WO2017111546A1 - Broadband high-refractive index metamaterial nano-composite structure - Google Patents

Broadband high-refractive index metamaterial nano-composite structure Download PDF

Info

Publication number
WO2017111546A1
WO2017111546A1 PCT/KR2016/015205 KR2016015205W WO2017111546A1 WO 2017111546 A1 WO2017111546 A1 WO 2017111546A1 KR 2016015205 W KR2016015205 W KR 2016015205W WO 2017111546 A1 WO2017111546 A1 WO 2017111546A1
Authority
WO
WIPO (PCT)
Prior art keywords
metamaterial
nanoparticles
refractive index
nano composite
composite structure
Prior art date
Application number
PCT/KR2016/015205
Other languages
French (fr)
Korean (ko)
Inventor
신종화
심현자
이헌
정경재
김리향
Original Assignee
한국과학기술원
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원, 고려대학교 산학협력단 filed Critical 한국과학기술원
Publication of WO2017111546A1 publication Critical patent/WO2017111546A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B1/005Constitution or structural means for improving the physical properties of a device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/101Nanooptics

Definitions

  • the present application relates to a high refractive index metamaterial nanocomposite structure having broadband characteristics and an optical film including the metamaterial nanocomposite structure.
  • the development of the semiconductor industry is based on improving the precision of micro processes in semiconductor processes.
  • the main core technology of semiconductor microprocessing depends on how finely the pattern of etching resist can be controlled during photolithography process, and the resolution of the optical system is needed to finely etch the pattern.
  • Today's best photolithography device is an excimer laser that can produce devices with a minimum wiring width of 14 nm using light at wavelengths of 248 nm and 193 nm.
  • other alternatives are needed.
  • the oil immersion technology uses transparent oils with specific optical and viscosity properties between the objective lens and the sample in the optical microscope. As the oil properties improve, the wiring width can be reduced by several nanometers. It is expected.
  • highly purified water is used in place of oil in semiconductor processes.
  • various techniques such as double exposure and resist development conditions are applied to reduce the line width even further, and thus, a line width smaller than the size determined by the simple relationship is obtained. Therefore, a smaller line width can be obtained by fundamentally reducing the resolution shown in the above relation.
  • the resolution of the fine pattern size is inversely proportional to the refractive index of the oil between the objective lens and the sample, and the high resolution requires immersion oil of high refractive index.
  • the development of high refractive index oil which is an optical characteristic of the oil, which must be improved, is currently delayed due to the absence of high refractive index oil and difficulty in making it.
  • metamaterials made of sub-wavelength (sub-wavelength) capacitor (capacitor) arrays have been proposed to have high permittivity at broadband, they also have problems due to the strong diamagnetic effect of suppressing the magnetic permeability value. Only recently have broadband theoretical high refractive index metamaterials been proposed to reduce this diamagnetic effect. However, the proposed structure also has not been the target of easy implementation due to its three-dimensional features.
  • Korean Patent Laid-Open No. 2012-0007819 relates to a meta material and a method for manufacturing the same, and discloses a meta material including a nano pattern structure having a negative refractive index in a natural state and a method for manufacturing the same.
  • the meta-material nano having a high refractive index while exhibiting broadband characteristics in the visible, ultraviolet and / or infrared wavelength band It is intended to provide an optical film including a composite structure and the metamaterial nano composite structure.
  • a first aspect of the present disclosure provides a unit structure comprising nanoparticles and a host material, wherein the unit structure is arranged in three dimensions, provides a metamaterial nano composite structure.
  • the second aspect of the present application provides an optical film comprising the metamaterial nanocomposite structure according to the first aspect of the present application.
  • a high refractive index metamaterial nano composite structure exhibiting broadband characteristics may be provided.
  • the unit structure of the metamaterial nanocomposite structure according to the embodiment of the present invention is formed to a size smaller than the wavelength (about 1/10 or less of the wavelength in the vacuum) and the unit structures are densely arranged in three dimensions. packed, so that the whole structure can produce optical effects as if it were a single material with a high refractive index.
  • the size of the nanoparticles corresponding to or smaller than the skin depth of the nanoparticles induces magnetic penetration into the nanoparticle part, thereby providing an effective permeability of the nanoparticles.
  • the dielectric constant may be freely adjusted through a simple structure without noticeable change in permeability by changing the width of the gap (gap) with the adjacent nanoparticles while maintaining the size of the unit structure to a constant value.
  • a high permittivity and a high refractive index can be achieved, and the adjustment of the permittivity and permeability is important for designing the impedance and other optical properties of the material, so that for lithography and imaging It can be applied in a variety of optical devices, from submerged lenses, waveguide couplers, modulators, light detectors and energy devices.
  • the metamaterial nanocomposite structure has the effect of overcoming the bandwidth limitations of other metamaterials directly dependent on surface plasmon resonance.
  • the metamaterial nanocomposites have the same effect on other nanoparticle morphologies and lattice types, thus providing the potential for multiple bottom-up nanoparticle synthesis instead of expensive and complex top-down nanofabrication processes. Can be.
  • FIG. 1 is a schematic diagram (a) of a cubic metamaterial nanocomposite structure densely arranged in three dimensions, and a schematic diagram (b) showing metal particle size conditions for achieving high refractive index.
  • FDTD finite difference time domain method
  • 3 is, in one embodiment of the present application, material data used for FDTD simulation.
  • 5 (a) and 5 (b) show FDTD simulation results showing an effective dielectric constant, an effective permeability, and an effective refractive index of a gold metamaterial nanocomposite structure having a host material of Si02 in an example of the present application.
  • 6 (a) to 6 (f) show an asymptotic value of a fully electric conductor and a gold metamaterial nanocomposite structure in which a gap width is changed under a constant unit structure size in one embodiment of the present application [(a) and ( d)], FDTD simulation results showing permeability [(b) and (e)] and refractive index [(c) and (f)].
  • FIG. 7 (a) to 7 (d) are schematic diagrams ((a) and (b)] showing cubic nanoparticles in a cubic lattice and spherical nanoparticles in a hexagonal lattice in one embodiment of the present application, and a multilayer FDTD simulation results [(c) and (d)].
  • FIG. 8 is an image illustrating a manufacturing process of a hole pattern by block copolymer lithography in an embodiment of the present disclosure.
  • FIG. 9 is an image illustrating an ion milling process of the aluminum metamaterial nanocomposite structure in one embodiment of the present application.
  • 10 (a) to 10 (d) are SEM images of the aluminum metamaterial nanocomposite structure in one embodiment of the present application.
  • 11A and 11B are AFM images of an aluminum metamaterial nanocomposite structure in one embodiment of the present application.
  • UV-VIS spectrometer spectrum showing the measured transmittance of the aluminum metamaterial nanocomposite structure in one embodiment of the present application.
  • FIG. 13 is an FDTD simulation graph showing a calculated transmittance of an aluminum metamaterial nanocomposite structure in one embodiment of the present application.
  • FIG. 14 is an FDTD simulation graph showing the derived effective refractive index of the metamaterial nanocomposite structure in one embodiment of the present application.
  • the term "combination (s) thereof" included in the expression of a makushi form refers to one or more mixtures or combinations selected from the group consisting of components described in the expression of makushi form, It means to include one or more selected from the group consisting of the above components.
  • metal is a material made of an array of meta atoms designed with a metal or dielectric material made to a size much smaller than the wavelength of light, which is difficult for natural materials to have. It means the artificially designed and made to have optical properties.
  • the term "close-packed” refers to a state in which nanoparticles or unit structures are densely arranged in three dimensions with a certain unit size and gap width in the host material.
  • the densely arranged nanoparticles and the densely arranged unit structures according to the present invention exhibit broadband properties from visible light to ultraviolet and / or infrared wavelength bands and at the same time have a high refractive index.
  • the unit structure size and the width of the gap of the nanoparticles and unit structures may be several nanometers or less, but may not be limited thereto.
  • the term “skin depth” refers to the depth indicating how far electromagnetic waves can penetrate into the surface of the medium.
  • the current density tends to be close to the surface of the medium and decreases as it penetrates into the conductor.
  • the current flows mainly at the "surface” of the conductor, which is between the outer surface and the level called the skin depth, so that the penetration depth is more specifically 1 / e (such as current density or electric field at the surface). 37%).
  • the term “refractive index” refers to the rate of velocity of waves traveling in two media as light travels from one media to another.
  • the refractive index varies with wavelength, and at the interface of the media with different refractive indices, the light bends according to Snell's law and some reflects according to the angle of incidence.
  • the refractive index can be expressed as the square root of the product of relative permittivity and relative permeability for Equation 1, and as the refractive index value increases, the resolution, which is the ability to distinguish two objects from each other in an optical device, is increased. Because it improves, the resolution increases:
  • a first aspect of the present application provides a metamaterial nanocomposite structure comprising unit structures comprising nanoparticles and a host material, wherein the unit structures are arranged in three dimensions.
  • the unit structure may be close-packed in three dimensions.
  • the metamaterial nano composite structure may have a high refractive index in a wavelength band selected from visible light, ultraviolet light, infrared light, and combinations thereof, but may not be limited thereto.
  • the metamaterial nanocomposite structure may exhibit a high refractive index by controlling the size of the nanoparticles of the metamaterial nanocomposite structure and / or the width of the gap, which is a gap with adjacent nanoparticles, but is not limited thereto. Can be.
  • the high refractive index metamaterial which has been proposed for the terahertz frequency in the related art, has a disadvantage in that it is difficult to apply directly at the visible wavelength due to the difficulty of nanofabrication due to a complicated structure.
  • the high refractive index meta-material nanocomposite structure according to one embodiment of the present application is selected by appropriately selecting the width of the gap that is the gap between the nanoparticle size and the adjacent nanoparticles in the unit structure, a simple structure without lowering the effective permeability This can lead to an improvement in the effective dielectric constant and refractive index.
  • the unit structure may be one that is isotropic (isotropy) or anisotropic (anisotropy) are densely arranged in three dimensions.
  • the metamaterial nano composite structure may have a maximum refractive index of about 1.5 or more at a wavelength of about 200 nm or less, but may not be limited thereto.
  • the metamaterial nano composite structure may have a maximum refractive index of about 2 or more at an ultraviolet wavelength of about 200 nm to about 400 nm, but may not be limited thereto.
  • the metamaterial nano composite structure may have a maximum refractive index of about 4 or more at a visible light wavelength of about 400 nm to about 700 nm, but may not be limited thereto.
  • the metamaterial nano composite structure may have a maximum refractive index of about 5 or more at an infrared wavelength of about 700 nm or more, but may not be limited thereto.
  • Figure 1 (a) is an image showing an example of a three-dimensionally arranged cubic metamaterial nano composite structure contained in a dielectric host material for achieving a high refractive index according to an embodiment of the present application.
  • the blue and gray areas represent the dielectric and metal, respectively.
  • the arrow represents the electric field and the field intensity is weakened by the electrons of the metal.
  • the length of the arrow indicates the strength of the magnetic field and the propagation strength becomes weak when the magnetic field penetrates into the metal.
  • the size of the nanoparticles in the unit structure may correspond to or smaller than the penetration depth of the nanoparticles, but may not be limited thereto.
  • the penetration depth may be different depending on the type of the nanoparticles, but may not be limited thereto.
  • the penetration depth is not only in the metal but also in the heavily doped semiconductor, or in a material where the real part of the dielectric constant is negative, so that the magnetic field does not enter well and decreases exponentially with distance from the surface.
  • the penetration depth is a depth indicating how far the electromagnetic wave can penetrate from the surface of the medium, and the intensity of the electromagnetic wave decreases by 1 / e when the penetration depth penetrates.
  • the magnetic field is distributed almost uniformly across the unit structure, which prevents the reduction of the effective permeability of the metamaterial nanocomposite structure, resulting in a high refractive index.
  • Metamaterial nanocomposites can be created.
  • the size of the nanoparticles corresponding to or smaller than the depth of penetration can lead to high refractive indices according to the formula of Equation 2:
  • n eff is an effective refractive index
  • ⁇ eff is an effective permittivity
  • ⁇ eff is an effective permeability
  • a is the size of a unit structure (unit cell)
  • g is a width of a gap, which is an interval between adjacent nanoparticles.
  • Metamaterial nanocomposites have a high effective dielectric constant that is nearly constant over a wide range of wavelengths due to the capacitive effect determined by geometry.
  • the DC or low-frequency permittivity of a less known (meta) material is the same as the capacitance of a parallel plate capacitor with a test material that fills the entire space between the plates, but with a known permittivity.
  • C, Q, and V are capacitance, total charge, and total voltage drop, respectively, while ⁇ cap , A, and d are Respectively, the dielectric constant, area and distance of the dielectric material between the plates), and the capacitance is directly proportional to ⁇ cap .
  • the ratio of the capacitance is the ratio of the dielectric constant of the test material and the reference material.
  • the longitudinal electric field due to the charge is present only in the gap region between the metal particles and excluded from the inside of the particles. This is because the longitudinal electric field, typically a unit of sub-angstrom, cannot penetrate into the metal beyond the Thomas-Fermi screening length. This fact is shown in Fig. 1B.
  • the strength of the electric field in the dielectric gap region of the metamaterial nanocomposite is equal to the strength of the electric field in the reference case where the space between the capacitor plates is filled with the same material (permittivity, ⁇ h) as the gap dielectric.
  • the total voltage drop in the presence of the metamaterial nanocomposite is reduced to g / a of the voltage drop in the reference case, which means that the capacitance is improved by a / g.
  • ⁇ eff of the metamaterial nanocomposite structure is also improved by a / g, meaning a / g ⁇ h .
  • the meta-material nanocomposites require 'close-packed' arrays for high refractive index due to the a / g factor.
  • the nanoparticles in the unit structure may be coated or surrounded by the host material (wraaping), but may not be limited thereto.
  • the unit structure may be a core-shell structure in which spherical nanoparticles are surrounded by a host material and then arranged in another host material, but may not be limited thereto.
  • the unit structure may be formed by arranging cylindrical nanoparticles such as carbon nanotubes in a host material, but may not be limited thereto.
  • the arrangement of the nanoparticles may be a core-shell structure or a close-pack, but may not be limited thereto.
  • the material of the nanoparticles is gold (Au), silver (Ag), aluminum (Al), copper (Cu), nickel (Ni), platinum (Pt), titanium (Ti), tin (Sn), and a metal core selected from the group consisting of combinations thereof may be in a form surrounded by a nonmetallic shell, but may not be limited thereto.
  • the nanoparticles when the nanoparticles are semiconductors, although the nanoparticles are larger in size, they may exhibit a high refractive index, but may not be limited thereto. Since the semiconductor nanoparticles have a longer penetration depth than the metal nanoparticles, the magnetic field can penetrate deeper. Therefore, even if the nanoparticles have a larger size than the metal nanoparticles, they may exhibit a high refractive index. Can be.
  • the nanoparticles in the unit structure may include a material in which the real part of the dielectric constant is negative, and the host material may include a material in which the real part of the dielectric constant is positive, but is not limited thereto.
  • the nanoparticles are metals such as gold (Au), silver (Ag), aluminum (Al), copper (Cu), nickel (Ni), platinum (Pt), titanium (Ti), tin (Sn), and the like.
  • Carbon-based materials such as graphite, carbon nanotubes, and fullerenes
  • the host material may be silicon dioxide (SiO 2 ), copper oxide (CuO 2 ), aluminum oxide (Al 2 O 3 ), vanadium oxide, titanium oxide, silver oxide Oxides such as these; Nitrides such as silicon nitride (Si 3 N 4 ), sialon and the like; Silicon, germanium, cadmium telluride (CdTe), lead sulfide (PbS), indium arsenide (InAs), indium phosphide (InP), indium antimonide (InSb), gallium phosphide (GaP), gallium nitride (GaN), non Semiconductor materials such as gallium hydride (GaAs); Compound semiconductor materials of three or more kinds of elements such as InGaAsP; Polymeric materials; Carbon-based materials such as graphite; Organic materials such as polydopamine, oleylamine; Or liquid materials such as water, oils, organic solvents, and the like, but may not be limited thereto
  • the host material when the host material is a liquid material such as water, oil, the host material is used after applying on the sample using a spin coating method, spray coating method, immersion method, or a drop method It may be, but may not be limited thereto.
  • aluminum (Al) is a highly reactive metal as the nanoparticles, it is possible to improve the refractive index of the metamaterial nano composite structure, but may not be limited thereto.
  • the nanoparticles in the unit structure is tetrahedral, hexahedral, octahedral, octahedral, tetrahedral, icosahedron, rod, concave tetrahedron, tetrahedral It may include, but not limited to, twin, spherical, ellipsoidal, cylindrical, such as hexagonal plate, triangular plate, circular pentagonal twin.
  • the nanoparticles may have an isotropic sphere, tetrahedron, cube, octahedron, dodecahedron, dodecahedral, or dodecahedron. It may not be limited.
  • the nanoparticles formed in the unit structure may have a width of a gap, which is a gap with adjacent nanoparticles, of about 10 nm or less, but may not be limited thereto.
  • the width of the gap which is the distance between the nanoparticles and adjacent nanoparticles, may be about 10 nm or less, about 9 nm or less, about 8 nm or less, about 7 nm or less, about 6 nm or less, or about 5 nm or less. It may be, but may not be limited thereto.
  • the dielectric constant of the nanoparticles can be freely adjusted without noticeable change in permeability, by changing the width of the gap while maintaining the size of the unit structure at a constant value under the depth of penetration, but is not limited thereto. Can be. While the permeability is nearly constant for the nanoparticles, the permittivity is inversely proportional to the width of the gap, thereby reducing the gap width to achieve high permittivity and high refractive index.
  • the material in which the real part of the dielectric constant of the nanoparticles is negative is a material selected from the group consisting of metal material, carbon-based material, semiconductor material having improved carrier density by doping, and combinations thereof It may be to include, but may not be limited thereto.
  • the nanoparticles are metals such as gold (Au), silver (Ag), aluminum (Al), copper (Cu), nickel (Ni), platinum (Pt), titanium (Ti), tin (Sn), and the like.
  • Carbon-based materials such as graphite, carbon nanotubes, and fullerenes
  • the material of which the real part of the dielectric constant of the host material is positive is selected from the group consisting of oxides, nitrides, low-density semiconductor materials, high-molecular materials, organic materials, liquid materials, and combinations thereof It may be to include the material, but may not be limited thereto.
  • the host material may be silicon dioxide (SiO 2 ), copper oxide (CuO 2 ), aluminum oxide (Al 2 O 3 ), vanadium oxide, titanium oxide, silver oxide Oxides such as these; Nitrides such as silicon nitride (Si 3 N 4 ), sialon and the like; Silicon, germanium, cadmium telluride (CdTe), lead sulfide (PbS), indium arsenide (InAs), indium phosphide (InP), indium antimonide (InSb), gallium phosphide (GaP), gallium nitride (GaN), arsenide Semiconductor materials such as gallium (GaAs); Compound semiconductor materials of three or more kinds of elements such as InGaAsP; Polymeric materials; Carbon-based materials such as graphite, carbon nanotubes, and fullerenes; Organic materials such as polydopamine, oleylamine; Or liquid materials such as water, oils, organic solvents
  • the host material when the host material is a liquid material such as water, oil, the host material is used after applying on the sample using a spin coating method, spray coating method, immersion method, or a drop method It may be, but may not be limited thereto.
  • the second aspect of the present application provides an optical film comprising the metamaterial nanocomposite structure according to the first aspect.
  • the metamaterial nano composite structure includes unit structures including nanoparticles and a host material, and the unit structures may be close-packed in three dimensions. This may not be limited.
  • the optical film may be to improve the resolution of an optical system such as optical lithography or an optical microscope using a high refractive index, but may not be limited thereto.
  • the optical film may be formed using a deposition method, a spray method, a immersion method, a drop method, etc., but may not be limited thereto.
  • the description of the first aspect of the present application may be equally applied even if the description is omitted in the second aspect of the present application. have.
  • a three-dimensionally arranged array of metal nanoparticles has been proposed to achieve broadband high refractive index in the visible and infrared regions.
  • small gap-to-period ratios lead to improved effective permittivity from strongly sealed electric fields within the dielectric gap.
  • the nanometer diameter of tens of metal particles prevents the undesired drop in effective permeability, since the size of the nanoparticles corresponding to or smaller than the penetration depth allows the penetration of the magnetic field through the metal particles. This difference in electrical and magnetic field behavior is due to the large difference between Thomas-Fermi screening length and penetration depth.
  • the effective refractive index of the metamaterial nanocomposite is much higher than natural materials in the visible and infrared regions and can be easily controlled by varying the gap width.
  • the proposed metamaterial nanocomposite overcomes the bandwidth limitations of other metamaterials directly dependent on surface plasmon resonance.
  • Another advantage of metamaterial nanocomposites is the weak dependence of the effective refractive index on the particle morphology and lattice type, which allows the possibility for many bottom-up particle synthesis methods in lieu of expensive and complex top-down nanofabrication processes.
  • the proposed technique is a waveguide coupler in submerged lenses for lithography and imaging. Applications can be found in a variety of optical devices, from couplers, modulators, photo detectors and energy devices.
  • FDTD simulation was performed using Lumerical Solutions' product (version 8.7.4). The entire FDTD simulation was performed in three dimensions.
  • Figure 2 the schematic of the FDTD simulation in the XZ plane of the metamaterial nanocomposite structure. Light with X-polarized light propagates along the Z-direction, and the light source wavelength ranges from 200 nm to 3,000 nm. Because metamaterial nanocomposites consist of repeated unit structures in the XY plane, periodic boundary conditions were used in the X- and Y-directions to save computer time. On both sides in the Z-direction, a perfectly matched layer (PML) was used. Two monitors were placed below and above to characterize metamaterial nanocomposites using the S-parameter method.
  • PML perfectly matched layer
  • the minimum mesh size was designed to be one tenth of the smallest structure.
  • the minimum mesh size was designed by first conducting a convergence test.
  • Johnson and Christy material data apply from 200 nm to 3,000 nm.
  • Palik material data is used for the simulation of silver and aluminum metamaterial nanocomposites, and material data such as refractive indices for the materials (gold, silver, and aluminum) used in the simulation are plotted in FIG. 3.
  • Silicon dioxide was selected as the dielectric host material with a refractive index of 1.473.
  • FIG. 4 In order to check the refractive index change according to the nanoparticle size of the metal, FDTD simulation was used. As shown in FIG. 4, in the case of the metal material, perfect electric conductor (PEC) and gold were compared.
  • A), (d), and (g) of FIG. 4 are schematic diagrams of the metamaterial nanocomposite structure, and red squares each represent one unit structure.
  • (B), (e), and (h) of FIG. 4 show an Ex-field distribution of one metamaterial nanocomposite unit structure in a z-normal view as shown in (a) of FIG. , (f), and (i) represent the Hy-field distribution. Ex-field and Hy-field distributions were normalized by the maximum at the edge of the unit structure, which coincided with the red squares of FIGS.
  • the central coordinate of the cross section of the unit structure is typically (0, 0).
  • PEC had a Thomas-Fermi screening length and a penetration depth of zero, and the particle size was always larger than both lengths.
  • the lengths were sub-angstrom scale and 22 nm, respectively.
  • two cases with different particle sizes of 18 nm and 270 nm were compared. These were each smaller and larger than the depth of penetration.
  • the particle size to gap ratio was fixed at 9: 1. As shown in (b), (e), and (h) of FIG.
  • the electric field was strongly localized in the dielectric gap between the metal particles regardless of the metal particle size and clearly identified whether the metal is PEC or gold. This is because the Thomas-Fermi length is much shorter than both the particle and gap widths in three cases. Because of this electric field confinement, the effective permittivity should be close to ten times the dielectric in all three cases.
  • the magnetic field distribution varies considerably with material and size. As shown in FIG. 4C, the magnetic field existed only outside the PEC particles. This shows strong diamagnetic properties. In the case of gold particles, the magnetic field penetrated into the particles. Empirically, this distribution could be investigated with a primary hyperbolic cosine function.
  • the magnetic field did not penetrate mostly from the inner region of the particles, and the field profile exhibited strong diamagnetism and was close to that of the PEC particles (Fig. 4 (i)).
  • the size of the gold nanoparticles is 18 nm (unit structure size 20 nm, gap 2 nm)
  • the magnetic field has a minimum value of 0.9465 at the center of the nanoparticles. It was expressed that it was distributed almost uniformly over [FIG. 4 (f)].
  • the size of the metal nanoparticles corresponding to or smaller than the penetration depth of the nanoparticles is an important key for inducing magnetic penetration through the metal, which prevents a significant reduction in the effective permeability of the metamaterial nanocomposites.
  • FIG. 5A shows the effective dielectric constant ⁇ eff and permeability ⁇ eff of the gold metamaterial nanocomposite structure
  • FIG. 5B shows the effective refractive index and the actual imaginary part of the FOM.
  • the unit structure size and gap width were 20 nm and 2 nm, respectively, and the host material used was SiO 2 .
  • the green dotted line and the red dotted line at the bottom are asymptotes of the effective dielectric constant and permeability of the metamaterial nanocomposite structure.
  • the dotted green line is an asymptote of the effective refractive index of the metamaterial nanocomposite structure.
  • the metamaterial nanocomposites have been shown to exhibit prominent resonance properties around 800 nm and to exhibit very high refractive indices that are nearly constant over a broad wavelength range after the resonance peak, which can be controlled by the shape and size of the particles. This is due to the dipolar resonance of.
  • the asymptotic value of the effective material parameter at the long-wavelength limit, indicated by the dashed line in FIG. 5, is very close to the theoretical prediction.
  • the figure of merit (FOM) defined as Re (n) / Im (n), is considerably higher for metamaterials in the visible and near-infrared regions, which is currently dependent on current design studies, resonances and related strong dispersions. Unlike most of the metamaterials that have been proposed in the past, they are mainly due to the fact that they are independent of resonance.
  • FDTD simulation was used to check the refractive index according to the size of the unit structure of the metamaterial nano composite structure and the width of the gap.
  • the magnetic and electrical properties of the metamaterial nanocomposite can be independently controlled, while the permittivity is not so dependent on the relative size of the particles relative to the depth of penetration.
  • the permittivity can be freely adjusted without noticeable change in permeability by changing the width of the gap while maintaining the size of the unit structure at a constant value of 20 nm under the depth of penetration (Fig. 6 (a)). To (c)]. It can be seen that while the permeability is nearly constant for the gold metamaterial nanocomposite, the permittivity is inversely proportional to the width of the gap.
  • the magnetic property is that there is little magnetic reaction by changing the size of the unit structure while maintaining a constant ratio between the size of the unit structure and the width of the gap to 10: 1 to maintain the same dielectric constant (near 1 Permeability) can be designed with a very strong diamagnetic (permeability near zero) (Fig. 6 (d) to (f)).
  • the theoretical predictions based on geometry and penetration depth of gold are in good agreement with the FDTD results, further demonstrating the model herein.
  • FDTD simulations were conducted on gold, silver, and aluminum to confirm that the theoretical model and analysis also apply to other metals.
  • the resonance wavelength is influenced by the surface plasmon frequency and is markedly short for aluminum metamaterial nanocomposites. This means that although aluminum has a small FOM due to large optical losses, aluminum metamaterial nanocomposites with 20 nm particle size are capable of broadband high refractive index in the visible range. It is also an optically transparent host medium that can utilize various types of dielectrics.
  • the effective refractive index of the metamaterial nanocomposite is continuously proportional to the refractive index of the host medium, a higher effective refractive index can be achieved if the metamaterial nanocomposite is embedded in a host material having a higher refractive index than SiO 2 .
  • Figure 7 (c) is a multi-layer FDTD result of the gold cube and the size and width of the gap of the unit structure of the gold cube is 20 nm and 2 nm, respectively.
  • 5 (d) shows the result of the multilayered FDTD of the gold spheres, the diameter and center-to-center distance of the spheres are 19 nm and 20 nm, respectively.
  • 1 to 20 represent the number of layers.
  • the mono-layer of the sphere is not a true unit structure of the lattice, which also includes truncated spheres from the layers above and below.
  • hole patterns were fabricated using BCP lithography as shown in FIG. 8.
  • 4 inch silicon wafers were cleaned using an ultrasonic bath (ultra-sonic bath). Washing was performed for 15 minutes in order of deionized water, acetone, isopropyl alcohol, and DI water. In order to make the substrate more hydrophilic, UV-ozone treatment was performed for 30 minutes. Prior to coating the PS-b-PMMA, a random brush solution was coated to modify the surface morphology of the substrate.
  • the random brush solution was 1 wt%, dissolved in toluene solvent (99.8% purity, Sigma Aldrich), and the average molecular weight (Mn) of the (PS-r-PMMA) -OH random brush was 8 kg mol with styrene of 62%. Was -1.
  • the substrate was then thermally annealed at 160 ° C. for 12 hours in a vacuum oven.
  • 2 wt% PS-b-PMMA solution was spin-coated at 2,500 rpm for 1 minute.
  • the PS-b-PMMA block copolymer had 140 kg mol-1 and 65 kg mol-1 Mn for PS and PMMA blocks, respectively.
  • the diblock-copolymer (BCP) coated wafers were exposed with 2 J of UV light (UV cross-linker, Spectronics) to decompose the PMMA microphase and harden the microphase. .
  • the wafers were stored for 10 minutes in acetic acid solution (99.9% purity, Junsei corp.) And then washed with deionized water for 10 minutes to remove the PMMA microphase.
  • Acetic acid selectively removes the degraded PMMA, so after the chemical etching process, a 30 nm hole pattern was uniformly produced on the wafer.
  • an ion milling method was used as shown in FIG. 9.
  • the prepared 30 nm pore pattern was separated from the original substrate using hydrofluoric acid (49% to 51% HF solution, JT Baker.).
  • the separated hole pattern was transferred onto the aluminum thin film surface.
  • An aluminum thin film was deposited on a transparent quartz substrate by the vapor deposition method.
  • the aluminum thin film is deposited under high vacuum (resistance method, 10 ⁇ 7 torr).
  • oxygen reactive ion etching (RIE) was performed for 10 seconds to adjust the hole diameter and remove PMMA residue on the substrate.
  • RIE oxygen reactive ion etching
  • Alumina (Al 2 O 3 ) was deposited in the hole pattern transmitted by the deposition method under the same conditions as the aluminum thin film. By sonication in toluene bath, the BCP hole pattern with PS domain was removed from the aluminum surface. After removal of the polymer domain, only the alumina nanocomposite structure for the ion milling mask on the aluminum surface was left. The ion milling process was followed by a nano-sized hard mask and an alumina nanocomposite structure was made. The chamber base was conducted at 8 ⁇ 10 ⁇ 7 torr or less and the process vacuum was conducted at 2 ⁇ 10 ⁇ 4 torr or less with 6 sccm of Ar gas. The ion beam was accelerated by 100 V, 1 mA and the ion milling time was 5-12 minutes.
  • FIG. 10A illustrates a plan view of a hole pattern manufactured by a PS-b-PMMA block copolymer
  • FIG. 10B illustrates an SEM image of an alumina hard mask periodically arranged on an aluminum thin film
  • 10C and 10D illustrate samples prepared by an ion milling process. From the SEM images, it can be seen that the aluminum nanocomposite structures were fabricated using BCP hole patterns of very similar scale.
  • the surface morphology of the prepared aluminum nanocomposite structure was investigated using an atomic force microscope (AFM, XE-100, Park System and AFM, Nanoman, Veeco Instruments Inc.).
  • An atomic force microscope produces a surface image by moving the probe over the surface of the sample.
  • the probe consists of a cantilever with a well defined resonant frequency and a very sharp tip. When the tip is close to the surface it is attracted or repelled. All changes in vibration amplitude or frequency tip are converted to a topo-graphic map.
  • Surface morphologies such as root mean square surface roughness, particle analysis, and line profile were analyzed.
  • the surface topography of the aluminum nanostructures manufactured differently is shown in FIG. 11.
  • Figure 11 (a) is an AFM image showing an aluminum nano hemisphere composite structure using a 10 nm aluminum film for ion milling
  • Figure 11 (b) is an aluminum nano hemisphere composite structure using a 20 nm aluminum film.
  • the surface of the fabricated aluminum nanocomposite structure is in good agreement with the SEM analysis.
  • the heights of the two samples showed similarity. Since thinner aluminum films reduce the time for ion milling, the alumina nano-dots used in the mask may remain high during the ion milling process. Thus, the height analyzed by AFM showed a similarity between 10 nm and 20 nm samples of aluminum.
  • the transmittance and reflectance were measured (Lambda 1050, PerkinElmer). Samples were prepared on a transparent quartz substrate and all samples were at least 1 cm 2 in size. All data were generalized to the transmittance and reflectance of the quartz substrate. The measured wavelength ranged from 175 nm to 750 nm. This was measured at the KAIST Analytical Research Center. As shown in FIG. 12, the transmittance measured by the UV-VIS spectrometer at 175 nm to 750 nm is shown.
  • Samples using 10 nm thick aluminum foil (thin film) show sharper peaks at 195 nm, while samples using 20 nm thick aluminum foil exhibit broad peaks from 190 nm to 220 nm. Over the visible wavelength, all samples showed transparent properties, and the measured transmittance of the 10 nm aluminum sample was almost 100%. The 20 nm aluminum sample showed low transmittance. The difference in the optical properties between the two samples lies in the improved absorption of the nanocomposite structure with the insensitivity of aluminum thickness.
  • the prepared aluminum nanocomposite structure was analyzed by FDTD simulation.
  • the structure was assumed to be a 3 nm native aluminum oxide layer.
  • 13 shows the numerically calculated transmittance by FDTD simulation from 150 nm to 800 nm. The transmittance showed a difference between the measured result and the numerically calculated result.
  • the depth of permeability was deeper than the measured result.
  • the wavelength of the depth position was also a red-shift of the numerical simulation results, and the 10 nm aluminum sample showed a sharp peak at 220 nm where the measured result was 195 nm.
  • the measured results showed one large peak at 190 nm with a small shoulder peak at 220 nm, while the 20 nm aluminum sample showed two broad peaks in the transmission spectrum.
  • This difference comes from the structural difference between the FDTD simulation and the sample produced.
  • the aluminum nanocomposite structure was assumed to have a diameter of 40 nm, a center-to-center distance of 60 nm, and the structure was assumed to be perfectly periodic and symmetrical.
  • the optical response is highly dependent on the nanocomposite structure, and small differences in structural dimensions can lead to different optical responses.
  • the produced sample has both particle size distribution and center-to-center distribution.
  • aluminum plasmon is highly dependent on the deposition environment, and the oxygen content of the aluminum nanocomposite structure affects the plasmonic reaction, it is difficult to accurately reproduce the fabricated aluminum nanocomposite structure by numerical simulation.
  • the fabricated structure differs from the proposed densely arranged unit structure because the gap is about 20 nm
  • the aluminum hemispherical nanocomposite structure realized by BCP lithography shows optical properties similar to the simulation results.
  • the effective refractive index was derived from numerical simulations. As the height increases, the width of the gap decreases because the diameter of the structure is constant at 40 nm. Therefore, samples with a thickness of 20 nm show higher effective refractive index values. Although the value derived above is not high, it shows the feasibility of a simple structure of visible light metamaterial, and higher refractive index can be obtained by reducing the gap of the current sample, which is 20 nm level to 10 nm or less, as confirmed in the simulation. Indicates.

Abstract

The present invention relates to a metamaterial nano-composite structure comprising a plurality of unit structures densely arrayed in three dimensions, each comprising a nanoparticle and a host material, and an optical film comprising the metamaterial nano-composite structure.

Description

광대역 특성을 갖는 고굴절률 메타물질 나노 복합구조체High refractive index metamaterial nano composite structure with broadband characteristics
본원은, 광대역 특성을 갖는 고굴절률 메타물질 나노 복합구조체 및 상기 메타물질 나노 복합구조체를 포함하는 광학용 필름에 관한 것이다.The present application relates to a high refractive index metamaterial nanocomposite structure having broadband characteristics and an optical film including the metamaterial nanocomposite structure.
반도체 산업의 발전은 반도체 공정에서의 미세 공정의 정밀도 개선에 기반을 두고 있다. 반도체 미세 공정의 주요 핵심 기술은 광리소그래피(photolithography) 과정에서의 에칭 레지스트(etching resist)의 패턴을 얼마나 미세하게 조절할 수 있는지에 달렸고, 이 때 패턴을 미세하게 에칭하기 위해서는 광학시스템의 해상도 개선이 필요하다. 현재 최고의 광리소그래피를 위한 장치는 엑시머 레이저(excimer laser)로서 248 nm 및 193 nm 파장의 빛을 이용해 최소 배선폭 14 nm 수준의 소자를 만들 수 있다. 하지만, 이 한계를 넘어서기 위해서는 다른 대안이 필요한 상태이다. The development of the semiconductor industry is based on improving the precision of micro processes in semiconductor processes. The main core technology of semiconductor microprocessing depends on how finely the pattern of etching resist can be controlled during photolithography process, and the resolution of the optical system is needed to finely etch the pattern. Do. Today's best photolithography device is an excimer laser that can produce devices with a minimum wiring width of 14 nm using light at wavelengths of 248 nm and 193 nm. However, to overcome this limitation, other alternatives are needed.
유침(oil immersion) 기술은 광학 현미경에서 대물렌즈와 시료 사이에 특정 광학적 및 점도 특성을 갖는 투명한 오일을 사용하는 것으로서, 오일(oil) 특성 개선에 따라 배선 폭을 수 나노미터 단위로 줄일 수 있을 것으로 기대되고 있다. 현재, 반도체 공정에서는 오일 대신에 고도로 정수된 물을 사용하기도 한다.The oil immersion technology uses transparent oils with specific optical and viscosity properties between the objective lens and the sample in the optical microscope. As the oil properties improve, the wiring width can be reduced by several nanometers. It is expected. Currently, highly purified water is used in place of oil in semiconductor processes.
광학시스템으로 구현 가능한 미세 패턴의 크기 관계를 알아보면, 미세 패턴의 크기 (δ)=λ/(2NA)이며, 여기서 λ는 빛의 파장, NA는 렌즈의 개구수(numerical aperture)이며, NA=nsin0이고, 여기서 n은 오일 또는 물 등, 렌즈와 패턴 사이를 채우고 있는 물질의 굴절률, α0는 시료에서 보여지는 대물렌즈에 의해 벌어진 각도이다. 실제 반도체 공정에서는 선폭을 조금이라도 더 줄이기 위해 이중 노광, 레지스트 현상 조건 조절 등 다양한 기술을 적용하여 상기 단순 관계식에서 정해지는 크기보다 더 작은 선폭을 얻고 있으나, 이와 같은 보조 기술로 선폭을 줄이는 것은 한계가 있으므로, 상기 관계식에서 나타나는 해상도를 근원적으로 줄여야 더 작은 선폭을 얻을 수 있다. 상기 두 개의 관계식으로부터, 미세 패턴 사이즈의 해상도는 대물렌즈와 시료 사이의 오일의 굴절률에 반비례하며, 높은 해상도는 높은 굴절률의 이머전(immersion) 오일이 필요함을 알 수 있다. 하지만, 이 경우 꼭 개선되어야 할 오일의 광학적 특성인 높은 굴절률의 오일 개발은 현재 높은 굴절률 오일이 존재하지 않고 또한 만들기 어려워 개발이 지체되고 있다. The size relationship of the fine patterns that can be realized by the optical system is that the size of the fine patterns (δ) = λ / (2NA), where λ is the wavelength of light, NA is the numerical aperture of the lens, and NA = nsin 0 , where n is the refractive index of the material filling the lens and the pattern, such as oil or water, and α 0 is the angle spread by the objective lens seen in the sample. In actual semiconductor processes, various techniques such as double exposure and resist development conditions are applied to reduce the line width even further, and thus, a line width smaller than the size determined by the simple relationship is obtained. Therefore, a smaller line width can be obtained by fundamentally reducing the resolution shown in the above relation. From the above two relations, it can be seen that the resolution of the fine pattern size is inversely proportional to the refractive index of the oil between the objective lens and the sample, and the high resolution requires immersion oil of high refractive index. However, in this case, the development of high refractive index oil, which is an optical characteristic of the oil, which must be improved, is currently delayed due to the absence of high refractive index oil and difficulty in making it.
과거 수년 동안 마이크로파와 가시광 영역에 이르는 다양한 파장 영역에서, 유효 유전율과 유효 투자율이 모두 음의 값을 가지도록 함으로써 음의 굴절률을 가지는 음굴절률 메타물질들이 개발되어 왔다. 그러나 반대 극한인 양의 고굴절률을 가지는 메타물질에 대한 연구는 이론적인 실현가능성에 초점을 둔 채 비교적 덜 연구되어 왔다. 종래 연구들 중에서 분리된 링 공진기들에서 전기적인 공명들을 활용하는 접근법이 굴절률의 증가를 보였지만, 그와 같은 설계들은 태생적으로 좁은 주파수 대역에서 고굴절률을 가진다. 그 메타물질은 공명 주파수 근처에서 강한 분산특성을 보이고 단지 좁은 주파수 영역에서만 원하는 굴절률을 유지한다. 서브파장(파장 이하)의 커패시터(축전기) 배열로 만들어진 메타물질이 광대역에서 높은 유전율을 가지도록 제안되었지만, 이 또한 여전히 자기 투자율 값을 억제하는 강한 반자성 효과로 인하여 문제가 있었다. 최근에야 비로소 이 반자성 효과를 줄이는 광대역 고굴절률 메타물질이 이론적으로 제안되었다. 하지만, 그 제안된 구조 또한 그것이 가지는 삼차원적인 특징으로 인해 손쉬운 구현의 대상이 되지는 못했다.Over the past few years, negative refractive index metamaterials have been developed in a range of wavelengths ranging from microwave and visible light to negative effective refractive indices and effective permeability. However, research on metamaterials with opposite high amounts of high refractive index has been relatively less studied, with a focus on theoretical feasibility. While previous studies have shown an increase in refractive index in the use of electrical resonances in separate ring resonators, such designs inherently have a high refractive index in a narrow frequency band. The metamaterial exhibits strong dispersion near the resonant frequency and maintains the desired refractive index only in the narrow frequency range. Although metamaterials made of sub-wavelength (sub-wavelength) capacitor (capacitor) arrays have been proposed to have high permittivity at broadband, they also have problems due to the strong diamagnetic effect of suppressing the magnetic permeability value. Only recently have broadband theoretical high refractive index metamaterials been proposed to reduce this diamagnetic effect. However, the proposed structure also has not been the target of easy implementation due to its three-dimensional features.
대한민국 공개특허 제2012-0007819호는 메타 물질 및 그의 제조방법에 관한 것으로서 자연 상태에서 음의 굴절률을 갖는 나노 패턴 구조를 포함하는 메타 물질 및 그의 제조방법에 대하여 개시하고 있다.Korean Patent Laid-Open No. 2012-0007819 relates to a meta material and a method for manufacturing the same, and discloses a meta material including a nano pattern structure having a negative refractive index in a natural state and a method for manufacturing the same.
본원의 일 구현예는 파장보다 매우 작은 크기의 나노입자를 3 차원으로 조밀하게 배열(close-packed)함으로써, 가시광, 자외선 및/또는 적외선 파장대역에서 광대역 특성을 나타내는 동시에 고굴절률을 가지는 메타물질 나노 복합구조체 및 상기 메타물질 나노 복합구조체를 포함하는 광학용 필름을 제공하고자 한다.In one embodiment of the present invention by close-packed nanoparticles of very small size than the wavelength (3D), the meta-material nano having a high refractive index while exhibiting broadband characteristics in the visible, ultraviolet and / or infrared wavelength band It is intended to provide an optical film including a composite structure and the metamaterial nano composite structure.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present application is not limited to the above-mentioned problem, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
본원의 제 1 측면은, 나노입자 및 호스트 물질을 포함하는 단위 구조체들을 포함하며, 상기 단위 구조체는 3 차원으로 배열되어 있는 것인, 메타물질 나노 복합구조체를 제공한다.A first aspect of the present disclosure provides a unit structure comprising nanoparticles and a host material, wherein the unit structure is arranged in three dimensions, provides a metamaterial nano composite structure.
본원의 제 2 측면은, 상기 본원의 제 1 측면에 따른 메타물질 나노 복합구조체를 포함하는, 광학용 필름을 제공한다.The second aspect of the present application provides an optical film comprising the metamaterial nanocomposite structure according to the first aspect of the present application.
본원의 일 구현예에 따르면, 광대역 특성을 나타내는 고굴절률 메타물질 나노 복합구조체가 제공될 수 있다. 본원의 일 구현예에 따른 메타물질 나노 복합 구조체의 단위 구조체는, 파장보다 작은(진공에서의 파장의 약 1/10 이하) 크기로 형성되어 있으며 상기 단위 구조체가 3 차원으로 조밀하게 배열(close-packed) 되어있어, 전체 구조체가 마치 굴절률이 높은 단일 물질과 같은 광학적 효과가 발생할 수 있다. According to one embodiment of the present application, a high refractive index metamaterial nano composite structure exhibiting broadband characteristics may be provided. The unit structure of the metamaterial nanocomposite structure according to the embodiment of the present invention is formed to a size smaller than the wavelength (about 1/10 or less of the wavelength in the vacuum) and the unit structures are densely arranged in three dimensions. packed, so that the whole structure can produce optical effects as if it were a single material with a high refractive index.
본원의 일 구현예에 따르면, 상기 나노입자의 침투 깊이(skin depth)에 상응하거나 또는 더 작은 나노입자의 크기는 나노입자 부분으로의 자기 침투(magnetic penetration)를 유도하여, 상기 나노입자의 유효 투자율의 감소를 방지함으로써 고굴절률을 달성할 수 있다. 아울러, 상기 유전율은, 일정한 값으로 단위 구조체의 크기를 유지하면서 인접한 나노입자와의 간격인 갭(gap)의 폭을 변화함으로써 투자율의 눈에 띄는 변화 없이, 단순한 구조를 통해 자유롭게 조정될 수 있다. 즉, 갭의 폭을 줄임으로써 높은 유전율 및 높은 굴절률이 달성될 수 있으며, 상기 유전율 및 투자율의 조절은 물질의 임피던스(impedance) 및 다른 광학적 특성을 설계하는 데에 있어 중요하기 때문에 리소그래피 및 이미징을 위한 침수렌즈, 도파로 결합기(waveguide coupler), 변조기, 광 검출기 및 에너지 장치에 이르기까지 다양한 광학 장치에서 응용될 수 있다. According to the exemplary embodiment of the present invention, the size of the nanoparticles corresponding to or smaller than the skin depth of the nanoparticles induces magnetic penetration into the nanoparticle part, thereby providing an effective permeability of the nanoparticles. By preventing the decrease of, high refractive index can be achieved. In addition, the dielectric constant may be freely adjusted through a simple structure without noticeable change in permeability by changing the width of the gap (gap) with the adjacent nanoparticles while maintaining the size of the unit structure to a constant value. In other words, by reducing the width of the gap, a high permittivity and a high refractive index can be achieved, and the adjustment of the permittivity and permeability is important for designing the impedance and other optical properties of the material, so that for lithography and imaging It can be applied in a variety of optical devices, from submerged lenses, waveguide couplers, modulators, light detectors and energy devices.
본원의 일 구현예에 따르면, 상기 메타물질 나노 복합구조체는 표면 플라즈몬 공명에 직접 의존하는 다른 메타물질의 대역폭 한계를 극복할 수 있는 효과가 있다. According to one embodiment of the present application, the metamaterial nanocomposite structure has the effect of overcoming the bandwidth limitations of other metamaterials directly dependent on surface plasmon resonance.
본원의 일 구현예에 따르면, 메타물질 나노 복합구조체는 다른 나노입자 형태와 격자 타입에 대해서도 동일한 효과를 가지므로, 비싸고 복잡한 하향식 나노제작 공정을 대신하여 다수의 상향식 나노입자 합성법에 대한 가능성을 제공할 수 있다.According to one embodiment of the present application, the metamaterial nanocomposites have the same effect on other nanoparticle morphologies and lattice types, thus providing the potential for multiple bottom-up nanoparticle synthesis instead of expensive and complex top-down nanofabrication processes. Can be.
도 1은, 본원의 일 구현예에 있어서, 3 차원으로 조밀하게 배열된 정육면체 메타물질 나노 복합구조체의 모식도(a), 및 고굴절률을 달성하기 위한 금속 입자 크기 조건을 나타내는 모식도(b) 이다.FIG. 1 is a schematic diagram (a) of a cubic metamaterial nanocomposite structure densely arranged in three dimensions, and a schematic diagram (b) showing metal particle size conditions for achieving high refractive index.
도 2는, 본원의 일 실시예에 있어서, 유한차분시간영역법(FDTD) 시뮬레이션의 도식이다.2 is a schematic of a finite difference time domain method (FDTD) simulation in one embodiment of the present application.
도 3은, 본원의 일 실시예에 있어서, FDTD 시뮬레이션에 사용된 물질 데이터이다.3 is, in one embodiment of the present application, material data used for FDTD simulation.
도 4는, 본원의 일 실시예에 있어서, 메타물질 나노 복합구조체 및 완전 전기 도체의 단위 구조체를 나타낸 이미지[(a), (d), 및 (g)], 각 단위 구조체의 Ex-필드 분포[(b), (e), 및 (h)], 각 단위 구조체의 Hy-필드 분포[(c), (f), 및 (i)]를 나타낸 FDTD 시뮬레이션 결과이다.Figure 4, in one embodiment of the present application, the image showing the unit structure of the metamaterial nano composite structure and the complete electrical conductor [(a), (d), and (g)], Ex-field distribution of each unit structure [(b), (e), and (h)] are FDTD simulation results showing the Hy-field distribution [(c), (f), and (i)] of each unit structure.
도 5의 (a) 및 (b)는, 본원의 일 실시예에 있어서, 호스트 물질을 Si02로 한 금 메타물질 나노 복합구조체의 유효 유전율, 유효 투자율, 및 유효 굴절률을 나타낸 FDTD 시뮬레이션 결과이다.5 (a) and 5 (b) show FDTD simulation results showing an effective dielectric constant, an effective permeability, and an effective refractive index of a gold metamaterial nanocomposite structure having a host material of Si02 in an example of the present application.
도 6의 (a) 내지 (f)는, 본원의 일 실시예에 있어서, 일정한 단위 구조체 크기 하에서 갭의 폭을 변화시킨 완전 전기 도체와 금 메타물질 나노 복합구조체의 점근값[(a) 및 (d)], 투자율[(b) 및 (e)], 굴절률[(c) 및 (f)]을 나타낸 FDTD 시뮬레이션 결과이다.6 (a) to 6 (f) show an asymptotic value of a fully electric conductor and a gold metamaterial nanocomposite structure in which a gap width is changed under a constant unit structure size in one embodiment of the present application [(a) and ( d)], FDTD simulation results showing permeability [(b) and (e)] and refractive index [(c) and (f)].
도 7 의 (a) 내지 (d)는, 본원의 일 실시예에 있어서, 입방 격자에서의 입방 나노입자 및 육방 격자에서의 구체 나노입자를 나타낸 모식도[(a) 및 (b)], 및 다층 FDTD 시뮬레이션 결과[(c) 및 (d)]이다.7 (a) to 7 (d) are schematic diagrams ((a) and (b)] showing cubic nanoparticles in a cubic lattice and spherical nanoparticles in a hexagonal lattice in one embodiment of the present application, and a multilayer FDTD simulation results [(c) and (d)].
도 8은, 본원의 일 실시예에 있어서, 블록공중합체 리소그래피에 의한 홀(hole) 패턴의 제작 과정을 나타낸 이미지이다.FIG. 8 is an image illustrating a manufacturing process of a hole pattern by block copolymer lithography in an embodiment of the present disclosure.
도 9는, 본원의 일 실시예에 있어서, 알루미늄 메타물질 나노 복합구조체의 이온 밀링 공정을 나타낸 이미지이다.FIG. 9 is an image illustrating an ion milling process of the aluminum metamaterial nanocomposite structure in one embodiment of the present application.
도 10의 (a) 내지 (d)는, 본원의 일 실시예에 있어서, 알루미늄 메타물질 나노 복합구조체를 나타낸 SEM 이미지이다.10 (a) to 10 (d) are SEM images of the aluminum metamaterial nanocomposite structure in one embodiment of the present application.
도 11의 (a) 및 (b)는, 본원의 일 실시예에 있어서, 알루미늄 메타물질 나노 복합구조체를 나타낸 AFM 이미지이다.11A and 11B are AFM images of an aluminum metamaterial nanocomposite structure in one embodiment of the present application.
도 12는, 본원의 일 실시예에 있어서, 알루미늄 메타물질 나노 복합구조체의 측정된 투과도를 나타낸 UV-VIS 분광계 스펙트럼이다. 12 is a UV-VIS spectrometer spectrum showing the measured transmittance of the aluminum metamaterial nanocomposite structure in one embodiment of the present application.
도 13은, 본원의 일 실시예에 있어서, 알루미늄 메타물질 나노 복합구조체의 계산된 투과도를 나타낸 FDTD 시뮬레이션 그래프이다.FIG. 13 is an FDTD simulation graph showing a calculated transmittance of an aluminum metamaterial nanocomposite structure in one embodiment of the present application. FIG.
도 14는, 본원의 일 실시예에 있어서, 메타물질 나노 복합구조체의 도출된 유효 굴절률을 나타낸 FDTD 시뮬레이션 그래프이다.14 is an FDTD simulation graph showing the derived effective refractive index of the metamaterial nanocomposite structure in one embodiment of the present application.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present disclosure will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present disclosure. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted for simplicity of explanation, and like reference numerals designate like parts throughout the specification.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 “연결”되어 있다고 할 때, 이는 “직접적으로 연결”되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 “전기적으로 연결”되어 있는 경우도 포함한다. Throughout this specification, when a part is said to be "connected" with another part, this includes not only the "directly connected" but also the "electrically connected" between other elements in between. do.
본원 명세서 전체에서, 어떤 부재가 다른 부재 “상에” 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout this specification, when a member is located “on” another member, this includes not only when one member is in contact with another member but also when another member exists between the two members.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 “포함” 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. 본원 명세서 전체에서 사용되는 정도의 용어 “약”, “실질적으로” 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 본원 명세서 전체에서 사용되는 정도의 용어 “~(하는) 단계” 또는 “~의 단계”는 “~ 를 위한 단계”를 의미하지 않는다.Throughout this specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding the other components unless otherwise stated. As used throughout this specification, the terms “about”, “substantially”, and the like, are used at, or in close proximity to, numerical values when manufacturing and material tolerances inherent in the meanings indicated are provided, and an understanding of the present application may occur. Accurate or absolute figures are used to assist in the prevention of unfair use by unscrupulous infringers. As used throughout this specification, the term “step of” or “step of” does not mean “step for”.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 “이들의 조합(들)”의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.Throughout this specification, the term "combination (s) thereof" included in the expression of a makushi form refers to one or more mixtures or combinations selected from the group consisting of components described in the expression of makushi form, It means to include one or more selected from the group consisting of the above components.
본원 명세서 전체에서, “A 및/또는 B”의 기재는 “A 또는 B, 또는 A 및 B”를 의미한다.Throughout this specification, the description of “A and / or B” means “A or B, or A and B”.
본원 명세서 전체에서, "메타물질(metamaterial)"이라는 용어는, 빛의 파장보다 매우 작은 크기로 만든 금속이나 유전물질로 설계된 메타 원자(mata atom)의 배열로 만들어진 물질로서, 자연적인 물질들이 가지기 힘든 광학적 성질을 가지도록 인공적으로 설계해 만들어낸 것을 의미한다.Throughout this specification, the term "metamaterial" is a material made of an array of meta atoms designed with a metal or dielectric material made to a size much smaller than the wavelength of light, which is difficult for natural materials to have. It means the artificially designed and made to have optical properties.
본원 명세서 전체에서, "조밀하게 배열(close-packed)" 이라는 용어는, 나노입자 또는 단위 구조체가 호스트 물질에서 일정한 단위 구조체의 크기와 갭의 폭을 가지며 3 차원에서 서로 치밀하게 배열되어 있는 상태를 나타내는 것이다. 본원에 따른 조밀하게 배열된 나노입자 및 조밀하게 배열된 단위 구조체는 가시광선에서 자외선 및/또는 적외선 파장대역까지 광대역 특성을 나타내는 동시에 고굴절률을 갖는다. 상기 나노입자 및 단위 구조체의 단위 구조체 크기 및 갭의 폭은 수 나노미터 이하일 수 있으나, 이에 제한되지 않을 수 있다.Throughout this specification, the term "close-packed" refers to a state in which nanoparticles or unit structures are densely arranged in three dimensions with a certain unit size and gap width in the host material. To indicate. The densely arranged nanoparticles and the densely arranged unit structures according to the present invention exhibit broadband properties from visible light to ultraviolet and / or infrared wavelength bands and at the same time have a high refractive index. The unit structure size and the width of the gap of the nanoparticles and unit structures may be several nanometers or less, but may not be limited thereto.
본원 명세서 전체에서, "침투 깊이(skin depth)"라는 용어는, 전자기파가 매질의 표면에서 어느 정도까지 파고 들어갈 수 있는 지를 나타내는 깊이를 의미한다. 상기 매질에서, 표피 효과(skin effect)에 따라 전류 밀도는 매질의 표면 가까이에서 최대가 되고, 도체 안으로 파고 들어갈수록 감소하는 경향을 나타낸다. 상기 전류는 외부 표면과 침투 깊이(skin depth)라고 불리우는 레벨 사이인 도체의 "표면"에서 주로 흐르며, 따라서, 상기 침투 깊이는 더욱 상세하게는 표면에서 전류 밀도 또는 전기장 등의 크기가 1/e(37%)까지 떨어지는 깊이를 의미한다. Throughout this specification, the term "skin depth" refers to the depth indicating how far electromagnetic waves can penetrate into the surface of the medium. In the medium, depending on the skin effect, the current density tends to be close to the surface of the medium and decreases as it penetrates into the conductor. The current flows mainly at the "surface" of the conductor, which is between the outer surface and the level called the skin depth, so that the penetration depth is more specifically 1 / e (such as current density or electric field at the surface). 37%).
본원 명세서 전체에서, "굴절률"이라는 용어는, 빛이 매질로부터 다른 매질로 진행할 때 두 매질 속에서 진행하는 파동의 속력 비율을 의미한다. 굴절률은 파장에 따라 그 차이를 보이며, 굴절률이 서로 다른 매질의 경계면에서는 빛이 스넬의 법칙에 따라 휘게 되고 입사각에 따라 일부는 반사하게 된다. 상기 굴절률은 다음과 같은 식 1에 대하여 상대 유전율(permiittity)과 상대 투자율(permeability) 곱의 제곱근으로 표현할 수 있으며, 굴절률 값이 증가함에 따라 광학 기기에서 두 물체를 서로 구별할 수 있는 능력인 분해능이 향상되기 때문에 해상도가 증가한다:Throughout this specification, the term "refractive index" refers to the rate of velocity of waves traveling in two media as light travels from one media to another. The refractive index varies with wavelength, and at the interface of the media with different refractive indices, the light bends according to Snell's law and some reflects according to the angle of incidence. The refractive index can be expressed as the square root of the product of relative permittivity and relative permeability for Equation 1, and as the refractive index value increases, the resolution, which is the ability to distinguish two objects from each other in an optical device, is increased. Because it improves, the resolution increases:
[식 1] [Equation 1]
n=(εμ)1/2 (n=굴절률, ε=상대유전율, μ=상대투자율)n = (εμ) 1/2 (n = refractive index, ε = relative dielectric constant, μ = relative permeability)
이하, 본원의 구현예를 상세히 설명하였으나, 본원이 이에 제한되지 않을 수 있다.Hereinafter, embodiments of the present disclosure have been described in detail, but the present disclosure may not be limited thereto.
본원의 제 1 측면은, 나노입자 및 호스트 물질을 포함하는 단위 구조체들을 포함하며, 상기 단위 구조체는 3 차원에서 배열되어 있는 것인, 메타물질 나노 복합구조체를 제공한다.A first aspect of the present application provides a metamaterial nanocomposite structure comprising unit structures comprising nanoparticles and a host material, wherein the unit structures are arranged in three dimensions.
본원의 일 구현예에 있어서, 상기 단위 구조체는 3 차원으로 조밀하게 배열(close-packed) 되어있는 것일 수 있다.In one embodiment of the present application, the unit structure may be close-packed in three dimensions.
본원의 일 구현예에 있어서, 상기 메타물질 나노 복합구조체는 가시광선, 자외선, 적외선, 및 이들의 조합들로부터 선택되는 파장대역에서 고굴절률을 가지는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 메타물질 나노 복합구조체의 나노입자의 크기 및/또는 인접한 나노입자와의 간격인 갭의 폭을 조절함으로써 상기 메타물질 나노 복합구조체가 고굴절률을 나타내는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the metamaterial nano composite structure may have a high refractive index in a wavelength band selected from visible light, ultraviolet light, infrared light, and combinations thereof, but may not be limited thereto. For example, the metamaterial nanocomposite structure may exhibit a high refractive index by controlling the size of the nanoparticles of the metamaterial nanocomposite structure and / or the width of the gap, which is a gap with adjacent nanoparticles, but is not limited thereto. Can be.
종래 테라헤르츠 주파수를 위해 제안되었던 고굴절률 메타물질은, 복잡한 구조로 인한 나노제작의 어려움으로 가시 파장에서 직접적으로 응용하기가 어렵다는 단점이 있다. 그러나, 본원의 일 구현예에 따른 고굴절률 메타물질 나노 복합구조체는 단위 구조체 내에서 나노입자의 크기와 인접한 나노입자와의 간격인 갭의 폭을 적절하게 선택함으로써, 단순한 구조로 유효 투자율의 저하 없이 유효 유전율과 굴절률의 향상을 이끌어 낼 수 있다.The high refractive index metamaterial, which has been proposed for the terahertz frequency in the related art, has a disadvantage in that it is difficult to apply directly at the visible wavelength due to the difficulty of nanofabrication due to a complicated structure. However, the high refractive index meta-material nanocomposite structure according to one embodiment of the present application is selected by appropriately selecting the width of the gap that is the gap between the nanoparticle size and the adjacent nanoparticles in the unit structure, a simple structure without lowering the effective permeability This can lead to an improvement in the effective dielectric constant and refractive index.
본원의 일 구현예에 있어서, 상기 단위 구조체는 등방성(isotropy) 또는 비등방성(anisotropy)을 가지고 3 차원으로 조밀하게 배열되어 있는 것일 수 있다. In one embodiment of the present application, the unit structure may be one that is isotropic (isotropy) or anisotropic (anisotropy) are densely arranged in three dimensions.
본원의 일 구현예에 있어서, 상기 메타물질 나노 복합구조체는 약 200 nm 이하의 파장에서 약 1.5 이상의 극대 굴절률을 가지는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the metamaterial nano composite structure may have a maximum refractive index of about 1.5 or more at a wavelength of about 200 nm or less, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 메타물질 나노 복합구조체는 약 200 nm 내지 약 400 nm의 자외선 파장에서 약 2 이상의 극대 굴절률을 가지는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the metamaterial nano composite structure may have a maximum refractive index of about 2 or more at an ultraviolet wavelength of about 200 nm to about 400 nm, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 메타물질 나노 복합구조체는 약 400 nm 내지 약 700 nm의 가시광선 파장에서 약 4 이상의 극대 굴절률을 가지는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the metamaterial nano composite structure may have a maximum refractive index of about 4 or more at a visible light wavelength of about 400 nm to about 700 nm, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 메타물질 나노 복합구조체는 약 700 nm 이상의 적외선 파장에서 약 5 이상의 극대 굴절률을 가지는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the metamaterial nano composite structure may have a maximum refractive index of about 5 or more at an infrared wavelength of about 700 nm or more, but may not be limited thereto.
도 1의 (a)는 본원의 일 구현예에 따른 고굴절률을 달성하기 위한 유전체 호스트 물질에 포함되어있는 조밀하게 3 차원으로 배열된 정육면체 메타물질 나노 복합구조체의 예시를 나타낸 이미지이다. 도 1에서와 같이, 파란색 및 회색의 영역은 각각 유전체와 금속을 나타낸 것이다. 녹색의 점선 사각형에 의해 둘러싸인 도 1의 [b(i)]에서, 화살표는 전기장을 나타내고 전파 강도(field intensity)는 금속의 전자에 의해 약해진다. 도 1의 [b(ii)]에서, 화살표의 길이는 자기장의 세기를 나타내며 자기장이 금속으로 침투될 때 전파 강도가 약해진다.Figure 1 (a) is an image showing an example of a three-dimensionally arranged cubic metamaterial nano composite structure contained in a dielectric host material for achieving a high refractive index according to an embodiment of the present application. As in Figure 1, the blue and gray areas represent the dielectric and metal, respectively. In [b (i)] of FIG. 1 surrounded by a green dotted rectangle, the arrow represents the electric field and the field intensity is weakened by the electrons of the metal. In [b (ii)] of FIG. 1, the length of the arrow indicates the strength of the magnetic field and the propagation strength becomes weak when the magnetic field penetrates into the metal.
본원의 일 구현예에 있어서, 상기 단위 구조체에서 상기 나노입자의 크기는 상기 나노입자의 침투 깊이에 상응하거나 또는 더 작은 것일 수 있으나, 이에 제한되지 않을 수 있다. In one embodiment of the present application, the size of the nanoparticles in the unit structure may correspond to or smaller than the penetration depth of the nanoparticles, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 침투 깊이는 상기 나노입자의 종류에 따라 상이할 수 있으나, 이에 제한되지 않을 수 있다. 상기 침투 깊이는 금속뿐만 아니라 도핑이 많이 된 반도체, 또는 유전율의 실수 부분이 음수인 물질에서, 자기장이 내부로 잘 들어가지 못하고 표면으로부터의 거리에 따라 지수함수적으로 감소하기 때문에 각 물질에 따라 각자의 고유한 침투 깊이를 갖는다. 여기서, 침투 깊이는 전자기파가 매질 표면에서 어느 정도까지 파고들어갈 수 있는가를 나타내는 깊이이며, 침투 깊이만큼 파고들었을 때 1/e 만큼 전자기파의 세기가 감소한다. 상기 침투 깊이에 상응하거나 또는 더 작은 크기의 나노입자를 제조할 경우, 자기장이 단위 구조체에 걸쳐 거의 균일하게 분포되며, 이는 메타물질 나노 복합구조체의 유효 투자율의 감소를 방지함으로써 결과적으로 고굴절률을 갖는 메타물질 나노 복합구조체를 만들어낼 수 있다. 예를 들어, 침투 깊이에 상응하거나 또는 더 작은 나노입자의 크기는 다음과 같은 식 2의 유도식에 따라 고굴절률을 유도할 수 있다:In one embodiment of the present application, the penetration depth may be different depending on the type of the nanoparticles, but may not be limited thereto. The penetration depth is not only in the metal but also in the heavily doped semiconductor, or in a material where the real part of the dielectric constant is negative, so that the magnetic field does not enter well and decreases exponentially with distance from the surface. Has a unique penetration depth. Here, the penetration depth is a depth indicating how far the electromagnetic wave can penetrate from the surface of the medium, and the intensity of the electromagnetic wave decreases by 1 / e when the penetration depth penetrates. When producing nanoparticles of smaller or corresponding size to the penetration depth, the magnetic field is distributed almost uniformly across the unit structure, which prevents the reduction of the effective permeability of the metamaterial nanocomposite structure, resulting in a high refractive index. Metamaterial nanocomposites can be created. For example, the size of the nanoparticles corresponding to or smaller than the depth of penetration can lead to high refractive indices according to the formula of Equation 2:
[식 2][Equation 2]
neff=(εeffㆍμeff)1/2=(a/g)1/2 n eff = (ε effμ eff ) 1/2 = (a / g) 1/2
상기 유도식에서 neff는 유효 굴절률, εeff는 유효 유전율, εeff는 유효 투자율, a는 단위 구조체(유닛 셀)의 크기, g는 인접한 나노입자와의 간격인 갭의 폭을 의미한다. 메타물질 나노 복합구조체는 기하학에 의해 결정되는 정전용량 효과(capacitive effect)로 인해 광범위한 파장 범위에 걸쳐 거의 일정한 높은 유효 유전율을 갖는다. 일반적으로, 잘 알려지지 않은 (메타)물질의 DC 또는 저-주파수 유전율은, 플레이트 사이의 전체 공간을 채우는 테스트 물질을 갖는 평행플레이트 커패시터의 정전용량(capacitance)과 같은 규모(dimension)이지만 공지의 유전율을 갖는 기준 물질이 채워진 평행플레이트 커패시터의 정전용량을 비교함으로써 정량화될 수 있다. 평행플레이트 커패시터의 상기 정전용량이 C = Q/V = εcap 로서 표현될 때(C, Q, 및 V는 각각 정전용량, 총 전하, 및 총 전압 강하이고, 반면 εcap, A, 및 d는 각각 플레이트 사이의 유전물질의 유전율, 면적 및 거리임), 상기 정전용량은 εcap 에 정비례한다. 따라서, 상기 정전용량의 비율은 테스트 물질 및 기준 물질의 유전율의 비율이다. 메타물질 나노 복합구조체가 플레이트들 사이에 삽입되고, 전하 + Q 및 - Q가 커패시터 플레이트에 인가되는 경우, 상기 전하에 의한 종방향의 전기장이 금속 입자 사이의 갭 영역에서만 존재하고 입자의 내부로부터 배제될 것이며, 이것은 전형적으로 서브-옹스트롬(sub-angstrom)의 단위인, 종방향의 전기장이 토마스-페르미 스크리닝 길이를 넘어 금속 내로 침투할 수 없기 때문이다. 이 사실은 도 1의 (b)에 나타나있다. 메타물질 나노 복합구조체의 유전체 갭 영역에서의 전기장의 세기는 커패시터 플레이트 사이의 공간이 갭 유전체와 같이 동일한 물질(permittivity, εh)로 채워진 기준 케이스에서 전기장의 세기와 동일하다. 전압 강하가 전기장의 선 적분이기 때문에, 메타물질 나노 복합구조체의 존재 하에서 총 전압 강하는 기준 케이스에서 전압 강하의 g/a로 감소되며, 이것은 상기 정전용량이 a/g만큼 향상되는 것을 의미한다. 따라서, 메타물질 나노 복합구조체의 εeff가 또한 a/g만큼 향상되어 a/gεh이 되는 것을 의미한다. 즉, 결과적으로 메타물질 나노 복합구조체가 고굴절률을 위해 '조밀하게 배열(close-packed)된' 어레이를 필요로 하는 것은 a/g인자로 인한 것이다.In the above induction formula, n eff is an effective refractive index, ε eff is an effective permittivity, ε eff is an effective permeability, a is the size of a unit structure (unit cell), and g is a width of a gap, which is an interval between adjacent nanoparticles. Metamaterial nanocomposites have a high effective dielectric constant that is nearly constant over a wide range of wavelengths due to the capacitive effect determined by geometry. In general, the DC or low-frequency permittivity of a less known (meta) material is the same as the capacitance of a parallel plate capacitor with a test material that fills the entire space between the plates, but with a known permittivity. It can be quantified by comparing the capacitance of a parallel plate capacitor filled with a reference material having. When the capacitance of the parallel plate capacitor is expressed as C = Q / V = ε cap (C, Q, and V are capacitance, total charge, and total voltage drop, respectively, while ε cap , A, and d are Respectively, the dielectric constant, area and distance of the dielectric material between the plates), and the capacitance is directly proportional to ε cap . Thus, the ratio of the capacitance is the ratio of the dielectric constant of the test material and the reference material. When the metamaterial nanocomposite is inserted between the plates and charges + Q and-Q are applied to the capacitor plate, the longitudinal electric field due to the charge is present only in the gap region between the metal particles and excluded from the inside of the particles. This is because the longitudinal electric field, typically a unit of sub-angstrom, cannot penetrate into the metal beyond the Thomas-Fermi screening length. This fact is shown in Fig. 1B. The strength of the electric field in the dielectric gap region of the metamaterial nanocomposite is equal to the strength of the electric field in the reference case where the space between the capacitor plates is filled with the same material (permittivity, εh) as the gap dielectric. Since the voltage drop is a linear integration of the electric field, the total voltage drop in the presence of the metamaterial nanocomposite is reduced to g / a of the voltage drop in the reference case, which means that the capacitance is improved by a / g. Thus, ε eff of the metamaterial nanocomposite structure is also improved by a / g, meaning a / gε h . As a result, the meta-material nanocomposites require 'close-packed' arrays for high refractive index due to the a / g factor.
본원의 일 구현예에 있어서, 상기 단위 구조체에서 상기 나노입자는 상기 호스트 물질에 의해 코팅되거나 둘러싸여(wraaping) 있는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 단위 구조체는 코어-쉘 구조로서 구형의 나노입자를 호스트 물질로 둘러 싼 뒤 이를 또 다른 호스트 물질 속에 배열한 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 단위 구조체는 탄소나노튜브와 같은 실린더 형태의 나노입자를 호스트 물질 속에 배열한 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 나노입자의 배열은 코어-쉘 구조 또는 조밀하게 배열된(close-pack) 것일 수 있으나, 이에 제한되지 않을 수 있다. In one embodiment of the present application, the nanoparticles in the unit structure may be coated or surrounded by the host material (wraaping), but may not be limited thereto. For example, the unit structure may be a core-shell structure in which spherical nanoparticles are surrounded by a host material and then arranged in another host material, but may not be limited thereto. For example, the unit structure may be formed by arranging cylindrical nanoparticles such as carbon nanotubes in a host material, but may not be limited thereto. For example, the arrangement of the nanoparticles may be a core-shell structure or a close-pack, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 나노입자의 소재는 금(Au), 은(Ag), 알루미늄(Al), 구리(Cu), 니켈(Ni), 백금(Pt), 티타늄(Ti), 주석(Sn), 및 이들의 조합들로 이루어진 군으로부터 선택되는 금속 코어를 비금속 쉘이 둘러싼 형태일 수 있으나, 이에 제한되지 않을 수 있다. In one embodiment of the present application, the material of the nanoparticles is gold (Au), silver (Ag), aluminum (Al), copper (Cu), nickel (Ni), platinum (Pt), titanium (Ti), tin (Sn), and a metal core selected from the group consisting of combinations thereof may be in a form surrounded by a nonmetallic shell, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 나노입자가 반도체인 경우, 상기 나노입자의 크기가 더 커지더라도 고굴절률을 나타낼 수 있으나, 이에 제한되지 않을 수 있다. 반도체 나노입자의 경우 금속 나노입자보다 침투 깊이가 더 길기 때문에 자기장이 더 깊숙하게 침투할 수 있으며, 따라서 상기 나노입자의 크기가 금속의 경우보다 더 커지더라도 고굴절률을 나타낼 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, when the nanoparticles are semiconductors, although the nanoparticles are larger in size, they may exhibit a high refractive index, but may not be limited thereto. Since the semiconductor nanoparticles have a longer penetration depth than the metal nanoparticles, the magnetic field can penetrate deeper. Therefore, even if the nanoparticles have a larger size than the metal nanoparticles, they may exhibit a high refractive index. Can be.
본원의 일 구현예에 있어서, 상기 단위 구조체에서 상기 나노입자는 유전율의 실수 부분이 음수인 물질을 포함하고, 상기 호스트 물질은 유전율의 실수 부분이 양수인 물질을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 나노입자는 금(Au), 은(Ag), 알루미늄(Al), 구리(Cu), 니켈(Ni), 백금(Pt), 티타늄(Ti), 주석(Sn) 등과 같은 금속 물질; 두 종류 이상의 금속 합금; 그래파이트(graphite), 탄소나노튜브, 풀러렌(fullerene)과 같은 탄소계 물질; 실리콘, 게르마늄, 카드뮴 텔루라이드(CdTe), 황화납(PbS), 비소화인듐(InAs), 인화인듐(InP), 안티몬화인듐(InSb), 인화갈륨(GaP), 질화갈륨(GaN), 비소화갈륨(GaAs)과 같은 반도체 물질; 또는 InGaAsP와 같은 세 종류 이상의 원소들의 화합물 반도체 물질 등을 포함할 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 호스트 물질은 이산화규소(SiO2), 산화구리(CuO2), 산화알루미늄(Al2O3), 바나듐 산화물(vanadium oxide), 티타늄 산화물(titanium oxide), 산화은(silver oxide) 등과 같은 산화물; 질화규소(Si3N4), 사이알론(sialon) 등과 같은 질화물; 실리콘, 게르마늄, 카드뮴 텔루라이드(CdTe), 황화납(PbS), 비소화인듐(InAs), 인화인듐(InP), 안티몬화인듐(InSb), 인화갈륨(GaP), 질화갈륨(GaN), 비소화갈륨(GaAs)과 같은 반도체 물질; InGaAsP와 같은 세 종류 이상 원소들의 화합물 반도체 물질; 고분자 물질; 그래파이트와 같은 탄소계 물질; 폴리도파민, 올레일아민과 같은 유기 물질; 또는 물, 오일, 유기 용매 등의 액상 물질 등을 포함할 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the nanoparticles in the unit structure may include a material in which the real part of the dielectric constant is negative, and the host material may include a material in which the real part of the dielectric constant is positive, but is not limited thereto. Can be. For example, the nanoparticles are metals such as gold (Au), silver (Ag), aluminum (Al), copper (Cu), nickel (Ni), platinum (Pt), titanium (Ti), tin (Sn), and the like. matter; Two or more kinds of metal alloys; Carbon-based materials such as graphite, carbon nanotubes, and fullerenes; Silicon, germanium, cadmium telluride (CdTe), lead sulfide (PbS), indium arsenide (InAs), indium phosphide (InP), indium antimonide (InSb), gallium phosphide (GaP), gallium nitride (GaN), non Semiconductor materials such as gallium hydride (GaAs); Or a compound semiconductor material of three or more elements such as InGaAsP, but may not be limited thereto. For example, the host material may be silicon dioxide (SiO 2 ), copper oxide (CuO 2 ), aluminum oxide (Al 2 O 3 ), vanadium oxide, titanium oxide, silver oxide Oxides such as these; Nitrides such as silicon nitride (Si 3 N 4 ), sialon and the like; Silicon, germanium, cadmium telluride (CdTe), lead sulfide (PbS), indium arsenide (InAs), indium phosphide (InP), indium antimonide (InSb), gallium phosphide (GaP), gallium nitride (GaN), non Semiconductor materials such as gallium hydride (GaAs); Compound semiconductor materials of three or more kinds of elements such as InGaAsP; Polymeric materials; Carbon-based materials such as graphite; Organic materials such as polydopamine, oleylamine; Or liquid materials such as water, oils, organic solvents, and the like, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 호스트 물질이 물, 오일 등의 액상 물질일 경우, 상기 호스트 물질은 스핀 코팅법, 스프레이 코팅법, 담금법, 또는 점적법 등을 이용하여 시료 상에 도포한 후 사용되는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, when the host material is a liquid material such as water, oil, the host material is used after applying on the sample using a spin coating method, spray coating method, immersion method, or a drop method It may be, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 나노입자로서 반응성이 높은 금속인 알루미늄(Al)을 사용함으로써, 상기 메타물질 나노 복합구조체의 굴절률을 향상시킬 수 있으나, 이에 제한되지 않을 수 있다. In one embodiment of the present application, by using aluminum (Al) is a highly reactive metal as the nanoparticles, it is possible to improve the refractive index of the metamaterial nano composite structure, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 단위 구조체에서 상기 나노입자는 사면체형, 육면체형, 팔면체형, 십이면체형, 십사면체형, 이십면체형, 막대형, 오목한 정사면체형, 정사면체형과 같은 단결정형, 육각판형, 삼각판형, 순환오각쌍정형과 같은 쌍정형, 구형, 타원체형, 실린더형을 포함할 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present invention, the nanoparticles in the unit structure is tetrahedral, hexahedral, octahedral, octahedral, tetrahedral, icosahedron, rod, concave tetrahedron, tetrahedral It may include, but not limited to, twin, spherical, ellipsoidal, cylindrical, such as hexagonal plate, triangular plate, circular pentagonal twin.
본원의 일 구현예에 있어서, 상기 나노입자는, 등방성을 가지는(isotropic) 구형, 정사면체형, 정육면체형, 정팔면체형, 정십이면체형, 정십사면체형, 또는 정이십면체형 형상을 가지는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the nanoparticles may have an isotropic sphere, tetrahedron, cube, octahedron, dodecahedron, dodecahedral, or dodecahedron. It may not be limited.
본원의 일 구현예에 있어서, 상기 단위 구조체에서 형성하는 상기 나노입자는 인접한 나노입자와의 간격인 갭의 폭이 약 10 nm 이하인 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 나노입자와 인접한 나노입자와의 간격인, 갭의 폭은 약 10 nm 이하, 약 9 nm 이하, 약 8 nm 이하, 약 7 nm 이하, 약 6 nm 이하, 또는 약 5 nm 이하일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the nanoparticles formed in the unit structure may have a width of a gap, which is a gap with adjacent nanoparticles, of about 10 nm or less, but may not be limited thereto. For example, the width of the gap, which is the distance between the nanoparticles and adjacent nanoparticles, may be about 10 nm or less, about 9 nm or less, about 8 nm or less, about 7 nm or less, about 6 nm or less, or about 5 nm or less. It may be, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 나노입자의 유전율은 침투 깊이 하에서 일정한 값으로 단위 구조체의 크기를 유지하면서 갭의 폭을 변화시킴으로써, 투자율의 눈에 띄는 변화 없이 자유롭게 조정될 수 있으나, 이에 제한되지 않을 수 있다. 투자율이 나노입자에 대해 거의 일정한 반면, 상기 유전율은 갭의 폭에 반비례하기 때문에, 갭의 폭을 줄임으로써 높은 유전율과 높은 굴절률을 달성할 수 있다. In one embodiment of the present application, the dielectric constant of the nanoparticles can be freely adjusted without noticeable change in permeability, by changing the width of the gap while maintaining the size of the unit structure at a constant value under the depth of penetration, but is not limited thereto. Can be. While the permeability is nearly constant for the nanoparticles, the permittivity is inversely proportional to the width of the gap, thereby reducing the gap width to achieve high permittivity and high refractive index.
본원의 일 구현예에 있어서, 상기 나노입자의 유전율의 실수 부분이 음수인 물질은 금속 물질, 탄소계 물질, 도핑에 의해 캐리어 밀도가 향상된 반도체 물질, 및 이들의 조합들로 이루어진 군에서 선택되는 물질을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 나노입자는 금(Au), 은(Ag), 알루미늄(Al), 구리(Cu), 니켈(Ni), 백금(Pt), 티타늄(Ti), 주석(Sn) 등과 같은 금속 물질; 두 종류 이상의 금속 합금; 그래파이트(graphite), 탄소나노튜브, 풀러렌(fullerene)과 같은 탄소계 물질; 실리콘, 게르마늄, 카드뮴 텔루라이드(CdTe), 황화납(PbS), 비소화인듐(InAs), 인화인듐(InP), 안티몬화인듐(InSb), 인화갈륨(GaP), 질화갈륨(GaN), 비소화갈륨(GaAs)과 같은 반도체 물질; 또는 InGaAsP와 같은 세 종류 이상의 원소들의 화합물 반도체 물질 등을 포함할 수 있으나, 이에 제한되지 않을 수 있다. In one embodiment of the present application, the material in which the real part of the dielectric constant of the nanoparticles is negative is a material selected from the group consisting of metal material, carbon-based material, semiconductor material having improved carrier density by doping, and combinations thereof It may be to include, but may not be limited thereto. For example, the nanoparticles are metals such as gold (Au), silver (Ag), aluminum (Al), copper (Cu), nickel (Ni), platinum (Pt), titanium (Ti), tin (Sn), and the like. matter; Two or more kinds of metal alloys; Carbon-based materials such as graphite, carbon nanotubes, and fullerenes; Silicon, germanium, cadmium telluride (CdTe), lead sulfide (PbS), indium arsenide (InAs), indium phosphide (InP), indium antimonide (InSb), gallium phosphide (GaP), gallium nitride (GaN), non Semiconductor materials such as gallium hydride (GaAs); Or a compound semiconductor material of three or more elements such as InGaAsP, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 호스트 물질의 유전율의 실수 부분이 양수인 물질은 산화물, 질화물, 전하밀도가 낮은 반도체 물질, 고분자 물질, 유기 물질, 액상 물질, 및 이들의 조합들로 이루어진 군에서 선택되는 물질을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 호스트 물질은 이산화규소(SiO2), 산화구리(CuO2), 산화알루미늄(Al2O3), 바나듐 산화물(vanadium oxide), 티타늄 산화물(titanium oxide), 산화은(silver oxide) 등과 같은 산화물; 질화규소(Si3N4), 사이알론(sialon) 등과 같은 질화물; 실리콘, 게르마늄, 카드뮴 텔루라이드(CdTe), 황화납(PbS), 비소화인듐(InAs), 인화인듐(InP), 안티몬화인듐(InSb), 인화갈륨(GaP), 질화갈륨(GaN), 비화갈륨(GaAs) 과 같은 반도체 물질; InGaAsP와 같은 세 종류 이상의 원소들의 화합물 반도체 물질; 고분자 물질; 그래파이트, 탄소나노튜브, 풀러렌(fullerene)과 같은 탄소계 물질; 폴리도파민, 올레일아민과 같은 유기 물질; 또는 물, 오일, 유기 용매 등의 액상 물질 등을 포함할 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the material of which the real part of the dielectric constant of the host material is positive is selected from the group consisting of oxides, nitrides, low-density semiconductor materials, high-molecular materials, organic materials, liquid materials, and combinations thereof It may be to include the material, but may not be limited thereto. For example, the host material may be silicon dioxide (SiO 2 ), copper oxide (CuO 2 ), aluminum oxide (Al 2 O 3 ), vanadium oxide, titanium oxide, silver oxide Oxides such as these; Nitrides such as silicon nitride (Si 3 N 4 ), sialon and the like; Silicon, germanium, cadmium telluride (CdTe), lead sulfide (PbS), indium arsenide (InAs), indium phosphide (InP), indium antimonide (InSb), gallium phosphide (GaP), gallium nitride (GaN), arsenide Semiconductor materials such as gallium (GaAs); Compound semiconductor materials of three or more kinds of elements such as InGaAsP; Polymeric materials; Carbon-based materials such as graphite, carbon nanotubes, and fullerenes; Organic materials such as polydopamine, oleylamine; Or liquid materials such as water, oils, organic solvents, and the like, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 호스트 물질이 물, 오일 등의 액상 물질일 경우, 상기 호스트 물질은 스핀 코팅법, 스프레이 코팅법, 담금법, 또는 점적법 등을 이용하여 시료 상에 도포한 후 사용되는 것일 수 있으나, 이에 제한되지 않을 수 있다. In one embodiment of the present application, when the host material is a liquid material such as water, oil, the host material is used after applying on the sample using a spin coating method, spray coating method, immersion method, or a drop method It may be, but may not be limited thereto.
본원의 제 2 측면은, 상기 제 1 측면에 따른 메타물질 나노 복합구조체를 포함하는, 광학용 필름을 제공한다. The second aspect of the present application provides an optical film comprising the metamaterial nanocomposite structure according to the first aspect.
본원의 일 구현예에 있어서, 상기 메타물질 나노 복합구조체는 나노입자 및 호스트 물질을 포함하는 단위 구조체들을 포함하며, 상기 단위 구조체는 3 차원으로 조밀하게 배열(close-packed) 되어있는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the metamaterial nano composite structure includes unit structures including nanoparticles and a host material, and the unit structures may be close-packed in three dimensions. This may not be limited.
본원의 일 구현예에 있어서, 상기 광학용 필름은 고굴절률을 이용하여 광리소그래피 또는 광학 현미경 등 광학 시스템의 분해능을 향상시키는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the optical film may be to improve the resolution of an optical system such as optical lithography or an optical microscope using a high refractive index, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 광학용 필름은 증착법, 스프레이법, 담금법, 점적법 등을 이용하여 형성되는 것일 수 있으나, 이에 제한되지 않을 수 있다. In one embodiment of the present application, the optical film may be formed using a deposition method, a spray method, a immersion method, a drop method, etc., but may not be limited thereto.
본원의 제 2 측면은 상기 본원의 제 1 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제 1 측면에 대해 설명한 내용은 본원의 제 2 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.Although the second aspect of the present application omits a detailed description of the overlapping parts of the first aspect of the present application, the description of the first aspect of the present application may be equally applied even if the description is omitted in the second aspect of the present application. have.
본원에서는, 3 차원으로 조밀하게 배열된 금속 나노입자 어레이가 가시광 및 적외선 영역에서 광대역 고굴절률을 달성하기 위해 제안되었다. 조밀하게 배열된 메타물질 나노 복합구조체에서, 작은 간격-대-주기의 비율(gap-to-period ratio)은 유전체 간격 내에서 강력하게 밀폐된 전기장으로부터 더 향상된 유효 유전율로 연결된다. 동시에, 금속 입자의 수십의 나노미터 직경은 초대받지 않은 유효 투자율의 저하를 방지하며, 이것은 침투 깊이에 상응하거나 또는 더 작은 나노입자의 크기가 금속 입자를 통한 자기장의 침투를 허용하기 때문이다. 전기와 자기장 행동의 이러한 차이는 토마스-페르미 스크리닝 길이 및 침투 깊이 사이의 큰 차이에 기인한다. 그 결과, 메타물질 나노 복합구조체의 유효 굴절률은 가시광 및 적외선 영역에서 천연 물질보다 훨씬 더 높으며 갭의 폭을 변화시킴으로써 쉽게 제어될 수 있다. 상기 제안된 메타물질 나노 복합구조체는 표면 플라즈몬 공명에 직접 의존하는 다른 메타물질의 대역폭 한계를 극복한다. 메타물질 나노 복합구조체의 또다른 장점은 비싸고 복잡한 하향식 나노제작 공정을 대신하여 다수의 상향식 입자 합성법에 대한 가능성을 허용하는 입자 형태 및 격자 타입에서 유효 굴절률의 약한 의존성이다. 유전율 및 투자율을 조절하는 능력은 고굴절률을 달성하는 것뿐만 아니라 임피던스 및 물질의 다른 광학적 특성을 설계하는 데에 있어 중요하기 때문에, 상기 제안된 기법은 리소그래피 및 이미징을 위한 침수 렌즈에서 도파로 결합기(waveguide coupler), 변조기, 광 검출기 및 에너지 장치에까지 다양한 광학 장치에서 응용을 찾을 수 있다.Here, a three-dimensionally arranged array of metal nanoparticles has been proposed to achieve broadband high refractive index in the visible and infrared regions. In densely arranged metamaterial nanocomposites, small gap-to-period ratios lead to improved effective permittivity from strongly sealed electric fields within the dielectric gap. At the same time, the nanometer diameter of tens of metal particles prevents the undesired drop in effective permeability, since the size of the nanoparticles corresponding to or smaller than the penetration depth allows the penetration of the magnetic field through the metal particles. This difference in electrical and magnetic field behavior is due to the large difference between Thomas-Fermi screening length and penetration depth. As a result, the effective refractive index of the metamaterial nanocomposite is much higher than natural materials in the visible and infrared regions and can be easily controlled by varying the gap width. The proposed metamaterial nanocomposite overcomes the bandwidth limitations of other metamaterials directly dependent on surface plasmon resonance. Another advantage of metamaterial nanocomposites is the weak dependence of the effective refractive index on the particle morphology and lattice type, which allows the possibility for many bottom-up particle synthesis methods in lieu of expensive and complex top-down nanofabrication processes. Since the ability to adjust the dielectric constant and permeability is important not only in achieving high refractive index but also in designing impedance and other optical properties of the material, the proposed technique is a waveguide coupler in submerged lenses for lithography and imaging. Applications can be found in a variety of optical devices, from couplers, modulators, photo detectors and energy devices.
이하, 본원의 실시예를 통하여 본 발명을 더욱 상세하게 설명하고자 하나, 하기의 실시예는 본원의 이해를 돕기 위하여 예시하는 것 일뿐, 본원의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples of the present application, but the following examples are merely illustrated to aid the understanding of the present application, and the content of the present application is not limited to the following examples.
[[ 실시예Example ] ]
실시예 1: FDTD 시뮬레이션 분석Example 1 FDTD Simulation Analysis
FDTDFDTD 시뮬레이션 조건 Simulation condition
유한차분시간영역법 시뮬레이션(FDTD simulation)은 Lumerical Solutions의 제품(버전 8.7.4)을 사용하여 수행되었다. 전체 FDTD 시뮬레이션은 3 차원으로 진행되었다. 도 2에서, 메타물질 나노 복합구조체의 XZ 평면에서의 FDTD 시뮬레이션의 도식을 나타내었다. X-편광을 가진 빛이 Z-방향을 따라 전파하고, 광원 파장의 범위는 200 nm 내지 3,000 nm 이다. 메타물질 나노 복합구조체는 XY 평면의 반복된 단위 구조체로 구성되어있기 때문에, 주기적인 경계 조건은 컴퓨터를 사용한 시간을 절약하기 위해 X-방향 및 Y-방향에서 사용되었다. Z-방향의 양측에서, 완벽하게 매치된 레이어(PML)가 사용되었다. 두 개의 모니터는 S-파라미터법을 이용한 메타물질 나노 복합구조체의 특성을 분석하기 위해 아래와 위에 배치되었다. 모든 시뮬레이션에서, 최소 메쉬 크기는 가장 작은 구조의 십분의 일 크기로 설계되었다. 또한, 최소 메쉬의 크기는 수렴 판정 테스트(convergence test)를 먼저 진행하여 설계하였다. 금 메타물질 나노 복합구조체 시뮬레이션의 경우, Johnson 및 Christy 물질 데이터가 200 nm 내지 3,000 nm에 적용된다. Palik 물질 데이터는 은과 알루미늄 메타물질 나노 복합구조체 시뮬레이션에 사용되며, 시뮬레이션에서 사용된 물질(금, 은, 및 알루미늄)에 대한 굴절률 등의 물질 데이터는 도 3에 플롯되어있다. 이산화규소는 굴절률이 1.473으로 유전체 호스트 물질로서 선택되었다.FDTD simulation was performed using Lumerical Solutions' product (version 8.7.4). The entire FDTD simulation was performed in three dimensions. In Figure 2, the schematic of the FDTD simulation in the XZ plane of the metamaterial nanocomposite structure. Light with X-polarized light propagates along the Z-direction, and the light source wavelength ranges from 200 nm to 3,000 nm. Because metamaterial nanocomposites consist of repeated unit structures in the XY plane, periodic boundary conditions were used in the X- and Y-directions to save computer time. On both sides in the Z-direction, a perfectly matched layer (PML) was used. Two monitors were placed below and above to characterize metamaterial nanocomposites using the S-parameter method. In all simulations, the minimum mesh size was designed to be one tenth of the smallest structure. In addition, the minimum mesh size was designed by first conducting a convergence test. For gold metamaterial nanocomposite simulations, Johnson and Christy material data apply from 200 nm to 3,000 nm. Palik material data is used for the simulation of silver and aluminum metamaterial nanocomposites, and material data such as refractive indices for the materials (gold, silver, and aluminum) used in the simulation are plotted in FIG. 3. Silicon dioxide was selected as the dielectric host material with a refractive index of 1.473.
1-1: 나노입자 크기에 따른 1-1: Depending on nanoparticle size 메타물질Metamaterial 나노 복합구조체의 전기 "G 자기장 분포 Electric "G magnetic field distribution of nanocomposites
금속의 나노입자 크기에 따른 굴절률 변화를 확인하기 위해, FDTD 시뮬레이션을 이용하였다. 도 4에 나타낸 바와 같이, 금속 물질의 경우 완전 전기 도체(perfect electric conductor, PEC)와 금을 비교하였다. 도 4의 (a), (d), 및 (g)는 메타물질 나노 복합구조체 구조의 도식이며, 붉은색 사각형은 각각 하나의 단위 구조체를 나타낸다. 도 4의 (b), (e), 및 (h)는 도 1의 (a)에 나타낸 것과 같이 z-normal view 에서 하나의 메타물질 나노 복합구조체 단위 구조체의 Ex-필드 분포를, (c), (f), 및 (i)는 Hy-필드 분포를 나타낸다. Ex-필드 및 Hy-필드 분포는 단위 구조체의 가장자리에서 최댓값에 의해 정규화되며 이것은 도 4의 (a), (d), 및 (g)의 붉은색 사각형과 일치하였다. 단위 구조체 단면의 중앙 좌표는 통상적으로 (0, 0)이다. PEC는 토마스-페르미 스크리닝 길이와 침투 깊이 0을 가졌으며, 상기 입자의 크기는 두 길이보다 항상 더 컸다. 밴드간 전이 파장 초과의 근적외선 및 가시 파장에서 금의 경우 길이는 각각 서브-옹스트롬 스케일 및 22 nm이었다. 따라서, 18 nm 및 270 nm의 서로 다른 입자 크기를 갖는 두 케이스가 비교되었다. 이것은 침투 깊이보다 각각 더 작았고 더 컸다. 입자 사이즈 대 갭 비율은 9 : 1로 고정되었다. 도 4의 (b), (e), 및 (h)에 나타낸 바와 같이, 전기장은 금속 입자 크기와 관계없이 금속입자 사이의 유전체 간극에서 강하게 국한되었으며 금속이 PEC 또는 금인지 명확하게 확인되었다. 이것은 토마스-페르미 길이가 세 가지 경우에서 입자와 갭의 폭 모두보다 훨씬 짧기 때문이다. 이러한 전기장 국한(confinement)때문에, 상기 유효 유전율은 세 가지 경우 모두에서 유전체의 10 배에 가까워야 한다. 이와는 대조적으로, 자기장 분포는 물질과 크기에 따라 상당히 다르다. 도 4의 (c)에 나타낸 바와 같이, 자기장은 PEC 입자의 외부에만 존재했다. 이것은 강한 반자성 특징을 나타낸다. 금 입자의 경우, 자기장은 입자 내부로 침투했다. 경험적으로, 이러한 분포는 1 차의 쌍곡선 코사인 함수(hyperbolic cosine function)로 조사될 수 있었다. 따라서, 금 입자의 크기가 침투 깊이보다 더 클 때, 자기장은 주로 입자의 내부 영역으로부터 대부분 침투하지 못했고, 필드 프로파일은 강한 반자성을 나타내며 PEC 입자의 것과 가까워졌다[도 4의 (i)]. 그러나, 금 나노입자의 크기가 18 nm일 때(단위 구조체 크기 20 nm, 갭 2 nm), 유전체 갭에서 최댓값으로 정규화(normalized)될 때, 자기장이 나노입자의 중심에서 0.9465의 최소값을 가지며 단위 구조체에 걸쳐 거의 균일하게 분포되어 있음이 발현되었다[도 4의 (f)]. 그러므로, 나노입자의 침투 깊이에 상응하거나 또는 더 작은 금속 나노입자의 크기는 금속을 통한 자기 침투(magnetic penetration)를 유도하기 위한 중요한 열쇠이며, 이것은 메타물질 나노 복합구조체의 유효 투자율의 심각한 감소를 방지하는 것을 직접적으로 유도한다. 자기장의 결과는 도 1의 (c)에서 제안된 아이디어에 해당하며, 금속 입자에 상응하는 침투 깊이는 neff=(εeffμeff)1/2 = (a/gㆍεh)1/2인 고굴절률을 실현할 수 있다.In order to check the refractive index change according to the nanoparticle size of the metal, FDTD simulation was used. As shown in FIG. 4, in the case of the metal material, perfect electric conductor (PEC) and gold were compared. (A), (d), and (g) of FIG. 4 are schematic diagrams of the metamaterial nanocomposite structure, and red squares each represent one unit structure. (B), (e), and (h) of FIG. 4 show an Ex-field distribution of one metamaterial nanocomposite unit structure in a z-normal view as shown in (a) of FIG. , (f), and (i) represent the Hy-field distribution. Ex-field and Hy-field distributions were normalized by the maximum at the edge of the unit structure, which coincided with the red squares of FIGS. 4 (a), (d), and (g). The central coordinate of the cross section of the unit structure is typically (0, 0). PEC had a Thomas-Fermi screening length and a penetration depth of zero, and the particle size was always larger than both lengths. For gold at near-infrared and visible wavelengths above the interband transition wavelengths, the lengths were sub-angstrom scale and 22 nm, respectively. Thus, two cases with different particle sizes of 18 nm and 270 nm were compared. These were each smaller and larger than the depth of penetration. The particle size to gap ratio was fixed at 9: 1. As shown in (b), (e), and (h) of FIG. 4, the electric field was strongly localized in the dielectric gap between the metal particles regardless of the metal particle size and clearly identified whether the metal is PEC or gold. This is because the Thomas-Fermi length is much shorter than both the particle and gap widths in three cases. Because of this electric field confinement, the effective permittivity should be close to ten times the dielectric in all three cases. In contrast, the magnetic field distribution varies considerably with material and size. As shown in FIG. 4C, the magnetic field existed only outside the PEC particles. This shows strong diamagnetic properties. In the case of gold particles, the magnetic field penetrated into the particles. Empirically, this distribution could be investigated with a primary hyperbolic cosine function. Therefore, when the size of the gold particles was larger than the depth of penetration, the magnetic field did not penetrate mostly from the inner region of the particles, and the field profile exhibited strong diamagnetism and was close to that of the PEC particles (Fig. 4 (i)). However, when the size of the gold nanoparticles is 18 nm (unit structure size 20 nm, gap 2 nm), when normalized to the maximum value in the dielectric gap, the magnetic field has a minimum value of 0.9465 at the center of the nanoparticles. It was expressed that it was distributed almost uniformly over [FIG. 4 (f)]. Therefore, the size of the metal nanoparticles corresponding to or smaller than the penetration depth of the nanoparticles is an important key for inducing magnetic penetration through the metal, which prevents a significant reduction in the effective permeability of the metamaterial nanocomposites. Directly induces The result of the magnetic field corresponds to the idea proposed in FIG. 1 (c), and the penetration depth corresponding to the metal particles is n eff = (ε eff μ eff ) 1/2 = (a / g · ε h ) 1/2 Phosphorus high refractive index can be realized.
1-2: 1-2: 메타물질Metamaterial 나노 복합구조체의 굴절률 확인 Refractive Index of Nanocomposite Structures
정량 분석을 위해, s-파라미터 추출법이 FDTD 시뮬레이션으로부터 유효 물질 특성 값을 계산하기 위해 사용되었다. 20 nm 단위 구조체 및 SiO2로 채워진 2 nm의 갭을 가진 금 메타물질 나노 복합구조체에 대한 굴절률, 유전율, 및 투자율의 추출된 유효값이 도 5에 플롯되었다. 도 5의 (a)는 금 메타물질 나노 복합구조체의 유효 유전율(εeff) 및 투자율(μeff)을, 도 5의 (b)는 유효 굴절률 및 FOM의 실제, 허수 부분을 나타낸다. 단위 구조체 크기 및 갭의 폭은 각각 20 nm 및 2 nm이었으며, 사용된 호스트 물질은 SiO2이었다. 도 5의 (a)에서 상단의 녹색 및 하단의 붉은색 점선은 메타물질 나노 복합구조체의 유효 유전율 및 투자율의 점근선이다. 도 5의 (b)에서 녹색 점선은 메타물질 나노 복합구조체의 유효 굴절률의 점근선이다. 메타물질 나노 복합구조체는 800 nm 부근에서 두드러진 공명 특성을 나타내며, 공명 피크 이후 넓은 파장 범위에 걸쳐 거의 일정한 매우 높은 굴절률을 나타낸다는 것이 확인되었으며, 이것은 입자의 형태 및 크기에 의해 조절될 수 있는 나노입자의 쌍극 공명(dipolar resonance)으로 인한 것이다. 도 5에서 점선으로 표시된, 장-파장 한계에서 유효 물질 파라미터의 점근값(asymptotic value)은 이론적 예측에 매우 가까웠다. 점근선의 유전율, 투자율, 및 결과 굴절률은 21.2, 0.983, 및 4.57이었으며, 그에 대한 이론상의 값은 a/gεSiO2=20/2 ×2.17=21.7, 0.998, 및 4.65이었다. Re(n)/Im(n)로서 정의된 성능 지수(figure of merit, FOM)는 가시광 및 근적외선 영역에서 메타물질에 대해 상당히 높으며, 이것은 현재의 디자인 연구가, 공명 및 관련된 강한 분산에 직접 의존하는 종래 제안되었던 메타물질의 대부분과 달리, 공명으로부터 무관하다는 사실에 주로 기인된 것이다.For quantitative analysis, s-parameter extraction was used to calculate effective material property values from FDTD simulations. The extracted effective values of refractive index, dielectric constant, and permeability for the gold metamaterial nanocomposite structure having a 20 nm unit structure and a 2 nm gap filled with SiO 2 are plotted in FIG. 5. FIG. 5A shows the effective dielectric constant ε eff and permeability μ eff of the gold metamaterial nanocomposite structure, and FIG. 5B shows the effective refractive index and the actual imaginary part of the FOM. The unit structure size and gap width were 20 nm and 2 nm, respectively, and the host material used was SiO 2 . In FIG. 5A, the green dotted line and the red dotted line at the bottom are asymptotes of the effective dielectric constant and permeability of the metamaterial nanocomposite structure. In FIG. 5B, the dotted green line is an asymptote of the effective refractive index of the metamaterial nanocomposite structure. The metamaterial nanocomposites have been shown to exhibit prominent resonance properties around 800 nm and to exhibit very high refractive indices that are nearly constant over a broad wavelength range after the resonance peak, which can be controlled by the shape and size of the particles. This is due to the dipolar resonance of. The asymptotic value of the effective material parameter at the long-wavelength limit, indicated by the dashed line in FIG. 5, is very close to the theoretical prediction. The permittivity, permeability, and resulting refractive indices of asymptotes were 21.2, 0.983, and 4.57, with theoretical values for a / gεSiO 2 = 20/2 × 2.17 = 21.7, 0.998, and 4.65. The figure of merit (FOM), defined as Re (n) / Im (n), is considerably higher for metamaterials in the visible and near-infrared regions, which is currently dependent on current design studies, resonances and related strong dispersions. Unlike most of the metamaterials that have been proposed in the past, they are mainly due to the fact that they are independent of resonance.
1-3: 1-3: 메타물질Metamaterial 나노 복합 구조체의 굴절률 조절 Refractive Index Control of Nanocomposite Structures
메타물질 나노 복합구조체의 단위 구조체의 크기와 갭의 폭 조절에 따른 굴절률을 확인하기 위해, FDTD 시뮬레이션을 이용하였다. 유전율이 그렇지 않은 반면에 투자율은 침투 깊이에 비하여 입자의 상대적인 크기에 크게 의존하기 때문에, 메타물질 나노 복합구조체의 자기 및 전기적 특성은 독립적으로 조절될 수 있다. 도 6에서 나타낸 바와 같이, 상기 유전율은 침투 깊이 하에서 20 nm의 일정한 값으로 단위 구조체의 크기를 유지하면서 갭의 폭을 변화함으로써 투자율에서 눈에 띄는 변화 없이 자유롭게 조정될 수 있다[도 6의 (a) 내지 (c)]. 투자율이 금 메타물질 나노 복합구조체에 대해 거의 일정한 반면에 상기 유전율은 갭의 폭에 반비례한다는 것을 확인할 수 있다. 따라서, 높은 투자율 및 높은 굴절률은 갭의 폭을 줄임으로써 달성될 수 있다. 한편, 상기 자기적 특성은 동일한 유전율을 지속하기 위해 단위 구조체의 크기와 갭의 폭 사이의 비율을 일정하게 10 : 1로 유지하면서 단위 구조체의 크기를 변화시킴으로써 자기 반응이 거의 없는 것(1 근처의 투자율)에서 매우 강한 반자성(0 근처의 투자율)으로 설계될 수 있다[도 6의 (d) 내지 (f)]. 기하학 및 금의 침투 깊이에 기반한 상기 이론적인 예측은, 본원의 모델을 더욱 입증하면서 FDTD 결과와 잘 일치한다. 비교에서, 토마스-페르미 길이가 두 경우에서 무시할 수 없을 때 상기 유전율이 금 메타물질 나노 복합구조체와 거의 일치하는 반면에, PEC와, 22 nm의 금을 대신하여 0의 침투 깊이을 갖는 PEC로 만들어진 가상의 메타물질 나노 복합구조체는 매우 다른 투자율을 나타낸다. 전기 및 자기적 특성의 이러한 독립적인 통제를 활용하여, 매우 높은 굴절률 또는 매우 높은 어드미턴스(admittance) 및 중간의 어떠한 것을 갖는 광대역 메타물질을 설계할 수 있다.FDTD simulation was used to check the refractive index according to the size of the unit structure of the metamaterial nano composite structure and the width of the gap. The magnetic and electrical properties of the metamaterial nanocomposite can be independently controlled, while the permittivity is not so dependent on the relative size of the particles relative to the depth of penetration. As shown in Fig. 6, the permittivity can be freely adjusted without noticeable change in permeability by changing the width of the gap while maintaining the size of the unit structure at a constant value of 20 nm under the depth of penetration (Fig. 6 (a)). To (c)]. It can be seen that while the permeability is nearly constant for the gold metamaterial nanocomposite, the permittivity is inversely proportional to the width of the gap. Thus, high permeability and high refractive index can be achieved by reducing the width of the gap. On the other hand, the magnetic property is that there is little magnetic reaction by changing the size of the unit structure while maintaining a constant ratio between the size of the unit structure and the width of the gap to 10: 1 to maintain the same dielectric constant (near 1 Permeability) can be designed with a very strong diamagnetic (permeability near zero) (Fig. 6 (d) to (f)). The theoretical predictions based on geometry and penetration depth of gold are in good agreement with the FDTD results, further demonstrating the model herein. In comparison, the hypothesis is almost identical to the gold metamaterial nanocomposite when the Thomas-Fermi length is not negligible in both cases, while the PEC and the hypothetical made of PEC with zero penetration depth instead of 22 nm gold Metamaterial nanocomposites exhibit very different permeability. Using this independent control of electrical and magnetic properties, one can design broadband metamaterials with very high refractive indices or very high admittances and anything in between.
1-4: 금, 은, 및 알루미늄 1-4: gold, silver, and aluminum 메타물질Metamaterial 나노 복합구조체 Nano composite structure
상기 이론적 모델 및 분석이 다른 금속에게도 적용되는지 확인하기 위해, 금, 은, 및 알루미늄에 대해 FDTD 시뮬레이션을 실시하였다. 결과는 표 1에서 비교되었으며 그들은 유효값이 두드러지게 차이가 나지 않음을 보여주었고, 이것은 이러한 금속이 비슷한 침투 깊이를 가지고 있다는 사실에 기인된다. 그러나, 상기 공명 파장(resonance wavelength)은 표면 플라즈몬 주파수에 영향을 받으며 알루미늄 메타물질 나노 복합구조체에 대해 두드러지게 짧다. 이것은 알루미늄이 큰 광학적 손실로 인해 작은 FOM을 가짐에도 불구하고, 20 nm 입자 크기를 갖는 알루미늄 메타물질 나노 복합구조체가 가시 범위에서 광대역 고굴절률이 가능하다는 것을 의미한다. 또한 이것은 광학적으로 투명한 호스트 매질(host medium)로 다양한 종류의 유전체들을 활용할 수 있다. 메타물질 나노 복합구조체의 유효 굴절률이 호스트 매질의 굴절률과 연속적으로 비례하기 때문에, 만약 SiO2보다 고굴절률을 갖는 호스트 물질에 메타물질 나노 복합구조체가 박혀있다면 더 높은 유효 굴절률을 달성할 수 있다.FDTD simulations were conducted on gold, silver, and aluminum to confirm that the theoretical model and analysis also apply to other metals. The results were compared in Table 1 and they showed that the effective values were not significantly different, due to the fact that these metals had similar penetration depths. However, the resonance wavelength is influenced by the surface plasmon frequency and is markedly short for aluminum metamaterial nanocomposites. This means that although aluminum has a small FOM due to large optical losses, aluminum metamaterial nanocomposites with 20 nm particle size are capable of broadband high refractive index in the visible range. It is also an optically transparent host medium that can utilize various types of dielectrics. Since the effective refractive index of the metamaterial nanocomposite is continuously proportional to the refractive index of the host medium, a higher effective refractive index can be achieved if the metamaterial nanocomposite is embedded in a host material having a higher refractive index than SiO 2 .
Figure PCTKR2016015205-appb-T000001
Figure PCTKR2016015205-appb-T000001
1-5: 격자 형태에 따른 굴절률 비교1-5: Refractive Index Comparison by Grating Shape
상이한 격자 형태에서의 메타물질 나노 복합구조체의 굴절률을 확인하기 위해, FDTD 시뮬레이션을 실시하였다. 상기 실시예의 메타물질 나노 복합구조체가 비록 입방 격자(cubic lattice)와 입방 입자로 가정될지라도, 상기 원칙은 다른 입자 형태와 격자 타입에 대해 동일하게 유지되며 고굴절률은 조밀하게 배열된 구성에서 하부-침투-깊이-스케일(sub-skin-depth-scale) 입자에 의해 달성된다. 비교를 위해, 육방 격자(hexagonal lattice)에서의 구체가 고려되었다. 도 7에서 (a)는 입방 격자에서 정육면체 나노입자의 다층의 도식이며, 도 7의 (b)는 호스트 물질에 포함된 육방정계 어레이에서 나노스피어를 나타낸다. 도 7의 (c)는 금 정육면체의 다층의 FDTD 결과이고 상기 금 정육면체의 단위 구조체의 크기 및 갭의 폭은 각각 20 nm 및 2 nm이다. 도 5의 (d)는 금 구체의 다층의 FDTD 결과로, 구체의 직경 및 중심-대-중심 거리는 각각 19 nm 및 20 nm이다. 도 7의 (c) 및 (d)에서 1 내지 20은 레이어의 수를 나타낸다. 한 가지 미묘한 점은 구체의 모노-레이어가 위와 아래의 레이어로부터 잘려진 구체(truncated sphere)를 또한 포함하는 격자의 진정한 단위 구조체가 아니라는 것이다. 따라서, 레이어의 수에 관계없이 다른 것과 밀접하게 중첩된 장 파장 레짐(regime) 에서의 모든 데이터인 도 7의 (c)에서의 금 정육면체 형태의 메타물질 나노 복합구조체와는 대조적으로, 육방격자 형태의 메타물질 나노 복합구조체의 추출된 굴절률은 얇은 샘플에 대해 레이어-번호 의존성을 나타냈다[도 5의 (d)]. 그러나, 구체의 5 층 또는 그 이상의 레이어를 갖는 샘플에 대해, 유효 굴절률은 거의 포화되었으며 그것의 장-파장 값은 4.10으로서, 정육면체 형태의 메타물질 나노 복합구조체의 것(4.48)과 유의한 차이를 보이지 않았다. 정확한 입자 형태에 대한 유효 굴절률의 이러한 불감도(insensitiveness)는 이전에 보고되었던 금속 나노입자 합성법의 다양한 활용을 가능하게 한다.FDTD simulations were performed to determine the refractive indices of metamaterial nanocomposites in different lattice shapes. Although the metamaterial nanocomposite of this embodiment is assumed to be cubic lattice and cubic particles, the principle remains the same for other particle shapes and lattice types and the high refractive index is lower-in the densely arranged configuration. It is achieved by sub-skin-depth-scale particles. For comparison, spheres in hexagonal lattice were considered. In Figure 7 (a) is a multi-layered schematic of the cube nanoparticles in the cubic lattice, Figure 7 (b) shows the nanospheres in the hexagonal array included in the host material. Figure 7 (c) is a multi-layer FDTD result of the gold cube and the size and width of the gap of the unit structure of the gold cube is 20 nm and 2 nm, respectively. 5 (d) shows the result of the multilayered FDTD of the gold spheres, the diameter and center-to-center distance of the spheres are 19 nm and 20 nm, respectively. In FIGS. 7C and 7D, 1 to 20 represent the number of layers. One subtle point is that the mono-layer of the sphere is not a true unit structure of the lattice, which also includes truncated spheres from the layers above and below. Thus, in contrast to the metahedral nanocomposite in the form of a gold cube in FIG. 7 (c), which is all data in the long wavelength regime closely overlapped with one another regardless of the number of layers, the hexagonal form The extracted refractive index of the metamaterial nanocomposite of showed a layer-number dependency for thin samples (FIG. 5 (d)). However, for samples with five or more layers of spheres, the effective refractive index was nearly saturated and its long-wavelength value was 4.10, which is significantly different from that of the metamaterial nanocomposite in the form of a cube (4.48). I didn't see it. This insensitiveness of the effective refractive index for the exact particle morphology allows for the various applications of metal nanoparticle synthesis methods previously reported.
실시예 2: 실제 메타물질 나노 복합구조체의 제작Example 2 Preparation of Actual Metamaterial Nanocomposite Structures
2-1: 2-1: 블록공중합체Block copolymer 리소그래피에In lithography 의한 구멍 패턴 제조 Hole pattern manufacturing
매우 작은 나노 스케일의 구조체를 만들기 위해, 도 8에서 볼 수 있는 것과 같이 BCP 리소그래피를 사용하여 구멍 패턴을 제작하였다. 4 인치 실리콘 웨이퍼는 초음파 배스(ultra-sonic bath)를 사용하여 세척되었다. 세척은 탈이온수, 아세톤, 아이소프로필 알코올, 탈이온수 웨이퍼(DI wafer)의 순서로 15 분 동안 각각 수행되었다. 기판(substrate)을 더욱 친수성으로 만들기 위해, UV-오존 처리가 30 분 동안 수행되었다. PS-b-PMMA를 코팅하기 전에, 기판의 표면 모폴로지를 수정하기 위해 랜덤 브러쉬 용액(random brush solution)이 코팅되었다. 랜덤 브러쉬 용액은 1 wt%였으며 톨루엔 용매(99.8% purity, Sigma Aldrich)에 용해되었고, (PS-r-PMMA)-OH 랜덤 브러쉬의 분자량의 평균값(Mn)은 62%의 스티렌을 갖는 8 kg mol-1이었다. 그 다음, 기판은 진공오븐에서 12 시간 동안 160℃에서 열 어닐링되었다. 표면이 변화된 웨이퍼 위에, 2 wt% PS-b-PMMA 용액이 1 분 동안 2,500 rpm에서 스핀-코팅되었다. PS-b-PMMA 블록공중합체는 PS와 PMMA 블록에 대해 각각 140 kg mol-1 및 65 kg mol-1의 Mn을 가졌다. 직경 30 nm의 실린더 구조를 제작하기 위해 선택되었다. 용액은 톨루엔 용매, 2 wt%에 용해되었다. 상기와 같이 코팅된 웨이퍼는 주기적인 실린더 패턴을 제작하기 위해 진공 오븐에서 6 시간 동안 250℃에서 열 어닐링되었다. To make very small nanoscale structures, hole patterns were fabricated using BCP lithography as shown in FIG. 8. 4 inch silicon wafers were cleaned using an ultrasonic bath (ultra-sonic bath). Washing was performed for 15 minutes in order of deionized water, acetone, isopropyl alcohol, and DI water. In order to make the substrate more hydrophilic, UV-ozone treatment was performed for 30 minutes. Prior to coating the PS-b-PMMA, a random brush solution was coated to modify the surface morphology of the substrate. The random brush solution was 1 wt%, dissolved in toluene solvent (99.8% purity, Sigma Aldrich), and the average molecular weight (Mn) of the (PS-r-PMMA) -OH random brush was 8 kg mol with styrene of 62%. Was -1. The substrate was then thermally annealed at 160 ° C. for 12 hours in a vacuum oven. On the wafer with the changed surface, 2 wt% PS-b-PMMA solution was spin-coated at 2,500 rpm for 1 minute. The PS-b-PMMA block copolymer had 140 kg mol-1 and 65 kg mol-1 Mn for PS and PMMA blocks, respectively. It was chosen to fabricate a cylinder structure with a diameter of 30 nm. The solution was dissolved in toluene solvent, 2 wt%. The coated wafers were thermally annealed at 250 ° C. for 6 hours in a vacuum oven to produce a periodic cylinder pattern.
250℃의 열 어닐링 공정 후, BCP(diblock-copolymer) 코팅된 웨이퍼는 PMMA 마이크로상(microphase)을 분해하고 마이크로상을 단단하게 하기 위해 UV 라이트(UV cross-linker, Spectronics)의 2 J로 노출되었다. 상기 웨이퍼는 아세트산 용액(99.9% purity, Junsei corp.)에 10 분간 보관된 뒤 PMMA 마이크로상을 제거하기 위해 10 분 동안 탈이온수에 의해 세정되었다. 아세트산은 분해된 PMMA를 선택적으로 제거하며, 따라서 화학적 에칭 공정 이후, 30 nm의 구멍 패턴이 웨이퍼 상에 균일하게 제작되었다.After the thermal annealing process at 250 ° C., the diblock-copolymer (BCP) coated wafers were exposed with 2 J of UV light (UV cross-linker, Spectronics) to decompose the PMMA microphase and harden the microphase. . The wafers were stored for 10 minutes in acetic acid solution (99.9% purity, Junsei corp.) And then washed with deionized water for 10 minutes to remove the PMMA microphase. Acetic acid selectively removes the degraded PMMA, so after the chemical etching process, a 30 nm hole pattern was uniformly produced on the wafer.
2-2: 알루미늄 나노 복합구조체의 제조2-2: Preparation of Aluminum Nanocomposite Structure
알루미늄 나노복합 구조체를 제작하기 위해, 도 9에서 보여지는 것과 같이 이온 밀링법(ion milling method)을 이용하였다. 제조된 30 nm의 구멍 패턴이 플루오린화 수소산(49% 내지 51% HF 용액, J. T. Baker.)을 사용하여 원래 기판으로부터 분리되었다. 상기 분리된 구멍 패턴은 알루미늄 박막 표면 위에 전사되었다. 알루미늄 박막은 증착법에 의해, 투명한 쿼츠 기판 위에 증착되었다. 알루미늄 박막은 고 진공 상태(저항성법, 10-7 torr)하에서 증착된다. 구멍 패턴이 알루미늄 표면 위에 전사된 후, 홀 직경을 조절하고 기판 위의 PMMA 잔여물을 제거하기 위해 산소 리액티브 이온 에칭(RIE)이 10 초간 수행되었다. 따라서, 구멍의 직경은 RIE 처리 이후 40 nm로 확대되었다.In order to fabricate the aluminum nanocomposite structure, an ion milling method was used as shown in FIG. 9. The prepared 30 nm pore pattern was separated from the original substrate using hydrofluoric acid (49% to 51% HF solution, JT Baker.). The separated hole pattern was transferred onto the aluminum thin film surface. An aluminum thin film was deposited on a transparent quartz substrate by the vapor deposition method. The aluminum thin film is deposited under high vacuum (resistance method, 10 −7 torr). After the hole pattern was transferred onto the aluminum surface, oxygen reactive ion etching (RIE) was performed for 10 seconds to adjust the hole diameter and remove PMMA residue on the substrate. Thus, the diameter of the pores expanded to 40 nm after RIE treatment.
알루미나(Al2O3)가 알루미늄 박막과 동일한 조건에서 증착법에 의해 전송된 구멍 패턴에 증착되었다. 톨루엔 배스에서 초음파 처리함으로써 알루미늄 표면으로부터 PS 도메인을 갖는 BCP 구멍 패턴이 제거되었다. 고분자 도메인의 제거 후, 알루미늄 표면 위의 이온 밀링 마스크를 위한 알루미나 나노복합 구조체만이 방치되었다. 이온 밀링 공정은 나노 크기의 하드 마스크 후에 이어졌으며 알루미나 나노복합 구조체가 제조되었다. 챔버 베이스는 8×10-7 torr 이하, 공정 진공은 6 sccm의 Ar 가스와 함께 2×10-4 torr 이하에서 시행되었다. 이온 빔은 100 V, 1 mA에 의해 가속화되었으며 이온 밀링 시간은 5 분 내지 12 분이었다.Alumina (Al 2 O 3 ) was deposited in the hole pattern transmitted by the deposition method under the same conditions as the aluminum thin film. By sonication in toluene bath, the BCP hole pattern with PS domain was removed from the aluminum surface. After removal of the polymer domain, only the alumina nanocomposite structure for the ion milling mask on the aluminum surface was left. The ion milling process was followed by a nano-sized hard mask and an alumina nanocomposite structure was made. The chamber base was conducted at 8 × 10 −7 torr or less and the process vacuum was conducted at 2 × 10 −4 torr or less with 6 sccm of Ar gas. The ion beam was accelerated by 100 V, 1 mA and the ion milling time was 5-12 minutes.
2-3: 2-3: SEMSEM 분석 analysis
제조된 알루미늄 나노복합 구조체의 표면 및 측면 모폴로지를 관찰하기 위해, 전계 방출형 주사 전자 현미경(FE-SEM, HITACHI)가 사용되었다. 상기 제조된 모든 샘플은 수십의 나노미터 사이즈를 가졌으며, 따라서 샘플 위의 오스뮴 또는 백금 코팅은 존재하지 않았다. 이러한 전도성을 가지는 물질 코팅의 두께가 수십의 나노미터 이상이기 때문에, 샘플은 표면 모폴로지의 왜곡을 방지하기 위해 코팅 없이 관찰되었다. 도 10의 (a)는 PS-b-PMMA 블록공중합체에 의해 제조된 구멍 패턴의 평면도를, 도 10의 (b)는 알루미늄 박막 위에 주기적으로 배열된 알루미나 하드 마스크의 SEM 이미지를 나타낸 것이다. 도 10의 (c) 및 (d)는 이온 밀링 공정에 의해 제작된 샘플이다. SEM 이미지로부터, 알루미늄 나노복합 구조체는 매우 유사한 규모의 BCP 구멍 패턴을 사용하여 제작되었다는 것을 확인할 수 있다.In order to observe the surface and side morphology of the manufactured aluminum nanocomposite structure, a field emission scanning electron microscope (FE-SEM, HITACHI) was used. All samples prepared had tens of nanometers in size, so there was no osmium or platinum coating on the samples. Since the thickness of this conductive material coating is more than a few tens of nanometers, the sample was observed without coating to prevent distortion of the surface morphology. FIG. 10A illustrates a plan view of a hole pattern manufactured by a PS-b-PMMA block copolymer, and FIG. 10B illustrates an SEM image of an alumina hard mask periodically arranged on an aluminum thin film. 10C and 10D illustrate samples prepared by an ion milling process. From the SEM images, it can be seen that the aluminum nanocomposite structures were fabricated using BCP hole patterns of very similar scale.
2-4: 2-4: AFMAFM 분석 analysis
상기 제조된 알루미늄 나노복합 구조체의 표면 모폴로지는 원자력 현미경(AFM, XE-100, Park System and AFM, Nanoman, Veeco Instruments Inc.)을 사용하여 조사되었다. 원자력 현미경은 샘플의 표면 위로 프로브를 이동함으로써 표면 이미지를 생성한다. 상기 프로브는 잘 한정된 공명 주파수와 끝부분이 매우 날카로운 팁을 갖는 캔틸레버(cantilever)로 구성되어 있다. 상기 팁이 표면에 가까우면 이는 끌어당겨지거나 또는 격퇴된다. 진동 진폭 또는 주파수 팁에서의 모든 변화는 지형도(topo-graphic map)로 변환된다. 제곱 평균 제곱근 표면 거칠기와 같은 표면 모폴로지, 입자 분석, 라인 프로파일이 분석되었다. 다르게 제작된 알루미늄 나노구조의 표면 지형도는 도 11에서 나타냈다. 도 11의 (a)는 이온 밀링에 10 nm 알루미늄 막을 사용한 알루미늄 나노 반구 복합구조체를, 도 11의 (b)는 20 nm 알루미늄 막을 사용한 알루미늄 나노 반구 복합구조체를 나타낸 AFM 이미지이다. 도 11에 나타낸 바와 같이, 제작된 알루미늄 나노복합 구조체의 표면은 SEM 분석 결과와 잘 일치한다. 두 샘플의 높이는 유사성을 보여주었다. 더 얇은 알루미늄 막이 이온 밀링에 대한 시간을 줄여주기 때문에, 이온 밀링 공정 동안 마스크에 사용되는 알루미나 나노-도트가 높게 남아있을 수 있다. 따라서 AFM에 의해 분석된 상기 높이는 알루미늄 10 nm 샘플 및 20 nm 샘플 사이의 유사성을 보여주었다.The surface morphology of the prepared aluminum nanocomposite structure was investigated using an atomic force microscope (AFM, XE-100, Park System and AFM, Nanoman, Veeco Instruments Inc.). An atomic force microscope produces a surface image by moving the probe over the surface of the sample. The probe consists of a cantilever with a well defined resonant frequency and a very sharp tip. When the tip is close to the surface it is attracted or repelled. All changes in vibration amplitude or frequency tip are converted to a topo-graphic map. Surface morphologies such as root mean square surface roughness, particle analysis, and line profile were analyzed. The surface topography of the aluminum nanostructures manufactured differently is shown in FIG. 11. Figure 11 (a) is an AFM image showing an aluminum nano hemisphere composite structure using a 10 nm aluminum film for ion milling, Figure 11 (b) is an aluminum nano hemisphere composite structure using a 20 nm aluminum film. As shown in FIG. 11, the surface of the fabricated aluminum nanocomposite structure is in good agreement with the SEM analysis. The heights of the two samples showed similarity. Since thinner aluminum films reduce the time for ion milling, the alumina nano-dots used in the mask may remain high during the ion milling process. Thus, the height analyzed by AFM showed a similarity between 10 nm and 20 nm samples of aluminum.
2-5: UV-2-5: UV- VISVIS 분광계로 측정된 투과도 Permeability measured by spectrometer
제작된 샘플의 광학적 특성을 관찰하기 위해, 투과도 및 반사율이 측정되었다(Lambda 1050, PerkinElmer). 샘플은 투명한 석영 기판에 준비되었으며 모든 샘플의 크기는 1 cm2 이상이었다. 모든 데이터는 석영 기판의 투과도와 반사율로 일반화되었다. 상기 측정된 파장의 범위는 175 nm 내지 750 nm였다. 이는 KAIST 분석 연구 센터에서 측정되었다. 도 12에 나타낸 바와 같이, 175 nm 내지 750 nm에서 UV-VIS 분광계로 측정된 투과도를 나타낸다. 10 nm 두께의 알루미늄 박(박막)을 사용한 샘플은 195 nm에서 더 뾰족한 피크를, 20 nm 두께의 알루미늄 박을 사용한 샘플은 190 nm 내지 220 nm에서 넓은 피크를 나타낸다. 가시 파장에 걸쳐, 모든 샘플은 투명한 특성을 나타냈으며, 또한 10 nm 알루미늄 샘플의 측정된 투과도는 거의 100%였다. 20 nm 알루미늄 샘플은 낮은 투과도를 보였다. 두 샘플 사이의 광학적 특성의 차이는 알루미늄 두께의 인센서멘트(incensement)를 갖는 나노복합 구조체의 향상된 흡수에 있다.In order to observe the optical properties of the produced samples, the transmittance and reflectance were measured (Lambda 1050, PerkinElmer). Samples were prepared on a transparent quartz substrate and all samples were at least 1 cm 2 in size. All data were generalized to the transmittance and reflectance of the quartz substrate. The measured wavelength ranged from 175 nm to 750 nm. This was measured at the KAIST Analytical Research Center. As shown in FIG. 12, the transmittance measured by the UV-VIS spectrometer at 175 nm to 750 nm is shown. Samples using 10 nm thick aluminum foil (thin film) show sharper peaks at 195 nm, while samples using 20 nm thick aluminum foil exhibit broad peaks from 190 nm to 220 nm. Over the visible wavelength, all samples showed transparent properties, and the measured transmittance of the 10 nm aluminum sample was almost 100%. The 20 nm aluminum sample showed low transmittance. The difference in the optical properties between the two samples lies in the improved absorption of the nanocomposite structure with the insensitivity of aluminum thickness.
2-6: 2-6: FDTDFDTD 시뮬레이션을 이용한 전자기적 분석 Electromagnetic Analysis Using Simulation
상기 제조된 알루미늄 나노복합 구조체는 FDTD 시뮬레이션을 통해 분석되었다. FDTD 시뮬레이션에서, 구조는 3 nm의 자연 산화알루미늄 층으로 추정되었다. 도 13은 150 nm 내지 800 nm에서 FDTD 시뮬레이션에 의해 수치적으로 계산된 투과도를 나타낸다. 상기 투과도는 측정된 결과와 수치적으로 계산된 결과 사이에 차이를 보였다. 도 13에서, 투과도의 깊이는 측정된 결과보다 더욱 깊었다. 깊이 위치의 파장 또한 수치 시뮬레이션 결과의 적색 변위(red-shift) 였으며, 10 nm 알루미늄 샘플은 측정된 결과가 195 nm로 나타난 곳인 220 nm에서 날카로운 피크를 보였다. 측정된 결과가 220 nm에서 작은 숄더 피크(shoulder peak)와 함께 190 nm에서 하나의 큰 피크를 나타낸 반면에, 20 nm 알루미늄 샘플은 전송 스펙트럼에서 넓은 2 개의 피크를 보여주었다. 이러한 차이점은 FDTD 시뮬레이션과 제조된 샘플 사이의 구조 차이로부터 온 것이다. 시뮬레이션에서, 알루미늄 나노복합 구조체는 40 nm의 직경, 60 nm의 중심-대-중심 거리를 갖도록 가정되었고, 구조는 완벽하게 주기적이며 대칭적으로 가정되었다. 광학적 반응은 나노복합 구조체에 크게 의존하고, 구조 차원에서의 작은 차이점은 상이한 광학적 반응을 일으킬 수 있다. 제작된 샘플은 입자 크기 분포 및 중심-대-중심 분포를 모두 갖는다. 또한 알루미늄 플라즈몬은 증착 환경에 크게 의존하며 또한 알루미늄 나노복합 구조체의 산소 함유량은 플라즈모닉 반응에 영향을 미치므로, 제작된 알루미늄 나노복합 구조체를 수치적 시뮬레이션으로 정확하게 재현하는 것이 어렵다고 할 수 있다.The prepared aluminum nanocomposite structure was analyzed by FDTD simulation. In the FDTD simulations, the structure was assumed to be a 3 nm native aluminum oxide layer. 13 shows the numerically calculated transmittance by FDTD simulation from 150 nm to 800 nm. The transmittance showed a difference between the measured result and the numerically calculated result. In FIG. 13, the depth of permeability was deeper than the measured result. The wavelength of the depth position was also a red-shift of the numerical simulation results, and the 10 nm aluminum sample showed a sharp peak at 220 nm where the measured result was 195 nm. The measured results showed one large peak at 190 nm with a small shoulder peak at 220 nm, while the 20 nm aluminum sample showed two broad peaks in the transmission spectrum. This difference comes from the structural difference between the FDTD simulation and the sample produced. In the simulation, the aluminum nanocomposite structure was assumed to have a diameter of 40 nm, a center-to-center distance of 60 nm, and the structure was assumed to be perfectly periodic and symmetrical. The optical response is highly dependent on the nanocomposite structure, and small differences in structural dimensions can lead to different optical responses. The produced sample has both particle size distribution and center-to-center distribution. In addition, since aluminum plasmon is highly dependent on the deposition environment, and the oxygen content of the aluminum nanocomposite structure affects the plasmonic reaction, it is difficult to accurately reproduce the fabricated aluminum nanocomposite structure by numerical simulation.
비록 제작된 구조는 갭이 20 nm 수준으로 크기 때문에, 제안된 조밀하게 배열된 단위 구조체와는 차이가 있지만, BCP 리소그래피에 의해 실현된 알루미늄 반구형 나노복합 구조체는 시뮬레이션 결과와 유사한 광학 특성을 보여준다. 도 14에서, 유효 굴절률이 수치적 시뮬레이션으로부터 도출되었다. 높이가 증가함에 따라, 갭의 폭은 상기 구조의 직경이 40 nm로 일정하기 때문에 감소된다. 그러므로, 20 nm 두께를 갖는 샘플이 더 높은 유효 굴절률 값을 나타낸다. 상기 도출된 값이 높은 것은 아니지만, 단순한 구조의 가시광 메타물질의 실현 가능성을 보여주며, 시뮬레이션에서 확인되는 바와 같이 20 nm 수준인 현 샘플의 갭을 10 nm 이하로 줄인다면 더 높은 굴절률을 얻을 수 있음을 나타낸다.Although the fabricated structure differs from the proposed densely arranged unit structure because the gap is about 20 nm, the aluminum hemispherical nanocomposite structure realized by BCP lithography shows optical properties similar to the simulation results. In Figure 14, the effective refractive index was derived from numerical simulations. As the height increases, the width of the gap decreases because the diameter of the structure is constant at 40 nm. Therefore, samples with a thickness of 20 nm show higher effective refractive index values. Although the value derived above is not high, it shows the feasibility of a simple structure of visible light metamaterial, and higher refractive index can be obtained by reducing the gap of the current sample, which is 20 nm level to 10 nm or less, as confirmed in the simulation. Indicates.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The above description of the present application is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present application. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present application is indicated by the following claims rather than the above description, and it should be construed that all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present application.

Claims (17)

  1. 나노입자 및 호스트 물질을 포함하는 단위 구조체들을 포함하며, A unit structure comprising nanoparticles and a host material,
    상기 단위 구조체는 3 차원으로 배열되어 있는 것인, The unit structure is arranged in three dimensions,
    메타물질 나노 복합구조체.Metamaterial Nanocomposites.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 메타물질 나노 복합구조체는 가시광선, 자외선, 적외선, 및 이들의 조합들로부터 선택되는 파장대역에서 고굴절률을 가지는 것인, 메타물질 나노 복합구조체.The metamaterial nano composite structure has a high refractive index in the wavelength band selected from visible light, ultraviolet light, infrared light, and combinations thereof, meta-material nano composite structure.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 메타물질 나노 복합구조체는 200 nm 이하의 파장에서 1.5 이상의 극대 굴절률을 가지는 것인, 메타물질 나노 복합구조체.The metamaterial nanocomposite structure has a maximum refractive index of 1.5 or more at a wavelength of 200 nm or less, metamaterial nanocomposite structure.
  4. 제 2 항에 있어서,The method of claim 2,
    상기 메타물질 나노 복합구조체는 200 nm 내지 400 nm의 자외선 파장에서 2 이상의 극대 굴절률을 가지는 것인, 메타물질 나노 복합구조체.The metamaterial nano composite structure will have a maximum refractive index of 2 or more at the ultraviolet wavelength of 200 nm to 400 nm, metamaterial nano composite structure.
  5. 제 2 항에 있어서,The method of claim 2,
    상기 메타물질 나노 복합구조체는 400 nm 내지 700 nm의 가시광선 파장에서 4 이상의 극대 굴절률을 가지는 것인, 메타물질 나노 복합구조체.The metamaterial nano composite structure will have a maximum refractive index of 4 or more at visible light wavelength of 400 nm to 700 nm, metamaterial nano composite structure.
  6. 제 2 항에 있어서,The method of claim 2,
    상기 메타물질 나노 복합구조체는 700 nm 이상의 적외선 파장에서 5 이상의 극대 굴절률을 가지는 것인, 메타물질 나노 복합구조체.The metamaterial nanocomposite structure has a maximum refractive index of 5 or more at an infrared wavelength of 700 nm or more, metamaterial nanocomposite structure.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 단위 구조체에서 상기 나노입자는 상기 호스트 물질에 의해 둘러싸여 있는 것인, 메타물질 나노 복합구조체.The nanoparticles in the unit structure is surrounded by the host material, metamaterial nano composite structure.
  8. 제 1 항에 있어서, The method of claim 1,
    상기 단위 구조체에서 상기 나노입자는 유전율의 실수 부분이 음수인 물질을 포함하고, 상기 호스트 물질은 유전율의 실수 부분이 양수인 물질을 포함하는 것인, 메타물질 나노 복합구조체.The nanoparticles in the unit structure comprises a material in which the real part of the dielectric constant is negative, the host material comprises a material in which the real part of the dielectric constant is positive, metamaterial nano composite structure.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 단위 구조체에서 상기 나노입자의 크기는 상기 나노입자의 침투 깊이에 상응하거나 또는 더 작은 것인, 메타물질 나노 복합구조체.The size of the nanoparticles in the unit structure, the metamaterial nano composite structure corresponding to or smaller than the penetration depth of the nanoparticles.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 단위 구조체는 등방성 또는 비등방성을 가지고 3 차원으로 배열되어 있는 것인, 메타물질 나노 복합구조체.The unit structure is an isotropic or anisotropic one is arranged in three dimensions, metamaterial nano composite structure.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 단위 구조체에서 상기 나노입자는 사면체형, 육면체형, 팔면체형, 십이면체형, 십사면체형, 이십면체형, 막대형, 오목한 정사면체형, 정사면체형, 쌍정형, 구형, 타원체형, 또는 실린더형을 가지는 것을 포함하는 것인, 메타물질 나노 복합구조체.In the unit structure, the nanoparticles are tetrahedral, hexahedral, octahedral, decahedral, tetrahedral, icosahedral, rod, concave tetrahedral, tetrahedral, twin, spherical, ellipsoidal, or cylindrical. The metamaterial nano composite structure comprising a.
  12. 제 1 항에 있어서,The method of claim 1,
    상기 나노입자는 등방성을 가지는(isotropic) 구형, 정사면체형, 정육면체형, 정팔면체형, 정십이면체형, 정십사면체형, 또는 정이십면체형 형상을 가지는 것을 포함하는 것인, 메타물질 나노 복합구조체.Wherein the nanoparticles (isotropic) sphere, tetrahedron, hexahedral, octahedral, dodecahedral, dodecahedral, or dodecahedron form, including those having a metamaterial nanocomposite structure.
  13. 제 1 항에 있어서,The method of claim 1,
    상기 단위 구조체에서 상기 나노입자는 인접한 나노입자와의 간격이 10 nm 이하인 것인, 메타물질 나노 복합구조체.The nanoparticles in the unit structure, the distance between adjacent nanoparticles is less than 10 nm, metamaterial nano composite structure.
  14. 제 8 항에 있어서,The method of claim 8,
    상기 나노입자의 유전율의 실수 부분이 음수인 물질은 금속 물질, 탄소계 물질, 도핑에 의해 캐리어 밀도가 향상된 반도체 물질, 및 이들의 조합들로 이루어진 군에서 선택되는 물질을 포함하는 것인, 메타물질 나노 복합구조체.The negative material of the dielectric constant of the nanoparticles is a negative material includes a material selected from the group consisting of metal material, carbon-based material, semiconductor material having improved carrier density by doping, and combinations thereof Nanocomposite Structures.
  15. 제 8 항에 있어서, The method of claim 8,
    상기 호스트 물질의 유전율의 실수 부분이 양수인 물질은 산화물, 질화물, 전하밀도가 낮은 반도체 물질, 고분자 물질, 유기 물질, 액상 물질, 및 이들의 조합들로 이루어진 군에서 선택되는 물질을 포함하는 것인, 메타물질 나노 복합구조체.The material in which the real part of the dielectric constant of the host material is positive is a material selected from the group consisting of oxides, nitrides, low-density semiconductor materials, polymer materials, organic materials, liquid materials, and combinations thereof, Metamaterial Nanocomposites.
  16. 제 1 항 내지 제 15 항 중 어느 한 항에 따른 메타물질 나노 복합구조체The metamaterial nano composite structure according to any one of claims 1 to 15.
    를 포함하는, 광학용 필름. It includes, the optical film.
  17. 제 16 항에 있어서,The method of claim 16,
    상기 광학용 필름은 고굴절률을 이용하여 광리소그래피 또는 광학 현미경의 분해능을 향상시키는 것인, 광학용 필름.The optical film is to improve the resolution of the optical lithography or optical microscope using a high refractive index, the optical film.
PCT/KR2016/015205 2015-12-23 2016-12-23 Broadband high-refractive index metamaterial nano-composite structure WO2017111546A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0185281 2015-12-23
KR20150185281 2015-12-23

Publications (1)

Publication Number Publication Date
WO2017111546A1 true WO2017111546A1 (en) 2017-06-29

Family

ID=59089634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015205 WO2017111546A1 (en) 2015-12-23 2016-12-23 Broadband high-refractive index metamaterial nano-composite structure

Country Status (2)

Country Link
KR (2) KR101956285B1 (en)
WO (1) WO2017111546A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110718763A (en) * 2019-09-17 2020-01-21 北京航空航天大学 Tunable metamaterial device based on CMOS (complementary Metal oxide semiconductor) process
CN113249700A (en) * 2021-05-28 2021-08-13 中国科学院宁波材料技术与工程研究所 Metamaterial with infrared high refractive index and low dispersion and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102198644B1 (en) * 2018-07-10 2021-01-05 한국과학기술원 Meta-material including core-shell particles
KR102347673B1 (en) * 2019-03-29 2022-01-07 한국과학기술원 Temperature sensitive smart radiative cooling device
CN112558419A (en) * 2020-12-18 2021-03-26 中国科学院光电技术研究所 Processing method of large-caliber flexible optical super-structure surface structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100046579A (en) * 2008-10-27 2010-05-07 한국전자통신연구원 Planar meta-material having negative permittivity, negative permeability, and negative refractive index, planar meta-material structure comprising the same planar meta-material, and antenna system comprising the same planar meta-material structure
KR20120094418A (en) * 2011-02-16 2012-08-24 한국과학기술원 High refractive index metamaterial
WO2013133175A1 (en) * 2012-03-05 2013-09-12 国立大学法人京都工芸繊維大学 Three-dimensional meta-material
JP2014191781A (en) * 2013-03-28 2014-10-06 Asahi Kasei Corp Meta material design method, meta material structure, meta material design system, and program
KR20150001749A (en) * 2012-03-14 2015-01-06 람다 가드 테크놀로지스 엘티디 An optical device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101061999B1 (en) * 2008-10-27 2011-09-05 김기환 Heating wire insertion device and method of hot water pipe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100046579A (en) * 2008-10-27 2010-05-07 한국전자통신연구원 Planar meta-material having negative permittivity, negative permeability, and negative refractive index, planar meta-material structure comprising the same planar meta-material, and antenna system comprising the same planar meta-material structure
KR20120094418A (en) * 2011-02-16 2012-08-24 한국과학기술원 High refractive index metamaterial
WO2013133175A1 (en) * 2012-03-05 2013-09-12 国立大学法人京都工芸繊維大学 Three-dimensional meta-material
KR20150001749A (en) * 2012-03-14 2015-01-06 람다 가드 테크놀로지스 엘티디 An optical device
JP2014191781A (en) * 2013-03-28 2014-10-06 Asahi Kasei Corp Meta material design method, meta material structure, meta material design system, and program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110718763A (en) * 2019-09-17 2020-01-21 北京航空航天大学 Tunable metamaterial device based on CMOS (complementary Metal oxide semiconductor) process
CN110718763B (en) * 2019-09-17 2020-08-04 北京航空航天大学 Tunable metamaterial device based on CMOS (complementary Metal oxide semiconductor) process
CN113249700A (en) * 2021-05-28 2021-08-13 中国科学院宁波材料技术与工程研究所 Metamaterial with infrared high refractive index and low dispersion and preparation method thereof
CN113249700B (en) * 2021-05-28 2023-06-13 中国科学院宁波材料技术与工程研究所 Metamaterial with infrared high refractive index and low dispersion and preparation method thereof

Also Published As

Publication number Publication date
KR20170075668A (en) 2017-07-03
KR20190038493A (en) 2019-04-08
KR101956285B1 (en) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2017111546A1 (en) Broadband high-refractive index metamaterial nano-composite structure
Biswas et al. Second Harmonic Generation Enhancement from Isolated Selenium Nanowire Coupled to Mie Resonant Silicon Disks
US11086223B2 (en) Hardmask composition and method of forming pattern using the hardmask composition
Bergmair et al. Single and multilayer metamaterials fabricated by nanoimprint lithography
TW202024723A (en) Metalens for light field imaging
US20190339418A1 (en) Broadband absorbers via nanostructures
KR101894909B1 (en) Metamaterial having a high refractive index, and method for preparing the same
KR20170000726A (en) Nanogap structure having ultrasmall void between metal cores and molecular sensing apparatus and method using the same, and method for preparing the nanogap structure by selective etching
Smyrnakis et al. Optical properties of high aspect ratio plasma etched silicon nanowires: fabrication-induced variability dramatically reduces reflectance
Alexander et al. Near-field mapping of photonic eigenmodes in patterned silicon nanocavities by electron energy-loss spectroscopy
Yan et al. Individual Si Nanospheres Wrapped in a Suspended Monolayer WS2 for Electromechanically Controlled Mie‐Type Nanopixels
US9583650B1 (en) Integrated plasmonic circuit and method of manufacturing the same
Tanaka Plasmonic metamaterials
Hasan et al. A modified abstraction of Sierpiński fractals towards enhanced sensitivity of a cross-coupled bow-tie nanostructure
WO2014010803A1 (en) Optical element using three-dimensional structure assembled with nanoparticles
Li et al. Fabrication of 3D SiOx structures using patterned PMMA sacrificial layer
Shapturenka et al. Quasiordered, subwavelength TiO2 hole arrays with tunable, omnidirectional color response
Yang et al. Nano-fabrication of depth-varying amorphous silicon crescent shell array for light trapping
WO2014010808A1 (en) Method for producing three-dimensional structures assembled with nanoparticles
WO2021125853A1 (en) Plasmon hierarchical structure having nanogap and manufacturing method therefor
Narayanan Large-Scale Replication of Anisotropic Nanostructures for Development of Anti-reflective Surface on Glass
Ullah et al. Interparticle-Coupled Metasurface for Infrared Plasmonic Absorption
Babar et al. Integrating top-down nanopatterning with bottom-up self-assembly to fabricate photonic cavities with atomic-scale dimensions
Jalil Novel substrates for graphene based electronics
KR20170131981A (en) Method for forming mask having metamaterial

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16879413

Country of ref document: EP

Kind code of ref document: A1