WO2017111057A1 - Sealant for semiconductor - Google Patents

Sealant for semiconductor Download PDF

Info

Publication number
WO2017111057A1
WO2017111057A1 PCT/JP2016/088444 JP2016088444W WO2017111057A1 WO 2017111057 A1 WO2017111057 A1 WO 2017111057A1 JP 2016088444 W JP2016088444 W JP 2016088444W WO 2017111057 A1 WO2017111057 A1 WO 2017111057A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
sealing material
resin
parts
component
Prior art date
Application number
PCT/JP2016/088444
Other languages
French (fr)
Japanese (ja)
Inventor
完 二田
佐藤 和也
Original Assignee
太陽インキ製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽インキ製造株式会社 filed Critical 太陽インキ製造株式会社
Priority to MYPI2018000991A priority Critical patent/MY196462A/en
Priority to KR1020187017963A priority patent/KR102384582B1/en
Priority to CN201680073780.XA priority patent/CN108369928B/en
Publication of WO2017111057A1 publication Critical patent/WO2017111057A1/en
Priority to PH12018501308A priority patent/PH12018501308A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention relates to a semiconductor sealing material for protecting a semiconductor chip, and more particularly to a semiconductor used in a fan-out type wafer level package in which an arrangement area of an external connection electrode is larger than a semiconductor planar size. It relates to a sealing material.
  • the number of electrodes (terminals and bumps) for external connection of the semiconductor chip tends to increase. Therefore, the pitch of the electrodes for external connection of the semiconductor chip is small. Tend to be. However, it is not always easy to directly mount a semiconductor chip on which bumps are formed at a fine pitch on a circuit board.
  • a semiconductor encapsulant region is formed on the outer periphery of the semiconductor chip, and a rewiring layer connected to the electrode is also provided in the semiconductor encapsulant region, so that the bump pitch is reduced. It has been proposed to be larger.
  • a WLP is called a fan-out type wafer level package (hereinafter sometimes abbreviated as FO-WLP) because the size of the bump arrangement area is larger than the size of the semiconductor chip.
  • a semiconductor chip In FO-WLP, a semiconductor chip is embedded with a semiconductor sealing material. The circuit surface of the semiconductor chip is exposed to the outside, and a boundary between the semiconductor chip and the semiconductor sealing material is formed. A rewiring layer connected to the electrode of the semiconductor chip is also provided in the region of the semiconductor sealing material for embedding the semiconductor chip, and the bump is electrically connected to the electrode of the semiconductor chip through the rewiring layer.
  • the pitch of the bumps can be set larger than the pitch of the electrodes of the semiconductor chip.
  • a semiconductor chip or an electronic component is arranged at a certain interval on a support, embedded with a semiconductor sealing material, and the sealing material is heat-cured, and then the support.
  • a pseudo wafer is produced by peeling from the substrate.
  • a rewiring layer is formed from the semiconductor chip circuit surface of the pseudo wafer to the expanded semiconductor sealing material region. In this way, the pitch of the bumps can be set larger than the pitch of the electrodes of the semiconductor chip.
  • a positive sensitive resin is applied to the semiconductor chip circuit surface of the pseudo wafer, prebaked, and activated with UV light or the like in an area to be opened through a photomask or the like. Irradiate light, then develop using a developer such as TMAH (tetramethylammonium hydroxide), heat cure, oxygen plasma treatment, etc., metal electrode sputtering, and further form a photoresist layer
  • TMAH tetramethylammonium hydroxide
  • heat cure oxygen plasma treatment
  • metal electrode sputtering metal electrode sputtering
  • an object of the present invention is to provide a semiconductor sealing material, particularly a FO-WLP sealing material, which can suppress the formation of a gap between the semiconductor chip and the semiconductor sealing material.
  • the present inventors have studied in detail the phenomenon that the boundary between the semiconductor chip and the semiconductor sealing material is generated, and it is found that this gap is generated in the development process used when the rewiring layer is formed. I found it. Then, further investigation was made, and during the development process, the developer also entered the boundary of the side surface of the semiconductor chip embedded in the semiconductor encapsulant, and in some cases, the semiconductor encapsulant soaked. It has been found that a gap is generated at the boundary between the side surface of the semiconductor chip and the semiconductor sealing material by etching the side surface of the semiconductor chip with the developer that has entered or has penetrated.
  • the present inventors have added a component that prevents the semiconductor wafer from being etched by the developer to the semiconductor encapsulant, thereby forming the rewiring layer. Even when a developing solution is used, it is possible to suppress the formation of a gap at the boundary between the side surface of the semiconductor chip and the semiconductor sealing material. As a result, the rewiring layer can be easily formed and the reliability of the completed FO-WLP It was found that can be improved.
  • the semiconductor sealing material according to the present invention is characterized by comprising an oxidizing agent capable of oxidizing a semiconductor.
  • the semiconductor sealing material may contain a curable component, a curing agent component, a curing accelerator component, and an inorganic filler.
  • the semiconductor sealing material may have a sheet-like shape.
  • it may be used for a fan-out type wafer level package.
  • the semiconductor sealing material of the present invention it is possible to suppress the formation of a gap between the semiconductor chip and the semiconductor sealing material, particularly in FO-WLP.
  • the rewiring layer can be easily formed during the manufacture of the FO-WLP, and the reliability of the completed FO-WLP can be improved.
  • the semiconductor sealing material protects a semiconductor element (for example, a semiconductor chip) processed from a semiconductor wafer from heat and dust to form a semiconductor package, and seals and insulates the entire semiconductor element. It is.
  • the semiconductor sealing material contains each component as a sealing material as described later, but the semiconductor sealing material according to the present invention is characterized by containing an oxidizing agent capable of oxidizing the semiconductor. Yes.
  • a rewiring layer is formed on the semiconductor chip circuit surface of a pseudo wafer formed by embedding a semiconductor chip or the like with a semiconductor sealing material.
  • a developer such as TMAH is used.
  • the developer enters the interface between the embedded semiconductor chip and the semiconductor sealing material.
  • silicon is etched by a TMAH developer, and a gap is generated between the embedded semiconductor wafer and the semiconductor sealing material.
  • the semiconductor encapsulant contains an oxidizing agent that can oxidize the semiconductor wafer, the surface of the semiconductor chip is oxidized when the semiconductor chip is encapsulated with the semiconductor encapsulant.
  • Si silicon
  • a very thin film of SiO 2 is formed on the surface of the semiconductor chip.
  • the silicon semiconductor is prevented from being etched by the developer due to the oxide film (SiO 2 ). Can be considered. This is only a guess of the present inventors, and the present invention is not bound to the logic.
  • Examples of a semiconductor chip sealed with a semiconductor sealing material include silicon (Si), germanium (Ge), SiGe, and the like, and a silicon semiconductor is generally used.
  • the oxidizing agent that can be used in the present invention is not particularly limited as long as it is an oxidizing agent capable of oxidizing the semiconductor as described above, and may be either an organic oxidizing agent or an inorganic oxidizing agent. However, from the viewpoint of compatibility with other components constituting the semiconductor sealing material described later, an organic oxidizing agent can be preferably used.
  • an organic oxidizing agent or an organic peroxide can be preferably used.
  • the organic oxidizing agent include hydroperoxides, quinones, pyridines, and organic nitro compounds.
  • Examples of the organic peroxide include m-chloroperbenzoic acid, perbenzoic acid, peracetic acid, performic acid, benzoyl peroxide, diethyl peroxide, and diacetyl peroxide.
  • Hydroperoxides include t-butyl hydroxide, cumene hydroxide bis (trimethylsilyl) peroxide, ethyl hydroperoxide, tert-butyl hydroperoxide, succinic acid peroxide, 1,1,3,3-tetramethylbutyl hydroperoxide, etc. Is mentioned.
  • Examples of quinones include p-chloranil (tetrachloro-p-benzoquinone), o-chloranil, tetrabromo-1,4-benzoquinone, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, chlorobenzoquinone, Examples include dichlorobenzoquinone, benzoquinone, naphthoquinone, anthraquinone, substituted anthraquinone, 2,3,5,6-tetrachloro-p-benzoquinone, and the like.
  • pyridines examples include pyridine oxide, pyridine N-oxide, dimethylaminopyridine oxide, 2,2,6,6, -tetramethyl-1-piperidinyl oxide, trimethylamine N-oxide and the like.
  • organic nitro compounds examples include metanitrobenzene sulfonate, paranitrobenzoate, nitroganidine, and aromatic nitrosulfonate.
  • peroxides may also be used.
  • peroxyketals and perbutyl which are commercially available under the trade names of Pertetra A, Perhexa HC, Perhexa C, Perhexa V, Perhexa 22 from Nippon Oil & Fats Co., Ltd.
  • the above oxidizing agents may be used alone or in combination of two or more.
  • oxidizing agents for the oxidizing agents described above, from the viewpoint of both the reactivity with the semiconductor that forms an oxide layer on the surface of the semiconductor chip (oxidation) and the stability as a semiconductor sealing material.
  • Organic peroxides and quinones are preferably used.
  • the inorganic oxidant examples include silver oxide, copper oxide, germanium oxide, indium oxide, manganese oxide, lead oxide, rhenium oxide, and tellurium oxide.
  • manganese oxide and lead oxide are preferable from the balance of reactivity as an oxidizing agent and stability as a sealing material.
  • the organic oxidizer can be homogeneously mixed with the resin component of the semiconductor sealing material as compared with the inorganic oxidizer, and as a result, adheres to the surface of the semiconductor chip. By acting more homogeneously through the resin component, it is preferable because it is excellent in moisture resistance, and as a result, reliability such as suppression of gap formation is further improved.
  • the content of the oxidizing agent is preferably in the range of 0.01 to 10 parts by mass, with the total mass in terms of solid content of components other than the oxidizing agent being 100 parts by mass, 0.05 to 8 parts by mass.
  • the range is more preferably in the range of 0.1 to 5 parts by mass.
  • antioxidant may contain in the sealing material for semiconductors.
  • Antioxidants include phenolic antioxidants and amine antioxidants that function as radical chain inhibitors, phosphorus antioxidants that function as peroxide decomposers, sulfur antioxidants, and metal deactivators. Hydrazine antioxidants, amide antioxidants, and the like that function as Among these, phenolic antioxidants and amine-based antioxidants can be preferably used. Commercially available antioxidants may also be used.
  • ADK STAB AO-20, AO-30, AO-40, AO-50, AO-50F, AO-60, AO-60G, AO-80, AO -330, ADK STAB, PEP-36 / 36A, HP-10, 2112, 2112RG, PEP-8, PEP-8W, 1178, 1500, C, 135A, 3010, TPPADEKA stub AO-412S, AO-503, and the like.
  • the content thereof is 5 to 99 moles of the functional group of the antioxidant when the mole number of the functional group of the antioxidant is 100%. %, Preferably 8 to 90%, more preferably 10 to 80%.
  • the semiconductor sealing material according to the present invention may contain a curable component, a curing agent component, a curing accelerator component, an inorganic filler, and the like as described later.
  • a curable component e.g., a curable component, a curing agent component, a curing accelerator component, an inorganic filler, and the like.
  • a conventionally known resin can be used as the curable component of the semiconductor sealing material without any particular limitation, but an epoxy resin is preferably used.
  • Epoxy resins include solid, semi-solid, and liquid epoxy resins from the pre-reaction shape. These can be used individually by 1 type or in combination of 2 or more types.
  • an epoxy resin containing halogen is used, there is a risk of affecting the action of reducing the reactivity of the added oxidant, that is, suppressing the formation of gaps, due to the oxidation-reduction reaction between halide ions generated from hydrolysis and the oxidant. Therefore, it is preferable that the epoxy resin is halogen-free, and it is preferable that substantially no chlorine, bromine or iodine is contained among the halogens.
  • the chlorine content in the epoxy resin is preferably 2500 ppm or less, the bromine content is 1000 ppm or less, and the total content of chlorine and bromine is 3000 ppm or less.
  • the chlorine content is more preferably 2000 ppm or less, further preferably 1500 ppm or less, and particularly preferably 1000 ppm or less.
  • the sealing material is preferably halogen-free.
  • the chlorine content is preferably 900 ppm or less
  • the bromine content is 900 ppm or less
  • the total content of chlorine and bromine is preferably 1500 ppm or less.
  • a measuring method of halogen content it can measure by the flask combustion process ion chromatograph method based on a JPCA standard.
  • Solid epoxy resins include HP-4700 (naphthalene type epoxy resin) manufactured by DIC, EXA4700 (tetrafunctional naphthalene type epoxy resin) manufactured by DIC, and NC-7000 (polyfunctional solid epoxy resin containing naphthalene skeleton) manufactured by Nippon Kayaku Co., Ltd.
  • Naphthalene type epoxy resin such as EPPN-502H (Trisphenol epoxy resin) manufactured by Nippon Kayaku Co., Ltd.
  • Epoxy product of a condensate of phenols and aromatic aldehyde having a phenolic hydroxyl group (Trisphenol type epoxy resin); DIC Dicyclopentadiene aralkyl epoxy resin such as Epicron HP-7200H (dicyclopentadiene skeleton-containing polyfunctional solid epoxy resin) manufactured by Nihon Kayaku Co., Ltd .; biphenyl aralkyl such as NC-3000H (biphenyl skeleton-containing polyfunctional solid epoxy resin) manufactured by Nippon Kayaku Co., Ltd.
  • Type epoch Biphenyl / phenol novolac type epoxy resin such as NC-3000L manufactured by Nippon Kayaku; Novolak type epoxy resin such as Epicron N660 and Epicron N690 manufactured by DIC, EOCN-104S manufactured by Nippon Kayaku; YX manufactured by Mitsubishi Chemical Corporation Biphenyl type epoxy resin such as ⁇ 4000; phosphorus-containing epoxy resin such as TX0712 manufactured by Nippon Steel & Sumikin Chemical Co .; tris (2,3-epoxypropyl) isocyanurate such as TEPIC manufactured by Nissan Chemical Industries, Ltd., and the like.
  • Semi-solid epoxy resins include DIC's Epicron 860, Epicron 900-IM, Epicron EXA-4816, Epicron EXA-4822, Toto Kasei Epoto YD-134, Mitsubishi Chemical Corporation jER834, jER872, Sumitomo Chemical Co., Ltd.
  • Examples thereof include bisphenol A type epoxy resins such as ELA-134; naphthalene type epoxy resins such as Epicron HP-4032 manufactured by DIC; and phenol novolac type epoxy resins such as Epicron N-740 manufactured by DIC.
  • Liquid epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, phenol novolac type epoxy resin, tert-butyl-catechol type epoxy resin, glycidylamine type epoxy resin, aminophenol type epoxy resin And alicyclic epoxy resins.
  • the above-mentioned curable components can be used alone or in combination of two or more.
  • the compounding amount of the curable component is preferably 5 to 50 parts by mass, and more preferably 10 to 40 parts by mass with respect to 100 parts by mass of the total solid content constituting the semiconductor sealing material.
  • the blending amount of the liquid epoxy resin is preferably 0 to 45 parts by mass, more preferably 0 to 30 parts by mass, and 0 to 5 parts by mass with respect to 100 parts by mass of the curable component. It is particularly preferred. When the blending amount of the liquid epoxy resin is in the range of 0 to 45 parts by mass, the glass transition temperature (Tg) of the cured product is increased and crack resistance may be improved.
  • a curing agent component may be included as a component constituting the semiconductor sealing material according to the present invention.
  • the curing agent component has a functional group that reacts with the above-described curable component.
  • examples of such a curing agent component include phenol resins, polycarboxylic acids and acid anhydrides thereof, cyanate ester resins, active ester resins, and the like, and phenol resins are preferred. Among these, one kind can be used alone, or two or more kinds can be used in combination.
  • phenol resins include phenol novolac resins, alkylphenol volac resins, bisphenol A novolac resins, dicyclopentadiene type phenol resins, Xylok type phenol resins, terpene modified phenol resins, cresol / naphthol resins, polyvinylphenols, phenol / naphthol resins, Conventionally known ones such as an ⁇ -naphthol skeleton-containing phenol resin and a triazine-containing cresol novolak resin can be used singly or in combination of two or more.
  • the polycarboxylic acid and its acid anhydride are a compound having two or more carboxyl groups in one molecule and its acid anhydride, for example, a copolymer of (meth) acrylic acid, a copolymer of maleic anhydride,
  • resins having carboxylic acid ends such as carboxylic acid-terminated imide resins can be mentioned.
  • the cyanate ester resin is a compound having two or more cyanate ester groups (—OCN) in one molecule. Any conventionally known cyanate ester resins can be used. Examples of the cyanate ester resin include phenol novolac type cyanate ester resin, alkylphenol novolak type cyanate ester resin, dicyclopentadiene type cyanate ester resin, bisphenol A type cyanate ester resin, bisphenol F type cyanate ester resin, and bisphenol S type cyanate ester resin. Is mentioned. Further, it may be a prepolymer partially triazine.
  • the active ester resin is a resin having two or more active ester groups in one molecule.
  • the active ester resin can generally be obtained by a condensation reaction between a carboxylic acid compound and a hydroxy compound.
  • an active ester compound obtained by using a phenol compound or a naphthol compound as the hydroxy compound is preferable.
  • phenol compound or naphthol compound examples include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-cresol, p-cresol, catechol, ⁇ -naphthol, ⁇ -naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, benzenetriol , Dicyclopentadienyl diphenol, phenol novolac and the like.
  • an alicyclic olefin polymer other than those described above can be used.
  • an alicyclic olefin polymer which can be suitably used an alicyclic olefin having at least one of (1) a carboxyl group and a carboxylic anhydride group (hereinafter referred to as “carboxyl group etc.”) is necessary.
  • Aromatic ring portion of (co) polymer obtained by polymerizing aromatic olefin having carboxyl group or the like with other monomer as necessary (3) a copolymer of an alicyclic olefin having no carboxyl group and a monomer having a carboxyl group, (4) an aromatic olefin having no carboxyl group, A copolymer obtained by copolymerizing a monomer having a carboxyl group or the like with a hydrogenated aromatic ring part, and (5) a carbocyclic olefin polymer having no carboxyl group or the like.
  • Examples thereof include those converted into a carboxyl group by hydrolysis or the like.
  • phenol resin cyanate ester resin, active ester resin, and alicyclic olefin polymer are preferable.
  • a phenol resin because it has high polarity and easily suppresses the relative dielectric constant.
  • the curing agent component is a ratio of a functional group (functional group capable of curing reaction) such as an epoxy group of the curable component to a functional group of the curing agent component that can react with the functional group (the number of functional groups of the curing agent component). / The number of functional groups of the curable component: equivalent ratio) is preferably included in a ratio of 0.2 to 5.
  • a curing accelerator component As a component constituting the semiconductor sealing material according to the present invention, a curing accelerator component may be included.
  • the curing accelerator component promotes the curing reaction of the curable component, and can further improve the adhesion of the sealing material to the semiconductor wafer and the heat resistance.
  • Curing accelerator components include imidazole and derivatives thereof; guanamines such as acetoguanamine and benzoguanamine; diaminodiphenylmethane, m-phenylenediamine, m-xylenediamine, diaminodiphenylsulfone, dicyandiamide, urea, urea derivatives, melamine, polybasic hydrazide At least one of these organic acid salts and epoxy adducts; an amine complex of boron trifluoride; ethyldiamino-S-triazine, 2,4-diamino-S-triazine, 2,4-diamino Triazine derivatives such as -6-xylyl-S-triazine; trimethylamine, triethanolamine, N, N-dimethyloctylamine, N-benzyldimethylamine, pyridine, N-methylmorpholine, hexa (N-methyl
  • the curing accelerator component is not essential, but when it is desired to accelerate the curing reaction, it can be used preferably in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the curable component described above.
  • the content is preferably 10 to 550 ppm, more preferably 25 to 200 ppm in terms of metal with respect to 100 parts by mass of the curable component.
  • the semiconductor sealing material according to the present invention may contain an inorganic filler component.
  • the reliability of the semiconductor sealing material is improved.
  • the inorganic filler component is exposed at the portion scraped off by the laser beam, and the reflected light diffuses to exhibit a color close to white.
  • the inorganic filler component conventionally known ones can be used without limitation, for example, powders such as silica, alumina, talc, aluminum hydroxide, calcium carbonate, titanium oxide, iron oxide, silicon carbide, boron nitride, and the like. Examples thereof include spheroidized beads, single crystal fibers, and glass fibers. One kind can be used alone, or two or more kinds can be mixed and used. Among these, silica, alumina, and titanium oxide are preferable.
  • the inorganic filler component preferably has an average particle size of 0.01 to 15 ⁇ m, more preferably 0.02 to 12 ⁇ m, particularly preferably 0.03 to 10 ⁇ m.
  • the average particle size is the number average particle size calculated as the arithmetic average value of the major axis diameters of 20 inorganic filler components randomly selected with an electron microscope.
  • the content of the inorganic filler component is preferably 10 to 2000 parts by mass, more preferably 30 to 1800 parts by mass, and particularly preferably 60 to 1500 parts by mass with respect to 100 parts by mass of the total solid components constituting the semiconductor sealing material. Part.
  • the colorant component may be contained in the semiconductor sealing material according to the present invention.
  • the colorant component By including the colorant component, it is possible to prevent malfunction of the semiconductor device due to infrared rays or the like generated from surrounding devices when a semiconductor chip provided with a protective film is incorporated in the device.
  • a protective film is engraved by means such as laser marking, marks such as characters and symbols can be easily recognized. That is, in a semiconductor chip on which a protective film is formed, the product number or the like is usually printed on the surface of the protective film by a laser marking method (a method in which the surface of the protective film is scraped off by laser light and printed).
  • a laser marking method a method in which the surface of the protective film is scraped off by laser light and printed.
  • organic or inorganic pigments and dyes can be used singly or in combination of two or more.
  • black pigments are preferable from the viewpoint of electromagnetic wave and infrared shielding properties.
  • the black pigment include carbon black, perylene black, iron oxide, aniline black, activated carbon, and the like, but are not limited thereto.
  • Carbon black is particularly preferable from the viewpoint of preventing malfunction of the semiconductor device.
  • pigments such as red, blue, green, and yellow can be mixed to obtain black or a close black color.
  • the colorant component is preferably 0.1 to 35 parts by weight, more preferably 0.5 to 25 parts by weight, and particularly preferably 1 to 15 parts by weight based on 100 parts by weight of the total solid content constituting the semiconductor sealing material. It is contained at a ratio of parts by mass.
  • ⁇ Coupling agent component> A functional group that reacts with an inorganic substance and a functional group that reacts with an organic functional group in order to improve at least one of adhesion, adhesion, and cohesiveness of a protective film to an adherend (semiconductor wafer) of a semiconductor sealing material
  • a coupling agent component having a group may be contained. Moreover, the water resistance can be improved without impairing the heat resistance of the protective film obtained by hardening
  • Examples of such coupling agents include titanate coupling agents, aluminate coupling agents, silane coupling agents, and the like. Of these, silane coupling agents are preferred.
  • Examples of organic groups contained in the silane coupling agent include vinyl groups, epoxy groups, styryl groups, methacryloxy groups, acryloxy groups, amino groups, ureido groups, chloropropyl groups, mercapto groups, polysulfide groups, and isocyanate groups. Can be mentioned.
  • Commercially available silane coupling agents can be used, for example, KA-1003, KBM-1003, KBE-1003, KBM-303, KBM-403, KBE-402, KBE-403, KBM-1403.
  • the semiconductor sealing material according to the present invention can be in the form of liquid, granule, sheet or the like.
  • the polymer component film property provision polymer
  • the film property-imparting polymer component means a polymer component having no reactive functional group in order to be distinguished from a reactive film property-imparting polymer component described later.
  • film-imparting polymer components include thermoplastic polyhydroxy polyether resins, phenoxy resins that are condensates of epichlorohydrin and various bifunctional phenol compounds, or hydroxyl groups in the hydroxy ether portion present in the skeleton, and various acid anhydrides. And phenoxy resin, polyvinyl acetal resin, polyamide resin, polyamideimide resin, block copolymer and the like esterified using acid chloride. These polymers may be used alone or in combination of two or more. In order to maintain the film (or sheet) shape, the weight average molecular weight (Mw) of these polymers is usually 2 ⁇ 10 4 or more, and preferably 2 ⁇ 10 4 to 3 ⁇ 10 6 .
  • the value of a weight average molecular weight (Mw) can be measured with the following measuring apparatus and measurement conditions by the gel permeation chromatography method (GPC) method (polystyrene standard).
  • GPC gel permeation chromatography method
  • Measuring device “Waters 2695” manufactured by Waters Detector: “Waters 2414” manufactured by Waters, RI (differential refractometer)
  • Column “HSPgel Column, HR MB-L, 3 ⁇ m, 6 mm ⁇ 150 mm” manufactured by Waters ⁇ 2 + “HSPgel Column, HR1, 3 ⁇ m, 6 mm ⁇ 150 mm” manufactured by Waters ⁇ 2
  • Measurement condition Column temperature: 40 ° C RI detector set temperature: 35 ° C
  • Developing solvent Tetrahydrofuran Flow rate: 0.5 ml / min
  • Sample volume 10 ⁇ l
  • Sample concentration 0.7 wt%
  • the polyvinyl acetal resin can be obtained, for example, by acetalizing a polyvinyl alcohol resin with an aldehyde.
  • the aldehyde is not particularly limited, and examples thereof include formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde and the like.
  • phenoxy resin examples include FX280 and FX293 manufactured by Tohto Kasei Co., Ltd., YX8100, YL6954, and YL6974 manufactured by Mitsubishi Chemical Corporation.
  • polyvinyl acetal resin examples include the SEREC KS series manufactured by Sekisui Chemical Co., Ltd., and the polyamide resin includes the KS5000 series manufactured by Hitachi Chemical Co., Ltd. and the BP series manufactured by Nippon Kayaku Co., Ltd.
  • polyamideimide resin examples include KS9000 series manufactured by Hitachi Chemical Co., Ltd.
  • thermoplastic polyhydroxypolyether resin When a thermoplastic polyhydroxypolyether resin has a fluorene skeleton, it has a high glass transition point and excellent heat resistance, so it maintains a low coefficient of thermal expansion due to a semi-solid or solid epoxy resin and maintains its glass transition point. The resulting cured film has a low thermal expansion coefficient and a high glass transition point in a well-balanced manner. Moreover, since the thermoplastic polyhydroxy polyether resin has a hydroxyl group, it exhibits good adhesion to a semiconductor wafer.
  • the film property-imparting polymer component may be obtained by block copolymerization of the monomers constituting the above components.
  • the block copolymer is a copolymer having a molecular structure in which two or more kinds of polymers having different properties are connected by a covalent bond to form a long chain.
  • an XYX type or XY-X 'type block copolymer is preferable.
  • the central Y is a soft block and the glass transition temperature (Tg) is low, and X or X ′ on both outer sides is a hard block.
  • the glass transition temperature (Tg) is measured by differential scanning calorimetry (DSC).
  • X and X ′ may be different polymer units or the same polymer unit.
  • X or X ′ is composed of polymer units having a Tg of 50 ° C. or more, and the glass transition temperature (Tg) of Y is More preferred is a block copolymer consisting of polymer units having a Tg of X or X ′ or less.
  • Tg glass transition temperature
  • XYX type and XYX ′ type block copolymers those in which X or X ′ is highly compatible with the curable component described later are preferred, and Y is the curable component. Those having low compatibility are preferred.
  • phenoxy resin polyvinyl acetal resin
  • thermoplastic polyhydroxy polyether resin having a fluorene skeleton and block copolymer are preferable.
  • the ratio of the film-forming polymer component occupying all components constituting the semiconductor sealing material is not particularly limited, and is preferably 10 to 50 parts by mass when the total of all components is 100 parts by mass. More preferably, it is 15 to 45 parts by mass.
  • a film property-imparting polymer component capable of reacting with a curable component described later may be contained.
  • a reactive film imparting polymer it is preferable to use a carboxyl group-containing resin or a phenol resin.
  • the use of a carboxyl group-containing resin is preferable because it easily reacts with an epoxy resin when an epoxy resin is included as a curable component, and improves the properties as a semiconductor protective film while imparting film-forming properties.
  • the following resins (1) to (7) can be preferably used.
  • Dialcohol compounds polycarbonate-based polyols containing diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, aromatic diisocyanates, and carboxyl groups such as dimethylolpropionic acid and dimethylolbutanoic acid, Carboxyl group-containing urethane resin by polyaddition reaction of diol compounds such as polyether polyols, polyester polyols, polyolefin polyols, bisphenol A alkylene oxide adduct diols, compounds having phenolic hydroxyl groups and alcoholic hydroxyl groups, (2) a carboxyl group-containing urethane resin by polyaddition reaction of diisocyanate and a carboxyl group-containing dialcohol compound, (3) a carboxyl group-containing resin obtained by copolymerization of an
  • a carboxyl group-containing polyester resin to which a dibasic acid anhydride is added (5) a carboxyl group-containing resin obtained by ring-opening an epoxy resin or an oxetane resin and reacting the generated hydroxyl group with a polybasic acid anhydride, (6)
  • a polybasic acid anhydride is added to a reaction product such as a polyalcohol resin obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule, that is, a polyphenol compound with an alkylene oxide such as ethylene oxide or propylene oxide.
  • a polyalcohol resin obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule, that is, a polyphenol compound, with an alkylene oxide such as ethylene oxide or propylene oxide.
  • a carboxyl group-containing resin obtained by reacting a reaction product such as (meth) acrylic acid or the like with an unsaturated group-containing monocarboxylic acid, and further reacting the resulting reaction product with a polybasic acid anhydride, Etc. can be used suitably.
  • (meth) acrylate means acrylate, methacrylate, and a mixture thereof.
  • the above (1), (2), (6) and (7) can be used not only as a photosensitive carboxyl group-containing resin but also as a non-photosensitive carboxyl group-containing resin. .
  • the resins (6) and (7) are preferable because they have a good balance in all properties.
  • the weight average molecular weight of the reactive film-forming polymer varies depending on the resin skeleton, but is generally preferably in the range of 2 ⁇ 10 3 to 1.5 ⁇ 10 5 , more preferably 3 ⁇ 10 3 to 1.
  • the range is ⁇ 10 5 , but is not limited to these ranges.
  • the ratio of the reactive film property-imparting polymer component occupying all the components constituting the semiconductor sealing material is not particularly limited. It is preferable to replace it with a film-imparting polymer.
  • various additives may be blended in the semiconductor sealing material according to the present invention as necessary.
  • various additives include leveling agents, plasticizers, ion scavengers, gettering agents, chain transfer agents, release agents and the like.
  • a flame retardant such as antimony trioxide may be blended within a range that does not impair the characteristics, but it is preferable that the flame retardant is not substantially contained from the viewpoint of environmental load.
  • the thickness of the semiconductor sealing material in the form of a film is not particularly limited as long as it is thicker than the thickness of the semiconductor chip or electronic component to be sealed, but is preferably 3 to 800 ⁇ m, more preferably 5 to 700 ⁇ m, and particularly preferably. 7 to 600 ⁇ m.
  • the semiconductor sealing material according to the present invention may have a single layer structure or a multilayer structure.
  • the semiconductor sealing material according to the present invention preferably has a maximum transmittance of 20% or less at a wavelength of 300 to 1200 nm, which is a scale showing at least one of visible light, infrared light and ultraviolet light. More preferably, it is ⁇ 15%, more preferably more than 0% and 10% or less, and particularly preferably 0.001-8%.
  • the maximum transmittance of the semiconductor encapsulant at a wavelength of 300 to 1200 nm can be adjusted by the type and content of the colorant component described above.
  • the maximum transmittance of the semiconductor encapsulant is 300 of the cured semiconductor encapsulant (thickness 25 ⁇ m) using a UV-vis spectrum inspection apparatus (manufactured by Shimadzu Corporation). The total light transmittance at ⁇ 1200 nm is measured, and the highest transmittance value (maximum transmittance) is assumed.
  • the form of the semiconductor sealing material according to the present invention may be liquid, granule, tablet, or sheet, but preferably has a sheet form because it can be easily handled.
  • the semiconductor sealing material according to the present invention is obtained by using a composition (mixture) obtained by mixing the above-described components at a predetermined ratio.
  • the composition may be previously diluted with a solvent, or may be added to the solvent during mixing.
  • you may dilute a composition with a solvent.
  • the solvent include ethyl acetate, methyl acetate, diethyl ether, dimethyl ether, acetone, methyl ethyl ketone, acetonitrile, hexane, cyclohexane, toluene, heptane and the like.
  • the composition (mixture) prepared as described above is coated on a support and formed into a film, whereby a sheet-like semiconductor sealing material can be obtained.
  • a film forming method a conventionally known method can be applied, and a composition (mixture) is coated on a support by a known means such as a flat plate press method, a roll knife coater, a gravure coater, a die coater, or a reverse coater.
  • a semiconductor sealing material can be obtained.
  • the semiconductor sealing material having the above-described thickness can be obtained by adjusting the coating amount of the composition (mixture).
  • a separate paper, a separate film, a separate paper, a release film and a release paper can be suitably used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • OPP stretched polypropylene film
  • plastic film such as polyimide film. You may use what formed the layer.
  • the release layer is not particularly limited as long as it has a release property, and examples thereof include silicone resins, organic resin-modified silicone resins, and fluororesins.
  • the semiconductor sealing material of the present invention can also be used as a sealing material for printed wiring boards, a sealing material for solar cell materials, and an adhesive between an electric wire / cable sealing material substrate and a semiconductor chip.
  • the semiconductor encapsulant of the present invention includes a semiconductor chip, a semiconductor encapsulant that embeds the semiconductor chip so that the circuit formation surface of the semiconductor chip is exposed on the surface, and the circuit formation surface side of the semiconductor chip.
  • the rewiring layer can be suitably used for a fan-out type wafer level package provided in a semiconductor sealing material region other than the semiconductor chip region.
  • reaction solution was cooled to room temperature, and 1.56 g of 89% phosphoric acid was added to and mixed with the reaction solution to neutralize potassium hydroxide.
  • the nonvolatile content was 62.1%, and the hydroxyl value was 182.2 g / eq.
  • a propylene oxide reaction solution of bisphenol A-formaldehyde type phenol resin was obtained. This was an average of 1.08 moles of alkylene oxide added per equivalent of phenolic hydroxyl group.
  • the value of the weight average molecular weight (Mw) was measured by the gel permeation chromatography method (GPC) method (polystyrene standard) under the following measuring apparatus and measurement conditions.
  • Measuring device “Waters 2695” manufactured by Waters Detector: “Waters 2414” manufactured by Waters, RI (differential refractometer)
  • Column “HSPgel Column, HR MB-L, 3 ⁇ m, 6 mm ⁇ 150 mm” by Waters ⁇ 2 + “HSPgel Column, HR 1, 3 ⁇ m, 6 mm ⁇ 150 mm” by Waters ⁇ 2
  • Developing solvent Tetrahydrofuran Flow rate: 0.5 ml / min
  • Sample volume 10 ⁇ l
  • Sample concentration 0.7 wt%
  • composition solution 1 for a sealing material having a solid content mass concentration of 20% The following components were dissolved and dispersed in methyl ethyl ketone to prepare a composition solution 1 for a sealing material having a solid content mass concentration of 20%.
  • composition solution 1 for sealing material was applied to a polyethylene terephthalate film (PET film) whose surface was subjected to a release treatment, and dried at 100 ° C. for 10 minutes to prepare a sealing material 1 for semiconductor having a thickness of 50 ⁇ m.
  • Six films were laminated to produce a semiconductor sealing material 1 having a thickness of 300 ⁇ m.
  • ⁇ Preparation of semiconductor sealing material 2> The following components were blended, heated at 70 ° C. for 4 minutes in a roll kneader, then heated at 120 ° C. for 6 minutes, and melt-kneaded while reducing pressure (0.01 kg / cm 2 ) for a total of 10 minutes to prepare kneaded product 2 .
  • the obtained kneaded material 2 is arranged so as to be sandwiched between two 50 ⁇ m cover films (Teijin Purex film), and the kneaded material is formed into a sheet by a flat plate pressing method. A stop material 2 was obtained.
  • ⁇ Preparation of semiconductor sealing material 3> The following components were blended, heated at 70 ° C. for 4 minutes in a roll kneader, then heated at 120 ° C. for 6 minutes, and melt-kneaded for 10 minutes in total while reducing the pressure (0.01 kg / cm 2 ) to prepare a kneaded product 3 .
  • ⁇ Manganese dioxide 5 parts ⁇ Epoxy resin (trade name Epicoat 1001; manufactured by JER) 30 parts ⁇ Phenol novolac type epoxy resin 10 parts (DEN-431 manufactured by The Dow Chemical Company) ⁇ C. I. Pigment Blue 15: 3 0.8 part C.I. I.
  • the obtained kneaded material 3 is arranged so as to be sandwiched between two 50 ⁇ m PET films (Teijin Purex film), and the kneaded material is formed into a sheet shape by a flat plate pressing method. A stop material 3 was obtained.
  • the obtained kneaded product 4 is arranged so as to be sandwiched between two 50 ⁇ m cover films (Teijin Purex film), and the kneaded product is formed into a sheet by a flat plate pressing method. A stop material 4 was obtained.
  • ⁇ Preparation of semiconductor sealing material 5> The following components were blended, heated at 70 ° C. for 4 minutes in a roll kneader, then heated at 120 ° C. for 6 minutes, and melt-kneaded while reducing pressure (0.01 kg / cm 2 ) for a total of 10 minutes to prepare kneaded product 5 .
  • the obtained kneaded product 5 is placed so as to be sandwiched between two 50 ⁇ m cover films (Teijin Purex film), and the kneaded product is formed into a sheet by a flat plate pressing method. A stop material 5 was obtained.
  • a semiconductor encapsulant 6 having a thickness of 300 ⁇ m was produced in the same manner as in the semiconductor encapsulant 1 except that no anthraquinone was used.
  • a semiconductor encapsulant 7 having a thickness of 300 ⁇ m was produced in the same manner as in the semiconductor encapsulant 2 except that no anthraquinone was used.
  • a semiconductor encapsulant 8 having a thickness of 300 ⁇ m was produced in the same manner as in the semiconductor encapsulant 3 except that manganese dioxide was not used.
  • a semiconductor encapsulant 9 having a thickness of 300 ⁇ m was produced in the same manner as in the semiconductor encapsulant 4 except that benzoyl peroxide was not used.
  • a semiconductor encapsulant 10 having a thickness of 300 ⁇ m was produced in the same manner as in the semiconductor encapsulant 5 except that anthraquinone and Adeka Stab AO-60 were not used.
  • a semiconductor wafer As a semiconductor wafer, a P-type silicon wafer polished to a 4-inch thickness of 200 ⁇ m in which a 100 nm SiO 2 film was formed on one side made by Canosis Co., Ltd. was prepared.
  • the above semiconductor wafer was diced using a dicing apparatus to obtain a 10 mm ⁇ 10 mm square semiconductor chip.
  • a temporarily fixed film was disposed on a SUS flat substrate, and the semiconductor chip was further disposed such that the SiO 2 surface was in contact with the temporarily fixed film.
  • a 20 mm ⁇ 20 mm square sheet-shaped semiconductor encapsulant was laminated thereon so that the center positions were approximately the same, and compression-molded at 150 ° C. for 1 hour using a heating type press crimping machine.
  • the temporarily fixed film was peeled off from the obtained laminate to obtain a semiconductor package.
  • Adhesion was evaluated as a method for confirming suppression of gap formation between a semiconductor chip and a semiconductor sealing material. Evaluation was performed as follows. ⁇ Evaluation> Prepare a 2.38% TMAH 2.38% aqueous solution (trade name AD-10, manufactured by Tama Chemical Industry Co., Ltd.) at 25 ° C., and immerse the semiconductor package produced here with the SiO 2 surface of the semiconductor chip facing up for 5 minutes. Processed. Thereafter, the semiconductor package was taken out and rinsed twice with pure water. Thereafter, moisture was blown off by air blow, and the mixture was collected on a hot plate set at 100 ° C. for 5 minutes. As for the obtained semiconductor package after processing, the boundary part between the semiconductor chip and the sealing material is observed with an optical microscope and an electron microscope from the semiconductor chip side. The thing was determined as x. The evaluation results were as shown in Table 1 below.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Resins (AREA)

Abstract

Provided is a sealant for semiconductor whereby it is possible to inhibit the formation of a gap between a semiconductor chip and the sealant for semiconductor. The sealant for semiconductor according to the present invention is characterized by containing an oxidizing agent capable of oxidizing a semiconductor.

Description

半導体用封止材Sealant for semiconductor
 本発明は、半導体チップを保護する半導体用封止材に関し、とりわけ、外部接続用電極の配置領域が半導体の平面サイズよりも大きいファンアウト(Fan-out)型のウェハレベルパッケージに用いられる半導体用封止材に関する。 The present invention relates to a semiconductor sealing material for protecting a semiconductor chip, and more particularly to a semiconductor used in a fan-out type wafer level package in which an arrangement area of an external connection electrode is larger than a semiconductor planar size. It relates to a sealing material.
 近年、半導体回路等の分野おいて小型化の要求が高まっており、その要求に応えるために半導体回路はそのチップサイズに近いパッケージ(Chip Size Package)に実装されることがある。チップサイズパッケージを実現する手段の一つとして、ウエハレベルで接合し断片化するウェハレベルパッケージ(Wafer Level Package、以下、WLPと略す場合がある。)と呼ばれるパッケージ方法が提案されている。WLPは、低コスト化、小型化に寄与し得るため、注目されている。WLPは、電極が形成された回路基板上にフェースダウンで実装される。 In recent years, there has been an increasing demand for miniaturization in the field of semiconductor circuits and the like, and in order to meet the demands, semiconductor circuits may be mounted in a package (Chip Size Package) close to the chip size. As one of means for realizing a chip size package, a packaging method called a wafer level package (hereinafter, sometimes abbreviated as WLP) that is bonded and fragmented at a wafer level has been proposed. WLP is attracting attention because it can contribute to cost reduction and size reduction. The WLP is mounted face down on a circuit board on which electrodes are formed.
 ところで、半導体チップの小型化、高集積化に伴って、半導体チップの外部接続用の電極(端子、バンプ)の数は多くなる傾向にあり、そのため半導体チップの外部接続用の電極のピッチは小さくなる傾向にある。しかしながら、微細なピッチでバンプが形成された半導体チップを回路基板上に直接実装するのは必ずしも容易ではない。 By the way, with the miniaturization and high integration of the semiconductor chip, the number of electrodes (terminals and bumps) for external connection of the semiconductor chip tends to increase. Therefore, the pitch of the electrodes for external connection of the semiconductor chip is small. Tend to be. However, it is not always easy to directly mount a semiconductor chip on which bumps are formed at a fine pitch on a circuit board.
 上記のような課題に対して、半導体チップの外周に半導体用封止材の領域を形成し、電極に接続された再配線層を半導体用封止材の領域にも設けて、バンプのピッチを大きくすることが提案されている。このようなWLPは、半導体チップのサイズに対してバンプの配置エリアのサイズが大きくなるため、ファンアウト型のウェハレベルパッケージ(以下、FO-WLPと略す場合がある。)と称される。 In order to solve the above problems, a semiconductor encapsulant region is formed on the outer periphery of the semiconductor chip, and a rewiring layer connected to the electrode is also provided in the semiconductor encapsulant region, so that the bump pitch is reduced. It has been proposed to be larger. Such a WLP is called a fan-out type wafer level package (hereinafter sometimes abbreviated as FO-WLP) because the size of the bump arrangement area is larger than the size of the semiconductor chip.
 FO-WLPでは、半導体チップが半導体用封止材により埋め込まれる。半導体チップの回路面は外側にむき出しとなり、半導体チップと半導体用封止材との境界が形成される。半導体チップを埋め込む半導体用封止材の領域にも、半導体チップの電極に接続された再配線層が設けられ、バンプが再配線層を介して半導体チップの電極に電気的に接続される。かかるバンプのピッチは、半導体チップの電極のピッチに対して大きく設定できるようになる。 In FO-WLP, a semiconductor chip is embedded with a semiconductor sealing material. The circuit surface of the semiconductor chip is exposed to the outside, and a boundary between the semiconductor chip and the semiconductor sealing material is formed. A rewiring layer connected to the electrode of the semiconductor chip is also provided in the region of the semiconductor sealing material for embedding the semiconductor chip, and the bump is electrically connected to the electrode of the semiconductor chip through the rewiring layer. The pitch of the bumps can be set larger than the pitch of the electrodes of the semiconductor chip.
 また、半導体チップのみならず、複数の電子部品を1つのパッケージ内に収めたり、複数の半導体チップを半導体用封止材に埋め込み1つの半導体部品とすることも考えられる。このようなパッケージでは、複数の電子部品が半導体用封止材により埋め込まれる。複数の電子部品を埋め込む半導体用封止材には、電子部品の電極に接続された再配線層が設けられ、バンプが再配線層を介して電子部品の電極に電気的に接続される。この場合にも、半導体チップのサイズに対してバンプの配置エリアのサイズが大きくなるため、FO-WLPといえる。 It is also conceivable that not only a semiconductor chip but also a plurality of electronic components are contained in one package, or a plurality of semiconductor chips are embedded in a semiconductor sealing material to form one semiconductor component. In such a package, a plurality of electronic components are embedded with a semiconductor sealing material. The semiconductor sealing material for embedding a plurality of electronic components is provided with a rewiring layer connected to the electrodes of the electronic components, and the bumps are electrically connected to the electrodes of the electronic components via the rewiring layers. Also in this case, it can be said that FO-WLP because the size of the bump arrangement area is larger than the size of the semiconductor chip.
 このようなパッケージでは、一般的に支持体上に一定の間隔を設けて半導体チップや電子部品を配置し、半導体用封止材を用いて埋め込み、封止材を加熱硬化させた後に、支持体から剥離して擬似ウエハが作製される。続いて、擬似ウエハの半導体チップ回路面から拡張された半導体用封止材料領域にかけて、再配線層が形成される。このようにしてバンプのピッチは、半導体チップの電極のピッチに対して大きく設定できるようになる。 In such a package, in general, a semiconductor chip or an electronic component is arranged at a certain interval on a support, embedded with a semiconductor sealing material, and the sealing material is heat-cured, and then the support. A pseudo wafer is produced by peeling from the substrate. Subsequently, a rewiring layer is formed from the semiconductor chip circuit surface of the pseudo wafer to the expanded semiconductor sealing material region. In this way, the pitch of the bumps can be set larger than the pitch of the electrodes of the semiconductor chip.
 再配線層の形成においては、一般的に、ポジ型の感応性樹脂を、擬似ウエハの半導体チップ回路面に塗布し、プリベークを行い、フォトマスク等を介して開口したい領域にUV光線等の活性光線を照射し、続いてTMAH(テトラメチルアンモニウムヒドロキシド)等の現像液を用いて現像を行い、加熱キュア、酸素プラズマ処理等を行い、メタル電極のスパッタリングを行い、さらにフォトレジスト層を形成し配線をパターニングして再配線層を形成していく(例えば、特許文献1等)。 In the formation of the rewiring layer, generally, a positive sensitive resin is applied to the semiconductor chip circuit surface of the pseudo wafer, prebaked, and activated with UV light or the like in an area to be opened through a photomask or the like. Irradiate light, then develop using a developer such as TMAH (tetramethylammonium hydroxide), heat cure, oxygen plasma treatment, etc., metal electrode sputtering, and further form a photoresist layer The wiring is patterned to form a rewiring layer (for example, Patent Document 1).
特開2013-38270号公報JP 2013-38270 A
 しかしながら、上記したような工程を経てFO-WLPを製造すると、半導体チップと半導体用封止材との境界に隙間が発生し、その後に形成される再配線層の信頼性を低下させているという問題があった。また、この隙間により、完成したFO-WLPの製品信頼性を低下させる問題があった。 However, when FO-WLP is manufactured through the above-described steps, a gap is generated at the boundary between the semiconductor chip and the semiconductor sealing material, and the reliability of the rewiring layer formed thereafter is reduced. There was a problem. In addition, this gap has a problem of reducing the product reliability of the completed FO-WLP.
 したがって、本発明の目的は、半導体チップと半導体用封止材との間に隙間が形成されることを抑制できる半導体用封止材、とりわけFO-WLP用封止材を提供することにある。 Therefore, an object of the present invention is to provide a semiconductor sealing material, particularly a FO-WLP sealing material, which can suppress the formation of a gap between the semiconductor chip and the semiconductor sealing material.
 本発明者らは、半導体チップと半導体用封止材との境界が生じるという現象を詳細に検討したところ、この隙間が、再配線層を形成する際に用いる現像工程において発生していることを突き止めた。そして、さらに検討を進めたところ、現像工程の際に、現像液が半導体用封止材に埋め込まれた半導体チップ側面の境界にも侵入し、場合によっては半導体用封止材にしみ込み、この浸入ないししみ込んだ現像液によって半導体チップ側面がエッチングされることにより、半導体チップ側面と半導体用封止材との境界に隙間が生じていることが判明した。 The present inventors have studied in detail the phenomenon that the boundary between the semiconductor chip and the semiconductor sealing material is generated, and it is found that this gap is generated in the development process used when the rewiring layer is formed. I found it. Then, further investigation was made, and during the development process, the developer also entered the boundary of the side surface of the semiconductor chip embedded in the semiconductor encapsulant, and in some cases, the semiconductor encapsulant soaked. It has been found that a gap is generated at the boundary between the side surface of the semiconductor chip and the semiconductor sealing material by etching the side surface of the semiconductor chip with the developer that has entered or has penetrated.
 そして、本発明者らは、上記知見に基づいて鋭意検討した結果、半導体ウエハが現像液によってエッチングされないような成分を、半導体用封止材に添加しておくことにより、再配線層形成の際に現像液を用いても半導体チップ側面と半導体用封止材との境界に隙間が形成されることを抑制でき、その結果、再配線層の形成を容易とし、完成したFO-WLPの信頼性を高められることが分かった。 As a result of intensive studies based on the above findings, the present inventors have added a component that prevents the semiconductor wafer from being etched by the developer to the semiconductor encapsulant, thereby forming the rewiring layer. Even when a developing solution is used, it is possible to suppress the formation of a gap at the boundary between the side surface of the semiconductor chip and the semiconductor sealing material. As a result, the rewiring layer can be easily formed and the reliability of the completed FO-WLP It was found that can be improved.
 本発明による半導体用封止材は、半導体を酸化させ得る酸化剤を含んでなることを特徴とするものである。 The semiconductor sealing material according to the present invention is characterized by comprising an oxidizing agent capable of oxidizing a semiconductor.
 本発明の態様においては、半導体用封止材が、硬化性成分、硬化剤成分、硬化促進剤成分、および無機フィラーを含んでいてもよい。 In the embodiment of the present invention, the semiconductor sealing material may contain a curable component, a curing agent component, a curing accelerator component, and an inorganic filler.
 本発明の態様においては、半導体用封止材がシート状の形状を有していてもよい。 In the aspect of the present invention, the semiconductor sealing material may have a sheet-like shape.
 本発明の態様においては、ファンアウト型のウェハレベルパッケージに用いられてもよい。 In the embodiment of the present invention, it may be used for a fan-out type wafer level package.
 本発明の半導体用封止材によれば、とりわけFO-WLPにおいて、半導体チップと半導体用封止材との間に隙間が形成されることを抑制できる。その結果、FO-WLPの製造の際の再配線層の形成を容易とし、完成したFO-WLPの信頼性を高めることができる。 According to the semiconductor sealing material of the present invention, it is possible to suppress the formation of a gap between the semiconductor chip and the semiconductor sealing material, particularly in FO-WLP. As a result, the rewiring layer can be easily formed during the manufacture of the FO-WLP, and the reliability of the completed FO-WLP can be improved.
 半導体用封止材は、半導体ウエハを加工した半導体素子(例えば半導体チップ等)を熱や埃から保護して半導体パッケージとするものであり、半導体素子全体を被覆するよう封止して絶縁するものである。該半導体用封止材は、後記するような封止材としての各成分を含むものであるが、本発明による半導体用封止材は、半導体を酸化させ得る酸化剤を含むことに特徴を有している。上記したように、例えばFO-WLPを製造する際には、半導体用封止材により半導体チップ等を埋設して形成した擬似ウエハの半導体チップ回路面に再配線層が形成されるが、その再配線層をパターニングして形成する際に、TMAH等の現像液が用いられる。現像処理の際に、埋設した半導体チップと半導体用封止材との界面に現像液が浸入する。例えば、シリコン半導体チップである場合、シリコンがTMAH現像液によりエッチングされてしまい、埋設された半導体ウエハと半導体用封止材との間に隙間を生じさせてしまう。本発明においては、半導体用封止材に半導体ウエハを酸化させ得る酸化剤が含まれているため、半導体チップを半導体用封止材で封止する際に、半導体チップの表面が酸化される。例えば、シリコン(Si)半導体チップの場合は、半導体チップの表面にSiOの極薄い被膜が形成される。そのため、その後の現像処理の際に現像液が半導体チップと半導体用封止材との界面に浸入しても、酸化被膜(SiO)によりシリコン半導体が現像液によりエッチングされてしまうことを抑制することができるものと考えられる。これはあくまでも本発明者らの推測であり、本発明が当該論理に拘束されるものではない。 The semiconductor sealing material protects a semiconductor element (for example, a semiconductor chip) processed from a semiconductor wafer from heat and dust to form a semiconductor package, and seals and insulates the entire semiconductor element. It is. The semiconductor sealing material contains each component as a sealing material as described later, but the semiconductor sealing material according to the present invention is characterized by containing an oxidizing agent capable of oxidizing the semiconductor. Yes. As described above, for example, when manufacturing FO-WLP, a rewiring layer is formed on the semiconductor chip circuit surface of a pseudo wafer formed by embedding a semiconductor chip or the like with a semiconductor sealing material. When patterning the wiring layer, a developer such as TMAH is used. During the development processing, the developer enters the interface between the embedded semiconductor chip and the semiconductor sealing material. For example, in the case of a silicon semiconductor chip, silicon is etched by a TMAH developer, and a gap is generated between the embedded semiconductor wafer and the semiconductor sealing material. In the present invention, since the semiconductor encapsulant contains an oxidizing agent that can oxidize the semiconductor wafer, the surface of the semiconductor chip is oxidized when the semiconductor chip is encapsulated with the semiconductor encapsulant. For example, in the case of a silicon (Si) semiconductor chip, a very thin film of SiO 2 is formed on the surface of the semiconductor chip. Therefore, even when the developer enters the interface between the semiconductor chip and the semiconductor sealing material during the subsequent development processing, the silicon semiconductor is prevented from being etched by the developer due to the oxide film (SiO 2 ). Can be considered. This is only a guess of the present inventors, and the present invention is not bound to the logic.
 半導体用封止材により封止される半導体チップとしては、シリコン(Si)やゲルマニウム(Ge)、SiGe等が挙げられるが、シリコン半導体が一般的である。 Examples of a semiconductor chip sealed with a semiconductor sealing material include silicon (Si), germanium (Ge), SiGe, and the like, and a silicon semiconductor is generally used.
 本発明において使用できる酸化剤としては、上記したような半導体を酸化させ得る酸化剤であれば特に制限されるものではなく、有機系の酸化剤および無機系の酸化剤のいずれであってもよいが、後記する半導体用封止材を構成する他の成分との相溶性の観点からは有機系の酸化剤を好ましく使用することができる。 The oxidizing agent that can be used in the present invention is not particularly limited as long as it is an oxidizing agent capable of oxidizing the semiconductor as described above, and may be either an organic oxidizing agent or an inorganic oxidizing agent. However, from the viewpoint of compatibility with other components constituting the semiconductor sealing material described later, an organic oxidizing agent can be preferably used.
 有機系の酸化剤としては、有機酸化剤または有機過酸化物を好適に使用することができる。有機酸化剤としては、ヒドロペルオキシド類、キノン類、ピリジン類、有機ニトロ化合物等が挙げられる。また、有機過酸化物としては、m-クロロ過安息香酸、過安息香酸、過酢酸、過ギ酸、過酸化ベンゾイル、過酸化ジエチル、過酸化ジアセチル等が挙げられる。 As the organic oxidizing agent, an organic oxidizing agent or an organic peroxide can be preferably used. Examples of the organic oxidizing agent include hydroperoxides, quinones, pyridines, and organic nitro compounds. Examples of the organic peroxide include m-chloroperbenzoic acid, perbenzoic acid, peracetic acid, performic acid, benzoyl peroxide, diethyl peroxide, and diacetyl peroxide.
 ヒドロペルオキシド類としては、t-ブチルハイドロオキサイド、クメンハイドロオキサイドビス(トリメチルシリル)ペルオキサイド、エチルヒドロペルオキシド、tert-ブチルヒドロペルオキシド、コハク酸ペルオキシド、1,1,3,3-テトラメチルブチルヒドロペルオキシド等が挙げられる。 Hydroperoxides include t-butyl hydroxide, cumene hydroxide bis (trimethylsilyl) peroxide, ethyl hydroperoxide, tert-butyl hydroperoxide, succinic acid peroxide, 1,1,3,3-tetramethylbutyl hydroperoxide, etc. Is mentioned.
 キノン類としては、p-クロラニル(テトラクロロ-p-ベンゾキノン)、o-クロラニル、テトラブロモ-1,4-ベンゾキノン、2,3-ジクロロ-5,6-ジシアノ-1,4-ベンゾキノン、クロロベンゾキノン、ジクロロベンゾキノン、ベンゾキノン、ナフトキノン、アントラキノン、置換アントラキノン、2,3,5,6-テトラクロロ-p-ベンゾキノン等が挙げられる。 Examples of quinones include p-chloranil (tetrachloro-p-benzoquinone), o-chloranil, tetrabromo-1,4-benzoquinone, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, chlorobenzoquinone, Examples include dichlorobenzoquinone, benzoquinone, naphthoquinone, anthraquinone, substituted anthraquinone, 2,3,5,6-tetrachloro-p-benzoquinone, and the like.
 ピリジン類としては、ピリジンオキシド、ピリジンN-オキサイド、ジメチルアミノピリジンオキシド、2,2,6,6,-テトラメチル-1-ピペリジニルオキシド、トリメチルアミンN-オキサイド等が挙げられる。 Examples of pyridines include pyridine oxide, pyridine N-oxide, dimethylaminopyridine oxide, 2,2,6,6, -tetramethyl-1-piperidinyl oxide, trimethylamine N-oxide and the like.
 有機ニトロ化合物としてはメタニトロベンゼンスルホン酸塩、パラニトロ安息香酸塩、ニトロガニジン、芳香族ニトロスルフホネート等が挙げられる。 Examples of organic nitro compounds include metanitrobenzene sulfonate, paranitrobenzoate, nitroganidine, and aromatic nitrosulfonate.
 また、市販されている過酸化物を使用してもよく、例えば日本油脂株式会社のパーテトラA、パーヘキサHC、パーヘキサC、パーヘキサV、パーヘキサ22の商品名で市販されているパーオキシケタール類、パーブチルH、パークミルH、パークミルP、パーメンタH、パーオクタHの商品名で市販されているハイドロパーオキサイド類、パーブチルC、パーブチルD、パーヘキシルDの商品名で市販されているジアルキルパーオキサイド類、パーロイルIB、パーロイル355、パーロイルL、パーロイルSA、ナイパーBW、ナイパーBMT-K40、ナイパーBMT-Mの商品名で市販されているジアシルパーオキサイド類、パーロイルIPP、パーロイルNPP、パーロイルTCP、パーロイルOPP、パーロイルSBPの商品名で市販されているパーオキシジカーボネート類、パークミルND、パーオクタND、パーヘキシルND、パーブチルND、パーヘキシルPV、パーブチルPV、パーヘキサ25O、パーオクタO、パーヘキシルO、パーブチルO、パーブチルL、パーブチル355、パーヘキシルI、パーブチルI、パーブチルE、パーヘキサ25Z、パーブチルA、パーヘキシルZ、パーブチルZT、パーブチルZ、その他ペロマーAC、BTTB-25の商品名で市販されているパーオキシエステル類を使用することができる。 Commercially available peroxides may also be used. For example, peroxyketals and perbutyl which are commercially available under the trade names of Pertetra A, Perhexa HC, Perhexa C, Perhexa V, Perhexa 22 from Nippon Oil & Fats Co., Ltd. Hydroperoxides marketed under the trade names H, Parkmill H, Parkmill P, Permenta H, Perocta H, Peralkyl C, Perbutyl D, Dialkyl peroxides marketed under the trade name Perhexyl D, Parroyl IB, Products of diacyl peroxides, paroyl IPP, paroyl NPP, paroyl TCP, paroyl OPP, paroyl SBP marketed under the trade names of paroyl 355, paroyl L, paroyl SA, niper BW, niper BMT-K40, niper BMT-M Peroxydicarbonates, per mill ND, perocta ND, perhexyl ND, perbutyl ND, perhexyl PV, perbutyl PV, perhexa 25O, perocta O, perhexyl O, perbutyl O, perbutyl L, perbutyl 355, perhexyl I, Peroxyesters commercially available under the trade names of perbutyl I, perbutyl E, perhexa 25Z, perbutyl A, perhexyl Z, perbutyl ZT, perbutyl Z, other peromers AC, and BTTB-25 can be used.
 上記した酸化剤は、1種単独で用いてもよく、2種以上を混合して使用してもよい。 The above oxidizing agents may be used alone or in combination of two or more.
 また、本発明においては、上記した酸化剤の中でも、半導体チップの表面に酸化物層を形成させる半導体との反応性(酸化性)と半導体用封止材としての安定性の両立の観点からは、有機過酸化物やキノン類が好ましく用いられる。 In the present invention, among the oxidizing agents described above, from the viewpoint of both the reactivity with the semiconductor that forms an oxide layer on the surface of the semiconductor chip (oxidation) and the stability as a semiconductor sealing material. Organic peroxides and quinones are preferably used.
 無機系酸化剤としては、酸化銀、酸化銅、酸化ゲルマニウム、酸化インジウム、酸化マンガン、酸化鉛、酸化レニウム、酸化テルルが挙げられる。これらの中でも、酸化マンガン、酸化鉛が酸化剤としての反応性と封止材材料としての安定性のバランスから好ましい。上記した酸化剤の中でも、有機系酸化剤は、無機系酸化剤と比較して半導体用封止材の樹脂成分により均質に混合することが可能であり、その結果、半導体チップの表面に密着する樹脂成分を介してより均質に作用することにより、耐湿においても優れ、その結果、隙間形成の抑制のような信頼性をより向上させることから好ましい。 Examples of the inorganic oxidant include silver oxide, copper oxide, germanium oxide, indium oxide, manganese oxide, lead oxide, rhenium oxide, and tellurium oxide. Among these, manganese oxide and lead oxide are preferable from the balance of reactivity as an oxidizing agent and stability as a sealing material. Among the oxidizers described above, the organic oxidizer can be homogeneously mixed with the resin component of the semiconductor sealing material as compared with the inorganic oxidizer, and as a result, adheres to the surface of the semiconductor chip. By acting more homogeneously through the resin component, it is preferable because it is excellent in moisture resistance, and as a result, reliability such as suppression of gap formation is further improved.
 酸化剤の含有量は、酸化剤以外の成分の固形分換算での合計質量を100質量部としたときに、0.01~10質量部の範囲であることが好ましく、0.05~8質量部の範囲であることがより好ましく、0.1~5質量部の範囲であることが特に好ましい。酸化剤の含有量を上記範囲とすることにより、半導体用封止材を酸化分解させることなく、半導体チップ側面の隙間形成を抑制することができる。 The content of the oxidizing agent is preferably in the range of 0.01 to 10 parts by mass, with the total mass in terms of solid content of components other than the oxidizing agent being 100 parts by mass, 0.05 to 8 parts by mass. The range is more preferably in the range of 0.1 to 5 parts by mass. By setting the content of the oxidizing agent in the above range, formation of a gap on the side surface of the semiconductor chip can be suppressed without oxidizing and decomposing the semiconductor sealing material.
 上記したように、酸化剤の種類によっては、半導体用封止材を構成する樹脂成分が酸化されてしまう場合がある。そのため、本発明においては、半導体用封止材に酸化防止剤が含有されていてもよい。酸化防止剤としては、ラジカル連鎖防止剤として機能するフェノール系酸化防止剤やアミン系酸化防止剤、過酸化物分解剤として機能するリン系酸化防止剤、硫黄系酸化防止剤、金属不活性化剤として機能するヒドラジン系酸化防止剤、アミド系酸化防止剤等が挙げられる。これらの中でも、フェノール系酸化防止剤やアミン系酸化防止剤を好適に使用することができる。また、市販の酸化防止剤を使用してもよく、例えば、アデカスタブ AO-20、AO-30、AO-40、AO-50、AO-50F、AO-60、AO-60G、AO-80、AO-330、アデカスタブ PEP-36/36A、HP-10、2112、2112RG、PEP-8、PEP-8W、1178、1500、C、135A、3010、TPPADEKAスタブ AO-412S、AO-503等が挙げられる。 As described above, depending on the type of oxidizing agent, the resin component constituting the semiconductor sealing material may be oxidized. Therefore, in this invention, antioxidant may contain in the sealing material for semiconductors. Antioxidants include phenolic antioxidants and amine antioxidants that function as radical chain inhibitors, phosphorus antioxidants that function as peroxide decomposers, sulfur antioxidants, and metal deactivators. Hydrazine antioxidants, amide antioxidants, and the like that function as Among these, phenolic antioxidants and amine-based antioxidants can be preferably used. Commercially available antioxidants may also be used. For example, ADK STAB AO-20, AO-30, AO-40, AO-50, AO-50F, AO-60, AO-60G, AO-80, AO -330, ADK STAB, PEP-36 / 36A, HP-10, 2112, 2112RG, PEP-8, PEP-8W, 1178, 1500, C, 135A, 3010, TPPADEKA stub AO-412S, AO-503, and the like.
 本発明による半導体封止材に酸化防止剤が含まれる場合、その含有量は、酸化剤の官能基のモル数を100%としたときに、酸化防止剤の官能基のモル数が5~99%の範囲であることが好ましく、8~90%の範囲であることがより好ましく、10~80%の範囲であることが特に好ましい。酸化防止剤の含有量を上記の範囲とすることにより、酸化剤の半導体との反応性(酸化性)を維持しながら、酸化剤の反応性を調整して樹脂成分の酸化分解を抑制することができる。 When the antioxidant is contained in the semiconductor sealing material according to the present invention, the content thereof is 5 to 99 moles of the functional group of the antioxidant when the mole number of the functional group of the antioxidant is 100%. %, Preferably 8 to 90%, more preferably 10 to 80%. By keeping the content of the antioxidant in the above range, the reactivity of the oxidant with the semiconductor (oxidation) is maintained, and the reactivity of the oxidant is adjusted to suppress the oxidative decomposition of the resin component. Can do.
 本発明による半導体用封止材には、後記するような硬化性成分、硬化剤成分、硬化促進剤成分、無機フィラー等が含まれていてもよい。以下、半導体用封止材を構成する酸化剤および酸化防止剤以外の成分について説明する。 The semiconductor sealing material according to the present invention may contain a curable component, a curing agent component, a curing accelerator component, an inorganic filler, and the like as described later. Hereinafter, components other than the oxidizing agent and the antioxidant that constitute the semiconductor sealing material will be described.
<硬化性成分>
 半導体用封止材の硬化性成分としては特に制限なく従来公知の樹脂を用いることができるが、エポキシ樹脂を用いることが好ましい。エポキシ樹脂には反応前の形状から固形、半固形、液状のエポキシ樹脂がある。これらは1種単独で、または2種以上を組み合わせて用いることができる。ハロゲンを含むエポキシ樹脂を用いると、加水分解から生成するハロゲン化物イオンと酸化剤との酸化還元反応により、添加した酸化剤の反応性を低下させる作用、すなわち隙間形成の抑制に影響する恐れがあることから、エポキシ樹脂はハロゲンフリーであることが好ましく、ハロゲンの中でも特に塩素、臭素、ヨウ素を実質的に含まないことが好ましい。
<Curable component>
A conventionally known resin can be used as the curable component of the semiconductor sealing material without any particular limitation, but an epoxy resin is preferably used. Epoxy resins include solid, semi-solid, and liquid epoxy resins from the pre-reaction shape. These can be used individually by 1 type or in combination of 2 or more types. When an epoxy resin containing halogen is used, there is a risk of affecting the action of reducing the reactivity of the added oxidant, that is, suppressing the formation of gaps, due to the oxidation-reduction reaction between halide ions generated from hydrolysis and the oxidant. Therefore, it is preferable that the epoxy resin is halogen-free, and it is preferable that substantially no chlorine, bromine or iodine is contained among the halogens.
 具体的には、エポキシ樹脂中の塩素含有量が2500ppm以下、臭素含有量が1000ppm以下、塩素および臭素の合計含有量が3000ppm以下であることが好ましい。塩素含有量は2000ppm以下がより好ましく、1500ppm以下がさらに好ましく、1000ppm以下が特に好ましい。また、封止材としてもハロゲンフリーであることが好ましく、具体的には、塩素含有量が900ppm以下、臭素含有量が900ppm以下、塩素および臭素の合計含有量が1500ppm以下であることが好ましい。なお、ハロゲン含有量の測定方法としては、JPCA規格に基づくフラスコ燃焼処理イオンクロマトグラフ法により測定できる。 Specifically, the chlorine content in the epoxy resin is preferably 2500 ppm or less, the bromine content is 1000 ppm or less, and the total content of chlorine and bromine is 3000 ppm or less. The chlorine content is more preferably 2000 ppm or less, further preferably 1500 ppm or less, and particularly preferably 1000 ppm or less. Further, the sealing material is preferably halogen-free. Specifically, the chlorine content is preferably 900 ppm or less, the bromine content is 900 ppm or less, and the total content of chlorine and bromine is preferably 1500 ppm or less. In addition, as a measuring method of halogen content, it can measure by the flask combustion process ion chromatograph method based on a JPCA standard.
 固形エポキシ樹脂としては、DIC社製HP-4700(ナフタレン型エポキシ樹脂)、DIC社製EXA4700(4官能ナフタレン型エポキシ樹脂)、日本化薬社製NC-7000(ナフタレン骨格含有多官能固形エポキシ樹脂)等のナフタレン型エポキシ樹脂;日本化薬社製EPPN-502H(トリスフェノールエポキシ樹脂)等のフェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物(トリスフェノール型エポキシ樹脂);DIC社製エピクロンHP-7200H(ジシクロペンタジエン骨格含有多官能固形エポキシ樹脂)等のジシクロペンタジエンアラルキル型エポキシ樹脂;日本化薬社製NC-3000H(ビフェニル骨格含有多官能固形エポキシ樹脂)等のビフェニルアラルキル型エポキシ樹脂;日本化薬社製NC-3000L等のビフェニル/フェノールノボラック型エポキシ樹脂;DIC社製エピクロンN660、エピクロンN690、日本化薬社製EOCN-104S等のノボラック型エポキシ樹脂;三菱化学社製YX-4000等のビフェニル型エポキシ樹脂;新日鉄住金化学社製TX0712等のリン含有エポキシ樹脂;日産化学工業社製TEPIC等のトリス(2,3-エポキシプロピル)イソシアヌレート等が挙げられる。 Solid epoxy resins include HP-4700 (naphthalene type epoxy resin) manufactured by DIC, EXA4700 (tetrafunctional naphthalene type epoxy resin) manufactured by DIC, and NC-7000 (polyfunctional solid epoxy resin containing naphthalene skeleton) manufactured by Nippon Kayaku Co., Ltd. Naphthalene type epoxy resin such as EPPN-502H (Trisphenol epoxy resin) manufactured by Nippon Kayaku Co., Ltd. Epoxy product of a condensate of phenols and aromatic aldehyde having a phenolic hydroxyl group (Trisphenol type epoxy resin); DIC Dicyclopentadiene aralkyl epoxy resin such as Epicron HP-7200H (dicyclopentadiene skeleton-containing polyfunctional solid epoxy resin) manufactured by Nihon Kayaku Co., Ltd .; biphenyl aralkyl such as NC-3000H (biphenyl skeleton-containing polyfunctional solid epoxy resin) manufactured by Nippon Kayaku Co., Ltd. Type epoch Biphenyl / phenol novolac type epoxy resin such as NC-3000L manufactured by Nippon Kayaku; Novolak type epoxy resin such as Epicron N660 and Epicron N690 manufactured by DIC, EOCN-104S manufactured by Nippon Kayaku; YX manufactured by Mitsubishi Chemical Corporation Biphenyl type epoxy resin such as −4000; phosphorus-containing epoxy resin such as TX0712 manufactured by Nippon Steel & Sumikin Chemical Co .; tris (2,3-epoxypropyl) isocyanurate such as TEPIC manufactured by Nissan Chemical Industries, Ltd., and the like.
 半固形エポキシ樹脂としては、DIC社製エピクロン860、エピクロン900-IM、エピクロンEXA―4816、エピクロンEXA-4822、東都化成社製エポトートYD-134、三菱化学社製jER834、jER872、住友化学工業社製ELA-134等のビスフェノールA型エポキシ樹脂;DIC社製エピクロンHP-4032等のナフタレン型エポキシ樹脂;DIC社製エピクロンN-740等のフェノールノボラック型エポキシ樹脂等が挙げられる。 Semi-solid epoxy resins include DIC's Epicron 860, Epicron 900-IM, Epicron EXA-4816, Epicron EXA-4822, Toto Kasei Epoto YD-134, Mitsubishi Chemical Corporation jER834, jER872, Sumitomo Chemical Co., Ltd. Examples thereof include bisphenol A type epoxy resins such as ELA-134; naphthalene type epoxy resins such as Epicron HP-4032 manufactured by DIC; and phenol novolac type epoxy resins such as Epicron N-740 manufactured by DIC.
 液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アミノフェノール型エポキシ樹脂、脂環式エポキシ樹脂等が挙げられる。 Liquid epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, phenol novolac type epoxy resin, tert-butyl-catechol type epoxy resin, glycidylamine type epoxy resin, aminophenol type epoxy resin And alicyclic epoxy resins.
 上記した硬化性成分は、1種を単独または2種以上を組み合わせて用いることができる。硬化性成分の配合量は、半導体用封止材を構成する全固形分100質量部に対して、5~50質量部であることが好ましく、10~40質量部であることがより好ましい。また、液状エポキシ樹脂の配合量は、硬化性成分100質量部に対して、0~45質量部であることが好ましく、0~30質量部であることがより好ましく、0~5質量部であることが特に好ましい。液状エポキシ樹脂の配合量が0~45質量部の範囲であると、硬化物のガラス転移温度(Tg)が高くなり、クラック耐性が良くなる場合がある。 The above-mentioned curable components can be used alone or in combination of two or more. The compounding amount of the curable component is preferably 5 to 50 parts by mass, and more preferably 10 to 40 parts by mass with respect to 100 parts by mass of the total solid content constituting the semiconductor sealing material. The blending amount of the liquid epoxy resin is preferably 0 to 45 parts by mass, more preferably 0 to 30 parts by mass, and 0 to 5 parts by mass with respect to 100 parts by mass of the curable component. It is particularly preferred. When the blending amount of the liquid epoxy resin is in the range of 0 to 45 parts by mass, the glass transition temperature (Tg) of the cured product is increased and crack resistance may be improved.
<硬化剤成分>
 本発明による半導体用封止材を構成する成分として、硬化剤成分が含まれていてもよい。硬化剤成分は、上記した硬化性成分と反応する官能基を有するものである。このような硬化剤成分としては、フェノール樹脂、ポリカルボン酸およびその酸無水物、シアネートエステル樹脂、活性エステル樹脂等が挙げられ、フェノール樹脂が好ましい。これらのうち1種を単独または2種以上を組み合わせて用いることができる。
<Curing agent component>
A curing agent component may be included as a component constituting the semiconductor sealing material according to the present invention. The curing agent component has a functional group that reacts with the above-described curable component. Examples of such a curing agent component include phenol resins, polycarboxylic acids and acid anhydrides thereof, cyanate ester resins, active ester resins, and the like, and phenol resins are preferred. Among these, one kind can be used alone, or two or more kinds can be used in combination.
 フェノール樹脂としては、フェノールノボラック樹脂、アルキルフェノールボラック樹脂、ビスフェノールAノボラック樹脂、ジシクロペンタジエン型フェノール樹脂、Xylok型フェノール樹脂、テルペン変性フェノール樹脂、クレゾール/ナフトール樹脂、ポリビニルフェノール類、フェノール/ナフトール樹脂、α-ナフトール骨格含有フェノール樹脂、トリアジン含有クレゾールノボラック樹脂等の従来公知のものを、1種を単独または2種以上を組み合わせて用いることができる。 Examples of phenol resins include phenol novolac resins, alkylphenol volac resins, bisphenol A novolac resins, dicyclopentadiene type phenol resins, Xylok type phenol resins, terpene modified phenol resins, cresol / naphthol resins, polyvinylphenols, phenol / naphthol resins, Conventionally known ones such as an α-naphthol skeleton-containing phenol resin and a triazine-containing cresol novolak resin can be used singly or in combination of two or more.
 ポリカルボン酸およびその酸無水物は、一分子中に2個以上のカルボキシル基を有する化合物およびその酸無水物であり、例えば(メタ)アクリル酸の共重合物、無水マレイン酸の共重合物、二塩基酸の縮合物等の他、カルボン酸末端イミド樹脂等のカルボン酸末端を有する樹脂が挙げられる。 The polycarboxylic acid and its acid anhydride are a compound having two or more carboxyl groups in one molecule and its acid anhydride, for example, a copolymer of (meth) acrylic acid, a copolymer of maleic anhydride, In addition to condensates of dibasic acids, resins having carboxylic acid ends such as carboxylic acid-terminated imide resins can be mentioned.
 シアネートエステル樹脂は、一分子中に2個以上のシアネートエステル基(-OCN)を有する化合物である。シアネートエステル樹脂は、従来公知のものをいずれも使用することができる。シアネートエステル樹脂としては、例えば、フェノールノボラック型シアネートエステル樹脂、アルキルフェノールノボラック型シアネートエステル樹脂、ジシクロペンタジエン型シアネートエステル樹脂、ビスフェノールA型シアネートエステル樹脂、ビスフェノールF型シアネートエステル樹脂、ビスフェノールS型シアネートエステル樹脂が挙げられる。また、一部がトリアジン化したプレポリマーであってもよい。 The cyanate ester resin is a compound having two or more cyanate ester groups (—OCN) in one molecule. Any conventionally known cyanate ester resins can be used. Examples of the cyanate ester resin include phenol novolac type cyanate ester resin, alkylphenol novolak type cyanate ester resin, dicyclopentadiene type cyanate ester resin, bisphenol A type cyanate ester resin, bisphenol F type cyanate ester resin, and bisphenol S type cyanate ester resin. Is mentioned. Further, it may be a prepolymer partially triazine.
 活性エステル樹脂は、一分子中に2個以上の活性エステル基を有する樹脂である。活性エステル樹脂は、一般に、カルボン酸化合物とヒドロキシ化合物との縮合反応によって得ることができる。中でも、ヒドロキシ化合物としてフェノール化合物またはナフトール化合物を用いて得られる活性エステル化合物が好ましい。フェノール化合物またはナフトール化合物としては、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエニルジフェノール、フェノールノボラック等が挙げられる。 The active ester resin is a resin having two or more active ester groups in one molecule. The active ester resin can generally be obtained by a condensation reaction between a carboxylic acid compound and a hydroxy compound. Among these, an active ester compound obtained by using a phenol compound or a naphthol compound as the hydroxy compound is preferable. Examples of the phenol compound or naphthol compound include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-cresol, p-cresol, catechol, α-naphthol, β-naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, benzenetriol , Dicyclopentadienyl diphenol, phenol novolac and the like.
 硬化剤成分として、上記した以外にも脂環式オレフィン重合体を用いることができる。好適に使用できる脂環式オレフィン重合体としては、(1)カルボキシル基およびカルボン酸無水物基(以下、「カルボキシル基等」と称する)のいずれか少なくとも1種を有する脂環式オレフィンを、必要に応じて他の単量体と共に重合したもの、(2)カルボキシル基等を有する芳香族オレフィンを、必要に応じて他の単量体と共に重合して得られる(共)重合体の芳香環部分を水素化したもの、(3)カルボキシル基等を有しない脂環式オレフィンと、カルボキシル基等を有する単量体とを共重合したもの、(4)カルボキシル基等を有しない芳香族オレフィンと、カルボキシル基等を有する単量体とを共重合して得られる共重合体の芳香環部分を水素化したもの、(5)カルボキシル基等を有しない脂環式オレフィン重合体にカルボキシル基等を有する化合物を変性反応により導入したもの、または(6)前記(1)~(5)のようにして得られるカルボン酸エステル基を有する脂環式オレフィン重合体のカルボン酸エステル基を、例えば加水分解等によりカルボキシル基に変換したもの等が挙げられる。 As the curing agent component, an alicyclic olefin polymer other than those described above can be used. As the alicyclic olefin polymer which can be suitably used, an alicyclic olefin having at least one of (1) a carboxyl group and a carboxylic anhydride group (hereinafter referred to as “carboxyl group etc.”) is necessary. (2) Aromatic ring portion of (co) polymer obtained by polymerizing aromatic olefin having carboxyl group or the like with other monomer as necessary (3) a copolymer of an alicyclic olefin having no carboxyl group and a monomer having a carboxyl group, (4) an aromatic olefin having no carboxyl group, A copolymer obtained by copolymerizing a monomer having a carboxyl group or the like with a hydrogenated aromatic ring part, and (5) a carbocyclic olefin polymer having no carboxyl group or the like. A compound in which a compound having a sil group or the like is introduced by a modification reaction, or (6) a carboxylic acid ester group of an alicyclic olefin polymer having a carboxylic acid ester group obtained as described in (1) to (5) above. Examples thereof include those converted into a carboxyl group by hydrolysis or the like.
 上記した硬化剤成分のなかでも、フェノール樹脂、シアネートエステル樹脂、活性エステル樹脂、脂環式オレフィン重合体が好ましい。特に、極性が高く、比誘電率を抑制しやすいことより、フェノール樹脂を用いることがより好ましい。 Among the above curing agent components, phenol resin, cyanate ester resin, active ester resin, and alicyclic olefin polymer are preferable. In particular, it is more preferable to use a phenol resin because it has high polarity and easily suppresses the relative dielectric constant.
 硬化剤成分は、硬化性成分のエポキシ基等の官能基(硬化反応可能な官能基)と、当該官能基と反応し得る硬化剤成分の官能基との割合(硬化剤成分の官能基の数/硬化性成分の官能基の数:当量比)が0.2~5となるような割合で含まれることが好ましい。当量比を上記の範囲とすることにより、より一層、保護特性に優れた半導体用封止材を得ることができる。 The curing agent component is a ratio of a functional group (functional group capable of curing reaction) such as an epoxy group of the curable component to a functional group of the curing agent component that can react with the functional group (the number of functional groups of the curing agent component). / The number of functional groups of the curable component: equivalent ratio) is preferably included in a ratio of 0.2 to 5. By setting the equivalent ratio in the above range, it is possible to obtain a semiconductor sealing material that is further excellent in protective properties.
<硬化促進剤成分>
 本発明による半導体用封止材を構成する成分として、硬化促進剤成分が含まれていてもよい。硬化促進剤成分は硬化性成分の硬化反応を促進させるものであり、封止材の半導体ウエハへの密着性および耐熱性をより一層向上させることができる。硬化促進剤成分としては、イミダゾールおよびその誘導体;アセトグアナミン、ベンゾグアナミン等のグアナミン類;ジアミノジフェニルメタン、m-フェニレンジアミン、m-キシレンジアミン、ジアミノジフェニルスルフォン、ジシアンジアミド、尿素、尿素誘導体、メラミン、多塩基ヒドラジド等のポリアミン類;これらの有機酸塩およびエポキシアダクトのいずれか少なくとも1種;三フッ化ホウ素のアミン錯体;エチルジアミノ-S-トリアジン、2,4-ジアミノ-S-トリアジン、2,4-ジアミノ-6-キシリル-S-トリアジン等のトリアジン誘導体類;トリメチルアミン、トリエタノールアミン、N,N-ジメチルオクチルアミン、N-ベンジルジメチルアミン、ピリジン、N-メチルモルホリン、ヘキサ(N-メチル)メラミン、2,4,6-トリス(ジメチルアミノフェノール)、テトラメチルグアニジン、m-アミノフェノール等のアミン類;ポリビニルフェノール、ポリビニルフェノール臭素化物、フェノールノボラック、アルキルフェノールノボラック等のポリフェノール類;トリブチルホスフィン、トリフェニルホスフィン、トリス-2-シアノエチルホスフィン等の有機ホスフィン類;トリ-n-ブチル(2,5-ジヒドロキシフェニル)ホスホニウムブロマイド、ヘキサデシルトリブチルホスホニウムクロライド等のホスホニウム塩類;ベンジルトリメチルアンモニウムクロライド、フェニルトリブチルアンモニウムクロライド等の4級アンモニウム塩類;前記多塩基酸無水物;ジフェニルヨードニウムテトラフルオロボロエート、トリフェニルスルホニウムヘキサフルオロアンチモネート、2,4,6-トリフェニルチオピリリウムヘキサフルオロホスフェート等の光カチオン重合触媒;スチレン-無水マレイン酸樹脂;フェニルイソシアネートとジメチルアミンの等モル反応物や、トリレンジイソシアネート、イソホロンジイソシアネート等の有機ポリイソシアネートとジメチルアミンの等モル反応物、金属触媒等の従来公知の硬化促進剤が挙げられ、これら1種を単独または2種以上混合して用いることができる。
<Curing accelerator component>
As a component constituting the semiconductor sealing material according to the present invention, a curing accelerator component may be included. The curing accelerator component promotes the curing reaction of the curable component, and can further improve the adhesion of the sealing material to the semiconductor wafer and the heat resistance. Curing accelerator components include imidazole and derivatives thereof; guanamines such as acetoguanamine and benzoguanamine; diaminodiphenylmethane, m-phenylenediamine, m-xylenediamine, diaminodiphenylsulfone, dicyandiamide, urea, urea derivatives, melamine, polybasic hydrazide At least one of these organic acid salts and epoxy adducts; an amine complex of boron trifluoride; ethyldiamino-S-triazine, 2,4-diamino-S-triazine, 2,4-diamino Triazine derivatives such as -6-xylyl-S-triazine; trimethylamine, triethanolamine, N, N-dimethyloctylamine, N-benzyldimethylamine, pyridine, N-methylmorpholine, hexa (N-methyl) Amines such as melamine, 2,4,6-tris (dimethylaminophenol), tetramethylguanidine, m-aminophenol; polyphenols such as polyvinylphenol, polyvinylphenol bromide, phenol novolac, alkylphenol novolac; tributylphosphine, tri Organic phosphines such as phenylphosphine and tris-2-cyanoethylphosphine; phosphonium salts such as tri-n-butyl (2,5-dihydroxyphenyl) phosphonium bromide and hexadecyltributylphosphonium chloride; benzyltrimethylammonium chloride and phenyltributylammonium chloride Quaternary ammonium salts such as the above; polybasic acid anhydrides; diphenyliodonium tetrafluoroboroates; Photocationic polymerization catalyst such as rusulfonium hexafluoroantimonate and 2,4,6-triphenylthiopyrylium hexafluorophosphate; styrene-maleic anhydride resin; equimolar reaction product of phenyl isocyanate and dimethylamine, tolylene diisocyanate Conventionally known curing accelerators such as an equimolar reaction product of an organic polyisocyanate such as isophorone diisocyanate and dimethylamine, a metal catalyst, and the like can be used, and one of these can be used alone or in combination of two or more.
 硬化促進剤成分は必須ではないが、特に硬化反応を促進したい場合には、上記した硬化性成分100質量部に対して、好ましくは0.01~20質量部の範囲で用いることができる。硬化促進剤成分として金属触媒を使用する場合、その含有量は、硬化性成分100質量部に対して金属換算で10~550ppmが好ましく、25~200ppmが好ましい。 The curing accelerator component is not essential, but when it is desired to accelerate the curing reaction, it can be used preferably in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the curable component described above. When a metal catalyst is used as the curing accelerator component, the content is preferably 10 to 550 ppm, more preferably 25 to 200 ppm in terms of metal with respect to 100 parts by mass of the curable component.
<無機フィラー成分>
 本発明による半導体用封止材には、無機フィラー成分が含まれていてもよい。無機フィラー成分が含有されることにより半導体用封止材の信頼性が向上する。また、半導体用封止材の裏面等にレーザーマーキングを施すことにより、レーザー光により削り取られた部分に無機フィラー成分が露出して、反射光が拡散するために白色に近い色を呈する。これにより、半導体用封止材が後述する着色剤成分を含有する場合、レーザーマーキング部分と他の部分とでコントラスト差が得られ、マーキング(印字)が明瞭になるという効果がある。
<Inorganic filler component>
The semiconductor sealing material according to the present invention may contain an inorganic filler component. By including the inorganic filler component, the reliability of the semiconductor sealing material is improved. Further, by applying laser marking to the back surface of the semiconductor sealing material, the inorganic filler component is exposed at the portion scraped off by the laser beam, and the reflected light diffuses to exhibit a color close to white. Thereby, when the sealing material for semiconductors contains the colorant component mentioned later, there is an effect that a contrast difference is obtained between the laser marking portion and other portions, and the marking (printing) becomes clear.
 無機フィラー成分としては、従来公知のものを制限なく使用することができ、例えばシリカ、アルミナ、タルク、水酸化アルミニウム、炭酸カルシウム、酸化チタン、酸化鉄、炭化珪素、窒化ホウ素等の粉末、これらを球形化したビーズ、単結晶繊維およびガラス繊維等が挙げられ、1種を単独でまたは2種以上を混合して使用することができる。これらの中でも、シリカ、アルミナ、酸化チタンが好ましい。 As the inorganic filler component, conventionally known ones can be used without limitation, for example, powders such as silica, alumina, talc, aluminum hydroxide, calcium carbonate, titanium oxide, iron oxide, silicon carbide, boron nitride, and the like. Examples thereof include spheroidized beads, single crystal fibers, and glass fibers. One kind can be used alone, or two or more kinds can be mixed and used. Among these, silica, alumina, and titanium oxide are preferable.
 無機フィラー成分は、平均粒子径は、好ましくは0.01~15μm、より好ましくは0.02~12μm、特に好ましくは0.03~10μmのものを使用することが好ましい。なお、本明細書中、平均粒子径は、電子顕微鏡で無作為に選んだ無機フィラー成分20個の長軸径を測定し、その算術平均値として算出される個数平均粒子径とする。 The inorganic filler component preferably has an average particle size of 0.01 to 15 μm, more preferably 0.02 to 12 μm, particularly preferably 0.03 to 10 μm. In the present specification, the average particle size is the number average particle size calculated as the arithmetic average value of the major axis diameters of 20 inorganic filler components randomly selected with an electron microscope.
 無機フィラー成分の含有量は、半導体用封止材を構成する全固形成分100質量部に対して、好ましくは10~2000質量部、より好ましくは30~1800質量部、特に好ましくは60~1500質量部である。 The content of the inorganic filler component is preferably 10 to 2000 parts by mass, more preferably 30 to 1800 parts by mass, and particularly preferably 60 to 1500 parts by mass with respect to 100 parts by mass of the total solid components constituting the semiconductor sealing material. Part.
<着色剤成分>
 本発明による半導体用封止材には、着色剤成分が含まれていてもよい。着色剤成分が含まれることにより、保護膜を備えた半導体チップを機器に組み込んだ際に、周囲の装置から発生する赤外線等による半導体装置の誤作動を防止することができる。また、レーザーマーキング等の手段により保護膜に刻印を行った場合に、文字、記号等のマークが認識しやすくなる。すなわち、保護膜が形成された半導体チップでは、保護膜の表面に品番等が通常レーザーマーキング法(レーザー光により保護膜表面を削り取り印字を行う方法)により印字されるが、保護膜が着色剤を含有することで、保護膜のレーザー光により削り取られた部分とそうでない部分のコントラスト差が充分に得られ、視認性が向上する。
<Colorant component>
The colorant component may be contained in the semiconductor sealing material according to the present invention. By including the colorant component, it is possible to prevent malfunction of the semiconductor device due to infrared rays or the like generated from surrounding devices when a semiconductor chip provided with a protective film is incorporated in the device. Further, when a protective film is engraved by means such as laser marking, marks such as characters and symbols can be easily recognized. That is, in a semiconductor chip on which a protective film is formed, the product number or the like is usually printed on the surface of the protective film by a laser marking method (a method in which the surface of the protective film is scraped off by laser light and printed). By containing, the contrast difference of the part scraped off with the laser beam of the protective film and the part which is not so is fully obtained, and visibility improves.
 着色剤成分として、有機または無機の顔料および染料を1種単独で、または2種以上を組み合わせて用いることができるが、これらの中でも電磁波や赤外線遮蔽性の点から黒色顔料が好ましい。黒色顔料としては、カーボンブラック、ペリレンブラック、酸化鉄、アニリンブラック、活性炭等が用いられるが、これらに限定されることはない。半導体装置の誤作動防止の観点からはカーボンブラックが特に好ましい。また、カーボンブラックに代えて、赤、青、緑、黄色などの顔料を混合し、黒色またはそれに近い黒色系の色とすることもできる。 As the colorant component, organic or inorganic pigments and dyes can be used singly or in combination of two or more. Among these, black pigments are preferable from the viewpoint of electromagnetic wave and infrared shielding properties. Examples of the black pigment include carbon black, perylene black, iron oxide, aniline black, activated carbon, and the like, but are not limited thereto. Carbon black is particularly preferable from the viewpoint of preventing malfunction of the semiconductor device. Further, in place of carbon black, pigments such as red, blue, green, and yellow can be mixed to obtain black or a close black color.
 着色剤成分は、半導体用封止材を構成する全固形分100質量部に対して、好ましくは0.1~35質量部、さらに好ましくは0.5~25質量部、特に好ましくは1~15質量部の割合で含有される。 The colorant component is preferably 0.1 to 35 parts by weight, more preferably 0.5 to 25 parts by weight, and particularly preferably 1 to 15 parts by weight based on 100 parts by weight of the total solid content constituting the semiconductor sealing material. It is contained at a ratio of parts by mass.
<カップリング剤成分>
 半導体用封止材の被着体(半導体ウエハ)に対する接着性、密着性および保護膜の凝集性のいずれか少なくとも1方を向上させるため、無機物と反応する官能基および有機官能基と反応する官能基を有するカップリング剤成分が含まれていてもよい。また、カップリング剤成分が含まれることにより、半導体用封止材を硬化して得られる保護膜の耐熱性を損なうことなく、その耐水性を向上させることができる。このようなカップリング剤としては、チタネート系カップリング剤、アルミネート系カップリング剤、シランカップリング剤等が挙げられる。これらのうちでも、シランカップリング剤が好ましい。
<Coupling agent component>
A functional group that reacts with an inorganic substance and a functional group that reacts with an organic functional group in order to improve at least one of adhesion, adhesion, and cohesiveness of a protective film to an adherend (semiconductor wafer) of a semiconductor sealing material A coupling agent component having a group may be contained. Moreover, the water resistance can be improved without impairing the heat resistance of the protective film obtained by hardening | curing the sealing material for semiconductors by including a coupling agent component. Examples of such coupling agents include titanate coupling agents, aluminate coupling agents, silane coupling agents, and the like. Of these, silane coupling agents are preferred.
 シランカップリング剤に含有される有機基としては、例えば、ビニル基、エポキシ基、スチリル基、メタクリロキシ基、アクリロキシ基、アミノ基、ウレイド基、クロロプロピル基、メルカプト基、ポリスルフィド基、イソシアネート基などが挙げられる。シランカップリング剤として市販されているものを使用することができ、例えば、KA-1003、KBM-1003、KBE-1003、KBM-303、KBM-403、KBE-402、KBE-403、KBM-1403、KBM-502、KBM-503、KBE-502、KBE-503、KBM-5103、KBM-602、KBM-603、KBE-603、KBM-903、KBE-903、KBE-9103、KBM-9103、KBM-573、KBM-575、KBM-6123、KBE-585、KBM-703、KBM-802、KBM-803、KBE-846、KBE-9007(いずれも商品名;信越シリコーン社製)などを挙げることができる。これらは1種を単独で用いてもよく2種以上を併用してもよい。 Examples of organic groups contained in the silane coupling agent include vinyl groups, epoxy groups, styryl groups, methacryloxy groups, acryloxy groups, amino groups, ureido groups, chloropropyl groups, mercapto groups, polysulfide groups, and isocyanate groups. Can be mentioned. Commercially available silane coupling agents can be used, for example, KA-1003, KBM-1003, KBE-1003, KBM-303, KBM-403, KBE-402, KBE-403, KBM-1403. , KBM-502, KBM-503, KBE-502, KBE-503, KBM-5103, KBM-602, KBM-603, KBE-603, KBM-903, KBE-903, KBE-9103, KBM-9103, KBM -573, KBM-575, KBM-6123, KBE-585, KBM-703, KBM-802, KBM-803, KBE-846, KBE-9007 (all trade names; manufactured by Shin-Etsu Silicone) it can. These may be used alone or in combination of two or more.
<フィルム性付与ポリマー成分>
 本発明による半導体用封止材は、液状、顆粒状、シート状などの形態をとることが可能である。この中でシート状の半導体用封止材とする場合、フィルム形成性を付与するポリマー成分(フィルム性付与ポリマー)を添加してもよい。本明細書において、フィルム性付与ポリマー成分は、後記する反応性のフィルム性付与ポリマー成分と区別するため、反応性官能基を有していないポリマー成分を意味するものとする。このようなフィルム性付与ポリマー成分としては、熱可塑性ポリヒドロキシポリエーテル樹脂や、エピクロルヒドリンと各種2官能フェノール化合物の縮合物であるフェノキシ樹脂またはその骨格に存在するヒドロキシエーテル部の水酸基を各種酸無水物や酸クロリドを使用してエステル化したフェノキシ樹脂、ポリビニルアセタール樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ブロック共重合体等が挙げられる。これらのポリマーは1種を単独または2種以上を組み合わせて用いてもよい。フィルム(ないしシート)形状を維持できるためには、これらポリマーの重量平均分子量(Mw)は、通常2×10以上であり、2×10~3×10であることが好ましい。
<Film property imparting polymer component>
The semiconductor sealing material according to the present invention can be in the form of liquid, granule, sheet or the like. In this, when it is set as a sheet-like semiconductor sealing material, you may add the polymer component (film property provision polymer) which provides film formability. In the present specification, the film property-imparting polymer component means a polymer component having no reactive functional group in order to be distinguished from a reactive film property-imparting polymer component described later. Examples of such film-imparting polymer components include thermoplastic polyhydroxy polyether resins, phenoxy resins that are condensates of epichlorohydrin and various bifunctional phenol compounds, or hydroxyl groups in the hydroxy ether portion present in the skeleton, and various acid anhydrides. And phenoxy resin, polyvinyl acetal resin, polyamide resin, polyamideimide resin, block copolymer and the like esterified using acid chloride. These polymers may be used alone or in combination of two or more. In order to maintain the film (or sheet) shape, the weight average molecular weight (Mw) of these polymers is usually 2 × 10 4 or more, and preferably 2 × 10 4 to 3 × 10 6 .
 なお、本明細書において、重量平均分子量(Mw)の値は、ゲル・パーミエーション・クロマトグラフィー法(GPC)法(ポリスチレン標準)により、下記測定装置、測定条件にて測定できる。
 測定装置:Waters製「Waters 2695」
 検出器:Waters製「Waters2414」、RI(示差屈折率計)
 カラム:Waters製「HSPgel Column,HR MB-L,3μm,6mm×150mm」×2+Waters製「HSPgel Column,HR1,3μm,6mm×150mm」×2
 測定条件:
 カラム温度:40℃
 RI検出器設定温度:35℃
 展開溶媒:テトラヒドロフラン
 流速:0.5ml/分
 サンプル量:10μl
 サンプル濃度:0.7wt%
In addition, in this specification, the value of a weight average molecular weight (Mw) can be measured with the following measuring apparatus and measurement conditions by the gel permeation chromatography method (GPC) method (polystyrene standard).
Measuring device: “Waters 2695” manufactured by Waters
Detector: “Waters 2414” manufactured by Waters, RI (differential refractometer)
Column: “HSPgel Column, HR MB-L, 3 μm, 6 mm × 150 mm” manufactured by Waters × 2 + “HSPgel Column, HR1, 3 μm, 6 mm × 150 mm” manufactured by Waters × 2
Measurement condition:
Column temperature: 40 ° C
RI detector set temperature: 35 ° C
Developing solvent: Tetrahydrofuran Flow rate: 0.5 ml / min Sample volume: 10 μl
Sample concentration: 0.7 wt%
 ポリビニルアセタール樹脂は、例えば、ポリビニルアルコール樹脂をアルデヒドでアセタール化することで得られる。上記アルデヒドとしては、特に限定されず、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド等が挙げられる。 The polyvinyl acetal resin can be obtained, for example, by acetalizing a polyvinyl alcohol resin with an aldehyde. The aldehyde is not particularly limited, and examples thereof include formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde and the like.
 フェノキシ樹脂の具体例としては東都化成社製FX280、FX293、三菱化学社製YX8100、YL6954、YL6974等が挙げられる。 Specific examples of the phenoxy resin include FX280 and FX293 manufactured by Tohto Kasei Co., Ltd., YX8100, YL6954, and YL6974 manufactured by Mitsubishi Chemical Corporation.
 ポリビニルアセタール樹脂の具体例としては、積水化学工業社製エスレックKSシリーズ、ポリアミド樹脂としては日立化成社製KS5000シリーズ、日本化薬社製BPシリーズ、 Specific examples of the polyvinyl acetal resin include the SEREC KS series manufactured by Sekisui Chemical Co., Ltd., and the polyamide resin includes the KS5000 series manufactured by Hitachi Chemical Co., Ltd. and the BP series manufactured by Nippon Kayaku Co., Ltd.
 ポリアミドイミド樹脂としては日立化成社製KS9000シリーズ等が挙げられる。 Examples of the polyamideimide resin include KS9000 series manufactured by Hitachi Chemical Co., Ltd.
 熱可塑性ポリヒドロキシポリエーテル樹脂は、フルオレン骨格を有する場合、高いガラス転移点を有し耐熱性に優れるため、半固形または固形エポキシ樹脂による低い熱膨張率を維持すると共にそのガラス転移点を維持し、得られる硬化被膜は低い熱膨張率と高いガラス転移点をバランス良く併せ有するものとなる。また、熱可塑性ポリヒドロキシポリエーテル樹脂は水酸基を有するため、半導体ウエハに対して良好な密着性を示す。 When a thermoplastic polyhydroxypolyether resin has a fluorene skeleton, it has a high glass transition point and excellent heat resistance, so it maintains a low coefficient of thermal expansion due to a semi-solid or solid epoxy resin and maintains its glass transition point. The resulting cured film has a low thermal expansion coefficient and a high glass transition point in a well-balanced manner. Moreover, since the thermoplastic polyhydroxy polyether resin has a hydroxyl group, it exhibits good adhesion to a semiconductor wafer.
 フィルム性付与ポリマー成分は、上記した成分を構成するモノマーがブロック共重合したものであってもよい。ブロック共重合体とは、性質の異なる二種類以上のポリマーが、共有結合で繋がり長い連鎖になった分子構造の共重合体のことである。ブロック共重合体としてはX-Y-X型またはX-Y-X’型ブロック共重合体が好ましい。X-Y-X型およびX-Y-X’型ブロック共重合体のうち、中央のYがソフトブロックでありガラス転移温度(Tg)が低く、その両外側のXまたはX’がハードブロックでありガラス転移温度(Tg)が中央のYブロックよりも高いポリマー単位により構成されているものが好ましい。ガラス転移温度(Tg)は示差走査熱量測定(DSC)により測定される。XとX’は相互に異なるポリマー単位でも同一のポリマー単位でも良い。 The film property-imparting polymer component may be obtained by block copolymerization of the monomers constituting the above components. The block copolymer is a copolymer having a molecular structure in which two or more kinds of polymers having different properties are connected by a covalent bond to form a long chain. As the block copolymer, an XYX type or XY-X 'type block copolymer is preferable. Among the XYX type and XYX ′ type block copolymers, the central Y is a soft block and the glass transition temperature (Tg) is low, and X or X ′ on both outer sides is a hard block. Yes What is comprised by the polymer unit whose glass transition temperature (Tg) is higher than a center Y block is preferable. The glass transition temperature (Tg) is measured by differential scanning calorimetry (DSC). X and X ′ may be different polymer units or the same polymer unit.
 また、X-Y-X型およびX-Y-X’型ブロック共重合体のうち、XまたはX’が、Tgが50℃以上のポリマー単位からなり、Yのガラス転移温度(Tg)が、XまたはX’のTg以下であるポリマー単位からなるブロック共重合体がさらに好ましい。また、X-Y-X型およびX-Y-X’型ブロック共重合体のうち、XまたはX’が、後記する硬化性成分との相溶性が高いものが好ましく、Yが硬化性成分との相溶性が低いものが好ましい。このように、両端のブロックがマトリックス(硬化性成分)に相溶であり、中央のブロックがマトリックス(硬化性成分)に不相溶であるブロック共重合体とすることで、マトリックス中において特異的な構造を示しやすくなると考えられる。 Of the XYX type and XYX ′ type block copolymers, X or X ′ is composed of polymer units having a Tg of 50 ° C. or more, and the glass transition temperature (Tg) of Y is More preferred is a block copolymer consisting of polymer units having a Tg of X or X ′ or less. Of the XYX type and XYX ′ type block copolymers, those in which X or X ′ is highly compatible with the curable component described later are preferred, and Y is the curable component. Those having low compatibility are preferred. In this way, a block copolymer in which the blocks at both ends are compatible with the matrix (curable component) and the block at the center is incompatible with the matrix (curable component) is unique in the matrix. It is thought that it becomes easy to show a simple structure.
 上記した種々のポリマーのなかでも、フェノキシ樹脂、ポリビニルアセタール樹脂、フルオレン骨格を有する熱可塑性ポリヒドロキシポリエーテル樹脂、ブロック共重合体が好ましい。 Among the various polymers described above, phenoxy resin, polyvinyl acetal resin, thermoplastic polyhydroxy polyether resin having a fluorene skeleton, and block copolymer are preferable.
 半導体用封止材を構成する全成分占めるフィルム性付与ポリマー成分の割合は、特に限定されるものではなく、全成分の合計を100質量部としたときに10~50質量部であることが好ましく、より好ましくは15~45質量部である。 The ratio of the film-forming polymer component occupying all components constituting the semiconductor sealing material is not particularly limited, and is preferably 10 to 50 parts by mass when the total of all components is 100 parts by mass. More preferably, it is 15 to 45 parts by mass.
<反応性フィルム性付与ポリマー成分>
 半導体用封止材を構成する成分として、後記する硬化性成分と反応し得るフィルム性付与ポリマー成分が含まれていてもよい。このような反応性フィルム性付与ポリマーとしては、カルボキシル基含有樹脂またはフェノール樹脂を用いると好ましい。特に、カルボキシル基含有樹脂を用いると、硬化性成分としてエポキシ樹脂が含まれる場合にエポキシ樹脂と反応し易く、フィルム形成性を付与しつつ半導体保護膜としての特性が向上するため好ましい。
<Reactive film property-imparting polymer component>
As a component constituting the semiconductor sealing material, a film property-imparting polymer component capable of reacting with a curable component described later may be contained. As such a reactive film imparting polymer, it is preferable to use a carboxyl group-containing resin or a phenol resin. In particular, the use of a carboxyl group-containing resin is preferable because it easily reacts with an epoxy resin when an epoxy resin is included as a curable component, and improves the properties as a semiconductor protective film while imparting film-forming properties.
 カルボキシル基含有樹脂としては、以下の(1)~(7)の樹脂を好適に使用することができる。
(1)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネートと、ジメチロールプロピオン酸、ジメチロールブタン酸等のカルボキシル基を含有する、ジアルコール化合物、ポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、ビスフェノールA系アルキレンオキシド付加体ジオール、フェノール性ヒドロキシル基およびアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるカルボキシル基含有ウレタン樹脂、
(2)ジイソシアネートと、カルボキシル基含有ジアルコール化合物の重付加反応によるカルボキシル基含有ウレタン樹脂、
(3)(メタ)アクリル酸等の不飽和カルボン酸と、スチレン、α-メチルスチレン、低級アルキル(メタ)アクリレート、イソブチレン等の不飽和基含有化合物との共重合により得られるカルボキシル基含有樹脂、
(4)2官能エポキシ樹脂または2官能オキセタン樹脂にアジピン酸、フタル酸、ヘキサヒドロフタル酸等のジカルボン酸を反応させ、生じた水酸基に無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸等の2塩基酸無水物を付加させたカルボキシル基含有ポリエステル樹脂、
(5)エポキシ樹脂またはオキセタン樹脂を開環させ、生成した水酸基に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂、
(6)1分子中に複数のフェノール性水酸基を有する化合物、すなわちポリフェノール化合物を、エチレンオキシド、プロピレンオキシド等のアルキレンオキシドと反応させて得られるポリアルコール樹脂等の反応生成物に、多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂、および
(7)1分子中に複数のフェノール性水酸基を有する化合物、すなわちポリフェノール化合物を、エチレンオキシド、プロピレンオキシド等のアルキレンオキシドと反応させて得られるポリアルコール樹脂等の反応生成物に、(メタ)アクリル酸等の不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に、更に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂、
等の樹脂を好適に使用することができる。なお、本明細書において、(メタ)アクリレートとは、アクリレート、メタクリレートおよびそれらの混合物を意味する。
As the carboxyl group-containing resin, the following resins (1) to (7) can be preferably used.
(1) Dialcohol compounds, polycarbonate-based polyols containing diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, aromatic diisocyanates, and carboxyl groups such as dimethylolpropionic acid and dimethylolbutanoic acid, Carboxyl group-containing urethane resin by polyaddition reaction of diol compounds such as polyether polyols, polyester polyols, polyolefin polyols, bisphenol A alkylene oxide adduct diols, compounds having phenolic hydroxyl groups and alcoholic hydroxyl groups,
(2) a carboxyl group-containing urethane resin by polyaddition reaction of diisocyanate and a carboxyl group-containing dialcohol compound,
(3) a carboxyl group-containing resin obtained by copolymerization of an unsaturated carboxylic acid such as (meth) acrylic acid and an unsaturated group-containing compound such as styrene, α-methylstyrene, lower alkyl (meth) acrylate, and isobutylene,
(4) A dicarboxylic acid such as adipic acid, phthalic acid or hexahydrophthalic acid is reacted with a bifunctional epoxy resin or a bifunctional oxetane resin, and the resulting hydroxyl groups such as phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, etc. A carboxyl group-containing polyester resin to which a dibasic acid anhydride is added,
(5) a carboxyl group-containing resin obtained by ring-opening an epoxy resin or an oxetane resin and reacting the generated hydroxyl group with a polybasic acid anhydride,
(6) A polybasic acid anhydride is added to a reaction product such as a polyalcohol resin obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule, that is, a polyphenol compound with an alkylene oxide such as ethylene oxide or propylene oxide. And (7) a polyalcohol resin obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule, that is, a polyphenol compound, with an alkylene oxide such as ethylene oxide or propylene oxide. A carboxyl group-containing resin obtained by reacting a reaction product such as (meth) acrylic acid or the like with an unsaturated group-containing monocarboxylic acid, and further reacting the resulting reaction product with a polybasic acid anhydride,
Etc. can be used suitably. In the present specification, (meth) acrylate means acrylate, methacrylate, and a mixture thereof.
 上記した樹脂のなかで、上記(1)、(2)、(6)および(7)は、感光性カルボキシル基含有樹脂としてだけでなく、非感光性カルボキシル基含有樹脂としても使用することができる。これらの中でも(6)および(7)の樹脂が全ての特性におけるバランスがよいことから好ましい。 Among the above-described resins, the above (1), (2), (6) and (7) can be used not only as a photosensitive carboxyl group-containing resin but also as a non-photosensitive carboxyl group-containing resin. . Among these, the resins (6) and (7) are preferable because they have a good balance in all properties.
 反応性フィルム性付与ポリマーの重量平均分子量は、樹脂骨格により異なるが、一般的には2×10~1.5×10の範囲であることが好ましく、より好ましくは3×10~1×10の範囲であるが、これら範囲に限定されるものではない。 The weight average molecular weight of the reactive film-forming polymer varies depending on the resin skeleton, but is generally preferably in the range of 2 × 10 3 to 1.5 × 10 5 , more preferably 3 × 10 3 to 1. The range is × 10 5 , but is not limited to these ranges.
 半導体用封止材を構成する全成分占める反応性フィルム性付与ポリマー成分の割合は、特に限定されるものではなく、例えば上記したフィルム性付与ポリマー100質量部のうち20~60質量部を反応性フィルム性付与ポリマーに置き換えることが好ましい。 The ratio of the reactive film property-imparting polymer component occupying all the components constituting the semiconductor sealing material is not particularly limited. It is preferable to replace it with a film-imparting polymer.
<その他の成分>
 本発明による半導体用封止材には、上記した成分以外に、必要に応じて各種添加剤が配合されてもよい。各種添加剤としては、レベリング剤、可塑剤、イオン捕捉剤、ゲッタリング剤、連鎖移動剤、剥離剤などが挙げられる。但し、三酸化アンチモンなどの難燃剤は特性を損なわない範囲で配合されても良いが、環境負荷の観点より、実質的に含まない方が好ましい。
<Other ingredients>
In addition to the above-described components, various additives may be blended in the semiconductor sealing material according to the present invention as necessary. Examples of various additives include leveling agents, plasticizers, ion scavengers, gettering agents, chain transfer agents, release agents and the like. However, a flame retardant such as antimony trioxide may be blended within a range that does not impair the characteristics, but it is preferable that the flame retardant is not substantially contained from the viewpoint of environmental load.
 半導体用封止材をフィルム形状とした際の厚さは封止する半導体チップや電子部品の厚みより厚ければ特に限定されないが、好ましくは3~800μm、より好ましくは5~700μm、特に好ましくは7~600μmである。 The thickness of the semiconductor sealing material in the form of a film is not particularly limited as long as it is thicker than the thickness of the semiconductor chip or electronic component to be sealed, but is preferably 3 to 800 μm, more preferably 5 to 700 μm, and particularly preferably. 7 to 600 μm.
 本発明による半導体用封止材は単層構造であってもよく、また多層構造であってもよい。 The semiconductor sealing material according to the present invention may have a single layer structure or a multilayer structure.
 本発明による半導体用封止材は、可視光線、赤外線および紫外線のいずれか少なくとも1種の透過性を示す尺度である、波長300~1200nmにおける最大透過率は20%以下であることが好ましく、0~15%であることがより好ましく、0%を超え10%以下であることがさらに好ましく、0.001~8%であることが特に好ましい。波長300~1200nmにおける半導体用封止材の最大透過率を上記範囲とすることで、可視光波長領域および赤外波長領域のいずれか少なくとも1種の透過性の低下が生じ、半導体装置の赤外線起因の誤作動の防止や、印字の視認性向上といった効果が得られる。波長300~1200nmにおける半導体用封止材の最大透過率は、上記した着色剤成分の種類および含有量により調整できる。なお、本明細書において、半導体用封止材の最大透過率は、UV-visスペクトル検査装置((株)島津製作所製)を用いて、硬化後の半導体用封止材(厚み25μm)の300~1200nmでの全光線透過率を測定し、透過率の最も高い値(最大透過率)をいうものとする。 The semiconductor sealing material according to the present invention preferably has a maximum transmittance of 20% or less at a wavelength of 300 to 1200 nm, which is a scale showing at least one of visible light, infrared light and ultraviolet light. More preferably, it is ˜15%, more preferably more than 0% and 10% or less, and particularly preferably 0.001-8%. By setting the maximum transmittance of the semiconductor sealing material at a wavelength of 300 to 1200 nm within the above range, at least one of the visible light wavelength region and the infrared wavelength region is deteriorated in transmittance, and the infrared rays of the semiconductor device are caused. Effects such as prevention of malfunctions and improved visibility of printing. The maximum transmittance of the semiconductor encapsulant at a wavelength of 300 to 1200 nm can be adjusted by the type and content of the colorant component described above. In this specification, the maximum transmittance of the semiconductor encapsulant is 300 of the cured semiconductor encapsulant (thickness 25 μm) using a UV-vis spectrum inspection apparatus (manufactured by Shimadzu Corporation). The total light transmittance at ˜1200 nm is measured, and the highest transmittance value (maximum transmittance) is assumed.
 本発明による半導体用封止材の形態は、液状、顆粒、タブレット状、シート状いずれでもよいが、容易に取扱いできることからシート状の形状を有していることが好ましい。 The form of the semiconductor sealing material according to the present invention may be liquid, granule, tablet, or sheet, but preferably has a sheet form because it can be easily handled.
<半導体用封止材の製造方法>
 本発明による半導体用封止材は、上記各成分を所定の割合で混合して得られる組成物(混合物)を用いて得られる。当該組成物は予め溶媒で希釈しておいてもよく、また混合時に溶媒に加えてもよい。また、組成物を使用して半導体用封止材を作製する時に、組成物を溶媒で希釈してもよい。溶媒としては、酢酸エチル、酢酸メチル、ジエチルエーテル、ジメチルエーテル、アセトン、メチルエチルケトン、アセトニトリル、ヘキサン、シクロヘキサン、トルエン、ヘプタンなどが挙げられる。この方法で液状品の半導体用封止材を得ることができる。
<Manufacturing method of sealing material for semiconductor>
The semiconductor sealing material according to the present invention is obtained by using a composition (mixture) obtained by mixing the above-described components at a predetermined ratio. The composition may be previously diluted with a solvent, or may be added to the solvent during mixing. Moreover, when producing the sealing material for semiconductors using a composition, you may dilute a composition with a solvent. Examples of the solvent include ethyl acetate, methyl acetate, diethyl ether, dimethyl ether, acetone, methyl ethyl ketone, acetonitrile, hexane, cyclohexane, toluene, heptane and the like. By this method, a liquid semiconductor sealing material can be obtained.
 上記のようにして調製された組成物(混合物)を支持体上に塗布して製膜することによりシート状の半導体用封止材とすることができる。製膜方法としては、従来公知の方法を適用することができ、平板プレス法、ロールナイフコーター、グラビアコーター、ダイコーター、リバースコーターなどの公知の手段により組成物(混合物)を支持体上に塗工し、乾燥することにより半導体用封止材を得ることができる。また、組成物(混合物)の塗工量を調整することにより、上記したような厚みの半導体用封止材を得ることができる。 The composition (mixture) prepared as described above is coated on a support and formed into a film, whereby a sheet-like semiconductor sealing material can be obtained. As a film forming method, a conventionally known method can be applied, and a composition (mixture) is coated on a support by a known means such as a flat plate press method, a roll knife coater, a gravure coater, a die coater, or a reverse coater. By processing and drying, a semiconductor sealing material can be obtained. Moreover, the semiconductor sealing material having the above-described thickness can be obtained by adjusting the coating amount of the composition (mixture).
 支持体としては、セパレート紙、セパレートフィルム、セパ紙、剥離フィルム、剥離紙等の従来公知のものを好適に使用できる。また、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)等のポリエステルフィルム、延伸ポリプロピレンフィルム(OPP)等のポリオレフィンフィルム、ポリイミドフィルム等のプラスチックフィルムからなる離型紙用基材の片面または両面に離型層を形成したものを用いてもよい。離型層としては、離型性を有する材料であれば、特に限定されないが、例えば、シリコーン樹脂、有機樹脂変性シリコーン樹脂、フッ素樹脂等が挙げられる。 As the support, conventionally known materials such as a separate paper, a separate film, a separate paper, a release film and a release paper can be suitably used. Also, release on one or both sides of a release paper substrate made of a polyester film such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), a polyolefin film such as stretched polypropylene film (OPP), or a plastic film such as polyimide film. You may use what formed the layer. The release layer is not particularly limited as long as it has a release property, and examples thereof include silicone resins, organic resin-modified silicone resins, and fluororesins.
 本発明の半導体用封止材は、プリント配線基板の封止材、太陽電池材料の封止材、電線・ケーブルの封止材基板と半導体チップとの接着剤にも用いることができる。特に、本発明の半導体用封止材は、半導体チップと、前記半導体チップの回路形成面が表面に露出するように半導体チップを埋設する半導体用封止材と、前記半導体チップの回路形成面側に設けられた再配線層と、を備え、前記再配線層が、半導体チップ領域以外の半導体用封止材領域にも設けられているファンアウト型のウェハレベルパッケージに好適に使用できる。 The semiconductor sealing material of the present invention can also be used as a sealing material for printed wiring boards, a sealing material for solar cell materials, and an adhesive between an electric wire / cable sealing material substrate and a semiconductor chip. In particular, the semiconductor encapsulant of the present invention includes a semiconductor chip, a semiconductor encapsulant that embeds the semiconductor chip so that the circuit formation surface of the semiconductor chip is exposed on the surface, and the circuit formation surface side of the semiconductor chip. The rewiring layer can be suitably used for a fan-out type wafer level package provided in a semiconductor sealing material region other than the semiconductor chip region.
 以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。なお、特に断りのないかぎり、「部」とは質量部を意味するものとする。 Hereinafter, the present invention will be described by way of examples, but the present invention is not limited to these examples. Unless otherwise specified, “parts” means parts by mass.
<反応性フィルム性付与ポリマー(カルボキシル基含有樹脂)1の合成>
 温度計、窒素導入装置兼アルキレンオキシド導入装置および撹拌装置を備えたオートクレーブに、ビスフェノールA-ホルムアルデヒド型フェノール樹脂(明和化成(株)製、商品名「BPA-D」、OH当量:120)120.0g、水酸化カリウム1.20gおよびトルエン120.0gを仕込み、撹拌しつつ系内を窒素置換し、加熱昇温した。次に、プロピレンオキシド63.8gを徐々に滴下し、125~132℃、0~4.8kg/cm2で16時間反応させた。
<Synthesis of Reactive Film Property-Providing Polymer (Carboxyl Group-Containing Resin) 1>
Into an autoclave equipped with a thermometer, a nitrogen introduction device / alkylene oxide introduction device, and a stirring device, a bisphenol A-formaldehyde type phenol resin (Maywa Kasei Co., Ltd., trade name “BPA-D”, OH equivalent: 120) 0 g, 1.20 g of potassium hydroxide and 120.0 g of toluene were charged, the inside of the system was purged with nitrogen while stirring, and the temperature was raised by heating. Next, 63.8 g of propylene oxide was gradually dropped and reacted at 125 to 132 ° C. and 0 to 4.8 kg / cm 2 for 16 hours.
 その後、反応溶液を室温まで冷却し、この反応溶液に89%リン酸1.56gを添加混合して水酸化カリウムを中和し、不揮発分62.1%、水酸基価が182.2g/eq.であるビスフェノールA-ホルムアルデヒド型フェノール樹脂のプロピレンオキシド反応溶液を得た。これは、フェノール性水酸基1当量当りアルキレンオキシドが平均1.08モル付加しているものであった。 Thereafter, the reaction solution was cooled to room temperature, and 1.56 g of 89% phosphoric acid was added to and mixed with the reaction solution to neutralize potassium hydroxide. The nonvolatile content was 62.1%, and the hydroxyl value was 182.2 g / eq. A propylene oxide reaction solution of bisphenol A-formaldehyde type phenol resin was obtained. This was an average of 1.08 moles of alkylene oxide added per equivalent of phenolic hydroxyl group.
 得られたノボラック型クレゾール樹脂のアルキレンオキシド反応溶液293.0g、アクリル酸43.2g、メタンスルホン酸11.53g、メチルハイドロキノン0.18gおよびトルエン252.9gを、撹拌機、温度計および空気吹き込み管を備えた反応器に仕込み、空気を10ml/分の速度で吹き込み、撹拌しながら、110℃で12時間反応させた。 293.0 g of the obtained novolak-type cresol resin alkylene oxide reaction solution, 43.2 g of acrylic acid, 11.53 g of methanesulfonic acid, 0.18 g of methylhydroquinone and 252.9 g of toluene were mixed with a stirrer, a thermometer and an air blowing tube. The reaction vessel was charged with air at a rate of 10 ml / min and reacted at 110 ° C. for 12 hours while stirring.
 反応により生成した水は、トルエンとの共沸混合物として12.6g留出した。その後、反応溶液を室温まで冷却し、得られた反応溶液を15%水酸化ナトリウム水溶液35.35gで中和し、次いで水洗した。その後、エバポレーターにてトルエンをプロピレングリコールモノメチルエーテルアセテート118.1gで置換しつつ留去し、ノボラック型アクリレート樹脂溶液を得た。 12.6 g of water produced by the reaction was distilled as an azeotrope with toluene. Thereafter, the reaction solution was cooled to room temperature, and the resulting reaction solution was neutralized with 35.35 g of a 15% aqueous sodium hydroxide solution and then washed with water. Thereafter, toluene was distilled off while substituting 118.1 g of propylene glycol monomethyl ether acetate with an evaporator to obtain a novolak acrylate resin solution.
 次に、得られたノボラック型アクリレート樹脂溶液332.5gおよびトリフェニルホスフィン1.22gを、撹拌器、温度計および空気吹き込み管を備えた反応器に仕込み、空気を10ml/分の速度で吹き込み、撹拌しながら、テトラヒドロフタル酸無水物60.8gを徐々に加え、95~101℃で6時間反応させ、固形物の酸価88mgKOH/g、不揮発分71%の反応性フィルム性付与ポリマー(カルボキシル基含有樹脂)1を得た。これを樹脂溶液Aとする。樹脂溶液Aに含まれる反応性フィルム性付与ポリマー(カルボキシル基含有樹脂)1成分の重量平均分子量は4×10であった。 Next, 332.5 g of the obtained novolac acrylate resin solution and 1.22 g of triphenylphosphine were charged into a reactor equipped with a stirrer, a thermometer and an air blowing tube, and air was blown at a rate of 10 ml / min. While stirring, 60.8 g of tetrahydrophthalic anhydride was gradually added and reacted at 95 to 101 ° C. for 6 hours to give a solid film with an acid value of 88 mg KOH / g and a non-volatile content of 71%. Containing resin) 1 was obtained. This is designated as resin solution A. The weight average molecular weight of one component of the reactive film-imparting polymer (carboxyl group-containing resin) contained in the resin solution A was 4 × 10 3 .
 なお、重量平均分子量(Mw)の値は、ゲル・パーミエーション・クロマトグラフィー法(GPC)法(ポリスチレン標準)により、下記測定装置、測定条件にて測定した。
 測定装置:Waters製「Waters 2695」
 検出器:Waters製「Waters2414」、RI(示差屈折率計)
 カラム:Waters製「HSPgel Column,HR MB-L,3μm,6mm×150mm」×2+Waters製「HSPgel Column,HR 1,3μm,6mm×150mm」×2
 測定条件:
 カラム温度:40℃
 RI検出器設定温度:35℃
 展開溶媒:テトラヒドロフラン
 流速:0.5ml/分
 サンプル量:10μl
 サンプル濃度:0.7wt%
The value of the weight average molecular weight (Mw) was measured by the gel permeation chromatography method (GPC) method (polystyrene standard) under the following measuring apparatus and measurement conditions.
Measuring device: “Waters 2695” manufactured by Waters
Detector: “Waters 2414” manufactured by Waters, RI (differential refractometer)
Column: “HSPgel Column, HR MB-L, 3 μm, 6 mm × 150 mm” by Waters × 2 + “HSPgel Column, HR 1, 3 μm, 6 mm × 150 mm” by Waters × 2
Measurement condition:
Column temperature: 40 ° C
RI detector set temperature: 35 ° C
Developing solvent: Tetrahydrofuran Flow rate: 0.5 ml / min Sample volume: 10 μl
Sample concentration: 0.7 wt%
<半導体用封止材1の作製>
 以下の成分を、メチルエチルケトンに、溶解・分散させて、固形分質量濃度20%の封止材用組成溶液1を調製した。
・アントラキノン                        2部
・フェノキシ樹脂(東都化成社製FX293)          50部
・樹脂溶液A                       70.4部
・ナフタレン型エポキシ樹脂(日本化薬社製NC-7000)   30部
・ビキシレノール型エポキシ樹脂(三菱化学社製 YX-4000)10部
・フェノールノボラック型エポキシ樹脂             10部
 (ザ・ダウ・ケミカル・カンパニ-製 DEN-431)
・カーボンブラック(三菱化学社製 カーボンMA-100)   10部
・球状シリカ(アドマテックス社製 アドマファインSO-E2)200部
・水酸化アルミニウム(昭和電工(株)製ハイジライト42M) 150部
・シランカップリング剤(信越化学社製 KBM-403)     2部
・2-フェニルイミダゾール(四国化成工業(株)製 2PZ)   2部
<Preparation of semiconductor sealing material 1>
The following components were dissolved and dispersed in methyl ethyl ketone to prepare a composition solution 1 for a sealing material having a solid content mass concentration of 20%.
・ 2 parts of anthraquinone ・ 50 parts of phenoxy resin (FX293 made by Tohto Kasei Co., Ltd.) ・ 70.4 parts of resin solution A ・ 30 parts of naphthalene type epoxy resin (NC-7000 made by Nippon Kayaku Co., Ltd.) ・ Bixylenol type epoxy resin (Mitsubishi Chemical) YX-4000) 10 parts, phenol novolac type epoxy resin 10 parts (DEN-431, manufactured by The Dow Chemical Company)
・ Carbon black (Carbon MA-100 manufactured by Mitsubishi Chemical Corporation) 10 parts ・ Spherical silica (Admafine SO-E2 manufactured by Admatechs) 200 parts ・ Aluminum hydroxide (Showa Denko Hydylite 42M) 150 parts ・ Silane Coupling agent (KBM-403, Shin-Etsu Chemical Co., Ltd.) 2 parts 2-phenylimidazole (2PZ, Shikoku Kasei Kogyo Co., Ltd.) 2 parts
 封止材用組成溶液1を表面に剥離処理を施したポリエチレンテレフタレートフィルム(PETフィルム)に塗布し、100℃で10分乾燥させて厚み50μmの半導体用封止材1を作製した。このフィルムを6枚積層して厚み300μmの半導体用封止材1を作製した。 The composition solution 1 for sealing material was applied to a polyethylene terephthalate film (PET film) whose surface was subjected to a release treatment, and dried at 100 ° C. for 10 minutes to prepare a sealing material 1 for semiconductor having a thickness of 50 μm. Six films were laminated to produce a semiconductor sealing material 1 having a thickness of 300 μm.
<半導体用封止材2の作製>
 以下の成分を配合し、ロール混練機で70℃4分間、続いて120℃6分間加熱し、合計10分間、減圧(0.01kg/cm)しながら溶融混練し、混練物2を作製した。
・アントラキノン                        2部
・ナフタレン型エポキシ樹脂(日本化薬社製 NC-7000)  30部
・ビキシレノール型エポキシ樹脂(三菱化学社製 YX-4000)10部
・フェノールノボラック型エポキシ樹脂             10部
 (ザ・ダウ・ケミカル・カンパニ-製 DEN-431)
・カーボンブラック(三菱化学社製 カーボンMA-100)   10部
・球状シリカ(アドマテックス社製 アドマファインSO-E2)500部
・シランカップリング剤(信越化学社製 KBM-403)     2部
・2-フェニルイミダゾール(四国化成工業(株)製 2PZ)   2部
<Preparation of semiconductor sealing material 2>
The following components were blended, heated at 70 ° C. for 4 minutes in a roll kneader, then heated at 120 ° C. for 6 minutes, and melt-kneaded while reducing pressure (0.01 kg / cm 2 ) for a total of 10 minutes to prepare kneaded product 2 .
・ Anthraquinone 2 parts ・ Naphthalene type epoxy resin (Nippon Kayaku NC-7000) 30 parts ・ Bixylenol type epoxy resin (Mitsubishi Chemical YX-4000) 10 parts ・ Phenol novolac type epoxy resin 10 parts (The Dow)・ DEN-431 manufactured by Chemical Company
・ Carbon black (Carbon MA-100 manufactured by Mitsubishi Chemical Co., Ltd.) 10 parts ・ Spherical silica (Admafine SO-E2 manufactured by Admatechs) 500 parts ・ Silane coupling agent (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.) 2 parts ・ 2- 2 parts of phenylimidazole (2PZ manufactured by Shikoku Chemicals Co., Ltd.)
 得られた混練物2を2枚の50μmのカバーフィルム(帝人ピューレックスフィルム)に挟むように配置し、平板プレス法により混練物をシート状に形成し、厚さ300μmのシート状の半導体用封止材2を得た。 The obtained kneaded material 2 is arranged so as to be sandwiched between two 50 μm cover films (Teijin Purex film), and the kneaded material is formed into a sheet by a flat plate pressing method. A stop material 2 was obtained.
<半導体用封止材3の作製>
 以下の成分を配合し、ロール混練機で70℃4分間、続いて120℃6分間加熱し、合計10分間、減圧(0.01kg/cm)しながら溶融混練し、混練物3を作製した。
・二酸化マンガン                        5部
・エポキシ樹脂(商品名エピコート1001;JER社製)    30部
・フェノールノボラック型エポキシ樹脂             10部
 (ザ・ダウ・ケミカル・カンパニ-製 DEN-431)
・C.I.Pigment Blue 15:3        0.8部
・C.I.Pigment Yellow 147      0.55部
・Paliogen Red K3580           1.5部
・球状シリカ(アドマテックス社製 アドマファインSO-E2)400部
・シランカップリング剤(信越化学社製 KBM-403)     2部
・2-フェニルイミダゾール(四国化成工業(株)製 2PZ)   2部
<Preparation of semiconductor sealing material 3>
The following components were blended, heated at 70 ° C. for 4 minutes in a roll kneader, then heated at 120 ° C. for 6 minutes, and melt-kneaded for 10 minutes in total while reducing the pressure (0.01 kg / cm 2 ) to prepare a kneaded product 3 .
・ Manganese dioxide 5 parts ・ Epoxy resin (trade name Epicoat 1001; manufactured by JER) 30 parts ・ Phenol novolac type epoxy resin 10 parts (DEN-431 manufactured by The Dow Chemical Company)
・ C. I. Pigment Blue 15: 3 0.8 part C.I. I. Pigment Yellow 147 0.55 part, Paliogen Red K3580 1.5 parts, spherical silica (Admafine SO-E2 manufactured by Admatechs) 400 parts, silane coupling agent (KBM-403, Shin-Etsu Chemical Co., Ltd.) 2 parts 2- 2 parts of phenylimidazole (2PZ manufactured by Shikoku Chemicals Co., Ltd.)
 得られた混練物3を2枚の50μmのPETフィルム(帝人ピューレックスフィルム)に挟むように配置し、平板プレス法により混練物をシート状に形成し、厚さ300μmのシート状の半導体用封止材3を得た。 The obtained kneaded material 3 is arranged so as to be sandwiched between two 50 μm PET films (Teijin Purex film), and the kneaded material is formed into a sheet shape by a flat plate pressing method. A stop material 3 was obtained.
<半導体用封止材4の作製>
 以下の成分を配合し、ロール混練機で70℃4分間、続いて120℃6分間加熱し、合計10分間、減圧(0.01kg/cm)しながら溶融混練し、混練物4を作製した。
・過酸化ベンゾイル                       3部
・ナフタレン型エポキシ樹脂(日本化薬社製 NC-7000)  30部
・ビキシレノール型エポキシ樹脂(三菱化学社製 YX-4000)10部
・フェノールノボラック型エポキシ樹脂             10部
 (ザ・ダウ・ケミカル・カンパニ-製 DEN-431)
・カーボンブラック(三菱化学社製 カーボンMA-100)   10部
・球状シリカ(アドマテックス社製 アドマファインSO-E2)600部
・酸化チタン(石原産業(株)製 CR-90)         15部
・シランカップリング剤(信越化学社製 KBM-403)     2部
・2-フェニルイミダゾール(四国化成工業(株)製 2PZ)   2部
<Preparation of Semiconductor Sealant 4>
The following components were blended, heated at 70 ° C. for 4 minutes in a roll kneader, then heated at 120 ° C. for 6 minutes, and melt-kneaded for 10 minutes in total while reducing pressure (0.01 kg / cm 2 ) to prepare kneaded product 4 .
・ Benzoyl peroxide 3 parts ・ Naphthalene type epoxy resin (Nippon Kayaku NC-7000) 30 parts ・ Bixylenol type epoxy resin (Mitsubishi Chemical YX-4000) 10 parts ・ Phenol novolac type epoxy resin 10 parts (The・ DEN-431 manufactured by Dow Chemical Company
・ Carbon black (Carbon MA-100 made by Mitsubishi Chemical Corporation) 10 parts ・ Spherical silica (Admafine SO-E2 made by Admatechs) 600 parts ・ Titanium oxide (CR-90 made by Ishihara Sangyo Co., Ltd.) 15 parts ・ Silane cup Ring agent (KBE-403, Shin-Etsu Chemical Co., Ltd.) 2 parts 2-phenylimidazole (2PZ, Shikoku Chemicals Co., Ltd.) 2 parts
 得られた混練物4を2枚の50μmのカバーフィルム(帝人ピューレックスフィルム)に挟むように配置し、平板プレス法により混練物をシート状に形成し、厚さ300μmのシート状の半導体用封止材4を得た。 The obtained kneaded product 4 is arranged so as to be sandwiched between two 50 μm cover films (Teijin Purex film), and the kneaded product is formed into a sheet by a flat plate pressing method. A stop material 4 was obtained.
<半導体用封止材5の作製>
 以下の成分を配合し、ロール混練機で70℃4分間、続いて120℃6分間加熱し、合計10分間、減圧(0.01kg/cm)しながら溶融混練し、混練物5を作製した。
・アントラキノン(分子量208)                3部
・酸化防止剤(アデカスタブ AO-60)            1部
・ナフタレン型エポキシ樹脂(日本化薬社製 NC-7000)  30部
・ビキシレノール型エポキシ樹脂(三菱化学社製 YX-4000)10部
・フェノールノボラック型エポキシ樹脂             10部
 (ザ・ダウ・ケミカル・カンパニ-製 DEN-431)
・カーボンブラック(三菱化学社製 カーボンMA-100)   10部
・球状シリカ(アドマテックス社製 アドマファインSO-E2)500部
・シランカップリング剤(信越化学社製 KBM-403)     2部
・2-フェニルイミダゾール(四国化成工業(株)製 2PZ)   2部
 なお、半導体用封止材5において、酸化防止剤の官能基のモル数は、酸化剤であるアントラキノンの官能基のモル数を100%とすると、約12%となる。
<Preparation of semiconductor sealing material 5>
The following components were blended, heated at 70 ° C. for 4 minutes in a roll kneader, then heated at 120 ° C. for 6 minutes, and melt-kneaded while reducing pressure (0.01 kg / cm 2 ) for a total of 10 minutes to prepare kneaded product 5 .
・ Anthraquinone (molecular weight 208) 3 parts ・ Antioxidant (Adekastab AO-60) 1 part ・ Naphthalene type epoxy resin (NC-7000, Nippon Kayaku Co., Ltd.) 30 parts ・ Bixylenol type epoxy resin (YX-, manufactured by Mitsubishi Chemical Corporation) 4000) 10 parts ・ Phenol novolac type epoxy resin 10 parts (DEN-431 manufactured by The Dow Chemical Company)
・ Carbon black (Carbon MA-100 manufactured by Mitsubishi Chemical Co., Ltd.) 10 parts ・ Spherical silica (Admafine SO-E2 manufactured by Admatechs) 500 parts ・ Silane coupling agent (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.) 2 parts ・ 2- Phenylimidazole (2PZ manufactured by Shikoku Kasei Kogyo Co., Ltd.) 2 parts In the semiconductor sealing material 5, the number of moles of the functional group of the antioxidant is 100% Then, it becomes about 12%.
 得られた混練物5を2枚の50μmのカバーフィルム(帝人ピューレックスフィルム)に挟むように配置し、平板プレス法により混練物をシート状に形成し、厚さ300μmのシート状の半導体用封止材5を得た。 The obtained kneaded product 5 is placed so as to be sandwiched between two 50 μm cover films (Teijin Purex film), and the kneaded product is formed into a sheet by a flat plate pressing method. A stop material 5 was obtained.
<半導体用封止材6の作製>
 アントラキノンを用いなかったこと以外は半導体用封止材1と同様に操作して、厚み300μmの半導体用封止材6を作製した。
<Preparation of semiconductor sealing material 6>
A semiconductor encapsulant 6 having a thickness of 300 μm was produced in the same manner as in the semiconductor encapsulant 1 except that no anthraquinone was used.
<半導体用封止材7の作製>
 アントラキノンを用いなかったこと以外は半導体用封止材2と同様に操作して、厚み300μmの半導体用封止材7を作製した。
<Preparation of semiconductor sealing material 7>
A semiconductor encapsulant 7 having a thickness of 300 μm was produced in the same manner as in the semiconductor encapsulant 2 except that no anthraquinone was used.
<半導体用封止材8の作製>
 二酸化マンガンを用いなかったこと以外は半導体用封止材3と同様に操作して、厚み300μmの半導体用封止材8を作製した。
<Preparation of semiconductor sealing material 8>
A semiconductor encapsulant 8 having a thickness of 300 μm was produced in the same manner as in the semiconductor encapsulant 3 except that manganese dioxide was not used.
<半導体用封止材9の作製>
 過酸化ベンゾイルを用いなかったこと以外は半導体用封止材4と同様に操作して、厚み300μmの半導体用封止材9を作製した。
<Preparation of semiconductor sealing material 9>
A semiconductor encapsulant 9 having a thickness of 300 μm was produced in the same manner as in the semiconductor encapsulant 4 except that benzoyl peroxide was not used.
<半導体用封止材10の作製>
 アントラキノンとアデカスタブ AO-60を用いなかったこと以外は半導体用封止材5と同様に操作して、厚み300μmの半導体用封止材10を作製した。
<Preparation of semiconductor sealing material 10>
A semiconductor encapsulant 10 having a thickness of 300 μm was produced in the same manner as in the semiconductor encapsulant 5 except that anthraquinone and Adeka Stab AO-60 were not used.
<半導体ウエハの準備>
 半導体ウエハとして、キャノシス株式会社製の片面に100nmのSiO膜が形成された、4inch 厚み200μmに研磨されたP型シリコンウエハを準備した。
<Preparation of semiconductor wafer>
As a semiconductor wafer, a P-type silicon wafer polished to a 4-inch thickness of 200 μm in which a 100 nm SiO 2 film was formed on one side made by Canosis Co., Ltd. was prepared.
<半導体パッケージの作製>
 上記した半導体ウエハをダイシング装置を用いてダイシングを行い、10mm×10mm角の半導体チップを得た。SUS製平面基板上に仮固定フィルムを配置し、上記の半導体チップをSiO面が仮固定フィルムと接触するようにさらに配置した。この上に20mm×20mm角シート状の半導体用封止材を中心位置がおよそ一致するように積層し、加熱式プレス圧着機を用いて150℃で1時間圧縮成形させた。得られた積層体から仮固定フィルムをはがして半導体パッケージを得た。
<Fabrication of semiconductor packages>
The above semiconductor wafer was diced using a dicing apparatus to obtain a 10 mm × 10 mm square semiconductor chip. A temporarily fixed film was disposed on a SUS flat substrate, and the semiconductor chip was further disposed such that the SiO 2 surface was in contact with the temporarily fixed film. A 20 mm × 20 mm square sheet-shaped semiconductor encapsulant was laminated thereon so that the center positions were approximately the same, and compression-molded at 150 ° C. for 1 hour using a heating type press crimping machine. The temporarily fixed film was peeled off from the obtained laminate to obtain a semiconductor package.
 半導体チップと半導体用封止材との間の隙間形成の抑制の確認方法として、密着性を評価した。評価は以下のようにして行った。
<評価>
 25℃のTMAH2.38%水溶液(商品名AD-10、多摩化学工業株式会社製)を準備し、ここに作製した半導体パッケージを半導体チップのSiO面が上になるように浸漬し、5分間処理した。その後半導体パッケージを取り出し、純水で2回リンスした。その後エアブローで水分を飛ばし、100℃に設定したホットプレートに5分間のせて回収した。得られた処理後の半導体パッケージは半導体チップ側から半導体チップと封止材の境界部分を光学顕微鏡および電子顕微鏡で観察し、隙間が発生せず密着しているものを〇、隙間が観察されるものを×と判定した。評価結果は下記の表1に示される通りであった。
Adhesion was evaluated as a method for confirming suppression of gap formation between a semiconductor chip and a semiconductor sealing material. Evaluation was performed as follows.
<Evaluation>
Prepare a 2.38% TMAH 2.38% aqueous solution (trade name AD-10, manufactured by Tama Chemical Industry Co., Ltd.) at 25 ° C., and immerse the semiconductor package produced here with the SiO 2 surface of the semiconductor chip facing up for 5 minutes. Processed. Thereafter, the semiconductor package was taken out and rinsed twice with pure water. Thereafter, moisture was blown off by air blow, and the mixture was collected on a hot plate set at 100 ° C. for 5 minutes. As for the obtained semiconductor package after processing, the boundary part between the semiconductor chip and the sealing material is observed with an optical microscope and an electron microscope from the semiconductor chip side. The thing was determined as x. The evaluation results were as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示された評価結果からも明らかなように、酸化剤を含む半導体用封止材を用いた実施例1~5は、アルカリ処理しても半導体チップと封止材の境界が密着しており良好であった。一方、酸化剤を含まない半導体封止材を用いた比較例1~5では、アルカリ処理により半導体チップと封止材の境界に隙間が発生していた。推測ではあるが、実施例1~5の半導体ウエハでは、半導体用封止材に含まれる酸化剤により、半導体チップであるSiの表面が酸化されてSiOからなる薄膜が形成され、その結果、アルカリ処理による半導体チップの側面のエッチングが抑制されたものと考えられる。 As is clear from the evaluation results shown in Table 1, in Examples 1 to 5 using the semiconductor encapsulant containing an oxidant, the boundary between the semiconductor chip and the encapsulant was adhered even after the alkali treatment. It was good. On the other hand, in Comparative Examples 1 to 5 using the semiconductor encapsulant containing no oxidizer, a gap was generated at the boundary between the semiconductor chip and the encapsulant due to the alkali treatment. As estimated, in the semiconductor wafers of Examples 1 to 5, the surface of Si, which is a semiconductor chip, is oxidized by the oxidant contained in the semiconductor sealing material, and a thin film made of SiO 2 is formed. It is considered that the etching of the side surface of the semiconductor chip due to the alkali treatment was suppressed.

Claims (4)

  1.  半導体を酸化させ得る酸化剤を含んでなる半導体用封止材。 A semiconductor encapsulant comprising an oxidant capable of oxidizing a semiconductor.
  2.  硬化性成分、硬化剤成分、硬化促進剤成分、および無機フィラーを含んでなる、請求項1に記載の半導体用封止材。 The semiconductor sealing material according to claim 1, comprising a curable component, a curing agent component, a curing accelerator component, and an inorganic filler.
  3.  シート状の形状を有する、請求項1に記載の半導体用封止材。 The sealing material for semiconductor according to claim 1, which has a sheet-like shape.
  4.  ファンアウト型のウェハレベルパッケージに用いられる、請求項1に記載の半導体用封止材。 2. The semiconductor sealing material according to claim 1, which is used for a fan-out type wafer level package.
PCT/JP2016/088444 2015-12-25 2016-12-22 Sealant for semiconductor WO2017111057A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MYPI2018000991A MY196462A (en) 2015-12-25 2016-12-22 Semiconductor Encapsulant
KR1020187017963A KR102384582B1 (en) 2015-12-25 2016-12-22 semiconductor encapsulant
CN201680073780.XA CN108369928B (en) 2015-12-25 2016-12-22 Sealing material for semiconductor
PH12018501308A PH12018501308A1 (en) 2015-12-25 2018-06-19 Semiconductor encapsulant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015254480A JP5978380B1 (en) 2015-12-25 2015-12-25 Sealant for semiconductor
JP2015-254480 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017111057A1 true WO2017111057A1 (en) 2017-06-29

Family

ID=56760075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088444 WO2017111057A1 (en) 2015-12-25 2016-12-22 Sealant for semiconductor

Country Status (7)

Country Link
JP (1) JP5978380B1 (en)
KR (1) KR102384582B1 (en)
CN (1) CN108369928B (en)
MY (1) MY196462A (en)
PH (1) PH12018501308A1 (en)
TW (1) TWI750145B (en)
WO (1) WO2017111057A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109575822A (en) * 2017-09-29 2019-04-05 琳得科株式会社 Resin sheet
WO2019124924A1 (en) * 2017-12-18 2019-06-27 주식회사 엘지화학 Composition for encapsulation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019196475A (en) * 2018-05-11 2019-11-14 サムスン エレクトロニクス カンパニー リミテッド Low-loss insulating resin composition and insulating film using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109543A (en) * 1998-10-07 2000-04-18 Hitachi Chem Co Ltd Epoxy resin composition for semiconductor sealing use and semiconductor device using the same
WO2015037458A1 (en) * 2013-09-12 2015-03-19 日東電工株式会社 Method for manufacturing semiconductor device
JP2015126124A (en) * 2013-12-26 2015-07-06 日東電工株式会社 Semiconductor package manufacturing method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2558293B2 (en) * 1987-09-14 1996-11-27 日東電工株式会社 Semiconductor device
JP3128291B2 (en) * 1990-10-31 2001-01-29 株式会社東芝 Maleimide resin composition and resin-sealed semiconductor device using the same
JP2000036552A (en) * 1998-07-17 2000-02-02 Fujitsu Ltd Semiconductor device and separately taking out method of metal component in sealing material used therein
TWI312800B (en) * 2002-09-05 2009-08-01 Daicel Chem Process for the preparation of an alicyclic diepoxy compound, a curable epoxy resin composition, an epoxy resin composition for encapsulating electronics parts, a stabilizer for electrically insulating oils, and an epoxy resin composition for casting
JP3998564B2 (en) * 2002-11-13 2007-10-31 株式会社巴川製紙所 Curable adhesive composition for semiconductor encapsulation and adhesive sheet
JP6019550B2 (en) 2011-08-09 2016-11-02 富士通株式会社 Manufacturing method of electronic device
KR101393700B1 (en) * 2012-11-29 2014-05-13 서울과학기술대학교 산학협력단 Manufacturing of fan-out wafer level packaging fortified preventing warpage of wafer
JP2015041663A (en) * 2013-08-21 2015-03-02 日東電工株式会社 Sealing sheet, and method of manufacturing semiconductor device
JP2015056458A (en) * 2013-09-10 2015-03-23 株式会社東芝 Semiconductor device
JP6546378B2 (en) * 2013-11-19 2019-07-17 日東電工株式会社 Resin sheet
WO2015098842A1 (en) * 2013-12-26 2015-07-02 日東電工株式会社 Method for manufacturing semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109543A (en) * 1998-10-07 2000-04-18 Hitachi Chem Co Ltd Epoxy resin composition for semiconductor sealing use and semiconductor device using the same
WO2015037458A1 (en) * 2013-09-12 2015-03-19 日東電工株式会社 Method for manufacturing semiconductor device
JP2015126124A (en) * 2013-12-26 2015-07-06 日東電工株式会社 Semiconductor package manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109575822A (en) * 2017-09-29 2019-04-05 琳得科株式会社 Resin sheet
JP2019067853A (en) * 2017-09-29 2019-04-25 リンテック株式会社 Resin sheet
JP7025879B2 (en) 2017-09-29 2022-02-25 リンテック株式会社 Resin sheet
WO2019124924A1 (en) * 2017-12-18 2019-06-27 주식회사 엘지화학 Composition for encapsulation
US11479664B2 (en) 2017-12-18 2022-10-25 Lg Chem, Ltd. Encapsulating composition

Also Published As

Publication number Publication date
JP2017118045A (en) 2017-06-29
PH12018501308A1 (en) 2019-02-11
TWI750145B (en) 2021-12-21
MY196462A (en) 2023-04-12
CN108369928A (en) 2018-08-03
KR102384582B1 (en) 2022-04-08
JP5978380B1 (en) 2016-08-24
KR20180098558A (en) 2018-09-04
CN108369928B (en) 2022-01-18
TW201737429A (en) 2017-10-16

Similar Documents

Publication Publication Date Title
KR101307886B1 (en) Active Energy Ray-Curable Resin Composition And Use Thereof
TWI745366B (en) Curable resin composition, dry film, cured product, and printed wiring board
KR102103660B1 (en) Curable resin composition and fan-out wafer level package
KR20200124700A (en) Resin composition for laminated electronic parts, dry film, cured product, laminated electronic parts and printed wiring board
JP5978380B1 (en) Sealant for semiconductor
JP6142101B1 (en) Protective film forming film
JP6199451B2 (en) Sealant for semiconductor
JP6672069B2 (en) Curable resin composition
JP6779719B2 (en) Warp straightener for fan-out type wafer level package
JP2021141261A (en) Electronic element-sealing film, electronic component arranged by use thereof, and manufacturing method of such electronic component
KR102403104B1 (en) semiconductor encapsulant
JP7444192B2 (en) Photosensitive resin composition
WO2022075432A1 (en) Photosensitive multilayer resin structure, dry film, cured product and electronic component
WO2021045085A1 (en) Curable resin composition, dry film and cured product of same, and electronic component containing said cured product
CN114479349A (en) Resin composition
KR20180111600A (en) Curable composition, dry film, cured product and printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878943

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12018501308

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 20187017963

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878943

Country of ref document: EP

Kind code of ref document: A1