WO2017110845A1 - Active energy ray-curable resin composition and method for producing same - Google Patents

Active energy ray-curable resin composition and method for producing same Download PDF

Info

Publication number
WO2017110845A1
WO2017110845A1 PCT/JP2016/088044 JP2016088044W WO2017110845A1 WO 2017110845 A1 WO2017110845 A1 WO 2017110845A1 JP 2016088044 W JP2016088044 W JP 2016088044W WO 2017110845 A1 WO2017110845 A1 WO 2017110845A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
compound
urethane
resin composition
Prior art date
Application number
PCT/JP2016/088044
Other languages
French (fr)
Japanese (ja)
Inventor
亮輔 谷口
Original Assignee
日本合成化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本合成化学工業株式会社 filed Critical 日本合成化学工業株式会社
Priority to KR1020187010833A priority Critical patent/KR20180093878A/en
Priority to JP2016574470A priority patent/JPWO2017110845A1/en
Priority to CN201680060847.6A priority patent/CN108137762A/en
Publication of WO2017110845A1 publication Critical patent/WO2017110845A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4063Mixtures of compounds of group C08G18/62 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen

Definitions

  • the present invention relates to an active energy ray-curable resin composition, and more specifically, the viscosity change with time is very small, the storage stability is excellent, and it is suitably used for an adhesive composition and a coating composition.
  • the present invention relates to an active energy ray-curable resin composition.
  • active energy ray-curable resin compositions have been widely used as coating agents, adhesives, adhesives, or anchor coating agents for various substrates because curing is completed by irradiation of active energy rays for a very short time. It has been.
  • Such an active energy ray-curable resin composition is often blended with urethane (meth) acrylate and a photopolymerizable monomer, and preferably further with a photopolymerization initiator.
  • urethane (meth) acrylate is flexible. It is very often used because it has properties such as tough coatings.
  • urethane (meth) acrylate having a linear main chain application to a pressure-sensitive adhesive composition or a coating agent composition is greatly expected.
  • a transparent pressure-sensitive adhesive sheet is used for bonding the optical member.
  • the pressure-sensitive adhesive sheet is required to have excellent step following performance in addition to the adhesive strength.
  • a urethane (meth) acrylate having a relatively high molecular weight. Is used.
  • urethane (meth) acrylates various catalysts are generally used for the purpose of promoting the reaction.
  • an organotin compound is generally used because of its high activity as a urethanization reaction catalyst. in use.
  • the present inventor as a method for suppressing the increase in viscosity over time, first, in order to reduce the residual amount of unreacted isocyanate groups as much as possible, the active energy ray-curable resin composition containing a large amount of hydroxyl group-containing monomer I found something.
  • the active energy ray-curable resin composition containing a large amount of the above hydroxyl group-containing monomer has suppressed the increase in viscosity over time, but this time the viscosity of the composition will decrease over time. A new problem has arisen.
  • the present invention is an active energy ray-curable resin composition that is excellent in storage stability without causing a change in viscosity over time and is suitably used for a pressure-sensitive adhesive composition or a coating agent composition, and its The object is to provide a manufacturing method.
  • a urethane (meth) acrylate compound in an active energy ray-curable resin composition in which a urethane (meth) acrylate compound and a hydroxyl group-containing monomer are used in combination.
  • Active energy ray curing with excellent storage stability over time by using a urethane (meth) acrylate compound that uses a metal salt that is not normally used for the production of a urethane (meth) acrylate compound as a catalyst.
  • the present invention was completed by finding that a functional resin composition was obtained.
  • the present invention is an active energy ray-curable resin composition containing a urethane (meth) acrylate compound (A), an ethylenically unsaturated monomer (B) excluding the above (A), and a metal salt (X).
  • the active energy ray-curable resin composition is characterized by containing a hydroxyl group-containing monomer (b1) as the ethylenically unsaturated monomer (B). This is the second gist.
  • the active energy ray-curable resin composition obtained in the present invention is an active energy ray-curable resin composition containing the following (A), (B), and (X), and a hydroxyl group-containing monomer as the following (B):
  • (B) By containing (b1), the viscosity change with time is very small and the storage stability is excellent, so that it is suitably used for a pressure-sensitive adhesive composition or a coating agent composition.
  • (A) Urethane (meth) acrylate-based compound.
  • B An ethylenically unsaturated monomer excluding (A) above.
  • (X) Metal salt Metal salt.
  • the content of the metal salt (X) is 1 ⁇ 10 ⁇ 3 to 1 ⁇ based on 100 parts by weight of the total of the urethane (meth) acrylate compound (A) and the ethylenically unsaturated monomer (B). When it is 10 ⁇ 1 parts by weight, the viscosity change with time is further reduced.
  • the urethane (meth) acrylate compound (A) is a urethane (meth) acrylate compound having at least one of an ester bond and a carbonate bond other than the ester bond in the (meth) acryloyloxy group.
  • the effect of the present invention can be obtained with a high change in viscosity with time and excellent storage stability.
  • the urethane (meth) acrylate compound (A) has a (meth) acryloyl equivalent of 5,000 to 100,000, a flexible cured coating film can be obtained, and a more appropriate viscosity range can be obtained. Easy handling.
  • the content of the hydroxyl group-containing monomer (b1) is 20 to 70 parts by weight with respect to a total of 100 parts by weight of the urethane (meth) acrylate compound (A) and the ethylenically unsaturated monomer (B).
  • the viscosity stability over time is further improved.
  • the urethane (meth) acrylate compound (A) is a reaction product of a polyvalent isocyanate compound (a1), a hydroxyl group-containing (meth) acrylate compound (a2), and a polyol compound (a3).
  • the polyol compound (a3) is at least one of a polyester polyol and a polycarbonate polyol, the effects of the present invention can be easily obtained and the versatility becomes excellent.
  • the metal salt (X) is a fatty acid metal salt having 8 to 10 carbon atoms, it exhibits a suitable catalytic ability and is excellent in reactivity.
  • an active energy ray-curable resin composition containing the following (A), (B) and (X), and containing the hydroxyl group-containing monomer (b1) as the following (B):
  • the acrylate compound (A) is reacted with the polyvalent isocyanate compound (a1), the hydroxyl group-containing (meth) acrylate compound (a2), and the polyol compound (a3) in the presence of the metal salt (X).
  • an active energy ray-curable resin composition having very little change in viscosity with time and excellent storage stability can be obtained.
  • (X) Metal salt Metal salt.
  • (meth) acrylic acid is acrylic acid or methacrylic acid
  • (meth) acryl is acrylic or methacrylic
  • (meth) acryloyl is acryloyl or methacryloyl
  • (meth) acrylate is acrylate or Each means methacrylate.
  • the acrylic resin is a resin obtained by polymerizing a polymerization component containing at least one (meth) acrylate monomer.
  • the active energy ray-curable resin composition of the present invention contains a urethane (meth) acrylate compound (A), an ethylenically unsaturated monomer (B) and a metal salt (X). In the present invention, It is characterized by containing the metal salt (X).
  • A urethane (meth) acrylate compound
  • B ethylenically unsaturated monomer
  • X metal salt
  • each component which comprises the active energy ray curable resin composition of this invention is demonstrated.
  • the metal salt (X) is preferably a fatty acid salt of a metal such as tin, bismuth, zinc or titanium, for example, tin octylate, tin decanoate, tin neodecanoate, tin laurate, tin myristate, or stearate.
  • fatty acid metal salts having 8 to 10 carbon atoms particularly preferred are tin or bismuth fatty acid salts of 8 to 10 carbon atoms because of excellent reactivity, and particularly preferred are tin octylate and tin decanoate.
  • the content of the metal salt (X) is described below of the urethane (meth) acrylate compound (A) and the ethylenically unsaturated monomers 1 ⁇ 100 parts by weight of the total of (B) 10 -3 ⁇ 1 ⁇ 10 -
  • the amount is preferably 1 part by weight, particularly preferably 2 ⁇ 10 ⁇ 3 to 8 ⁇ 10 ⁇ 2 part by weight, and further preferably 3 ⁇ 10 ⁇ 3 to 6 ⁇ 10 ⁇ 2 part by weight.
  • the content is too large, the viscosity tends to proceed, and when the content is too small, the molecular weight of the urethane (meth) acrylate compound (A) tends to decrease.
  • the metal salt (X) may be blended as a catalyst during the production of the urethane (meth) acrylate compound (A), or the urethane (meth) acrylate compound (A), an ethylenically unsaturated monomer. In addition to (B), it may be blended as a single blending component, or may be a combination of both. However, a urethane (meth) acrylate compound ( It is preferable to be blended as a catalyst during the production of A).
  • the urethane (meth) acrylate compound (A) used in the present invention is obtained by reacting a polyvalent isocyanate compound (a1) and a hydroxyl group-containing (meth) acrylate compound (a2), or a polyvalent isocyanate compound. (A1), a hydroxyl group-containing (meth) acrylate compound (a2) and a polyol compound (a3) are reacted.
  • a polyvalent isocyanate compound (a1), a hydroxyl group-containing compound (A urethane (meth) acrylate compound obtained by reacting a (meth) acrylate compound (a2) and a polyol compound (a3) is preferable.
  • the urethane (meth) acrylate compound (A) used in the present invention is a urethane (meth) acrylate compound having at least one of an ester bond (excluding an ester bond in a (meth) acryloyl group) and a carbonate bond. It is preferable that it is easy to obtain the effects of the present invention.
  • polyvalent isocyanate compound (a1) examples include aromatics such as tolylene diisocyanate, diphenylmethane diisocyanate, polyphenylmethane polyisocyanate, modified diphenylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, phenylene diisocyanate, and naphthalene diisocyanate.
  • Polyisocyanates such as pentamethylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, lysine triisocyanate; alicyclic diisocyanates (for example, isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, 1, 3-bis (isocyanato) Hexane, 1,4-bis (isocyanato) cyclohexane, norbornene diisocyanate, etc.), or trimer compounds or multimeric compounds of these polyisocyanates; allophanate type polyisocyanates, burette type polyisocyanates, etc. Can be mentioned. These can be used alone or in combination of two or more.
  • aliphatic diisocyanates such as pentamethylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate; hydrogenated diphenylmethane diisocyanate, 1,3-bis (isocyanato) cyclohexane, 1 , 4-bis (isocyanato) cyclohexane, isophorone diisocyanate, norbornene diisocyanate and the like are preferably used, and particularly preferably alicyclic diisocyanate (especially isophorone diisocyanate, hydrogenated) from the viewpoint of low curing shrinkage.
  • Diphenylmethane diisocyanate 1,3-bis (isocyanato) cyclohexane, 1,4-bis (isocyanato) cyclohexane) are used, Preferably, from the viewpoint of excellent reactivity and versatility, 1,3-bis (isocyanato) cyclohexane, isophorone diisocyanate is used.
  • Examples of the hydroxyl group-containing (meth) acrylate compound (a2) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) ) Acrylates, hydroxyalkyl (meth) acrylates such as 6-hydroxyhexyl (meth) acrylate; 2-hydroxyethylacryloyl phosphate, 2- (meth) acryloyloxyethyl-2-hydroxypropyl phthalate, caprolactone-modified 2-hydroxyethyl ( (Meth) acrylate, dipropylene glycol (meth) acrylate, fatty acid modified-glycidyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono ( Acrylate), 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, glycerol mono (
  • a hydroxyl group-containing (meth) acrylate compound having one ethylenically unsaturated group is preferable in terms of excellent flexibility of the pressure-sensitive adhesive layer, more preferably 2-hydroxyethyl (meth) acrylate, 2-hydroxy Hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, hydroxyalkyl (meth) acrylate such as 6-hydroxyhexyl (meth) acrylate, and glycerin mono (meth) acrylate
  • 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and glycerin mono (meth) acrylate are preferably used in terms of excellent reactivity and versatility.
  • polyol compound (a3) examples include polyether polyols, polyester polyols, polycarbonate polyols, polyolefin polyols, (meth) acrylic polyols, polysiloxane polyols, and the like. These can be used alone or in combination of two or more.
  • polyether polyols examples include polyether polyols containing alkylene structures such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polybutylene glycol, and polyhexamethylene glycol, and random or block copolymers of these polyalkylene glycols. Etc.
  • polyester polyol examples include three kinds of components such as a condensation polymer of polyhydric alcohol and polycarboxylic acid, a ring-opening polymer of cyclic ester (lactone), polyhydric alcohol, polycarboxylic acid and cyclic ester. Examples include reactants.
  • polyhydric alcohol examples include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, trimethylene glycol, 1,4-tetramethylene diol, 1,3-tetramethylene diol, 2-methyl-1,3-trimethyl.
  • Methylene diol 1,5-pentamethylene diol, neopentyl glycol, 1,6-hexamethylene diol, 3-methyl-1,5-pentamethylene diol, 2,4-diethyl-1,5-pentamethylene diol, glycerin , Trimethylolpropane, trimethylolethane, cyclohexanediols (such as 1,4-cyclohexanediol), bisphenols (such as bisphenol A), sugar alcohols (such as xylitol and sorbitol), and the like.
  • cyclohexanediols such as 1,4-cyclohexanediol
  • bisphenols such as bisphenol A
  • sugar alcohols such as xylitol and sorbitol
  • polyvalent carboxylic acid examples include aliphatic dicarboxylic acids such as malonic acid, maleic acid, fumaric acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid; -Alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid; aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, paraphenylenedicarboxylic acid, trimellitic acid, and the like.
  • aliphatic dicarboxylic acids such as malonic acid, maleic acid, fumaric acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid
  • -Alicyclic dicarboxylic acids such as
  • cyclic ester examples include propiolactone, ⁇ -methyl- ⁇ -valerolactone, and ⁇ -caprolactone.
  • polycarbonate polyol examples include a reaction product of a polyhydric alcohol and phosgene, a ring-opening polymer of a cyclic carbonate (alkylene carbonate, etc.), and the like.
  • polyhydric alcohol examples include polyhydric alcohols exemplified in the description of the polyester-based polyol.
  • alkylene carbonate include ethylene carbonate, trimethylene carbonate, tetramethylene carbonate, and hexamethylene carbonate. It is done.
  • the polycarbonate-based polyol may be a compound having a carbonate bond in the molecule and having a hydroxyl group at the end, and may have an ester bond together with the carbonate bond.
  • polyolefin-based polyol examples include those having a saturated hydrocarbon skeleton having a homopolymer or copolymer such as ethylene, propylene and butene, and having a hydroxyl group at the molecular end.
  • polyisoprene polyol, polybutadiene polyol, nitrile butadiene polyol, styrene butadiene polyol, and the like can be given.
  • the polyolefin-based polyol may be a hydrogenated polyolefin-based polyol in which all or part of the ethylenically unsaturated groups contained in the structure is hydrogenated.
  • Examples of the (meth) acrylic polyol include those having at least two hydroxyl groups in the polymer or copolymer molecule of (meth) acrylic acid ester.
  • (meth) acrylic acid ester , For example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, (meth) acrylic acid And (meth) acrylic acid alkyl esters such as 2-ethylhexyl, decyl (meth) acrylate, dodecyl (meth) acrylate, and octadecyl (meth) acrylate.
  • polysiloxane polyol examples include dimethyl polysiloxane polyol and methylphenyl polysiloxane polyol.
  • polyester-based polyols, polyether-based polyols, and polycarbonate-based polyols are preferable, and polyester-based polyols and polycarbonate-based polyols are particularly preferable in that the effects of the present invention can be easily obtained and the versatility is excellent.
  • the number of hydroxyl groups contained in the polyol compound (a3) is preferably 2 to 5, particularly preferably 2 to 3, and more preferably 2. If the number of hydroxyl groups is too large, gelation tends to occur during the reaction.
  • the polyol compound (a3) preferably has a weight average molecular weight of 1,000 to 20,000, particularly preferably 2,000 to 18,000, more preferably 3,000 to 16,000. is there. If the weight average molecular weight is too small, the adhesive strength of the pressure-sensitive adhesive layer tends to be reduced, and if it is too large, the reactivity with the polyvalent isocyanate compound (a1) tends to be reduced.
  • the above-mentioned weight average molecular weight is a weight average molecular weight in terms of standard polystyrene molecular weight, and the column: Shodex GPC KF-806L (excluded) was subjected to high performance liquid chromatography (manufactured by Showa Denko Co., Ltd., “Shodex GPC system-11 type”).
  • Shodex GPC KF-806L excludeded
  • high performance liquid chromatography manufactured by Showa Denko Co., Ltd., “Shodex GPC system-11 type”.
  • the hydroxyl value of the polyol compound (a3) is preferably 10 to 300 mgKOH / g, particularly preferably 15 to 150 mgKOH / g, and more preferably 20 to 120 mgKOH / g. If the hydroxyl value is too high, the urethane (meth) acrylate compound (A) tends to have a low molecular weight and the adhesive strength tends to decrease, and if it is too low, the viscosity tends to increase and the workability tends to decrease.
  • Examples of the urethane (meth) acrylate compound (A) used in the present invention include (1) the polyvalent isocyanate compound (a1), the hydroxyl group-containing (meth) acrylate compound (a2), and the polyol compound (a3). ) In a reactor in a batch or separately, and (2) a reaction product obtained by reacting a polyvalent isocyanate compound (a1) and a polyol compound (a3) in advance with a hydroxyl group-containing (meta ) A method of reacting the acrylate compound (a2) and the like can be mentioned, and the method (2) is preferable from the viewpoints of reaction stability and reduction of by-products.
  • the reaction between the polyvalent isocyanate compound (a1) and the polyol compound (a3) known reaction means can be used.
  • the molar ratio of the isocyanate group in the polyvalent isocyanate compound (a1) to the hydroxyl group in the polyol compound (a3) is usually about 2n: (2n-2) (n is an integer of 2 or more).
  • n is an integer of 2 or more.
  • the addition reaction of the reaction product obtained by reacting the polyvalent isocyanate compound (a1) and the polyol compound (a3) in advance with the hydroxyl group-containing (meth) acrylate compound (a2) is also a known reaction. Means can be used.
  • the reaction molar ratio between the reaction product and the hydroxyl group-containing (meth) acrylate compound (a2) is, for example, that the polyisocyanate compound (a1) has two isocyanate groups and the hydroxyl group-containing (meth) acrylate compound (a2).
  • ) Has one hydroxyl group
  • the reaction product: hydroxyl group-containing (meth) acrylate compound (a2) is about 1: 2
  • the polyisocyanate compound (a1) has three isocyanate groups.
  • the reaction product: hydroxyl group-containing (meth) acrylate compound (a2) is about 1: 3.
  • reaction In the addition reaction between the reaction product and the hydroxyl group-containing (meth) acrylate compound (a2), the reaction is terminated when the residual isocyanate group content in the reaction system is 0.1% by weight or less. A (meth) acrylate compound (A) is obtained.
  • the reaction temperature during the above reaction is usually 30 to 90 ° C., preferably 40 to 80 ° C., and the reaction time is usually 2 to 30 hours, preferably 3 to 20 hours.
  • the metal salt (X) is used as a catalyst, the polyvalent isocyanate compound (a1), the hydroxyl group-containing (meth) acrylate compound ( It is preferable that a urethane (meth) acrylate compound (A) is obtained by reacting a2) and the polyol compound (a3) in the presence of the metal salt (X).
  • the amount of the metal salt (X) used as a catalyst during the production of the urethane (meth) acrylate compound (A) is 5 ⁇ with respect to 100 parts by weight of the urethane (meth) acrylate compound (A). It is preferable to add 10 ⁇ 3 to 1 ⁇ 10 ⁇ 1 parts by weight, particularly preferably 6 ⁇ 10 ⁇ 3 to 9 ⁇ 10 ⁇ 2 parts by weight, and more preferably 7 ⁇ 10 ⁇ 3 to 8 ⁇ 10. -2 parts by weight. If the blending amount is too small, the molecular weight of the urethane (meth) acrylate compound (A) tends to decrease, and if it is too large, the viscosity tends to decrease.
  • the urethane (meth) acrylate compound (A) obtained by reacting the polyvalent isocyanate compound (a1), the hydroxyl group-containing (meth) acrylate compound (a2) and the polyol compound (a3), as necessary.
  • Organic solvents having no functional group that reacts with isocyanate groups for example, esters such as ethyl acetate and butyl acetate, ketones such as methyl ethyl ketone and methyl isobutyl ketone, and organic solvents such as aromatics such as toluene and xylene May be used.
  • an ethylenically unsaturated monomer (B) described later can be used as a diluent.
  • the urethane (meth) acrylate compound (A) has a high molecular weight, the viscosity increases and handling becomes worse. Therefore, it is preferable to use an ethylenically unsaturated monomer (B) described later as a diluent.
  • the urethane (meth) acrylate compound (A) used in the present invention is produced.
  • the (meth) acryloyl equivalent of the urethane (meth) acrylate compound (A) is preferably 5,000 to 100,000, particularly preferably 6,000 to 90,000, and more preferably 7,000 to 80. 1,000, particularly preferably 8,000 to 70,000. If the (meth) acryloyl equivalent is too low, the adhesive strength of the pressure-sensitive adhesive layer tends to decrease when used as a pressure-sensitive adhesive. If it is too high, the viscosity of the urethane (meth) acrylate compound (A) becomes too high. It tends to be difficult to handle.
  • the weight average molecular weight of the urethane (meth) acrylate compound (A) is preferably 5,000 to 200,000, particularly preferably 6,000 to 150,000, and more preferably 7,000 to 120,000. Particularly preferred is 8,000 to 100,000. If the weight average molecular weight is too low, the adhesive strength of the pressure-sensitive adhesive layer tends to decrease, and if it is too high, the viscosity of the urethane (meth) acrylate compound (A) tends to be too high and handling tends to be difficult.
  • the above-mentioned weight average molecular weight is a weight average molecular weight in terms of standard polystyrene molecular weight, and the column: Shodex GPC KF-806L (excluded) was subjected to high performance liquid chromatography (manufactured by Showa Denko Co., Ltd., “Shodex GPC system-11 type”).
  • Shodex GPC KF-806L excludeded
  • high performance liquid chromatography manufactured by Showa Denko Co., Ltd., “Shodex GPC system-11 type”.
  • the viscosity of the urethane (meth) acrylate compound (A) is preferably 1,000 to 10,000,000 mPa ⁇ s, particularly preferably 2,000 to 8,000,000 at 60 ° C. 000 mPa ⁇ s, more preferably 3,000 to 6,000,000 mPa ⁇ s. If the viscosity is too high, handling tends to be difficult, and if it is too low, control of the film thickness tends to be difficult during coating. The viscosity is measured with an E-type viscometer.
  • Examples of the hydroxyl group-containing monomer (b1) include 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 5-hydroxypentyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxy C1-C16 (preferably 1-12) (meth) of alkyl groups such as octyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl (meth) acrylate, etc.
  • Hydroxyalkyl acrylate caprolactone-modified monomers such as caprolactone-modified 2-hydroxyethyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, 2-acrylic Primary hydroxyl group-containing ethylenically unsaturated compounds such as yloxyethyl-2-hydroxyethylphthalic acid, N-methylol (meth) acrylamide, N-hydroxyethyl (meth) acrylamide; 2-hydroxypropyl (meth) acrylate, 2- Secondary hydroxyl groups such as hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, etc.
  • caprolactone-modified monomers such as caprolactone-modified 2-hydroxyethyl (me
  • ethylenically unsaturated compounds such as 2,2-dimethyl-2-hydroxyethyl (meth) acrylate.
  • 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate are excellent in viscosity and compatibility with acrylic resins and easily available.
  • 2-hydroxybutyl (meth) acrylate, more preferably 4-hydroxybutyl (meth) acrylate can be used individually by 1 type or in combination of 2 or more types.
  • the content of the hydroxyl group-containing monomer (b1) is preferably 40% by weight or more, particularly preferably 45% by weight or more, more preferably 50% by weight or more, based on the entire ethylenically unsaturated monomer (B). is there. If the content is too small, the viscosity tends to increase.
  • the content of the hydroxyl group-containing monomer (b1) is 20 to 70 parts by weight with respect to 100 parts by weight as a total of the urethane (meth) acrylate compound (A) and the ethylenically unsaturated monomer (B).
  • the amount is preferably 20 to 65 parts by weight, more preferably 25 to 60 parts by weight.
  • the hydroxyl group-containing monomer (b1) may be separately added to the urethane (meth) acrylate compound (A), or as a diluent during the production of the urethane (meth) acrylate compound (A). It may be blended.
  • an ethylenically unsaturated monomer (b2) other than the hydroxyl group-containing monomer (b1) (hereinafter sometimes referred to as “ethylenically unsaturated monomer (b2)”).
  • the ethylenically unsaturated monomer (b2) may be any of a monofunctional monomer, a bifunctional monomer, and a trifunctional or higher monomer.
  • the monofunctional monomer may be any monomer containing one ethylenically unsaturated group.
  • Michael adduct of acrylic acid or 2-acryloyloxyethyldicarboxylic acid monoester examples include acrylic acid dimer, methacrylic acid dimer, acrylic acid Examples include acid trimer, methacrylic acid trimer, acrylic acid tetramer, and methacrylic acid tetramer.
  • 2-acryloyloxyethyl dicarboxylic acid monoester which is a carboxylic acid having a specific substituent include 2-acryloyloxyethyl succinic acid monoester, 2-methacryloyloxyethyl succinic acid monoester, and 2-acryloyloxyethyl.
  • Examples thereof include phthalic acid monoester, 2-methacryloyloxyethyl phthalic acid monoester, 2-acryloyloxyethyl hexahydrophthalic acid monoester, and 2-methacryloyloxyethyl hexahydrophthalic acid monoester. Furthermore, oligoester acrylate is also mentioned.
  • the bifunctional monomer may be any monomer containing two ethylenically unsaturated groups.
  • the tri- or higher functional monomer may be any monomer containing three or more ethylenically unsaturated groups.
  • ethylenically unsaturated monomers (b2) it is preferable to use a monofunctional monomer in terms of excellent flexibility of the coating film, and methyl (meth) acrylate and ethyl in terms of excellent yellowness and good flexibility.
  • the ethylenically unsaturated monomer (b2) is preferably used as a diluent during the production of the urethane (meth) acrylate compound (A).
  • the active energy ray-curable resin composition of the present invention is obtained using the urethane (meth) acrylate compound (A), the ethylenically unsaturated monomer (B), and the metal salt (X).
  • the active energy ray-curable resin composition of the present invention preferably further contains a photopolymerization initiator (C) in order to efficiently perform curing with active energy rays.
  • the photopolymerization initiator (C) is not particularly limited as long as it generates radicals by the action of light.
  • diethoxyacetophenone 2-hydroxy-2-methyl-1-phenylpropan-1-one Benzyldimethyl ketal, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl phenylketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propane-1 -One, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone, 2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone oligomer, 1- [ 4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propane-1 Acetophenones such as ON, 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] -phenyl ⁇ -2-methyl-propan-1-one; benzoin, benzoinmethyl Benzoins such as ON,
  • auxiliary agents for these photopolymerization initiators (C) include triethanolamine, triisopropanolamine, 4,4′-dimethylaminobenzophenone (Michler ketone), 4,4′-diethylaminobenzophenone, 2-dimethylaminoethyl.
  • Benzoic acid ethyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate (n-butoxy), isoamyl 4-dimethylaminobenzoate, 2-ethylhexyl 4-dimethylaminobenzoate, 2,4-diethylthioxanthone 2,4-diisopropylthioxanthone can also be used in combination.
  • These auxiliaries can be used alone or in combination of two or more.
  • the content of the photopolymerization initiator (C) is 1 to 10 parts by weight with respect to a total of 100 parts by weight of the urethane (meth) acrylate compound (A) and the ethylenically unsaturated monomer (B). It is preferably 2 to 5 parts by weight. If the content is too small, the curing rate tends to decrease. If the content is too large, the curability does not improve and the economy tends to decrease.
  • the active energy ray-curable resin composition of the present invention includes urethane (meth) acrylate compound (A), ethylenically unsaturated monomer (B), and metal salt (X), if necessary, photopolymerization start
  • agent (C) other than the above, the antioxidant, flame retardant, antistatic agent, filler, leveling agent, stabilizer, reinforcing agent, matting agent, and other than (X), as long as the effects of the present invention are not impaired. It is also possible to contain a reaction catalyst or the like.
  • crosslinking agent a compound having an action of causing crosslinking by heat, specifically, an epoxy compound, an aziricin compound, a melamine compound, an isocyanate compound, a chelate compound, and the like can be used.
  • the active energy ray-curable resin composition of the present invention can contain a polythiol compound from the viewpoint of suppressing unreacted components and improving adhesive strength.
  • the polythiol compound is not particularly limited, but a compound having 2 to 6 mercapto groups in the molecule is preferable.
  • aliphatic polythiols such as alkanedithiol having about 2 to 20 carbon atoms, aromatics such as xylylenedithiol, etc.
  • Polythiols polythiols obtained by replacing halogen atoms of halohydrin adducts of alcohols with mercapto groups, polythiols consisting of hydrogen sulfide reaction products of polyepoxide compounds, polyhydric alcohols having 2 to 6 hydroxyl groups in the molecule And polythiols composed of esterified products with thioglycolic acid, ⁇ -mercaptopropionic acid, or ⁇ -mercaptobutanoic acid, etc., and these can be used alone or in combination of two or more. .
  • the content of the polythiol compound is preferably 0.01 to 10 parts by weight or less with respect to 100 parts by weight in total of the urethane (meth) acrylate compound (A) and the ethylenically unsaturated monomer (B). It is particularly preferably 1 to 5 parts by weight or less.
  • the active energy ray-curable resin composition of the present invention includes alcohols such as methanol, ethanol, propanol, n-butanol, i-butanol, and the like in order to adjust the viscosity at the time of coating, if necessary; acetone Ketones such as methyl isobutyl ketone, methyl ethyl ketone and cyclohexanone; cellosolves such as ethyl cellosolve; aromatics such as toluene and xylene; glycol ethers such as propylene glycol monomethyl ether; acetic acid such as methyl acetate, ethyl acetate and butyl acetate Esters; dilute solvents such as diacetone alcohol may be used, but the solvent may remain in the coating film and the curing component may volatilize during drying. preferable.
  • solvents such as methanol, ethanol, propanol, n-butanol, i-
  • the active energy ray-curable resin composition obtained in the present invention is cured by irradiating active energy rays after being applied on various substrates and dried.
  • the application method of the active energy ray-curable resin composition is not particularly limited, and for example, spray, shower, dipping, roll, spin, curtain, flow, slit, die, gravure, comma, dispenser, Examples include wet coating methods such as screen printing and ink jet printing.
  • a coating method when the active energy ray-curable resin composition is a solid or a high-viscosity liquid the active energy ray-curable resin composition is heated to reduce the viscosity, and then applied by the above method.
  • the melt method is mentioned.
  • rays such as far ultraviolet rays, ultraviolet rays, near ultraviolet rays, infrared rays, electromagnetic waves such as X rays and ⁇ rays, electron beams, proton rays, neutron rays, etc.
  • Curing by ultraviolet irradiation is advantageous from the viewpoint of easy availability and price.
  • electron beam irradiation it can harden
  • a high pressure mercury lamp that emits light in a wavelength range of 150 to 450 nm
  • an ultrahigh pressure mercury lamp a carbon arc lamp, a metal halide lamp, a xenon lamp, a chemical lamp, an electrodeless discharge lamp, an LED, etc.
  • Irradiation of about 30 to 3,000 mJ / cm 2 may be performed.
  • heating can be performed as necessary to complete the curing.
  • Examples of the base material to which the active energy ray-curable resin composition obtained in the present invention is applied include polyolefin resin, polyester resin, polycarbonate resin, acrylonitrile butadiene styrene copolymer (ABS), and polystyrene resin. , Polyamide resins, etc. and their molded products (films, sheets, cups, etc.), metal substrates (metal vapor deposition layers, metal plates (copper, stainless steel (SUS304, SUSBA, etc.), aluminum, zinc, magnesium, etc.)), These composite base materials, such as glass, are mentioned.
  • the thickness of the cured coating film is usually preferably 1 to 300 ⁇ m, particularly preferably 2 to 250 ⁇ m, and more preferably 5 to 200 ⁇ m.
  • the active energy ray-curable resin composition obtained in the present invention is very useful as an adhesive composition or a coating composition.
  • the present inventor has found that the catalyst used in the production of the urethane (meth) acrylate compound remains in the urethane (meth) acrylate compound, the urethane bond in the urethane (meth) acrylate, the hydroxyl group-containing monomer, However, it was speculated that a transesterification reaction was caused by the catalyst, thereby reducing the molecular weight of the urethane (meth) acrylate compound, and as a result, the viscosity was lowered with time.
  • the urethane (meth) acrylate compound has at least one of an ester bond and a carbonate bond, at least one of the ester bond and the carbonate bond in the urethane (meth) acrylate compound and a hydroxyl group-containing monomer
  • ester bond and the carbonate bond in the urethane (meth) acrylate compound and a hydroxyl group-containing monomer it was presumed that a transesterification reaction occurred and the viscosity decreased with time. Under these presumed mechanisms, intensive studies were made to arrive at the present invention.
  • Urethane (meth) acrylate compound (A) > Urethane (meth) acrylate compounds (A-1) to (A-6) were produced as urethane (meth) acrylate compounds (A) as follows.
  • the active energy ray-curable resin compositions of Examples 1 to 5 obtained using a urethane (meth) acrylate compound produced using a metal salt have a small viscosity change over time, It was excellent in storage stability.
  • the conventionally used active energy ray-curable resin compositions of Comparative Examples 1 and 3 containing urethane (meth) acrylate produced using dibutyltin dilaurate cause a decrease in viscosity over time. When it is put into practical use, problems such as unstable product state occur.
  • the active energy ray-curable resin composition of Comparative Example 2 which does not contain a hydroxyl group-containing monomer has an increase in viscosity over time, causing problems such as unstable product state when used for practical use. Met.
  • the active energy ray-curable resin composition obtained by the production method of the present invention is very useful as a pressure-sensitive adhesive composition or a coating composition, particularly as a pressure-sensitive adhesive composition or a coating composition for optical members or optical films. It is.
  • a high molecular weight urethane (meth) acrylate compound can be made stably, it can be suitably used as an adhesive for bonding optical members excellent in durability, impact resistance and step following ability.

Abstract

An active energy ray-curable resin composition containing (A), (B), and (X), the active energy ray-curable resin composition characterized by containing a hydroxyl group-containing monomer (b1) as (B), is provided as an active energy ray-curable resin composition having excellent storage stability with no changes in viscosity over time that can be used suitably in adhesive compositions and coating compositions. (A) Urethane (meth)acrylate compound. (B) Ethylenic unsaturated monomer, excluding (A) above. (X) Metal salt.

Description

活性エネルギー線硬化性樹脂組成物およびその製造方法Active energy ray-curable resin composition and method for producing the same
 本発明は、活性エネルギー線硬化性樹脂組成物に関するものであり、更に詳しくは、経時による粘度変化が非常に少なく、保存安定性に優れ、粘着剤組成物やコーティング剤組成物に好適に用いられる活性エネルギー線硬化性樹脂組成物に関するものである。 The present invention relates to an active energy ray-curable resin composition, and more specifically, the viscosity change with time is very small, the storage stability is excellent, and it is suitably used for an adhesive composition and a coating composition. The present invention relates to an active energy ray-curable resin composition.
 従来より、活性エネルギー線硬化性樹脂組成物は、ごく短時間の活性エネルギー線の照射により硬化が完了するため各種基材へのコーティング剤や粘着剤、接着剤、またはアンカーコート剤等として幅広く用いられている。かかる活性エネルギー線硬化性樹脂組成物には、ウレタン(メタ)アクリレートや光重合性モノマーと、好ましくは更に光重合開始剤とが配合されることが多く、中でもウレタン(メタ)アクリレートは、柔軟で強靭な塗膜が得られる等の特性を有するため非常によく用いられる。とりわけ、主鎖が直鎖状のウレタン(メタ)アクリレートにおいては、粘着剤組成物やコーティング剤組成物への適用が大いに期待される。 Conventionally, active energy ray-curable resin compositions have been widely used as coating agents, adhesives, adhesives, or anchor coating agents for various substrates because curing is completed by irradiation of active energy rays for a very short time. It has been. Such an active energy ray-curable resin composition is often blended with urethane (meth) acrylate and a photopolymerizable monomer, and preferably further with a photopolymerization initiator. Among them, urethane (meth) acrylate is flexible. It is very often used because it has properties such as tough coatings. In particular, in a urethane (meth) acrylate having a linear main chain, application to a pressure-sensitive adhesive composition or a coating agent composition is greatly expected.
 例えば、タッチパネル等の光学機器や、光学的記録媒体等の光学部材に用いられる粘着剤においては、光学部材を貼り合わせる用途に透明な粘着シートが使用されているが、タッチパネル等の中には、印刷段差等の段差を有する部材を含むため、かかる用途においては、粘着シートには、粘着力に加えて、優れた段差追従性が要求される。段差追従性を付与するための手段として、粘着剤層の厚みを厚くしたり、柔軟性のある粘着剤層が使用することが検討されており、そのため、比較的高分子量のウレタン(メタ)アクリレートが用いられている。 For example, in an adhesive used for an optical device such as a touch panel and an optical member such as an optical recording medium, a transparent pressure-sensitive adhesive sheet is used for bonding the optical member. In order to include a member having a step such as a printing step, the pressure-sensitive adhesive sheet is required to have excellent step following performance in addition to the adhesive strength. As means for imparting step following ability, it has been studied to increase the thickness of the pressure-sensitive adhesive layer or to use a flexible pressure-sensitive adhesive layer. Therefore, a urethane (meth) acrylate having a relatively high molecular weight. Is used.
 ウレタン(メタ)アクリレートの製造については種々の方法があるが、通常よく用いられている方法としては、(1)ジイソシアネート、ジオール、水酸基含有(メタ)アクリレートを一括で仕込み反応させる方法(例えば、特許文献1および2参照。)や、(2)ジイソシアネートとジオールとを反応させ、末端イソシアネート基含有化合物を得た後、該末端イソシアネート基含有化合物と水酸基含有(メタ)アクリレートを反応させる方法、等が挙げられる(例えば、特許文献3および4参照。)。
 また、通常、ウレタン(メタ)アクリレートの製造においては、反応を促進する目的で種々の触媒が用いられているが、中でも、ウレタン化反応触媒として活性が高いことから、一般的に有機スズ化合物が使用されている。
There are various methods for the production of urethane (meth) acrylate, and as a commonly used method, (1) a method in which diisocyanate, diol, and hydroxyl group-containing (meth) acrylate are charged together and reacted (for example, patents) References 1 and 2), and (2) a method in which a diisocyanate and a diol are reacted to obtain a terminal isocyanate group-containing compound and then the terminal isocyanate group-containing compound and a hydroxyl group-containing (meth) acrylate are reacted. (For example, refer to Patent Documents 3 and 4).
In addition, in the production of urethane (meth) acrylates, various catalysts are generally used for the purpose of promoting the reaction. Among them, an organotin compound is generally used because of its high activity as a urethanization reaction catalyst. in use.
特開2013-56966号公報JP 2013-56966 A 特開2014-5368号公報JP 2014-5368 A 特開2011-162770号公報JP 2011-162770 A 特開2002-309185号公報JP 2002-309185 A
 しかしながら、上記(1)や(2)の製造方法では、ウレタン(メタ)アクリレートの重量平均分子量が大きくなってくると、また、ジイソシアネートとジオールとのウレタン反応によるウレタン結合の数が多くなってくると、系中の粘度が急激に上昇するため反応効率が低下する。この結果、ごく微量の未反応のイソシアネート基や水酸基が存在したままとなるため、時間の経過とともにウレタン(メタ)アクリレートの分子量が大きくなってしまう、即ち、経時による粘度上昇が生じ、保存安定性の点で問題が生じるものであった。その結果、これを用いた粘着剤組成物やコーティング剤において、所望の粘着物性や塗膜物性が得られないなどの問題が生じるものであった。 However, in the above production methods (1) and (2), when the weight average molecular weight of urethane (meth) acrylate increases, the number of urethane bonds due to urethane reaction of diisocyanate and diol increases. And the viscosity in the system rises rapidly, so the reaction efficiency decreases. As a result, since a very small amount of unreacted isocyanate groups and hydroxyl groups still exist, the molecular weight of the urethane (meth) acrylate increases with the passage of time, that is, the viscosity increases with time, resulting in storage stability. This is a problem. As a result, the pressure-sensitive adhesive composition and coating agent using the same cause problems such as failure to obtain desired pressure-sensitive adhesive properties and coating film properties.
 そこで、本発明者は、経時による粘度上昇を抑制するための手法としてまず、未反応のイソシアネート基の残存量を極力減少させるため、水酸基含有モノマーを多量に含有させた活性エネルギー線硬化性樹脂組成物を見出した。
 ところが、上記の水酸基含有モノマーを多量に含有させた活性エネルギー線硬化性樹脂組成物は、経時的な粘度上昇は抑制されたものの、今度は、組成物の粘度が経時的に低下してしまうという新たな問題が生じることとなった。
Therefore, the present inventor, as a method for suppressing the increase in viscosity over time, first, in order to reduce the residual amount of unreacted isocyanate groups as much as possible, the active energy ray-curable resin composition containing a large amount of hydroxyl group-containing monomer I found something.
However, the active energy ray-curable resin composition containing a large amount of the above hydroxyl group-containing monomer has suppressed the increase in viscosity over time, but this time the viscosity of the composition will decrease over time. A new problem has arisen.
 そこで、本発明はこのような背景下において、経時での粘度変化が生じず保存安定性に優れ、粘着剤組成物やコーティング剤組成物に好適に用いられる活性エネルギー線硬化性樹脂組成物およびその製造方法を提供することを目的とするものである。 Therefore, the present invention is an active energy ray-curable resin composition that is excellent in storage stability without causing a change in viscosity over time and is suitably used for a pressure-sensitive adhesive composition or a coating agent composition, and its The object is to provide a manufacturing method.
 しかるに、本発明者はかかる事情に鑑み鋭意研究を重ねた結果、ウレタン(メタ)アクリレート系化合物と水酸基含有モノマーとが併用された活性エネルギー線硬化性樹脂組成物において、ウレタン(メタ)アクリレート系化合物として、その製造時に通常ウレタン(メタ)アクリレート系化合物の製造には用いない金属塩を触媒として使用したウレタン(メタ)アクリレート系化合物を用いることにより、経時での保存安定性に優れる活性エネルギー線硬化性樹脂組成物が得られることを見出し、本発明を完成した。 However, as a result of intensive studies in view of such circumstances, the present inventor has obtained a urethane (meth) acrylate compound in an active energy ray-curable resin composition in which a urethane (meth) acrylate compound and a hydroxyl group-containing monomer are used in combination. Active energy ray curing with excellent storage stability over time by using a urethane (meth) acrylate compound that uses a metal salt that is not normally used for the production of a urethane (meth) acrylate compound as a catalyst. The present invention was completed by finding that a functional resin composition was obtained.
 即ち、本発明は、ウレタン(メタ)アクリレート系化合物(A)、上記(A)を除くエチレン性不飽和モノマー(B)および金属塩(X)を含有する活性エネルギー線硬化性樹脂組成物であって、上記エチレン性不飽和モノマー(B)として水酸基含有モノマー(b1)を含有することを特徴とする活性エネルギー線硬化性樹脂組成物であることを第1の要旨とし、また、その製造方法を第2の要旨とする。 That is, the present invention is an active energy ray-curable resin composition containing a urethane (meth) acrylate compound (A), an ethylenically unsaturated monomer (B) excluding the above (A), and a metal salt (X). The active energy ray-curable resin composition is characterized by containing a hydroxyl group-containing monomer (b1) as the ethylenically unsaturated monomer (B). This is the second gist.
 本発明で得られる活性エネルギー線硬化性樹脂組成物は、下記(A)、(B)および(X)を含有する活性エネルギー線硬化性樹脂組成物であって、下記(B)として水酸基含有モノマー(b1)を含有することにより、経時による粘度変化が非常に少なく、保存安定性に優れるため、粘着剤組成物やコーティング剤組成物に好適に用いられるものである。
(A)ウレタン(メタ)アクリレート系化合物。
(B)上記(A)を除く、エチレン性不飽和モノマー。
(X)金属塩。
The active energy ray-curable resin composition obtained in the present invention is an active energy ray-curable resin composition containing the following (A), (B), and (X), and a hydroxyl group-containing monomer as the following (B): By containing (b1), the viscosity change with time is very small and the storage stability is excellent, so that it is suitably used for a pressure-sensitive adhesive composition or a coating agent composition.
(A) Urethane (meth) acrylate-based compound.
(B) An ethylenically unsaturated monomer excluding (A) above.
(X) Metal salt.
 また、上記金属塩(X)の含有量が、上記ウレタン(メタ)アクリレート系化合物(A)と上記エチレン性不飽和モノマー(B)の合計100重量部に対して1×10-3~1×10-1重量部であると、より経時による粘度変化が一層少なくなる。 The content of the metal salt (X) is 1 × 10 −3 to 1 × based on 100 parts by weight of the total of the urethane (meth) acrylate compound (A) and the ethylenically unsaturated monomer (B). When it is 10 −1 parts by weight, the viscosity change with time is further reduced.
 更に、上記ウレタン(メタ)アクリレート系化合物(A)が、(メタ)アクリロイルオキシ基中のエステル結合以外の、エステル結合およびカーボネート結合の少なくとも一方の結合を有するウレタン(メタ)アクリレート系化合物であると、経時による粘度変化が少なく、保存安定性に優れるという本発明の効果がより高く得られる。 Furthermore, the urethane (meth) acrylate compound (A) is a urethane (meth) acrylate compound having at least one of an ester bond and a carbonate bond other than the ester bond in the (meth) acryloyloxy group. Thus, the effect of the present invention can be obtained with a high change in viscosity with time and excellent storage stability.
 そして、上記ウレタン(メタ)アクリレート系化合物(A)の(メタ)アクリロイル当量が5,000~100,000であると、柔軟な硬化塗膜が得られ、さらに適切な粘度範囲となることから、取り扱い性が容易になる。 And, since the urethane (meth) acrylate compound (A) has a (meth) acryloyl equivalent of 5,000 to 100,000, a flexible cured coating film can be obtained, and a more appropriate viscosity range can be obtained. Easy handling.
 また、上記水酸基含有モノマー(b1)の含有量が、上記ウレタン(メタ)アクリレート系化合物(A)と上記エチレン性不飽和モノマー(B)の合計100重量部に対して20~70重量部であると、粘度の経時安定性がより一層優れるようになる。 In addition, the content of the hydroxyl group-containing monomer (b1) is 20 to 70 parts by weight with respect to a total of 100 parts by weight of the urethane (meth) acrylate compound (A) and the ethylenically unsaturated monomer (B). As a result, the viscosity stability over time is further improved.
 更に、上記ウレタン(メタ)アクリレート系化合物(A)が、多価イソシアネート系化合物(a1)、水酸基含有(メタ)アクリレート系化合物(a2)、ポリオール系化合物(a3)の反応物であると、経時による粘度変化が少なく、保存安定性に優れるという本発明の効果がより高く得られる。 Further, the urethane (meth) acrylate compound (A) is a reaction product of a polyvalent isocyanate compound (a1), a hydroxyl group-containing (meth) acrylate compound (a2), and a polyol compound (a3). The effect of the present invention that the change in viscosity due to is small and the storage stability is excellent is obtained.
 また、上記ポリオール系化合物(a3)がポリエステル系ポリオールおよびポリカーボネート系ポリオールの少なくとも一方であると、本発明の効果が得られやすく、かつ汎用性に優れるようになる。 In addition, when the polyol compound (a3) is at least one of a polyester polyol and a polycarbonate polyol, the effects of the present invention can be easily obtained and the versatility becomes excellent.
 上記金属塩(X)が、炭素数8~10の脂肪酸金属塩であると、好適な触媒能を発揮して反応性に優れるようになる。 When the metal salt (X) is a fatty acid metal salt having 8 to 10 carbon atoms, it exhibits a suitable catalytic ability and is excellent in reactivity.
 更に、下記(A)、(B)および(X)を含有し、下記(B)として水酸基含有モノマー(b1)を含有する活性エネルギー線硬化性樹脂組成物の製造方法であって、ウレタン(メタ)アクリレート系化合物(A)を、多価イソシアネート系化合物(a1)、水酸基含有(メタ)アクリレート系化合物(a2)、ポリオール系化合物(a3)を、金属塩(X)の存在下で反応させて得る活性エネルギー線硬化性樹脂組成物の製造方法であると、経時による粘度変化が非常に少なく、保存安定性に優れる活性エネルギー線硬化性樹脂組成物が得られるようになる。
(A)ウレタン(メタ)アクリレート系化合物。
(B)上記(A)を除く、エチレン性不飽和モノマー。
(X)金属塩。
Furthermore, it is a method for producing an active energy ray-curable resin composition containing the following (A), (B) and (X), and containing the hydroxyl group-containing monomer (b1) as the following (B): The acrylate compound (A) is reacted with the polyvalent isocyanate compound (a1), the hydroxyl group-containing (meth) acrylate compound (a2), and the polyol compound (a3) in the presence of the metal salt (X). With the method for producing an active energy ray-curable resin composition to be obtained, an active energy ray-curable resin composition having very little change in viscosity with time and excellent storage stability can be obtained.
(A) Urethane (meth) acrylate-based compound.
(B) An ethylenically unsaturated monomer excluding (A) above.
(X) Metal salt.
 上記金属塩(X)を、上記得られるウレタン(メタ)アクリレート系化合物(A)100重量部に対して5×10-3~1×10-1重量部となるように配合させると、より経時による粘度変化が一層少ない活性エネルギー線硬化性樹脂組成物が得られるようになる。 When the metal salt (X) is blended in an amount of 5 × 10 −3 to 1 × 10 −1 parts by weight with respect to 100 parts by weight of the urethane (meth) acrylate compound (A) obtained as described above, An active energy ray-curable resin composition in which the viscosity change due to is further reduced can be obtained.
 以下、本発明を詳細に説明するが、これらは望ましい実施態様の一例を示すものである。
 なお、本発明において、(メタ)アクリル酸とはアクリル酸またはメタクリル酸を、(メタ)アクリルとはアクリルまたはメタクリルを、(メタ)アクリロイルとはアクリロイルまたはメタクリロイルを、(メタ)アクリレートとはアクリレートまたはメタクリレートをそれぞれ意味するものである。また、アクリル系樹脂とは、(メタ)アクリレート系モノマーを少なくとも1種含有する重合成分を重合して得られる樹脂である。
The present invention will be described in detail below, but these show examples of desirable embodiments.
In the present invention, (meth) acrylic acid is acrylic acid or methacrylic acid, (meth) acryl is acrylic or methacrylic, (meth) acryloyl is acryloyl or methacryloyl, and (meth) acrylate is acrylate or Each means methacrylate. The acrylic resin is a resin obtained by polymerizing a polymerization component containing at least one (meth) acrylate monomer.
 本発明の活性エネルギー線硬化性樹脂組成物は、ウレタン(メタ)アクリレート系化合物(A)、エチレン性不飽和モノマー(B)および金属塩(X)を含有するものであり、本発明においては、金属塩(X)を含有することを最大の特徴とするものである。以下、本発明の活性エネルギー線硬化性樹脂組成物を構成する各成分について説明する。 The active energy ray-curable resin composition of the present invention contains a urethane (meth) acrylate compound (A), an ethylenically unsaturated monomer (B) and a metal salt (X). In the present invention, It is characterized by containing the metal salt (X). Hereinafter, each component which comprises the active energy ray curable resin composition of this invention is demonstrated.
〔金属塩(X)〕
 上記金属塩(X)としては、スズ、ビスマス、亜鉛、チタン等の金属の脂肪酸塩が好ましく、例えば、オクチル酸スズ、デカン酸スズ、ネオデカン酸スズ、ラウリン酸スズ、ミリスチン酸スズ、ステアリン酸スズ、オクチル酸ビスマス、デカン酸ビスマス、ネオデカン酸ビスマス、ラウリン酸ビスマス、オクチル酸亜鉛、デカン酸亜鉛、ネオデカン酸亜鉛、ラウリン酸亜鉛、オクチル酸チタン、デカン酸チタン、ネオデカン酸チタン、ラウリン酸チタン等が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて使用することができる。なかでも、好ましくは炭素数8~10の脂肪酸金属塩、特に好ましくは反応性に優れる点でスズまたはビスマスの炭素数8~10の脂肪酸塩であり、殊に好ましくはオクチル酸スズ、デカン酸スズ、ネオデカン酸スズ、オクチル酸ビスマス、デカン酸ビスマス、ネオデカン酸ビスマスである。
[Metal salt (X)]
The metal salt (X) is preferably a fatty acid salt of a metal such as tin, bismuth, zinc or titanium, for example, tin octylate, tin decanoate, tin neodecanoate, tin laurate, tin myristate, or stearate. Bismuth octylate, bismuth decanoate, bismuth neodecanoate, bismuth laurate, zinc octylate, zinc decanoate, zinc neodecanoate, zinc laurate, titanium octylate, titanium decanoate, titanium neodecanoate, titanium laurate, etc. Can be mentioned. These can be used alone or in combination of two or more. Among them, preferred are fatty acid metal salts having 8 to 10 carbon atoms, particularly preferred are tin or bismuth fatty acid salts of 8 to 10 carbon atoms because of excellent reactivity, and particularly preferred are tin octylate and tin decanoate. , Tin neodecanoate, bismuth octylate, bismuth decanoate, bismuth neodecanoate.
 上記金属塩(X)の含有量は、後述のウレタン(メタ)アクリレート系化合物(A)とエチレン性不飽和モノマー(B)の合計100重量部に対して1×10-3~1×10-1重量部であることが好ましく、特に好ましくは2×10-3~8×10-2重量部、更に好ましくは3×10-3~6×10-2重量部である。
 かかる含有量が多すぎると減粘が進みやすくなる傾向があり、少なすぎるとウレタン(メタ)アクリレート系化合物(A)の分子量が低下しやすい傾向がある。
The content of the metal salt (X) is described below of the urethane (meth) acrylate compound (A) and the ethylenically unsaturated monomers 1 × 100 parts by weight of the total of (B) 10 -3 ~ 1 × 10 - The amount is preferably 1 part by weight, particularly preferably 2 × 10 −3 to 8 × 10 −2 part by weight, and further preferably 3 × 10 −3 to 6 × 10 −2 part by weight.
When the content is too large, the viscosity tends to proceed, and when the content is too small, the molecular weight of the urethane (meth) acrylate compound (A) tends to decrease.
 上記金属塩(X)は、ウレタン(メタ)アクリレート系化合物(A)の製造時に触媒として配合されたものであってもよいし、ウレタン(メタ)アクリレート系化合物(A)、エチレン性不飽和モノマー(B)とは別に単独の配合成分として配合されたものであってもよいし、また両者を組み合わせたものであってもよいが、製造時間が短縮できる点でウレタン(メタ)アクリレート系化合物(A)の製造時に触媒として配合されたものであることが好ましい。 The metal salt (X) may be blended as a catalyst during the production of the urethane (meth) acrylate compound (A), or the urethane (meth) acrylate compound (A), an ethylenically unsaturated monomer. In addition to (B), it may be blended as a single blending component, or may be a combination of both. However, a urethane (meth) acrylate compound ( It is preferable to be blended as a catalyst during the production of A).
 〔ウレタン(メタ)アクリレート系化合物(A)〕
 本発明で用いられるウレタン(メタ)アクリレート系化合物(A)は、多価イソシアネート系化合物(a1)、水酸基含有(メタ)アクリレート系化合物(a2)を反応させてなるものや、多価イソシアネート系化合物(a1)、水酸基含有(メタ)アクリレート系化合物(a2)およびポリオール系化合物(a3)を反応させてなるものが挙げられるが、本発明においては、多価イソシアネート系化合物(a1)、水酸基含有(メタ)アクリレート系化合物(a2)およびポリオール系化合物(a3)を反応させてなるウレタン(メタ)アクリレート系化合物であることが好ましい。
 また、本発明で用いられるウレタン(メタ)アクリレート系化合物(A)は、エステル結合((メタ)アクリロイル基中のエステル結合は除く)およびカーボネート結合の少なくとも一方の結合を有するウレタン(メタ)アクリレート化合物であることが、本発明の効果が得られやすい点で好ましい。
[Urethane (meth) acrylate compound (A)]
The urethane (meth) acrylate compound (A) used in the present invention is obtained by reacting a polyvalent isocyanate compound (a1) and a hydroxyl group-containing (meth) acrylate compound (a2), or a polyvalent isocyanate compound. (A1), a hydroxyl group-containing (meth) acrylate compound (a2) and a polyol compound (a3) are reacted. In the present invention, a polyvalent isocyanate compound (a1), a hydroxyl group-containing compound ( A urethane (meth) acrylate compound obtained by reacting a (meth) acrylate compound (a2) and a polyol compound (a3) is preferable.
The urethane (meth) acrylate compound (A) used in the present invention is a urethane (meth) acrylate compound having at least one of an ester bond (excluding an ester bond in a (meth) acryloyl group) and a carbonate bond. It is preferable that it is easy to obtain the effects of the present invention.
 上記多価イソシアネート系化合物(a1)としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ポリフェニルメタンポリイソシアネート、変性ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート等の芳香族系ポリイソシアネート;ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、リジントリイソシアネート等の脂肪族系ポリイソシアネート;脂環式系ジイソシアネート(例えば、イソホロンジイソシアネート、水添化ジフェニルメタンジイソシアネート、1,3-ビス(イソシアナト)シクロヘキサン、1,4-ビス(イソシアナト)シクロヘキサン、ノルボルネンジイソシアネート等)等の脂環式系ポリイソシアネート、或いはこれらポリイソシアネートの三量体化合物または多量体化合物;アロファネート型ポリイソシアネート、ビュレット型ポリイソシアネート等が挙げられる。
 これらは1種を単独でまたは2種以上を組み合わせて使用することができる。
Examples of the polyvalent isocyanate compound (a1) include aromatics such as tolylene diisocyanate, diphenylmethane diisocyanate, polyphenylmethane polyisocyanate, modified diphenylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, phenylene diisocyanate, and naphthalene diisocyanate. Polyisocyanates; aliphatic polyisocyanates such as pentamethylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, lysine triisocyanate; alicyclic diisocyanates (for example, isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, 1, 3-bis (isocyanato) Hexane, 1,4-bis (isocyanato) cyclohexane, norbornene diisocyanate, etc.), or trimer compounds or multimeric compounds of these polyisocyanates; allophanate type polyisocyanates, burette type polyisocyanates, etc. Can be mentioned.
These can be used alone or in combination of two or more.
 これらの中でも、黄変が少ない点から、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート等の脂肪族系ジイソシアネート;水添化ジフェニルメタンジイソシアネート、1,3-ビス(イソシアナト)シクロヘキサン、1,4-ビス(イソシアナト)シクロヘキサン、イソホロンジイソシアネート、ノルボルネンジイソシアネート等の脂環式系ジイソシアネートが好ましく用いられ、特に好ましくは、硬化収縮が小さい点で、脂環式系ジイソシアネート(特に、イソホロンジイソシアネート、水添化ジフェニルメタンジイソシアネート、1,3-ビス(イソシアナト)シクロヘキサン、1,4-ビス(イソシアナト)シクロヘキサン)が用いられ、更に好ましくは、反応性および汎用性に優れる点で、1,3-ビス(イソシアナト)シクロヘキサン、イソホロンジイソシアネートが用いられる。 Among these, aliphatic diisocyanates such as pentamethylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate; hydrogenated diphenylmethane diisocyanate, 1,3-bis (isocyanato) cyclohexane, 1 , 4-bis (isocyanato) cyclohexane, isophorone diisocyanate, norbornene diisocyanate and the like are preferably used, and particularly preferably alicyclic diisocyanate (especially isophorone diisocyanate, hydrogenated) from the viewpoint of low curing shrinkage. Diphenylmethane diisocyanate, 1,3-bis (isocyanato) cyclohexane, 1,4-bis (isocyanato) cyclohexane) are used, Preferably, from the viewpoint of excellent reactivity and versatility, 1,3-bis (isocyanato) cyclohexane, isophorone diisocyanate is used.
 上記水酸基含有(メタ)アクリレート系化合物(a2)としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;2-ヒドロキシエチルアクリロイルホスフェート、2-(メタ)アクリロイロキシエチル-2-ヒドロキシプロピルフタレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート、ジプロピレングリコール(メタ)アクリレート、脂肪酸変性-グリシジル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、2-ヒドロキシ-3-アクリロイル-オキシプロピルメタクリレート、ペンタエリスリトールトリ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールトリ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。
 これらは1種を単独でまたは2種以上を組み合わせて使用することができる。
Examples of the hydroxyl group-containing (meth) acrylate compound (a2) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) ) Acrylates, hydroxyalkyl (meth) acrylates such as 6-hydroxyhexyl (meth) acrylate; 2-hydroxyethylacryloyl phosphate, 2- (meth) acryloyloxyethyl-2-hydroxypropyl phthalate, caprolactone-modified 2-hydroxyethyl ( (Meth) acrylate, dipropylene glycol (meth) acrylate, fatty acid modified-glycidyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono ( Acrylate), 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, glycerol mono (meth) acrylate, glycerol di (meth) acrylate, 2-hydroxy-3-acryloyl-oxypropyl methacrylate, pentaerythritol Tri (meth) acrylate, caprolactone-modified pentaerythritol tri (meth) acrylate, ethylene oxide-modified pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, caprolactone-modified dipentaerythritol penta (meth) acrylate, ethylene oxide-modified Examples include dipentaerythritol penta (meth) acrylate.
These can be used alone or in combination of two or more.
 これらの中でも、エチレン性不飽和基を1個有する水酸基含有(メタ)アクリレート系化合物が、粘着剤層の柔軟性に優れる点で好ましく、更に好ましくは、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート、グリセリンモノ(メタ)アクリレートであり、特には2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、グリセリンモノ(メタ)アクリレートを用いることが、反応性および汎用性に優れる点で好ましい。 Among these, a hydroxyl group-containing (meth) acrylate compound having one ethylenically unsaturated group is preferable in terms of excellent flexibility of the pressure-sensitive adhesive layer, more preferably 2-hydroxyethyl (meth) acrylate, 2-hydroxy Hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, hydroxyalkyl (meth) acrylate such as 6-hydroxyhexyl (meth) acrylate, and glycerin mono (meth) acrylate In particular, 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and glycerin mono (meth) acrylate are preferably used in terms of excellent reactivity and versatility.
 上記ポリオール系化合物(a3)としては、例えば、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリカーボネート系ポリオール、ポリオレフィン系ポリオール、(メタ)アクリル系ポリオール、ポリシロキサン系ポリオール等が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて使用することができる。 Examples of the polyol compound (a3) include polyether polyols, polyester polyols, polycarbonate polyols, polyolefin polyols, (meth) acrylic polyols, polysiloxane polyols, and the like. These can be used alone or in combination of two or more.
 ポリエーテル系ポリオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリブチレングリコール、ポリヘキサメチレングリコール等のアルキレン構造含有ポリエーテル系ポリオールや、これらポリアルキレングリコールのランダム或いはブロック共重合体等が挙げられる。 Examples of polyether polyols include polyether polyols containing alkylene structures such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polybutylene glycol, and polyhexamethylene glycol, and random or block copolymers of these polyalkylene glycols. Etc.
 ポリエステル系ポリオールとしては、例えば、多価アルコールと多価カルボン酸との縮合重合物、環状エステル(ラクトン)の開環重合物、多価アルコール、多価カルボン酸および環状エステルの3種類の成分による反応物等が挙げられる。 Examples of the polyester polyol include three kinds of components such as a condensation polymer of polyhydric alcohol and polycarboxylic acid, a ring-opening polymer of cyclic ester (lactone), polyhydric alcohol, polycarboxylic acid and cyclic ester. Examples include reactants.
 上記多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリメチレングリコール、1,4-テトラメチレンジオール、1,3-テトラメチレンジオール、2-メチル-1,3-トリメチレンジオール、1,5-ペンタメチレンジオール、ネオペンチルグリコール、1,6-ヘキサメチレンジオール、3-メチル-1,5-ペンタメチレンジオール、2,4-ジエチル-1,5-ペンタメチレンジオール、グリセリン、トリメチロールプロパン、トリメチロールエタン、シクロヘキサンジオール類(1,4-シクロヘキサンジオール等)、ビスフェノール類(ビスフェノールA等)、糖アルコール類(キシリトールやソルビトール等)等が挙げられる。 Examples of the polyhydric alcohol include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, trimethylene glycol, 1,4-tetramethylene diol, 1,3-tetramethylene diol, 2-methyl-1,3-trimethyl. Methylene diol, 1,5-pentamethylene diol, neopentyl glycol, 1,6-hexamethylene diol, 3-methyl-1,5-pentamethylene diol, 2,4-diethyl-1,5-pentamethylene diol, glycerin , Trimethylolpropane, trimethylolethane, cyclohexanediols (such as 1,4-cyclohexanediol), bisphenols (such as bisphenol A), sugar alcohols (such as xylitol and sorbitol), and the like.
 上記多価カルボン酸としては、例えば、マロン酸、マレイン酸、フマル酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジオン酸等の脂肪族ジカルボン酸;1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸;テレフタル酸、イソフタル酸、オルトフタル酸、2,6-ナフタレンジカルボン酸、パラフェニレンジカルボン酸、トリメリット酸等の芳香族ジカルボン酸等が挙げられる。 Examples of the polyvalent carboxylic acid include aliphatic dicarboxylic acids such as malonic acid, maleic acid, fumaric acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid; -Alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid; aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, paraphenylenedicarboxylic acid, trimellitic acid, and the like.
 上記環状エステルとしては、例えば、プロピオラクトン、β-メチル-δ-バレロラクトン、ε-カプロラクトン等が挙げられる。 Examples of the cyclic ester include propiolactone, β-methyl-δ-valerolactone, and ε-caprolactone.
 ポリカーボネート系ポリオールとしては、例えば、多価アルコールとホスゲンとの反応物、環状炭酸エステル(アルキレンカーボネート等)の開環重合物等が挙げられる。 Examples of the polycarbonate polyol include a reaction product of a polyhydric alcohol and phosgene, a ring-opening polymer of a cyclic carbonate (alkylene carbonate, etc.), and the like.
 上記多価アルコールとしては、前記ポリエステル系ポリオールの説明中で例示の多価アルコール等が挙げられ、上記アルキレンカーボネートとしては、例えば、エチレンカーボネート、トリメチレンカーボネート、テトラメチレンカーボネート、ヘキサメチレンカーボネート等が挙げられる。 Examples of the polyhydric alcohol include polyhydric alcohols exemplified in the description of the polyester-based polyol. Examples of the alkylene carbonate include ethylene carbonate, trimethylene carbonate, tetramethylene carbonate, and hexamethylene carbonate. It is done.
 なお、ポリカーボネート系ポリオールは、分子内にカーボネート結合を有し、末端がヒドロキシル基である化合物であればよく、カーボネート結合とともにエステル結合を有していてもよい。 The polycarbonate-based polyol may be a compound having a carbonate bond in the molecule and having a hydroxyl group at the end, and may have an ester bond together with the carbonate bond.
 ポリオレフィン系ポリオールとしては、飽和炭化水素骨格としてエチレン、プロピレン、ブテン等のホモポリマーまたはコポリマーを有し、その分子末端に水酸基を有するものが挙げられる。例えば、ポリイソプレン系ポリオール、ポリブタジエン系ポリオール、ニトリルブタジエン系ポリオール、スチレンブタジエン系ポリオール等が挙げられる。
 ポリオレフィン系ポリオールは、その構造中に含まれるエチレン性不飽和基の全部または一部が水素化された水添化ポリオレフィン系ポリオールであってもよい。
Examples of the polyolefin-based polyol include those having a saturated hydrocarbon skeleton having a homopolymer or copolymer such as ethylene, propylene and butene, and having a hydroxyl group at the molecular end. For example, polyisoprene polyol, polybutadiene polyol, nitrile butadiene polyol, styrene butadiene polyol, and the like can be given.
The polyolefin-based polyol may be a hydrogenated polyolefin-based polyol in which all or part of the ethylenically unsaturated groups contained in the structure is hydrogenated.
 (メタ)アクリル系ポリオールとしては、(メタ)アクリル酸エステルの重合体または共重合体の分子内にヒドロキシル基を少なくとも2つ有しているものが挙げられ、かかる(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸オクタデシル等の(メタ)アクリル酸アルキルエステル等が挙げられる。 Examples of the (meth) acrylic polyol include those having at least two hydroxyl groups in the polymer or copolymer molecule of (meth) acrylic acid ester. As such (meth) acrylic acid ester, , For example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, (meth) acrylic acid And (meth) acrylic acid alkyl esters such as 2-ethylhexyl, decyl (meth) acrylate, dodecyl (meth) acrylate, and octadecyl (meth) acrylate.
 ポリシロキサン系ポリオールとしては、例えば、ジメチルポリシロキサンポリオールやメチルフェニルポリシロキサンポリオール等が挙げられる。 Examples of the polysiloxane polyol include dimethyl polysiloxane polyol and methylphenyl polysiloxane polyol.
 これらの中でも、ポリエステル系ポリオール、ポリエーテル系ポリオール、ポリカーボネート系ポリオールが好ましく、本発明の効果が得られやすく、かつ汎用性に優れる点で、特に好ましくはポリエステル系ポリオール、ポリカーボネート系ポリオールである。 Among these, polyester-based polyols, polyether-based polyols, and polycarbonate-based polyols are preferable, and polyester-based polyols and polycarbonate-based polyols are particularly preferable in that the effects of the present invention can be easily obtained and the versatility is excellent.
 また、ポリオール系化合物(a3)の含有する水酸基の数は、好ましくは2~5個、特に好ましくは2~3個、更に好ましくは2個である。水酸基の数が多すぎると、反応中にゲル化が起こりやすくなる傾向がある。 In addition, the number of hydroxyl groups contained in the polyol compound (a3) is preferably 2 to 5, particularly preferably 2 to 3, and more preferably 2. If the number of hydroxyl groups is too large, gelation tends to occur during the reaction.
 本発明においては、ポリオール系化合物(a3)の重量平均分子量が好ましくは1,000~20,000であり、特に好ましくは2,000~18,000、更に好ましくは3,000~16,000である。かかる重量平均分子量が小さすぎると粘着剤層の粘着力が低下する傾向があり、大きすぎると多価イソシアネート系化合物(a1)との反応性が低下する傾向にある。 In the present invention, the polyol compound (a3) preferably has a weight average molecular weight of 1,000 to 20,000, particularly preferably 2,000 to 18,000, more preferably 3,000 to 16,000. is there. If the weight average molecular weight is too small, the adhesive strength of the pressure-sensitive adhesive layer tends to be reduced, and if it is too large, the reactivity with the polyvalent isocyanate compound (a1) tends to be reduced.
 なお、上記の重量平均分子量は、標準ポリスチレン分子量換算による重量平均分子量であり、高速液体クロマトグラフィー(昭和電工社製、「Shodex GPC system-11型」)に、カラム:Shodex GPC KF-806L(排除限界分子量:2×107、分離範囲:100~2×107、理論段数:10,000段/本、充填剤材質:スチレン-ジビニルベンゼン共重合体、充填剤粒径:10μm)の3本直列を用いることにより測定される。 The above-mentioned weight average molecular weight is a weight average molecular weight in terms of standard polystyrene molecular weight, and the column: Shodex GPC KF-806L (excluded) was subjected to high performance liquid chromatography (manufactured by Showa Denko Co., Ltd., “Shodex GPC system-11 type”). (Limit molecular weight: 2 × 10 7 , separation range: 100 to 2 × 10 7 , theoretical plate number: 10,000 plates / piece, filler material: styrene-divinylbenzene copolymer, filler particle size: 10 μm) Measured by using series.
 上記ポリオール系化合物(a3)の水酸基価としては、10~300mgKOH/gであることが好ましく、特に好ましくは15~150mgKOH/g、更に好ましくは20~120mgKOH/gである。かかる水酸基価が高すぎるとウレタン(メタ)アクリレート系化合物(A)が低分子量化し粘着強度が低下する傾向があり、低すぎると高粘度化し作業性が低下する傾向がある。 The hydroxyl value of the polyol compound (a3) is preferably 10 to 300 mgKOH / g, particularly preferably 15 to 150 mgKOH / g, and more preferably 20 to 120 mgKOH / g. If the hydroxyl value is too high, the urethane (meth) acrylate compound (A) tends to have a low molecular weight and the adhesive strength tends to decrease, and if it is too low, the viscosity tends to increase and the workability tends to decrease.
 本発明で用いられるウレタン(メタ)アクリレート系化合物(A)は、例えば、(1)前記の多価イソシアネート系化合物(a1)、水酸基含有(メタ)アクリレート系化合物(a2)、ポリオール系化合物(a3)を、反応器に一括または別々に仕込み反応させる方法、(2)多価イソシアネート系化合物(a1)とポリオール系化合物(a3)とを予め反応させて得られる反応生成物に、水酸基含有(メタ)アクリレート系化合物(a2)を反応させる方法等が挙げられるが、反応の安定性や副生成物の低減等の点から(2)の方法が好ましい。 Examples of the urethane (meth) acrylate compound (A) used in the present invention include (1) the polyvalent isocyanate compound (a1), the hydroxyl group-containing (meth) acrylate compound (a2), and the polyol compound (a3). ) In a reactor in a batch or separately, and (2) a reaction product obtained by reacting a polyvalent isocyanate compound (a1) and a polyol compound (a3) in advance with a hydroxyl group-containing (meta ) A method of reacting the acrylate compound (a2) and the like can be mentioned, and the method (2) is preferable from the viewpoints of reaction stability and reduction of by-products.
 多価イソシアネート系化合物(a1)とポリオール系化合物(a3)との反応には、公知の反応手段を用いることができる。その際、例えば、多価イソシアネート系化合物(a1)中のイソシアネート基:ポリオール系化合物(a3)中の水酸基とのモル比を通常2n:(2n-2)(nは2以上の整数)程度にすることにより、イソシアネート基を残存させた末端イソシアネート基含有ウレタン(メタ)アクリレート系化合物を得ることができ、該化合物を得た後、水酸基含有(メタ)アクリレート系化合物(a2)との付加反応を可能にする。 For the reaction between the polyvalent isocyanate compound (a1) and the polyol compound (a3), known reaction means can be used. At that time, for example, the molar ratio of the isocyanate group in the polyvalent isocyanate compound (a1) to the hydroxyl group in the polyol compound (a3) is usually about 2n: (2n-2) (n is an integer of 2 or more). Thus, a terminal isocyanate group-containing urethane (meth) acrylate-based compound in which an isocyanate group remains can be obtained. After obtaining the compound, an addition reaction with the hydroxyl group-containing (meth) acrylate-based compound (a2) is performed. enable.
 上記多価イソシアネート系化合物(a1)とポリオール系化合物(a3)とを予め反応させて得られる反応生成物と、水酸基含有(メタ)アクリレート系化合物(a2)との付加反応にも、公知の反応手段を用いることができる。 The addition reaction of the reaction product obtained by reacting the polyvalent isocyanate compound (a1) and the polyol compound (a3) in advance with the hydroxyl group-containing (meth) acrylate compound (a2) is also a known reaction. Means can be used.
 反応生成物と水酸基含有(メタ)アクリレート系化合物(a2)との反応モル比は、例えば、多価イソシアネート系化合物(a1)のイソシアネート基が2個で、水酸基含有(メタ)アクリレート系化合物(a2)の水酸基が1個である場合は、反応生成物:水酸基含有(メタ)アクリレート系化合物(a2)が1:2程度であり、多価イソシアネート系化合物(a1)のイソシアネート基が3個で、水酸基含有(メタ)アクリレート系化合物(a2)の水酸基が1個である場合は、反応生成物:水酸基含有(メタ)アクリレート系化合物(a2)が1:3程度である。 The reaction molar ratio between the reaction product and the hydroxyl group-containing (meth) acrylate compound (a2) is, for example, that the polyisocyanate compound (a1) has two isocyanate groups and the hydroxyl group-containing (meth) acrylate compound (a2). ) Has one hydroxyl group, the reaction product: hydroxyl group-containing (meth) acrylate compound (a2) is about 1: 2, and the polyisocyanate compound (a1) has three isocyanate groups. When the hydroxyl group-containing (meth) acrylate compound (a2) has one hydroxyl group, the reaction product: hydroxyl group-containing (meth) acrylate compound (a2) is about 1: 3.
 この反応生成物と水酸基含有(メタ)アクリレート系化合物(a2)との付加反応においては、反応系の残存イソシアネート基含有率が0.1重量%以下になる時点で反応を終了させることにより、ウレタン(メタ)アクリレート系化合物(A)が得られる。 In the addition reaction between the reaction product and the hydroxyl group-containing (meth) acrylate compound (a2), the reaction is terminated when the residual isocyanate group content in the reaction system is 0.1% by weight or less. A (meth) acrylate compound (A) is obtained.
 上記反応時の、反応温度は、通常30~90℃、好ましくは40~80℃であり、反応時間は、通常2~30時間、好ましくは3~20時間である。 The reaction temperature during the above reaction is usually 30 to 90 ° C., preferably 40 to 80 ° C., and the reaction time is usually 2 to 30 hours, preferably 3 to 20 hours.
 本発明においては、ウレタン(メタ)アクリレート系化合物(A)を製造する際に、金属塩(X)を触媒として使用し、多価イソシアネート系化合物(a1)、水酸基含有(メタ)アクリレート系化合物(a2)およびポリオール系化合物(a3)を金属塩(X)の存在下で反応させてウレタン(メタ)アクリレート系化合物(A)を得ることが好ましい。 In the present invention, when the urethane (meth) acrylate compound (A) is produced, the metal salt (X) is used as a catalyst, the polyvalent isocyanate compound (a1), the hydroxyl group-containing (meth) acrylate compound ( It is preferable that a urethane (meth) acrylate compound (A) is obtained by reacting a2) and the polyol compound (a3) in the presence of the metal salt (X).
 かかるウレタン(メタ)アクリレート系化合物(A)の製造時に金属塩(X)を触媒として使用する際の配合量としては、ウレタン(メタ)アクリレート系化合物(A)100重量部に対して、5×10-3~1×10-1重量部となるように配合することが好ましく、特に好ましくは6×10-3~9×10-2重量部、更に好ましくは7×10-3~8×10-2重量部である。
 かかる配合量が少なすぎるとウレタン(メタ)アクリレート系化合物(A)の分子量が低下しやすい傾向があり、多すぎると減粘が進みやすい傾向がある。
The amount of the metal salt (X) used as a catalyst during the production of the urethane (meth) acrylate compound (A) is 5 × with respect to 100 parts by weight of the urethane (meth) acrylate compound (A). It is preferable to add 10 −3 to 1 × 10 −1 parts by weight, particularly preferably 6 × 10 −3 to 9 × 10 −2 parts by weight, and more preferably 7 × 10 −3 to 8 × 10. -2 parts by weight.
If the blending amount is too small, the molecular weight of the urethane (meth) acrylate compound (A) tends to decrease, and if it is too large, the viscosity tends to decrease.
 多価イソシアネート系化合物(a1)、水酸基含有(メタ)アクリレート系化合物(a2)およびポリオール系化合物(a3)を反応させてなるウレタン(メタ)アクリレート系化合物(A)の製造においては、必要に応じてイソシアネート基に対して反応する官能基を有しない有機溶剤、例えば、酢酸エチル、酢酸ブチル等のエステル類、メチルエチルケトン、メチルイソブチルケトン等のケトン類、トルエン、キシレン等の芳香族類等の有機溶剤を用いてもよい。
 また、上記有機溶剤に代えて、または有機溶剤と併せて、後述のエチレン性不飽和モノマー(B)を希釈剤として用いることもできる。
 本発明においては、ウレタン(メタ)アクリレート系化合物(A)が高分子量になると粘度が高くなりハンドリングが悪くなるため、希釈剤として後述のエチレン性不飽和モノマー(B)を用いることが好ましい。
In the production of the urethane (meth) acrylate compound (A) obtained by reacting the polyvalent isocyanate compound (a1), the hydroxyl group-containing (meth) acrylate compound (a2) and the polyol compound (a3), as necessary. Organic solvents having no functional group that reacts with isocyanate groups, for example, esters such as ethyl acetate and butyl acetate, ketones such as methyl ethyl ketone and methyl isobutyl ketone, and organic solvents such as aromatics such as toluene and xylene May be used.
Further, in place of the organic solvent or in combination with the organic solvent, an ethylenically unsaturated monomer (B) described later can be used as a diluent.
In the present invention, when the urethane (meth) acrylate compound (A) has a high molecular weight, the viscosity increases and handling becomes worse. Therefore, it is preferable to use an ethylenically unsaturated monomer (B) described later as a diluent.
 かくして本発明で用いられるウレタン(メタ)アクリレート系化合物(A)が製造される。 Thus, the urethane (meth) acrylate compound (A) used in the present invention is produced.
 ウレタン(メタ)アクリレート系化合物(A)の(メタ)アクリロイル当量は、5,000~100,000であることが好ましく、特に好ましくは6,000~90,000、更に好ましくは7,000~80,000、殊に好ましくは8,000~70,000である。かかる(メタ)アクリロイル当量が低すぎると粘着剤として使用した場合に粘着剤層の粘着力が低下する傾向があり、高すぎるとウレタン(メタ)アクリレート系化合物(A)の粘度が高くなりすぎて取扱いが困難となる傾向がある。 The (meth) acryloyl equivalent of the urethane (meth) acrylate compound (A) is preferably 5,000 to 100,000, particularly preferably 6,000 to 90,000, and more preferably 7,000 to 80. 1,000, particularly preferably 8,000 to 70,000. If the (meth) acryloyl equivalent is too low, the adhesive strength of the pressure-sensitive adhesive layer tends to decrease when used as a pressure-sensitive adhesive. If it is too high, the viscosity of the urethane (meth) acrylate compound (A) becomes too high. It tends to be difficult to handle.
 ウレタン(メタ)アクリレート系化合物(A)の重量平均分子量は、5,000~200,000であることが好ましく、特に好ましくは6,000~150,000、更に好ましくは7,000~120,000、殊に好ましくは8,000~100,000である。かかる重量平均分子量が低すぎると粘着剤層の粘着力が低下する傾向があり、高すぎるとウレタン(メタ)アクリレート系化合物(A)の粘度が高くなりすぎて取扱いが困難となる傾向がある。 The weight average molecular weight of the urethane (meth) acrylate compound (A) is preferably 5,000 to 200,000, particularly preferably 6,000 to 150,000, and more preferably 7,000 to 120,000. Particularly preferred is 8,000 to 100,000. If the weight average molecular weight is too low, the adhesive strength of the pressure-sensitive adhesive layer tends to decrease, and if it is too high, the viscosity of the urethane (meth) acrylate compound (A) tends to be too high and handling tends to be difficult.
 なお、上記の重量平均分子量は、標準ポリスチレン分子量換算による重量平均分子量であり、高速液体クロマトグラフィー(昭和電工社製、「Shodex GPC system-11型」)に、カラム:Shodex GPC KF-806L(排除限界分子量:2×107、分離範囲:100~2×107、理論段数:10,000段/本、充填剤材質:スチレン-ジビニルベンゼン共重合体、充填剤粒径:10μm)の3本直列を用いることにより測定される。 The above-mentioned weight average molecular weight is a weight average molecular weight in terms of standard polystyrene molecular weight, and the column: Shodex GPC KF-806L (excluded) was subjected to high performance liquid chromatography (manufactured by Showa Denko Co., Ltd., “Shodex GPC system-11 type”). (Limit molecular weight: 2 × 10 7 , separation range: 100 to 2 × 10 7 , theoretical plate number: 10,000 plates / piece, filler material: styrene-divinylbenzene copolymer, filler particle size: 10 μm) Measured by using series.
 また、ウレタン(メタ)アクリレート系化合物(A)の粘度は、60℃における粘度で、1,000~10,000,000mPa・sであることが好ましく、特に好ましくは2,000~8,000,000mPa・s、更に好ましくは3,000~6,000,000mPa・sである。かかる粘度が高すぎると取り扱いが困難になる傾向があり、低すぎると塗工の際に膜厚の制御が困難になる傾向がある。
 なお、粘度の測定法はE型粘度計による。
The viscosity of the urethane (meth) acrylate compound (A) is preferably 1,000 to 10,000,000 mPa · s, particularly preferably 2,000 to 8,000,000 at 60 ° C. 000 mPa · s, more preferably 3,000 to 6,000,000 mPa · s. If the viscosity is too high, handling tends to be difficult, and if it is too low, control of the film thickness tends to be difficult during coating.
The viscosity is measured with an E-type viscometer.
 〔エチレン性不飽和モノマー(B)〕
 本発明においては、エチレン性不飽和モノマー(B)として、水酸基含有モノマー(b1)を含有することが必要である。
[Ethylenically unsaturated monomer (B)]
In the present invention, it is necessary to contain the hydroxyl group-containing monomer (b1) as the ethylenically unsaturated monomer (B).
 水酸基含有モノマー(b1)としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、5-ヒドロキシペンチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート、10-ヒドロキシデシル(メタ)アクリレート、(4-ヒドロキシメチルシクロへキシル)メチル(メタ)アクリレート等のアルキル基の炭素数1~16(好ましくは1~12)の(メタ)アクリル酸ヒドロキシアルキルエステル、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート等のカプロラクトン変性モノマー、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、2-アクリロイルオキシエチル-2-ヒドロキシエチルフタル酸、N-メチロール(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド等の1級水酸基含有エチレン性不飽和化合物;2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート等の2級水酸基含有エチレン性不飽和化合物;2,2-ジメチル-2-ヒドロキシエチル(メタ)アクリレート等の3級水酸基含有エチレン性不飽和化合物が挙げられる。
 これらの中でも、粘度およびアクリル系樹脂との相溶性に優れ、入手が容易である点で、2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレートであり、更に好ましくは、4-ヒドロキシブチル(メタ)アクリレートである。
 また、これらは1種を単独でまたは2種以上を組み合わせて使用することができる。
Examples of the hydroxyl group-containing monomer (b1) include 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 5-hydroxypentyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxy C1-C16 (preferably 1-12) (meth) of alkyl groups such as octyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl (meth) acrylate, etc. Hydroxyalkyl acrylate, caprolactone-modified monomers such as caprolactone-modified 2-hydroxyethyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, 2-acrylic Primary hydroxyl group-containing ethylenically unsaturated compounds such as yloxyethyl-2-hydroxyethylphthalic acid, N-methylol (meth) acrylamide, N-hydroxyethyl (meth) acrylamide; 2-hydroxypropyl (meth) acrylate, 2- Secondary hydroxyl groups such as hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, etc. -Containing ethylenically unsaturated compounds; tertiary hydroxyl group-containing ethylenically unsaturated compounds such as 2,2-dimethyl-2-hydroxyethyl (meth) acrylate.
Among these, 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate are excellent in viscosity and compatibility with acrylic resins and easily available. 2-hydroxybutyl (meth) acrylate, more preferably 4-hydroxybutyl (meth) acrylate.
Moreover, these can be used individually by 1 type or in combination of 2 or more types.
 かかる水酸基含有モノマー(b1)の含有量は、エチレン性不飽和モノマー(B)全体に対して40重量%以上であることが好ましく、特に好ましくは45重量%以上、更に好ましくは50重量%以上である。
 かかる含有量が少なすぎると増粘が進みやすい傾向がある。
The content of the hydroxyl group-containing monomer (b1) is preferably 40% by weight or more, particularly preferably 45% by weight or more, more preferably 50% by weight or more, based on the entire ethylenically unsaturated monomer (B). is there.
If the content is too small, the viscosity tends to increase.
 また、かかる水酸基含有モノマー(b1)の含有量は、ウレタン(メタ)アクリレート系化合物(A)とエチレン性不飽和モノマー(B)の合計100重量部に対して、20~70重量部であることが好ましく、特に好ましくは20~65重量部、更に好ましくは25~60重量部である。
 かかる含有量が多すぎると、減粘が進みやすい傾向があり、少なすぎると増粘が進みやすい傾向がある。
The content of the hydroxyl group-containing monomer (b1) is 20 to 70 parts by weight with respect to 100 parts by weight as a total of the urethane (meth) acrylate compound (A) and the ethylenically unsaturated monomer (B). The amount is preferably 20 to 65 parts by weight, more preferably 25 to 60 parts by weight.
When the content is too large, the viscosity tends to proceed easily, and when the content is too small, the viscosity tends to proceed easily.
 上記水酸基含有モノマー(b1)は、ウレタン(メタ)アクリレート系化合物(A)に対して別途配合されるものであってもよいし、ウレタン(メタ)アクリレート系化合物(A)の製造時に希釈剤として配合されるものであってもよい。 The hydroxyl group-containing monomer (b1) may be separately added to the urethane (meth) acrylate compound (A), or as a diluent during the production of the urethane (meth) acrylate compound (A). It may be blended.
 また、エチレン性不飽和モノマー(B)としては、水酸基含有モノマー(b1)以外のエチレン性不飽和モノマー(b2)(以下、「エチレン性不飽和モノマー(b2)」と記載することもある。)を用いてもよく、かかるエチレン性不飽和モノマー(b2)としては、単官能モノマー、2官能モノマー、3官能以上のモノマーのいずれであってもよい。 Further, as the ethylenically unsaturated monomer (B), an ethylenically unsaturated monomer (b2) other than the hydroxyl group-containing monomer (b1) (hereinafter sometimes referred to as “ethylenically unsaturated monomer (b2)”). The ethylenically unsaturated monomer (b2) may be any of a monofunctional monomer, a bifunctional monomer, and a trifunctional or higher monomer.
 単官能モノマーとしては、エチレン性不飽和基を1つ含有するモノマーであればよく、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、n-ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノールエチレンオキサイド変性(メタ)アクリレート、ノニルフェノールプロピレンオキサイド変性(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、アクリロイルモルフォリン、N-ビニルピロリドン、2-ビニルピリジン、グリシジル(メタ)アクリレート、3-エチル-3-オキセタニルメチル(メタ)アクリレート、フルフリル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、シクロヘキサンスピロ-2-(1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、γ-ブチロラクトン(メタ)アクリレート、トリメチロールプロパン(フォルマル)(メタ)アクリレート、スチレン、ビニルトルエン、クロロスチレン、α-メチルスチレン、アクリロニトリル、酢酸ビニル、アリル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルアシッドホスフェートモノエステル等が挙げられる。 The monofunctional monomer may be any monomer containing one ethylenically unsaturated group. For example, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, dodecyl (meth) acrylate, n-stearyl (meth) acrylate, isostearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, tricyclodecanyl (meth) acrylate, dicyclopentenyl (meth) acrylate , Benzyl (meth) acrylate, phenol ethylene oxide modified (meth) acrylate, nonylphenol propylene oxide modified (meth) acrylate, 2-methoxyethyl (meth) acrylate, ethyl carbitol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, Methoxypolypropylene glycol (meth) acrylate, butoxyethyl (meth) acrylate, acryloylmorpholine, N-vinylpyrrolidone, 2-vinylpyridine, glycidyl (meth) acrylate, 3-ethyl-3-oxetanylmethyl (meth) acrylate, furfuryl ( (Meth) acrylate, tetrahydrofurfuryl (meth) acrylate, (2-methyl-2-ethyl-1,3-dioxolan-4-yl) methyl (Meth) acrylate, cyclohexanespiro-2- (1,3-dioxolan-4-yl) methyl (meth) acrylate, γ-butyrolactone (meth) acrylate, trimethylolpropane (formal) (meth) acrylate, styrene, vinyltoluene Chlorostyrene, α-methylstyrene, acrylonitrile, vinyl acetate, allyl (meth) acrylate, 2- (meth) acryloyloxyethyl acid phosphate monoester, and the like.
 また、前記の単官能モノマーの他にアクリル酸のマイケル付加物あるいは2-アクリロイルオキシエチルジカルボン酸モノエステルも挙げられ、アクリル酸のマイケル付加物としては、例えば、アクリル酸ダイマー、メタクリル酸ダイマー、アクリル酸トリマー、メタクリル酸トリマー、アクリル酸テトラマー、メタクリル酸テトラマー等が挙げられる。また、特定の置換基をもつカルボン酸である2-アクリロイルオキシエチルジカルボン酸モノエステルとしては、例えば2-アクリロイルオキシエチルコハク酸モノエステル、2-メタクリロイルオキシエチルコハク酸モノエステル、2-アクリロイルオキシエチルフタル酸モノエステル、2-メタクリロイルオキシエチルフタル酸モノエステル、2-アクリロイルオキシエチルヘキサヒドロフタル酸モノエステル、2-メタクリロイルオキシエチルヘキサヒドロフタル酸モノエステル等が挙げられる。更に、オリゴエステルアクリレートも挙げられる。 In addition to the monofunctional monomer, there may be mentioned Michael adduct of acrylic acid or 2-acryloyloxyethyldicarboxylic acid monoester. Examples of the Michael adduct of acrylic acid include acrylic acid dimer, methacrylic acid dimer, acrylic acid Examples include acid trimer, methacrylic acid trimer, acrylic acid tetramer, and methacrylic acid tetramer. Examples of 2-acryloyloxyethyl dicarboxylic acid monoester which is a carboxylic acid having a specific substituent include 2-acryloyloxyethyl succinic acid monoester, 2-methacryloyloxyethyl succinic acid monoester, and 2-acryloyloxyethyl. Examples thereof include phthalic acid monoester, 2-methacryloyloxyethyl phthalic acid monoester, 2-acryloyloxyethyl hexahydrophthalic acid monoester, and 2-methacryloyloxyethyl hexahydrophthalic acid monoester. Furthermore, oligoester acrylate is also mentioned.
 2官能モノマーとしては、エチレン性不飽和基を2つ含有するモノマーであればよく、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイド変性ビスフェノールA型ジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールエチレンオキサイド変性ジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート、ヒドロキシピバリン酸変性ネオペンチルグリコールジ(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルアシッドホスフェートジエステル等が挙げられる。 The bifunctional monomer may be any monomer containing two ethylenically unsaturated groups. For example, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol Di (meth) acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide Modified bisphenol A type di (meth) acrylate, propylene oxide modified bisphenol A type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate 1,6-hexanediol ethylene oxide modified di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, phthalic acid diglycidyl ester di (meth) acrylate, hydroxypivalic acid modified neopentyl glycol di (meth) ) Acrylate, 2- (meth) acryloyloxyethyl acid phosphate diester, and the like.
 3官能以上のモノマーとしては、エチレン性不飽和基を3個以上含有するモノマーであればよく、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン、イソシアヌル酸エチレンオキサイド変性トリアクリレート、エチレンオキサイド変性ジペンタエリスリトールヘキサ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールテトラ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールテトラ(メタ)アクリレート等が挙げられる。 The tri- or higher functional monomer may be any monomer containing three or more ethylenically unsaturated groups. For example, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) ) Acrylate, tri (meth) acryloyloxyethoxytrimethylolpropane, isocyanuric acid ethylene oxide modified triacrylate, ethylene oxide modified dipentaerythritol hexa (meth) acrylate, ethylene oxide modified pentaerythritol tetra (meth) acrylate, caprolactone modified dipentaerythritol Examples include hexa (meth) acrylate and caprolactone-modified pentaerythritol tetra (meth) acrylate.
 これらは単独で用いてもよいし、2種以上を併用してもよい。 These may be used alone or in combination of two or more.
 上記エチレン性不飽和モノマー(b2)の中でも、塗膜の柔軟性に優れる点で単官能モノマーを使用することが好ましく、黄変が少なく柔軟性によく優れる点で、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、n-ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、ブトキシエチル(メタ)アクリレートが特に好ましい。 Among the ethylenically unsaturated monomers (b2), it is preferable to use a monofunctional monomer in terms of excellent flexibility of the coating film, and methyl (meth) acrylate and ethyl in terms of excellent yellowness and good flexibility. (Meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate , Decyl (meth) acrylate, isodecyl (meth) acrylate, dodecyl (meth) acrylate, n-stearyl (meth) acrylate, isostearyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, ethyl carbitol (meth) acrylate , Metoki Polyethylene glycol (meth) acrylate, methoxy polypropylene glycol (meth) acrylate, butoxyethyl (meth) acrylate are particularly preferred.
 上記エチレン性不飽和モノマー(b2)は、ウレタン(メタ)アクリレート系化合物(A)の製造時に希釈剤として用いることが好ましい。 The ethylenically unsaturated monomer (b2) is preferably used as a diluent during the production of the urethane (meth) acrylate compound (A).
〔活性エネルギー線硬化性樹脂組成物〕
 上記、ウレタン(メタ)アクリレート系化合物(A)、エチレン性不飽和モノマー(B)、および金属塩(X)を用いて本発明の活性エネルギー線硬化性樹脂組成物が得られる。
[Active energy ray-curable resin composition]
The active energy ray-curable resin composition of the present invention is obtained using the urethane (meth) acrylate compound (A), the ethylenically unsaturated monomer (B), and the metal salt (X).
 ウレタン(メタ)アクリレート系化合物(A)とエチレン性不飽和モノマー(B)との含有比率(重量比)は、通常、(A):(B)=80:20~20:80であり、好ましくは(A):(B)=75:25~25:75、特に好ましくは(A):(B)=70:30~25:75、更に好ましくは(A):(B)=65:35~30:70である。
 ウレタン(メタ)アクリレート系化合物(A)に対してエチレン性不飽和モノマー(B)が多すぎると樹脂組成物の粘度が低くなりすぎて、厚塗りが困難となる傾向があり、少なすぎると樹脂組成物の粘度が高くなりすぎて、取扱いが困難になる傾向がある。
The content ratio (weight ratio) between the urethane (meth) acrylate compound (A) and the ethylenically unsaturated monomer (B) is usually (A) :( B) = 80: 20 to 20:80, preferably (A) :( B) = 75: 25 to 25:75, particularly preferably (A) :( B) = 70: 30 to 25:75, more preferably (A) :( B) = 65: 35 ~ 30: 70.
If the amount of the ethylenically unsaturated monomer (B) is too much with respect to the urethane (meth) acrylate compound (A), the viscosity of the resin composition tends to be too low and thick coating tends to be difficult. The viscosity of the composition tends to be too high and becomes difficult to handle.
 本発明の活性エネルギー線硬化性樹脂組成物では、更に、活性エネルギー線による硬化を効率的に行なうために光重合開始剤(C)を含有することが好ましい。
 上記光重合開始剤(C)としては、光の作用によりラジカルを発生するものであれば特に限定されず、例えば、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタノン、2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノンオリゴマー、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン-1-オン等のアセトフェノン類;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン類;ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4′-メチル-ジフェニルサルファイド、3,3′,4,4′-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-ベンゾイル-N,N-ジメチル-N-[2-(1-オキソ-2-プロペニルオキシ)エチル]ベンゼンメタナミニウムブロミド、(4-ベンゾイルベンジル)トリメチルアンモニウムクロリド等のベンゾフェノン類;2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-(3-ジメチルアミノ-2-ヒドロキシ)-3,4-ジメチル-9H-チオキサントン-9-オンメソクロリド等のチオキサントン類;2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のアシルフォスフォンオキサイド類;等があげられる。なお、これら光重合開始剤(C)は、単独で用いるか、または2種以上を併用することができる。
The active energy ray-curable resin composition of the present invention preferably further contains a photopolymerization initiator (C) in order to efficiently perform curing with active energy rays.
The photopolymerization initiator (C) is not particularly limited as long as it generates radicals by the action of light. For example, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one Benzyldimethyl ketal, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl phenylketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propane-1 -One, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone, 2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone oligomer, 1- [ 4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propane-1 Acetophenones such as ON, 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] -phenyl} -2-methyl-propan-1-one; benzoin, benzoinmethyl Benzoins such as ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether; benzophenone, methyl o-benzoylbenzoate, 4-phenylbenzophenone, 4-benzoyl-4'-methyl-diphenyl sulfide, 3,3 ', 4 , 4'-Tetra (t-butylperoxycarbonyl) benzophenone, 2,4,6-trimethylbenzophenone, 4-benzoyl-N, N-dimethyl-N- [2- (1-oxo-2-propenyloxy) ethyl ] Benzene metanaminium bromide, Benzophenones such as 4-benzoylbenzyl) trimethylammonium chloride; 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2- (3 Thioxanthones such as -dimethylamino-2-hydroxy) -3,4-dimethyl-9H-thioxanthone-9-one mesochloride; 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bis (2,6-dimethoxy) And acylphosphones such as benzoyl) -2,4,4-trimethyl-pentylphosphine oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide. These photopolymerization initiators (C) can be used alone or in combination of two or more.
 また、これら光重合開始剤(C)の助剤として、例えば、トリエタノールアミン、トリイソプロパノールアミン、4,4′-ジメチルアミノベンゾフェノン(ミヒラーケトン)、4,4′-ジエチルアミノベンゾフェノン、2-ジメチルアミノエチル安息香酸、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸(n-ブトキシ)エチル、4-ジメチルアミノ安息香酸イソアミル、4-ジメチルアミノ安息香酸2-エチルヘキシル、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン等を併用することも可能である。これらの助剤も単独でもしくは2種以上を併せて用いることができる。 Examples of auxiliary agents for these photopolymerization initiators (C) include triethanolamine, triisopropanolamine, 4,4′-dimethylaminobenzophenone (Michler ketone), 4,4′-diethylaminobenzophenone, 2-dimethylaminoethyl. Benzoic acid, ethyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate (n-butoxy), isoamyl 4-dimethylaminobenzoate, 2-ethylhexyl 4-dimethylaminobenzoate, 2,4-diethylthioxanthone 2,4-diisopropylthioxanthone can also be used in combination. These auxiliaries can be used alone or in combination of two or more.
 かかる光重合開始剤(C)の含有量については、ウレタン(メタ)アクリレート系化合物(A)、エチレン性不飽和モノマー(B)との合計100重量部に対して、1~10重量部であることが好ましく、特に好ましくは2~5重量部である。かかる含有量が少なすぎると硬化速度が低下する傾向があり、多すぎても硬化性は向上せず経済性が低下する傾向がある。 The content of the photopolymerization initiator (C) is 1 to 10 parts by weight with respect to a total of 100 parts by weight of the urethane (meth) acrylate compound (A) and the ethylenically unsaturated monomer (B). It is preferably 2 to 5 parts by weight. If the content is too small, the curing rate tends to decrease. If the content is too large, the curability does not improve and the economy tends to decrease.
 本発明の活性エネルギー線硬化性樹脂組成物には、ウレタン(メタ)アクリレート系化合物(A)、エチレン性不飽和モノマー(B)、および金属塩(X)に、必要に応じて、光重合開始剤(C)、それ以外に、本発明の効果を損なわない範囲において、酸化防止剤、難燃剤、帯電防止剤、充填剤、レベリング剤、安定剤、補強剤、艶消し剤、(X)以外の反応触媒等を含有させることも可能である。更に、架橋剤として、熱により架橋を引き起す作用をもつ化合物、具体的にはエポキシ化合物、アジリシン化合物、メラミン化合物、イソシアネート化合物、キレート化合物等も使用できる。 The active energy ray-curable resin composition of the present invention includes urethane (meth) acrylate compound (A), ethylenically unsaturated monomer (B), and metal salt (X), if necessary, photopolymerization start In addition to the agent (C), other than the above, the antioxidant, flame retardant, antistatic agent, filler, leveling agent, stabilizer, reinforcing agent, matting agent, and other than (X), as long as the effects of the present invention are not impaired. It is also possible to contain a reaction catalyst or the like. Furthermore, as the crosslinking agent, a compound having an action of causing crosslinking by heat, specifically, an epoxy compound, an aziricin compound, a melamine compound, an isocyanate compound, a chelate compound, and the like can be used.
 更に、本発明の活性エネルギー線硬化性樹脂組成物は、未反応成分の抑制、粘着力の向上の点からポリチオール化合物を含有することができる。
 ポリチオール化合物としては、特に制限されないが、分子内にメルカプト基を2~6個有する化合物が好ましく、例えば、炭素数2~20程度のアルカンジチオール等の脂肪族ポリチオール類、キシリレンジチオール等の芳香族ポリチオール類、アルコール類のハロヒドリン付加物のハロゲン原子をメルカプト基で置換してなるポリチオール類、ポリエポキシド化合物の硫化水素反応生成物からなるポリチオール類、分子内に水酸基2~6個を有する多価アルコール類と、チオグリコール酸、β-メルカプトプロピオン酸、またはβ-メルカプトブタン酸とのエステル化物からなるポリチオール類等を挙げることができ、これらは1種を単独でまたは2種以上を併用することができる。
Furthermore, the active energy ray-curable resin composition of the present invention can contain a polythiol compound from the viewpoint of suppressing unreacted components and improving adhesive strength.
The polythiol compound is not particularly limited, but a compound having 2 to 6 mercapto groups in the molecule is preferable. For example, aliphatic polythiols such as alkanedithiol having about 2 to 20 carbon atoms, aromatics such as xylylenedithiol, etc. Polythiols, polythiols obtained by replacing halogen atoms of halohydrin adducts of alcohols with mercapto groups, polythiols consisting of hydrogen sulfide reaction products of polyepoxide compounds, polyhydric alcohols having 2 to 6 hydroxyl groups in the molecule And polythiols composed of esterified products with thioglycolic acid, β-mercaptopropionic acid, or β-mercaptobutanoic acid, etc., and these can be used alone or in combination of two or more. .
 ポリチオール化合物の含有量は、ウレタン(メタ)アクリレート系化合物(A)とエチレン性不飽和モノマー(B)の合計100重量部に対し、0.01~10重量部以下であることが好ましく、0.1~5重量部以下であることが特に好ましい。 The content of the polythiol compound is preferably 0.01 to 10 parts by weight or less with respect to 100 parts by weight in total of the urethane (meth) acrylate compound (A) and the ethylenically unsaturated monomer (B). It is particularly preferably 1 to 5 parts by weight or less.
 また、本発明の活性エネルギー線硬化性樹脂組成物は、必要に応じて、塗工時の粘度を調整するために、メタノール、エタノール、プロパノール、n-ブタノール、i-ブタノール等のアルコール類;アセトン、メチルイソブチルケトン、メチルエチルケトン、シクロヘキサノン等のケトン類;エチルセロソルブ等のセロソルブ類;トルエン、キシレン等の芳香族類;プロピレングリコールモノメチルエーテル等のグリコールエーテル類;酢酸メチル、酢酸エチル、酢酸ブチル等の酢酸エステル類;ジアセトンアルコール等の希釈溶剤を使用してもよいが、塗膜内への溶剤の残存や、乾燥時に硬化成分が揮発する可能性があるので、実質的に溶剤を含有しないことが好ましい。
 なお、実質的に溶剤を含有しないとは、活性エネルギー線硬化性樹脂組成物全体に対して通常1重量%以下、好ましくは0.5重量%以下、更に好ましくは0.1重量%以下であることを指す。
In addition, the active energy ray-curable resin composition of the present invention includes alcohols such as methanol, ethanol, propanol, n-butanol, i-butanol, and the like in order to adjust the viscosity at the time of coating, if necessary; acetone Ketones such as methyl isobutyl ketone, methyl ethyl ketone and cyclohexanone; cellosolves such as ethyl cellosolve; aromatics such as toluene and xylene; glycol ethers such as propylene glycol monomethyl ether; acetic acid such as methyl acetate, ethyl acetate and butyl acetate Esters; dilute solvents such as diacetone alcohol may be used, but the solvent may remain in the coating film and the curing component may volatilize during drying. preferable.
Note that “substantially free of solvent” is usually 1% by weight or less, preferably 0.5% by weight or less, more preferably 0.1% by weight or less, based on the entire active energy ray-curable resin composition. Refers to that.
 本発明で得られる活性エネルギー線硬化性樹脂組成物は、各種基材上に塗布し乾燥した後に、活性エネルギー線を照射することにより硬化される。 The active energy ray-curable resin composition obtained in the present invention is cured by irradiating active energy rays after being applied on various substrates and dried.
 上記活性エネルギー線硬化性樹脂組成物の塗工方法としては、特に限定されるものではなく、例えば、スプレー、シャワー、ディッピング、ロール、スピン、カーテン、フロー、スリット、ダイ、グラビア、コンマ、ディスペンサー、スクリーン印刷、インクジェット印刷等のようなウェットコーティング法が挙げられる。上記活性エネルギー線硬化性樹脂組成物が固体、あるいは高粘度液体の場合の塗工方法としては、活性エネルギー線硬化性樹脂組成物を加熱し、粘度を低下させた後に上記方法により塗工するホットメルト法が挙げられる。 The application method of the active energy ray-curable resin composition is not particularly limited, and for example, spray, shower, dipping, roll, spin, curtain, flow, slit, die, gravure, comma, dispenser, Examples include wet coating methods such as screen printing and ink jet printing. As a coating method when the active energy ray-curable resin composition is a solid or a high-viscosity liquid, the active energy ray-curable resin composition is heated to reduce the viscosity, and then applied by the above method. The melt method is mentioned.
 かかる活性エネルギー線としては、遠紫外線、紫外線、近紫外線、赤外線等の光線、X線、γ線等の電磁波の他、電子線、プロトン線、中性子線等が利用できるが、硬化速度、照射装置の入手のし易さ、価格等から紫外線照射による硬化が有利である。なお、電子線照射を行う場合は、光重合開始剤(C)を用いなくても硬化し得る。 As such active energy rays, rays such as far ultraviolet rays, ultraviolet rays, near ultraviolet rays, infrared rays, electromagnetic waves such as X rays and γ rays, electron beams, proton rays, neutron rays, etc. can be used. Curing by ultraviolet irradiation is advantageous from the viewpoint of easy availability and price. In addition, when performing electron beam irradiation, it can harden | cure even without using a photoinitiator (C).
 紫外線照射により硬化させる方法としては、150~450nm波長域の光を発する高圧水銀ランプ、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、無電極放電ランプ、LED等を用いて、30~3,000mJ/cm2程度照射すればよい。
 紫外線照射後は、必要に応じて加熱を行って硬化の完全を図ることもできる。
As a method of curing by ultraviolet irradiation, a high pressure mercury lamp that emits light in a wavelength range of 150 to 450 nm, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, a chemical lamp, an electrodeless discharge lamp, an LED, etc. Irradiation of about 30 to 3,000 mJ / cm 2 may be performed.
After the ultraviolet irradiation, heating can be performed as necessary to complete the curing.
 本発明で得られる活性エネルギー線硬化性樹脂組成物を塗工する対象である基材としては、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、アクリロニトリルブタジエンスチレン共重合体(ABS)、ポリスチレン系樹脂、ポリアミド樹脂等やそれらの成型品(フィルム、シート、カップ、等)、金属基材(金属蒸着層、金属板(銅、ステンレス鋼(SUS304、SUSBA等)、アルミニウム、亜鉛、マグネシウム等))、ガラス等、それらの複合基材が挙げられる。 Examples of the base material to which the active energy ray-curable resin composition obtained in the present invention is applied include polyolefin resin, polyester resin, polycarbonate resin, acrylonitrile butadiene styrene copolymer (ABS), and polystyrene resin. , Polyamide resins, etc. and their molded products (films, sheets, cups, etc.), metal substrates (metal vapor deposition layers, metal plates (copper, stainless steel (SUS304, SUSBA, etc.), aluminum, zinc, magnesium, etc.)), These composite base materials, such as glass, are mentioned.
 硬化塗膜の膜厚としては、通常1~300μmであることが好ましく、特には2~250μm、更には5~200μmであることが好ましい。 The thickness of the cured coating film is usually preferably 1 to 300 μm, particularly preferably 2 to 250 μm, and more preferably 5 to 200 μm.
 本発明で得られる活性エネルギー線硬化性樹脂組成物は、粘着剤組成物やコーティング剤組成物として非常に有用である。 The active energy ray-curable resin composition obtained in the present invention is very useful as an adhesive composition or a coating composition.
 本発明者は、これまでウレタン(メタ)アクリレート系化合物の製造時に用いられる触媒がウレタン(メタ)アクリレート系化合物中に残存しており、ウレタン(メタ)アクリレート中のウレタン結合と、水酸基含有モノマーとが、触媒によりエステル交換反応を起こし、これによりウレタン(メタ)アクリレート系化合物の分子量が低下し、結果、粘度が経時的に低下したと推測した。
 また、ウレタン(メタ)アクリレート系化合物がエステル結合およびカーボネート結合の少なくとも一方の結合を有する場合には、ウレタン(メタ)アクリレート系化合物中のエステル結合およびカーボネート結合の少なくとも一方の結合と水酸基含有モノマーとが、エステル交換反応を起こし、粘度が経時的に低下してしまうものと推測した。これらの推測した機序の下に、鋭意検討を行い、本願発明に至ったのである。
The present inventor has found that the catalyst used in the production of the urethane (meth) acrylate compound remains in the urethane (meth) acrylate compound, the urethane bond in the urethane (meth) acrylate, the hydroxyl group-containing monomer, However, it was speculated that a transesterification reaction was caused by the catalyst, thereby reducing the molecular weight of the urethane (meth) acrylate compound, and as a result, the viscosity was lowered with time.
When the urethane (meth) acrylate compound has at least one of an ester bond and a carbonate bond, at least one of the ester bond and the carbonate bond in the urethane (meth) acrylate compound and a hydroxyl group-containing monomer However, it was presumed that a transesterification reaction occurred and the viscosity decreased with time. Under these presumed mechanisms, intensive studies were made to arrive at the present invention.
 また、本発明のように、活性エネルギー線硬化性樹脂組成物に金属塩を用いる場合、ジブチルスズジラウレート等の酸化数の大きい有機金属化合物の場合と比較して、金属原子が電子的により遮蔽されていると考えられ、その結果、ウレタン(メタ)アクリレート系化合物中のウレタン結合やエステル結合やカーボネート結合、水酸基含有モノマー中の水酸基と、金属原子との相互作用が弱くなるため、エステル分解反応が進行しにくいことにより、経時による粘度変化が非常に少なく、保存安定性に優れるという本発明の効果が発揮されると推測される。 In addition, when a metal salt is used in the active energy ray-curable resin composition as in the present invention, metal atoms are shielded electronically compared to the case of an organometallic compound having a large oxidation number such as dibutyltin dilaurate. As a result, since the interaction between the urethane bond, ester bond, carbonate bond in the urethane (meth) acrylate compound, the hydroxyl group in the hydroxyl group-containing monomer and the metal atom is weakened, the ester decomposition reaction proceeds. It is presumed that the effect of the present invention that the change in viscosity with time is very small and the storage stability is excellent is exhibited due to the fact that it is difficult to do.
 以下、実施例を挙げて本発明を更に具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。なお、例中、「部」、「%」等は、重量基準を意味する。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist. In the examples, “parts”, “%” and the like mean weight standards.
 <ウレタン(メタ)アクリレート系化合物(A)>
 以下のとおりに、ウレタン(メタ)アクリレート系化合物(A)としてウレタン(メタ)アクリレート系化合物(A-1)~(A-6)を製造した。
<Urethane (meth) acrylate compound (A)>
Urethane (meth) acrylate compounds (A-1) to (A-6) were produced as urethane (meth) acrylate compounds (A) as follows.
 〔製造例1〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、イソホロンジイソシアネート(a1)4.2g(0.019モル)、2官能ポリエステルポリオール(a3)(Mw=12,000)65.2g(0.016モル)、エチルカルビトールアクリレート(b2-1)30g、反応触媒としてオクチル酸スズ(X-1)0.01g、重合禁止剤として2,6-ジ-tert-ブチルクレゾール0.04gを仕込み、70℃で10時間反応させた後、2-ヒドロキシエチルアクリレート(a2)0.6g(0.005モル)を仕込み、60℃で6時間反応させた。残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタン(メタ)アクリレート系化合物(A-1)(重量平均分子量(Mw);74,000)とエチルカルビトールアクリレート(b2-1)の混合物を得た。
[Production Example 1]
In a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas inlet, 4.2 g (0.019 mol) of isophorone diisocyanate (a1), bifunctional polyester polyol (a3) (Mw = 12,000) ) 65.2 g (0.016 mol), ethyl carbitol acrylate (b2-1) 30 g, tin octylate (X-1) 0.01 g as a reaction catalyst, 2,6-di-tert-butyl as a polymerization inhibitor After adding 0.04 g of cresol and reacting at 70 ° C. for 10 hours, 0.6 g (0.005 mol) of 2-hydroxyethyl acrylate (a2) was charged and reacted at 60 ° C. for 6 hours. The reaction was terminated when the residual isocyanate group reached 0.1%, and the urethane (meth) acrylate compound (A-1) (weight average molecular weight (Mw); 74,000) and ethyl carbitol acrylate (b2- The mixture of 1) was obtained.
 〔製造例2〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、1,3-ビス(イソシアナト)シクロヘキサン(a1)8.7g(0.045モル)、グリセリンモノメタクリレート(a2)3.7g(0.022モル)、反応触媒としてオクチル酸スズ(X-1)0.01g、重合禁止剤として2,6-ジ-tert-ブチルクレゾール0.04gを仕込み、60℃で7時間反応させた後、2官能ポリカーボネートポリオール(a3)(Mw=7,000)87.6g(0.045モル)を仕込み、60℃で10時間反応させた。残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタン(メタ)アクリレート系化合物(A-2)(重量平均分子量(Mw);16,000)を得た。
[Production Example 2]
In a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser and a nitrogen gas inlet, 8.7 g (0.045 mol) of 1,3-bis (isocyanato) cyclohexane (a1), glycerin monomethacrylate (a2) 3.7 g (0.022 mol), 0.01 g of tin octylate (X-1) as a reaction catalyst, and 0.04 g of 2,6-di-tert-butylcresol as a polymerization inhibitor were charged at 60 ° C. for 7 hours. After the reaction, 87.6 g (0.045 mol) of a bifunctional polycarbonate polyol (a3) (Mw = 7,000) was charged and reacted at 60 ° C. for 10 hours. When the residual isocyanate group reached 0.1%, the reaction was terminated to obtain urethane (meth) acrylate compound (A-2) (weight average molecular weight (Mw); 16,000).
 〔製造例3〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、1,3-ビス(イソシアナト)シクロヘキサン(a1)8.7g(0.045モル)、グリセリンモノメタクリレート(a2)3.7g(0.022モル)、反応触媒としてネオデカン酸スズ(X-2)0.01g、重合禁止剤として2,6-ジ-tert-ブチルクレゾール0.04gを仕込み、60℃で7時間反応させた後、2官能ポリカーボネートポリオール(a3)(Mw=7,000)87.6g(0.045モル)を仕込み、60℃で10時間反応させた。残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタン(メタ)アクリレート系化合物(A-3)(重量平均分子量(Mw);16,000)を得た。
[Production Example 3]
In a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser and a nitrogen gas inlet, 8.7 g (0.045 mol) of 1,3-bis (isocyanato) cyclohexane (a1), glycerin monomethacrylate (a2) 3.7 g (0.022 mol), 0.01 g of tin neodecanoate (X-2) as a reaction catalyst, and 0.04 g of 2,6-di-tert-butylcresol as a polymerization inhibitor were charged at 60 ° C. for 7 hours. After the reaction, 87.6 g (0.045 mol) of a bifunctional polycarbonate polyol (a3) (Mw = 7,000) was charged and reacted at 60 ° C. for 10 hours. When the residual isocyanate group became 0.1%, the reaction was terminated to obtain urethane (meth) acrylate compound (A-3) (weight average molecular weight (Mw); 16,000).
 〔製造例4〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、1,3-ビス(イソシアナト)シクロヘキサン(a1)8.7g(0.045モル)、グリセリンモノメタクリレート(a2)3.7g(0.022モル)、反応触媒としてオクチル酸ビスマス(X-3)0.01g、重合禁止剤として2,6-ジ-tert-ブチルクレゾール0.04gを仕込み、60℃で7時間反応させた後、2官能ポリカーボネートポリオール(a3)(Mw=7,000)87.6g(0.045モル)を仕込み、60℃で10時間反応させた。残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタン(メタ)アクリレート系化合物(A-4)(重量平均分子量(Mw);14,000)を得た。
[Production Example 4]
In a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser and a nitrogen gas inlet, 8.7 g (0.045 mol) of 1,3-bis (isocyanato) cyclohexane (a1), glycerin monomethacrylate (a2) 3.7 g (0.022 mol), 0.01 g of bismuth octylate (X-3) as a reaction catalyst, and 0.04 g of 2,6-di-tert-butylcresol as a polymerization inhibitor were charged at 60 ° C. for 7 hours. After the reaction, 87.6 g (0.045 mol) of a bifunctional polycarbonate polyol (a3) (Mw = 7,000) was charged and reacted at 60 ° C. for 10 hours. When the residual isocyanate group reached 0.1%, the reaction was terminated to obtain urethane (meth) acrylate compound (A-4) (weight average molecular weight (Mw); 14,000).
 〔製造例5〕
 上記製造例1において、反応触媒をジブチルスズジラウレート(X'-1)0.01gに代えた以外は、同様の方法にて反応を行い、ウレタン(メタ)アクリレート系化合物(A-5)(重量平均分子量(Mw);75,000)とエチルカルビトールアクリレート(b2-1)の混合物を得た。
[Production Example 5]
In the above Production Example 1, the reaction was performed in the same manner except that the reaction catalyst was changed to 0.01 g of dibutyltin dilaurate (X′-1), and the urethane (meth) acrylate compound (A-5) (weight average) A mixture of molecular weight (Mw); 75,000) and ethyl carbitol acrylate (b2-1) was obtained.
 〔製造例6〕
 上記製造例2において、反応触媒をジブチルスズジラウレート(X'-1)0.01gに代えた以外は、同様の方法にて反応を行い、ウレタン(メタ)アクリレート系化合物(A-6)(重量平均分子量(Mw);16,000)を得た。
[Production Example 6]
In the above Production Example 2, the reaction was carried out in the same manner except that the reaction catalyst was changed to 0.01 g of dibutyltin dilaurate (X′-1), and the urethane (meth) acrylate compound (A-6) (weight average) Molecular weight (Mw); 16,000) was obtained.
 <エチレン性不飽和モノマー(B)>
 エチレン性不飽和モノマー(B)として以下のものを用意した。
(b1-1):4-ヒドロキシブチルアクリレート
(b2-1):エチルカルビトールアクリレート
<Ethylenically unsaturated monomer (B)>
The following were prepared as the ethylenically unsaturated monomer (B).
(B1-1): 4-hydroxybutyl acrylate (b2-1): ethyl carbitol acrylate
<実施例1~5、比較例1~3>
 上記のようにして製造、準備した各配合成分(A)および(B)を下記表1の通りの含有割合となるように配合して、均一に混合し、活性エネルギー線硬化性樹脂組成物を得た。
<Examples 1 to 5, Comparative Examples 1 to 3>
Each of the blended components (A) and (B) prepared and prepared as described above are blended so as to have a content ratio as shown in Table 1 below, and mixed uniformly to obtain an active energy ray-curable resin composition. Obtained.
 上記実施例1~5、比較例1~3で得られた活性エネルギー線硬化性樹脂組成物について、下記の通り評価した。結果を表1に示す。 The active energy ray-curable resin compositions obtained in Examples 1 to 5 and Comparative Examples 1 to 3 were evaluated as follows. The results are shown in Table 1.
〔経時安定性〕
 活性エネルギー線硬化性樹脂組成物を、60℃乾燥機中に10日間静置し、経時安定性試験を行った。試験前後の各サンプルにつき粘度測定を行い、その比から粘度変化率を算出し、保存安定性の評価を行った。粘度測定の温度は、実施例1、2及び比較例1、2においては20℃、実施例3~5及び比較例3においては60℃で行った。なお粘度測定はE型粘度計(東機産業社製、VISCOMETER TPE-100 タイプH)により行った。
(評価基準)
  ○・・・粘度変化率が95%以上105%未満
  ×・・・粘度変化率が95%未満、または105%以上
[Stability over time]
The active energy ray-curable resin composition was allowed to stand in a 60 ° C. dryer for 10 days, and a temporal stability test was performed. Viscosity was measured for each sample before and after the test, the rate of change in viscosity was calculated from the ratio, and storage stability was evaluated. The viscosity was measured at 20 ° C. in Examples 1 and 2 and Comparative Examples 1 and 2, and at 60 ° C. in Examples 3 to 5 and Comparative Example 3. The viscosity was measured with an E-type viscometer (VISCOMETER TPE-100 type H, manufactured by Toki Sangyo Co., Ltd.).
(Evaluation criteria)
○ ・ ・ ・ Viscosity change rate is 95% or more and less than 105% × ・ ・ ・ Viscosity change rate is less than 95% or 105% or more
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記評価結果より、金属塩を用いて製造されたウレタン(メタ)アクリレート系化合物を用いて得られた実施例1~5の活性エネルギー線硬化性樹脂組成物は、経時での粘度変化が小さく、保存安定性に優れるものであった。
 これに対して、従来用いられている、ジブチルスズジラウレートを用いて製造されたウレタン(メタ)アクリレートを含有する比較例1、3の活性エネルギー線硬化性樹脂組成物は、経時での粘度低下が起こり、実用に供する場合には製品状態が不安定である等の不具合の生じるものであった。
 また、水酸基含有モノマーを含有しない、比較例2の活性エネルギー線硬化性樹脂組成物は、経時での粘度上昇が起こり、実用に供する場合には製品状態が不安定である等の不具合の生じるものであった。
From the above evaluation results, the active energy ray-curable resin compositions of Examples 1 to 5 obtained using a urethane (meth) acrylate compound produced using a metal salt have a small viscosity change over time, It was excellent in storage stability.
On the other hand, the conventionally used active energy ray-curable resin compositions of Comparative Examples 1 and 3 containing urethane (meth) acrylate produced using dibutyltin dilaurate cause a decrease in viscosity over time. When it is put into practical use, problems such as unstable product state occur.
In addition, the active energy ray-curable resin composition of Comparative Example 2, which does not contain a hydroxyl group-containing monomer, has an increase in viscosity over time, causing problems such as unstable product state when used for practical use. Met.
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。 In the above embodiments, specific forms in the present invention have been described. However, the above embodiments are merely examples and are not construed as limiting. Various modifications apparent to those skilled in the art are contemplated to be within the scope of this invention.
 本発明の製造方法により得られる活性エネルギー線硬化性樹脂組成物は、粘着剤組成物やコーティング剤組成物、特に光学部材用または光学フィルム用の粘着剤組成物やコーティング剤組成物として非常に有用である。特に高分子量のウレタン(メタ)アクリレート系化合物が安定的に作れるので、耐久性、耐衝撃性および段差追従性に優れた光学部材貼り合わせ用の粘着剤に好適に用いることができる。 The active energy ray-curable resin composition obtained by the production method of the present invention is very useful as a pressure-sensitive adhesive composition or a coating composition, particularly as a pressure-sensitive adhesive composition or a coating composition for optical members or optical films. It is. In particular, since a high molecular weight urethane (meth) acrylate compound can be made stably, it can be suitably used as an adhesive for bonding optical members excellent in durability, impact resistance and step following ability.

Claims (10)

  1.  下記(A)、(B)および(X)を含有する活性エネルギー線硬化性樹脂組成物であって、下記(B)として水酸基含有モノマー(b1)を含有することを特徴とする活性エネルギー線硬化性樹脂組成物。
    (A)ウレタン(メタ)アクリレート系化合物。
    (B)上記(A)を除く、エチレン性不飽和モノマー。
    (X)金属塩。
    Active energy ray-curable resin composition containing the following (A), (B) and (X), wherein the active energy ray-curable resin composition contains a hydroxyl group-containing monomer (b1) as the following (B): Resin composition.
    (A) Urethane (meth) acrylate-based compound.
    (B) An ethylenically unsaturated monomer excluding (A) above.
    (X) Metal salt.
  2.  上記金属塩(X)の含有量が、上記ウレタン(メタ)アクリレート系化合物(A)と上記エチレン性不飽和モノマー(B)の合計100重量部に対して1×10-3~1×10-1重量部であることを特徴とする請求項1記載の活性エネルギー線硬化性樹脂組成物。 The content of the metal salt (X) is, the urethane (meth) acrylate compound (A) and the ethylenically unsaturated monomer (B) total 100 parts by weight relative to 1 × 10 -3 ~ 1 × 10 the - The active energy ray-curable resin composition according to claim 1, which is 1 part by weight.
  3.  上記ウレタン(メタ)アクリレート系化合物(A)が、(メタ)アクリロイルオキシ基中のエステル結合以外の、エステル結合およびカーボネート結合の少なくとも一方の結合を有するウレタン(メタ)アクリレート系化合物であることを特徴とする請求項1または2記載の活性エネルギー線硬化性樹脂組成物。 The urethane (meth) acrylate compound (A) is a urethane (meth) acrylate compound having at least one of an ester bond and a carbonate bond other than an ester bond in a (meth) acryloyloxy group. The active energy ray-curable resin composition according to claim 1 or 2.
  4.  上記ウレタン(メタ)アクリレート系化合物(A)の(メタ)アクリロイル当量が5,000~100,000であることを特徴とする請求項1~3のいずれか一項に記載の活性エネルギー線硬化性樹脂組成物。 4. The active energy ray-curable composition according to claim 1, wherein the urethane (meth) acrylate compound (A) has a (meth) acryloyl equivalent of 5,000 to 100,000. Resin composition.
  5.  上記水酸基含有モノマー(b1)の含有量が、上記ウレタン(メタ)アクリレート系化合物(A)と上記エチレン性不飽和モノマー(B)の合計100重量部に対して20~70重量部であることを特徴とする請求項1~4のいずれか一項に記載の活性エネルギー線硬化性樹脂組成物。 The content of the hydroxyl group-containing monomer (b1) is 20 to 70 parts by weight with respect to a total of 100 parts by weight of the urethane (meth) acrylate compound (A) and the ethylenically unsaturated monomer (B). The active energy ray-curable resin composition according to any one of claims 1 to 4, wherein
  6.  上記ウレタン(メタ)アクリレート系化合物(A)が、多価イソシアネート系化合物(a1)、水酸基含有(メタ)アクリレート系化合物(a2)、ポリオール系化合物(a3)の反応物であることを特徴とする請求項1~5のいずれか一項に記載の活性エネルギー線硬化性樹脂組成物。 The urethane (meth) acrylate compound (A) is a reaction product of a polyvalent isocyanate compound (a1), a hydroxyl group-containing (meth) acrylate compound (a2), and a polyol compound (a3). The active energy ray-curable resin composition according to any one of claims 1 to 5.
  7.  上記ポリオール系化合物(a3)がポリエステル系ポリオールおよびポリカーボネート系ポリオールの少なくとも一方であることを特徴とする請求項6記載の活性エネルギー線硬化性樹脂組成物。 The active energy ray-curable resin composition according to claim 6, wherein the polyol compound (a3) is at least one of a polyester polyol and a polycarbonate polyol.
  8.  上記金属塩(X)が、炭素数8~10の脂肪酸金属塩であることを特徴とする請求項1~7のいずれか一項に記載の活性エネルギー線硬化性樹脂組成物。 The active energy ray-curable resin composition according to any one of claims 1 to 7, wherein the metal salt (X) is a fatty acid metal salt having 8 to 10 carbon atoms.
  9.  下記(A)、(B)および(X)を含有し、下記(B)として水酸基含有モノマー(b1)を含有する活性エネルギー線硬化性樹脂組成物の製造方法であって、ウレタン(メタ)アクリレート系化合物(A)を、多価イソシアネート系化合物(a1)、水酸基含有(メタ)アクリレート系化合物(a2)、ポリオール系化合物(a3)を、金属塩(X)の存在下で反応させて得ることを特徴とする活性エネルギー線硬化性樹脂組成物の製造方法。
    (A)ウレタン(メタ)アクリレート系化合物。
    (B)上記(A)を除く、エチレン性不飽和モノマー。
    (X)金属塩。
    A method for producing an active energy ray-curable resin composition containing the following (A), (B) and (X), and containing a hydroxyl group-containing monomer (b1) as the following (B): A compound (A) is obtained by reacting a polyvalent isocyanate compound (a1), a hydroxyl group-containing (meth) acrylate compound (a2), and a polyol compound (a3) in the presence of a metal salt (X). A process for producing an active energy ray-curable resin composition characterized by the above.
    (A) Urethane (meth) acrylate-based compound.
    (B) An ethylenically unsaturated monomer excluding (A) above.
    (X) Metal salt.
  10.  上記金属塩(X)を、上記得られるウレタン(メタ)アクリレート系化合物(A)100重量部に対して5×10-3~1×10-1重量部となるように配合させることを特徴とする請求項9記載の活性エネルギー線硬化性樹脂組成物の製造方法。 The metal salt (X) is blended so as to be 5 × 10 −3 to 1 × 10 −1 parts by weight with respect to 100 parts by weight of the urethane (meth) acrylate compound (A) obtained above. A method for producing an active energy ray-curable resin composition according to claim 9.
PCT/JP2016/088044 2015-12-22 2016-12-21 Active energy ray-curable resin composition and method for producing same WO2017110845A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187010833A KR20180093878A (en) 2015-12-22 2016-12-21 Active energy ray curable resin composition and method for producing the same
JP2016574470A JPWO2017110845A1 (en) 2015-12-22 2016-12-21 Active energy ray-curable resin composition and method for producing the same
CN201680060847.6A CN108137762A (en) 2015-12-22 2016-12-21 Actinic energy ray curable resion composition and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-249755 2015-12-22
JP2015249755 2015-12-22

Publications (1)

Publication Number Publication Date
WO2017110845A1 true WO2017110845A1 (en) 2017-06-29

Family

ID=59089405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088044 WO2017110845A1 (en) 2015-12-22 2016-12-21 Active energy ray-curable resin composition and method for producing same

Country Status (5)

Country Link
JP (1) JPWO2017110845A1 (en)
KR (1) KR20180093878A (en)
CN (1) CN108137762A (en)
TW (1) TW201731989A (en)
WO (1) WO2017110845A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069621A1 (en) * 2017-10-05 2019-04-11 株式会社有沢製作所 Photocurable resin composition and adhesive sheet

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320284A (en) * 1992-05-18 1993-12-03 Three Bond Co Ltd Potting composition
JP2004315570A (en) * 2003-04-11 2004-11-11 Mitsubishi Gas Chem Co Inc Urethane (meth)acrylate resin composition
JP2007332169A (en) * 2006-06-12 2007-12-27 Toray Ind Inc Photocurable resin composition and optical functional sheet obtained by using the same
JP2011162770A (en) * 2010-01-15 2011-08-25 Toyo Ink Sc Holdings Co Ltd Active energy ray-curing adhesive
JP2013056966A (en) * 2011-09-07 2013-03-28 Dic Corp Resin composition for uv-curable self-adhesive, and self-adhesive
WO2013161812A1 (en) * 2012-04-27 2013-10-31 荒川化学工業株式会社 Ultraviolet light curing adhesive composition and adhesive layer
JP2014173072A (en) * 2013-03-13 2014-09-22 Arakawa Chem Ind Co Ltd Photocurable resin composition and optical film obtained by using the same
JP2015164981A (en) * 2014-03-03 2015-09-17 日本化薬株式会社 polyurethane compound and resin composition containing the same
JP2015209520A (en) * 2014-04-30 2015-11-24 荒川化学工業株式会社 Ultraviolet curable resin composition for optical use, cured layer thereof, and optical member
JP2016056321A (en) * 2014-09-12 2016-04-21 日本化薬株式会社 Resin composition
WO2016121706A1 (en) * 2015-01-26 2016-08-04 日本化薬株式会社 Photosensitive resin composition and cured product thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4868654B2 (en) 2001-04-13 2012-02-01 日本合成化学工業株式会社 Active energy ray-curable pressure-sensitive adhesive composition and method for producing the composition
KR101839639B1 (en) * 2011-01-21 2018-03-16 닛폰고세이가가쿠고교 가부시키가이샤 Active energy ray-curable resin composition and coating agent
JP5994424B2 (en) 2012-06-25 2016-09-21 Dic株式会社 UV-curable adhesive resin composition and adhesive

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320284A (en) * 1992-05-18 1993-12-03 Three Bond Co Ltd Potting composition
JP2004315570A (en) * 2003-04-11 2004-11-11 Mitsubishi Gas Chem Co Inc Urethane (meth)acrylate resin composition
JP2007332169A (en) * 2006-06-12 2007-12-27 Toray Ind Inc Photocurable resin composition and optical functional sheet obtained by using the same
JP2011162770A (en) * 2010-01-15 2011-08-25 Toyo Ink Sc Holdings Co Ltd Active energy ray-curing adhesive
JP2013056966A (en) * 2011-09-07 2013-03-28 Dic Corp Resin composition for uv-curable self-adhesive, and self-adhesive
WO2013161812A1 (en) * 2012-04-27 2013-10-31 荒川化学工業株式会社 Ultraviolet light curing adhesive composition and adhesive layer
JP2014173072A (en) * 2013-03-13 2014-09-22 Arakawa Chem Ind Co Ltd Photocurable resin composition and optical film obtained by using the same
JP2015164981A (en) * 2014-03-03 2015-09-17 日本化薬株式会社 polyurethane compound and resin composition containing the same
JP2015209520A (en) * 2014-04-30 2015-11-24 荒川化学工業株式会社 Ultraviolet curable resin composition for optical use, cured layer thereof, and optical member
JP2016056321A (en) * 2014-09-12 2016-04-21 日本化薬株式会社 Resin composition
WO2016121706A1 (en) * 2015-01-26 2016-08-04 日本化薬株式会社 Photosensitive resin composition and cured product thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069621A1 (en) * 2017-10-05 2019-04-11 株式会社有沢製作所 Photocurable resin composition and adhesive sheet
JPWO2019069621A1 (en) * 2017-10-05 2019-11-14 株式会社有沢製作所 Photocurable resin composition and adhesive sheet
JP7068271B2 (en) 2017-10-05 2022-05-16 株式会社有沢製作所 Photocurable resin composition and adhesive sheet

Also Published As

Publication number Publication date
KR20180093878A (en) 2018-08-22
TW201731989A (en) 2017-09-16
JPWO2017110845A1 (en) 2018-10-11
CN108137762A (en) 2018-06-08

Similar Documents

Publication Publication Date Title
JP5886090B2 (en) Active energy ray-curable resin composition and coating agent
CN106164121B (en) Urethane (meth) acrylate compound, active energy ray-curable resin composition, and coating agent
JP5665613B2 (en) Method for coating metal substrate
JP2016104859A (en) Active energy ray-curable resin composition and coating agent
WO2015152110A1 (en) Urethane (meth)acrylate compound, active-energy-ray-curable resin composition, and coating agent
WO2016013510A1 (en) Active energy ray-curable pressure sensitive adhesive composition, and pressure sensitive adhesive and pressure sensitive adhesive sheet using same
JP2015199908A (en) Urethane (meth)acrylate-based compound, active energy ray-curable resin composition, and coating agent
JP6798104B2 (en) Urethane (meth) acrylate manufacturing method
WO2016080439A1 (en) Active-energy-ray-curable composition, active-energy-ray-curable adhesive composition, adhesive, adhesive sheet, and novel urethane (meth)acrylate
JP7384233B2 (en) Active energy ray-curable resin composition and coating agent
JP2017210607A (en) Active energy ray-curable adhesive composition and adhesive composition for acrylic resin member using the same
JP6699132B2 (en) Photocurable composition, laminated body using the same, and light guide plate
WO2017110990A1 (en) Active energy ray-curable resin composition, adhesive and coating agent each using same, and urethane (meth)acrylate compound
JP6596898B2 (en) Active energy ray-curable resin composition and coating agent using the same
JP2014065902A (en) Active energy ray curing resin composition and coating agent
CN110382575B (en) Active energy ray-curable resin composition and coating agent
WO2017110845A1 (en) Active energy ray-curable resin composition and method for producing same
JP7322396B2 (en) Active energy ray-curable resin composition and coating agent for pre-coated metal production
JP2016124893A (en) Active energy ray-curable composition and coating-agent composition as well as novel cyclic urethane (meth)acrylate
JP2015143350A (en) Active energy ray curable composition and coating agent, and novel urethane bond-containing compound
JP2017203068A (en) Active energy ray-curable resin composition and coating agent
JP6452320B2 (en) Urethane (meth) acrylate-based compound, active energy ray-curable resin composition, and coating agent composition
JP7388243B2 (en) Urethane (meth)acrylate compound, active energy ray-curable resin composition, and method for producing urethane (meth)acrylate compound
JP7275748B2 (en) Active energy ray-curable resin composition and coating agent containing the same
JP6740609B2 (en) Active energy ray curable resin composition and coating agent

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016574470

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878732

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187010833

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878732

Country of ref document: EP

Kind code of ref document: A1