WO2013133175A1 - Three-dimensional meta-material - Google Patents

Three-dimensional meta-material Download PDF

Info

Publication number
WO2013133175A1
WO2013133175A1 PCT/JP2013/055710 JP2013055710W WO2013133175A1 WO 2013133175 A1 WO2013133175 A1 WO 2013133175A1 JP 2013055710 W JP2013055710 W JP 2013055710W WO 2013133175 A1 WO2013133175 A1 WO 2013133175A1
Authority
WO
WIPO (PCT)
Prior art keywords
rod
dimensional metamaterial
metamaterial
dielectric resonator
dimensional
Prior art date
Application number
PCT/JP2013/055710
Other languages
French (fr)
Japanese (ja)
Inventor
上田 哲也
佐藤 良明
Original Assignee
国立大学法人京都工芸繊維大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都工芸繊維大学 filed Critical 国立大学法人京都工芸繊維大学
Priority to JP2014503818A priority Critical patent/JP6082938B2/en
Publication of WO2013133175A1 publication Critical patent/WO2013133175A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/18Waveguides; Transmission lines of the waveguide type built-up from several layers to increase operating surface, i.e. alternately conductive and dielectric layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/10Dielectric resonators

Definitions

  • the present invention relates to a three-dimensional metamaterial that is an artificial structure that includes a plurality of unit cells that have a predetermined shape and a predetermined structure and that are periodically arranged, and in which parameters as an effective medium can be arbitrarily set.
  • the present invention relates to a three-dimensional right / left-handed composite metamaterial.
  • the structure of the metamaterial is a microwave circuit, its components and antennas, a flat plate super lens, and near-field light (light with information of structure smaller than the wavelength of the light) that realizes sub-wavelength resolution. It has been studied for applications to optical devices and their components such as field imaging, cloaking technology and the like.
  • the metamaterial can be used for propagating electromagnetic waves or blocking electromagnetic waves by arbitrarily setting parameters as effective media.
  • a normal medium has a positive effective dielectric constant and a positive effective magnetic permeability (right-handed medium)
  • the metamaterial includes a left-handed medium having a negative effective dielectric constant and a negative effective magnetic permeability. There is something that functions as.
  • the metamaterial is “right-handed” when the electromagnetic wave propagates through the metamaterial when the electric field vector, magnetic field vector, and wave number vector of the electromagnetic wave have a right-handed relationship.
  • the electromagnetic wave propagating through the right-handed metamaterial becomes a forward wave (forward wave) in which the direction of transmission power of the electromagnetic wave (direction of group velocity) and the direction of flow of the phase plane (direction of phase velocity) are the same direction.
  • the metamaterial is “left-handed” when the electromagnetic wave propagates through the metamaterial when the electric field vector, magnetic field vector, and wave number vector of the electromagnetic wave have a left-handed relationship.
  • the electromagnetic wave propagating through the left-handed metamaterial becomes a backward wave (reverse wave) in which the direction of the transmission power of the electromagnetic wave and the direction of the flow of the phase plane are opposite.
  • metamaterial When the metamaterial is applied to, for example, a microwave circuit or an antenna device, most of the metamaterial is based on a one-dimensional or two-dimensional left-handed metamaterial structure. Recently, an anisotropic / isotropic left-handed structure using a combination of a split ring resonator and a thin wire, a transmission line network, and a dielectric sphere has also been proposed.
  • the former resonant metamaterial consists of a combination of magnetic and electrical resonators that respond to the magnetic field and electric field components of an external electromagnetic field, typically a combination of a split ring resonator consisting of a metal strip and a thin wire. Including things. Since this structure uses a strong resonance interaction between the metal structure and light waves or electromagnetic waves, a large change in optical characteristics or electromagnetic characteristics can be obtained with fewer structures and a smaller volume than those that do not use resonance. There is a feature that you can. However, since the effective permittivity or effective permeability exhibits anti-resonance characteristics, the influence of loss becomes very large near the resonance frequency. In other words, the Q value of the resonator greatly affects its characteristics, and light waves or electromagnetic waves are strongly absorbed at the resonance frequency, and the frequency band in which the characteristics change is limited to the vicinity of the resonance frequency.
  • the conventional one-dimensional right-handed metamaterial structure that allows forward wave propagation has a ladder-type structure in which inductive elements are inserted in series branches and capacitive elements are inserted in parallel branches (shunt branches).
  • the one-dimensional left-handed metamaterial structure has a structure in which a capacitive element is inserted in a series branch and an inductive element is inserted in a parallel branch in order to make negative values of effective dielectric constant and effective permeability.
  • transmission line type metamaterials do not exhibit anti-resonance characteristics in terms of effective dielectric constant and magnetic permeability, and thus have a feature of lower loss than the above-described resonance type metamaterial.
  • transmission line type metamaterials depending on the operating frequency band, right-handed metamaterials, left-handed metamaterials, single negative metamaterials with one of the negative dielectric constant and the positive magnetic permeability and the other positive, effective dielectric constant or transparent Since it operates as a metamaterial with zero magnetic permeability, it is called a right / left-handed composite metamaterial.
  • the frequency at which the effective permittivity and effective permeability of the right / left-handed composite metamaterial have zero values is generally different. In that case, in the band between the frequency at which the effective dielectric constant becomes zero and the frequency at which the effective magnetic permeability becomes zero, only one of the effective dielectric constant and the effective magnetic permeability has a negative value, and the other Has a positive value. In this band, the electromagnetic wave propagation condition is not satisfied and the band becomes a forbidden band.
  • the right-hand / left-handed composite metamaterial operates as a left-handed metamaterial because the effective permittivity and effective permeability are both negative in the lower band of this forbidden band, and both are positive in the upper band. Works as a metamaterial.
  • Such a metamaterial is referred to as a balanced right-hand / left-handed composite metamaterial, and a non-balanced right-hand / left-handed composite metamaterial is referred to as a non-equilibrium right-hand / left-handed composite metamaterial.
  • the balanced right-hand / left-handed composite metamaterial has the feature that not only a forbidden band does not occur, but also the group velocity does not become zero at a frequency where the phase constant becomes zero, and efficient power transmission is possible.
  • Patent Document 6 a three-dimensional metamaterial in Patent Document 6.
  • a plurality of dielectric layers including a plurality of dielectrics and a host medium that are juxtaposed at a predetermined interval are sandwiched by a pair of conductive mesh plates each having a plurality of holes.
  • a metamaterial formed by forming a functional layer including a plurality of dielectric resonators corresponding to a dielectric and laminating a plurality of the functional layers a plurality of shafts of holes and a plurality of dielectric resonators Are arranged so that their axes are coaxial with each other, and electromagnetic waves are propagated in the propagation direction perpendicular to the laminated surface in each functional layer, and the left-handed metamaterial in the propagation direction perpendicular to the laminated surface It is made to operate as.
  • the three-dimensional metamaterial of Patent Document 6 it has a small propagation loss and is very easy to manufacture.
  • the electromagnetic wave is propagated in a propagation direction perpendicular to the laminated surface, and the laminated surface It can be operated as a left-handed metamaterial with respect to the propagation direction perpendicular to
  • the three-dimensional metamaterial disclosed in Patent Document 6 exhibits isotropic propagation characteristics only when the electromagnetic wave has the same polarization direction as the direction of the laminated surface.
  • the three-dimensional metamaterial of Patent Document 6 is effective when the propagation direction and the polarization direction of electromagnetic waves are uniquely determined, but may not be effective when not uniquely determined. Therefore, there is a need for a three-dimensional metamaterial that does not depend on the propagation direction and polarization direction of electromagnetic waves, that is, has isotropic propagation characteristics.
  • An object of the present invention is to solve the above problems and to provide a three-dimensional metamaterial that can easily realize isotropic propagation characteristics independent of the propagation direction and polarization direction of electromagnetic waves.
  • the three-dimensional metamaterial according to the present invention is In a three-dimensional metamaterial including a plurality of unit cells periodically arranged in three dimensions, Each unit cell includes a dielectric resonator disposed in the center of the unit cell, a plurality of rod-shaped conductors disposed so as to surround the dielectric resonator, and the dielectric resonator and the rod-shaped conductor.
  • a supporting host medium In each of the unit cells, the plurality of rod-shaped conductors include at least one first rod-shaped conductor arranged in a first direction and at least one arranged in a second direction different from the first direction.
  • the first rod-shaped conductors are arranged in parallel and periodically with each other, and the second rod-shaped conductors Are arranged in parallel and periodically with each other, and the third rod-shaped conductors are arranged in parallel and periodically with each other in a three-dimensional metamaterial
  • the host medium includes a first substrate having a cavity and a second substrate sandwiching the first substrate, and the first substrate or / and the second substrate include the first rod-shaped conductor or / And a second rod-shaped conductor is formed,
  • the dielectric resonator is disposed in the cavity of the first substrate and formed in a unit form sandwiched between the second substrates, or formed in a state where two or more layers of the unit form are laminated. It has the said 3rd rod-shaped conduct
  • the shape and dimensions of the unit cell so that the effective permittivity and effective permeability of the three-dimensional metamaterial are both negative with respect to electromagnetic waves having a predetermined frequency incident on the three-dimensional metamaterial.
  • the shape, dimensions, and relative permittivity of the dielectric resonator, the thickness of the rod-shaped conductor, the interval at which the first, second, and third rod-shaped conductors are periodically disposed, and the host medium The relative dielectric constant is set.
  • Each unit cell includes a waveguide formed by the plurality of rod-shaped conductors, each unit cell has a predetermined cutoff frequency, and each unit cell is incident on the three-dimensional metamaterial.
  • the effective dielectric constant of the three-dimensional metamaterial is configured to be negative with respect to electromagnetic waves having a frequency lower than the off-frequency,
  • the dielectric resonator is excited by an electromagnetic wave having a predetermined frequency incident on the dielectric resonator in a resonance form having an electromagnetic field distribution similar to a magnetic dipole moment, and the three-dimensional metamaterial is effective against the electromagnetic wave.
  • the magnetic permeability is configured to be negative.
  • each unit cell is a cube, and the first, second, and third directions are orthogonal to each other.
  • the dielectric resonator has a spherical shape.
  • the dielectric resonator has a cylindrical shape or a polygonal column shape.
  • the dielectric resonator has a cubic shape, a polyhedral shape, or a rhombohedral shape.
  • the rod-shaped conductor has a rectangular cross-sectional shape.
  • the rod-shaped conductor has a circular cross-sectional shape.
  • the first, second, and third rod-shaped conductors intersect each other.
  • At least one of the first, second, and third rod-shaped conductors does not intersect with another rod-shaped conductor.
  • the first, second, and third rod-shaped conductors are electrically connected to each other.
  • At least one of the first, second, and third rod-shaped conductors is not electrically connected to another rod-shaped conductor.
  • the three-dimensional metamaterial according to the present invention it is possible to provide a three-dimensional metamaterial that can be easily realized with an isotropic propagation characteristic that is independent of the propagation direction and polarization direction of electromagnetic waves.
  • FIG. 3 is a horizontal sectional view passing through the center of the unit cell 10 of FIG. 2.
  • FIG. 2 is a perspective view which shows the structure of the unit cell 11 which comprises the three-dimensional metamaterial 20 which concerns on the 1st modification of embodiment of this invention.
  • the structure of the unit cell 12 which comprises the three-dimensional metamaterial 20 which concerns on the 2nd modification of embodiment of this invention.
  • FIG. 10 is a cross-sectional view taken along line A-A ′ of FIG. 9.
  • FIG. 12 is a sectional view taken along line B-B ′ of FIG. 11.
  • FIG. 9 is a cross-sectional view illustrating a structure of a three-dimensional metamaterial 22 including substrate layers 31-1, 32-1, 31-2, 32-2, and 31-3 in FIG.
  • FIG. 1 is a perspective view showing a structure of a three-dimensional metamaterial 20 according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing the structure of the unit cell 10 constituting the three-dimensional metamaterial 20 of FIG.
  • the three-dimensional metamaterial 20 in FIG. 1 is configured by periodically arranging the unit cells 10 in FIG. 2 three-dimensionally.
  • Each unit cell 10 includes a dielectric resonator 1 disposed in the center of the unit cell 10 and a plurality of rod-shaped conductors 3xa to 3xd, 3ya to 3yd, 3za to 3zd disposed so as to surround the dielectric resonator 1.
  • the rod-shaped conductor 3 includes rod-shaped conductors 3 xa to 3 xd disposed along the x direction, rod-shaped conductors 3 ya to 3 yd disposed along the y direction, and rod-shaped conductors disposed along the z direction.
  • Conductors 3za to 3zd In a three-dimensional metamaterial 20 configured by periodically arranging a plurality of unit cells 10 in a three-dimensional manner, a plurality of bar conductors in the x direction are periodically arranged in parallel to each other, The rod-shaped conductors are also arranged in parallel and periodically with each other, and the plurality of z-direction rod-shaped conductors are also arranged in parallel with each other and periodically.
  • rod-shaped conductors (such as 3za to 3zd) arranged along the z direction are periodically arranged for each length Lx in the x direction, periodically arranged for each length Ly in the y direction, and In other directions (for example, a direction along the surface including the rod-shaped conductors 3za and 3zd), the electrodes are periodically arranged at predetermined lengths.
  • the dielectric resonator 1 is inserted into the unit cell 10 having a negative effective dielectric constant.
  • the three-dimensional metamaterial 20 is configured so that both the effective dielectric constant and the effective magnetic permeability thereof are negative with respect to the electromagnetic wave having a predetermined frequency.
  • FIG. 3 is a cross-sectional view in the horizontal direction (direction along a plane parallel to the xy plane) passing through the center of the unit cell 10 in FIG.
  • the center unit cell 10 and a part of unit cell adjacent to it are shown.
  • Each of the rod-shaped conductors 3 (only the rod-shaped conductors 3za to 3zd in the z direction are shown in FIG. 3) has, for example, a square cross-sectional shape having a side length L2.
  • the rod-shaped conductors 3za to 3zd are periodically arranged with an interval L1 in the x direction and are periodically arranged with an interval L3 in the y direction.
  • L1 L3.
  • the unit cell 10 is configured as a waveguide in which, for example, in the x direction, a section having a length L2 surrounded by a conductor and a section having a length L1 not surrounded by a conductor are alternately arranged.
  • the effective dielectric constant of the section surrounded by the conductor in this waveguide becomes negative in a frequency region lower than the cutoff frequency of the TE mode. Accordingly, this waveguide is an electromagnetic wave having a frequency lower than the cutoff frequency. For example, when an electromagnetic wave directed in the + x direction arrives as an incident wave, the negative effective dielectric constant ⁇ 2 ⁇ 0 is obtained in the section surrounded by the conductor.
  • the section not surrounded by the conductor is configured to have a positive effective dielectric constant ⁇ 1> 0.
  • the three-dimensional metamaterial 20 as a whole has an effective dielectric constant of a predetermined value of positive, zero, or negative.
  • the unit cell 10 is configured as a waveguide in which sections surrounded by a conductor and sections not surrounded by a conductor are alternately arranged along the y direction and the z direction. These waveguides are electromagnetic waves having a frequency lower than the cut-off frequency, and when an electromagnetic wave directed in the y direction or the z direction arrives as an incident wave, it has a negative effective dielectric constant in a section surrounded by a conductor.
  • the section not surrounded by the conductor is configured to have a positive effective dielectric constant.
  • the three-dimensional metamaterial 20 as a whole has an effective dielectric constant of a predetermined value of positive, zero, or negative.
  • Each unit cell 10 has a cut-off frequency (cut-off frequency of the entire unit cell 10) as an effective value depending on the entire structure of the unit cell 10 including the waveguide and other portions.
  • the three-dimensional metamaterial 20 has a zero or positive effective dielectric constant when an electromagnetic wave having a frequency higher than the cutoff frequency of the entire unit cell 10 arrives as an incident wave.
  • the dielectric resonator 1 has a resonance form with an electromagnetic field distribution similar to the magnetic dipole moment.
  • an electromagnetic field distribution similar to the magnetic dipole moment means that a concentric vortex with closed lines of electric force is formed in a plane perpendicular to a certain axis in the dielectric resonator 1.
  • the magnetic field lines are directed substantially along the axis in the vicinity of the center of the dielectric resonator 1, and the magnetic field lines extend outside the dielectric resonator 1 to form a closed curve.
  • the magnetic field lines are sorenoidal (always closed), and in this case, the magnetic field lines have a distribution that spreads widely outside the dielectric resonator 1.
  • the energy stored by the magnetic field is larger than the energy stored by the electric field outside the dielectric resonator 1.
  • the coupling between the dielectric resonator 1 and the external electromagnetic field is dominated by magnetic coupling.
  • a first axis having a symmetry axis in the x direction is used.
  • 1 resonance form, a second resonance form having a symmetry axis in the y direction, and a third resonance form having a symmetry axis in the z direction all have substantially the same resonance frequency (ie, three different resonance forms).
  • Mode When an electromagnetic wave having a frequency near the resonance frequency arrives at the dielectric resonator 1, the dielectric resonator 1 enters a resonance state or a state having an electromagnetic field distribution close to that regardless of the propagation direction of the electromagnetic wave.
  • the electromagnetic field distribution inside and outside the dielectric resonator 1 at the time of resonance is expressed as one of the three substantially degenerated resonance modes or a combination (linear sum) according to the component of the propagation direction vector of the electromagnetic wave.
  • the magnetic wall at the boundary (the tangential component of the magnetic field is zero) under the condition that the dielectric constant of the dielectric resonator 1 is sufficiently larger than the dielectric constant of the host medium 2.
  • the resonance mode is approximately calculated.
  • the electromagnetic field distribution of the dielectric resonator 1 is expressed as a TE 011 resonance mode.
  • the magnetic field vector of the electromagnetic wave becomes magnetic in the dielectric resonator 1. It is necessary to excite the resonance state of the electromagnetic field distribution similar to the dipole moment. As a result, a positive, zero, or negative effective permeability is realized in the unit cell 10 according to the frequency of the electromagnetic wave. At this time, the three-dimensional metamaterial 20 as a whole has an effective magnetic permeability of a predetermined value of positive, zero, or negative.
  • the shape and size of the unit cell 10 and the shape, size, and relative dielectric constant of the dielectric resonator 1 are such that the effective dielectric constant and effective permeability of the three-dimensional metamaterial 20 are both negative with respect to an electromagnetic wave having a predetermined frequency.
  • the ratio, the thickness of the rod-shaped conductor 3, the interval at which the rod-shaped conductor 3 is periodically arranged, and the relative dielectric constant of the host medium 2 are determined.
  • the three-dimensional metamaterial 20 is configured as a left-handed metamaterial that does not depend on the propagation direction and polarization direction of electromagnetic waves, that is, has isotropic propagation characteristics.
  • the three-dimensional metamaterial 20 is a right-handed metamaterial, a left-handed metamaterial, a single negative metamaterial in which one of the dielectric constant and the magnetic permeability is negative and the other is positive, depending on the operating frequency, the effective dielectric constant or the permeability. It may be configured as a right-hand / left-handed composite metamaterial that operates as a metamaterial with zero magnetic susceptibility.
  • the frequency at which the effective permittivity of the three-dimensional metamaterial 20 is zero and the frequency at which the effective permeability is zero are generally different, but by matching these frequencies, the three-dimensional metamaterial 20 can be balanced right-handed / It may be configured as a left-handed composite metamaterial.
  • the dielectric resonator 1 may be composed of a single dielectric material or a combination of a plurality of dielectric materials.
  • the dielectric resonator 1 may or may not be in contact with the dielectric resonator 1 of the unit cell 10 adjacent to the unit cell 10 including the dielectric resonator 1.
  • the host medium 2 is configured by, for example, filling the unit cell 10 with a dielectric having a dielectric constant much lower than that of the dielectric resonator 1. Further, as the host medium 2, at least a part of the inside of the unit cell 10 may be filled with air, or the inside of the unit cell 10 may be filled with a combination of air and a dielectric, or a combination of a plurality of dielectrics. It may be filled.
  • 1 and 2 show a cubic unit cell 10, the shape of the unit cell is not limited to a cube. If a plurality of unit cells can be periodically arranged three-dimensionally to form a three-dimensional metamaterial, a unit cell of an arbitrary shape such as a rectangular parallelepiped, a prism (hexagonal column, etc.), a regular tetrahedron, or a plurality of unit cells Combinations of types of unit cells can be used. In each unit cell, the plurality of rod-shaped conductors are arranged along at least three directions.
  • the plurality of rod-shaped conductors include at least one first rod-shaped conductor disposed in the first direction and at least one first conductor disposed in a second direction different from the first direction.
  • the first rod-shaped conductors are arranged in parallel and periodically with each other, and the second rod-shaped conductors are arranged in parallel with each other.
  • the third rod-shaped conductors are arranged in parallel and periodically with each other.
  • the unit cell preferably has a symmetric shape such as a cube rather than a shape such as a rectangular parallelepiped whose dimensions and the like differ depending on the direction.
  • FIG. 4 is a perspective view showing the structure of the unit cell 11 constituting the three-dimensional metamaterial 20 according to the first modification of the embodiment of the present invention.
  • the unit cell 10 in FIGS. 1 and 2 includes the spherical dielectric resonator 1, but may include other shapes of dielectric resonators.
  • the unit cell 11 of FIG. 4 includes a cylindrical dielectric resonator 4 having a radius R2 and a height H1.
  • the diameter (radius R2 ⁇ 2) and height H1 of the dielectric resonator 4 are determined to be approximately the same length so that the resonance frequencies of the TE 01 ⁇ mode and the HE 11 ⁇ mode of the dielectric resonator 4 are degenerated at substantially the same frequency. It is done.
  • FIG. 5 is a perspective view showing the structure of the unit cell 12 constituting the three-dimensional metamaterial 20 according to the second modification of the embodiment of the present invention.
  • the unit cell 12 of FIG. 5 includes a cubic-shaped dielectric resonator 5 having a side having a length Lc.
  • the shape of the dielectric resonator is not limited to a spherical shape, a cylindrical shape, and a cubic shape, and any shape such as a spheroid, a polygonal column, a polyhedron, a rhombohedron, or a combination of a plurality of types of shapes should be used. Can do.
  • isotropic propagation characteristics are impaired if a dielectric resonator having an asymmetric shape is used. Even when such a dielectric resonator is used, on average, isotropic propagation characteristics are realized by arranging the dielectric resonators in various directions in a plurality of unit cells. be able to. Further, when paying attention to one unit cell, isotropic propagation characteristics are impaired unless the dielectric resonator is arranged at the center of the unit cell. Even if the dielectric resonator is not arranged in the center of the unit cell, the isotropic propagation characteristics can be achieved on average by arranging the dielectric resonator in various different positions in the unit cells. can do.
  • FIG. 6 is a perspective view showing the structure of the three-dimensional metamaterial 21 according to the third modification of the embodiment of the present invention.
  • FIG. 7 is a perspective view showing the structure of the unit cell 13 constituting the three-dimensional metamaterial 21 of FIG.
  • the bar conductors 3 in the x direction, the y direction, and the z direction are shown to intersect with each other, but the bar conductors in at least one of these bar conductors 3 are in other directions. It does not have to intersect with the rod-shaped conductor.
  • FIG.1 and FIG.2 although the rod-shaped conductor 3 had a rectangular cross-sectional shape, you may have another cross-sectional shape.
  • the unit cell 13 of this modification has a circular cross-sectional shape having a diameter L4 and includes rod-shaped conductors 6x, 6ya, 6yb, 6za to 6zd (hereinafter collectively referred to as “6”) that do not intersect each other.
  • Each unit cell 13 includes a dielectric resonator 1 disposed in the center of the unit cell 13, a plurality of rod-shaped conductors 6 disposed so as to surround the dielectric resonator 1, and the dielectric resonator 1 and the rod-shaped conductor. 6 and a host medium 2 that supports 6.
  • the rod-shaped conductor 6 includes a rod-shaped conductor 6x disposed along the x direction, rod-shaped conductors 6ya and 6yb disposed along the y direction, and a rod-shaped conductor 6za disposed along the z direction. ⁇ 6zd.
  • a three-dimensional metamaterial 21 configured by periodically arranging a plurality of unit cells 13 in a three-dimensional manner, a plurality of bar conductors in the x direction are periodically arranged in parallel to each other, The rod-shaped conductors are also arranged in parallel and periodically with each other, and the plurality of z-direction rod-shaped conductors are also arranged in parallel with each other and periodically.
  • rod-shaped conductors 6 in the x direction, the y direction, and the z direction may or may not be electrically connected to each other.
  • FIG. 8 is an exploded perspective view showing the structure of the three-dimensional metamaterial 22 according to the fourth modification of the embodiment of the present invention.
  • the three-dimensional metamaterial 22 includes a plurality of stacked substrate layers 31-1, 32-1, 31-2, 32-2, 31-3,..., 31-N.
  • some of the substrate layers 32-1, 32-2,..., 32- (N-1) (hereinafter collectively referred to as “32”) accommodate the dielectric resonator 1, respectively.
  • the remaining substrate layers 31-1, 31-2, 31-3,..., 31-N (hereinafter collectively referred to as reference numeral “31”) are disposed between the substrate layers 32, respectively.
  • the dielectric resonator 1 is fixed to the cavity of the substrate layer 32 by sandwiching it.
  • the three-dimensional metamaterial 22 shown in FIG. 8 includes N substrate layers 31 and N ⁇ 1 substrate layers 32.
  • FIG. 9 is a perspective view showing the structure of the substrate layer 31 of FIG.
  • FIG. 10 is a cross-sectional view taken along line A-A ′ of FIG.
  • the base material of the substrate layer 31 is formed of a dielectric substrate 41 made of a semi-cured resin such as epoxy or polyimide, and at least one surface of the dielectric substrate 41 (the surface on the + z side in FIGS. 9 and 10), A plurality of pattern conductors 42x extending along the x direction (corresponding to the bar-shaped conductors 3xa to 3xd in the x direction in FIG. 2) and a plurality of pattern conductors 42y extending in the y direction (the y direction in FIG.
  • Grid-like planar electrodes made of a plurality of rod-shaped conductors 3ya to 3yd). Further, at the positions (lattice points) where the pattern conductors 42x and 42y intersect, the through-hole conductors 43 (rod-shaped conductors 3za to 3zd in the z direction in FIG. 2) that penetrate the dielectric substrate 41 are respectively used by using a laser method or a punching method. Corresponding to the above) is formed.
  • FIG. 11 is a perspective view showing the structure of the substrate layer 32 of FIG. 12 is a cross-sectional view taken along line B-B ′ of FIG.
  • the base material of the substrate layer 32 is formed of a dielectric substrate 51 made of a semi-cured resin such as epoxy or polyimide, and at least one surface of the dielectric substrate 51 (the surface on the + z side in FIGS. 11 and 12), A plurality of pattern conductors 52x extending along the x direction (corresponding to the bar-shaped conductors 3xa to 3xd in the x direction of FIG. 2) and a plurality of pattern conductors 52y extending along the y direction (the y direction of FIG.
  • Grid-like planar electrodes made of a plurality of rod-shaped conductors 3ya to 3yd). Furthermore, at the positions (lattice points) where the pattern conductors 52x and 52y intersect, the through-hole conductors 53 (rod-shaped conductors 3za to 3zd in the z direction in FIG. 2) that penetrate the dielectric substrate 51 are used by using a laser method or a punching method, respectively. Corresponding to the above) is formed. Further, in the regions surrounded by the pattern conductors 52x and 52y on the dielectric substrate 51, cavities 54 penetrating the dielectric substrate 51 are formed by using a laser method or a punching method, respectively. The dielectric resonators 1 are provided in the cavities 54, respectively.
  • a hole for providing a through-hole conductor 53 and a hole for a cavity 54 are formed in the dielectric substrate 51 of the substrate layer 32.
  • the diameter of the hole for providing the through-hole conductor 53 is formed smaller than the diameter of the dielectric resonator 1, and the hole of the cavity 54 is formed larger than the diameter of the dielectric resonator 1. Accordingly, if a plurality of dielectric resonators 1 (which is sufficiently larger than the number of cavities 54 in a certain substrate layer 32) are arranged on the dielectric substrate 51 and the dielectric resonator 1 is swept with a squeegee, the dielectric resonators 1 can be loaded into the cavity 54.
  • the dielectric resonator 1 since the diameter of the through-hole conductor 53 is smaller than that of the cavity 54, the dielectric resonator 1 does not enter the through-hole conductor 53.
  • the dielectric resonator 1 can be similarly formed by using a suction method device used when installing a solder ball on a circuit board in LSI mounting. Can be loaded into the cavity 54 only.
  • FIG. 13 is a cross-sectional view showing the structure of the three-dimensional metamaterial 22 including the substrate layers 31-1, 32-1, 31-2, 32-2, and 31-3 in FIG.
  • the positions of the holes (dotted lines in FIG. 13) for providing the through-hole conductors 43 and 53 are aligned as shown in FIG.
  • the substrate layers 31-1, 32-1, 31-2, 32-2, and 31-3 are stacked, and the whole is compressed in the z direction. Since the substrate layers 31 and 32 are in a semi-cured state as described above, they are integrated as a whole by compression.
  • a conductive resin material is inserted into a hole for providing the through-hole conductors 43 and 53 with a squeegee or the like, and heat is applied to the entire body at about 80 to 180 ° C. to finally cure.
  • the positions of the holes (dotted lines in FIG. 13) for providing the through-hole conductors 43 and 53 are aligned in FIG.
  • the substrate layers 31-1, 32-1, 31-2, 32-2, and 31-3 are stacked, and then a conductive resin material is placed in a hole for providing the through-hole conductors 43 and 53 with a squeegee or the like.
  • each dielectric resonator 1 includes the pattern conductors 42x and 42y and the through-hole conductors 43 of the substrate layer 31 and the substrate layer, similarly to being surrounded by the rod-shaped conductor 3 of FIG.
  • Each of the dielectric resonators 1, the pattern conductors 42 x, 42 y, 52 x, 52 y and the through-hole conductors 43, 53 are surrounded by dielectric substrates 41, 51. Supported. Therefore, according to this example of the manufacturing method, as in the three-dimensional metamaterial 20 of FIG. 1, etc., a plurality of unit cells each including the dielectric resonator 1 are periodically arranged in three dimensions. A dimensional metamaterial 22 can be manufactured.
  • Pattern conductors may be formed on both surfaces of each of the dielectric substrates 41 and 51.
  • the through-hole conductors 43 and 53 are formed by inserting a conductive resin material into the holes for providing the through-hole conductors 43 and 53 with a squeegee or the like. Conductive columns may be formed in the holes for providing 43 and 53.
  • FIG. 14 is a graph showing a dispersion curve of the three-dimensional metamaterial according to Example 1 of the present invention.
  • Example 1 a simulation was performed on the three-dimensional metamaterial 20 shown in FIGS.
  • FIG. 17 is a diagram for explaining the representation of the wave number region related to the three-dimensional metamaterial according to the embodiment of the present invention.
  • the wave number domain spatial frequency domain
  • the dispersion curve representing the propagation characteristics has periodicity in the wavenumber region, and the entire region is expressed using a partial region in the wavenumber region called the first Brillouin region. Is done.
  • the wave vector has only a ⁇ x component, and the boundary point ( ⁇ / L, 0, 0) of the Brillouin region in that direction is represented as “X”.
  • the boundary point ( ⁇ / L, ⁇ / L, 0) of the Brillouin region is expressed as “M”.
  • ⁇ X indicates a dispersion curve when the propagation direction of the electromagnetic wave is from the origin to the point (1, 0, 0) (+ x direction) in the xyz coordinates shown in FIG.
  • ⁇ M indicates a dispersion curve when going from the origin to the point (1, 1, 0)
  • ⁇ -R shows a dispersion curve when going from the origin to the point (1, 1, 1).
  • the propagation direction of the electromagnetic wave is “ ⁇ -M”
  • the dispersion curve of horizontal polarization polarization direction parallel to the xy plane
  • the dispersion curve of vertical polarization polarization direction perpendicular to the xy plane
  • the dispersion curve in FIG. 14 was obtained from eigenvalue calculation.
  • represents the phase constant of the three-dimensional metamaterial (note that the phase constant ⁇ corresponds to the component of the wave vector ⁇ ).
  • FIG. 14 shows that the dispersion characteristic is isotropic near the ⁇ point. It was also found that the dispersion curve in the left-handed mode ranges from about 3.8 to 4.2 GHz and operates with a bandwidth of about 400 MHz.
  • FIG. 15 is a graph showing a dispersion curve of a three-dimensional metamaterial according to Example 2 of the present invention.
  • the side length L of the unit cell 10 (cubic shape) L 11.0 mm
  • the side length L2 of the cross-section (square) of the rod-shaped conductor 3 0.4 mm
  • the dispersion characteristic of the balanced right / left-handed composite metamaterial was obtained.
  • FIG. 16 is a graph showing a dispersion curve of a three-dimensional metamaterial according to Example 3 of the present invention.
  • Example 3 a simulation was performed on the three-dimensional metamaterial 21 shown in FIGS. 6 and 7.
  • the radius R1 of the dielectric resonator 1 3.8 mm
  • the relative permittivity ⁇ DR 110 of the dielectric resonator 1
  • the relative permittivity ⁇ r 2.2 of the host medium
  • the unit cell 10 (cube The side length L of the shape) was 11.0 mm
  • FIG. 16 is a dispersion curve of “ ⁇ -X”, and shows dispersion curves for two modes (polarization A and polarization B) having orthogonal polarization directions. According to FIG. 16, it can be seen that even if the bar conductors 6 in the x, y, and z directions do not intersect each other, the propagation characteristics do not change so much from the case where they intersect (FIG. 15).
  • the three-dimensional metamaterial of the present invention is configured not only to operate at a frequency on the order of several GHz as shown in Examples 1 to 3, but also to operate at a frequency of several MHz or a frequency of several THz. Is also possible.
  • FIG. 18 is a perspective view showing a configuration of the three-dimensional metamaterial 10 (FIG. 2) according to the fourth embodiment of the present invention, and FIG. 19 is defined in FIG. 18 and the three-dimensional metamaterials 10 and 12 in FIG. It is a perspective view which shows a direction.
  • FIG. 20 is a graph showing a dispersion curve of the three-dimensional metamaterial 10 of FIG.
  • a broken line indicates a case where the polarization direction is in the z direction
  • a solid line indicates a case where the polarization direction is parallel to the xy plane.
  • FIG. 21 is a perspective view showing the configuration of the three-dimensional metamaterial 12 (FIG. 5) according to the fifth embodiment of the present invention.
  • FIG. 22 is a graph showing a dispersion curve of the three-dimensional metamaterial 12 of FIG. Each direction is defined as in FIG.
  • the solid line indicates the case where the polarization direction is in the z direction
  • the broken line indicates the case where the polarization direction is parallel to the xy plane.
  • FIG. 23 shows dispersion characteristics when the bar-shaped conductors 6 placed along three directions orthogonal to each other in the three-dimensional metamaterial according to Example 6 of the present invention are not in direct contact with each other and there is a minute gap. It is a graph. Here, it was assumed that there is a gap of 50 ⁇ m between the rod-shaped conductor 6 and the rod-shaped conductor 6. As can be seen from FIG. 23, the major difference from the case where no gap is given is that a new mode is generated by giving a gap, and the right-handed left / handed system mode that originally existed is coupled in a region having a large phase constant. It is a point that is shaped.
  • the right-handed mode RH and the left-handed mode LH exist as usual (see 101 and 102 in FIG. 23), and show CRLH characteristics. It was.
  • the three-dimensional metamaterial according to the present invention it is possible to easily realize isotropic propagation characteristics that do not depend on the propagation direction and polarization direction of electromagnetic waves.
  • the three-dimensional metamaterial according to the present invention includes a microwave circuit, its components and antennas (a wide-angle beam scanning antenna, a minute antenna, etc.), a flat super lens, a negative refractive flat lens, a near-field imaging having sub-wavelength resolution, and cloaking. It can be applied to optical devices such as technology and its components.
  • a stopband which is a transition region between the left-handed system and the right-handed system, and is used to block or attenuate electromagnetic waves.
  • This effect is effective in application to a mobile phone equipped with a plurality of wireless systems and digital circuits under severe mounting conditions.
  • 800 MHz band, 1500 MHz band, and 2 GHz band are used for telephones, 1.57 GHz is used for GPS, 470 to 710 MHz band is used for one-segment TV, and electronic money is used.
  • the 13.56 MHz band is used to support such applications, and a plurality of antennas corresponding to the respective frequency bands are arranged in a narrow space of the casing of the mobile phone.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguide Connection Structure (AREA)

Abstract

A three-dimensional meta-material (20) includes a plurality of unit cells (10) arranged periodically in three dimensions. Each unit cell (10) is provided with a dielectric resonator (1) disposed at the center thereof, a plurality of rod-shaped conductors (3) disposed so as to encircle the dielectric resonator (1), and a host medium (2) for supporting the dielectric resonator (1) and the rod-shaped conductors (3). In each unit cell (10), the rod-shaped conductors (3) include rod-shaped conductors (3xa-3xd) disposed in an x direction, rod-shaped conductors (3ya-3yd) disposed in a y direction, and rod-shaped conductors (3za-3zd) disposed in a z direction. By arranging the plurality of unit cells (10) periodically in three dimensions, the x-directed rod-shaped conductors are arranged periodically and parallel to each other, the y-directed rod-shaped conductors are arranged periodically and parallel to each other, and the z-directed rod-shaped conductors are arranged periodically and parallel to each other.

Description

3次元メタマテリアル3D metamaterial
 本発明は、所定形状及び所定構造を有して周期的に配置された複数の単位セルからなり、実効媒質としてのパラメータを任意に設定可能な人工構造物である3次元メタマテリアルに関し、特に、3次元右手/左手系複合メタマテリアルに関する。 The present invention relates to a three-dimensional metamaterial that is an artificial structure that includes a plurality of unit cells that have a predetermined shape and a predetermined structure and that are periodically arranged, and in which parameters as an effective medium can be arbitrarily set. The present invention relates to a three-dimensional right / left-handed composite metamaterial.
 メタマテリアルの先行技術として、例えば、特許文献1~6の発明がある。 As prior art of metamaterials, for example, there are inventions of Patent Documents 1 to 6.
 メタマテリアルの構造は、マイクロ波回路、そのコンポーネント及びアンテナ、並びに平板スーパーレンズ、近接場光(光の波長よりも小さな構造の情報を持った光)を増幅して波長以下の分解能を実現する近傍界イメージング、クローキング技術等のような光学デバイス及びそのコンポーネントへのアプリケーション用に研究されてきている。メタマテリアルは、実効媒質としてのパラメータを任意に設定することにより、電磁波を伝搬することにも、電磁波を阻止することにも使用可能である。さらに、通常の媒質が正の実効誘電率及び正の実効透磁率を有するのに対して(右手系媒質)、メタマテリアルには、負の実効誘電率及び負の実効透磁率を有する左手系媒質として機能するものがある。 The structure of the metamaterial is a microwave circuit, its components and antennas, a flat plate super lens, and near-field light (light with information of structure smaller than the wavelength of the light) that realizes sub-wavelength resolution. It has been studied for applications to optical devices and their components such as field imaging, cloaking technology and the like. The metamaterial can be used for propagating electromagnetic waves or blocking electromagnetic waves by arbitrarily setting parameters as effective media. Furthermore, while a normal medium has a positive effective dielectric constant and a positive effective magnetic permeability (right-handed medium), the metamaterial includes a left-handed medium having a negative effective dielectric constant and a negative effective magnetic permeability. There is something that functions as.
 メタマテリアルが「右手系」であるとは、当該メタマテリアルを電磁波が伝搬するとき、電磁波の電界ベクトル、磁界ベクトル、及び波数ベクトルが右手系の関係を有する場合をいう。右手系メタマテリアルを伝搬する電磁波は、電磁波の伝送電力の方向(群速度の向き)と位相面の流れの向き(位相速度の向き)とが同方向であるフォワード波(前進波)になる。 The metamaterial is “right-handed” when the electromagnetic wave propagates through the metamaterial when the electric field vector, magnetic field vector, and wave number vector of the electromagnetic wave have a right-handed relationship. The electromagnetic wave propagating through the right-handed metamaterial becomes a forward wave (forward wave) in which the direction of transmission power of the electromagnetic wave (direction of group velocity) and the direction of flow of the phase plane (direction of phase velocity) are the same direction.
 また、メタマテリアルが「左手系」であるとは、当該メタマテリアルを電磁波が伝搬するとき、電磁波の電界ベクトル、磁界ベクトル、及び波数ベクトルが左手系の関係を有する場合をいう。左手系メタマテリアルを伝搬する電磁波は、電磁波の伝送電力の方向と位相面の流れの向きとが逆方向であるバックワード波(後進波)になる。 Also, the metamaterial is “left-handed” when the electromagnetic wave propagates through the metamaterial when the electric field vector, magnetic field vector, and wave number vector of the electromagnetic wave have a left-handed relationship. The electromagnetic wave propagating through the left-handed metamaterial becomes a backward wave (reverse wave) in which the direction of the transmission power of the electromagnetic wave and the direction of the flow of the phase plane are opposite.
 メタマテリアルを例えばマイクロ波回路又はアンテナ装置に応用する場合、その大部分は、1次元又は2次元の左手系メタマテリアル構造に基づいている。最近では、スプリットリング共振器と細線との組み合わせ、伝送線路ネットワーク、及び誘電体球を用いる異方性/等方性の左手系構造も提案されている。 When the metamaterial is applied to, for example, a microwave circuit or an antenna device, most of the metamaterial is based on a one-dimensional or two-dimensional left-handed metamaterial structure. Recently, an anisotropic / isotropic left-handed structure using a combination of a split ring resonator and a thin wire, a transmission line network, and a dielectric sphere has also been proposed.
 メタマテリアルの構成方法はいくつか提案されているが、代表例として、共振型メタマテリアルと伝送線路(非共振)型メタマテリアルの2つが挙げられる。 Several methods of configuring metamaterials have been proposed, but two typical examples are a resonant metamaterial and a transmission line (non-resonant) metamaterial.
 前者の共振型メタマテリアルは、外部電磁界の磁界及び電界成分に応答する磁気的及び電気的共振器の組み合わせからなり、代表的には、金属ストリップからなるスプリットリング共振器と細線とを組み合わせたものを含む。この構造は、金属構造と光波又は電磁波との強い共鳴相互作用を利用するので、共振を利用しないものと比較して、少ない構造体や小さなボリュームで大きな光学特性又は電磁波特性の変化を得ることができるという特長がある。しかし、実効誘電率あるいは実効透磁率が反共振特性を示すので、共振周波数付近において損失の影響が非常に大きくなる。つまり、共振器のQ値がその特性に大きく影響を及ぼし、また、その共振周波数において光波又は電磁波が強く吸収されたり、特性が変化する周波数帯域が共振周波数付近に制限されるといった欠点を持つ。 The former resonant metamaterial consists of a combination of magnetic and electrical resonators that respond to the magnetic field and electric field components of an external electromagnetic field, typically a combination of a split ring resonator consisting of a metal strip and a thin wire. Including things. Since this structure uses a strong resonance interaction between the metal structure and light waves or electromagnetic waves, a large change in optical characteristics or electromagnetic characteristics can be obtained with fewer structures and a smaller volume than those that do not use resonance. There is a feature that you can. However, since the effective permittivity or effective permeability exhibits anti-resonance characteristics, the influence of loss becomes very large near the resonance frequency. In other words, the Q value of the resonator greatly affects its characteristics, and light waves or electromagnetic waves are strongly absorbed at the resonance frequency, and the frequency band in which the characteristics change is limited to the vicinity of the resonance frequency.
 一方、後者の伝送線路型メタマテリアルは、一般的な電磁波の伝搬形態が伝送線路モデルで記述できることを用いて構造物が構成されている。フォワード波伝搬を許す従来の一次元右手系メタマテリアル構造は、直列枝に誘導性素子が挿入され、並列枝(シャント枝)に容量性素子が挿入された梯子型構造を有するのに対して、一次元左手系メタマテリアル構造は、実効誘電率及び実効透磁率の値を負にするために、直列枝に容量性素子が挿入され、並列枝に誘導性素子が挿入された構造を有する。この伝送線路型メタマテリアルの多くは、実効誘電率及び透磁率において反共振特性を示さないので、上記の共振型メタマテリアルに比べて低損失となる特長がある。伝送線路型メタマテリアルにおいては、動作周波数帯域により、右手系メタマテリアル、左手系メタマテリアル、誘電率及び透磁率のどちらか一方が負で他方が正となるシングルネガティブメタマテリアル、実効誘電率あるいは透磁率が零のメタマテリアルとして動作することから、右手/左手系複合メタマテリアルと呼ばれる。 On the other hand, in the latter transmission line type metamaterial, a structure is configured using the fact that a general electromagnetic wave propagation form can be described by a transmission line model. The conventional one-dimensional right-handed metamaterial structure that allows forward wave propagation has a ladder-type structure in which inductive elements are inserted in series branches and capacitive elements are inserted in parallel branches (shunt branches). The one-dimensional left-handed metamaterial structure has a structure in which a capacitive element is inserted in a series branch and an inductive element is inserted in a parallel branch in order to make negative values of effective dielectric constant and effective permeability. Many of the transmission line type metamaterials do not exhibit anti-resonance characteristics in terms of effective dielectric constant and magnetic permeability, and thus have a feature of lower loss than the above-described resonance type metamaterial. In transmission line type metamaterials, depending on the operating frequency band, right-handed metamaterials, left-handed metamaterials, single negative metamaterials with one of the negative dielectric constant and the positive magnetic permeability and the other positive, effective dielectric constant or transparent Since it operates as a metamaterial with zero magnetic permeability, it is called a right / left-handed composite metamaterial.
 右手/左手系複合メタマテリアルの実効誘電率及び実効透磁率が零の値を有する周波数は、一般に異なる。その場合、隣接する実効誘電率が零になる周波数と実効透磁率が零になる周波数の間の帯域は、実効誘電率及び実効透磁率のどちらか一方のみが負の値を有し、他方が正の値を有する。この帯域では電磁波の伝搬条件が満たされず、禁止帯になる。右手/左手系複合メタマテリアルは、この禁止帯の下側の帯域では実効誘電率及び実効透磁率がともに負であるので左手系メタマテリアルとして動作し、上側の帯域ではともに正の値となり右手系メタマテリアルとして動作する。実効誘電率と実効透磁率が零となる周波数が一致する場合には禁止帯が形成されず、左手系伝送帯域と右手系伝送帯域が連続的に接続される。このようなメタマテリアルを平衡型右手/左手系複合メタマテリアルと呼び、そうでないものを非平衡型右手/左手系複合メタマテリアルと呼ぶ。平衡型右手/左手系複合メタマテリアルは、禁止帯を生じないばかりでなく、位相定数が零となる周波数においても群速度が零とならず、効率良い電力伝送が可能であるという特長を持つ。 The frequency at which the effective permittivity and effective permeability of the right / left-handed composite metamaterial have zero values is generally different. In that case, in the band between the frequency at which the effective dielectric constant becomes zero and the frequency at which the effective magnetic permeability becomes zero, only one of the effective dielectric constant and the effective magnetic permeability has a negative value, and the other Has a positive value. In this band, the electromagnetic wave propagation condition is not satisfied and the band becomes a forbidden band. The right-hand / left-handed composite metamaterial operates as a left-handed metamaterial because the effective permittivity and effective permeability are both negative in the lower band of this forbidden band, and both are positive in the upper band. Works as a metamaterial. When the effective permittivity and the frequency at which the effective magnetic permeability are equal, no forbidden band is formed, and the left-handed transmission band and the right-handed transmission band are continuously connected. Such a metamaterial is referred to as a balanced right-hand / left-handed composite metamaterial, and a non-balanced right-hand / left-handed composite metamaterial is referred to as a non-equilibrium right-hand / left-handed composite metamaterial. The balanced right-hand / left-handed composite metamaterial has the feature that not only a forbidden band does not occur, but also the group velocity does not become zero at a frequency where the phase constant becomes zero, and efficient power transmission is possible.
特開2006-114489号公報JP 2006-114489 A 特開2008-244683号公報JP 2008-244683 A 特開2008-252293号公報JP 2008-252293 A 特表2008-503776号公報Special table 2008-503776 特表2008-507733号公報Special table 2008-507733 gazette 国際公開WO2010/140655A1のパンフレットPamphlet of International Publication WO2010 / 140655A1
 先行技術において、1次元構造のメタマテリアルや2次元構造のメタマテリアルを3次元に拡張することによって3次元メタマテリアルを形成した場合、すべての方向で等方的な伝搬特性(分散曲線又はブロッホインピーダンスなど)を実現することは困難であった。 In the prior art, when a three-dimensional metamaterial is formed by extending a one-dimensional metamaterial or a two-dimensional metamaterial to three dimensions, isotropic propagation characteristics (dispersion curve or Bloch impedance in all directions) Etc.) were difficult to achieve.
 本願発明者は、特許文献6において3次元メタマテリアルを提案した。この3次元メタマテリアルは、所定の間隔で並置された複数個の誘電体及びホスト媒質を含む誘電体層を、それぞれ複数の孔を有する1対の導電メッシュ板により挟設することにより、複数の誘電体に対応する複数個の誘電体共振器を含む機能層を形成し、当該機能層を複数個積層して構成してなるメタマテリアルにおいて、複数の孔の軸と複数個の誘電体共振器の軸とがそれぞれ互いに同軸となるように配置され、電磁波を各機能層において積層面に対して垂直な伝搬方向に伝搬させて、積層面に対して垂直な伝搬方向に対して左手系メタマテリアルとして動作させることを特徴とする。特許文献6の3次元メタマテリアルによれば、小さい伝搬損失を有しかつ製作が極めて容易であって、電磁波を各機能層において積層面に対して垂直な伝搬方向に伝搬させて、上記積層面に対して垂直な伝搬方向に対して左手系メタマテリアルとして動作させることができる。 The inventor of the present application proposed a three-dimensional metamaterial in Patent Document 6. In this three-dimensional metamaterial, a plurality of dielectric layers including a plurality of dielectrics and a host medium that are juxtaposed at a predetermined interval are sandwiched by a pair of conductive mesh plates each having a plurality of holes. In a metamaterial formed by forming a functional layer including a plurality of dielectric resonators corresponding to a dielectric and laminating a plurality of the functional layers, a plurality of shafts of holes and a plurality of dielectric resonators Are arranged so that their axes are coaxial with each other, and electromagnetic waves are propagated in the propagation direction perpendicular to the laminated surface in each functional layer, and the left-handed metamaterial in the propagation direction perpendicular to the laminated surface It is made to operate as. According to the three-dimensional metamaterial of Patent Document 6, it has a small propagation loss and is very easy to manufacture. In each functional layer, the electromagnetic wave is propagated in a propagation direction perpendicular to the laminated surface, and the laminated surface It can be operated as a left-handed metamaterial with respect to the propagation direction perpendicular to
 しかしながら、特許文献6の3次元メタマテリアルは、電磁波が積層面の方向と同じ偏波方向を有する場合にのみ、等方的な伝搬特性を示す。電磁波の伝搬方向及び偏波方向が一義的に決まっているときには特許文献6の3次元メタマテリアルは有効であるが、一義的に決まっていないときには有効でない場合もある。従って、電磁波の伝搬方向及び偏波方向に依存しない、すなわち、等方的な伝搬特性を有する3次元メタマテリアルが必要とされる。 However, the three-dimensional metamaterial disclosed in Patent Document 6 exhibits isotropic propagation characteristics only when the electromagnetic wave has the same polarization direction as the direction of the laminated surface. The three-dimensional metamaterial of Patent Document 6 is effective when the propagation direction and the polarization direction of electromagnetic waves are uniquely determined, but may not be effective when not uniquely determined. Therefore, there is a need for a three-dimensional metamaterial that does not depend on the propagation direction and polarization direction of electromagnetic waves, that is, has isotropic propagation characteristics.
 本発明の目的は以上の問題点を解決し、電磁波の伝搬方向及び偏波方向に依存しない、すなわち、等方的な伝搬特性を容易に実現可能な3次元メタマテリアルを提供することにある。 An object of the present invention is to solve the above problems and to provide a three-dimensional metamaterial that can easily realize isotropic propagation characteristics independent of the propagation direction and polarization direction of electromagnetic waves.
 本発明に係る3次元メタマテリアルは、
 3次元的に周期的に配置された複数の単位セルを含む3次元メタマテリアルにおいて、
 上記各単位セルは、上記単位セルの中央に配置された誘電体共振器と、上記誘電体共振器を包囲するように配置された複数の棒状導体と、上記誘電体共振器及び上記棒状導体を支持するホスト媒質とを備え、
 上記各単位セルにおいて、上記複数の棒状導体は、第1の方向に配置された少なくとも1つの第1の棒状導体と、上記第1の方向とは異なる第2の方向に配置された少なくとも1つの第2の棒状導体と、上記第1及び第2の方向によって張られる面に対して所定角度を有する第3の方向に配置された少なくとも1つの第3の棒状導体とを含み、
 上記複数の単位セルを3次元的に周期的に配置することにより構成される上記3次元メタマテリアルにおいて、上記第1の棒状導体は互いに平行にかつ周期的に配置され、上記第2の棒状導体は互いに平行にかつ周期的に配置され、上記第3の棒状導体は互いに平行にかつ周期的に配置された3次元メタマテリアルにおいて、
 上記ホスト媒質は空洞を備えた第1の基板、及び上記第1の基板を挟む第2の基板から成り、上記第1の基板または/および上記第2の基板には上記第1の棒状導体または/および第2の棒状導体が形成されており、
 上記誘電体共振器が上記第1の基板の上記空洞に配置され、上記第2の基板で挟まれた単位形態で形成され、もしくは、上記単位形態が2層以上積層された状態で形成される上記第3の棒状導体を有することを特徴とする。
The three-dimensional metamaterial according to the present invention is
In a three-dimensional metamaterial including a plurality of unit cells periodically arranged in three dimensions,
Each unit cell includes a dielectric resonator disposed in the center of the unit cell, a plurality of rod-shaped conductors disposed so as to surround the dielectric resonator, and the dielectric resonator and the rod-shaped conductor. A supporting host medium,
In each of the unit cells, the plurality of rod-shaped conductors include at least one first rod-shaped conductor arranged in a first direction and at least one arranged in a second direction different from the first direction. A second bar-shaped conductor, and at least one third bar-shaped conductor disposed in a third direction having a predetermined angle with respect to a surface stretched by the first and second directions,
In the three-dimensional metamaterial configured by periodically arranging the plurality of unit cells three-dimensionally, the first rod-shaped conductors are arranged in parallel and periodically with each other, and the second rod-shaped conductors Are arranged in parallel and periodically with each other, and the third rod-shaped conductors are arranged in parallel and periodically with each other in a three-dimensional metamaterial,
The host medium includes a first substrate having a cavity and a second substrate sandwiching the first substrate, and the first substrate or / and the second substrate include the first rod-shaped conductor or / And a second rod-shaped conductor is formed,
The dielectric resonator is disposed in the cavity of the first substrate and formed in a unit form sandwiched between the second substrates, or formed in a state where two or more layers of the unit form are laminated. It has the said 3rd rod-shaped conductor, It is characterized by the above-mentioned.
 上記3次元メタマテリアルにおいて、上記3次元メタマテリアルに入射する所定周波数の電磁波に対して上記3次元メタマテリアルの実効誘電率及び実効透磁率がともに負となるように、上記単位セルの形状及び寸法と、上記誘電体共振器の形状、寸法、及び比誘電率と、上記棒状導体の太さと、上記第1、第2、及び第3の棒状導体を周期的に配置する間隔と、上記ホスト媒質の比誘電率とが設定されたことを特徴とする。 In the three-dimensional metamaterial, the shape and dimensions of the unit cell so that the effective permittivity and effective permeability of the three-dimensional metamaterial are both negative with respect to electromagnetic waves having a predetermined frequency incident on the three-dimensional metamaterial. The shape, dimensions, and relative permittivity of the dielectric resonator, the thickness of the rod-shaped conductor, the interval at which the first, second, and third rod-shaped conductors are periodically disposed, and the host medium The relative dielectric constant is set.
 上記3次元メタマテリアルにおいて、
 上記各単位セルは、上記複数の棒状導体によって形成される導波路を備え、上記各単位セルは所定のカットオフ周波数を有し、上記各単位セルは、上記3次元メタマテリアルに入射する上記カットオフ周波数よりも低い周波数の電磁波に対して上記3次元メタマテリアルの実効誘電率が負となるように構成され、
 上記誘電体共振器は、上記誘電体共振器に入射する所定周波数の電磁波により、磁気双極子モーメントと類似した電磁界分布の共振形態で励起し、上記電磁波に対して上記3次元メタマテリアルの実効透磁率が負となるように構成されることを特徴とする。
In the above three-dimensional metamaterial,
Each unit cell includes a waveguide formed by the plurality of rod-shaped conductors, each unit cell has a predetermined cutoff frequency, and each unit cell is incident on the three-dimensional metamaterial. The effective dielectric constant of the three-dimensional metamaterial is configured to be negative with respect to electromagnetic waves having a frequency lower than the off-frequency,
The dielectric resonator is excited by an electromagnetic wave having a predetermined frequency incident on the dielectric resonator in a resonance form having an electromagnetic field distribution similar to a magnetic dipole moment, and the three-dimensional metamaterial is effective against the electromagnetic wave. The magnetic permeability is configured to be negative.
 上記3次元メタマテリアルにおいて、上記各単位セルは立方体であり、上記第1、第2、及び第3の方向は互いに直交することを特徴とする。 In the three-dimensional metamaterial, each unit cell is a cube, and the first, second, and third directions are orthogonal to each other.
 上記3次元メタマテリアルにおいて、上記誘電体共振器は球形状を有することを特徴とする。 In the three-dimensional metamaterial, the dielectric resonator has a spherical shape.
 上記3次元メタマテリアルにおいて、上記誘電体共振器は円柱形状もしくは多角柱形状を有することを特徴とする。 In the three-dimensional metamaterial, the dielectric resonator has a cylindrical shape or a polygonal column shape.
 上記3次元メタマテリアルにおいて、上記誘電体共振器は立方体形状、多面体形状もしくは菱面体形状を有することを特徴とする。 In the three-dimensional metamaterial, the dielectric resonator has a cubic shape, a polyhedral shape, or a rhombohedral shape.
 上記3次元メタマテリアルにおいて、上記棒状導体は矩形の断面形状を有することを特徴とする。 In the three-dimensional metamaterial, the rod-shaped conductor has a rectangular cross-sectional shape.
 上記3次元メタマテリアルにおいて、上記棒状導体は円形の断面形状を有することを特徴とする。 In the three-dimensional metamaterial, the rod-shaped conductor has a circular cross-sectional shape.
 上記3次元メタマテリアルにおいて、上記第1、第2、及び第3の棒状導体は互いに交差することを特徴とする。 In the three-dimensional metamaterial, the first, second, and third rod-shaped conductors intersect each other.
 上記3次元メタマテリアルにおいて、上記第1、第2、及び第3の棒状導体のうちの少なくとも1つの棒状導体は他の棒状導体と交差しないことを特徴とする。 In the three-dimensional metamaterial, at least one of the first, second, and third rod-shaped conductors does not intersect with another rod-shaped conductor.
 上記3次元メタマテリアルにおいて、上記第1、第2、及び第3の棒状導体は互いに電気的に接続することを特徴とする。 In the three-dimensional metamaterial, the first, second, and third rod-shaped conductors are electrically connected to each other.
 上記3次元メタマテリアルにおいて、上記第1、第2、及び第3の棒状導体のうちの少なくとも1つの棒状導体は他の棒状導体と電気的に接続しないことを特徴とする。 In the three-dimensional metamaterial, at least one of the first, second, and third rod-shaped conductors is not electrically connected to another rod-shaped conductor.
 本発明に係る3次元メタマテリアルによれば、電磁波の伝搬方向及び偏波方向に依存しない、すなわち、等方的な伝搬特性を容易に実現可能な3次元メタマテリアルを提供することができる。 According to the three-dimensional metamaterial according to the present invention, it is possible to provide a three-dimensional metamaterial that can be easily realized with an isotropic propagation characteristic that is independent of the propagation direction and polarization direction of electromagnetic waves.
本発明の実施形態に係る3次元メタマテリアル20の構造を示す斜視図である。It is a perspective view which shows the structure of the three-dimensional metamaterial 20 which concerns on embodiment of this invention. 図1の3次元メタマテリアル20を構成する単位セル10の構造を示す斜視図である。It is a perspective view which shows the structure of the unit cell 10 which comprises the three-dimensional metamaterial 20 of FIG. 図2の単位セル10の中心を通る水平方向の断面図である。FIG. 3 is a horizontal sectional view passing through the center of the unit cell 10 of FIG. 2. 本発明の実施形態の第1の変形例に係る3次元メタマテリアル20を構成する単位セル11の構造を示す斜視図である。It is a perspective view which shows the structure of the unit cell 11 which comprises the three-dimensional metamaterial 20 which concerns on the 1st modification of embodiment of this invention. 本発明の実施形態の第2の変形例に係る3次元メタマテリアル20を構成する単位セル12の構造を示す斜視図である。It is a perspective view which shows the structure of the unit cell 12 which comprises the three-dimensional metamaterial 20 which concerns on the 2nd modification of embodiment of this invention. 本発明の実施形態の第3の変形例に係る3次元メタマテリアル21の構造を示す斜視図である。It is a perspective view which shows the structure of the three-dimensional metamaterial 21 which concerns on the 3rd modification of embodiment of this invention. 図6の3次元メタマテリアル21を構成する単位セル13の構造を示す斜視図である。It is a perspective view which shows the structure of the unit cell 13 which comprises the three-dimensional metamaterial 21 of FIG. 本発明の実施形態の第4の変形例に係る3次元メタマテリアル22の構造を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the three-dimensional metamaterial 22 which concerns on the 4th modification of embodiment of this invention. 図8の基板層31の構造を示す斜視図である。It is a perspective view which shows the structure of the board | substrate layer 31 of FIG. 図9のA-A’線における断面図である。FIG. 10 is a cross-sectional view taken along line A-A ′ of FIG. 9. 図8の基板層32の構造を示す斜視図である。It is a perspective view which shows the structure of the board | substrate layer 32 of FIG. 図11のB-B’線における断面図である。FIG. 12 is a sectional view taken along line B-B ′ of FIG. 11. 図8の基板層31-1,32-1,31-2,32-2,31-3を含む3次元メタマテリアル22の構造を示す断面図である。FIG. 9 is a cross-sectional view illustrating a structure of a three-dimensional metamaterial 22 including substrate layers 31-1, 32-1, 31-2, 32-2, and 31-3 in FIG. 本発明の実施例1に係る3次元メタマテリアルの分散曲線を示すグラフである。It is a graph which shows the dispersion | distribution curve of the three-dimensional metamaterial which concerns on Example 1 of this invention. 本発明の実施例2に係る3次元メタマテリアルの分散曲線を示すグラフである。It is a graph which shows the dispersion | distribution curve of the three-dimensional metamaterial which concerns on Example 2 of this invention. 本発明の実施例3に係る3次元メタマテリアルの分散曲線を示すグラフである。It is a graph which shows the dispersion | distribution curve of the three-dimensional metamaterial which concerns on Example 3 of this invention. 本発明の実施形態の3次元メタマテリアルに係る波数領域の表現を説明するための図である。It is a figure for demonstrating the expression of the wavenumber area | region which concerns on the three-dimensional metamaterial of embodiment of this invention. 本発明の実施例4に係る3次元メタマテリアル10の構成を示す斜視図である。It is a perspective view which shows the structure of the three-dimensional metamaterial 10 which concerns on Example 4 of this invention. 図18及び図21の3次元メタマテリアル10,12において定義した方向を示す斜視図である。It is a perspective view which shows the direction defined in the three- dimensional metamaterials 10 and 12 of FIG.18 and FIG.21. 図18の3次元メタマテリアル10の分散曲線を示すグラフである。It is a graph which shows the dispersion | distribution curve of the three-dimensional metamaterial 10 of FIG. 本発明の実施例5に係る3次元メタマテリアル12の構成を示す斜視図である。It is a perspective view which shows the structure of the three-dimensional metamaterial 12 which concerns on Example 5 of this invention. 図21の3次元メタマテリアル12の分散曲線を示すグラフである。It is a graph which shows the dispersion | distribution curve of the three-dimensional metamaterial 12 of FIG. 本発明の実施例6に係る、3次元メタマテリアルにおいて互いに直交する3方向に沿って置かれた棒状導体6同士が直接接触せず、微小な間隙が存在する場合の分散特性を示すグラフである。It is a graph which shows the dispersion | distribution characteristic when the rod-shaped conductors 6 placed along three directions orthogonal to each other in the three-dimensional metamaterial according to Example 6 of the present invention are not in direct contact with each other and there is a minute gap. .
 以下、本発明に係る実施形態について図面を参照して説明する。なお、以下の各実施形態において、同様の構成要素については同一の符号を付している。 Embodiments according to the present invention will be described below with reference to the drawings. In addition, in each following embodiment, the same code | symbol is attached | subjected about the same component.
 図1は、本発明の実施形態に係る3次元メタマテリアル20の構造を示す斜視図である。図2は、図1の3次元メタマテリアル20を構成する単位セル10の構造を示す斜視図である。図1の3次元メタマテリアル20は、図2の単位セル10を3次元的に周期的に配置して構成される。各単位セル10は、好ましくは、辺の長さLx=Ly=Lzを有する立方体である。各単位セル10は、単位セル10の中央に配置された誘電体共振器1と、誘電体共振器1を包囲するように配置された複数の棒状導体3xa~3xd,3ya~3yd,3za~3zd(以下、総称して符号「3」により示す)と、誘電体共振器1及び棒状導体3を支持するホスト媒質2とを備える。誘電体共振器1は、例えば半径R1の球形状を有し、さらに、ホスト媒質2の比誘電率よりもずっと高い比誘電率を有する(例えば、ホスト媒質2の比誘電率1~10に対して、誘電体共振器1の比誘電率15~110など)。各単位セル10において、棒状導体3は、x方向に沿って配置された棒状導体3xa~3xdと、y方向に沿って配置された棒状導体3ya~3ydと、z方向に沿って配置された棒状導体3za~3zdとを含む。複数の単位セル10を3次元的に周期的に配置することにより構成される3次元メタマテリアル20において、複数のx方向の棒状導体が互いに平行にかつ周期的に配置され、複数のy方向の棒状導体もまた互いに平行にかつ周期的に配置され、複数のz方向の棒状導体もまた互いに平行にかつ周期的に配置される。例えば、z方向に沿って配置された棒状導体(3za~3zdなど)は、x方向に長さLx毎に周期的に配置され、y方向に長さLy毎に周期的に配置され、さらに、他の方向(例えば棒状導体3za及び3zdを含む面に沿った方向など)でも所定長さ毎に周期的に配置される。 FIG. 1 is a perspective view showing a structure of a three-dimensional metamaterial 20 according to an embodiment of the present invention. FIG. 2 is a perspective view showing the structure of the unit cell 10 constituting the three-dimensional metamaterial 20 of FIG. The three-dimensional metamaterial 20 in FIG. 1 is configured by periodically arranging the unit cells 10 in FIG. 2 three-dimensionally. Each unit cell 10 is preferably a cube having a side length Lx = Ly = Lz. Each unit cell 10 includes a dielectric resonator 1 disposed in the center of the unit cell 10 and a plurality of rod-shaped conductors 3xa to 3xd, 3ya to 3yd, 3za to 3zd disposed so as to surround the dielectric resonator 1. (Hereinafter collectively referred to as “3”) and a host medium 2 that supports the dielectric resonator 1 and the rod-shaped conductor 3. The dielectric resonator 1 has, for example, a spherical shape with a radius R1, and further has a relative dielectric constant much higher than that of the host medium 2 (for example, relative dielectric constants 1 to 10 of the host medium 2). The dielectric constant of the dielectric resonator 1 is 15 to 110). In each unit cell 10, the rod-shaped conductor 3 includes rod-shaped conductors 3 xa to 3 xd disposed along the x direction, rod-shaped conductors 3 ya to 3 yd disposed along the y direction, and rod-shaped conductors disposed along the z direction. Conductors 3za to 3zd. In a three-dimensional metamaterial 20 configured by periodically arranging a plurality of unit cells 10 in a three-dimensional manner, a plurality of bar conductors in the x direction are periodically arranged in parallel to each other, The rod-shaped conductors are also arranged in parallel and periodically with each other, and the plurality of z-direction rod-shaped conductors are also arranged in parallel with each other and periodically. For example, rod-shaped conductors (such as 3za to 3zd) arranged along the z direction are periodically arranged for each length Lx in the x direction, periodically arranged for each length Ly in the y direction, and In other directions (for example, a direction along the surface including the rod-shaped conductors 3za and 3zd), the electrodes are periodically arranged at predetermined lengths.
 3次元メタマテリアル20は、3次元方向でほぼ等方的な左手系メタマテリアルとして動作させるために、負の実効誘電率を持つ単位セル10内に誘電体共振器1が挿入されている。これにより、3次元メタマテリアル20は、所定周波数の電磁波に対して、その実効誘電率及び実効透磁率がともに負となるように構成される。以下に、その構成原理について説明する。 In order for the three-dimensional metamaterial 20 to operate as a left-handed metamaterial that is substantially isotropic in the three-dimensional direction, the dielectric resonator 1 is inserted into the unit cell 10 having a negative effective dielectric constant. Thereby, the three-dimensional metamaterial 20 is configured so that both the effective dielectric constant and the effective magnetic permeability thereof are negative with respect to the electromagnetic wave having a predetermined frequency. The configuration principle will be described below.
 図3は、図2の単位セル10の中心を通る水平方向(xy面に平行な面に沿った方向)の断面図である。図3では、中央の単位セル10と、それに隣接する単位セルの一部とを示す。棒状導体3のそれぞれ(図3には、z方向の棒状導体3za~3zdのみを示す)は、例えば、辺の長さL2を有する正方形の断面形状を有するものとする。棒状導体3za~3zdは、x方向に間隔L1を有して周期的に配置され、y方向に間隔L3を有して周期的に配置される。ただし、前述のように単位セル10が立方体であるとき、L1=L3である。単位セル10は、例えばx方向に沿って、導体で包囲された長さL2の区間と、導体で包囲されていない長さL1の区間とが交互に配置された導波路として構成される。この導波路における導体で包囲された区間の実効誘電率は、TEモードのカットオフ周波数より低い周波数領域において負になる。従って、この導波路は、カットオフ周波数より低い周波数を有する電磁波であって、例えば+x方向に向かう電磁波が入射波として到来するとき、導体で包囲された区間では負の実効誘電率ε2<0を有し、導体で包囲されていない区間では正の実効誘電率ε1>0を有するように構成される。このとき、3次元メタマテリアル20は、その全体としては、正、零又は負の所定値の実効誘電率を有する。同様に、単位セル10は、y方向及びz方向に沿って、導体で包囲された区間と、導体で包囲されていない区間とが交互に配置された導波路として構成される。これらの導波路は、カットオフ周波数より低い周波数を有する電磁波であって、y方向又はz方向に向かう電磁波が入射波として到来するとき、導体で包囲された区間では負の実効誘電率を有し、導体で包囲されていない区間では正の実効誘電率を有するように構成される。これらのときも、3次元メタマテリアル20は、その全体としては、正、零又は負の所定値の実効誘電率を有する。 FIG. 3 is a cross-sectional view in the horizontal direction (direction along a plane parallel to the xy plane) passing through the center of the unit cell 10 in FIG. In FIG. 3, the center unit cell 10 and a part of unit cell adjacent to it are shown. Each of the rod-shaped conductors 3 (only the rod-shaped conductors 3za to 3zd in the z direction are shown in FIG. 3) has, for example, a square cross-sectional shape having a side length L2. The rod-shaped conductors 3za to 3zd are periodically arranged with an interval L1 in the x direction and are periodically arranged with an interval L3 in the y direction. However, as described above, when the unit cell 10 is a cube, L1 = L3. The unit cell 10 is configured as a waveguide in which, for example, in the x direction, a section having a length L2 surrounded by a conductor and a section having a length L1 not surrounded by a conductor are alternately arranged. The effective dielectric constant of the section surrounded by the conductor in this waveguide becomes negative in a frequency region lower than the cutoff frequency of the TE mode. Accordingly, this waveguide is an electromagnetic wave having a frequency lower than the cutoff frequency. For example, when an electromagnetic wave directed in the + x direction arrives as an incident wave, the negative effective dielectric constant ε2 <0 is obtained in the section surrounded by the conductor. And the section not surrounded by the conductor is configured to have a positive effective dielectric constant ε1> 0. At this time, the three-dimensional metamaterial 20 as a whole has an effective dielectric constant of a predetermined value of positive, zero, or negative. Similarly, the unit cell 10 is configured as a waveguide in which sections surrounded by a conductor and sections not surrounded by a conductor are alternately arranged along the y direction and the z direction. These waveguides are electromagnetic waves having a frequency lower than the cut-off frequency, and when an electromagnetic wave directed in the y direction or the z direction arrives as an incident wave, it has a negative effective dielectric constant in a section surrounded by a conductor. The section not surrounded by the conductor is configured to have a positive effective dielectric constant. Also in these cases, the three-dimensional metamaterial 20 as a whole has an effective dielectric constant of a predetermined value of positive, zero, or negative.
 また、各単位セル10は、その導波路とそれ以外の部分とを含む単位セル10の全体構造に依存する実効値としてのカットオフ周波数(単位セル10全体のカットオフ周波数)を有する。3次元メタマテリアル20は、単位セル10全体のカットオフ周波数より高い周波数を有する電磁波が入射波として到来するとき、零又は正の実効誘電率を有する。 Each unit cell 10 has a cut-off frequency (cut-off frequency of the entire unit cell 10) as an effective value depending on the entire structure of the unit cell 10 including the waveguide and other portions. The three-dimensional metamaterial 20 has a zero or positive effective dielectric constant when an electromagnetic wave having a frequency higher than the cutoff frequency of the entire unit cell 10 arrives as an incident wave.
 さらに、誘電体共振器1は、磁気双極子モーメントと類似した電磁界分布の共振形態を有する。ここで、「磁気双極子モーメントと類似した電磁界分布」とは、誘電体共振器1の内部において、ある軸に対して垂直な面内で、電気力線が閉じた同心状の渦を形成し、さらに、磁力線が誘電体共振器1の中心付近ではほぼその軸に沿った方向を向き、かつ、磁力線が誘電体共振器1の外部にも広がって閉曲線を形成している状態のことをいう。一般に磁力線はソレノイダルである(必ず閉じている)ので、この場合、磁力線は誘電体共振器1の外部に大きく広がった分布をなす。誘電体共振器1の内部では磁気エネルギーに比べて電気的エネルギーの方がより多く蓄えられる一方、誘電体共振器1の外部では、電界により蓄えられるエネルギーよりも磁界により蓄えられるエネルギーの方が大きくなり、誘電体共振器1と外部の電磁界との結合は磁気結合が支配的となる。 Furthermore, the dielectric resonator 1 has a resonance form with an electromagnetic field distribution similar to the magnetic dipole moment. Here, “an electromagnetic field distribution similar to the magnetic dipole moment” means that a concentric vortex with closed lines of electric force is formed in a plane perpendicular to a certain axis in the dielectric resonator 1. In addition, the magnetic field lines are directed substantially along the axis in the vicinity of the center of the dielectric resonator 1, and the magnetic field lines extend outside the dielectric resonator 1 to form a closed curve. Say. In general, the magnetic field lines are sorenoidal (always closed), and in this case, the magnetic field lines have a distribution that spreads widely outside the dielectric resonator 1. While more electric energy is stored inside the dielectric resonator 1 than magnetic energy, the energy stored by the magnetic field is larger than the energy stored by the electric field outside the dielectric resonator 1. Thus, the coupling between the dielectric resonator 1 and the external electromagnetic field is dominated by magnetic coupling.
 3次元メタマテリアル20が等方的な伝搬特性を有するためには、磁気双極子モーメントと類似した電磁界分布を有する誘電体共振器1の共振形態のうちで、x方向に対称軸を有する第1の共振形態と、y方向に対称軸を有する第2の共振形態と、z方向に対称軸を有する第3の共振形態とがいずれも、ほぼ同じ共振周波数を有する(すなわち、異なる3つの共振モードをほぼ縮退させる)ことが必要である。この共振周波数付近の周波数を有する電磁波が誘電体共振器1に到来すると、電磁波の伝搬方向に関係なく、誘電体共振器1は共振状態もしくはそれに近い電磁界分布を有する状態となる。また、その共振時における誘電体共振器1内外の電磁界分布は、電磁波の伝搬方向ベクトルの成分に応じて、ほぼ縮退した3つの共振モードのいずれかあるいはそれらの組み合わせ(線形和)として表される。球形状の誘電体共振器1の場合、誘電体共振器1の誘電率がホスト媒質2の誘電率に比べて充分大きいという条件のもとで、境界で磁気壁(磁界の接線成分が零)を仮定して共振モードが近似的に計算される。このように簡単化されたモデルにおいて、誘電体共振器1の電磁界分布はTE011共振モードとして表される。 In order for the three-dimensional metamaterial 20 to have isotropic propagation characteristics, among the resonance modes of the dielectric resonator 1 having an electromagnetic field distribution similar to the magnetic dipole moment, a first axis having a symmetry axis in the x direction is used. 1 resonance form, a second resonance form having a symmetry axis in the y direction, and a third resonance form having a symmetry axis in the z direction all have substantially the same resonance frequency (ie, three different resonance forms). Mode). When an electromagnetic wave having a frequency near the resonance frequency arrives at the dielectric resonator 1, the dielectric resonator 1 enters a resonance state or a state having an electromagnetic field distribution close to that regardless of the propagation direction of the electromagnetic wave. In addition, the electromagnetic field distribution inside and outside the dielectric resonator 1 at the time of resonance is expressed as one of the three substantially degenerated resonance modes or a combination (linear sum) according to the component of the propagation direction vector of the electromagnetic wave. The In the case of the spherical dielectric resonator 1, the magnetic wall at the boundary (the tangential component of the magnetic field is zero) under the condition that the dielectric constant of the dielectric resonator 1 is sufficiently larger than the dielectric constant of the host medium 2. Assuming that, the resonance mode is approximately calculated. In this simplified model, the electromagnetic field distribution of the dielectric resonator 1 is expressed as a TE 011 resonance mode.
 3次元メタマテリアル20を右手/左手系複合メタマテリアルとして動作させるためには、所定周波数を有する電磁波が誘電体共振器1に到来するとき、電磁波の磁界ベクトルが、誘電体共振器1において、磁気双極子モーメントと類似した電磁界分布の共振状態を励起させる必要がある。その結果、単位セル10の内部において、電磁波の周波数に応じて、正、零又は負の実効透磁率を実現する。このとき、3次元メタマテリアル20は、その全体として、正、零又は負の所定値の実効透磁率を有する。 In order to operate the three-dimensional metamaterial 20 as a right / left-handed composite metamaterial, when an electromagnetic wave having a predetermined frequency arrives at the dielectric resonator 1, the magnetic field vector of the electromagnetic wave becomes magnetic in the dielectric resonator 1. It is necessary to excite the resonance state of the electromagnetic field distribution similar to the dipole moment. As a result, a positive, zero, or negative effective permeability is realized in the unit cell 10 according to the frequency of the electromagnetic wave. At this time, the three-dimensional metamaterial 20 as a whole has an effective magnetic permeability of a predetermined value of positive, zero, or negative.
 所定周波数の電磁波に対して3次元メタマテリアル20の実効誘電率及び実効透磁率がともに負となるように、単位セル10の形状及び寸法と、誘電体共振器1の形状、寸法、及び比誘電率と、棒状導体3の太さと、棒状導体3を周期的に配置する間隔と、ホスト媒質2の比誘電率とが決定される。このとき、3次元メタマテリアル20は、電磁波の伝搬方向及び偏波方向に依存しない、すなわち、等方的な伝搬特性を有する左手系メタマテリアルとして構成される。 The shape and size of the unit cell 10 and the shape, size, and relative dielectric constant of the dielectric resonator 1 are such that the effective dielectric constant and effective permeability of the three-dimensional metamaterial 20 are both negative with respect to an electromagnetic wave having a predetermined frequency. The ratio, the thickness of the rod-shaped conductor 3, the interval at which the rod-shaped conductor 3 is periodically arranged, and the relative dielectric constant of the host medium 2 are determined. At this time, the three-dimensional metamaterial 20 is configured as a left-handed metamaterial that does not depend on the propagation direction and polarization direction of electromagnetic waves, that is, has isotropic propagation characteristics.
 また、3次元メタマテリアル20は、動作周波数により、右手系メタマテリアル、左手系メタマテリアル、誘電率及び透磁率のどちらか一方が負で他方が正となるシングルネガティブメタマテリアル、実効誘電率あるいは透磁率が零のメタマテリアルとして動作する右手/左手系複合メタマテリアルとして構成されてもよい。 Further, the three-dimensional metamaterial 20 is a right-handed metamaterial, a left-handed metamaterial, a single negative metamaterial in which one of the dielectric constant and the magnetic permeability is negative and the other is positive, depending on the operating frequency, the effective dielectric constant or the permeability. It may be configured as a right-hand / left-handed composite metamaterial that operates as a metamaterial with zero magnetic susceptibility.
 また、3次元メタマテリアル20の実効誘電率が零となる周波数と実効透磁率が零となる周波数とは一般に異なるが、これらの周波数を一致させることにより、3次元メタマテリアル20を平衡型右手/左手系複合メタマテリアルとして構成してもよい。 In addition, the frequency at which the effective permittivity of the three-dimensional metamaterial 20 is zero and the frequency at which the effective permeability is zero are generally different, but by matching these frequencies, the three-dimensional metamaterial 20 can be balanced right-handed / It may be configured as a left-handed composite metamaterial.
 誘電体共振器1は、単一の誘電体材料から構成されてもよく、又は複数の誘電体材料の組み合わせから構成されてもよい。 The dielectric resonator 1 may be composed of a single dielectric material or a combination of a plurality of dielectric materials.
 誘電体共振器1は、当該誘電体共振器1を含む単位セル10に隣接する単位セル10の誘電体共振器1に接していなくてもよく、接していてもよい。 The dielectric resonator 1 may or may not be in contact with the dielectric resonator 1 of the unit cell 10 adjacent to the unit cell 10 including the dielectric resonator 1.
 ホスト媒質2は、例えば、誘電体共振器1の比誘電率よりもずっと低い比誘電率を有する誘電体にて単位セル10を充填することによって構成される。また、ホスト媒質2として、単位セル10の内部の少なくとも一部を空気により充填してもよく、又は、空気及び誘電体の組み合わせ、もしくは、複数の誘電体の組み合わせにより、単位セル10の内部を充填してもよい。 The host medium 2 is configured by, for example, filling the unit cell 10 with a dielectric having a dielectric constant much lower than that of the dielectric resonator 1. Further, as the host medium 2, at least a part of the inside of the unit cell 10 may be filled with air, or the inside of the unit cell 10 may be filled with a combination of air and a dielectric, or a combination of a plurality of dielectrics. It may be filled.
 図1及び図2では立方体の単位セル10を示したが、単位セルの形状は立方体に限定されない。複数の単位セルを3次元的に周期的に配置して3次元メタマテリアルを構成できるのであれば、直方体、角柱(六角柱など)、正四面体などの任意の形状の単位セル、又は複数の種類の単位セルの組み合わせを用いることができる。各単位セルにおいて、複数の棒状導体は、少なくとも3つの方向に沿って配置される。すなわち、各単位セルにおいて、複数の棒状導体は、第1の方向に配置された少なくとも1つの第1の棒状導体と、第1の方向とは異なる第2の方向に配置された少なくとも1つの第2の棒状導体と、第1及び第2の方向によって張られる面に対して所定角度を有する第3の方向に配置された少なくとも1つの第3の棒状導体とを含む。複数の単位セルを3次元的に周期的に配置することにより構成される3次元メタマテリアルにおいて、第1の棒状導体は互いに平行にかつ周期的に配置され、第2の棒状導体は互いに平行にかつ周期的に配置され、第3の棒状導体は互いに平行にかつ周期的に配置される。このように構成された3次元メタマテリアルにおいて、電磁波の伝搬方向及び偏波方向に依存しない、すなわち、等方的な伝搬特性を容易に実現することができる。ただし、等方的な伝搬特性のためには、単位セルは、方向によって寸法などが異なる直方体などの形状よりも、立方体などの対称な形状を有するほうが好ましい。 1 and 2 show a cubic unit cell 10, the shape of the unit cell is not limited to a cube. If a plurality of unit cells can be periodically arranged three-dimensionally to form a three-dimensional metamaterial, a unit cell of an arbitrary shape such as a rectangular parallelepiped, a prism (hexagonal column, etc.), a regular tetrahedron, or a plurality of unit cells Combinations of types of unit cells can be used. In each unit cell, the plurality of rod-shaped conductors are arranged along at least three directions. That is, in each unit cell, the plurality of rod-shaped conductors include at least one first rod-shaped conductor disposed in the first direction and at least one first conductor disposed in a second direction different from the first direction. Two bar-shaped conductors and at least one third bar-shaped conductor disposed in a third direction having a predetermined angle with respect to a surface stretched by the first and second directions. In a three-dimensional metamaterial configured by periodically arranging a plurality of unit cells three-dimensionally, the first rod-shaped conductors are arranged in parallel and periodically with each other, and the second rod-shaped conductors are arranged in parallel with each other. The third rod-shaped conductors are arranged in parallel and periodically with each other. In the three-dimensional metamaterial thus configured, it is possible to easily realize isotropic propagation characteristics that do not depend on the propagation direction and polarization direction of electromagnetic waves. However, for isotropic propagation characteristics, the unit cell preferably has a symmetric shape such as a cube rather than a shape such as a rectangular parallelepiped whose dimensions and the like differ depending on the direction.
 図4は、本発明の実施形態の第1の変形例に係る3次元メタマテリアル20を構成する単位セル11の構造を示す斜視図である。図1及び図2の単位セル10は、球形状の誘電体共振器1を備えていたが、他の形状の誘電体共振器を備えてもよい。図4の単位セル11は、半径R2及び高さH1の円柱形状の誘電体共振器4を備える。円柱形状の誘電体共振器4の場合、(1)TE01δ共振モード及びその共振周波数の近傍において、円柱の対称軸に平行な磁気双極子モーメントと類似した電磁界分布をなし、(2)HE11δ共振モード及びその共振周波数の近傍において、円柱の側面に垂直な方向に磁気双極子モーメントと類似した電磁界分布をなす。この場合、円柱の側面に垂直な方向の決め方は自由度が2であるので、ここでは2つの共振状態が縮退しているとみなす。上記(1)及び(2)の共振周波数が同じである場合、異なる3方向に対称軸をそれぞれ有する3つの磁気双極子モーメントと類似した電磁界分布を、同じ周波数で実現することが可能となる。誘電体共振器4のTE01δモード及びHE11δモードの共振周波数がほぼ同じ周波数で縮退するように、誘電体共振器4の直径(半径R2×2)及び高さH1がほぼ同じ長さに決められる。 FIG. 4 is a perspective view showing the structure of the unit cell 11 constituting the three-dimensional metamaterial 20 according to the first modification of the embodiment of the present invention. The unit cell 10 in FIGS. 1 and 2 includes the spherical dielectric resonator 1, but may include other shapes of dielectric resonators. The unit cell 11 of FIG. 4 includes a cylindrical dielectric resonator 4 having a radius R2 and a height H1. In the case of the cylindrical dielectric resonator 4, (1) an electromagnetic field distribution similar to a magnetic dipole moment parallel to the axis of symmetry of the cylinder is formed in the vicinity of the TE 01δ resonance mode and its resonance frequency, and (2) HE In the vicinity of the 11δ resonance mode and its resonance frequency, an electromagnetic field distribution similar to the magnetic dipole moment is formed in the direction perpendicular to the side surface of the cylinder. In this case, since the degree of freedom in determining the direction perpendicular to the side surface of the cylinder is 2, it is assumed here that the two resonance states are degenerated. When the resonance frequencies of (1) and (2) are the same, an electromagnetic field distribution similar to three magnetic dipole moments having symmetric axes in three different directions can be realized at the same frequency. . The diameter (radius R2 × 2) and height H1 of the dielectric resonator 4 are determined to be approximately the same length so that the resonance frequencies of the TE 01δ mode and the HE 11δ mode of the dielectric resonator 4 are degenerated at substantially the same frequency. It is done.
 図5は、本発明の実施形態の第2の変形例に係る3次元メタマテリアル20を構成する単位セル12の構造を示す斜視図である。図5の単位セル12は、長さLcの辺を有する立方体形状の誘電体共振器5を備える。 FIG. 5 is a perspective view showing the structure of the unit cell 12 constituting the three-dimensional metamaterial 20 according to the second modification of the embodiment of the present invention. The unit cell 12 of FIG. 5 includes a cubic-shaped dielectric resonator 5 having a side having a length Lc.
 図4の誘電体共振器4又は図5の誘電体共振器5を用いた3次元メタマテリアルにおいても、電磁波の伝搬方向及び偏波方向に依存しない、すなわち、等方的な伝搬特性を容易に実現することができる。 Even in the three-dimensional metamaterial using the dielectric resonator 4 of FIG. 4 or the dielectric resonator 5 of FIG. 5, it is not dependent on the propagation direction and polarization direction of electromagnetic waves, that is, isotropic propagation characteristics are easily achieved. Can be realized.
 誘電体共振器の形状は、球形状、円柱形状、及び立方体形状に限定されず、回転楕円体、多角柱、多面体、菱面体などの任意の形状、又は複数の種類の形状の組み合わせを用いることができる。 The shape of the dielectric resonator is not limited to a spherical shape, a cylindrical shape, and a cubic shape, and any shape such as a spheroid, a polygonal column, a polyhedron, a rhombohedron, or a combination of a plurality of types of shapes should be used. Can do.
 1つの単位セルに注目するとき、非対称な形状を有する誘電体共振器を用いると等方的な伝搬特性が損なわれる。そのような誘電体共振器を用いる場合であっても、複数の単位セルにおいて誘電体共振器をさまざまな異なる方向を向けて配置することで、平均的には等方的な伝搬特性を実現することができる。また、1つの単位セルに注目するとき、誘電体共振器を単位セルの中央に配置しなければ等方的な伝搬特性が損なわれる。誘電体共振器を単位セルの中央に配置しない場合であっても、複数の単位セルにおいて誘電体共振器をさまざまな異なる位置に配置することで、平均的には等方的な伝搬特性を実現することができる。 When paying attention to one unit cell, isotropic propagation characteristics are impaired if a dielectric resonator having an asymmetric shape is used. Even when such a dielectric resonator is used, on average, isotropic propagation characteristics are realized by arranging the dielectric resonators in various directions in a plurality of unit cells. be able to. Further, when paying attention to one unit cell, isotropic propagation characteristics are impaired unless the dielectric resonator is arranged at the center of the unit cell. Even if the dielectric resonator is not arranged in the center of the unit cell, the isotropic propagation characteristics can be achieved on average by arranging the dielectric resonator in various different positions in the unit cells. can do.
 図6は、本発明の実施形態の第3の変形例に係る3次元メタマテリアル21の構造を示す斜視図である。図7は、図6の3次元メタマテリアル21を構成する単位セル13の構造を示す斜視図である。図1及び図2では、x方向、y方向、及びz方向の棒状導体3が互いに交差するように示しているが、これらの棒状導体3のうちの少なくとも1つの方向の棒状導体が他の方向の棒状導体と交差していなくてもよい。また、図1及び図2では、棒状導体3は矩形の断面形状を有していたが、他の断面形状を有していてもよい。本変形例の単位セル13は、直径L4の円形の断面形状を有し、互いに交差しない棒状導体6x,6ya,6yb,6za~6zd(以下、総称して符号「6」により示す)を備える。 FIG. 6 is a perspective view showing the structure of the three-dimensional metamaterial 21 according to the third modification of the embodiment of the present invention. FIG. 7 is a perspective view showing the structure of the unit cell 13 constituting the three-dimensional metamaterial 21 of FIG. In FIG. 1 and FIG. 2, the bar conductors 3 in the x direction, the y direction, and the z direction are shown to intersect with each other, but the bar conductors in at least one of these bar conductors 3 are in other directions. It does not have to intersect with the rod-shaped conductor. Moreover, in FIG.1 and FIG.2, although the rod-shaped conductor 3 had a rectangular cross-sectional shape, you may have another cross-sectional shape. The unit cell 13 of this modification has a circular cross-sectional shape having a diameter L4 and includes rod-shaped conductors 6x, 6ya, 6yb, 6za to 6zd (hereinafter collectively referred to as “6”) that do not intersect each other.
 各単位セル13は、単位セル13の中央に配置された誘電体共振器1と、誘電体共振器1を包囲するように配置された複数の棒状導体6と、誘電体共振器1及び棒状導体6を支持するホスト媒質2とを備える。各単位セル13において、棒状導体6は、x方向に沿って配置された棒状導体6xと、y方向に沿って配置された棒状導体6ya,6ybと、z方向に沿って配置された棒状導体6za~6zdとを含む。複数の単位セル13を3次元的に周期的に配置することにより構成される3次元メタマテリアル21において、複数のx方向の棒状導体が互いに平行にかつ周期的に配置され、複数のy方向の棒状導体もまた互いに平行にかつ周期的に配置され、複数のz方向の棒状導体もまた互いに平行にかつ周期的に配置される。 Each unit cell 13 includes a dielectric resonator 1 disposed in the center of the unit cell 13, a plurality of rod-shaped conductors 6 disposed so as to surround the dielectric resonator 1, and the dielectric resonator 1 and the rod-shaped conductor. 6 and a host medium 2 that supports 6. In each unit cell 13, the rod-shaped conductor 6 includes a rod-shaped conductor 6x disposed along the x direction, rod-shaped conductors 6ya and 6yb disposed along the y direction, and a rod-shaped conductor 6za disposed along the z direction. ~ 6zd. In a three-dimensional metamaterial 21 configured by periodically arranging a plurality of unit cells 13 in a three-dimensional manner, a plurality of bar conductors in the x direction are periodically arranged in parallel to each other, The rod-shaped conductors are also arranged in parallel and periodically with each other, and the plurality of z-direction rod-shaped conductors are also arranged in parallel with each other and periodically.
 なお、x方向、y方向、及びz方向の棒状導体6は、互いに電気的に接続されていてもよく、接続されていなくてもよい。 In addition, the rod-shaped conductors 6 in the x direction, the y direction, and the z direction may or may not be electrically connected to each other.
 次いで、図8~図13を参照して、本発明の実施形態に係る3次元メタマテリアルの製造方法の一例について説明する。 Next, an example of a method for producing a three-dimensional metamaterial according to an embodiment of the present invention will be described with reference to FIGS.
 図8は、本発明の実施形態の第4の変形例に係る3次元メタマテリアル22の構造を示す分解斜視図である。3次元メタマテリアル22は、積層された複数の基板層31-1,32-1,31-2,32-2,31-3,…,31-Nを含む。後述するように、一部の基板層32-1,32-2,…,32-(N-1)(以下、総称して符号「32」により示す)は、誘電体共振器1をそれぞれ収容する複数の空洞を有し、残りの基板層31-1,31-2,31-3,…,31-N(以下、総称して符号「31」により示す)は、それぞれ基板層32を間に挟んで誘電体共振器1を基板層32の空洞に固定する。また、図2の棒状導体3は、各基板層31,32の少なくとも一方の面に形成されたパターン導体として形成されるか、又は各基板層31,32を貫通するスルーホール導体として形成される。基板層31,32の個数は、必要な特性を考慮して任意に選択することができる。図8の3次元メタマテリアル22は、N個の基板層31とN-1個の基板層32とから構成されている。 FIG. 8 is an exploded perspective view showing the structure of the three-dimensional metamaterial 22 according to the fourth modification of the embodiment of the present invention. The three-dimensional metamaterial 22 includes a plurality of stacked substrate layers 31-1, 32-1, 31-2, 32-2, 31-3,..., 31-N. As will be described later, some of the substrate layers 32-1, 32-2,..., 32- (N-1) (hereinafter collectively referred to as “32”) accommodate the dielectric resonator 1, respectively. The remaining substrate layers 31-1, 31-2, 31-3,..., 31-N (hereinafter collectively referred to as reference numeral “31”) are disposed between the substrate layers 32, respectively. The dielectric resonator 1 is fixed to the cavity of the substrate layer 32 by sandwiching it. 2 is formed as a pattern conductor formed on at least one surface of each of the substrate layers 31 and 32, or is formed as a through-hole conductor penetrating each of the substrate layers 31 and 32. . The number of substrate layers 31 and 32 can be arbitrarily selected in consideration of necessary characteristics. The three-dimensional metamaterial 22 shown in FIG. 8 includes N substrate layers 31 and N−1 substrate layers 32.
 図9は、図8の基板層31の構造を示す斜視図である。図10は、図9のA-A’線における断面図である。基板層31の母材は、エポキシ、ポリイミドなどの半硬化樹脂からなる誘電体基板41で形成され、誘電体基板41の少なくとも一方の面(図9及び図10では+z側の面)には、x方向に沿って延在する複数のパターン導体42x(図2のx方向の棒状導体3xa~3xdに対応する)と、y方向に沿って延在する複数のパターン導体42y(図2のy方向の棒状導体3ya~3ydに対応する)とからなる格子状の平面電極がパターン形成される。さらに、パターン導体42x,42yが交差する位置(格子点)においてそれぞれ、レーザー法やパンチング法を用いて、誘電体基板41を貫通するスルーホール導体43(図2のz方向の棒状導体3za~3zdに対応する)を設けるための穴が形成される。 FIG. 9 is a perspective view showing the structure of the substrate layer 31 of FIG. FIG. 10 is a cross-sectional view taken along line A-A ′ of FIG. The base material of the substrate layer 31 is formed of a dielectric substrate 41 made of a semi-cured resin such as epoxy or polyimide, and at least one surface of the dielectric substrate 41 (the surface on the + z side in FIGS. 9 and 10), A plurality of pattern conductors 42x extending along the x direction (corresponding to the bar-shaped conductors 3xa to 3xd in the x direction in FIG. 2) and a plurality of pattern conductors 42y extending in the y direction (the y direction in FIG. 2) Grid-like planar electrodes made of a plurality of rod-shaped conductors 3ya to 3yd). Further, at the positions (lattice points) where the pattern conductors 42x and 42y intersect, the through-hole conductors 43 (rod-shaped conductors 3za to 3zd in the z direction in FIG. 2) that penetrate the dielectric substrate 41 are respectively used by using a laser method or a punching method. Corresponding to the above) is formed.
 図11は、図8の基板層32の構造を示す斜視図である。図12は、図11のB-B’線における断面図である。基板層32の母材は、エポキシ、ポリイミドなどの半硬化樹脂からなる誘電体基板51で形成され、誘電体基板51の少なくとも一方の面(図11及び図12では+z側の面)には、x方向に沿って延在する複数のパターン導体52x(図2のx方向の棒状導体3xa~3xdに対応する)と、y方向に沿って延在する複数のパターン導体52y(図2のy方向の棒状導体3ya~3ydに対応する)とからなる格子状の平面電極がパターン形成される。さらに、パターン導体52x,52yが交差する位置(格子点)においてそれぞれ、レーザー法やパンチング法を用いて、誘電体基板51を貫通するスルーホール導体53(図2のz方向の棒状導体3za~3zdに対応する)を設けるための穴が形成される。さらに、誘電体基板51上においてパターン導体52x,52yによって包囲される領域はそれぞれ、レーザー法やパンチング法を用いて誘電体基板51を貫通する空洞54が形成される。空洞54内にそれぞれ、誘電体共振器1が設けられる。 FIG. 11 is a perspective view showing the structure of the substrate layer 32 of FIG. 12 is a cross-sectional view taken along line B-B ′ of FIG. The base material of the substrate layer 32 is formed of a dielectric substrate 51 made of a semi-cured resin such as epoxy or polyimide, and at least one surface of the dielectric substrate 51 (the surface on the + z side in FIGS. 11 and 12), A plurality of pattern conductors 52x extending along the x direction (corresponding to the bar-shaped conductors 3xa to 3xd in the x direction of FIG. 2) and a plurality of pattern conductors 52y extending along the y direction (the y direction of FIG. 2) Grid-like planar electrodes made of a plurality of rod-shaped conductors 3ya to 3yd). Furthermore, at the positions (lattice points) where the pattern conductors 52x and 52y intersect, the through-hole conductors 53 (rod-shaped conductors 3za to 3zd in the z direction in FIG. 2) that penetrate the dielectric substrate 51 are used by using a laser method or a punching method, respectively. Corresponding to the above) is formed. Further, in the regions surrounded by the pattern conductors 52x and 52y on the dielectric substrate 51, cavities 54 penetrating the dielectric substrate 51 are formed by using a laser method or a punching method, respectively. The dielectric resonators 1 are provided in the cavities 54, respectively.
 基板層32の誘電体基板51には、スルーホール導体53を設けるための穴と、空洞54の穴が形成される。スルーホール導体53を設けるための穴の直径は誘電体共振器1の直径よりも小さく形成され、空洞54の穴は誘電体共振器1の直径よりも大きく形成される。従って、(ある基板層32における空洞54の個数よりも十分多い)複数の誘電体共振器1を誘電体基板51上に配置して誘電体共振器1をスキージで掃引すれば、誘電体共振器1を空洞54に装填することができる。このとき、スルーホール導体53の直径は空洞54よりも小さいので、誘電体共振器1はスルーホール導体53には入らない。スルーホール導体53の直径が空洞54よりも大きい場合には、LSI実装において半田ボールを回路基板上へ設置する際に使用される吸引法の装置を使用すれば、同様にして誘電体共振器1を空洞54のみに装填することができる。 A hole for providing a through-hole conductor 53 and a hole for a cavity 54 are formed in the dielectric substrate 51 of the substrate layer 32. The diameter of the hole for providing the through-hole conductor 53 is formed smaller than the diameter of the dielectric resonator 1, and the hole of the cavity 54 is formed larger than the diameter of the dielectric resonator 1. Accordingly, if a plurality of dielectric resonators 1 (which is sufficiently larger than the number of cavities 54 in a certain substrate layer 32) are arranged on the dielectric substrate 51 and the dielectric resonator 1 is swept with a squeegee, the dielectric resonators 1 can be loaded into the cavity 54. At this time, since the diameter of the through-hole conductor 53 is smaller than that of the cavity 54, the dielectric resonator 1 does not enter the through-hole conductor 53. When the diameter of the through-hole conductor 53 is larger than that of the cavity 54, the dielectric resonator 1 can be similarly formed by using a suction method device used when installing a solder ball on a circuit board in LSI mounting. Can be loaded into the cavity 54 only.
 図13は、図8の基板層31-1,32-1,31-2,32-2,31-3を含む3次元メタマテリアル22の構造を示す断面図である。基板層32-1,32-2の空洞54に誘電体共振器1を装填した後、スルーホール導体43,53を設けるための穴(図13の点線)の位置を合わせて図13に示すように基板層31-1,32-1,31-2,32-2,31-3を積み重ね、全体をz方向に圧縮する。基板層31,32は、前述のように半硬化状態にあるので、圧縮により全体として一体化する。次に、スルーホール導体43,53を設けるための穴に導電性樹脂材料をスキージなどで挿入して、全体に80~180°C程度の熱を加えることで、最終的に硬化する。また、基板層32-1,32-2の空洞54に誘電体共振器1を装填した後、スルーホール導体43,53を設けるための穴(図13の点線)の位置を合わせて図13に示すように基板層31-1,32-1,31-2,32-2,31-3を積み重ね、次に、スルーホール導体43,53を設けるための穴に導電性樹脂材料をスキージなどで挿入して、全体をz方向に加熱圧縮してもよい。この製造方法の例によれば、各誘電体共振器1は、図2の棒状導体3によって包囲されるのと同様に、基板層31のパターン導体42x,42y及びスルーホール導体43と、基板層32のパターン導体52x,52y及びスルーホール導体53とによって包囲され、各誘電体共振器1、パターン導体42x,42y,52x,52y、及びスルーホール導体43,53は、誘電体基板41,51によって支持される。従って、この製造方法の例によれば、図1の3次元メタマテリアル20等と同様に誘電体共振器1をそれぞれ含む複数の単位セルを3次元的に周期的に配置して構成された3次元メタマテリアル22を製造することができる。 FIG. 13 is a cross-sectional view showing the structure of the three-dimensional metamaterial 22 including the substrate layers 31-1, 32-1, 31-2, 32-2, and 31-3 in FIG. After the dielectric resonator 1 is loaded in the cavity 54 of the substrate layers 32-1 and 32-2, the positions of the holes (dotted lines in FIG. 13) for providing the through- hole conductors 43 and 53 are aligned as shown in FIG. The substrate layers 31-1, 32-1, 31-2, 32-2, and 31-3 are stacked, and the whole is compressed in the z direction. Since the substrate layers 31 and 32 are in a semi-cured state as described above, they are integrated as a whole by compression. Next, a conductive resin material is inserted into a hole for providing the through- hole conductors 43 and 53 with a squeegee or the like, and heat is applied to the entire body at about 80 to 180 ° C. to finally cure. Further, after loading the dielectric resonator 1 into the cavity 54 of the substrate layers 32-1 and 32-2, the positions of the holes (dotted lines in FIG. 13) for providing the through- hole conductors 43 and 53 are aligned in FIG. As shown, the substrate layers 31-1, 32-1, 31-2, 32-2, and 31-3 are stacked, and then a conductive resin material is placed in a hole for providing the through- hole conductors 43 and 53 with a squeegee or the like. The whole may be inserted and heated and compressed in the z direction. According to this example of the manufacturing method, each dielectric resonator 1 includes the pattern conductors 42x and 42y and the through-hole conductors 43 of the substrate layer 31 and the substrate layer, similarly to being surrounded by the rod-shaped conductor 3 of FIG. Each of the dielectric resonators 1, the pattern conductors 42 x, 42 y, 52 x, 52 y and the through- hole conductors 43, 53 are surrounded by dielectric substrates 41, 51. Supported. Therefore, according to this example of the manufacturing method, as in the three-dimensional metamaterial 20 of FIG. 1, etc., a plurality of unit cells each including the dielectric resonator 1 are periodically arranged in three dimensions. A dimensional metamaterial 22 can be manufactured.
 各誘電体基板41,51の両面にパターン導体を形成してもよい。また、以上の説明では、スルーホール導体43,53を設けるための穴に導電性樹脂材料をスキージなどで挿入することによりスルーホール導体43,53を形成したが、メッキ工法を用いてスルーホール導体43,53を設けるための穴に導電性の柱を形成してもよい。 Pattern conductors may be formed on both surfaces of each of the dielectric substrates 41 and 51. In the above description, the through- hole conductors 43 and 53 are formed by inserting a conductive resin material into the holes for providing the through- hole conductors 43 and 53 with a squeegee or the like. Conductive columns may be formed in the holes for providing 43 and 53.
 以上に説明した実施形態の3次元メタマテリアルが3次元方向で等方的な左手系メタマテリアルとして動作することを数値計算により確認した。以下、図14~図16を参照して、そのシミュレーション結果について説明する。 It was confirmed by numerical calculation that the three-dimensional metamaterial of the embodiment described above operates as an isotropic left-handed metamaterial in the three-dimensional direction. Hereinafter, the simulation results will be described with reference to FIGS.
 図14は、本発明の実施例1に係る3次元メタマテリアルの分散曲線を示すグラフである。実施例1では、図1~図3に示す3次元メタマテリアル20についてシミュレーションを行った。使用したパラメータは、誘電体共振器1の半径R1=3.8mm、誘電体共振器1の比誘電率εDR=110、ホスト媒質の比誘電率ε=1、単位セル10(立方体形状)の辺の長さL=Lx=Ly=Lz=9.0mm、棒状導体3の断面(正方形)の辺の長さL2=0.5mmであった。 FIG. 14 is a graph showing a dispersion curve of the three-dimensional metamaterial according to Example 1 of the present invention. In Example 1, a simulation was performed on the three-dimensional metamaterial 20 shown in FIGS. The parameters used were the radius R1 of the dielectric resonator 1 = 3.8 mm, the relative dielectric constant ε DR = 110 of the dielectric resonator 1, the relative dielectric constant ε r = 1 of the host medium, and the unit cell 10 (cubic shape). The side length L = Lx = Ly = Lz = 9.0 mm, and the side length L2 of the cross section (square) of the rod-shaped conductor 3 was 0.5 mm.
 図17は、本発明の実施形態の3次元メタマテリアルに係る波数領域の表現を説明するための図である。空間座標(x,y,z)をフーリエ変換した波数領域(空間周波数領域)では、その各点は、成分βx,βy,βzを有する波数ベクトルβ=(βx,βy,βz)により表される。さらに、3次元メタマテリアルの構造が周期性を持つ場合、伝搬特性を表す分散曲線は波数領域においても周期性をもち、第1ブリルアン領域と呼ばれる波数領域内の部分領域を用いて全体領域が表現される。この波数領域の原点(βx,βy,βz)=(0,0,0)を「Γ」点と呼ぶ。電磁波が図1等のx軸方向に伝搬する場合、波数ベクトルはβx成分のみをもち、その方向のブリルアン領域の境界点(π/L,0,0)を「X」と表す。同様に、電磁波が図1等の(x,y,z)=(1,1,0)方向に伝搬する場合、波数ベクトルの成分はβx=βyかつβz=0の関係を有し、その方向のブリルアン領域の境界点(π/L,π/L,0)を「M」と表す。さらに、電磁波が図1等の(x,y,z)=(1,1,1)方向に伝搬する場合、波数ベクトルの成分はβx=βy=βzの関係を有し、その方向のブリルアン領域の境界点(π/L,π/L,π/L)を「R」と表す。 FIG. 17 is a diagram for explaining the representation of the wave number region related to the three-dimensional metamaterial according to the embodiment of the present invention. In the wave number domain (spatial frequency domain) obtained by Fourier transforming the spatial coordinates (x, y, z), each point is represented by a wave vector β = (βx, βy, βz) having components βx, βy, βz. . Furthermore, when the structure of the three-dimensional metamaterial has periodicity, the dispersion curve representing the propagation characteristics has periodicity in the wavenumber region, and the entire region is expressed using a partial region in the wavenumber region called the first Brillouin region. Is done. The origin (βx, βy, βz) = (0, 0, 0) of this wave number region is called “Γ” point. When the electromagnetic wave propagates in the x-axis direction in FIG. 1 and the like, the wave vector has only a βx component, and the boundary point (π / L, 0, 0) of the Brillouin region in that direction is represented as “X”. Similarly, when the electromagnetic wave propagates in the (x, y, z) = (1, 1, 0) direction in FIG. 1 and the like, the components of the wave vector have a relationship of βx = βy and βz = 0, and the direction The boundary point (π / L, π / L, 0) of the Brillouin region is expressed as “M”. Further, when the electromagnetic wave propagates in the (x, y, z) = (1, 1, 1) direction in FIG. 1 and the like, the components of the wave vector have a relationship of βx = βy = βz, and the Brillouin region in that direction The boundary points (π / L, π / L, π / L) are represented as “R”.
 図14において、「Γ-X」は、図1等に示すxyz座標において、電磁波の伝搬方向が原点から点(1,0,0)に向かうとき(+x方向)の分散曲線を示し、「Γ-M」は、原点から点(1,1,0)に向かうときの分散曲線を示し、「Γ-R」は、原点から点(1,1,1)に向かうときの分散曲線を示す。電磁波の伝搬方向が「Γ-X」であるとき、伝搬特性は偏波方向に依存しない。電磁波の伝搬方向が「Γ-M」であるとき、水平偏波(xy面に平行な偏波方向)の分散曲線と、垂直偏波(xy面に垂直な偏波方向)の分散曲線を求めた。電磁波の伝搬方向が「Γ-R」であるとき、伝搬特性は偏波方向に依存しない。 In FIG. 14, “Γ−X” indicates a dispersion curve when the propagation direction of the electromagnetic wave is from the origin to the point (1, 0, 0) (+ x direction) in the xyz coordinates shown in FIG. “−M” indicates a dispersion curve when going from the origin to the point (1, 1, 0), and “Γ-R” shows a dispersion curve when going from the origin to the point (1, 1, 1). When the propagation direction of the electromagnetic wave is “Γ-X”, the propagation characteristic does not depend on the polarization direction. When the propagation direction of the electromagnetic wave is “Γ-M”, the dispersion curve of horizontal polarization (polarization direction parallel to the xy plane) and the dispersion curve of vertical polarization (polarization direction perpendicular to the xy plane) are obtained. It was. When the propagation direction of the electromagnetic wave is “Γ-R”, the propagation characteristic does not depend on the polarization direction.
 図14の分散曲線は固有値計算から得られた。βは3次元メタマテリアルの位相定数を表す(なお、位相定数βは波数ベクトルβの成分に対応する)。図14によれば、分散特性がΓ点近傍で等方的であることがわかる。また、左手系モードの分散曲線は約3.8~4.2GHzにわたり、約400MHzの帯域幅で動作することがわかった。 The dispersion curve in FIG. 14 was obtained from eigenvalue calculation. β represents the phase constant of the three-dimensional metamaterial (note that the phase constant β corresponds to the component of the wave vector β). FIG. 14 shows that the dispersion characteristic is isotropic near the Γ point. It was also found that the dispersion curve in the left-handed mode ranges from about 3.8 to 4.2 GHz and operates with a bandwidth of about 400 MHz.
 図15は、本発明の実施例2に係る3次元メタマテリアルの分散曲線を示すグラフである。実施例2では、単位セル10(立方体形状)の辺の長さL=11.0mm、棒状導体3の断面(正方形)の辺の長さL2=0.4mm、ホスト媒質の比誘電率ε=2.2を使用し、他のパラメータは実施例1で使用したものと同じであった。図15によれば、平衡型右手/左手系複合メタマテリアルの分散特性が得られた。 FIG. 15 is a graph showing a dispersion curve of a three-dimensional metamaterial according to Example 2 of the present invention. In Example 2, the side length L of the unit cell 10 (cubic shape) L = 11.0 mm, the side length L2 of the cross-section (square) of the rod-shaped conductor 3 = 0.4 mm, and the relative permittivity ε r of the host medium = 2.2 was used and the other parameters were the same as those used in Example 1. According to FIG. 15, the dispersion characteristic of the balanced right / left-handed composite metamaterial was obtained.
 図16は、本発明の実施例3に係る3次元メタマテリアルの分散曲線を示すグラフである。実施例3では、図6及び図7に示す3次元メタマテリアル21についてシミュレーションを行った。使用したパラメータは、誘電体共振器1の半径R1=3.8mm、誘電体共振器1の比誘電率εDR=110、ホスト媒質の比誘電率ε=2.2、単位セル10(立方体形状)の辺の長さL=11.0mm、棒状導体6の断面(円形)の直径L4=0.5mmであった。図6の3次元メタマテリアル21では、図7に示すように、誘電体共振器1をすべての棒状導体6から等距離となるように配置することができない。誘電体共振器1と棒状導体6との距離の差異によって共振周波数が変動するので、位相定数β=0を満たす周波数がモードにより相違する。図16は、「Γ-X」の分散曲線であって、互いに直交した偏波方向を有する2つのモード(偏波A及び偏波B)に係る分散曲線を示す。図16によれば、x方向、y方向、及びz方向の棒状導体6が互いに交差していなくても、交差している場合(図15)から伝搬特性がそれほど変化しないことがわかる。 FIG. 16 is a graph showing a dispersion curve of a three-dimensional metamaterial according to Example 3 of the present invention. In Example 3, a simulation was performed on the three-dimensional metamaterial 21 shown in FIGS. 6 and 7. The parameters used were as follows: the radius R1 of the dielectric resonator 1 = 3.8 mm, the relative permittivity ε DR = 110 of the dielectric resonator 1, the relative permittivity ε r = 2.2 of the host medium, the unit cell 10 (cube The side length L of the shape) was 11.0 mm, and the cross-section (circular) diameter L4 of the rod-shaped conductor 6 was 0.5 mm. In the three-dimensional metamaterial 21 shown in FIG. 6, the dielectric resonator 1 cannot be arranged so as to be equidistant from all the rod-like conductors 6 as shown in FIG. 7. Since the resonance frequency varies depending on the difference in distance between the dielectric resonator 1 and the rod-shaped conductor 6, the frequency satisfying the phase constant β = 0 differs depending on the mode. FIG. 16 is a dispersion curve of “Γ-X”, and shows dispersion curves for two modes (polarization A and polarization B) having orthogonal polarization directions. According to FIG. 16, it can be seen that even if the bar conductors 6 in the x, y, and z directions do not intersect each other, the propagation characteristics do not change so much from the case where they intersect (FIG. 15).
 本発明の3次元メタマテリアルは、実施例1~3に示したように数GHzのオーダーの周波数で動作するだけでなく、数MHzの周波数、又は数THzの周波数で動作するように構成することも可能である。 The three-dimensional metamaterial of the present invention is configured not only to operate at a frequency on the order of several GHz as shown in Examples 1 to 3, but also to operate at a frequency of several MHz or a frequency of several THz. Is also possible.
 図18は本発明の実施例4に係る3次元メタマテリアル10(図2)の構成を示す斜視図であり、図19は図18及び後述する図21の3次元メタマテリアル10,12において定義した方向を示す斜視図である。また、図20は図18の3次元メタマテリアル10の分散曲線を示すグラフである。構造パラメータを適切に調節することにより、図20に示すように、右手系モードと左手系モードとの間にバンドギャップのない平衡型のCRLH伝送特性が得られ、さらに等方的な伝搬特性を示す左手系伝送帯域が約250MHz程度と広帯域化されている。なお、計算に用いたパラメータは、R1=3.8mm、εDR=110、L=8.32mm、t=0.6mm、ε=2.2である。また、2種類のΓ-Mの曲線のうち、破線は偏波方向がz方向を向いている場合で、実線は偏波方向がxy面に平行な場合である。 18 is a perspective view showing a configuration of the three-dimensional metamaterial 10 (FIG. 2) according to the fourth embodiment of the present invention, and FIG. 19 is defined in FIG. 18 and the three- dimensional metamaterials 10 and 12 in FIG. It is a perspective view which shows a direction. FIG. 20 is a graph showing a dispersion curve of the three-dimensional metamaterial 10 of FIG. By appropriately adjusting the structural parameters, a balanced CRLH transmission characteristic without a band gap is obtained between the right-handed mode and the left-handed mode as shown in FIG. The left-handed transmission band shown is widened to about 250 MHz. The parameters used for the calculation are R1 = 3.8 mm, ε DR = 110, L = 8.32 mm, t = 0.6 mm, and ε r = 2.2. Of the two types of Γ-M curves, a broken line indicates a case where the polarization direction is in the z direction, and a solid line indicates a case where the polarization direction is parallel to the xy plane.
 図21は本発明の実施例5に係る3次元メタマテリアル12(図5)の構成を示す斜視図である。また、図22は図21の3次元メタマテリアル12の分散曲線を示すグラフである。なお、各方向は図19と同様に定義する。図22から明らかなように、構造パラメータを適切に調節することで、右手系モードと左手系モードの間にバンドギャップの無い平衡型のCRLH構造が設計できている。なお、数値計算に用いた構造パラメータは、Lc=6mm、εDR=110、L=8.45mm、t=0.8mm、ε=2.2である。2種類のΓ-Mの曲線のうち、実線は偏波方向がz方向を向いている場合で、破線は偏波方向がxy面に平行な場合である。 FIG. 21 is a perspective view showing the configuration of the three-dimensional metamaterial 12 (FIG. 5) according to the fifth embodiment of the present invention. FIG. 22 is a graph showing a dispersion curve of the three-dimensional metamaterial 12 of FIG. Each direction is defined as in FIG. As is apparent from FIG. 22, a balanced CRLH structure having no band gap between the right-handed mode and the left-handed mode can be designed by appropriately adjusting the structural parameters. The structural parameters used in the numerical calculation are Lc = 6 mm, ε DR = 110, L = 8.45 mm, t = 0.8 mm, and ε r = 2.2. Of the two types of Γ-M curves, the solid line indicates the case where the polarization direction is in the z direction, and the broken line indicates the case where the polarization direction is parallel to the xy plane.
 図23は本発明の実施例6に係る、3次元メタマテリアルにおいて互いに直交する3方向に沿って置かれた棒状導体6同士が直接接触せず、微小な間隙が存在する場合の分散特性を示すグラフである。ここで、棒状導体6と棒状導体6の間に50μmの間隙があると仮定した。図23からわかるように、間隙を与えない場合との大きな違いは、間隙を与えることにより新たなモードが発生し、元々存在していた右手左/手系モードと位相定数の大きい領域で結合した形となっている点である。しかしながら、正規化位相定数βL/πが0となる周波数の近傍においては、従来通り右手系モードRHと左手系モードLHが存在し(図23の101、102参照)、CRLH特性を示すことがわかった。なお、数値計算に用いた構造パラメータは、球形誘電体共振器1の半径R1=3.8mm、εDR=110、L=11.0mm、L2/2=0.5mm、ε=2.2である。 FIG. 23 shows dispersion characteristics when the bar-shaped conductors 6 placed along three directions orthogonal to each other in the three-dimensional metamaterial according to Example 6 of the present invention are not in direct contact with each other and there is a minute gap. It is a graph. Here, it was assumed that there is a gap of 50 μm between the rod-shaped conductor 6 and the rod-shaped conductor 6. As can be seen from FIG. 23, the major difference from the case where no gap is given is that a new mode is generated by giving a gap, and the right-handed left / handed system mode that originally existed is coupled in a region having a large phase constant. It is a point that is shaped. However, in the vicinity of the frequency where the normalized phase constant βL / π is 0, the right-handed mode RH and the left-handed mode LH exist as usual (see 101 and 102 in FIG. 23), and show CRLH characteristics. It was. The structural parameters used in the numerical calculation are as follows: the radius R1 of the spherical dielectric resonator 1 = 3.8 mm, ε DR = 110, L = 11.0 mm, L2 / 2 = 0.5 mm, ε r = 2.2. It is.
 以上詳述したように、本発明に係る3次元メタマテリアルによれば、電磁波の伝搬方向及び偏波方向に依存しない、すなわち、等方的な伝搬特性を容易に実現することができる。 As described in detail above, according to the three-dimensional metamaterial according to the present invention, it is possible to easily realize isotropic propagation characteristics that do not depend on the propagation direction and polarization direction of electromagnetic waves.
 本発明に係る3次元メタマテリアルは、マイクロ波回路、そのコンポーネント及びアンテナ(広角ビーム走査アンテナ、微小アンテナ、など)、平板スーパーレンズ、負屈折平板レンズ、波長以下の分解能を有する近傍界イメージング、クローキング技術等のような光学的デバイス及びそのコンポーネントへ応用することができる。 The three-dimensional metamaterial according to the present invention includes a microwave circuit, its components and antennas (a wide-angle beam scanning antenna, a minute antenna, etc.), a flat super lens, a negative refractive flat lens, a near-field imaging having sub-wavelength resolution, and cloaking. It can be applied to optical devices such as technology and its components.
 本発明の応用例としては、クローキング(隠れ蓑)技術による電波障害の解決がある。都市では、高層ビルディングの建築により電波が乱反射されて、映像機器や通信機器などの信号伝搬誤差が多くなるという問題が多発している。対象物(高層ビルディング)をメタマテリアルにより包囲して、その中の電磁波の透過特性を最適化することで、電磁波に対象物を迂回させ、乱反射を少なくして、電波環境を改善する(電波クローキング)。  As an application example of the present invention, there is a solution to radio interference by cloaking technology. In cities, radio waves are irregularly reflected due to the construction of high-rise buildings, and there are many problems that signal propagation errors of video equipment and communication equipment increase. By surrounding a target object (high-rise building) with a metamaterial and optimizing the transmission characteristics of the electromagnetic wave in it, the target object can be bypassed by the electromagnetic wave, diffuse reflection is reduced, and the radio wave environment is improved (radio wave cloaking) ).
 また、左手系と右手系の遷移領域である阻止域を使い、電磁波の阻止や減衰に使う例もある。この効果は、複数の無線システムやデジタル回路を厳しい実装条件で搭載している携帯電話機への応用において有効である。例えば現在の携帯電話機では、電話用に800MHz帯、1500MHz帯、及び2GHz帯が使用され、GPS用には1.57GHzが使用され、ワンセグTV用には470~710MHz帯が使用され、また電子マネー等のアプリケーションをサポートするために13.56MHz帯が使用され、それぞれの周波数帯に対応する複数のアンテナが携帯電話機の筐体の狭い空間内に配置されている。小さな筐体の中では、アンテナ間の電磁波干渉に起因して通信性能が劣化する。また、これらのアンテナの近くの回路からのクロック信号の不要輻射が雑音としてアンテナで受信され、通信品質を低下させる要因ともなる。このような厳しい実装条件下で、それぞれの周波数毎に電磁波をコントロールし、互いの干渉を減少させるためにメタマテリアルを使用することが有効である。 Also, there is an example that uses a stopband, which is a transition region between the left-handed system and the right-handed system, and is used to block or attenuate electromagnetic waves. This effect is effective in application to a mobile phone equipped with a plurality of wireless systems and digital circuits under severe mounting conditions. For example, in current mobile phones, 800 MHz band, 1500 MHz band, and 2 GHz band are used for telephones, 1.57 GHz is used for GPS, 470 to 710 MHz band is used for one-segment TV, and electronic money is used. The 13.56 MHz band is used to support such applications, and a plurality of antennas corresponding to the respective frequency bands are arranged in a narrow space of the casing of the mobile phone. In a small housing, communication performance deteriorates due to electromagnetic interference between antennas. In addition, unnecessary radiation of a clock signal from a circuit in the vicinity of these antennas is received as noise by the antenna, which causes a reduction in communication quality. Under such severe mounting conditions, it is effective to use a metamaterial to control electromagnetic waves for each frequency and reduce mutual interference.
1,4,5…誘電体共振器、
2…ホスト媒質、
3,3xa~3xd,3ya~3yd,3za~3zd,6x,6ya,6yb,6za~6zd…棒状導体、
10~13…単位セル、
20~22…3次元メタマテリアル、
31,32,31-1,32-1,…,31-N…基板層、
41,51…誘電体基板、
42x,42y,52x,52y…パターン導体、
43,53…スルーホール導体、
54…空洞。
1, 4, 5 ... dielectric resonators,
2 ... Host medium,
3, 3xa to 3xd, 3ya to 3yd, 3za to 3zd, 6x, 6ya, 6yb, 6za to 6zd ... rod-shaped conductors,
10 to 13 unit cell,
20-22 ... 3D metamaterial,
31, 32, 31-1, 32-1, ..., 31-N ... substrate layer,
41, 51 ... dielectric substrate,
42x, 42y, 52x, 52y ... pattern conductors,
43, 53 ... through-hole conductors,
54 ... hollow.

Claims (13)

  1.  3次元的に周期的に配置された複数の単位セルを含む3次元メタマテリアルにおいて、
     上記各単位セルは、上記単位セルの中央に配置された誘電体共振器と、上記誘電体共振器を包囲するように配置された複数の棒状導体と、上記誘電体共振器及び上記棒状導体を支持するホスト媒質とを備え、
     上記各単位セルにおいて、上記複数の棒状導体は、第1の方向に配置された少なくとも1つの第1の棒状導体と、上記第1の方向とは異なる第2の方向に配置された少なくとも1つの第2の棒状導体と、上記第1及び第2の方向によって張られる面に対して所定角度を有する第3の方向に配置された少なくとも1つの第3の棒状導体とを含み、
     上記複数の単位セルを3次元的に周期的に配置することにより構成される上記3次元メタマテリアルにおいて、上記第1の棒状導体は互いに平行にかつ周期的に配置され、上記第2の棒状導体は互いに平行にかつ周期的に配置され、上記第3の棒状導体は互いに平行にかつ周期的に配置された3次元メタマテリアルにおいて、
     上記ホスト媒質は空洞を備えた第1の基板、及び上記第1の基板を挟む第2の基板から成り、上記第1の基板または/および上記第2の基板には上記第1の棒状導体または/および第2の棒状導体が形成されており、
     上記誘電体共振器が上記第1の基板の上記空洞に配置され、上記第2の基板で挟まれた単位形態で形成され、もしくは、上記単位形態が2層以上積層された状態で形成される上記第3の棒状導体を有することを特徴とする3次元メタマテリアル。
    In a three-dimensional metamaterial including a plurality of unit cells periodically arranged in three dimensions,
    Each unit cell includes a dielectric resonator disposed in the center of the unit cell, a plurality of rod-shaped conductors disposed so as to surround the dielectric resonator, and the dielectric resonator and the rod-shaped conductor. A supporting host medium,
    In each unit cell, the plurality of rod-shaped conductors include at least one first rod-shaped conductor arranged in a first direction and at least one arranged in a second direction different from the first direction. A second bar-shaped conductor, and at least one third bar-shaped conductor disposed in a third direction having a predetermined angle with respect to a surface stretched by the first and second directions,
    In the three-dimensional metamaterial configured by periodically arranging the plurality of unit cells three-dimensionally, the first rod-shaped conductors are arranged in parallel and periodically with each other, and the second rod-shaped conductors Are arranged in parallel and periodically with each other, and the third rod-shaped conductors are arranged in parallel and periodically with each other in a three-dimensional metamaterial,
    The host medium includes a first substrate having a cavity and a second substrate sandwiching the first substrate, and the first substrate or / and the second substrate include the first rod-shaped conductor or / And a second rod-shaped conductor is formed,
    The dielectric resonator is disposed in the cavity of the first substrate and formed in a unit form sandwiched between the second substrates, or formed in a state where two or more layers of the unit form are laminated. A three-dimensional metamaterial comprising the third rod-shaped conductor.
  2.  上記3次元メタマテリアルに入射する所定周波数の電磁波に対して上記3次元メタマテリアルの実効誘電率及び実効透磁率がともに負となるように、上記単位セルの形状及び寸法と、上記誘電体共振器の形状、寸法、及び比誘電率と、上記棒状導体の太さと、上記第1、第2、及び第3の棒状導体を周期的に配置する間隔と、上記ホスト媒質の比誘電率とが設定されたことを特徴とする請求項1記載の3次元メタマテリアル。 The shape and dimensions of the unit cell and the dielectric resonator so that the effective dielectric constant and effective permeability of the three-dimensional metamaterial are both negative with respect to an electromagnetic wave having a predetermined frequency incident on the three-dimensional metamaterial. The shape, size, and relative dielectric constant, the thickness of the rod-shaped conductor, the interval at which the first, second, and third rod-shaped conductors are periodically arranged, and the relative dielectric constant of the host medium are set. The three-dimensional metamaterial according to claim 1, wherein
  3.  上記各単位セルは、上記複数の棒状導体によって形成される導波路を備え、上記各単位セルは所定のカットオフ周波数を有し、上記各単位セルは、上記3次元メタマテリアルに入射する上記カットオフ周波数よりも低い周波数の電磁波に対して上記3次元メタマテリアルの実効誘電率が負となるように構成され、
     上記誘電体共振器は、上記誘電体共振器に入射する所定周波数の電磁波により、磁気双極子モーメントと類似した電磁界分布の共振形態で励起し、上記電磁波に対して上記3次元メタマテリアルの実効透磁率が負となるように構成されることを特徴とする請求項2記載の3次元メタマテリアル。
    Each unit cell includes a waveguide formed by the plurality of rod-shaped conductors, each unit cell has a predetermined cutoff frequency, and each unit cell is incident on the three-dimensional metamaterial. The effective dielectric constant of the three-dimensional metamaterial is configured to be negative with respect to electromagnetic waves having a frequency lower than the off-frequency,
    The dielectric resonator is excited by an electromagnetic wave having a predetermined frequency incident on the dielectric resonator in a resonance form having an electromagnetic field distribution similar to a magnetic dipole moment, and the three-dimensional metamaterial is effective against the electromagnetic wave. The three-dimensional metamaterial according to claim 2, wherein the three-dimensional metamaterial is configured to have a negative magnetic permeability.
  4.  上記各単位セルは立方体であり、上記第1、第2、及び第3の方向は互いに直交することを特徴とする請求項1~3のうちのいずれか1つに記載の3次元メタマテリアル。 The three-dimensional metamaterial according to any one of claims 1 to 3, wherein each unit cell is a cube, and the first, second, and third directions are orthogonal to each other.
  5.  上記誘電体共振器は球形状を有することを特徴とする請求項1~4のうちのいずれか1つに記載の3次元メタマテリアル。 The three-dimensional metamaterial according to any one of claims 1 to 4, wherein the dielectric resonator has a spherical shape.
  6.  上記誘電体共振器は円柱形状もしくは多角柱形状を有することを特徴とする請求項1~4のうちのいずれか1つに記載の3次元メタマテリアル。 The three-dimensional metamaterial according to any one of claims 1 to 4, wherein the dielectric resonator has a cylindrical shape or a polygonal column shape.
  7.  上記誘電体共振器は立方体形状、多面体形状もしくは菱面体形状を有することを特徴とする請求項1~4のうちのいずれか1つに記載の3次元メタマテリアル。 The three-dimensional metamaterial according to any one of claims 1 to 4, wherein the dielectric resonator has a cubic shape, a polyhedral shape, or a rhombohedral shape.
  8.  上記棒状導体は矩形の断面形状を有することを特徴とする請求項1~7のうちのいずれか1つに記載の3次元メタマテリアル。 The three-dimensional metamaterial according to any one of claims 1 to 7, wherein the rod-shaped conductor has a rectangular cross-sectional shape.
  9.  上記棒状導体は円形の断面形状を有することを特徴とする請求項1~7のうちのいずれか1つに記載の3次元メタマテリアル。 The three-dimensional metamaterial according to any one of claims 1 to 7, wherein the rod-shaped conductor has a circular cross-sectional shape.
  10.  上記第1、第2、及び第3の棒状導体は互いに交差することを特徴とする請求項1~9のうちのいずれか1つに記載の3次元メタマテリアル。 The three-dimensional metamaterial according to any one of claims 1 to 9, wherein the first, second, and third rod-shaped conductors intersect each other.
  11.  上記第1、第2、及び第3の棒状導体のうちの少なくとも1つの棒状導体は他の棒状導体と交差しないことを特徴とする請求項1~9のうちのいずれか1つに記載の3次元メタマテリアル。 10. The 3 according to claim 1, wherein at least one of the first, second, and third rod-shaped conductors does not intersect with another rod-shaped conductor. Dimensional metamaterial.
  12.  上記第1、第2、及び第3の棒状導体は互いに電気的に接続することを特徴とする請求項1~9のうちのいずれか1つに記載の3次元メタマテリアル。 The three-dimensional metamaterial according to any one of claims 1 to 9, wherein the first, second, and third rod-shaped conductors are electrically connected to each other.
  13.  上記第1、第2、及び第3の棒状導体のうちの少なくとも1つの棒状導体は他の棒状導体と電気的に接続しないことを特徴とする請求項1~9のうちのいずれか1つに記載の3次元メタマテリアル。 10. At least one of the first, second, and third rod-shaped conductors is not electrically connected to other rod-shaped conductors, according to any one of claims 1 to 9 The described three-dimensional metamaterial.
PCT/JP2013/055710 2012-03-05 2013-03-01 Three-dimensional meta-material WO2013133175A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014503818A JP6082938B2 (en) 2012-03-05 2013-03-01 3D metamaterial

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012048273 2012-03-05
JP2012-048273 2012-03-05

Publications (1)

Publication Number Publication Date
WO2013133175A1 true WO2013133175A1 (en) 2013-09-12

Family

ID=49116655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055710 WO2013133175A1 (en) 2012-03-05 2013-03-01 Three-dimensional meta-material

Country Status (2)

Country Link
JP (1) JP6082938B2 (en)
WO (1) WO2013133175A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111546A1 (en) * 2015-12-23 2017-06-29 한국과학기술원 Broadband high-refractive index metamaterial nano-composite structure
JP2018507601A (en) * 2015-01-13 2018-03-15 スリーエム イノベイティブ プロパティズ カンパニー Dielectric coupling lens using high dielectric constant high dielectric resonator
CN111120551A (en) * 2020-01-02 2020-05-08 东南大学 Three-negative elastic wave metamaterial with wide forbidden band

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272592A (en) * 2008-05-01 2009-11-19 Kokusai Metamaterial Sogo Kenkyusho:Kk Method of constituting artificial material
WO2011163586A1 (en) * 2010-06-25 2011-12-29 Drexel University Bi-directional magnetic permeability enhanced metamaterial (mpem) substrate for antenna miniaturization

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272592A (en) * 2008-05-01 2009-11-19 Kokusai Metamaterial Sogo Kenkyusho:Kk Method of constituting artificial material
WO2011163586A1 (en) * 2010-06-25 2011-12-29 Drexel University Bi-directional magnetic permeability enhanced metamaterial (mpem) substrate for antenna miniaturization

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
D.C.VIER ET AL.: "Three-dimensional double-negative metamaterials resonating at 13.5 GHz, IET Microwaves, Antennas & Propagation", INSTITUTION OF ENGINEERING AND TECHNOLOGY, vol. 3, no. 5, 2009, pages 723 - 727 *
T.UEDA ET AL.: "2.5-D stacked composite right/left-handed metamaterial structures using dielectric resonators and parallel mesh plates", 2008 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, IEEE, June 2008 (2008-06-01), pages 335 - 338, XP031441441, DOI: doi:10.1109/MWSYM.2008.4633171 *
Y.SATO ET AL.: "Design of isotropic 3-D multilayered CRLH metamaterial structures using conductive mesh plates and dielectric resonators", PROCEEDINGS OF THE ASIA- PACIFIC MICROWAVE CONFERENCE 2011, December 2011 (2011-12-01), pages 526 - 529, XP032152688 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018507601A (en) * 2015-01-13 2018-03-15 スリーエム イノベイティブ プロパティズ カンパニー Dielectric coupling lens using high dielectric constant high dielectric resonator
US10454181B2 (en) 2015-01-13 2019-10-22 3M Innovative Properties Company Dielectric coupling lens using dielectric resonators of high permittivity
WO2017111546A1 (en) * 2015-12-23 2017-06-29 한국과학기술원 Broadband high-refractive index metamaterial nano-composite structure
CN111120551A (en) * 2020-01-02 2020-05-08 东南大学 Three-negative elastic wave metamaterial with wide forbidden band

Also Published As

Publication number Publication date
JP6082938B2 (en) 2017-02-22
JPWO2013133175A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
US8669833B2 (en) Three-dimensional metamaterial having function of allowing and inhibiting propagation of electromagnetic waves
EP2251932B1 (en) Artificial medium
EP2688380B1 (en) Impedance matching component and hybrid wave-absorbing material
JP5219148B2 (en) 2D left-handed metamaterial
JP2006245926A (en) Positive-negative dielectric constant medium or positive-negative permeability medium made of meta-material, and waveguide for propagating surface wave employing the same
JP2008252293A (en) 3-dimensional left-handed system meta-material
Xu et al. Switchable complementary diamond-ring-shaped metasurface for radome application
Kolb et al. Extreme subwavelength electric GHz metamaterials
JP6082938B2 (en) 3D metamaterial
Jain et al. Miniaturization of microstrip patch antenna using metamaterial loaded with SRR
JP2017152959A (en) Metamaterial device
Wang et al. Compact 60 GHz low‐temperature cofired ceramic filter with quasi‐elliptic bandpass response
Zhou et al. Narrowband frequency selective surface based on substrate integrated waveguide technology
Ishiyama et al. Unit cell block including dielectric cube wrapped with metallic wire mesh for 3-D isotropic CRLH metamaterials
Ma et al. Synthesis of second‐order wide‐passband frequency selective surface using double‐periodic structures
JP2014217031A (en) Reflection plate and antenna apparatus
Sajuyigbe et al. Design and analysis of three-dimensionalized ELC metamaterial unit cell
WO2021009893A1 (en) Frequency selective surface
CN109728442B (en) Solid electromagnetic vacuum material based on electric resonance unit
JP2017152961A (en) Metamaterial device
Basuki et al. Artificial circular dielectric resonator with resonant mode selectability
JP5218551B2 (en) Functional board
Sato et al. Design of isotropic 3-D multilayered CRLH metamaterial structures using conductive mesh plates and dielectric resonators
Al-Naib et al. Compact CPW metamaterial resonators for high performance filters
Huang et al. Single-layer bandpass frequency selective structure with very wide upper stopband

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758585

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014503818

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13758585

Country of ref document: EP

Kind code of ref document: A1