device 302, and determines that the second terminal device 302 included in the TAG can forward the data stream to the first terminal device 301.
  • the network device 303 notifies the M second terminal devices 302 to report downlink channel information.
  • the network device 303 may send a channel information report request message to the M second terminal devices 302, requesting to report downlink channel information.
  • S502' the network device 303 notifies the first terminal device 301 to report downlink channel information
  • the network device 303 may send a channel information report request message to the first terminal device 301, requesting to report downlink channel information.
  • the M second terminal devices 302 respectively receive the notification of the network device 303 or the first terminal device 301, for example, after receiving the channel information report request message, reporting the M to the network device 303.
  • the channel information report request message may be used to request the second terminal device 302 or the first terminal device 301 to report downlink channel information between the second terminal device 302 and the network device 303, or between the first terminal device 301 and the network device 303.
  • Downstream channel information may be used to report downlink channel information between the second terminal device 302 and the network device 303, or between the first terminal device 301 and the network device 303.
  • the channel information report request message may also be used to request the terminal device in the first terminal device group Group1 to which the first terminal device 301 and the M second terminal devices 302 belong to report the downlink channel information, where the message may carry the identification information of the group1.
  • the second terminal device 302 After receiving the message, the second terminal device 302 reports the downlink channel information because it knows that it belongs to Group1 in advance; or
  • the channel information report request message may also be used to request the terminal device in the second terminal device group Group2 to which the M second terminal devices 302 belong to report the downlink channel information, where the message may carry the identification information of the group 2, and the second terminal device 302 receives After the message is received, the downlink channel information is reported because it belongs to Group2 in advance;
  • the network device 303 can also send M channel information report request messages, where the M messages respectively carry the identification information of the M fourth terminal device groups TAG 1 , . . . , TAG i , . . . , TAG M , and the second terminal device 302 receives the channel.
  • the information report request message if the message carries the identification information of the fourth terminal device group to which the message belongs, the downlink channel information is reported.
  • the second terminal device 302 can also report the downlink channel information (for example, periodically send the downlink channel information), and does not need to report the notification from the network device 303.
  • the second terminal device 302 reports the downlink channel information to the network device 303 when determining that it satisfies the foregoing “auxiliary condition”; or
  • the second terminal device 302 After receiving the notification of the first terminal device 301, for example, after receiving the channel information report request message sent by the first terminal device 301, the second terminal device 302 reports the downlink channel information to the network device 303; or
  • the second terminal device 302 When detecting that the first terminal device 301 reports the downlink channel information to the network device 303, the second terminal device 302 reports the downlink channel information to the network device 303.
  • the first terminal device 301 reports the downlink channel information of the downlink channel between the first terminal device 301 and the network device 303 to the network device 303;
  • the first terminal device 301 can also report the downlink channel information (for example, periodically send the downlink channel information), and does not need to report the notification from the network device 303.
  • the downlink channel information may be a pre-coding matrix indicator (PMI) and a channel quality indicator (CQI).
  • the first terminal device 301 or the second terminal device 302 can select the PMI and CQI with the highest data transmission rate to report to the network device.
  • the downlink channel information may also be information for the characteristics of the reactive channel transmission, such as a channel transmission matrix (also often referred to as a system function or system impulse response).
  • the precoding matrix is determined by processing the channel transmission matrix, such as matrix eigenvalues and eigenvectors of singular value decomposition (SVD).
  • SVD singular value decomposition
  • the network device 303 is a base station
  • the terminal device is a UE as an example
  • the processing of the precoding matrix and the precoding is described.
  • the base station sends a data stream to multiple UEs at the same time, one or more data streams sent to each UE need to be processed by using a precoding matrix, and the base station transmits the processed data stream to the UE through the antenna.
  • the base station pre-codes the downlink data stream according to the precoding matrix and sends the downlink data stream to the terminal device, so as to avoid interference of other channels, so that the pre-coded downlink data stream can obtain the best transmission on the downlink channel. quality.
  • the manner of obtaining the precoding matrix may be based on the codebook space or the non-codebook space.
  • one codebook space contains multiple precoding matrices, each of which is identified by PMI.
  • the codebook space may be pre-stored on the base station and the UE, and the UE may measure the downlink channel, determine the PMI, and send the PMI to the base station, so that the base station determines the precoding matrix corresponding to the PMI.
  • the UE measures the downlink channel and feeds back the downlink channel measurement result to the base station.
  • the base station determines the channel transmission matrix according to the downlink channel measurement result, and processes the channel transmission matrix (for example, SVD decomposition). Determine the precoding matrix.
  • the network device 303 may also notify the M+1 terminal devices including the first terminal device 301 and the M second terminal devices 302. At least one terminal device reports downlink channel information, and the at least one terminal device reports its own downlink channel information after receiving the notification;
  • At least one of the M+1 terminal devices including the first terminal device 301 and the M second terminal devices 302, reports the downlink channel information, for example, periodically reports the downlink channel information.
  • the network device 303 determines that the N second terminal devices 302 in the M second terminal devices 302 can be forwarded to the first terminal device 301 according to the received downlink channel information sent by the M second terminal devices 302. data flow;
  • the network device 303 may select, through the MU-MIMO pre-processing, N second terminal devices 302 from the M second terminal devices 302, where the N second terminal devices 302 satisfy:
  • the channels corresponding to the precoding matrix corresponding to the PMI are orthogonal or mutually quasi-orthogonal.
  • the network device 303 may use the downlink channel information of the terminal device in advance, and report the downlink channel information of the terminal device along with the terminal device that has reported the downlink channel information.
  • the downlink channel information is subjected to MU-MIMO pre-processing, and a terminal device that can transmit the downlink data stream in parallel by using the MU-MIMO technology is selected from a plurality of terminal devices.
  • the network device 303 divides the data stream that needs to be sent to the first terminal device 301 into at least one group of data streams, where the at least one group of data streams includes N third group data streams D 31 , ... D 3i , ... D 3N ;
  • the network device 303 sends the N third group data streams D 31 , ... D 3i , ... D 3N to the N second terminal devices 302 in parallel using the MU-MIMO technology;
  • the network device 303 may further send terminal device indication information for indicating that the N third group data streams D 31 , . . . D 3i , . . . D 3N are sent to the first terminal device 301.
  • the network device 303 may carry the foregoing target terminal device indication information in the sent third group of data streams, and after receiving the third group of data streams, the second terminal device 302 determines, according to the target terminal device indication information carried therein
  • the third group of data streams are sent to the first terminal device 301, and then the second terminal device 302 can process the third group of data streams to generate a corresponding second group of data streams, and send the data to the first terminal device 301; or
  • the network device 303 may send the foregoing target terminal device indication information, before indicating that the third group of data streams to be sent is sent to the first terminal device 301, and then the second terminal device 302.
  • the third group of data streams may be processed to generate a corresponding second group of data streams, and sent to the first terminal device 301; or
  • the network device 303 may send the foregoing target terminal device indication information after the third group of data streams is sent, indicating that the third group of data streams that have been sent are sent to the first terminal device 301, and then the second terminal device 302
  • the third group of data streams may be processed to generate a corresponding second group of data streams, which are sent to the first terminal device 301.
  • the network device 303 sends the first set of data streams D 1 to the first terminal device 301 using MU-MIMO technology;
  • the first group of data streams D 1 and the N third group of data streams D 31 , . . . D 3i , . . . D 3N are network devices 303 and transmitted in parallel by using MU-MIMO technology;
  • the network device 303 transmits the data stream in parallel by using the MU-MIMO technology according to the downlink channel information reported by each terminal device.
  • the following downlink channel information transmission scheme may also be adopted (where each terminal device may be a terminal device with a number of transmission requirements, or may be a number of transmissions Demanded terminal equipment):
  • the receiving network device 303 sends a second control message, where the second control message is used to indicate the first terminal.
  • the device 301 acquires downlink channel information of the second terminal device 302.
  • Each terminal device sends the information of the downlink channel between itself and the network device 303 to a central terminal device, where the central terminal device may be one of the foregoing terminal devices, or may be a terminal device other than each terminal device;
  • the central terminal device can satisfy at least one of the following conditions:
  • a data transmission rate of each of the terminal devices transmitting data to the central terminal device is greater than a third data transmission rate threshold
  • the remaining power of the central terminal device is greater than the first power threshold
  • the distance between each of the second terminal devices and the central terminal device of each terminal device is less than a third distance threshold.
  • the information of the downlink channel sent by each terminal device may include one or more of the following information:
  • the first channel information is a channel transmission matrix.
  • the channel transmission matrix is used to represent the inherent transmission characteristics of the channel. These inherent transmission characteristics cause deformation of the signal transmitted in the channel, such as amplifying the signal power, attenuating the signal power, causing the signal to generate Doppler shift, signal phase shift or Multipath delay and other effects.
  • the first channel information herein refers to a channel transmission matrix of a downlink channel between the second terminal device and the network device. When the network device transmits downlink data to the second terminal device on the downlink channel, the downlink data transmitted on the downlink channel will generate the above various changes due to the inherent transmission characteristics of the channel.
  • the second channel information, the second channel information is a transformation matrix of the channel transmission matrix.
  • the transformation matrix may be a linear transformation of the above-described channel transmission matrix or a nonlinear transformation.
  • the transformation matrix linearly transformed by the channel transmission matrix itself can reflect the inherent transmission characteristics of the channel.
  • the nonlinear transformation matrix of the channel transmission matrix the nonlinear transformation needs not to change the inherent transmission characteristics of the channel.
  • the transformation matrix of the channel transmission matrix may be a second-order characteristic matrix of the channel transmission matrix, such as an autocorrelation matrix of the channel transmission matrix.
  • the transform matrix of the channel transmission matrix can also be a high order characteristic matrix of the channel transmission matrix.
  • the third channel information is a matrix after quantization processing of the channel transmission matrix, or a matrix after quantization processing of a transformation matrix of the channel transmission matrix. Since the elements in the transformation matrix of the channel transmission matrix or the channel transmission matrix may be analog quantities, the current wireless communication system is mainly a digital communication system, and for the convenience of processing, the analog quantity is converted into a digital quantity by Z quantization values. This is called quantization processing, where Z is an integer power of 2.
  • the fourth channel information, the fourth channel information includes:
  • a network device for each group codebook of at least one set of codebooks that can be used by a terminal device that reports channel information of a downlink channel, a precoding matrix PMI corresponding to the group of codebooks, and a PMI corresponding to the group codebook 303, when the K data streams are simultaneously sent for the terminal device, the corresponding channel quality indicator CQI, K is a positive integer, and is not greater than the number that the network device 303 can simultaneously send for the terminal device. The maximum number of streams.
  • each terminal device can transmit the information of the downlink channel to the central terminal device with a higher data transmission rate and/or a lower transmission power by utilizing the characteristics of good communication quality of short-distance communication with the central terminal device.
  • the channel capacity between the network device 303 and the network device 303 is avoided, and the rich channel information can be transmitted. Compared with the mechanism that the LTE system feeds back the downlink control channel, the channel information can be fed back to the network device 303 with high precision.
  • the central terminal device performs MU-MIMO pre-processing according to the channel information sent by each terminal device.
  • the pre-processing process it is determined according to the channel information sent by each terminal device, which terminals of the terminal devices can be used by the network device 303 by using the MU-MIMO technology.
  • the device simultaneously delivers the data stream, and determines that the network device 303 receives the PMI that is suitable for each terminal device of the parallel data stream when the data stream is sent in parallel by using the MU-MIMO technology, and the terminal device uses the PMI suitable for use.
  • the network device 303 indicates the CQI corresponding to the channel quality when the K data streams are simultaneously transmitted for the second terminal device 302.
  • the central terminal device may determine, when the PMI corresponding channels used by each terminal device are mutually orthogonal or mutually quasi-orthogonal, determine the PMIs used for downlink data transmission.
  • the MU-MIMO pre-processing is completely performed by the base station. Since the downlink channel information acquired by the base station is limited, the performance of the MU-MIMO data transmission is affected.
  • the MU-MIMO pre-processing may also be performed by the central terminal device, and the network device 303 directly performs MU-MIMO downlink data transmission according to the received MU-MIMO pre-processing result, and the central terminal device is based on The channel information is subjected to MU-MIMO pre-processing, and the result of the pre-processing is high.
  • the network device 303 performs MU-MIMO transmission according to the result of the high-precision MU-MIMO pre-processing, which can effectively improve the performance of the MU-MIMO data transmission. .
  • the second terminal device 302 For each of the N second terminal devices 302, the second terminal device 302 generates a second group of data streams after receiving the third group of data streams.
  • the second terminal device 302 can directly forward the received third group of data streams to the first terminal device 301 as the second group of data streams; or
  • the second terminal device 302 may combine the received plurality of third group data streams to generate a second group data stream, and forward the data to the first terminal device 301; or
  • the second terminal device 302 may split the received third group of data streams into multiple second group data streams and forward them to the first terminal device 301.
  • the first terminal device 301 performs data processing on the received N second group data streams D 21 , ... D 2i , ... D 2N ; optionally, if the first terminal device 301 receives the network in step S506' The first set of data streams D 1 transmitted by the device 303, the first terminal device 301 determines the PMI used in downlink data transmission according to D 21 , ... D 2i , ... D 2N and the first group of data streams D 1 .
  • the network device 303 performs segmentation processing on the high-level data that needs to be sent to the first terminal device 301, and adds a segment identifier to each piece of data, which can represent the high-level of each segment.
  • the data is forwarded to the first terminal device 301 through the antenna.
  • the network device 303 processes the high-level data of each segment through the processing of the physical layer protocol.
  • the first terminal device 301 After receiving the data streams of each group, the first terminal device 301 performs physical layer protocol processing on each group of data streams, generates high-level data of each segment, and segment identifiers of high-level data of each segment, and divides each segment.
  • the high-level data of the segments are stitched together in order.
  • the high-level data may refer to protocol layer data above the physical layer, such as the Medium Access Contorl (MAC) layer, and complete the segmentation processing of the data.
  • the processing of the physical layer protocol may include: scrambling, modulation, layer mapping, precoding, resource element (RE) mapping, Orthogonal Frequency Division Multiplexing (OFDM) signal generation, and signal at the antenna port. Send, etc.
  • step S505 the solution when the network device 303 divides the data stream is not limited to the foregoing solution.
  • the first terminal device 301 processes the received multiple sets of data streams, and is not limited to the foregoing processing manner. .
  • the foregoing process implements that the network device 303 sends the downlink data sent to one terminal device to the terminal device by using the MU-MIMO technology, and fully utilizes the downlink sending capability of each terminal device covered by the network device 303, thereby effectively improving the communication system. Swallow The amount of spit.
  • Step S503 ′ and step S 506 ′ are optional steps, indicating that even if the network device 303 does not send the data stream to the first terminal device 301 itself, the MU-MIMO technology may be adopted, and the other terminal device, that is, the second terminal device, may be adopted.
  • 302 transmits downlink data that needs to be sent to the first terminal device 301.
  • the first terminal device 301 (T) and the second terminal device 302 (A 1 , A 3 , A 4 ) form a first terminal device group, and the network device 303 finally passes the MU.
  • the MIMO technology transmits data streams in parallel to A 1 , A 3 , and T.
  • T sends an auxiliary request message to the surrounding terminal devices (including A 1 , A 2 , A 3 , and A 4 ), and receives auxiliary response messages fed back by A 1 , A 3 , and A 4 , then T and A 1 , A 3 , A 4 constitutes a first terminal device group;
  • T and A 1 , A 3 , and A 4 respectively report their downlink channel information to the network device 303;
  • the network device 303 performs MU-MIMO pre-processing to determine that the data stream sent to T can be forwarded through A 1 and A 3 ;
  • the network device 303 uses MU-MIMO technology to transmit the following data streams in parallel:
  • a 1 processes D 31 to generate D 21 and sends it to T.
  • a 3 processes D 33 to generate D 23 and sends it to T; T combines the received D 1 and D 2 D D 24 .
  • FIG. 7 is a schematic structural diagram of a first terminal device provided by the present application. As shown in FIG. 7, the first terminal device includes:
  • the transceiver module 701 is configured to receive, by the second terminal device, a data stream of the first terminal device;
  • the processing module 702 is configured to process the data stream received by the receiving module.
  • the second terminal device is configured to receive, by the network device that serves the first terminal device, a data flow of the first terminal device that is sent by the network device by using a multi-user-multiple-input multiple-out MU-MIMO technology.
  • the transceiver module 701 is configured to perform a transceiving operation of the first terminal device 301
  • the processing module 702 is configured to perform a processing operation of the first terminal device 301.
  • the processing module 702 determines the second terminal device, how the transceiver module 701 sends the downlink channel information of the first terminal device 301, transmits the downlink channel information of the second terminal device, receives the control message of the network device, and sends a response to the network device.
  • the process of receiving the message receiving the downlink data stream forwarded by the second terminal device, refer to the processing flow of the first terminal device 301 in the process shown in FIG.
  • the second terminal device that interacts with the first terminal device shown in FIG. 7 can be regarded as any one of the foregoing M second terminal devices 302.
  • processing module 702 is further configured to: before the transceiver module 701 receives the data stream of the first terminal device, determine the second terminal device.
  • the processing module 702 determines that an optional implementation manner of the second terminal device may be used in the step S501 in the process shown in FIG. 5, where the first terminal device 301 determines the second terminal device 302 that can forward the data stream for itself. Three options. Of course, the processing module 702 determines that the implementation manner of the second terminal device is not limited to the foregoing three alternatives, and the determined second terminal device may receive the downlink data flow of the first terminal device that is sent by the network device by using the MU-MIMO technology, and The received downlink data stream may be forwarded to the first terminal device.
  • the transceiver module 701 is further configured to:
  • processing module 702 determines the second terminal device, before processing the data stream received by the transceiver module 701, sending a first auxiliary notification message to the network device;
  • the first auxiliary notification message is used to notify the network device that the second terminal device receives the data of the first terminal device from the network device.
  • An optional implementation manner in which the transceiver module 701 sends the first auxiliary notification message may refer to step S501 in the process shown in FIG. 5.
  • the transceiver module 701 is further configured to: before the processing module 702 determines to determine the second terminal device, send an auxiliary request message to the at least one terminal device, where the auxiliary request message is used to query whether the at least one terminal device can receive the first terminal device. Data stream, and the received data stream of the first terminal device is sent to the first terminal device;
  • the processing module 702 is specifically configured to: determine, by the at least one terminal device, the terminal device that sends the auxiliary response message as the second terminal device, where the auxiliary response message is used to notify the first terminal device that the terminal device that sends the auxiliary response message can receive the first terminal device. And the data stream of the received first terminal device is sent to the first terminal device.
  • the optional implementation manner of the sending and receiving module 701 sending the auxiliary request message and receiving the auxiliary response message may refer to the second terminal device in the step S501 in the process shown in FIG. 5, where the first terminal device 301 determines that the data stream can be forwarded for itself.
  • the first terminal device 301 sends an auxiliary request message to the peripheral device, and the auxiliary request message sent by the transceiver module 701 can be regarded as the first terminal device 301.
  • the auxiliary response message received by the transceiver module 701 can be regarded as the auxiliary response message received by the first terminal device 301 in the alternative one.
  • the transceiver module 701 is further configured to: before the processing module 702 determines the second terminal device, receive the first control message sent by the network device, where the first control message instructs the first terminal device to determine the second terminal device.
  • the transceiver module 701 is further configured to:
  • the terminal device Before receiving the data flow of the first terminal device from the second terminal device, transmitting downlink channel information of the second terminal device to the network device, where the downlink channel information of the second terminal device is used by the network device to use the MU-MIMO technology to the second The terminal device sends the data stream of the first terminal device.
  • the first terminal device shown in FIG. 7 can forward the downlink channel information of the second terminal device to the network device as a central terminal device described in step S506' in the flow shown in FIG. 5.
  • the transceiver module 701 is further configured to:
  • the receiving network device Before receiving the downlink channel information of the second terminal device and the network device, the receiving network device sends a second control message, where the second control message is used to instruct the first terminal device to acquire the downlink channel information of the second terminal device.
  • the transceiver module 701 is further configured to:
  • processing module 702 determines the second terminal device, notifying the second terminal device to the network device Sending downlink channel information of the second terminal device.
  • the transceiver module 701 is further configured to:
  • the downlink channel information of the first terminal device is sent to the network device, and the downlink channel information of the first terminal device is used by the network device to send the data flow of the first terminal device to the second terminal device by using the MU-MIMO technology.
  • the second terminal device has a data transmission requirement, or the second terminal device has no data transmission requirement.
  • FIG. 8 is a schematic structural diagram of a first terminal device provided by the present application when a specific implementation manner is adopted.
  • the transceiver module 701 can be implemented by the transceiver 801 of FIG. 8, and the processing module 702 can be implemented by the processor 802 of FIG.
  • the transceiver 801 can transmit and receive messages and data through one or more antennas.
  • FIG. 9 is a schematic structural diagram of a second terminal device provided by the present application. As shown in FIG. 9, the second terminal device includes:
  • the processing module 901 is configured to determine, by the second terminal device, the data stream of the first terminal device that is sent by the network device by using the MU-MIMO technology, from the network device that serves the first terminal device;
  • the receiving module 902 is configured to receive a data flow of the first terminal device that is sent by the network device by using the MU-MIMO technology;
  • the sending module 903 is configured to send the data stream of the first terminal device received by the receiving module 902 to the first terminal device.
  • the processing module 901 may be configured to perform processing operations of the second terminal device 302
  • the receiving module 902 may be configured to perform The receiving operation of the second terminal device 302 can be used to perform the sending operation of the second terminal device 302.
  • the second terminal device determines that the first terminal device can forward the downlink data stream, send its own downlink channel information, receive the control message of the first terminal device or the network device, send a response message to the first terminal device or the network device, and For an optional process for the first terminal device to forward the downlink data stream, refer to the process flow of the second terminal device 302 in the process shown in FIG.
  • the second terminal device shown in FIG. 9 can be regarded as any one of the aforementioned M second terminal devices 302.
  • the sending module 903 is further configured to: before the receiving module 902 receives the data stream of the first terminal device, send the downlink channel information of the second terminal device to the network device, where the downlink channel information of the second terminal device is used for the network device.
  • the data stream of the first terminal device is sent to the second terminal device by using the MU-MIMO technology.
  • the receiving module 902 is further configured to: before the sending module 903 sends the downlink channel information of the second terminal device to the network device, receive a notification sent by the network device or the first terminal device, where the notification is used to instruct the second terminal device to The network device sends downlink channel information of the second terminal device.
  • the sending module 903 reports the optional implementation manner, the triggering condition, and the like of the downlink channel information of the second terminal device. For details, refer to the processing of the second terminal device 302 in step S503 in the process shown in FIG.
  • the notification sent by the network device received by the receiving module 902 can be regarded as the channel information report request message sent by the network device 303 described in the foregoing step S503; the notification sent by the first terminal device received by the receiving module 902 can be regarded as The channel information report request message sent by the first terminal device 301 described in the foregoing step S503.
  • the sending module 903 is specifically configured to:
  • the processing module 901 confirms that the first terminal device sends the downlink channel information of the first terminal device to the network device, the downlink channel information of the second terminal device is sent to the network device, and the downlink channel information of the second terminal device is used by the network device to pass the MU.
  • the MIMO technology transmits the data stream of the first terminal device to the second terminal device.
  • the sending module 903 is further configured to: before the sending module 903 sends the data stream of the first terminal device received by the receiving module 902 to the first terminal device, send the second auxiliary notification message to the network device;
  • the second auxiliary notification message is configured to notify the second terminal device that the data stream of the first terminal device that is sent by the network device by using the MU-MIMO technology is received, and the data stream of the first terminal device is sent to the first terminal device.
  • An optional implementation manner in which the sending module 903 sends the second auxiliary notification message may refer to the foregoing steps.
  • the network device 303 determines an optional implementation manner 2 in which the M second terminal devices 302 can forward the data stream to the first terminal device 301.
  • the second terminal device has a data transmission requirement or no data transmission requirement.
  • FIG. 10 is a schematic structural diagram of a second terminal device provided by the present application when a specific implementation manner is adopted.
  • the processing module 901 can be implemented by the processor 1001 in FIG. 10
  • the receiving module 902 can be implemented by the receiver 1002 in FIG. 10
  • the transmitting module 903 can be implemented by the transmitter 1003 in FIG.
  • the transmitter 1003 and the receiver 1002 can share one or more antennas, and the transmitter 1003 can transmit messages and data through the one or more antennas, and the receiver 1002 can perform the one or more antennas. Reception of messages and data.
  • FIG. 11 is a schematic structural diagram of a network device provided by the present application. As shown in FIG. 11, the network device includes:
  • the processing module 1101 is configured to determine a second terminal device, where the second terminal device is configured to receive, by the network device, a data stream of the first terminal device that is sent by the network device by using the MU-MIMO technology;
  • the transceiver module 1102 is configured to send the data stream of the first terminal device to the second terminal device by using the MU-MIMO technology.
  • the processing module 1101 may be configured to perform processing operations of the network device 303, and the transceiver module 1102 may be configured to perform a transceiving operation of the network device 303.
  • the network device determines the second terminal device, receives the downlink channel information sent by the first terminal device or the second terminal device, sends a control message to the first terminal device or the second terminal device, and receives the first terminal device or the second terminal device
  • For an optional process of sending a data stream of the first terminal device to the second terminal device refer to the processing flow of the network device 303 in the process shown in FIG. 5.
  • the processing module 1101 may refer to the network device 303 in the foregoing step S501 to determine an optional implementation manner of the M second terminal devices 302.
  • the second terminal device that interacts with the network device shown in FIG. 11 can be regarded as any one of the aforementioned M second terminal devices 302.
  • the transceiver module 1102 is further configured to: determine, by the processing module 1101, the second terminal device. And sending, to the first terminal device, a first control message, the first control device instructing the first terminal device to determine the second terminal device, and receiving, from the first terminal device, the first terminal device, in response to the first control message a secondary notification message, the first auxiliary notification message is used to notify the network device by which second terminal device receives the data of the first terminal device from the network device;
  • the processing module 1101 is specifically configured to: determine, according to the notification message received by the transceiver module 1102, the second terminal device.
  • the transceiver module 1102 is further configured to: before the processing module 1101 determines the second terminal device, receive a second auxiliary notification message sent by the second terminal device, where the second auxiliary notification message is used to notify the network device of the second terminal device
  • the data stream of the first terminal device that is sent by the network device by using the MU-MIMO technology is received, and the data stream of the first terminal device is sent to the first terminal device;
  • the processing module 1101 is specifically configured to: determine, according to the second auxiliary notification message, the second terminal device.
  • the network device shown in FIG. 11 receives the second auxiliary notification message and determines the optional implementation manner of the second terminal device according to the second auxiliary notification message.
  • the network device 303 determines that the M second terminal devices 302 can An optional implementation manner 2 of forwarding the data stream for the first terminal device 301.
  • the transceiver module 1102 is further configured to: before sending the data stream of the first terminal device to the second terminal device by using the MU-MIMO technology,
  • the transceiver module 1102 is further configured to:
  • the downlink channel information of the second terminal device is used by the network device to send the data flow of the first terminal device to the second terminal device by using the MU-MIMO technology.
  • the transceiver module 1102 is further configured to:
  • the downlink channel information of the first terminal device is used by the network device to send the data stream of the first terminal device to the second terminal device by using the MU-MIMO technology.
  • the second terminal device has a data transmission requirement, or the second terminal device has no data transmission requirement.
  • FIG. 12 is a schematic structural diagram of a network device provided by the present application when a specific implementation manner is adopted.
  • the transceiver module 1102 can be implemented by the transceiver 1202 in FIG. 12, and the processing module 1101 can be implemented by the processor 1201 in FIG.
  • the transceiver 1202 can transmit and receive messages and data through a plurality of antennas.
  • the second terminal device participates in downlink data transmission of the first terminal device of the MU-MIMO, and even if only the data stream of the first terminal device or the data transmission amount of the second terminal device is small, the second terminal device and the network device
  • the downlink channel is not wasted but is used to assist the transmission of the data stream of the first terminal device, which prevents the network device from transmitting the data stream to the plurality of terminal devices by using the MU-MIMO technology, thereby causing the MU-MIMO to degenerate into the SU.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

本申请涉及无线通信技术,尤其涉及终端设备、网络设备、数据传输方法和无线通信系统。本申请提供第一终端设备包括:收发模块,用于从第二终端设备接收第一终端设备的数据流;处理模块,用于对接收模块收到的数据流进行处理;第二终端设备用于从网络设备处接收网络设备通过多用户-多入多出MU-MIMO技术发送的第一终端设备的数据流。由于第二终端设备参与了第一终端设备的MU-MIMO下行数据传输,并向第一终端设备发送第一终端设备的数据流,避免了当第二终端设备没有数据传输需求或数据传输需求较小时,网络设备无法采用MU-MIMO技术下发数据流,或即使采用MU-MIMO技术下发数据流,但通信系统整体吞吐量性能不高的问题。

Description

终端设备、网络设备、数据传输方法和无线通信系统 技术领域
本申请涉及无线通信技术领域,尤其涉及一种终端设备、网络设备、数据传输方法和无线通信系统。
背景技术
无线通信系统中,可采用多天线技术,通过在发送端和接收端同时使用多根天线,扩展了空间域,提高系统容量。
下行单用户多进多出(Single User-Multiple Input Multiple Output,SU MIMO)是多天线技术中的一种。
在传统的下行SU-MIMO技术中,多个数据流由基站进行预处理,由基站的多根天线使用相同的时频资源来发射。
如图1所示,基站发出来的信号被一个用户设备(User Equipment,UE)上的多根天线接收。基站的预处理使用了基站的发射天线和UE的接收天线的之间的下行信道的下行信道信息,使得UE接收到的多路数据流之间具有较少的干扰,能被UE正确的接收。
多用户多进多出(Multi User-Multiple Input Multiple Output,MU-MIMO)是另一种多天线技术。
在MU-MIMO技术中,多个数据流被发送给至少2个UE(UE1和UE2)。
如图2所示,多个数据流由基站进行预处理,在基站的多根天线使用相同的时频资源发射。每个UE的天线接收发给自己的数据流。基站的预处理使用了基站的发射天线和每个UE的接收天线之间的下行信道信息,使得不同UE收到的数据流之间有较少的干扰,每个UE能正确的接收发给自己的数据流。
由于采用MU-MIMO技术,基站能同时给多个UE发多个数据流,而SU-MIMO只能给单个UE发多个数据流,MU-MIMO通常具有比SU-MIMO 更优越的下行吞吐性能。
当某些UE没有数据传输需求,或数据传输需求较小时,MU-MIMO会退化为SU-MIMO,而导致基站无法采用MU-MIMO技术下发数据流,或者即使可以采用MU-MIMO技术下发数据流,但通信系统整体吞吐量性能并不高。
发明内容
有鉴于此,提供一种终端设备、网络设备和数据传输方法,用以实现采用MU-MIMO技术向终端设备发送多个数据流,提高整个通信系统的吞吐量。
第一方面,本申请提供一种第一终端设备,包括:
收发模块,用于从第二终端设备处接收所述第一终端设备的数据流;
处理模块,用于对所述接收模块收到的数据流进行处理;
其中,所述第二终端设备用于从服务所述第一终端设备的网络设备处接收所述网络设备通过多用户-多入多出MU-MIMO技术发送的所述第一终端设备的数据流。
该实现方式中,在网络设备向第一终端设备发送下所述第一终端设备的数据流时,由于第二终端设备也参与了MU-MIMO的第一终端设备的下行数据传输,即使只有第一终端设备的数据流传输或者属于第二终端设备的数据的传输量较小时,第二终端设备与网络设备之间的信道不会被浪费而是被用来辅助传输第一终端设备的数据流,避免了网络设备无法采用MU-MIMO技术向多个终端设备下发数据流而导致MU-MIMO退化为SU-MIMO问题的出现,从而提高了通信系统的吞吐量。
此外,也避免了同时有多个终端设备有数据传输需求,但有些终端设备的数据传输需求较小,没有充分利用数据传输需求较小的终端设备本身的传输能力,从而也提高了通信系统的吞吐量。
结合第一方面,在第一种可能的实现方式中,所述处理模块还用于:在所述收发模块接收所述第一终端设备的数据流之前,确定所述第二终端设备。
由所述第一终端设备来确定所述第二终端设备,第一终端设备可以获知 哪个终端设备来辅助转发所述第一终端设备的数据流,从而有针对性地从该终端设备接收所述第一终端设备的数据流。
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述收发模块还用于:
在所述处理模块确定所述第二终端设备之后,对所述收发模块收到的数据流进行处理之前,向所述网络设备发送第一辅助通知消息;
所述第一辅助通知消息用于通知所述网络设备由所述第二终端设备从所述网络设备接收所述第一终端设备的数据。
该可能的实现方式中,第二终端设备通知网络设备自身可以接收第一终端设备的数据流,这样网络设备即可获知可以为第一终端设备发送数据流的终端设备。
结合第一方面的第一种或第二种可能的实现方式,在第三种可能的实现方式中,
所述收发模块还用于:在所述处理模块确定第二终端设备之前,向至少一个终端设备发送辅助请求消息,所述辅助请求消息用于询问所述至少一个终端设备能否接收所述第一终端设备的数据流,并将接收的所述第一终端设备的数据流发送给所述第一终端设备;
所述处理模块具体用于:将所述至少一个终端设备中发出辅助响应消息的终端设备确定为所述第二终端设备,所述辅助响应消息用于通知所述第一终端设备发出所述辅助响应消息的终端设备能接收所述第一终端设备的数据流并将接收的所述第一终端设备的数据流发送给所述第一终端设备。
该可能的实现方式中,通过第一终端设备询问其他终端设备,从而第一终端设备确定了可以为自身接收数据流的第二终端设备。
结合第一方面的第一种至第三种可能的实现方式,在第四种可能的实现方式中,所述收发模块还用于:在所述处理模块确定第二终端设备之前,接收所述网络设备发送的第一控制消息,所述第一控制消息指示所述第一终端设备确定所述第二终端设备。
在该实现方式中,由网络设备通过发送第一控制消息的指示来触发第一终端设备来确定辅助转发所述第一终端设备的数据流的第二终端设备。
结合第一方面,或第一方面的上述任一种可能的实现方式,在第五种可能的实现方式中,所述收发模块还用于:
在从第二终端设备处接收所述第一终端设备的数据流之前,向所述网络设备发送所述第二终端设备的下行信道信息,所述第二终端设备的下行信道信息用于所述网络设备使用MU-MIMO技术向所述第二终端设备发送所述第一终端设备的数据流。
该可能的实现方式中,由第一终端设备发送第二终端设备的下行信道信息,可在第二终端设备无法向网络设备发送下行信道信息的情况下,使得网络设备仍能够获得第二终端设备的下行信道信息,从而根据获得的第二终端设备的下行信道信息,采用MU-MIMO技术向第二终端设备发送第一终端设备的数据流。
结合第一方面的第五种可能的实现方式,在第六种可能的实现方式中,所述收发模块还用于:
在向所述网络设备发送所述第二终端设备的下行信道信息之前,接收所述网络设备发送第二控制消息,所述第二控制消息用于指示所述第一终端设备获取所述第二终端设备的下行信道信息。
在该实现方式中,通过接收所述网络设备的控制消息来触发第一终端设备获取第二终端设备的下行信道信息。
结合第一方面,或第一方面的第一种至第四种可能的实现方式中的任一种,在第六种可能的实现方式中,所述收发模块还用于:
在所述处理模块确定第二终端设备之后,通知所述第二终端设备向所述网络设备发送所述第二终端设备的下行信道信息。
结合第一方面,或第一方面的上述任一种可能的实现方式,在第八种可能的实现方式中,所述收发模块还用于:
向所述网络设备发送所述第一终端设备的下行信道信息,所述第一终端 设备的下行信道信息用于所述网络设备使用MU-MIMO技术向所述第二终端设备发送所述第一终端设备的数据流。
由于在网络设备采用MU-MIMO技术时,第一终端设备的下行信道会对第二终端设备的下行信道上传输的数据流产生干扰,因而在该实现方式中,网络设备可以根据获取的第一终端设备的下行信道信息来减少网络设备采用MU-MIMO技术向所述第二终端设备发送第一终端设备的数据流时第一终端设备的下行信道所带来的干扰。
结合第一方面,或第一方面的上述任一种可能的实现方式,在第九种可能的实现方式中,所述第二终端设备有数据传输需求,或所述第二终端设备无数据传输需求。
该可能的实现方式中,若第二终端设备有数据传输需求,第二终端设备除了接收自身的下行数据流,还可以接收第一终端设备的下行数据流,可充分利用第二终端设备的数据传输能力,从而提高通信系统的整体吞吐量;
该可能的实现方式中,若第二终端设备没有数据传输需求,按照目前LTE系统的处理方式,当只有第一终端设备有数据传输需求的情况下,实际上是无法实现MU-MIMO的,只能回退到SU-MIMO,而该可能的实现方式中,即使第二终端设备没有数据传输需求,也可利用第二终端设备传输第一终端设备的下行数据流,这样就有至少两个终端设备实现MU-MIMO,利用了第二终端设备的数据传输能力,提高了通信系统的整体吞吐量。
第二方面,本申请提供一种第二终端设备,包括:
处理模块,用于确定所述第二终端设备从服务第一终端设备的网络设备接收所述网络设备通过MU-MIMO技术发送的所述第一终端设备的数据流;
接收模块,用于接收所述网络设备通过MU-MIMO技术发送的所述第一终端设备的数据流;
发送模块,用于将所述接收模块接收的所述第一终端设备的数据流发送给所述第一终端设备。
该实现方式中,由于第二终端设备参与了MU-MIMO的第一终端设备的下行数据传输,即使只有第一终端设备的数据流传输或者属于第二终端设备的数据的传输量较小时,第二终端设备与网络设备之间的信道不会被浪费而是被用来辅助传输第一终端设备的数据流,避免了网络设备无法采用MU-MIMO技术向多个UE下发数据流而导致MU-MIMO退化为SU-MIMO问题的出现,从而提高了通信系统的吞吐量。
此外,也避免了同时有多个UE有数据传输需求,但有些UE的数据传输需求较小,没有充分利用数据传输需求较小的UE本身的传输能力,从而也提高了通信系统的吞吐量。
结合第二方面,在第一种可能的实现方式中,所述发送模块还用于:在所述接收模块接收所述第一终端设备的数据流之前,向所述网络设备发送所述第二终端设备的下行信道信息,所述第二终端设备的下行信道信息用于所述网络设备通过MU-MIMO技术向所述第二终端设备发送所述第一终端设备的数据流。
该可能的实现方式中,无论第二终端设备是否有数据传输需求,第二终端设备均向网络设备发送自身的下行信道信息,这样,网络设备能根据第二终端设备的下行信道信息判断是否可以采用MU-MIMO技术向第一终端设备和第二终端设备并行下发数据流。
结合第二方面的第一种可能的实现方式,在第二种可能的实现方式中,所述接收模块还用于:在所述发送模块向所述网络设备发送所述第二终端设备的下行信道信息之前,接收所述第一终端设备或所述网络设备发送的通知,所述通知用于指示所述第二终端设备向所述网络设备发送所述第二终端设备的下行信道信息。
结合第二方面的第一种可能的实现方式,在第三种可能的实现方式中,所述发送模块具体用于:
在所述处理模块确认所述第一终端设备向所述网络设备发送所述第一终 端设备的下行信道信息后,向所述网络设备发送所述第二终端设备的下行信道信息,所述第二终端设备的下行信道信息用于所述网络设备通过MU-MIMO技术向所述第二终端设备发送所述第一终端设备的数据流。
该可能的实现方式中,第二终端设备在获知第一终端设备向网络设备发送第一终端设备的下行信道信息后,向网络设备发送自身的下行信道信息,避免第二终端设备发送无用的下行信道信息,浪费第二终端设备的处理能力,占用第二终端设备与网络设备之间的上行资源。
结合第二方面,或第二方面的上述任一种可能的实现方式,在第四种可能的实现方式中,
所述发送模块还用于:在所述发送模块将所述接收模块接收的所述第一终端设备的数据流发送给所述第一终端设备之前,向所述网络设备发送第二辅助通知消息;
所述第二辅助通知消息用于通知所述网络设备能够接收所述网络设备通过MU-MIMO技术发送的所述第一终端设备的数据流并将所述第一终端设备的数据流发送给所述第一终端设备。
结合第二方面,或第二方面的上述任一种可能的实现方式,在第五种可能的实现方式中,
所述第二终端设备有数据传输需求或无数据传输需求。
该可能的实现方式中,若第二终端设备有数据传输需求,第二终端设备除了接收自身的下行数据流,还可以接收第一终端设备的下行数据流,可充分利用第二终端设备的数据传输能力,从而提高通信系统的整体吞吐量;
该可能的实现方式中,若第二终端设备没有数据传输需求,按照目前LTE系统的处理方式,当只有第一终端设备有数据传输需求的情况下,实际上是无法实现MU-MIMO的,只能回退到SU-MIMO,而该可能的实现方式中,即使第二终端设备没有数据传输需求,也可利用第二终端设备传输第一终端设备的下行数据流,这样就有多个终端设备有数据传输需求,可以实现MU-MIMO,利用了第二终端设备的数据传输能力,提高了通信系统的整体吞 吐量。
第三方面,本申请提供一种网络设备,包括:
处理模块,用于确定第二终端设备,所述第二终端设备用于从所述网络设备处接收所述网络设备通过MU-MIMO技术发送的所述第一终端设备的数据流;
收发模块,用于将所述第一终端设备的数据流通过MU-MIMO技术发送给所述第二终端设备。
该实现方式中,由于第二终端设备参与了MU-MIMO的第一终端设备的下行数据传输,即使只有第一终端设备的数据流传输或者属于第二终端设备的数据的传输量较小时,第二终端设备与网络设备之间的信道不会被浪费而是被用来辅助传输第一终端设备的数据流,避免了网络设备无法采用MU-MIMO技术向多个UE下发数据流而导致MU-MIMO退化为SU-MIMO问题的出现,从而提高了通信系统的吞吐量。
此外,也避免了同时有多个UE有数据传输需求,但有些UE的数据传输需求较小,没有充分利用数据传输需求较小的UE本身的传输能力,从而也提高了通信系统的吞吐量。
结合第三方面,在第一种可能的实现方式中,
所述收发模块还用于:在所述处理模块确定第二终端设备之前,向所述第一终端设备发送第一控制消息,所述第一控制消息指示所述第一终端设备确定所述第二终端设备;以及从所述第一终端设备处接收所述第一终端设备响应于所述第一控制消息发送的第一辅助通知消息,所述第一辅助通知消息用于通知所述网络设备由所述第二终端设备从所述网络设备接收所述第一终端设备的数据;
所述处理模块具体用于:根据所述收发模块接收的所述通知消息确定所述第二终端设备。
结合第三方面,在第二种可能的实现方式中,
所述收发模块还用于:在所述处理模块确定第二终端设备之前,接收所述第二终端设备发送的第二辅助通知消息,所述第二辅助通知消息用于通知所述网络设备所述第二终端设备能够接收所述网络设备通过MU-MIMO技术发送的所述第一终端设备的数据流并将所述第一终端设备的数据流发送给所述第一终端设备;
所述处理模块具体用于:根据所述第二辅助通知消息确定所述第二终端设备。
结合第三方面,或第三方面的上述任一种可能的实现方式,在第三种可能的实现方式中,所述收发模块还用于:在将所述第一终端设备的数据流通过MU-MIMO技术发送给所述第二终端设备之前,
向所述第一终端设备发送第二控制消息,所述第二控制消息用于指示所述第一终端设备获取所述第二终端设备的下行信道信息;
接收所述第一终端设备响应于所述第二控制消息发送的所述第二终端设备的下行信道信息,所述第二终端设备的下行信道信息用于所述网络设备使用MU-MIMO技术向所述第二终端设备发送所述第一终端设备的数据流。
该可能的实现方式中,由第一终端设备发送第二终端设备的下行信道信息,可在第二终端设备无法向网络设备发送下行信道信息的情况下,使得网络设备仍能够获得第二终端设备的下行信道信息,从而根据获得的第二终端设备的下行信道信息,采用MU-MIMO技术向第二终端设备发送第一终端设备的数据流。
结合第三方面,或第三方面的第一种或第二种可能的实现方式,在第四种可能的实现方式中,所述收发模块还用于:
在将所述第一终端设备的数据流通过MU-MIMO技术发送给所述第二终端设备之前,接收所述第二终端设备发送的所述第二终端设备的下行信道信息;
所述第二终端设备的下行信道信息用于所述网络设备通过MU-MIMO技术向所述第二终端设备发送所述第一终端设备的数据流。
结合第三方面,或第三方面的上述任一种可能的实现方式,在第五种可能的实现方式中,所述收发模块还用于:
在将所述第一终端设备的数据流通过MU-MIMO技术发送给所述第二终端设备之前,接收所述第一终端设备发送的所述第一终端设备的下行信道信息;
所述第一终端设备的下行信道信息用于所述网络设备使用MU-MIMO技术向所述第二终端设备发送所述第一终端设备的数据流。
该可能的实现方式可使得网络设备根据获取的第一终端设备的下行信道信息,采用MU-MIMO技术向第二终端设备发送第一终端设备的数据流。
结合第三方面,或第三方面的上述任一种可能的实现方式,在第六种可能的实现方式中,所述第二终端设备有数据传输需求,或所述第二终端设备无数据传输需求。
该可能的实现方式中,若第二终端设备有数据传输需求,第二终端设备除了接收自身的下行数据流,还可以接收第一终端设备的下行数据流,可充分利用第二终端设备的数据传输能力,从而提高通信系统的整体吞吐量;
该可能的实现方式中,若第二终端设备没有数据传输需求,按照目前LTE系统的处理方式,当只有第一终端设备有数据传输需求的情况下,实际上是无法实现MU-MIMO的,只能回退到SU-MIMO,而该可能的实现方式中,即使第二终端设备没有数据传输需求,也可利用第二终端设备传输第一终端设备的下行数据流,这样就有多个终端设备有数据传输需求,可以实现MU-MIMO,利用了第二终端设备的数据传输能力,提高了通信系统的整体吞吐量。
上述第一方面至第三方面以及它们的各个可能实现方式中分别提供了第一终端设备,第二终端设备以及网络设备。它们的各个功能模块的功能可作为第一终端设备、第二终端设备以及网络设备分别执行的数据传输方法的步骤,此处不再赘述。
附图说明
图1为基站采用SU-MIMO技术进行下行数据传输的示意图;
图2为基站采用MU-MIMO技术进行下行数据传输的示意图;
图3为本申请提供的无线网络的网络架构图;
图4A~图4D为本申请中终端设备组的示意图;
图5为本申请中网络设备下发数据流,以及终端设备转发数据流的流程图;
图6为本申请可应用的一个简化场景的示意图;
图7为本申请提供的第一终端设备的结构示意图;
图8为本申请提供的第一终端设备采用一种具体的实现方式时的结构示意图;
图9为本申请提供的第二终端设备的结构示意图;
图10为本申请提供的第二终端设备采用一种具体的实现方式时的结构示意图;
图11为本申请提供的网络设备的结构示意图;
图12为本申请提供的网络设备采用一种具体的实现方式时的结构示意图。
具体实施方式
为了更好地理解本申请的上述目的、方案和优势,下文提供了详细描述。该详细描述通过使用框图、流程图等附图和/或示例,阐明了装置和/或方法的各种实施方式。在这些框图、流程图和/或示例中,包含一个或多个功能和/或操作。本领域技术人员将理解到:这些框图、流程图或示例内的各个功能和/或操作,能够通过各种各样的硬件、软件、固件单独或共同实施,或者通过硬件、软件和固件的任意组合实施。
本申请中,术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和 /或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
下面,结合附图对本申请进行详细说明。
图3示出了本申请适用的一种无线网络系统的网络架构示意图。如图3所示,该无线网络系统30中包括:网络设备303、第一终端设备301(图中标识为T),以及N个第二终端设备302(图中标识为A1,…Ai,…AN),N为正整数。
为了简洁,下述实现方式中,使用了变量i代替1到N中任意一个整数,因而以下陈述中对于变量i各种情况适用于i为1到N中任意一个整数的情形。
为了示意简单,图3中仅示出了一个网络设备303,但实际上,在无线网络系统30中,可能存在一个或多个网络设备303;以及图3中仅示出了一个第一终端设备301,但实际上,在无线网络系统30中,可能存在一个或多个第一终端设备301。
图3所示的无线网络系统30中,第二终端设备302可与第一终端设备301直接进行通信,无需通过网络设备303的转发。可选地,第二终端设备302可基于第三代合作伙伴计划(3rd Group Partner Project,3GPP)的设备到设备(Device to Device,D2D)协议通信,也可基于电气和电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)的无线保真(Wireless Fidelity,WiFi)协议通信。由于第二终端设备302与第一终端设备301之间的通信可属于近距离通信,其通信质量可能比网络设备303与第二终端设备302之间的远距离通信要更优,具体地,第二终端设备302与第一终端设备301之间进行数据传输时可具有相比网络设备与第二终端设备302之间,网络设备与第一终端设备301之间更高的数据传输速率和/或更低的发射功率。
图3所示的无线网络系统30中,第一终端设备301与网络设备303之间,以及第二终端设备302与网络设备303之间的无线通信的通信制式包括但不限于:
全球移动通信系统(Global System of Mobile communication,GSM)、码分多址(Code Division Multiple Access,CDMA)IS-95、码分多址(Code Division Multiple Access,CDMA)2000、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、时分双工-长期演进(Time Division Duplexing-Long Term Evolution,TDD LTE)、频分双工-长期演进(Frequency Division Duplexing-Long Term Evolution,FDD LTE)、长期演进-增强(Long Term Evolution-Advanced,LTE-advanced)、个人手持电话系统(Personal Handy-phone System,PHS)、802.11系列协议规定的无线保真(Wireless Fidelity,WiFi)、全球微波互联接入(Worldwide Interoperability for Microwave Access,WiMAX),以及未来演进的各种无线通信制式。
其中,第一终端设备301和第二终端设备302可以是无线终端,无线局域网接入点或中继(relay)节点。无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(RAN,Radio Access Network)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(PCS,Personal Communication Service)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(WLL,Wireless Local Loop)站、个人数字助理(PDA,Personal Digital Assistant)等设备。无线终端也可以称为订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户装备(User Equipment)。
网络设备303可包括基站,或用于控制基站的无线资源管理设备,或包 括基站和用于控制基站的无线资源管理设备;其中基站可为宏站;基站也可为小站,比如:小小区(small cell)接入点、微小区(pico cell)接入点等,基站还可以为家庭基站,比如:家庭节点B(Home NodeB,HNB)、家庭演进节点B(Home eNodeB,HeNB)等。网络设备303也可为中继(relay)节点。
比如:对于TDD LTE、FDD LTE或LTE-A等LTE系统,本发明实施例提供的无线网络系统30中的网络设备303可为演进节点B(evolved NodeB,eNodeB),第一终端设备301和第二终端设备302可为UE;对于TD-SCDMA系统或WCDMA系统,本发明实施例提供的无线网络系统30中的网络设备303可包括:节点B(NodeB)和/或无线网络控制器(Radio Network Controller,RNC),第一终端设备301和第二终端设备302可为UE;对于GSM系统,本发明实施例提供的中的网络设备303可包括基站收发台(Base Transceiver Station,BTS)和/或基站控制器(Base Station Controller,BSC);第一终端设备301和第二终端设备302可为移动台(Mobile Station,MS);对于WiFi系统,网络设备303可包括:接入点(Access Point,AP)和/或接入控制器(Access Controller,AC),第一终端设备301和第二终端设备302可为站点(station,STA)。
在图3所示的网络架构中,第一终端设备301接收网络设备303发送的第一组数据流D1和N个第二终端设备302发送的N个第二组数据流D21,…D2i,…D2N,所述N个第二组数据流由所述N个第二终端设备根据网络设备303采用MU-MIMO技术并行发送的N个第三组数据流D31,…D3i,…D3N处理后生成。N个第三组数据流D31,…D3i,…D3N和N个第二组数据流D21,…D2i,…D2N可能相同,也可能不同。如图3所示,第二终端设备Ai从网络设备303处接收第三组数据流D3i,并将由D3i生成D2i,并将D2i发给第一终端设备T。
需要说明的是,由于网络设备303和第二终端设备302,以及第二终端设备302和第一终端设备301之间采用的通信协议可能不同,因而N个第二组数据流D21,…D2i,…D2N和N个第三组数据流D31,…D3i,…D3N可能表现为不同 数据流,但无论表现形式是什么,都包含了发送给第一终端设备301的信息,都是发送给第一终端设备301的数据流。
为了节约对终端设备的标识的规划,可以对终端设备进行分组管理,例如第一终端设备301和第二终端设备302可按照3GPP规定的D2D协议规范进行管理,具体可参看D2D协议规范。
可选地,第一终端设备301(T)和N个第二终端设备302(A1,…Ai,…AN)属于第一终端设备组Group1,如图4A所示。Group1中除了第一终端设备301之外的所有终端设备满足辅助条件。因而,N个第二终端设备302是满足辅助条件的。
可选地,N个第二终端设备302(A1,…Ai,…AN)属于第二终端设备组Group2,第一终端设备301(T)不属于Group2,如图4B所示。Group2中的所有终端设备满足辅助条件。
可选地,第一终端设备301分别属于N个不同第三终端设备组(TG1,…TGi,…TGN),其中第三终端设备组TGi对应于第二终端设备302Ai,如图4C所示。第三终端设备组TGi中的终端设备满足目标条件。
可选地,第一终端设备301分别属于N个第四终端设备组(TAG1,…TAGi,…TAGN),其中第四终端设备组TAGi包括第二终端设备302Ai,如图4D所示。第四终端设备组TAGi中除了第二终端设备302Ai之外的其他终端设备满足目标条件,因而,第一终端设备301满足目标条件。
其中,上述辅助条件可包括下列条件中的一个或多个:
与第一终端设备301之间的数据传输速率大于第一数据传输速率阈值;
与第一终端设备301之间的距离小于第一距离阈值;
剩余电量大于电量阈值。
上述目标条件可包括下列条件中的一个或多个:
与第二终端设备302Ai之间的数据传输速率大于第二数据传输速率阈值;
与第二终端设备302Ai之间的距离小于第二距离阈值。
上述辅助条件和目标条件能够保证第二终端设备302为第一终端设备301 可靠、高效地转发数据流。
其中,N个第二终端设备A1,…Ai,…AN均有数据传输需求;N个第二终端设备A1,…Ai,…AN部分数据传输需求;或者N个第二终端设备A1,…Ai,…AN均无数据传输需求。
图5示出了本申请中网络设备303采用MU-MIMO技术向N个第二终端设备302下发数据流,以及N个第二终端设备302向第一终端设备301转发数据流的流程示意图。
如图5所示,该流程可包括如下步骤。
S501:网络设备303确定M个第二终端设备302可以为第一终端设备301转发数据流。
其中,M≥N,M个第二终端设备302包括上述N个第二终端设备302(A1,…Ai,…AN)。需要说明的是,M个第二终端设备302是第一终端设备301周边能够为第一终端设备301从网络设备303转发数据流,M个第二终端设备中的N个第二终端设备302是在进行下行数据传输时为第一终端设备301从网络设备303转发数据流。图5所示的流程中,以M=3,N=2为例加以说明。
网络设备303可通过多种可选实现方式确定M个第二终端设备302可以为第一终端设备301发送第一终端设备301的数据流,这里以下面的可选实现方式一和可选实现方式二为例加以说明。
【可选实现方式一】
可选实现该方式一中,由第一终端设备301通知网络设备303:M个第二终端设备302可以为第一终端设备301转发数据流。
网络设备303可向第一终端设备301发送第一控制消息,该消息指示第一终端设备301确定转发数据流的第二终端设备302,网络设备303可在第一控制消息携带第一终端设备301的标识信息;第一终端设备301在收到第一控制消息之后,根据消息中携带的自身的标识信息来触发确定可以为自身转发数据流的第二终端设备302;第一终端设备301响应于第一控制消息,向网 络设备303发送第一辅助通知消息,该消息用于指示第一终端设备所确定出的M个第二终端设备302可以为第一终端设备301转发所述第一终端设备的数据流,网络设备303在收到该第一辅助通知消息后,确定上述M个第二终端设备302可以为第一终端设备301转发数据流。
或者,第一终端设备301也可自行向网络设备303发送第一辅助通知消息(比如:周期性发送第一辅助通知消息),来指示所述第一终端设备所确定的M个第二终端设备302可以为第一终端设备301转发数据流,无需在收到网络设备303发送的第一控制消息才发送第一辅助通知消息。
第一终端设备301可采用下列多种方案确定上述M个第二终端设备302为所述第一终端设备301转发所述第一终端设备的数据流。在第一终端设备301确定为其从网络设备303转发所述第一终端设备的数据流之前,可以由网络设备303向所述第一终端设备发送第一控制消息,所述第一控制消息指示第一终端设备确定上述M个第二终端设备302。如果第一终端设备没有接收到所述第一控制消息,第一终端设备可以不确定上述M个第二终端设备302。
可选方案一:
第一终端设备301向周边至少一个终端设备广播辅助请求消息,辅助请求消息用于询问所述至少一个终端设备谁能否可以为第一终端设备301从网络设备303接收所述第一终端设备的数据流,并转发给所述第一终端设备;
第一终端设备301从所述至少一个终端设备中接收到了M个第二终端设备302响应于所述辅助请求消息分别发出的辅助响应消息,辅助响应消息用于通知第一终端设备301发出所述辅助响应消息的终端设备能为第一终端设备301转发数据流;则第一终端设备301确定这M个第二终端设备302可以为第一终端设备转发数据流。
可选方案二、
第一终端设备301接收M个第二终端设备302分别发送的第一辅助指示消息,第一辅助指示消息用于指示发送第一辅助指示消息的终端设备可以为第一终端设备301转发数据流;第一终端设备301根据收到的M个第二终端 设备302分别发送的第一辅助指示消息,确定M个第二终端设备302可以为第一终端设备301转发数据流。
可选地,第二终端设备302可在收到第一终端设备301响应于第一辅助指示消息发的辅助确认消息后,确定可以为第一终端设备301转发数据流。
可选方案三、
第一终端设备301接收多个第二终端设备302(该多个第二终端设备302包括M个第二终端设备302)分别发送的第二辅助指示消息,第二辅助指示消息用于指示:发送第二辅助指示消息的终端设备期望为第一终端设备301转发数据流;
第一终端设备301在收到上述多个第二终端设备302分别发送的第二辅助指示消息,且在第二终端设备302满足前述的“辅助条件”时,确定第二终端设备302可以为第一终端设备301转发数据流。
可选地,第二终端设备302可在收到第一终端设备301响应于第二辅助指示消息发的辅助确认消息后,确定可以为第一终端设备301转发数据流。
可选地,第一辅助通知消息中包括下列信息中的至少一个:
信息一、M个第二终端设备302中每一个终端设备的标识信息;
网络设备303可根据信息一,以及发送该第一辅助通知消息的第一终端设备301,确定M个第二终端设备302可以为第一终端设备301转发数据流。
信息二、第一终端设备301的标识信息;
网络设备303可预先知道第一终端设备301和M个第二终端设备302属于第一终端设备组Group1,网络设备303可根据第一终端设备301的标识信息,确定Group1中的其他终端设备,即M个第二终端设备302可为第一终端设备301转发数据流;
或者,网络设备303预先知道第一终端设备301分别属于的M个第三终端设备组TG1,…TGi,…TGM,其中第三终端设备组TGi对应于第二终端设备302Ai,网络设备303可根据第一终端设备301的标识信息,确定M个第三终端设备组TG1,…TGi,…TGM,并确定M个第三终端设备组TG1,…TGi,…TGM 分别对应的第二终端设备302可以为第一终端设备301转发数据流。
信息三、
M个第二终端设备302和第一终端设备301所属的第一终端设备组Group1的标识信息;
网络设备303可预先知道Group1中包括第一终端设备301和M个第二终端设备302。
信息四、
M个第二终端设备302所属的第二终端设备组Group2的标识信息;
网络设备303可预先知道Group2包括M个第二终端设备302,根据Group2的标识信息,确定发送第一辅助通知消息的第一终端设备301可由Group2中的M个第二终端设备302转发数据流。
【可选实现方式二】
可选实现方式二中,由M个第二终端设备302分别通知网络设备303可以为第一终端设备301转发数据流。
可选地,网络设备303可分别向多个第二终端设备302(其中包括M个第二终端设备302)发送第二辅助信息请求消息,M个第二终端设备302响应于第二辅助信息请求消息分别发送第二辅助通知消息,第二辅助通知消息用于指示可以为第一终端设备301转发数据流。网络设备303在收到该第二辅助通知消息后,确定M个第二终端设备302可以为第一终端设备301转发数据流。可选地,第二终端设备302在发送第二辅助通知消息时,可指示可由第二终端设备302转发数据流的终端设备的信息,该信息中包括第一终端设备301的信息,网络设备303在收到的第二辅助通知消息中包括第一终端设备301的信息时,确定第二终端设备302可为第一终端设备301转发数据流;或者
M个第二终端设备302也可自行发送第二辅助通知消息(比如:周期性发送第二辅助通知消息),无需在收到网络设备303发送的第二辅助信息请求消息之后才发送第二辅助通知消息。
其中,第二辅助通知消息中可包括下列信息中的至少一个:
信息一、
发送第二辅助通知消息的第二终端设备302的标识信息。网络设备303可根据第二终端设备302的标识信息确定第二终端设备302可以为第一终端设备301转发数据流。
信息二、
第一终端设备301的标识信息,网络设备303可根据第一终端设备301的标识信息,以及发送第二辅助通知消息的第二终端设备302,确定第二终端设备302可为第一终端设备301转发数据流。
信息三、
发送第二辅助通知消息的第二终端设备302对应的第三终端设备组TG的标识信息;
网络设备303预先知道第三终端设备组与第二终端设备302的对应关系,确定TG所对应的第二终端设备302可以为第一终端设备301转发数据流。
信息四、
发送第二辅助通知消息的第二终端设备302所属的第四终端设备组TAG的标识信息;
网络设备303预先知道TAG与第二终端设备302的对应关系,确定TAG所包括的第二终端设备302可以为第一终端设备301转发数据流。
S502:网络设备303通知上述M个第二终端设备302上报下行信道信息;
比如:网络设备303可向M个第二终端设备302发送信道信息上报请求消息,请求上报下行信道信息。
S502’:网络设备303通知第一终端设备301上报下行信道信息;
比如:网络设备303可向第一终端设备301发送信道信息上报请求消息,请求上报下行信道信息。
S503:M个第二终端设备302在分别收到网络设备303或第一终端设备301的通知,例如在收到信道信息上报请求消息后,向网络设备303上报M 个第二终端设备302每一个与网络设备303之间的下行信道的下行信道信息。
这里,信道信息上报请求消息可用于请求第二终端设备302或第一终端设备301上报第二终端设备302与网络设备303之间的下行信道信息,或第一终端设备301与网络设备303之间的下行信道信息;或者
信道信息上报请求消息也可用于请求第一终端设备301和M个第二终端设备302所属的第一终端设备组Group1内的终端设备上报下行信道信息,该消息中可携带Group1的标识信息,第二终端设备302在收到该消息后,由于预先知道自身属于Group1,因此上报下行信道信息;或者
信道信息上报请求消息也可用于请求M个第二终端设备302所属的第二终端设备组Group2内的终端设备上报下行信道信息,该消息中可携带Group2的标识信息,第二终端设备302在收到该消息后,由于预先知道自身属于Group2,因此上报下行信道信息;
网络设备303也可发送M个信道信息上报请求消息,M个消息中分别携带M个第四终端设备组TAG1,…TAGi,…TAGM的标识信息,第二终端设备302在收到信道信息上报请求消息后,若消息中携带自身所属的第四终端设备组的标识信息,则上报下行信道信息。
当然,第二终端设备302也可自行上报下行信道信息(比如:周期性发送下行信道信息),无需在收到网络设备303的通知才上报。比如:第二终端设备302在确定自身满足前述的“辅助条件”时,向网络设备303上报下行信道信息;或者
第二终端设备302在收到第一终端设备301的通知后,比如:收到第一终端设备301发送的信道信息上报请求消息后,向网络设备303上报下行信道信息;或者
第二终端设备302在检测到第一终端设备301向网络设备303上报下行信道信息时,向网络设备303上报下行信道信息。
S503’:第一终端设备301向网络设备303上报所述第一终端设备301与网络设备303之间的下行信道的下行信道信息;
当然,第一终端设备301也可自行上报下行信道信息(比如:周期性发送下行信道信息),无需在收到网络设备303的通知才上报。
步骤S502、步骤S502’、步骤S503和步骤S503’中,下行信道信息可以是预编码矩阵指示(pre-coding matrix indicator,PMI)和信道质量指示(channel quality indicator,CQI)。第一终端设备301或第二终端设备302可以选择数据传输速率最高的PMI和CQI上报给网络设备。下行信道信息也可以是用于反应信道传输特征的信息,例如信道传输矩阵(也常称为系统函数或者系统冲击响应)。通过对信道传输矩阵的处理,例如奇异值分解(singular value decomposition,SVD)的矩阵特征值和特征向量来确定预编码矩阵。
下面,以目前LTE系统,网络设备303为基站,终端设备为UE为例,对预编码矩阵和预编码的处理加以说明。基站在给多个UE同时下发数据流的时候,发给每一个UE的一个或多个数据流都需要使用预编码矩阵进行处理,基站将处理后的数据流通过天线发射给UE。基站在进行下行数据传输之前,根据预编码矩阵对下行数据流进行预编码后发送给终端设备,可以避免其他信道的干扰,使得预编码后的下行数据流在下行信道上可以获得最佳的传输质量。
获取预编码矩阵的方式,可以是基于码本空间的,也可以是非码本空间的。
对于基于码本空间的方式,一个码本空间包含多个预编码矩阵,每个预编码矩阵通过PMI来标识。码本空间可预先存储在基站和UE上,UE可以对下行信道进行测量,并确定出PMI,将PMI发送给基站使得基站确定出PMI对应的预编码矩阵。
对于非码本空间的方式,UE对下行信道测量,可将下行信道测量结果反馈给基站,基站根据下行信道测量结果确定出信道传输矩阵,并对信道传输矩阵进行处理(例如,SVD分解)来确定预编码矩阵。
步骤S502、步骤S502’、步骤S503和步骤S503’中,网络设备303也可通知包括第一终端设备301和M个第二终端设备302在内的M+1个终端设备 中的至少一个终端设备上报下行信道信息,该至少一个终端设备在收到通知后上报自身的下行信道信息;
或者,包括第一终端设备301和M个第二终端设备302在内的M+1个终端设备中的至少一个终端设备自行上报下行信道信息,比如周期性上报下行信道信息。
S504:网络设备303根据收到的M个第二终端设备302分别发送的下行信道信息,确定可通过M个第二终端设备302中的上述N个第二终端设备302向第一终端设备301转发数据流;
可选地,网络设备303可通过MU-MIMO预处理,从M个第二终端设备302中,选择N个第二终端设备302,这N个第二终端设备302满足:
PMI所对应的预编码矩阵对应的信道之间相互正交或相互准正交。
若部分终端设备没有上报下行信道信息的终端设备,网络设备303可使用预先设定这些终端设备的下行信道信息,并根据这些终端设备的下行信道信息,连同已上报下行信道信息的终端设备上报的下行信道信息,进行MU-MIMO预处理,从多个终端设备中选择可以采用MU-MIMO技术并行发送下行数据流的终端设备。
S505:网络设备303将需要发给第一终端设备301的数据流分为至少一组数据流,该至少一组数据流中包括N个第三组数据流D31,…D3i,…D3N
S506:网络设备303将N个第三组数据流D31,…D3i,…D3N采用MU-MIMO技术并行发给上述N个第二终端设备302;
可选地,网络设备303还可以发送终端设备指示信息,用于指示N个第三组数据流D31,…D3i,…D3N是发给第一终端设备301的。
可选地,网络设备303可在发送的第三组数据流中携带上述目标终端设备指示信息,第二终端设备302收到第三组数据流后,根据其中携带的目标终端设备指示信息确定收到的第三组数据流是发给第一终端设备301的,然后第二终端设备302可将第三组数据流处理后生成对应的第二组数据流,发给第一终端设备301;或者
可选地,网络设备303可在发送第三组数据流之前,发送上述目标终端设备指示信息,指示即将发送的第三组数据流是发给第一终端设备301的,然后第二终端设备302可将第三组数据流处理后生成对应的第二组数据流,发给第一终端设备301;或者
可选地,网络设备303可在发送第三组数据流之后,发送上述目标终端设备指示信息,指示已经发送的第三组数据流是发给第一终端设备301的,然后第二终端设备302可将第三组数据流处理后生成对应的第二组数据流,发给第一终端设备301。
S506’:网络设备303将第一组数据流D1采用MU-MIMO技术发给第一终端设备301;
其中,可选地,第一组数据流D1和N个第三组数据流D31,…D3i,…D3N是网络设备303采用MU-MIMO技术并行发送的;
前面描述的步骤中,网络设备303根据各个终端设备分别上报的下行信道信息,采用MU-MIMO技术并行发送数据流。可选地,除了前面描述的各个终端设备分别上报下行信息的方案外,还可以采用如下的下行信道信息的发送方案(其中,各个终端设备可以是有数传需求的终端设备,也可以是无数传需求的终端设备):
可选地,第一终端设备301在向网络设备303发送第二终端设备302与网络设备303的下行信道信息之前,接收网络设备303发送第二控制消息,第二控制消息用于指示第一终端设备301获取第二终端设备302的下行信道信息
各个终端设备将自身与网络设备303之间的下行信道的信息发送给一个中心终端设备,该中心终端设备可为上述各个终端设备中的一个,也可为各个终端设备之外的终端设备;该中心终端设备可满足如下条件中的至少一个:
各个终端设备中的每一个终端设备向中心终端设备发送数据的数据传输速率大于第三数据传输速率阈值;
中心终端设备的剩余电量大于第一电量阈值;
各个终端设备的每一个第二终端设备与中心终端设备之间的距离小于第三距离阈值。
各个终端设备发送的下行信道的信息可包括下列信息中的一种或多种:
第一信道信息,第一信道信息为信道传输矩阵。信道传输矩阵用于表示信道的固有传输特性,这些固有传输特性使得在该信道中传输的信号产生形变,例如放大信号功率,衰减信号功率,使信号产生多普勒频移、信号相位偏移或多径时延等效果。这里的第一信道信息指第二终端设备与网络设备之间下行信道的信道传输矩阵。当网络设备在下行信道上向第二终端设备发送下行数据时,在该下行信道上传输的下行数据将由于信道的固有传输特性而产生上述各种变化。
第二信道信息,第二信道信息为信道传输矩阵的变换矩阵。该变换矩阵可以是上述信道传输矩阵的线性变换,也可以是非线性变换。对信道传输矩阵线性变换后的变换矩阵本身就可以反应信道的固有传输特性。对信道传输矩阵的非线性变换后的变换矩阵,非线性变换需要不改变信道的固有传输特性。信道传输矩阵的变换矩阵可为信道传输矩阵的二阶特性矩阵,比如:信道传输矩阵的自相关矩阵。信道传输矩阵的变换矩阵也可为信道传输矩阵的高阶特性矩阵。
第三信道信息,第三信道信息为信道传输矩阵的量化处理后的矩阵,或信道传输矩阵的变换矩阵的量化处理后的矩阵。由于信道传输矩阵或信道传输矩阵的变换矩阵中的元素可能为模拟量,而目前的无线通信系统主要为数字通信系统,为了便于处理,通过Z个量化值将模拟量转换为数字量的方式,叫做量化处理,这里的Z取值为2的整数次幂。
第四信道信息,第四信道信息包括:
针对上报下行信道的信道信息的终端设备可使用的至少一组码本中的每一组码本,该组码本对应的预编码矩阵PMI,以及采用该组码本对应的PMI时,网络设备303在为该终端设备同时发送K个数据流时对应的信道质量指示CQI,K为正整数,且不大于网络设备303可为该终端设备同时发送的数 据流的最大个数。
其中,各个终端设备可利用与中心终端设备之间的近距离通信的通信质量好的特点,以较高的数据传输速率和/或较低的发射功率,向中心终端设备发送上述下行信道的信息,避免了占用与网络设备303之间的信道容量,又能传输较丰富的信道信息。与目前LTE系统反馈下行控制信道的机制相比,可以较高的精度向网络设备303反馈信道信息。
中心终端设备根据各个终端设备发送的信道信息进行MU-MIMO预处理,在预处理过程中,根据各个终端设备发送的信道信息确定网络设备303可采用MU-MIMO技术向各个终端设备中的哪些终端设备同时下发数据流,并确定网络设备303在采用MU-MIMO技术并行下发数据流时,接收并行数据流的每一个终端设备适合使用的PMI,以及该终端设备在使用适合使用的PMI时,网络设备303在为该第二终端设备302同时发送K个数据流时对应的信道质量指示CQI。
可选地,在预处理时,中心终端设备可在各终端设备使用的PMI对应信道相互正交或相互准正交的情况下,确定这些PMI为下行数据传输时所使用的PMI。
目前LTE系统中,MU-MIMO预处理完全由基站执行,由于基站获取的下行信道信息有限,因此会影响MU-MIMO数据传输的性能。而上述可选方案中,MU-MIMO预处理还可以由中心终端设备执行,网络设备303直接根据收到的MU-MIMO预处理的结果进行MU-MIMO的下行数据传输,而中心终端设备是基于信道信息进行MU-MIMO预处理的,预处理得到的结果精度较高,网络设备303根据精度较高的MU-MIMO预处理的结果进行MU-MIMO传输,能够有效提高MU-MIMO数据传输的性能。
S507:对于N个第二终端设备302中的每一个第二终端设备302,该第二终端设备302在收到第三组数据流后,生成第二组数据流;
其中,第二终端设备302可将收到的第三组数据流作为第二组数据流,直接转发给第一终端设备301;或者
第二终端设备302可将收到的多个第三组数据流合并后生成第二组数据流,转发给第一终端设备301;或者
第二终端设备302可将收到的第三组数据流拆分成多个第二组数据流,转发给第一终端设备301。
S508:对于N个第二终端设备302中的每一个第二终端设备302,该第二终端设备302将生成的第二组数据流发送给第一终端设备301;
S509:第一终端设备301将收到的N个第二组数据流D21,…D2i,…D2N进行数据处理;可选地,若第一终端设备301在步骤S506’中接收了网络设备303发送的第一组数据流D1,则第一终端设备301根据D21,…D2i,…D2N和第一组数据流D1来确定下行数据传输时所使用的PMI。
比如:网络设备303在采用MU-MIMO技术并行发送数据流时,将需要发给第一终端设备301的高层数据进行分段处理,为每一段数据添加分段标识,可表示各分段的高层数据的前后顺序,之后,网络设备303将各分段的高层数据经过物理层协议的处理,通过天线发给第一终端设备301。
第一终端设备301在收到各组数据流后,对每一组数据流进行物理层协议的处理,生成各段高层数据,并以及每个分段的高层数据的分段标识,将各个分段的高层数据按顺序拼接起来。
这里,以LTE系统为例,高层数据可指物理层以上的协议层数据,比如媒体接入控制(Medium Access Contorl,MAC)层,完成数据的分段处理。物理层协议的处理可包括:加扰、调制、层映射、预编码、资源单元(Resource Element,RE)映射、正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)信号生成、信号在天线端口发送等。
当然,步骤S505中,网络设备303在划分数据流时的方案也不限于上述方案,第一终端设备301对收到的多组数据流进行处理时也不限于上述处理方式,这里仅为举例说明。上述流程实现了网络设备303将发给一个终端设备的下行数据采用MU-MIMO技术通过多个终端设备发送,充分利用了网络设备303覆盖下的各个终端设备的下行发送能力,有效提高了通信系统的吞 吐量。
其中,步骤S503’和步骤S506’为可选步骤,表示即使网络设备303不向第一终端设备301自身下发数据流,也可以采用MU-MIMO技术,通过其它终端设备,即第二终端设备302发送需要发送给第一终端设备301的下行数据。
下面,以图6所示的简化场景为例,第一终端设备301(T)和第二终端设备302(A1、A3、A4)组成第一终端设备组,网络设备303最终通过MU-MIMO技术向A1、A3、T并行发送数据流。
首先,T向周边的终端设备(包括A1、A2、A3和A4)发送辅助请求消息,收到A1、A3、A4反馈的辅助响应消息,则T和A1、A3、A4组成第一终端设备组;
然后,T和A1、A3、A4分别向网络设备303上报自身的下行信道信息;
接下来,网络设备303进行MU-MIMO预处理,确定可以通过A1和A3转发发给T的数据流;
之后,网络设备303采用MU-MIMO技术,并行发送如下数据流:
向T发送D1
向A1发送D31
向A3发送D33
最后,A1将D31处理后生成D21,发给T,A3将D33处理后生成D23发给T;T将收到的D1、D21的D24合并处理。
图7为本申请提供的第一终端设备的结构示意图。如图7所示,该第一终端设备包括:
收发模块701,用于从第二终端设备处接收第一终端设备的数据流;
处理模块702,用于对接收模块收到的数据流进行处理;
其中,第二终端设备用于从服务第一终端设备的网络设备处接收网络设备通过多用户-多入多出MU-MIMO技术发送的第一终端设备的数据流。
该第一终端设备的其他可选实现方式可参考前述的第一终端设备301的 可选实现方式,其中,收发模块701可用于执行第一终端设备301的收发操作,处理模块702可用于执行第一终端设备301的处理操作。具体地,处理模块702如何确定第二终端设备,收发模块701如何发送第一终端设备301的下行信道信息、发送第二终端设备的下行信道信息、接收网络设备的控制消息、向网络设备发送响应消息、接收第二终端设备转发的下行数据流等流程,可参考图5所示的流程中第一终端设备301的处理流程。
其中,与图7所示的第一终端设备进行交互的第二终端设备可视为前述的M个第二终端设备302中的任一个。
可选地,处理模块702还用于:在收发模块701接收第一终端设备的数据流之前,确定第二终端设备。
处理模块702确定第二终端设备的可选实现方式可参考图5所示的流程中步骤S501中,第一终端设备301在确定可以为自身转发数据流的第二终端设备302时,可采用的三种可选方案。当然,处理模块702确定第二终端设备的实现方式不限于上述三种可选方案,确定的第二终端设备可以接收网络设备采用MU-MIMO技术下发的第一终端设备的下行数据流,并向第一终端设备转发接收的下行数据流即可。
可选地,收发模块701还用于:
在处理模块702确定第二终端设备之后,对收发模块701收到的数据流进行处理之前,向网络设备发送第一辅助通知消息;
第一辅助通知消息用于通知网络设备由第二终端设备从网络设备接收第一终端设备的数据。
收发模块701发送第一辅助通知消息的可选实现方式可参考图5所示的流程中步骤S501中。
可选地,收发模块701还用于:在处理模块702备确定第二终端设备之前,向至少一个终端设备发送辅助请求消息,辅助请求消息用于询问至少一个终端设备能否接收第一终端设备的数据流,并将接收的第一终端设备的数据流发送给第一终端设备;
处理模块702具体用于:将至少一个终端设备中发出辅助响应消息的终端设备确定为第二终端设备,辅助响应消息用于通知第一终端设备发出辅助响应消息的终端设备能接收第一终端设备的数据流并将接收的第一终端设备的数据流发送给第一终端设备。
其中,收发模块701发送辅助请求消息和接收辅助响应消息的可选实现方式可参考图5所示的流程中步骤S501中,第一终端设备301在确定可以为自身转发数据流的第二终端设备302时,采用的可选方式一中,第一终端设备301向周边设备发送辅助请求消息的实现方式,收发模块701发送的辅助请求消息可视为该可选方案一中,第一终端设备301发送的辅助请求消息。收发模块701接收的辅助响应消息可视为该可选方案一中,第一终端设备301接收的辅助响应消息。
可选地,收发模块701还用于:在处理模块702确定第二终端设备之前,接收网络设备发送的第一控制消息,第一控制消息指示第一终端设备确定第二终端设备。
可选地,收发模块701还用于:
在从第二终端设备处接收第一终端设备的数据流之前,向网络设备发送第二终端设备的下行信道信息,第二终端设备的下行信道信息用于网络设备使用MU-MIMO技术向第二终端设备发送第一终端设备的数据流。
该可选方案中,图7所示的第一终端设备可作为图5所示的流程中步骤S506’中描述的一个中心终端设备,将第二终端设备的下行信道信息转发给网络设备。
可选地,收发模块701还用于:
在向网络设备发送第二终端设备与所述网络设备的下行信道信息之前,接收网络设备发送第二控制消息,第二控制消息用于指示第一终端设备获取第二终端设备的下行信道信息。
可选地,收发模块701还用于:
在处理模块702确定第二终端设备之后,通知第二终端设备向网络设备 发送第二终端设备的下行信道信息。
可选地,收发模块701还用于:
向网络设备发送第一终端设备的下行信道信息,第一终端设备的下行信道信息用于网络设备使用MU-MIMO技术向第二终端设备发送第一终端设备的数据流。
可选地,第二终端设备有数据传输需求,或第二终端设备无数据传输需求。
图8为本申请提供的第一终端设备采用一种具体的实现方式时的结构示意图。其中,收发模块701可由图8中的收发器801实现,处理模块702可由图8中的处理器802来实现。收发器801可通过一根或多根天线进行消息和数据的收发。
图9为本申请提供的第二终端设备的结构示意图。如图9所示,该第二终端设备包括:
处理模块901,用于确定第二终端设备从服务第一终端设备的网络设备接收网络设备通过MU-MIMO技术发送的第一终端设备的数据流;
接收模块902,用于接收网络设备通过MU-MIMO技术发送的第一终端设备的数据流;
发送模块903,用于将接收模块902接收的第一终端设备的数据流发送给第一终端设备。
该第二终端设备的其他可选实现方式可参考前述的第二终端设备302的可选实现方式,其中,处理模块901可用于执行第二终端设备302的处理操作,接收模块902可用于执行第二终端设备302的接收操作,发送模块903可用于执行第二终端设备302的发送操作。
该第二终端设备确定自身可以为第一终端设备转发下行数据流、发送自身的下行信道信息、接收第一终端设备或网络设备的控制消息、向第一终端设备或网络设备发送响应消息、向第一终端设备转发下行数据流的可选流程,可参考图5所示的流程中第二终端设备302的处理流程。
图9所示的第二终端设备可视为前述的M个第二终端设备302中的任一个。
可选地,发送模块903还用于:在接收模块902接收第一终端设备的数据流之前,向网络设备发送第二终端设备的下行信道信息,第二终端设备的下行信道信息用于网络设备通过MU-MIMO技术向第二终端设备发送第一终端设备的数据流。
可选地,接收模块902还用于:在发送模块903向网络设备发送第二终端设备的下行信道信息之前,接收网络设备或第一终端设备发送的通知,通知用于指示第二终端设备向网络设备发送第二终端设备的下行信道信息。
发送模块903上报第二终端设备的下行信道信息的可选实现方式、触发条件等,可参考图5所示的流程中步骤S503中第二终端设备302的处理。
其中,接收模块902接收的网络设备发送的通知,可视为前述的步骤S503中描述的网络设备303发送的信道信息上报请求消息;接收模块902接收的第一终端设备发送的通知,可视为前述的步骤S503中描述的第一终端设备301发送的信道信息上报请求消息。
可选地,发送模块903具体用于:
在处理模块901确认第一终端设备向网络设备发送第一终端设备的下行信道信息后,向网络设备发送第二终端设备的下行信道信息,第二终端设备的下行信道信息用于网络设备通过MU-MIMO技术向第二终端设备发送第一终端设备的数据流。
可选地,发送模块903还用于:在发送模块903将接收模块902接收的第一终端设备的数据流发送给第一终端设备之前,向网络设备发送第二辅助通知消息;
第二辅助通知消息用于通知第二终端设备能够接收网络设备通过MU-MIMO技术发送的第一终端设备的数据流并将第一终端设备的数据流发送给第一终端设备。
发送模块903发送第二辅助通知消息的可选实现方式可参考前述步骤 S501中,网络设备303确定M个第二终端设备302可以为第一终端设备301转发数据流的可选实现方式二。
可选地,第二终端设备有数据传输需求或无数据传输需求。
图10为本申请提供的第二终端设备采用一种具体的实现方式时的结构示意图。其中,处理模块901可由图10中的处理器1001实现,接收模块902可由图10中的接收器1002实现,发送模块903可由图10中的发射器1003实现。其中,发射器1003和接收器1002可共用一根或多根天线,发射器1003可通过该一根或多根天线进行消息和数据的发送,接收器1002可通过该一根或多根天线进行消息和数据的接收。
图11为本申请提供的网络设备的结构示意图。如图11所示,该网络设备包括:
处理模块1101,用于确定第二终端设备,第二终端设备用于从网络设备处接收网络设备通过MU-MIMO技术发送的第一终端设备的数据流;
收发模块1102,用于将第一终端设备的数据流通过MU-MIMO技术发送给第二终端设备。
该网络设备的其他可选实现方式可参考前述的网络设备303的可选实现方式,其中,处理模块1101可用于执行网络设备303的处理操作,收发模块1102可用于执行网络设备303的收发操作。
网络设备确定第二终端设备、接收第一终端设备或第二终端设备发送的下行信道信息、向第一终端设备或第二终端设备发送控制消息、接收第一终端设备或第二终端设备发送的响应消息、向第二终端设备发送第一终端设备的数据流的可选流程,可参考图5所示的流程中网络设备303的处理流程。
其中,处理模块1101确定第二终端设备的可选实现方式可参考前述步骤S501中网络设备303确定M个第二终端设备302的可选实现方式。
与图11所示的网络设备进行交互的第二终端设备可视为前述的M个第二终端设备302中的任一个。
可选地,收发模块1102还用于:在处理模块1101确定第二终端设备之 前,向第一终端设备发送第一控制消息,第一控制消息指示第一终端设备确定第二终端设备;以及从第一终端设备处接收第一终端设备响应于第一控制消息发送的第一辅助通知消息,第一辅助通知消息用于通知网络设备由哪个第二终端设备从网络设备接收第一终端设备的数据;
处理模块1101具体用于:根据收发模块1102接收的通知消息确定第二终端设备。
可选地,收发模块1102还用于:在处理模块1101确定第二终端设备之前,接收第二终端设备发送的第二辅助通知消息,第二辅助通知消息用于通知网络设备该第二终端设备能够接收网络设备通过MU-MIMO技术发送的第一终端设备的数据流并将第一终端设备的数据流发送给第一终端设备;
处理模块1101具体用于:根据第二辅助通知消息确定第二终端设备。
图11所示的网络设备接收第二辅助通知消息以及根据第二辅助通知消息确定第二终端设备的可选实现方式,可参考前述步骤S501中,网络设备303确定M个第二终端设备302可以为第一终端设备301转发数据流的可选实现方式二。
可选地,收发模块1102还用于:在将第一终端设备的数据流通过MU-MIMO技术发送给第二终端设备之前,
向第一终端设备发送第二控制消息,第二控制消息用于指示第一终端设备获取第二终端设备的下行信道信息;
接收第一终端设备响应于第二控制消息发送的第二终端设备的下行信道信息,第二终端设备的下行信道信息用于网络设备使用MU-MIMO技术向第二终端设备发送第一终端设备的数据流。
可选地,收发模块1102还用于:
在将第一终端设备的数据流通过MU-MIMO技术发送给第二终端设备之前,接收第二终端设备发送的第二终端设备的下行信道信息;
第二终端设备的下行信道信息用于网络设备通过MU-MIMO技术向第二终端设备发送第一终端设备的数据流。
可选地,收发模块1102还用于:
在将第一终端设备的数据流通过MU-MIMO技术发送给第二终端设备之前,接收第一终端设备发送的第一终端设备的下行信道信息;
第一终端设备的下行信道信息用于网络设备使用MU-MIMO技术向第二终端设备发送第一终端设备的数据流。
可选地,第二终端设备有数据传输需求,或第二终端设备无数据传输需求。
图12为本申请提供的网络设备采用一种具体的实现方式时的结构示意图。其中,收发模块1102可由图12中的收发器1202实现,处理模块1101可由图8中的处理器1201来实现。收发器1202可通过多根天线进行消息和数据的收发。
上述各个实施例提供的第一终端设备301、第二终端设备302以及网络设备303以及它们所执行的方法中,在网络设备发送第一终端设备301的数据流时,该实现方式中,由于第二终端设备参与了MU-MIMO的第一终端设备的下行数据传输,即使只有第一终端设备的数据流传输或者属于第二终端设备的数据的传输量较小时,第二终端设备与网络设备之间的下行信道不会被浪费而是被用来辅助传输第一终端设备的数据流,避免了网络设备无法采用MU-MIMO技术向多个终端设备下发数据流而导致MU-MIMO退化为SU-MIMO问题的出现,从而提高了通信系统的吞吐量。此外,也避免了同时有多个终端设备有数据传输需求,但有些终端设备的数据传输需求较小,没有充分利用数据传输需求较小的终端设备本身的传输能力,从而也提高了通信系统的吞吐量。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (39)

  1. 一种第一终端设备,其特征在于,包括:
    收发模块,用于从第二终端设备处接收所述第一终端设备的数据流;
    处理模块,用于对所述接收模块收到的数据流进行处理;
    其中,所述第二终端设备用于从服务所述第一终端设备的网络设备处接收所述网络设备通过多用户-多入多出MU-MIMO技术发送的所述第一终端设备的数据流。
  2. 如权利要求1所述的设备,其特征在于,
    所述处理模块还用于:在所述收发模块接收所述第一终端设备的数据流之前,确定所述第二终端设备。
  3. 如权利要求2所述的设备,其特征在于,所述收发模块还用于:
    在所述处理模块确定所述第二终端设备之后,对所述收发模块收到的数据流进行处理之前,向所述网络设备发送第一辅助通知消息;
    所述第一辅助通知消息用于通知所述网络设备由所述第二终端设备从所述网络设备接收所述第一终端设备的数据。
  4. 如权利要求2或3所述的设备,其特征在于,
    所述收发模块还用于:在所述处理模块确定第二终端设备之前,向至少一个终端设备发送辅助请求消息;
    所述辅助请求消息用于询问所述至少一个终端设备能否接收所述第一终端设备的数据流,并将接收的所述第一终端设备的数据流发送给所述第一终端设备;
    所述处理模块具体用于:将所述至少一个终端设备中发出辅助响应消息的终端设备确定为所述第二终端设备;
    所述辅助响应消息用于通知所述第一终端设备发出所述辅助响应消息的终端设备能接收所述第一终端设备的数据流并将接收的所述第一终端设备的数据流发送给所述第一终端设备。
  5. 如权利要求1~4任一项所述的设备,其特征在于,
    所述收发模块还用于:在所述处理模块确定第二终端设备之前,接收所述网络设备发送的第一控制消息,所述第一控制消息指示所述第一终端设备确定所述第二终端设备。
  6. 如权利要求1~5任一项所述的设备,其特征在于,所述收发模块还用于:
    在从第二终端设备处接收所述第一终端设备的数据流之前,向所述网络设备发送所述第二终端设备的下行信道信息;
    所述第二终端设备的下行信道信息用于所述网络设备使用MU-MIMO技术向所述第二终端设备发送所述第一终端设备的数据流。
  7. 如权利要求6所述的设备,其特征在于,所述收发模块还用于:
    在向所述网络设备发送所述第二终端设备的下行信道信息之前,接收所述网络设备发送第二控制消息;
    所述第二控制消息用于指示所述第一终端设备获取所述第二终端设备的下行信道信息。
  8. 如权利要求1~5任一项所述的设备,其特征在于,所述收发模块还用于:
    在所述处理模块确定第二终端设备之后,通知所述第二终端设备向所述网络设备发送所述第二终端设备的下行信道信息。
  9. 如权利要求1~8任一项所述的设备,其特征在于,所述收发模块还用于:
    向所述网络设备发送所述第一终端设备的下行信道信息;
    所述第一终端设备的下行信道信息用于所述网络设备使用MU-MIMO技术向所述第二终端设备发送所述第一终端设备的数据流。
  10. 如权利要求1~9任一项所述的设备,其特征在于,所述第二终端设备有数据传输需求,或所述第二终端设备无数据传输需求。
  11. 一种第二终端设备,其特征在于,包括:
    处理模块,用于确定所述第二终端设备从服务第一终端设备的网络设备接收所述网络设备通过MU-MIMO技术发送的所述第一终端设备的数据流;
    接收模块,用于接收所述网络设备通过MU-MIMO技术发送的所述第一终端设备的数据流;
    发送模块,用于将所述接收模块接收的所述第一终端设备的数据流发送给所述第一终端设备。
  12. 如权利要求11所述的设备,其特征在于,所述发送模块还用于:
    在所述接收模块接收所述第一终端设备的数据流之前,向所述网络设备发送所述第二终端设备的下行信道信息;
    所述第二终端设备的下行信道信息用于所述网络设备通过MU-MIMO技术向所述第二终端设备发送所述第一终端设备的数据流。
  13. 如权利要求12所述的设备,其特征在于,所述接收模块还用于:
    在所述发送模块向所述网络设备发送所述第二终端设备的下行信道信息之前,接收所述第一终端设备或所述网络设备发送的通知;
    所述通知用于指示所述第二终端设备向所述网络设备发送所述第二终端设备的下行信道信息。
  14. 如权利要求12所述的设备,其特征在于,所述发送模块具体用于:
    在所述处理模块确认所述第一终端设备向所述网络设备发送所述第一终端设备的下行信道信息后,向所述网络设备发送所述第二终端设备的下行信道信息;
    所述第二终端设备的下行信道信息用于所述网络设备通过MU-MIMO技术向所述第二终端设备发送所述第一终端设备的数据流。
  15. 如权利要求11~14任一项所述的设备,其特征在于,
    所述发送模块还用于:在所述发送模块将所述接收模块接收的所述第一终端设备的数据流发送给所述第一终端设备之前,向所述网络设备发送第二辅助通知消息;
    所述第二辅助通知消息用于通知所述网络设备能够接收所述网络设备通 过MU-MIMO技术发送的所述第一终端设备的数据流并将所述第一终端设备的数据流发送给所述第一终端设备。
  16. 如权利要求11~15任一项所述的设备,其特征在于,所述第二终端设备有数据传输需求或无数据传输需求。
  17. 一种网络设备,其特征在于,包括:
    处理模块,用于确定第二终端设备,所述第二终端设备用于从所述网络设备处接收所述网络设备通过MU-MIMO技术发送的所述第一终端设备的数据流;
    收发模块,用于将所述第一终端设备的数据流通过MU-MIMO技术发送给所述第二终端设备。
  18. 如权利要求17所述的设备,其特征在于,
    所述收发模块还用于:在所述处理模块确定第二终端设备之前,向所述第一终端设备发送第一控制消息,所述第一控制消息指示所述第一终端设备确定所述第二终端设备;以及从所述第一终端设备处接收所述第一终端设备响应于所述第一控制消息发送的第一辅助通知消息;所述第一辅助通知消息用于通知所述网络设备由所述第二终端设备从所述网络设备接收所述第一终端设备的数据;
    所述处理模块具体用于:根据所述收发模块接收的所述通知消息确定所述第二终端设备。
  19. 如权利要求17所述的设备,其特征在于,
    所述收发模块还用于:在所述处理模块确定第二终端设备之前,接收所述第二终端设备发送的第二辅助通知消息,所述第二辅助通知消息用于通知所述网络设备所述第二终端设备能够接收所述网络设备通过MU-MIMO技术发送的所述第一终端设备的数据流并将所述第一终端设备的数据流发送给所述第一终端设备;
    所述处理模块具体用于:根据所述第二辅助通知消息确定所述第二终端设备。
  20. 如权利要求17~19任一项所述的设备,其特征在于,所述收发模块还用于:在将所述第一终端设备的数据流通过MU-MIMO技术发送给所述第二终端设备之前,
    向所述第一终端设备发送第二控制消息,所述第二控制消息用于指示所述第一终端设备获取所述第二终端设备的下行信道信息;
    接收所述第一终端设备响应于所述第二控制消息发送的所述第二终端设备的下行信道信息;
    所述第二终端设备的下行信道信息用于所述网络设备使用MU-MIMO技术向所述第二终端设备发送所述第一终端设备的数据流。
  21. 如权利要求17~19任一项所述的设备,其特征在于,所述收发模块还用于:
    在将所述第一终端设备的数据流通过MU-MIMO技术发送给所述第二终端设备之前,接收所述第二终端设备发送的所述第二终端设备的下行信道信息;
    所述第二终端设备的下行信道信息用于所述网络设备通过MU-MIMO技术向所述第二终端设备发送所述第一终端设备的数据流。
  22. 如权利要求17~21任一项所述的设备,其特征在于,所述收发模块还用于:
    在将所述第一终端设备的数据流通过MU-MIMO技术发送给所述第二终端设备之前,接收所述第一终端设备发送的所述第一终端设备的下行信道信息;
    所述第一终端设备的下行信道信息用于所述网络设备使用MU-MIMO技术向所述第二终端设备发送所述第一终端设备的数据流。
  23. 如权利要求17~22任一项所述的设备,其特征在于,
    所述第二终端设备有数据传输需求,或所述第二终端设备无数据传输需求。
  24. 一种数据传输方法,其特征在于,包括:
    第一终端设备从第二终端设备处接收所述第一终端设备的数据流;
    所述第一终端设备对收到的数据流进行处理;
    其中,所述第二终端设备用于从服务所述第一终端设备的网络设备处接收所述网络设备通过多用户-多入多出MU-MIMO技术发送的所述第一终端设备的数据流。
  25. 如权利要求24所述的方法,其特征在于,
    在所述第一终端设备从第二终端设备处接收所述第一终端设备的数据流之前,还包括:
    所述第一终端设备确定所述第二终端设备。
  26. 如权利要求25所述的方法,其特征在于,在所述第一终端设备确定所述第二终端设备之后,所述第一终端设备对收到的数据流进行处理之前,还包括:
    所述第一终端设备向所述网络设备发送第一辅助通知消息;
    所述第一辅助通知消息用于通知所述网络设备由所述第二终端设备从所述网络设备接收所述第一终端设备的数据。
  27. 如权利要求25或26所述的方法,其特征在于,
    在所述第一终端设备确定第二终端设备之前,还包括:所述第一终端设备向至少一个终端设备发送辅助请求消息,所述辅助请求消息用于询问所述至少一个终端设备能否接收所述第一终端设备的数据流,并将接收的所述第一终端设备的数据流发送给所述第一终端设备;
    所述第一终端设备确定第二终端设备,包括:所述第一终端设备将所述至少一个终端设备中发出辅助响应消息的终端设备确定为所述第二终端设备,所述辅助响应消息用于通知所述第一终端设备发出所述辅助响应消息的终端设备能接收所述第一终端设备的数据流并将接收的所述第一终端设备的数据流发送给所述第一终端设备。
  28. 如权利要求25~27任一项所述的方法,其特征在于,在所述第一终端设备确定第二终端设备之前,还包括:
    所述第一终端设备接收所述网络设备发送的第一控制消息,所述第一控制消息指示所述第一终端设备确定所述第二终端设备。
  29. 如权利要求24~28任一项所述的方法,其特征在于,
    在所述第一终端设备从第二终端设备处接收所述第一终端设备的数据流之前,还包括:
    所述第一终端设备向所述网络设备发送所述第二终端设备的下行信道信息;
    所述第二终端设备的下行信道信息用于所述网络设备使用MU-MIMO技术向所述第二终端设备发送所述第一终端设备的数据流。
  30. 如权利要求29所述的方法,其特征在于,在所述第一终端设备向所述网络设备发送所述第二终端设备的下行信道信息之前,还包括:
    所述第一终端设备接收所述网络设备发送第二控制消息;
    所述第二控制消息用于指示所述第一终端设备获取所述第二终端设备的下行信道信息。
  31. 如权利要求24~28任一项所述的方法,其特征在于,在所述第一终端设备确定第二终端设备之后,还包括:
    所述第一终端设备通知所述第二终端设备向所述网络设备发送所述第二终端设备的下行信道信息。
  32. 如权利要求24~31任一项所述的方法,其特征在于,还包括:
    所述第一终端设备向所述网络设备发送所述第一终端设备的下行信道信息;
    所述第一终端设备的下行信道信息用于所述网络设备使用MU-MIMO技术向所述第二终端设备发送所述第一终端设备的数据流。
  33. 如权利要求24~32任一项所述的方法,其特征在于,
    所述第二终端设备有数据传输需求,或所述第二终端设备无数据传输需求。
  34. 一种数据传输方法,其特征在于,包括:
    第二终端设备确定所述第二终端设备从服务第一终端设备的网络设备接收所述网络设备通过MU-MIMO技术发送的所述第一终端设备的数据流;
    所述第二终端设备接收所述网络设备通过MU-MIMO技术发送的所述第一终端设备的数据流,并将接收的所述第一终端设备的数据流发送给所述第一终端设备。
  35. 如权利要求34所述的方法,其特征在于,在所述第二终端设备接收所述第一终端设备的数据流之前,还包括:
    所述第二终端设备向所述网络设备发送所述第二终端设备的下行信道信息;
    所述第二终端设备的下行信道信息用于所述网络设备通过MU-MIMO技术向所述第二终端设备发送所述第一终端设备的数据流。
  36. 如权利要求35所述的方法,其特征在于,在所述第二终端设备向所述网络设备发送所述第二终端设备的下行信道信息之前,还包括:
    所述第二终端设备接收所述第一终端设备或所述网络设备发送的通知;
    所述通知用于指示所述第二终端设备向所述网络设备发送所述第二终端设备的下行信道信息。
  37. 如权利要求35所述的方法,其特征在于,所述第二终端设备向所述网络设备发送所述第二终端设备的下行信道信息,包括:
    在所述第二终端设备确认所述第一终端设备向所述网络设备发送所述第一终端设备的下行信道信息后,向所述网络设备发送所述第二终端设备的下行信道信息;
    所述第二终端设备的下行信道信息用于所述网络设备通过MU-MIMO技术向所述第二终端设备发送所述第一终端设备的数据流。
  38. 如权利要求34~37任一项所述的方法,其特征在于,在所述第二终端设备接收所述网络设备通过MU-MIMO技术发送的所述第一终端设备的数据流,并将接收的所述第一终端设备的数据流发送给所述第一终端设备之前,还包括:
    所述第二终端设备向所述网络设备发送第二辅助通知消息;
    所述第二辅助通知消息用于通知所述网络设备能够接收所述网络设备通过MU-MIMO技术发送的所述第一终端设备的数据流并将所述第一终端设备的数据流发送给所述第一终端设备。
  39. 如权利要求34~38任一项所述的方法,其特征在于,
    所述第二终端设备有数据传输需求,或所述第二终端设备无数据传输需求。
PCT/CN2015/099529 2015-12-29 2015-12-29 终端设备、网络设备、数据传输方法和无线通信系统 WO2017113113A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15911744.9A EP3389327B1 (en) 2015-12-29 2015-12-29 Terminal device, network device, data transmission method, and wireless communication system
PCT/CN2015/099529 WO2017113113A1 (zh) 2015-12-29 2015-12-29 终端设备、网络设备、数据传输方法和无线通信系统
JP2018534113A JP6639680B2 (ja) 2015-12-29 2015-12-29 端末装置、ネットワーク装置、データ送信方法、及び無線通信システム
CN201580084329.3A CN108353409B (zh) 2015-12-29 2015-12-29 终端设备、网络设备、数据传输方法和无线通信系统
US16/021,825 US20180310287A1 (en) 2015-12-29 2018-06-28 Terminal device, network device, data transmission method, and wireless communications system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/099529 WO2017113113A1 (zh) 2015-12-29 2015-12-29 终端设备、网络设备、数据传输方法和无线通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/021,825 Continuation US20180310287A1 (en) 2015-12-29 2018-06-28 Terminal device, network device, data transmission method, and wireless communications system

Publications (1)

Publication Number Publication Date
WO2017113113A1 true WO2017113113A1 (zh) 2017-07-06

Family

ID=59224134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099529 WO2017113113A1 (zh) 2015-12-29 2015-12-29 终端设备、网络设备、数据传输方法和无线通信系统

Country Status (5)

Country Link
US (1) US20180310287A1 (zh)
EP (1) EP3389327B1 (zh)
JP (1) JP6639680B2 (zh)
CN (1) CN108353409B (zh)
WO (1) WO2017113113A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10079919B2 (en) * 2016-05-27 2018-09-18 Solarflare Communications, Inc. Method, apparatus and computer program product for processing data
CN109257810B (zh) * 2017-07-12 2022-05-10 华为技术有限公司 一种功率控制方法和终端设备
CN113364676B (zh) * 2020-03-05 2023-05-02 华为技术有限公司 一种数据流处理的方法及装置
CN111726647B (zh) * 2020-06-17 2023-05-26 京东方科技集团股份有限公司 数据分流设备和数据处理系统
CN117793696A (zh) * 2022-09-29 2024-03-29 大唐移动通信设备有限公司 多终端聚合传输方法、终端、网络设备、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103580814A (zh) * 2013-10-10 2014-02-12 南京邮电大学 一种基于终端直通的虚拟多入多出通信方法
CN104219021A (zh) * 2013-05-31 2014-12-17 中兴通讯股份有限公司 一种下行虚拟多天线系统的数据传输方法、装置及系统
WO2015060761A1 (en) * 2013-10-23 2015-04-30 Telefonaktiebolaget L M Ericsson (Publ) Network nodes, a user equipment and methods therein for handling cellular and d2d communications in a wireless communications network
CN105471558A (zh) * 2014-08-25 2016-04-06 中兴通讯股份有限公司 多输入多输出系统信令传输方法和装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7508798B2 (en) * 2002-12-16 2009-03-24 Nortel Networks Limited Virtual mimo communication system
JPWO2009113129A1 (ja) * 2008-03-14 2011-07-14 パナソニック株式会社 中継システム及び無線通信システム
WO2010016831A1 (en) * 2008-08-05 2010-02-11 Nokia Corporation Apparatus and method for cooperative partial detection using mimo relay
KR101715939B1 (ko) * 2009-06-18 2017-03-14 엘지전자 주식회사 채널 상태 정보 피드백 방법 및 장치
JP5540592B2 (ja) * 2009-07-23 2014-07-02 ソニー株式会社 通信システム、通信制御方法、移動端末、および中継装置
JP5661120B2 (ja) * 2009-12-25 2015-01-28 インテル・コーポレーション 無線ネットワークにおけるダウンリンク・マルチユーザーmimo送信のための方法および装置
EP2564658B1 (en) * 2010-04-26 2015-03-11 Nokia Solutions and Networks Oy Connection arrangement in relayed wireless communications
WO2012144822A2 (en) * 2011-04-19 2012-10-26 Lg Electronics Inc. Method and apparatus for transmitting and receiving data in a wireless communication system that supports a relay node
EP2665321B1 (en) * 2012-05-15 2017-03-22 Telefonaktiebolaget LM Ericsson (publ) Apparatus and method thereof for setting up device-to-device communication
KR102050745B1 (ko) * 2013-02-28 2019-12-02 삼성전자 주식회사 무선통신 시스템에서 기지국과 단말 사이의 정보 송수신 방법 및 장치
US20150043444A1 (en) * 2013-08-12 2015-02-12 Acer Incorporated Concurrent device to device and cellular communication method with multiple antennas, user equipment using the same, base station using the same and communication system using the same
US9906964B2 (en) * 2013-10-09 2018-02-27 Avago Technologies General Ip (Singapore) Pte. Ltd. Hierarchical transmission in wireless communications
US20160128027A1 (en) * 2014-11-03 2016-05-05 Qualcomm Incorporated Adjacent channel co-existence for d2d

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104219021A (zh) * 2013-05-31 2014-12-17 中兴通讯股份有限公司 一种下行虚拟多天线系统的数据传输方法、装置及系统
CN103580814A (zh) * 2013-10-10 2014-02-12 南京邮电大学 一种基于终端直通的虚拟多入多出通信方法
WO2015060761A1 (en) * 2013-10-23 2015-04-30 Telefonaktiebolaget L M Ericsson (Publ) Network nodes, a user equipment and methods therein for handling cellular and d2d communications in a wireless communications network
CN105471558A (zh) * 2014-08-25 2016-04-06 中兴通讯股份有限公司 多输入多输出系统信令传输方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3389327A4 *

Also Published As

Publication number Publication date
US20180310287A1 (en) 2018-10-25
JP6639680B2 (ja) 2020-02-05
CN108353409A (zh) 2018-07-31
EP3389327A4 (en) 2019-01-02
EP3389327B1 (en) 2020-03-18
EP3389327A1 (en) 2018-10-17
CN108353409B (zh) 2020-10-23
JP2019508927A (ja) 2019-03-28

Similar Documents

Publication Publication Date Title
US11936584B2 (en) System and method for control signaling
JP6703060B2 (ja) 複数の送信ポイントのチャネル状態情報(csi)の通信
US10547364B2 (en) Quasi co-location for beamforming
CN110582960A (zh) 用户设备和信道状态信息(csi)获取方法
CN110999196B (zh) 无线通信方法、用户设备和基站
US20180310287A1 (en) Terminal device, network device, data transmission method, and wireless communications system
JP2020519124A (ja) チャネル状態情報(csi)の取得方法、ユーザ端末(ue)、および送受信ポイント(trp)
CN110268637B (zh) Srs发送的用户设备和方法
US20210111773A1 (en) Method for feedback of correlation of beams in wireless communication system and user equipment
CN111587556A (zh) 用户装置和无线通信方法
US11671197B2 (en) Configuration method for channel state information measurement and related device
US20190098638A1 (en) Method for wireless communication, user equipment, and base station
KR102301580B1 (ko) 주기적 및 준-영속적 기준 신호 가정들을 위한 pdsch 리소스 맵핑에 대한 rrc 및 mac에서의 시그널링
US10944457B2 (en) Measurement method, and apparatus
CN110268668B (zh) 用户设备和无线通信方法
WO2017113114A1 (zh) 终端设备、网络设备、数据传输方法和无线通信系统
WO2020057284A1 (zh) 一种信道状态信息的确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911744

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018534113

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015911744

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015911744

Country of ref document: EP

Effective date: 20180712