WO2019069621A1 - Photocurable resin composition and adhesive sheet - Google Patents

Photocurable resin composition and adhesive sheet Download PDF

Info

Publication number
WO2019069621A1
WO2019069621A1 PCT/JP2018/033330 JP2018033330W WO2019069621A1 WO 2019069621 A1 WO2019069621 A1 WO 2019069621A1 JP 2018033330 W JP2018033330 W JP 2018033330W WO 2019069621 A1 WO2019069621 A1 WO 2019069621A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
resin composition
urethane
photocurable resin
acrylate
Prior art date
Application number
PCT/JP2018/033330
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 信之
裕美 吉原
Original Assignee
株式会社有沢製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社有沢製作所 filed Critical 株式会社有沢製作所
Priority to JP2019505269A priority Critical patent/JP7068271B2/en
Publication of WO2019069621A1 publication Critical patent/WO2019069621A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G

Definitions

  • the present invention relates to a photocurable resin composition and an adhesive sheet, and more specifically, for example, a photocurable resin composition usable for an organic EL display unit, a liquid crystal display unit, and the photocurable resin composition. It relates to the adhesive sheet used.
  • the liquid crystal display unit will be described as an example.
  • liquid crystal displays have become very common display devices with the spread of digitized electronic devices, and are liquid crystal televisions, personal computer (PC) displays, mobile phone terminals, and portable types. It is used as a display unit of various devices such as game machines, car navigation systems, calculators, clocks and the like.
  • a transparent protective member transparent to light is disposed on the surface side of an image display member such as a liquid crystal display panel via a light transmitting cured resin layer (adhesive layer).
  • the photocurable resin composition is irradiated with ultraviolet rays to be cured to form a light transmissive cured resin layer (adhesion layer).
  • adheresion layer a light transmissive cured resin layer
  • the protective member of LCD is generally constituted by a plate-like member, but in car navigation equipment, car speedometers, etc., in recent years, the protective member of LCD is made three-dimensional curved shape from the viewpoint of designability Is desired.
  • glass panels and sheets have been used as protective members, but resin panels and sheets that can be easily processed into desired shapes have come to be used in order to meet such demands.
  • the resin protective member is excellent in shape processability, but the outgas component tends to be generated. Therefore, air bubbles generated from the resin protective member are transferred to the adhesive layer particularly under wet heat environment, and the resin protective member and the adhesive layer This may cause a decrease in adhesive strength, discoloration of the adhesive layer, and the like, which in turn may cause a decrease in sharpness of the display portion or peeling.
  • an active energy ray-curable polyurethane having an adhesive layer (A) having a storage modulus (G ' A100 ) of less than 1 ⁇ 10 5 Pa measured at a temperature of 100 ° C. and a frequency of 1 Hz. in an adhesive sheet, the adhesive layer (a) is cured layer (a ') a storage modulus measured at a temperature 100 ° C. and a frequency 1Hz of (G' A'100) is 2 ⁇ 10 5 Pa or more
  • An active energy ray-curable polyurethane adhesive sheet characterized by being used for adhesion of an adherend (b) capable of generating a gas when left in an environment of 60.degree. C. and 90% humidity for 24 hours It is proposed (refer patent document 1).
  • the temperature in the car may be extremely high especially in summer, and the adhesive layer foams from the protective member even in such a use environment It is required to have anti-foaming properties that suppress air bubbles and moisture-resistant heat whitening properties for maintaining the sharpness of the display portion.
  • some adherends have fine asperities (steps) on the surface, and in particular, since there are asperities on the surface of the resin protective member, an adhesive sheet used for forming an adhesive layer If a gap is formed in the interface, the gap is expanded by air bubbles generated from the resin protective member, and the adhesive sheet is easily peeled off from the resin protective member.
  • the adhesive sheet is attached to the adherend in the uncured state, and then cured by irradiation with ultraviolet light, but the adhesive sheet has the ability (following ability) to fill the uneven portions on the adherend surface in the uncured state.
  • the present inventors focused on the tensile storage elastic modulus (E ′) at 100 ° C. when the photocurable resin composition is a cured product as a result of earnestly studying in order to solve the above problems, and a specific urethane (A photocurable resin composition containing a meta) acrylate polymer, a hydroxyl group-containing (meth) acrylate monomer, and a photopolymerization initiator, and a cured product having a tensile storage elastic modulus (E ′) at 100 ° C. of 1.0 ⁇
  • the present invention has been accomplished by finding that the above-mentioned problems can be solved by configuring the film to have a hardness of 10 6 Pa or more.
  • a photocurable resin composition comprising (1) (A) a urethane (meth) acrylate polymer, (B) a hydroxyl group-containing (meth) acrylate monomer, and (C) a photopolymerization initiator,
  • the weight average molecular weight of the (A) urethane (meth) acrylate polymer is 30,000 to 150,000, and the (B) hydroxyl group-containing (B) relative to 100 parts by mass of the (A) urethane (meth) acrylate polymer
  • any one of the above (1) to (4) which contains 0.5 parts by mass or more of the (C) photopolymerization initiator with respect to 100 parts by mass of the (A) urethane (meth) acrylate polymer The photocurable resin composition as described in one.
  • An adhesive sheet comprising the photocurable resin composition according to any one of the above (1) to (5).
  • the photocurable resin composition of the present invention is high in hardness because the tensile storage elastic modulus (E ') at 100 ° C. after photocuring is 1.0 ⁇ 10 6 Pa or more, and therefore, it is generated from a resin member It is possible to suppress the generation of air bubbles, and to exhibit excellent foam resistance particularly in a high temperature and high humidity environment. In addition, it is also excellent in moisture heat resistance and whitening resistance under a high temperature and high humidity environment, and is also excellent in shape following ability to a resin member when it is attached to a resin member.
  • E ' tensile storage elastic modulus
  • the present embodiment modes for carrying out the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail.
  • the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the present invention.
  • the photocurable resin composition in the present embodiment is (A) a urethane (meth) acrylate polymer, (B) a hydroxyl group-containing (meth) acrylate monomer, and (C) a photopolymerization initiator, (A) The weight average molecular weight of the urethane (meth) acrylate polymer is 30,000 to 150,000, (B) 40 parts by mass or more of (B) a hydroxyl group-containing (meth) acrylate based monomer with respect to 100 parts by mass of the (A) urethane (meth) acrylate based polymer,
  • the tensile storage elastic modulus (E ′) at 100 ° C. of the cured product obtained by photocuring the photocurable resin composition is 1.0 ⁇ 10 6 Pa or more. Each component will be described below.
  • the photocurable resin composition in this embodiment contains (A) urethane (meth) acrylate type polymer (Hereafter, it is also called "(A) component.”).
  • the urethane (meth) acrylate polymer is a polymer having a urethane structure in the main chain and a (meth) acrylic group in the side chain, and, for example, urethane (meth) acrylate having a polycarbonate skeleton, urethane having a polyether skeleton ( Examples include meta) acrylates and urethane (meth) acrylates having a polyester skeleton. Among them, urethane (meth) acrylate having a polycarbonate skeleton is preferable from the viewpoint of non-yellowing of the adhesive sheet after curing.
  • the weight average molecular weight of the polycarbonate diol is preferably 170 to 1,000, more preferably 300 to 700, and still more preferably 400 to 600.
  • the weight average molecular weight of the polycarbonate diol is in the above range, the urethane prepolymer main chain tends to be provided with the film property necessary for rework.
  • the diisocyanate is not particularly limited.
  • Aromatic isocyanates such as 1,5-naphthalene diisocyanate (NDI); hexamethylene diisocyanate (HDI) trimethylhexamethylene diisocyanate (TMHDI), lysine diisocyanate, norbornane diisocyanate
  • Aliphatic polyisocyanates such as tomethyl (NBDI
  • the carboxylic acid diol is not particularly limited, and examples thereof include dimethylol butanoic acid and dimethylol propionic acid.
  • Urethane (meth) acrylate having a polyether skeleton refers to a prepolymer having a polyether structure and a urethane structure in the main chain and having a (meth) acrylic group in the side chain
  • a urethane having a polyester skeleton (meth Acrylate refers to a prepolymer having a polyester structure and a urethane structure in its main chain and having a (meth) acrylic group in its side chain.
  • These prepolymers can be obtained by the same method as the urethane (meth) acrylate having a polycarbonate skeleton except that polyether diol and polyester diol are used in place of polycarbonate diol, respectively.
  • the preferable weight average molecular weight of the polyether diol and the polyester diol is the same as the preferable weight average molecular weight of the polycarbonate diol described above.
  • the weight average molecular weight (MW) of the component (A) is 30,000 to 150,000.
  • the rate (E ′) can be 1.0 ⁇ 10 6 Pa or more.
  • the weight average molecular weight is 150,000 or less, the shape following property at the time of bonding can be favorably maintained.
  • the weight average molecular weight is more preferably 40,000 or more, further preferably 50,000 or more, and further preferably 120,000 or less, still more preferably 100,000 or less.
  • the weight average molecular weight of the component (A) is preferably 40,000 to 120,000, more preferably 50,000 to 100,000.
  • the weight average molecular weight is a value measured by gel permeation chromatography (GPC) using standard polystyrene having an average molecular weight of about 500 to about 1,000,000.
  • the double bond equivalent of the component (A) is preferably 1,000 to 5,000 g / eq, more preferably 1,500 g / eq or more, and still more preferably 1,800 g / eq or more. , 500 g / eq or less is more preferable, and further preferably 2,200 g / eq or less.
  • the double bond equivalent refers to a value calculated by the number of moles (g / mol) of the solid content mass (g) of the carboxyl group-containing (meth) acrylate / the compound having an oxirane ring and an ethylenically unsaturated bond.
  • the glass transition temperature (Tg) of the component (A) is preferably ⁇ 10 to 20 ° C., more preferably ⁇ 5 ° C. or more, still more preferably 0 ° C. or more, and more preferably 15 ° C. or less, further preferably Preferably it is 10 degrees C or less.
  • Tg glass transition temperature
  • the glass transition temperature refers to a value measured by dynamic viscoelasticity measurement (DMA).
  • the component (A) preferably contains substantially no acid from the viewpoint of corrosion resistance, and "substantially free of acid” means that the acid value (mg KOH / g) of the component (A) is 1 .0 mg KOH / g or less, preferably 0.5 mg KOH / g or less, most preferably 0 mg KOH / g.
  • x 10 ⁇ Vf ⁇ 56.1 / (Wp ⁇ I) ( ⁇ ) (In the formula ( ⁇ ), x represents an acid value (mg KOH / g), Vf represents a titration amount (mL) of a 0.1 N KOH aqueous solution, and Wp represents a mass (g) of the measured resin solution, I shows the ratio (mass%) of the non volatile matter in the measured resin solution.)
  • the photocurable resin composition in the present embodiment contains (B) a hydroxyl group-containing (meth) acrylate monomer (hereinafter, also referred to as "component (B)").
  • component (B) a hydroxyl group-containing (meth) acrylate monomer
  • the crosslink density after curing is increased to enhance the viscoelasticity at normal temperature. At the same time, it suppresses whitening under high temperature and high humidity environment.
  • component (B) for example, 2-hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, phenyl glycidyl ether (meth) ) Acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, monoesters of acrylic acid or methacrylic acid with polypropylene glycol or polyethylene glycol, lactones with 2-hydroxyethyl (meth) acrylate An additive etc. are mentioned.
  • One of these components (B) may be used alone, or two or more thereof may be used in combination.
  • 4-hydroxybutyl (meth) acrylate and 2-hydroxymethyl (meth) acrylate are preferably used from the viewpoint of moisture heat resistance whitening.
  • the component (B) 40 parts by mass or more of the component (B) is contained with respect to 100 parts by mass of the component (A).
  • the content of the component (B) is 40 parts by mass or more, the moisture and heat resistance to whitening is improved, so that the sharpness of the display portion of the information display device can be maintained.
  • the content of the component (B) is preferably 40 to 120 parts by mass with respect to 100 parts by mass of the component (A), and the lower limit thereof is more preferably 45 parts by mass or more, still more preferably 50 parts by mass or more
  • the upper limit is more preferably 110 parts by mass or less, still more preferably 100 parts by mass or less, and particularly preferably 80 parts by mass or less.
  • the range of the content of the component (B) is more preferably 45 to 120 parts by mass, further preferably 45 to 110 parts by mass, particularly preferably 50 to 100 parts by mass with respect to 100 parts by mass of the component (A).
  • 50 to 80 parts by weight is most preferred.
  • the photocurable resin composition in the present embodiment contains (C) a photopolymerization initiator (hereinafter, also referred to as “component (C)”).
  • the photopolymerization initiator is not particularly limited, and any photopolymerization initiator such as, for example, an acyl phosphine oxide photopolymerization initiator, an alkylphenone photopolymerization initiator, and an intramolecular hydrogen abstraction type photopolymerization initiator may be used.
  • acyl phosphine oxide type photopolymerization initiators and alkylphenone type photopolymerization initiators are preferable from the viewpoint of reactivity and uniformity of curing.
  • acyl phosphine oxide photopolymerization initiator 2,4,6-trimethyl benzoyl phenyl phosphine oxide, 2,2-dimethoxy-1,2-diphenyl ethane-1-one, phenylglyoxylic Acid methyl esters and the like can be mentioned, and as an alkylphenone photopolymerization initiator, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylone Amino-1- (4-morpholinophenyl) -butanone-1 and the like are mentioned, and among them, 2,4,6-trimethyl benzoyl phenyl phosphine oxide is preferable from the viewpoint of high radical generation efficiency and deep part curability.
  • the total content of component (C) relative to 100 parts by weight of component (A) is preferably 0.5 parts by weight or more, more preferably 1.0 parts by weight or more, and still more preferably 1.5 parts by weight It is above.
  • the upper limit of the content of the component (C) is not particularly limited, but it is preferably 7.0 parts by mass or less because the optical properties tend to deteriorate if the content is too large.
  • silane coupling agent By containing a silane coupling agent in the photocurable resin composition, the adhesive strength is maintained, and the long-term reliability of the adherend is improved.
  • silane coupling agent any silane coupling agents, such as a monomer type silane coupling agent, an alkoxy oligomer type silane coupling agent, and a polyfunctional type silane coupling agent, can also be used, for example.
  • Photocurable Resin Composition It does not specifically limit as a manufacturing method of the photocurable resin composition of this embodiment, For example, it can prepare by mixing and dispersing the above-mentioned component using various mixers and dispersers.
  • the mixing / dispersing step is not particularly limited, and may be carried out by a usual method.
  • the viscoelasticity of the photocurable resin composition of the present embodiment can be measured by dynamic mechanical analysis (DMA: Dynamic Mechanical Analysis). With respect to a test piece formed in a film having a predetermined thickness, a value (tensile storage elastic modulus E ′) measured by tensile measurement measured under the conditions of a frequency of 1 Hz and a predetermined temperature is obtained using a dynamic viscoelasticity device. As a test piece, specifically, a test piece cut into a width of 5 mm, a length of 50 mm, and a thickness of 0.1 mm can be used.
  • DMA Dynamic Mechanical Analysis
  • the tensile storage elastic modulus (E ′) at 100 ° C. of the test piece (cured product) after photocuring is 1.0 ⁇ 10 6 Pa or more.
  • the hardness is sufficiently high that the tensile storage elastic modulus (E ') at 100 ° C. of the cured product is 1.0 ⁇ 10 6 Pa or more, and accordingly, the air bubbles generated from the adherend (for example, a resin member) (Outgassing) can be suppressed, and particularly in a high temperature and high humidity environment (temperature 85 ° C., humidity 85%), generation of air bubbles can be suppressed and excellent foam resistance can be exhibited.
  • the cured product is preferably 2.0 ⁇ 10 6 Pa or more, more preferably 3.0 ⁇ from the viewpoint that the effects of the present invention are easily obtained.
  • 10 is a 6 Pa or higher, and the upper limit is preferably, less and more preferably 1.0 ⁇ 10 7 Pa, especially but not limited to is 3.0 ⁇ 10 7 Pa or less.
  • the range of the tensile storage elastic modulus (E ′) at 100 ° C. of the cured product is more preferably 2.0 ⁇ 10 6 to 3.0 ⁇ 10 7 Pa, and 3.0 ⁇ 10 6 to 1. 0 ⁇ 10 7 Pa is more preferable.
  • the tensile storage elastic modulus (E ') at 25 ° C. is 5.0 ⁇ 10 5 Pa or more for the uncured product obtained by drying (appears to be in a semi-cured state). Is preferred.
  • the tensile storage elastic modulus (E ′) at 25 ° C. of the uncured product is more preferably 6.0 ⁇ 10 5 Pa or more, further preferably 8. from the viewpoint of easily obtaining the effects of the present invention.
  • 0 ⁇ is at 10 5 Pa or higher, and the upper limit, it is preferably, less and more preferably 3.0 ⁇ 10 6 Pa, especially but not limited to at most 5.0 ⁇ 10 6 Pa.
  • the range of the tensile storage elastic modulus (E ′) at 25 ° C. of the uncured product is more preferably 6.0 ⁇ 10 5 to 5.0 ⁇ 10 6 Pa, and 8.0 ⁇ 10 5 to 3 More preferably, it is 0. 10 6 Pa.
  • the photocurable resin composition of this embodiment can not obtain
  • the shear storage elastic modulus (G ') is measured by sandwiching the test piece from above and below with a jig and applying shear (shear), but the photocurable resin composition of this embodiment is a cured product at 100 ° C.
  • the cured product is hard, as can be seen from the tensile storage modulus (E ') of at least 1.0 ⁇ 10 6 Pa. Therefore, when shear is applied, it is assumed that the test piece slips in the jig and accurate measurement can not be performed.
  • the adhesive sheet in this embodiment contains the photocurable resin composition mentioned above. Specifically, for example, after the photocurable resin composition of the present embodiment is applied on a protective film such as PET and dried, a protective film is provided on both sides by providing a protective film on the opposite side. An adhesive sheet can be obtained. In particular, it is preferable to apply the photocurable resin composition on a protective film after making it into a varnish using an organic solvent, and to dry it.
  • the organic solvent used at this time is not particularly limited, and examples thereof include toluene, methyl ethyl ketone, cyclohexanone, propylene glycol monomethyl ether, and dimethyl acetamide.
  • the content of the organic solvent in the varnish is preferably 100 to 200 parts by mass, more preferably 130 to 170 parts by mass with respect to 100 parts by mass of the component (A).
  • the protective film is not particularly limited, and examples thereof include films made of one or more resins selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate, and among them, the viewpoint of reducing the manufacturing cost Therefore, a film made of polyethylene terephthalate resin is preferable.
  • a comma coater 1, a die coater 1, a gravure coater etc. are suitably employable according to application
  • Drying of the photocurable resin composition can be carried out with a dryer or the like, and the drying conditions at that time can be appropriately adjusted depending on the type, content and the like of each component.
  • the thickness of the adhesive sheet after drying is preferably 10 to 250 ⁇ m, more preferably 25 to 125 ⁇ m, and still more preferably 30 to 75 ⁇ m.
  • the long-term reliability in the present embodiment includes suppression of foaming to maintain the sharpness of the image.
  • the adhesive sheet is cured by irradiating energy rays.
  • the energy ray is not particularly limited, and active energy rays such as visible light, ultraviolet rays, X-rays and electron beams can be used, but it is preferable to use ultraviolet rays from the viewpoint of efficiently performing the curing reaction.
  • a light source of ultraviolet light a light source from which ultraviolet light (UV) is emitted can be used. Examples of the ultraviolet light source include metal halide lamps, high pressure mercury lamps, xenon lamps, mercury xenon lamps, halogen lamps, pulsed xenon lamps, and LEDs.
  • the photocurable resin composition of this embodiment can be used for bonding of the member which comprises at least one information display apparatus among a touch-panel-type input-output device and an image display apparatus.
  • an adhesive sheet containing the photocurable resin composition of the present embodiment is disposed between an image display member and a protective member of an information display device, and the laminate is irradiated with energy rays to display an image.
  • the member and the protective member can be bonded.
  • the photocurable resin composition in this embodiment is excellent in foaming resistance under high temperature and high humidity environment and moisture heat resistance whitening property, it is preferably used for bonding of members constituting an on-vehicle information display device. be able to.
  • Example and the comparative example are as follows.
  • Urethane (Meth) Acrylate Polymer Urethane (meth) acrylate polymers (a) to (e) were produced according to the following synthesis examples 1 to 3 and comparative synthesis examples 1 to 2, respectively.
  • Urethane (meth) acrylate polymer (a) Polycarbonate backbone urethane (meth) acrylate (weight average molecular weight 50,000, double bond equivalent 2,000 g / eq) (2) Urethane (meth) acrylate polymer (b) Polyether backbone urethane (meth) acrylate (weight average molecular weight 50,000, double bond equivalent 2,000 g / eq) (3) Urethane (meth) acrylate polymer (c) Polyester backbone urethane (meth) acrylate (weight average molecular weight 50,000, double bond equivalent 2,000 g / eq) (4) Urethane (meth) acrylate polymer (d) Polycarbonate backbone urethane (meth) acrylate (weight average molecular weight 10,000, double bond equivalent 2,000 g / eq) (5) Urethane (meth) acrylate polymer (e) Polycarbonate backbone urethane (meth) acrylate
  • Photopolymerization initiator (a) 2,4,6-Trimethyl benzoyl phenyl phosphine oxide (BASF company name, "Irgacure TPO", an acyl phosphine oxide type photoinitiator) (2) Photopolymerization initiator (b) 2-Methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one (manufactured by BASF, trade name “Irgacure 907”, ⁇ -aminoalkylphenone photopolymerization initiator) (3) Photopolymerization initiator (c) 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 (manufactured by BASF, trade name “Irgacure 369”, ⁇ -aminoalkylphenone photopolymerization initiator)
  • Adhesive (1) Adhesive (a) Product name “8146” (acrylic adhesive) manufactured by 3M
  • the obtained urethane (meth) acrylate polymer (a) had a weight average molecular weight of 50,000, a solid content concentration of 50% by mass, a double bond equivalent of 2,000 g / eq, and a Tg of 5 ° C.
  • x 10 ⁇ Vf ⁇ 56.1 / (Wp ⁇ I) ( ⁇ ) (In the formula ( ⁇ ), x represents an acid value (mg KOH / g), Vf represents a titration amount (mL) of a 0.1 N KOH aqueous solution, and Wp represents a mass (g) of the measured resin solution, I represents the proportion of nonvolatile matter in the measured resin solution (% by mass).
  • Synthesis Example 2 Urethane (Meth) Acrylate Polymer (b) A urethane (meth) acrylate polymer (b) was obtained in the same manner as in Synthesis Example 1 except that a polyether diol (weight-average molecular weight of 400) was used instead of the polycarbonate diol.
  • the obtained urethane (meth) acrylate polymer (b) had a weight average molecular weight of 50,000, a solid content concentration of 50% by mass, a double bond equivalent of 2,000 g / eq, and a Tg of 5 ° C.
  • Synthesis Example 3 Urethane (Meth) Acrylate Polymer (c) A urethane (meth) acrylate polymer (c) was obtained in the same manner as in Synthesis Example 1 except that a polyester diol (weight-average molecular weight of 400) was used instead of the polycarbonate diol. The resulting urethane (meth) acrylate polymer (c) had a weight-average molecular weight of 50,000, a solid concentration of 50% by mass, a double bond equivalent of 2,000 g / eq, and a Tg of 5 ° C.
  • Example 1 Preparation of Photocurable Resin Composition
  • 100 parts by mass of a urethane (meth) acrylate polymer (a) is added, and 70 parts by mass of a hydroxyl group-containing (meth) acrylate monomer (a), 1.5 parts by mass of the photopolymerization initiator (a) and 150 parts by mass of methyl ethyl ketone as a solvent were added and uniformly stirred to obtain a resin composition.
  • the single-sided protective film (PET film) of the adhesive sheet was peeled off, and the resin composition layer was a transparent polycarbonate plate of 1.0 mm thickness (“PC-1151” manufactured by Teijin Limited, It bonded together by vacuum lamination to 40 mm square.
  • the vacuum lamination was performed at a temperature of 25 to 50 ° C., a pressure of 0.01 to 0.05 MPa, a vacuum of 60 seconds, and a pressure of 30 seconds.
  • the protective film on the other side was peeled off, and a transparent polycarbonate plate ("PC-1151” manufactured by Teijin Limited, 40 mm square) with a thickness of 1.0 mm was used as a resin composition layer under the same conditions as the above vacuum lamination conditions.
  • the autoclave was carried out at a temperature of 60 ° C. under a pressure of 0.6 MPa for 1 hour.
  • the autoclave was carried out at a temperature of 60 ° C. under a pressure of 0.6 MPa for 1 hour.
  • sample for measurement [sample before UV curing]
  • the adhesive sheet was cut in size to a width of 5 mm and a length of 50 mm, and the protective films (PET films) on both sides were peeled off to obtain a measurement sample.
  • the storage elastic modulus E ′ was measured for the measurement sample before UV curing and the measurement sample after UV curing using a dynamic viscoelasticity measuring apparatus (RSA-G2 manufactured by TA Instruments).
  • the measurement conditions were a temperature range of ⁇ 50 to 100 ° C. at a temperature raising rate of 10.0 ° C./min, and a frequency of 1 Hz.
  • the storage modulus E ′ at 25 ° C., 50 ° C. and 100 ° C. is shown in Table 1. In the table, "5000 or less" means that the resin composition layer was melted and could not be measured.
  • Example 2 A photocurable resin composition of Example 2 was produced by the same method as Example 1 except that the type and content of each component were changed as described in Table 1, and evaluation was made in the same manner as Example 1. went. The results are shown in Table 1. In addition, in evaluation of foaming resistance, foaming was not seen at the time of the bonding to the polycarbonate board of an adhesive sheet, but it was a favorable sticking state.
  • Example 3 A photocurable resin composition of Example 3 was prepared by the same method as Example 1 except that the type and content of each component were changed as described in Table 1, and evaluation was made in the same manner as Example 1. went. The results are shown in Table 1. In addition, in evaluation of foaming resistance, foaming was not seen at the time of the bonding to the polycarbonate board of an adhesive sheet, but it was a favorable sticking state.
  • Example 4 A photocurable resin composition of Example 4 was produced in the same manner as in Example 1 except that the type and content of each component were changed as described in Table 1, and evaluation was made in the same manner as in Example 1. went. The results are shown in Table 1. In addition, in evaluation of foaming resistance, foaming was not seen at the time of the bonding to the polycarbonate board of an adhesive sheet, but it was a favorable sticking state.
  • Example 5 A photocurable resin composition of Example 5 was produced by the same method as Example 1 except that the type and content of each component were changed as described in Table 1, and evaluation was made in the same manner as Example 1. went. The results are shown in Table 1. In addition, in evaluation of foaming resistance, foaming was not seen at the time of the bonding to the polycarbonate board of an adhesive sheet, but it was a favorable sticking state.
  • Example 6 A photocurable resin composition of Example 6 was produced in the same manner as in Example 1 except that the type and content of each component were changed as described in Table 1, and evaluation was made in the same manner as in Example 1. went. The results are shown in Table 1. In addition, in evaluation of foaming resistance, foaming was not seen at the time of the bonding to the polycarbonate board of an adhesive sheet, but it was a favorable sticking state.
  • Example 7 A photocurable resin composition of Example 7 was produced by the same method as Example 1 except that the type and content of each component were changed as described in Table 1, and evaluation was made in the same manner as Example 1. went. The results are shown in Table 1. In the photocurable resin composition of Example 7, the resin is softer than in the other examples, and some bubbles are generated at the interface when the adhesive sheet is bonded to a polycarbonate plate in the evaluation of the foam resistance. However, there was no problem in practical use.
  • Example 8 A photocurable resin composition of Example 8 was produced in the same manner as in Example 1 except that the type and content of each component were changed as described in Table 1, and evaluation was made in the same manner as in Example 1. went. The results are shown in Table 1. In addition, in evaluation of foaming resistance, foaming was not seen at the time of the bonding to the polycarbonate board of an adhesive sheet, but it was a favorable sticking state.
  • Example 9 A photocurable resin composition of Example 9 was prepared by the same method as Example 1 except that the type and content of each component were changed as described in Table 1, and evaluation was made in the same manner as Example 1. went. The results are shown in Table 1. In addition, in evaluation of foaming resistance, foaming was not seen at the time of the bonding to the polycarbonate board of an adhesive sheet, but it was a favorable sticking state.
  • Comparative Example 1 A photocurable resin composition of Comparative Example 1 was produced by the same method as Example 1 except that the type and content of each component were changed as described in Table 2, and evaluation was made in the same manner as Example 1. went. The results are shown in Table 2. In addition, in evaluation of foaming resistance, foaming was not seen at the time of the bonding to the polycarbonate board of an adhesive sheet, but it was a favorable sticking state.
  • Comparative Example 2 A photocurable resin composition of Comparative Example 2 was produced by the same method as in Example 1 except that the type and content of each component were changed as described in Table 2, and evaluation was made in the same manner as in Example 1. went. The results are shown in Table 2. In addition, in evaluation of foaming resistance, foaming was not seen at the time of the bonding to the polycarbonate board of an adhesive sheet, but it was a favorable sticking state.
  • Comparative Example 3 A photocurable resin composition of Comparative Example 3 was produced by the same method as Example 1 except that the type and content of each component were changed as described in Table 2, and evaluation was made in the same manner as Example 1. went. The results are shown in Table 2. In the photocurable resin composition of Comparative Example 3, air bubbles were generated at the interface as soon as the adhesive sheet was bonded to the polycarbonate plate.
  • Comparative Example 4 A photocurable resin composition of Comparative Example 4 was produced in the same manner as in Example 1 except that the type and content of each component were changed as described in Table 2, and evaluation was made in the same manner as Example 1. went. The results are shown in Table 2. In addition, in evaluation of foaming resistance, foaming was not seen at the time of the bonding to the polycarbonate board of an adhesive sheet, but it was a favorable sticking state.
  • Comparative Example 5 A photocurable resin composition of Comparative Example 5 was produced by the same method as Example 1 except that the type and content of each component were changed as described in Table 2, and evaluation was made in the same manner as Example 1. went. The results are shown in Table 2. In addition, in evaluation of foaming resistance, foaming was not seen at the time of the bonding to the polycarbonate board of an adhesive sheet, but it was a favorable sticking state.
  • the cured product has a tensile storage elastic modulus (E ′) at 100 ° C. of 1.0 ⁇ 10 6 Pa or more, and has sufficient hardness. It was Moreover, it turned out that it is excellent also in moisture-heat-and-heat whitening property and bonding property, is excellent in foaming resistance and moisture-heat resistance, and excellent also in shape following property to a to-be-adhered body.
  • Comparative Examples 1 to 5 are inferior in wet heat resistance to whitening because the content of the hydroxyl group-containing (meth) acrylate monomer is low, and Comparative Examples 2 and 3 show tensile storage elastic modulus at 100 ° C.
  • Comparative Example 4 has a tensile storage modulus of 3.0 ⁇ 10 6 Pa or more in an uncured state at 25 ° C. And the shape following ability was inferior.
  • the adhesive sheet containing the photocurable resin composition of the present invention has industrial applicability as an adhesive for liquid crystal displays especially for vehicles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Adhesive Tapes (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

The present invention provides a photocurable resin composition which, even when a member formed of a resin is used as an adherend, can inhibit foam generation and thereby prevent interface debonding between the adherend and an adhesive sheet in environments of high temperature and high humidity, and has conformability even in an attachment step during attachment at room temperature. The photocurable resin composition according to the present invention contains a urethane(meth)acrylate polymer (A), a hydroxy group-containing (meth)acrylate monomer (B), and a photopolymerization initiator (C), wherein the urethane(meth)acrylate polymer (A) has a weight-average molecular weight of 30,000-150,000, the composition contains 40 parts by mass or more of the hydroxy group-containing (meth)acrylate monomer (B) with respect to 100 parts by mass of the urethane(meth)acrylate polymer (A), and a cured product obtained by photo-curing the composition has a tensile storage modulus (E') of 1.0 × 106 Pa or more at 100ºC.

Description

光硬化性樹脂組成物及び接着シートPHOTO-CURABLE RESIN COMPOSITION AND ADHESIVE SHEET
 本発明は、光硬化性樹脂組成物及び接着シートに関し、更に詳しくは、例えば有機ELディスプレイ表示部、液晶ディスプレイ表示部に使用可能な光硬化性樹脂組成物、並びに該光硬化性樹脂組成物を用いた接着シートに関する。以下、液晶ディスプレイ表示部を例に説明する。 The present invention relates to a photocurable resin composition and an adhesive sheet, and more specifically, for example, a photocurable resin composition usable for an organic EL display unit, a liquid crystal display unit, and the photocurable resin composition. It relates to the adhesive sheet used. Hereinafter, the liquid crystal display unit will be described as an example.
 現在、液晶ディスプレイ(LCD:Liquid Crystal Display)は、デジタル化された電子機器の普及に伴いごく一般的な表示装置となっており、液晶テレビやPC(Personal Computer)ディスプレイ、携帯電話端末、携帯型ゲーム機、カーナビゲーション、電卓、時計など、さまざまな機器の表示部として用いられている。 Currently, liquid crystal displays (LCD: Liquid Crystal Display) have become very common display devices with the spread of digitized electronic devices, and are liquid crystal televisions, personal computer (PC) displays, mobile phone terminals, and portable types. It is used as a display unit of various devices such as game machines, car navigation systems, calculators, clocks and the like.
 LCDには機械的な保護のために、液晶表示パネル等の画像表示部材の表面側に光透過性硬化樹脂層(接着層)を介して光透過性の透明な保護部材が配置されている。LCDは、画像表示部材と保護部材との間に光硬化性樹脂組成物を配した後、光硬化性樹脂組成物に紫外線を照射して硬化させて光透過性硬化樹脂層(接着層)とし、それにより画像表示部材と保護部材とを接着することにより構成されている。 For mechanical protection of the LCD, a transparent protective member transparent to light is disposed on the surface side of an image display member such as a liquid crystal display panel via a light transmitting cured resin layer (adhesive layer). In the LCD, after the photocurable resin composition is disposed between the image display member and the protective member, the photocurable resin composition is irradiated with ultraviolet rays to be cured to form a light transmissive cured resin layer (adhesion layer). Thus, it is configured by bonding the image display member and the protective member.
 LCDの保護部材は一般的に板状部材で構成されているが、カーナビゲーション、スピードメーター等の車載器においては、デザイン性の観点から、近年、LCDの保護部材を三次元曲面形状としたものが望まれている。従来、保護部材にはガラス製のパネルやシートが使用されてきたが、このような要望に対応するために、所望の形状に加工しやすい樹脂製のパネルやシートが使用されるようになってきた。 The protective member of LCD is generally constituted by a plate-like member, but in car navigation equipment, car speedometers, etc., in recent years, the protective member of LCD is made three-dimensional curved shape from the viewpoint of designability Is desired. Conventionally, glass panels and sheets have been used as protective members, but resin panels and sheets that can be easily processed into desired shapes have come to be used in order to meet such demands. The
 樹脂製保護部材は形状加工性に優れる反面、アウトガス成分が発生しやすいため、特に湿熱環境下において樹脂製保護部材から発生した気泡が接着層に移行して、樹脂製保護部材と接着層との接着力の低下や接着層の変色等を引き起こし、延いては表示部の鮮明性の低下や剥がれを引き起こすことがある。 The resin protective member is excellent in shape processability, but the outgas component tends to be generated. Therefore, air bubbles generated from the resin protective member are transferred to the adhesive layer particularly under wet heat environment, and the resin protective member and the adhesive layer This may cause a decrease in adhesive strength, discoloration of the adhesive layer, and the like, which in turn may cause a decrease in sharpness of the display portion or peeling.
 これを解決するものとして、例えば、温度100℃及び周波数1Hzで測定された貯蔵弾性率(G’A100)が1×10Pa未満である接着剤層(A)を有する活性エネルギー線硬化性ポリウレタン接着シートであって、前記接着剤層(A)が硬化した層(A’)の温度100℃及び周波数1Hzで測定された貯蔵弾性率(G’A’100)が2×10Pa以上であり、温度60℃及び湿度90%の環境下に24時間放置された場合に気体を発生し得る被着体(b)の接着に使用することを特徴とする活性エネルギー線硬化性ポリウレタン接着シートが提案されている(特許文献1参照)。 As a solution to this, for example, an active energy ray-curable polyurethane having an adhesive layer (A) having a storage modulus (G ' A100 ) of less than 1 × 10 5 Pa measured at a temperature of 100 ° C. and a frequency of 1 Hz. in an adhesive sheet, the adhesive layer (a) is cured layer (a ') a storage modulus measured at a temperature 100 ° C. and a frequency 1Hz of (G'A'100) is 2 × 10 5 Pa or more An active energy ray-curable polyurethane adhesive sheet characterized by being used for adhesion of an adherend (b) capable of generating a gas when left in an environment of 60.degree. C. and 90% humidity for 24 hours It is proposed (refer patent document 1).
日本国特開2017-110143号公報Japanese Patent Application Laid-Open No. 2017-110143
 カーナビゲーション等の情報表示装置を自動車に搭載して使用する場合、特に夏季には自動車内の温度が非常に高くなる場合があり、接着層にはそのような使用環境においても保護部材から発泡する気泡を抑制する耐発泡性や、表示部の鮮明性を維持するための耐湿熱白化性を備えることが求められる。
 一方、被着体の中にはその表面に微細な凹凸(段差)を有するものがあり、特に樹脂製保護部材の表面には凹凸部が存在するため、接着層の形成に用いられる接着シートとの界面に隙間ができてしまうと、樹脂製保護部材から発生した気泡によりこの隙間が広がってしまい、接着シートが樹脂製保護部材から剥がれやすくなってしまう。接着シートは未硬化状態で被着体に貼り付けられ、その後紫外線を照射することにより硬化されるが、接着シートには未硬化状態において被着体表面の凹凸部を埋める性能(追従性)が要求される。
When an information display apparatus such as a car navigation system is mounted on a car and used, the temperature in the car may be extremely high especially in summer, and the adhesive layer foams from the protective member even in such a use environment It is required to have anti-foaming properties that suppress air bubbles and moisture-resistant heat whitening properties for maintaining the sharpness of the display portion.
On the other hand, some adherends have fine asperities (steps) on the surface, and in particular, since there are asperities on the surface of the resin protective member, an adhesive sheet used for forming an adhesive layer If a gap is formed in the interface, the gap is expanded by air bubbles generated from the resin protective member, and the adhesive sheet is easily peeled off from the resin protective member. The adhesive sheet is attached to the adherend in the uncured state, and then cured by irradiation with ultraviolet light, but the adhesive sheet has the ability (following ability) to fill the uneven portions on the adherend surface in the uncured state. Required
 従来の光硬化性樹脂組成物では、特にカーナビゲーションのような高温高湿環境下に晒される可能性のある情報表示装置に用いるにはまだ十分ではなく、耐発泡性、耐湿熱白化性及び貼付時の被着体への追従性を全て満足できる光硬化性樹脂組成物が求められている。
 そこで、本発明は、例えば、温度85℃×湿度85%という高温高湿環境下において、被着体として樹脂製部材を用いた場合でも、発泡を抑制して被着体と接着シートとの界面剥離を防止することができ、さらに常温貼付時の貼合工程においても追従性を有する光硬化性樹脂組成物及び該光硬化性樹脂組成物を含有する接着シートを提供することを課題とする。
Conventional photo-curable resin compositions are not yet sufficient for use in information display devices that may be exposed to high-temperature and high-humidity environments such as car navigation systems, and have resistance to foaming, moisture-heat resistance and whitening There is a need for a photocurable resin composition that can satisfy all the following properties to the adherend at the time.
Therefore, in the present invention, for example, even in the case of using a resin member as an adherend under a high temperature and high humidity environment of a temperature of 85 ° C. and a humidity of 85%, foaming is suppressed and the interface between the adherend and adhesive sheet It is an object of the present invention to provide a photocurable resin composition capable of preventing peeling and further having followability in a bonding step at the time of normal temperature sticking and an adhesive sheet containing the photocurable resin composition.
 本発明者らは、上記課題を解決するために鋭意検討した結果、光硬化性樹脂組成物を硬化物としたときの100℃における引張貯蔵弾性率(E’)に着目し、特定のウレタン(メタ)アクリレート系ポリマーと水酸基含有(メタ)アクリレート系モノマーと光重合開始剤を含有する光硬化性樹脂組成物を、その硬化物の100℃における引張貯蔵弾性率(E’)が1.0×10Pa以上の硬さとなるように構成することで、上記課題を解決できることを見出し、本発明を完成させた。 The present inventors focused on the tensile storage elastic modulus (E ′) at 100 ° C. when the photocurable resin composition is a cured product as a result of earnestly studying in order to solve the above problems, and a specific urethane ( A photocurable resin composition containing a meta) acrylate polymer, a hydroxyl group-containing (meth) acrylate monomer, and a photopolymerization initiator, and a cured product having a tensile storage elastic modulus (E ′) at 100 ° C. of 1.0 × The present invention has been accomplished by finding that the above-mentioned problems can be solved by configuring the film to have a hardness of 10 6 Pa or more.
 即ち、本発明は以下の(1)~(9)を特徴とする。
(1)(A)ウレタン(メタ)アクリレート系ポリマーと、(B)水酸基含有(メタ)アクリレート系モノマーと、(C)光重合開始剤とを含有する光硬化性樹脂組成物であって、前記(A)ウレタン(メタ)アクリレート系ポリマーの重量平均分子量が30,000~150,000であり、前記(A)ウレタン(メタ)アクリレート系ポリマー100質量部に対して、前記(B)水酸基含有(メタ)アクリレート系モノマーを40質量部以上含有し、前記光硬化性樹脂組成物を光硬化させて得られる硬化物の100℃での引張貯蔵弾性率(E’)が1.0×10Pa以上である光硬化性樹脂組成物。
(2)前記光硬化性樹脂組成物を乾燥させて得られる未硬化物の25℃での引張貯蔵弾性率(E’)が5.0×10Pa以上である、前記(1)に記載の光硬化性樹脂組成物。
(3)前記(A)ウレタン(メタ)アクリレート系ポリマー100質量部に対して、前記(B)水酸基含有(メタ)アクリレート系モノマーを40~120質量部含有する、前記(1)又は(2)に記載の光硬化性樹脂組成物。
(4)前記(A)ウレタン(メタ)アクリレート系ポリマーの二重結合当量が1,000~5,000g/eqである、前記(1)~(3)のいずれか1つに記載の光硬化性樹脂組成物。
(5)前記(A)ウレタン(メタ)アクリレート系ポリマー100質量部に対して、前記(C)光重合開始剤を0.5質量部以上含有する、前記(1)~(4)のいずれか1つに記載の光硬化性樹脂組成物。
(6)前記(1)~(5)のいずれか1つに記載の光硬化性樹脂組成物を含む接着シート。
(7)タッチパネル式入出力装置及び画像表示装置のうちの少なくとも1つの情報表示装置を構成する部材の貼り合わせに用いられる、前記(6)に記載の接着シート。
(8)前記情報表示装置が車載用装置である、前記(7)に記載の接着シート。
(9)前記(6)~(8)のいずれか1つに記載の接着シートを含む情報表示装置。
That is, the present invention is characterized by the following (1) to (9).
A photocurable resin composition comprising (1) (A) a urethane (meth) acrylate polymer, (B) a hydroxyl group-containing (meth) acrylate monomer, and (C) a photopolymerization initiator, The weight average molecular weight of the (A) urethane (meth) acrylate polymer is 30,000 to 150,000, and the (B) hydroxyl group-containing (B) relative to 100 parts by mass of the (A) urethane (meth) acrylate polymer The tensile storage elastic modulus (E ′) at 100 ° C. of the cured product obtained by photo-curing the photocurable resin composition containing 40 parts by mass or more of a meta) acrylate-based monomer is 1.0 × 10 6 Pa The photocurable resin composition which is the above.
(2) The above-mentioned (1), wherein the tensile storage elastic modulus (E ') at 25 ° C. of the uncured product obtained by drying the photocurable resin composition is 5.0 × 10 5 Pa or more. Photocurable resin composition.
(3) The above (1) or (2) containing 40 to 120 parts by mass of the (B) hydroxyl group-containing (meth) acrylate based monomer with respect to 100 parts by mass of the (A) urethane (meth) acrylate based polymer The photocurable resin composition as described in-.
(4) The photo-curable according to any one of (1) to (3), wherein the double bond equivalent of the (A) urethane (meth) acrylate polymer is 1,000 to 5,000 g / eq. Resin composition.
(5) Any one of the above (1) to (4) which contains 0.5 parts by mass or more of the (C) photopolymerization initiator with respect to 100 parts by mass of the (A) urethane (meth) acrylate polymer The photocurable resin composition as described in one.
(6) An adhesive sheet comprising the photocurable resin composition according to any one of the above (1) to (5).
(7) The adhesive sheet according to (6), which is used for bonding members constituting at least one information display device of a touch panel input / output device and an image display device.
(8) The adhesive sheet according to (7), wherein the information display device is an in-vehicle device.
(9) An information display device including the adhesive sheet according to any one of (6) to (8).
 本発明の光硬化性樹脂組成物は、光硬化後の100℃での引張貯蔵弾性率(E’)が1.0×10Pa以上であるので硬度が高く、よって、樹脂製部材から発生する気泡を抑制することができ、特に高温高湿環境下においても優れた耐発泡性を発揮することができる。また、高温高湿環境下における耐湿熱白化性にも優れ、さらに樹脂製部材に貼り付ける際には樹脂製部材への形状追従性にも優れる。 The photocurable resin composition of the present invention is high in hardness because the tensile storage elastic modulus (E ') at 100 ° C. after photocuring is 1.0 × 10 6 Pa or more, and therefore, it is generated from a resin member It is possible to suppress the generation of air bubbles, and to exhibit excellent foam resistance particularly in a high temperature and high humidity environment. In addition, it is also excellent in moisture heat resistance and whitening resistance under a high temperature and high humidity environment, and is also excellent in shape following ability to a resin member when it is attached to a resin member.
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に記載する。なお、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, modes for carrying out the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail. The present invention is not limited to the following embodiments, and various modifications can be made within the scope of the present invention.
 本実施形態における光硬化性樹脂組成物は、
 (A)ウレタン(メタ)アクリレート系ポリマーと、(B)水酸基含有(メタ)アクリレート系モノマーと、(C)光重合開始剤とを含有し、
 (A)ウレタン(メタ)アクリレート系ポリマーの重量平均分子量が30,000~150,000であり、
 (A)ウレタン(メタ)アクリレート系ポリマー100質量部に対して、(B)水酸基含有(メタ)アクリレート系モノマーを40質量部以上含有し、
 光硬化性樹脂組成物を光硬化させて得られる硬化物の100℃での引張貯蔵弾性率(E’)が1.0×10Pa以上である。
 以下、各成分について説明する。
The photocurable resin composition in the present embodiment is
(A) a urethane (meth) acrylate polymer, (B) a hydroxyl group-containing (meth) acrylate monomer, and (C) a photopolymerization initiator,
(A) The weight average molecular weight of the urethane (meth) acrylate polymer is 30,000 to 150,000,
(B) 40 parts by mass or more of (B) a hydroxyl group-containing (meth) acrylate based monomer with respect to 100 parts by mass of the (A) urethane (meth) acrylate based polymer,
The tensile storage elastic modulus (E ′) at 100 ° C. of the cured product obtained by photocuring the photocurable resin composition is 1.0 × 10 6 Pa or more.
Each component will be described below.
[ウレタン(メタ)アクリレート系ポリマー]
 本実施形態における光硬化性樹脂組成物は、(A)ウレタン(メタ)アクリレート系ポリマー(以下、「(A)成分」ともいう。)を含む。ウレタン(メタ)アクリレート系ポリマーは、ウレタン構造を主鎖に(メタ)アクリル基を側鎖に含むポリマーであって、例えば、ボリカーボネート骨格を有するウレタン(メタ)アクリレート、ポリエーテル骨格を有するウレタン(メタ)アクリレート、ポリエステル骨格を有するウレタン(メタ)アクリレート等が挙げられる。中でも、硬化後の接着シートの無黄変性の観点から、ポリカーボネート骨格を有するウレタン(メタ)アクリレートが好ましい。
[Urethane (Meth) Acrylate Polymer]
The photocurable resin composition in this embodiment contains (A) urethane (meth) acrylate type polymer (Hereafter, it is also called "(A) component."). The urethane (meth) acrylate polymer is a polymer having a urethane structure in the main chain and a (meth) acrylic group in the side chain, and, for example, urethane (meth) acrylate having a polycarbonate skeleton, urethane having a polyether skeleton ( Examples include meta) acrylates and urethane (meth) acrylates having a polyester skeleton. Among them, urethane (meth) acrylate having a polycarbonate skeleton is preferable from the viewpoint of non-yellowing of the adhesive sheet after curing.
 ポリカーボネート骨格を有するウレタン(メタ)アクリレートとは、主鎖にポリカーボネート構造とウレタン構造を有し、側鎖に(メタ)アクリル基を有するプレポリマーのことをいう。ボリカーボネート骨格を有するウレタン(メタ)アクリレートは、例えば、ポリカーボネートジオールとジイソシアネートとカルボン酸ジオールとを反応させた後、グリシジル(メタ)アクリレートを反応させることにより得ることができる。 The urethane (meth) acrylate having a polycarbonate skeleton refers to a prepolymer having a polycarbonate structure and a urethane structure in its main chain and having a (meth) acrylic group in its side chain. The urethane (meth) acrylate having a polycarbonate skeleton can be obtained, for example, by reacting polycarbonatediol, diisocyanate and carboxylic acid diol, and then reacting glycidyl (meth) acrylate.
 ポリカーボネートジオールの重量平均分子量は、好ましくは170~1,000であり、より好ましくは300~700であり、さらに好ましくは400~600である。ポリカーボネートジオールの重量平均分子量が上記範囲であると、ウレタンプレポリマー主鎖に、リワークに必要な膜性が付与される傾向にある。 The weight average molecular weight of the polycarbonate diol is preferably 170 to 1,000, more preferably 300 to 700, and still more preferably 400 to 600. When the weight average molecular weight of the polycarbonate diol is in the above range, the urethane prepolymer main chain tends to be provided with the film property necessary for rework.
 ジイソシアネートとしては、特に限定されず、例えば、2,4-トリレンジイソシアネート(2,4-TDI)、2,6-トリレンジイソシアネート(2,6-TDI)、4,4’-ジフェニルメタンジイソシアネート(4’4’-MDI)、2,4’-ジフェニルメタンジイソシアネート(2’4’-MDI)、1,4-フェニレンジイソシアネート、キシリレンジイソシアネート(XDI)、テトラメチルキシリレンジイソシアネート(TMXDI)、トリジンジイソシアネート(TODI)、1,5-ナフタレンジイソシアネート(NDI)などの芳香族イソシアネート;ヘキサメチレンジイソシアネート(HDI)トリメチルヘキサメチレンジイソシアネート(TMHDI)、リジンジイソシアネート、ノルボルナンジイソシアネートメチル(NBDI)などの脂肪族ポリイソシアネート;トランスシクロヘキサン1,4-ジイソシアネート、イソホロンジイソシアネート(IPDI)、水添XDIなどの脂環式ポリイソシアネート等が挙げられ、中でも、光学特性(黄変しにくさ)の観点から、ヘキサメチレンジイソシアネートが好まししい。 The diisocyanate is not particularly limited. For example, 2,4-tolylene diisocyanate (2,4-TDI), 2,6-tolylene diisocyanate (2,6-TDI), 4,4'-diphenylmethane diisocyanate (4) '4'-MDI), 2,4'-diphenylmethane diisocyanate (2'4'-MDI), 1,4-phenylene diisocyanate, xylylene diisocyanate (XDI), tetramethyl xylylene diisocyanate (TMXDI), tolidine diisocyanate (TODI) ), Aromatic isocyanates such as 1,5-naphthalene diisocyanate (NDI); hexamethylene diisocyanate (HDI) trimethylhexamethylene diisocyanate (TMHDI), lysine diisocyanate, norbornane diisocyanate Aliphatic polyisocyanates such as tomethyl (NBDI); alicyclic polyisocyanates such as transcyclohexane 1,4-diisocyanate, isophorone diisocyanate (IPDI), hydrogenated XDI, etc. Hexamethylene diisocyanate is preferred from the viewpoint of 2.).
 カルボン酸ジオールとしては、特に限定されず、例えば、ジメチロールブタン酸、ジメチロールプロピオン酸等が挙げられる。 The carboxylic acid diol is not particularly limited, and examples thereof include dimethylol butanoic acid and dimethylol propionic acid.
 ポリエーテル骨格を有するウレタン(メタ)アクリレートとは、主鎖にポリエーテル構造とウレタン構造を有し、側鎖に(メタ)アクリル基を有するプレポリマーのことをいい、ポリエステル骨格を有するウレタン(メタ)アクリレートは、主鎖にポリエステル構造とウレタン構造を有し、側鎖に(メタ)アクリル基を有するプレポリマーのことをいう。これらのプレポリマーは、ポリカーボネートジオールの代わりに、それぞれ、ポリエーテルジオール、ポリエステルジオールを用いること以外は上記ポリカーボネート骨格を有するウレタン(メタ)アクリレートと同様の方法により得ることができる。このとき、ポリエーテルジオール、ポリエステルジオールの好ましい重量平均分子量は、上述したポリカーボネートジオールの好ましい重量平均分子量と同じである。 Urethane (meth) acrylate having a polyether skeleton refers to a prepolymer having a polyether structure and a urethane structure in the main chain and having a (meth) acrylic group in the side chain, and a urethane having a polyester skeleton (meth Acrylate refers to a prepolymer having a polyester structure and a urethane structure in its main chain and having a (meth) acrylic group in its side chain. These prepolymers can be obtained by the same method as the urethane (meth) acrylate having a polycarbonate skeleton except that polyether diol and polyester diol are used in place of polycarbonate diol, respectively. At this time, the preferable weight average molecular weight of the polyether diol and the polyester diol is the same as the preferable weight average molecular weight of the polycarbonate diol described above.
 (A)成分の重量平均分子量(MW)は、30,000~150,000である。重量平均分子量が30,000以上であると、製膜性が良好になるとともに、硬化性が高まるので、光硬化性樹脂組成物を光硬化させて得られる硬化物の100℃での引張貯蔵弾性率(E’)を1.0×10Pa以上とすることができる。また、重量平均分子量が150,000以下であれば貼り合せ時の形状追従性を良好に保つことができる。重量平均分子量は、40,000以上がより好ましく、さらに好ましくは50,000以上であり、また、120,000以下がより好ましく、さらに好ましくは100,000以下である。具体的に好ましい(A)成分の重量平均分子量の範囲は、40,000~120,000が好ましく、50,000~100,000がより好ましい。 The weight average molecular weight (MW) of the component (A) is 30,000 to 150,000. When the weight average molecular weight is 30,000 or more, the film forming property is improved, and the curability is enhanced. Therefore, the tensile storage elasticity at 100 ° C. of the cured product obtained by photocuring the photocurable resin composition. The rate (E ′) can be 1.0 × 10 6 Pa or more. In addition, when the weight average molecular weight is 150,000 or less, the shape following property at the time of bonding can be favorably maintained. The weight average molecular weight is more preferably 40,000 or more, further preferably 50,000 or more, and further preferably 120,000 or less, still more preferably 100,000 or less. Specifically, the weight average molecular weight of the component (A) is preferably 40,000 to 120,000, more preferably 50,000 to 100,000.
 ここで、重量平均分子量は、平均分子量が約500~約100万の標準ポリスチレンを用いてゲルパーミエーションクロマトグラフィー(GPC)により測定した値をいう。 Here, the weight average molecular weight is a value measured by gel permeation chromatography (GPC) using standard polystyrene having an average molecular weight of about 500 to about 1,000,000.
 (A)成分の二重結合当量は、好ましくは1,000~5,000g/eqであり、1,500g/eq以上がより好ましく、さらに好ましくは1,800g/eq以上であり、また、2,500g/eq以下がより好ましく、さらに好ましくは2,200g/eq以下である。二重結合当量が上記範囲であると、硬化収縮の影響が少なく、長期信頼性に優れ、また、硬化が容易となる。 The double bond equivalent of the component (A) is preferably 1,000 to 5,000 g / eq, more preferably 1,500 g / eq or more, and still more preferably 1,800 g / eq or more. , 500 g / eq or less is more preferable, and further preferably 2,200 g / eq or less. When the double bond equivalent is in the above range, the influence of curing shrinkage is small, the long-term reliability is excellent, and curing becomes easy.
 ここで、二重結合当量は、カルボキシル基含有(メタ)アクリレートの固形分質量(g)/オキシラン環とエチレン性不飽和結合を有する化合物のモル数(g/mol)により算出した値をいう。 Here, the double bond equivalent refers to a value calculated by the number of moles (g / mol) of the solid content mass (g) of the carboxyl group-containing (meth) acrylate / the compound having an oxirane ring and an ethylenically unsaturated bond.
 (A)成分のガラス転移温度(Tg)は、好ましくは-10~20℃であり、-5℃以上がより好ましく、さらに好ましくは0℃以上であり、また、15℃以下がより好ましく、さらに好ましくは10℃以下である。ガラス転移温度が上記範囲であると、製膜性が良好となり取扱い性が向上する。 The glass transition temperature (Tg) of the component (A) is preferably −10 to 20 ° C., more preferably −5 ° C. or more, still more preferably 0 ° C. or more, and more preferably 15 ° C. or less, further preferably Preferably it is 10 degrees C or less. When the glass transition temperature is in the above range, the film forming property is improved and the handleability is improved.
 ここで、ガラス転移温度は、動的粘弾性測定(DMA)により測定した値をいう。 Here, the glass transition temperature refers to a value measured by dynamic viscoelasticity measurement (DMA).
 (A)成分は、耐腐食性の観点から実質的に酸を含まないことが好ましく、「実質的に酸を含まない」とは、(A)成分の酸価(mgKOH/g)が、1.0mgKOH/g以下、好ましくは0.5mgKOH/g以下、最も好ましくは0mgKOH/gであることを意味する。 The component (A) preferably contains substantially no acid from the viewpoint of corrosion resistance, and "substantially free of acid" means that the acid value (mg KOH / g) of the component (A) is 1 .0 mg KOH / g or less, preferably 0.5 mg KOH / g or less, most preferably 0 mg KOH / g.
 ここで、酸価は、樹脂の固形分1gに対して混合溶剤(質量比:トルエン/メタノール=50/50)を加え、溶解後、指示薬としてフェノールフタレイン溶液を適量添加し、0.lNの水酸化カリウム水溶液で滴定し、下記式(α)により求めることができる。
  x=10×Vf×56.1/(Wp×I)・・・(α)
(式(α)中、xは酸価(mgKOH/g)を示し、Vfは0.1NのKOH水溶液の滴定量(mL)を示し、Wpは測定した樹脂溶液の質量(g)を示し、Iは測定した樹脂溶液中の不揮発分の割合(質量%)を示す。)
Here, the acid value is determined by adding a mixed solvent (mass ratio: toluene / methanol = 50/50) to 1 g of solid content of resin, dissolving, and then adding an appropriate amount of a phenolphthalein solution as an indicator. It titrates with 1N potassium hydroxide aqueous solution, and can obtain | require by following formula ((alpha)).
x = 10 × Vf × 56.1 / (Wp × I) (α)
(In the formula (α), x represents an acid value (mg KOH / g), Vf represents a titration amount (mL) of a 0.1 N KOH aqueous solution, and Wp represents a mass (g) of the measured resin solution, I shows the ratio (mass%) of the non volatile matter in the measured resin solution.)
[水酸基含有(メタ)アクリレート系モノマー]
 本実施形態における光硬化性樹脂組成物は、(B)水酸基含有(メタ)アクリレート系モノマー(以下、「(B)成分」ともいう。)を含む。本実施形態においては、(A)ウレタン(メタ)アクリレート系ポリマーに対して(B)水酸基含有(メタ)アクリレート系モノマーを加えることで、硬化後の架橋密度を高め、常温での粘弾性を高めるとともに、高温高湿環境下における白化を抑制している。
[Hydroxyl group-containing (meth) acrylate monomer]
The photocurable resin composition in the present embodiment contains (B) a hydroxyl group-containing (meth) acrylate monomer (hereinafter, also referred to as "component (B)"). In the present embodiment, by adding the (B) hydroxyl group-containing (meth) acrylate monomer to the (A) urethane (meth) acrylate polymer, the crosslink density after curing is increased to enhance the viscoelasticity at normal temperature. At the same time, it suppresses whitening under high temperature and high humidity environment.
 (B)成分としては、例えば、2-ヒドロキシメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、フェニルグリシジルエーテル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、アクリル酸又はメタクリル酸とポリプロピレングリコール又はポリエチレングリコールとのモノエステル、ラクトン類と2-ヒドロキシエチル(メタ)アクリレートとの付加物等が挙げられる。これらの(B)成分は1種を単独で用いてもよく、2種以上を組み合せて用いてもよい。
 中でも、耐湿熱白化の観点から、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシメチル(メタ)アクリレートを用いることが好ましい。
As the component (B), for example, 2-hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, phenyl glycidyl ether (meth) ) Acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, monoesters of acrylic acid or methacrylic acid with polypropylene glycol or polyethylene glycol, lactones with 2-hydroxyethyl (meth) acrylate An additive etc. are mentioned. One of these components (B) may be used alone, or two or more thereof may be used in combination.
Among them, 4-hydroxybutyl (meth) acrylate and 2-hydroxymethyl (meth) acrylate are preferably used from the viewpoint of moisture heat resistance whitening.
 本実施形態においては、(A)成分100質量部に対して(B)成分を40質量部以上含有させる。(B)成分の含有量が40質量部以上であると、耐湿熱白化性が向上するので、情報表示装置の表示部の鮮明性を保つことができる。(A)成分100質量部に対する(B)成分の含有量は、40~120質量部であることが好ましく、その下限は45質量部以上がより好ましく、さらに好ましくは50質量部以上であり、また、上限は110質量部以下がより好ましく、さらに好ましくは100質量部以下、特に好ましくは80質量部以下である。上記範囲内にあることにより、前記表示部の鮮明性を保つことができ、貼合時の発泡を防ぐことができる。具体的に好ましい(B)成分の含有量の範囲は、(A)成分100質量部に対して45~120質量部がより好ましく、45~110質量部がさらに好ましく、50~100質量部が特に好ましく、50~80質量部が最も好ましい。 In the present embodiment, 40 parts by mass or more of the component (B) is contained with respect to 100 parts by mass of the component (A). When the content of the component (B) is 40 parts by mass or more, the moisture and heat resistance to whitening is improved, so that the sharpness of the display portion of the information display device can be maintained. The content of the component (B) is preferably 40 to 120 parts by mass with respect to 100 parts by mass of the component (A), and the lower limit thereof is more preferably 45 parts by mass or more, still more preferably 50 parts by mass or more The upper limit is more preferably 110 parts by mass or less, still more preferably 100 parts by mass or less, and particularly preferably 80 parts by mass or less. By being in the said range, the clearness of the said display part can be maintained and the foaming at the time of bonding can be prevented. Specifically, the range of the content of the component (B) is more preferably 45 to 120 parts by mass, further preferably 45 to 110 parts by mass, particularly preferably 50 to 100 parts by mass with respect to 100 parts by mass of the component (A). Preferably, 50 to 80 parts by weight is most preferred.
[(C)光重合開始剤]
 本実施形態における光硬化性樹脂組成物は、(C)光重合開始剤(以下、「(C)成分」ともいう。)を含む。光重合開始剤としては、特に限定されず、例えば、アシルフォスフィンオキサイド系光重合開始剤、アルキルフェノン系光重合開始剤、分子内水素引き抜き型光重合開始剤等のいずれの光重合開始剤も用いることができ、中でも、反応性、硬化の均一性の観点から、アシルフォスフィンオキサイド系光重合開始剤、アルキルフェノン系光重合開始剤が好ましい。具体的には、アシルフォスフィンオキサイド系光重合開始剤としては、2,4,6-トリメチルベンゾイルフェニルホスフィンオキサイド、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、フェニルグリオキシリックアシッドメチルエステル等が挙げられ、アルキルフェノン系光重合開始剤としては、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1等が挙げられ、中でも、ラジカル発生効率が高く、深部硬化性の観点から、2,4,6-トリメチルベンゾイルフェニルホスフィンオキサイドが好ましい。
[(C) photopolymerization initiator]
The photocurable resin composition in the present embodiment contains (C) a photopolymerization initiator (hereinafter, also referred to as “component (C)”). The photopolymerization initiator is not particularly limited, and any photopolymerization initiator such as, for example, an acyl phosphine oxide photopolymerization initiator, an alkylphenone photopolymerization initiator, and an intramolecular hydrogen abstraction type photopolymerization initiator may be used. Among them, acyl phosphine oxide type photopolymerization initiators and alkylphenone type photopolymerization initiators are preferable from the viewpoint of reactivity and uniformity of curing. Specifically, as the acyl phosphine oxide photopolymerization initiator, 2,4,6-trimethyl benzoyl phenyl phosphine oxide, 2,2-dimethoxy-1,2-diphenyl ethane-1-one, phenylglyoxylic Acid methyl esters and the like can be mentioned, and as an alkylphenone photopolymerization initiator, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylone Amino-1- (4-morpholinophenyl) -butanone-1 and the like are mentioned, and among them, 2,4,6-trimethyl benzoyl phenyl phosphine oxide is preferable from the viewpoint of high radical generation efficiency and deep part curability.
 (A)成分100質量部に対する(C)成分の合有量は、0.5質量部以上であることが好ましく、より好ましくは1.0質量部以上であり、さらに好ましくは1.5質量部以上である。(C)光重合開始剤の含有量が上記範囲であると、硬化反応性が良好となり、長期信頼性が向上する傾向にある。(C)成分の含有量の上限としては特に限定されないが、多すぎると光学特性が低下する傾向にあるため、7.0質量部以下であることが好ましい。 The total content of component (C) relative to 100 parts by weight of component (A) is preferably 0.5 parts by weight or more, more preferably 1.0 parts by weight or more, and still more preferably 1.5 parts by weight It is above. When the content of the photopolymerization initiator (C) is in the above range, the curing reactivity tends to be good, and the long-term reliability tends to be improved. The upper limit of the content of the component (C) is not particularly limited, but it is preferably 7.0 parts by mass or less because the optical properties tend to deteriorate if the content is too large.
[その他の成分]
 本実施形態における光硬化性樹脂組成物には、上述した(A)~(C)成分以外にも、シランカップリング剤、シリカ、アルミナ、水和アルミナ等の各種フィラー、酸化防止剤、紫外線吸収剤、光安定剤、帯電防止剤、レペリング剤、消泡剤、着色顔料、有機溶媒等の、通常接着剤に添加されることがある添加剤を含んでいてもよい。
[Other ingredients]
The photocurable resin composition according to the present embodiment includes, in addition to the components (A) to (C) described above, various fillers such as a silane coupling agent, silica, alumina, hydrated alumina, an antioxidant, and ultraviolet light absorption. Additives that may be usually added to adhesives may be included, such as agents, light stabilizers, antistatic agents, repellers, antifoams, color pigments, organic solvents and the like.
 光硬化性樹脂組成物中にシランカップリング剤を含有させることで接着力を維持し、被着体に対する長期信頼性が向上する。
 シランカップリング剤としては、例えば、モノマー型シランカップリング剤、アルコキシオリゴマー型シランカップリング剤、多官能型シランカップリング剤等のいずれのシランカップリング剤も用いることができる。
By containing a silane coupling agent in the photocurable resin composition, the adhesive strength is maintained, and the long-term reliability of the adherend is improved.
As a silane coupling agent, any silane coupling agents, such as a monomer type silane coupling agent, an alkoxy oligomer type silane coupling agent, and a polyfunctional type silane coupling agent, can also be used, for example.
[光硬化性樹脂組成物の製造]
 本実施形態の光硬化性樹脂組成物の製造方法としては特に限定されず、例えば、上述した含有成分を、各種の混合機や分散機を用いて混合分散することによって調製することができる。混合・分散工程は特に限定されず、通常の手法により行えばよい。
[Production of Photocurable Resin Composition]
It does not specifically limit as a manufacturing method of the photocurable resin composition of this embodiment, For example, it can prepare by mixing and dispersing the above-mentioned component using various mixers and dispersers. The mixing / dispersing step is not particularly limited, and may be carried out by a usual method.
[光硬化性樹脂組成物の引張貯蔵弾性率]
 本実施形態の光硬化性樹脂組成物の粘弾性は、動的粘弾性測定(DMA:Dynamic Mechanical Analysis)により測定することができる。所定厚みのフィルム状に形成した試験片について、動的粘弾性装置を用いて、周波数1Hzおよび所定温度の条件で測定される引っ張り測定で測定した値(引張貯蔵弾性率E’)を求める。試験片としては、具体的に幅5mm、長さ50mm、厚み0.1mmに切断した試験片を使用することができる。
[Tensile storage modulus of photocurable resin composition]
The viscoelasticity of the photocurable resin composition of the present embodiment can be measured by dynamic mechanical analysis (DMA: Dynamic Mechanical Analysis). With respect to a test piece formed in a film having a predetermined thickness, a value (tensile storage elastic modulus E ′) measured by tensile measurement measured under the conditions of a frequency of 1 Hz and a predetermined temperature is obtained using a dynamic viscoelasticity device. As a test piece, specifically, a test piece cut into a width of 5 mm, a length of 50 mm, and a thickness of 0.1 mm can be used.
 具体的には、本実施形態においては、光硬化した後の試験片(硬化物)について、100℃での引張貯蔵弾性率(E’)が1.0×10Pa以上である。硬化物の100℃での引張貯蔵弾性率(E’)が1.0×10Pa以上であると、硬度が十分に高く、よって、被着体(例えば、樹脂製部材)から発生する気泡(アウトガス)を抑制することができ、特に高温高湿環境下(温度85℃、湿度85%)においても気泡の発生を抑え優れた耐発泡性を発揮することができる。硬化物の100℃での引張貯蔵弾性率(E’)は、本発明の効果が得られやすいという観点から、2.0×10Pa以上であることが好ましく、さらに好ましくは3.0×10Pa以上であり、また、上限は特に限定はされないが3.0×10Pa以下であることが好ましく、さらに好ましくは1.0×10Pa以下である。具体的に好ましい硬化物の100℃での引張貯蔵弾性率(E’)の範囲は、2.0×10~3.0×10Paがより好ましく、3.0×10~1.0×10Paがさらに好ましい。 Specifically, in the present embodiment, the tensile storage elastic modulus (E ′) at 100 ° C. of the test piece (cured product) after photocuring is 1.0 × 10 6 Pa or more. The hardness is sufficiently high that the tensile storage elastic modulus (E ') at 100 ° C. of the cured product is 1.0 × 10 6 Pa or more, and accordingly, the air bubbles generated from the adherend (for example, a resin member) (Outgassing) can be suppressed, and particularly in a high temperature and high humidity environment (temperature 85 ° C., humidity 85%), generation of air bubbles can be suppressed and excellent foam resistance can be exhibited. The tensile storage elastic modulus (E ') at 100 ° C. of the cured product is preferably 2.0 × 10 6 Pa or more, more preferably 3.0 × from the viewpoint that the effects of the present invention are easily obtained. 10 is a 6 Pa or higher, and the upper limit is preferably, less and more preferably 1.0 × 10 7 Pa, especially but not limited to is 3.0 × 10 7 Pa or less. Specifically, the range of the tensile storage elastic modulus (E ′) at 100 ° C. of the cured product is more preferably 2.0 × 10 6 to 3.0 × 10 7 Pa, and 3.0 × 10 6 to 1. 0 × 10 7 Pa is more preferable.
 また、本実施形態においては、乾燥させて得られた未硬化物(外見上は半硬化状態に見える)について、25℃での引張貯蔵弾性率(E’)が5.0×10Pa以上であることが好ましい。未硬化物の25℃での引張貯蔵弾性率(E’)が5.0×10Pa以上であると、被着体に貼合する過程での耐発泡性が向上し、気泡の発生を抑制することができる。未硬化物の25℃での引張貯蔵弾性率(E’)は、本発明の効果が得られやすいという観点から、6.0×10Pa以上であることがより好ましく、さらに好ましくは8.0×10Pa以上であり、また、上限は特に限定はされないが5.0×10Pa以下であることが好ましく、さらに好ましくは3.0×10Pa以下である。具体的に好ましい未硬化物の25℃での引張貯蔵弾性率(E’)の範囲は、6.0×10~5.0×10Paがより好ましく、8.0×10~3.0×10Paがさらに好ましい。 Moreover, in this embodiment, the tensile storage elastic modulus (E ') at 25 ° C. is 5.0 × 10 5 Pa or more for the uncured product obtained by drying (appears to be in a semi-cured state). Is preferred. When the tensile storage elastic modulus (E ') at 25 ° C. of the uncured material is 5.0 × 10 5 Pa or more, the foam resistance in the process of bonding to the adherend is improved, and the generation of air bubbles is It can be suppressed. The tensile storage elastic modulus (E ′) at 25 ° C. of the uncured product is more preferably 6.0 × 10 5 Pa or more, further preferably 8. from the viewpoint of easily obtaining the effects of the present invention. 0 × is at 10 5 Pa or higher, and the upper limit, it is preferably, less and more preferably 3.0 × 10 6 Pa, especially but not limited to at most 5.0 × 10 6 Pa. Specifically, the range of the tensile storage elastic modulus (E ′) at 25 ° C. of the uncured product is more preferably 6.0 × 10 5 to 5.0 × 10 6 Pa, and 8.0 × 10 5 to 3 More preferably, it is 0. 10 6 Pa.
 なお、本実施形態の光硬化性樹脂組成物は、硬化物のせん断貯蔵弾性率G’を求めることができない。せん断貯蔵弾性率(G’)は試験片を治具で上下から挟み込み、せん断(ずり)を加えることにより測定されるが、本実施形態の光硬化性樹脂組成物は、硬化物の100℃での引張貯蔵弾性率(E’)が1.0×10Pa以上であることから分かるように、硬化物は硬いものである。よって、せん断を加えた場合に治具内で試験片が滑ってしまい正確な測定ができないものと推測される。 In addition, the photocurable resin composition of this embodiment can not obtain | require shear storage elastic modulus G 'of hardened | cured material. The shear storage elastic modulus (G ') is measured by sandwiching the test piece from above and below with a jig and applying shear (shear), but the photocurable resin composition of this embodiment is a cured product at 100 ° C. The cured product is hard, as can be seen from the tensile storage modulus (E ') of at least 1.0 × 10 6 Pa. Therefore, when shear is applied, it is assumed that the test piece slips in the jig and accurate measurement can not be performed.
[接着シート]
 本実施形態における接着シートは、上述した光硬化性樹脂組成物を含む。具体的には、例えば、PET等の保護フィルム上に本実施形態の光硬化性樹脂組成物を塗布して乾燥させた後、反対面にも保護フィルムを設けることにより、両面に保護フィルムが設けられた接着シートを得ることができる。特に、光硬化性樹脂組成物を、有機溶媒を用いてワニスとした後、保護フィルム上に塗布し、乾燥することが好ましい。このとき用いられる有機溶媒としては、特に限定されないが、例えば、トルエン、メチルエチルケトン、シクロヘキサノン、プロピレングリコールモノメチルエーテル、ジメチルアセトアミド等が挙げられる。中でも、溶解性の観点から、メチルエチルケトンが好ましい。また、ワニス中の有機溶媒の含有量は(A)成分100質量部に対して、好ましくは100~200質量部であり、より好ましくは130~170質量部である。
[Adhesive sheet]
The adhesive sheet in this embodiment contains the photocurable resin composition mentioned above. Specifically, for example, after the photocurable resin composition of the present embodiment is applied on a protective film such as PET and dried, a protective film is provided on both sides by providing a protective film on the opposite side. An adhesive sheet can be obtained. In particular, it is preferable to apply the photocurable resin composition on a protective film after making it into a varnish using an organic solvent, and to dry it. The organic solvent used at this time is not particularly limited, and examples thereof include toluene, methyl ethyl ketone, cyclohexanone, propylene glycol monomethyl ether, and dimethyl acetamide. Among them, methyl ethyl ketone is preferable from the viewpoint of solubility. Further, the content of the organic solvent in the varnish is preferably 100 to 200 parts by mass, more preferably 130 to 170 parts by mass with respect to 100 parts by mass of the component (A).
 保護フィルムとしては、特に限定されず、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、及びポリブチレンテレフタレートからなる群から選択される1種以上の樹脂からなるフィルムが挙げられ、中でも、製造コストを低減する観点から、ポリエチレンテレフタレート樹脂からなるフィルムが好ましい。 The protective film is not particularly limited, and examples thereof include films made of one or more resins selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate, and among them, the viewpoint of reducing the manufacturing cost Therefore, a film made of polyethylene terephthalate resin is preferable.
 保護フィルムには、光硬化性樹脂組成物が塗布される面に離型処理が施されていてもよい。保護フィルムに離型処理が施されていることにより、使用時に保護フィルムを容易に剥離することが可能になるため、取扱い性が向上する。離型処理としては、特に限定されず、例えば、シリコーン系離型剤、フッ素系離型剤、長鎖アルキルグラフトポリマ一系離型剤等の離型剤や、プラズマ処理により表面処理する方法等を用いることができる。 In the protective film, the surface on which the photocurable resin composition is applied may be subjected to release treatment. Since the protective film is subjected to a release treatment, the protective film can be easily peeled off at the time of use, so that the handleability is improved. The release treatment is not particularly limited. For example, release agents such as silicone release agents, fluorine release agents, long chain alkyl graft polymer-l release agents, and methods of surface treatment by plasma treatment, etc. Can be used.
 保護フィルムに光硬化性樹脂組成物を塗布する方法としては、塗布厚さに応じて、コンマコータ一、ダイコータ一、グラビアコーターなどを適宜採用することができる。 As a method of apply | coating a photocurable resin composition to a protective film, a comma coater 1, a die coater 1, a gravure coater etc. are suitably employable according to application | coating thickness.
 光硬化性樹脂組成物の乾燥は、ドライヤ一等により実施することができ、その際の乾燥条件は、各成分の種類及び含有量等により適宜調整することができる。乾燥後の接着シートの厚さは、好ましくは10~250μmであり、より好ましくは25~125μm、さらに好ましくは30~75μmである。接着シートの厚さが上記範囲であると、被着体(例えば画像表示部材や保護部材の凹凸など)との追従性、接着性が良好となり、結果的に長期信頼性が向上する。本実施形態における長期信頼性とは、発泡が抑制されて、映像の鮮明性が維持されることを含む。 Drying of the photocurable resin composition can be carried out with a dryer or the like, and the drying conditions at that time can be appropriately adjusted depending on the type, content and the like of each component. The thickness of the adhesive sheet after drying is preferably 10 to 250 μm, more preferably 25 to 125 μm, and still more preferably 30 to 75 μm. When the thickness of the adhesive sheet is in the above range, the followability with an adherend (for example, unevenness of an image display member or a protective member) and adhesiveness become good, and as a result, long-term reliability improves. The long-term reliability in the present embodiment includes suppression of foaming to maintain the sharpness of the image.
 接着シートはエネルギー線を照射することにより硬化される。エネルギー線は、特に限定されず、可視光線、紫外線、X線、電子線等の活性エネルギー線を使用することができるが、硬化反応を効率良く行えるという観点から、紫外線を使用することが好ましい。
 紫外線の光源としては、紫外線(UV)が発せられる光源を使用することができる。紫外線の光源としては、例えば、メタルハライドランプ、高圧水銀ランプ、キセノンランプ、水銀キセノンランプ、ハロゲンランプ、パルスキセノンランプ、LED等が挙げられる。
The adhesive sheet is cured by irradiating energy rays. The energy ray is not particularly limited, and active energy rays such as visible light, ultraviolet rays, X-rays and electron beams can be used, but it is preferable to use ultraviolet rays from the viewpoint of efficiently performing the curing reaction.
As a light source of ultraviolet light, a light source from which ultraviolet light (UV) is emitted can be used. Examples of the ultraviolet light source include metal halide lamps, high pressure mercury lamps, xenon lamps, mercury xenon lamps, halogen lamps, pulsed xenon lamps, and LEDs.
[情報表示装置]
 本実施形態の光硬化性樹脂組成物は、タッチパネル式入出力装置及び画像表示装置のうちの少なくとも1つの情報表示装置を構成する部材の貼り合わせに用いることができる。例えば、情報表示装置の画像表示部材と保護部材との間に、本実施形態の光硬化性樹脂組成物を含有する接着シートを配置させ、この積層体にエネルギー線を照射することにより、画像表示部材と保護部材とを接着することができる。
 なお、本実施形態における光硬化性樹脂組成物は、高温高湿環境下においての耐発泡性、耐湿熱白化性に優れるため、車載用の情報表示装置を構成する部材の貼り合せに好ましく使用することができる。
[Information display device]
The photocurable resin composition of this embodiment can be used for bonding of the member which comprises at least one information display apparatus among a touch-panel-type input-output device and an image display apparatus. For example, an adhesive sheet containing the photocurable resin composition of the present embodiment is disposed between an image display member and a protective member of an information display device, and the laminate is irradiated with energy rays to display an image. The member and the protective member can be bonded.
In addition, since the photocurable resin composition in this embodiment is excellent in foaming resistance under high temperature and high humidity environment and moisture heat resistance whitening property, it is preferably used for bonding of members constituting an on-vehicle information display device. be able to.
 以下、本発明を実施例及び比較例によってさらに具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。 Hereinafter, the present invention will be more specifically described by way of examples and comparative examples, but the present invention is not limited to these examples.
 実施例及び比較例において用いた各成分・材料は以下のとおりである。
[(A)成分:ウレタン(メタ)アクリレート系ポリマー]
 以下の合成例1~3及び、比較合成例1~2に従って、ウレタン(メタ)アクリレート系ポリマー(a)~(e)を作製した。
(1)ウレタン(メタ)アクリレート系ポリマー(a)
 ポリカーボネート骨格ウレタン(メタ)アクリレート(重量平均分子量50,000、二重結合当量2,000g/eq)
(2)ウレタン(メタ)アクリレート系ポリマー(b)
 ポリエーテル骨格ウレタン(メタ)アクリレート(重量平均分子量50,000、二重結合当量2,000g/eq)
(3)ウレタン(メタ)アクリレート系ポリマー(c)
 ポリエステル骨格ウレタン(メタ)アクリレート(重量平均分子量50,000、二重結合当量2,000g/eq)
(4)ウレタン(メタ)アクリレート系ポリマー(d)
 ポリカーボネート骨格ウレタン(メタ)アクリレート(重量平均分子量10,000、二重結合当量2,000g/eq)
(5)ウレタン(メタ)アクリレート系ポリマー(e)
 ポリカーボネート骨格ウレタン(メタ)アクリレート(重量平均分子量180,000、二重結合当量2,000g/eq)
Each component and material used in the Example and the comparative example are as follows.
[(A) Component: Urethane (Meth) Acrylate Polymer]
Urethane (meth) acrylate polymers (a) to (e) were produced according to the following synthesis examples 1 to 3 and comparative synthesis examples 1 to 2, respectively.
(1) Urethane (meth) acrylate polymer (a)
Polycarbonate backbone urethane (meth) acrylate (weight average molecular weight 50,000, double bond equivalent 2,000 g / eq)
(2) Urethane (meth) acrylate polymer (b)
Polyether backbone urethane (meth) acrylate (weight average molecular weight 50,000, double bond equivalent 2,000 g / eq)
(3) Urethane (meth) acrylate polymer (c)
Polyester backbone urethane (meth) acrylate (weight average molecular weight 50,000, double bond equivalent 2,000 g / eq)
(4) Urethane (meth) acrylate polymer (d)
Polycarbonate backbone urethane (meth) acrylate (weight average molecular weight 10,000, double bond equivalent 2,000 g / eq)
(5) Urethane (meth) acrylate polymer (e)
Polycarbonate backbone urethane (meth) acrylate (weight average molecular weight 180,000, double bond equivalent 2,000 g / eq)
[(B)成分:水酸基含有(メタ)アクリレート系モノマー]
(1)水酸基含有(メタ)アクリレート系モノマー(a)
 4-ヒドロキシブチルアクリレート(大阪有機化学工業株式会社製、製品名「4-HBA」)
[(B) component: hydroxyl group-containing (meth) acrylate type monomer]
(1) Hydroxyl group-containing (meth) acrylate monomer (a)
4-hydroxybutyl acrylate (Osaka Organic Chemical Industry Co., Ltd., product name "4-HBA")
[(C)成分:光重合開始剤]
(1)光重合開始剤(a)
 2,4,6-トリメチルベンゾイルフェニルホスフィンオキサイド(BASF社製、商品名「Irgacure TPO」、アシルフォスフィンオキサイド系光重合開始剤)
(2)光重合開始剤(b)
 2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン(BASF社製、商品名「Irgacure 907」、α-アミノアルキルフェノン系光重合開始剤)
(3)光重合開始剤(c)
 2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(BASF社製、商品名「Irgacure 369」、α-アミノアルキルフェノン系光重合開始剤)
[(C) component: photopolymerization initiator]
(1) Photopolymerization initiator (a)
2,4,6-Trimethyl benzoyl phenyl phosphine oxide (BASF company name, "Irgacure TPO", an acyl phosphine oxide type photoinitiator)
(2) Photopolymerization initiator (b)
2-Methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one (manufactured by BASF, trade name “Irgacure 907”, α-aminoalkylphenone photopolymerization initiator)
(3) Photopolymerization initiator (c)
2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 (manufactured by BASF, trade name “Irgacure 369”, α-aminoalkylphenone photopolymerization initiator)
[粘着剤]
(1)粘着剤(a)
 スリーエム社製、商品名「8146」(アクリル系粘着剤)
[Adhesive]
(1) Adhesive (a)
Product name "8146" (acrylic adhesive) manufactured by 3M
(合成例1)ウレタン(メタ)アクリレート系ポリマー(a)
 温度計、冷却管、撹拌装置を備えた4つ口フラスコに、ヘキサメチレンジイソシアネート(東ソー株式会社製、品名:HDI、略名HDI)33.3質量部と、重量平均分子量400のポリカーボネートジオール59.4質量部と、ジメチロールブタン酸7.3質量部と、触媒としてジブチル錫ラウレート等の有機錫化合物1質量部と、有機溶媒としてメチルエチルケトン100質量部を反応容器に入れ、70℃で24時間反応させた。
 得られた合成物の反応状況を確認するため、IR測定機器を用いて分析を行った。IRチャートにおいて当該合成物のNCO特性吸収(2270cm-1)が消失していることを確認し、合成物がカルボキシル基を有するウレタンアクリレートであることを確認した。
 次に、得られたカルボキシル基を有するウレタンアクリレート100質量部と、グリシジルメタクリレート7.1質量部と、触媒としてトリエチルアミン0.7質量部と、重合禁止剤としてハイドロキノン0.05質量部とを反応容器に入れ、75℃で12時間反応を行い、付加反応させることによりウレタン(メタ)アクリレート系ポリマー(a)を得た。
 なお、付加反応は、以下の方法に従って測定した酸価が1.0mgKOH/g以下になった時点で終了させた。また、得られたウレタン(メタ)アクリレート系ポリマー(a)は、重量平均分子量50,000、固形分濃度50質量%、二重結合当量2,000g/eq、Tg5℃であった。
Synthesis Example 1 Urethane (Meth) Acrylate Polymer (a)
In a four-necked flask equipped with a thermometer, a condenser and a stirrer, 33.3 parts by mass of hexamethylene diisocyanate (made by Tosoh Corp., product name: HDI, abbreviation HDI), and polycarbonate diol 59 having a weight average molecular weight of 400. 4 parts by mass, 7.3 parts by mass of dimethylol butanoic acid, 1 part by mass of an organotin compound such as dibutyltin laurate as a catalyst, and 100 parts by mass of methyl ethyl ketone as an organic solvent are added to a reaction vessel and reacted at 70 ° C. for 24 hours I did.
In order to confirm the reaction state of the obtained compound, analysis was performed using an IR measuring instrument. It was confirmed in the IR chart that the NCO characteristic absorption (2270 cm −1 ) of the synthesized product disappeared, and it was confirmed that the synthesized product was a urethane acrylate having a carboxyl group.
Next, 100 parts by mass of the obtained carboxyl group-containing urethane acrylate, 7.1 parts by mass of glycidyl methacrylate, 0.7 parts by mass of triethylamine as a catalyst, and 0.05 parts by mass of hydroquinone as a polymerization inhibitor The reaction solution was charged at 75.degree. C. for 12 hours and subjected to addition reaction to obtain a urethane (meth) acrylate polymer (a).
The addition reaction was terminated when the acid value measured according to the following method became 1.0 mg KOH / g or less. In addition, the obtained urethane (meth) acrylate polymer (a) had a weight average molecular weight of 50,000, a solid content concentration of 50% by mass, a double bond equivalent of 2,000 g / eq, and a Tg of 5 ° C.
(酸価測定方法)
 樹脂の固形分1gを秤量し、混合溶剤(質量比:トルエン/メタノール=50/50)を加えて溶解後、指示薬としてフェノールフタレイン溶液を適量添加し、0.lNの水酸化カリウム水溶液で滴定し、下記式(α)により酸価を測定した。
  x=10×Vf×56.1/(Wp×I)・・・(α)
(式(α)中、xは酸価(mgKOH/g)を示し、Vfは0.1NのKOH水溶液の滴定量(mL)を示し、Wpは測定した樹脂溶液の質量(g)を示し、Iは測定した樹脂溶液中の不揮発分の割合を(質量%)を示す。)
(Acid number measurement method)
1 g of solid content of resin is weighed, and mixed solvent (mass ratio: toluene / methanol = 50/50) is added and dissolved, and then a suitable amount of phenolphthalein solution is added as an indicator. It titrated with 1N potassium hydroxide aqueous solution, and measured the acid value by following formula ((alpha)).
x = 10 × Vf × 56.1 / (Wp × I) (α)
(In the formula (α), x represents an acid value (mg KOH / g), Vf represents a titration amount (mL) of a 0.1 N KOH aqueous solution, and Wp represents a mass (g) of the measured resin solution, I represents the proportion of nonvolatile matter in the measured resin solution (% by mass).
(合成例2)ウレタン(メタ)アクリレート系ポリマー(b)
 ポリカーボネートジオールに代えてポリエーテルジオール(重量平均分子量400)を用いたこと以外は合成例1と同様の方法により、ウレタン(メタ)アクリレート系ポリマー(b)を得た。
 得られたウレタン(メタ)アクリレート系ポリマー(b)は、重量平均分子量50,000、固形分濃度50質量%、二重結合当量2,000g/eq、Tg5℃であった。
Synthesis Example 2 Urethane (Meth) Acrylate Polymer (b)
A urethane (meth) acrylate polymer (b) was obtained in the same manner as in Synthesis Example 1 except that a polyether diol (weight-average molecular weight of 400) was used instead of the polycarbonate diol.
The obtained urethane (meth) acrylate polymer (b) had a weight average molecular weight of 50,000, a solid content concentration of 50% by mass, a double bond equivalent of 2,000 g / eq, and a Tg of 5 ° C.
(合成例3)ウレタン(メタ)アクリレート系ポリマー(c)
 ポリカーボネートジオールに代えてポリエステルジオール(重量平均分子量400)を用いたこと以外は合成例1と同様の方法により、ウレタン(メタ)アクリレート系ポリマー(c)を得た。
 得られたウレタン(メタ)アクリレート系ポリマー(c)は、重量平均分子量50,000、固形分濃度50質量%、二重結合当量2,000g/eq、Tg5℃であった。
Synthesis Example 3 Urethane (Meth) Acrylate Polymer (c)
A urethane (meth) acrylate polymer (c) was obtained in the same manner as in Synthesis Example 1 except that a polyester diol (weight-average molecular weight of 400) was used instead of the polycarbonate diol.
The resulting urethane (meth) acrylate polymer (c) had a weight-average molecular weight of 50,000, a solid concentration of 50% by mass, a double bond equivalent of 2,000 g / eq, and a Tg of 5 ° C.
(比較合成例1)ウレタン(メタ)アクリレート系ポリマー(d)
 ヘキサメチレンジイソシアネートと、ポリカーボネートジオール(重量平均分子量400)とジメチロールブタン酸とを、70℃で18時間反応させたこと以外は合成例1と同様の方法により反応を行い、ウレタン(メタ)アクリレート系ポリマー(d)を得た。
 得られたウレタン(メタ)アクリレート系ポリマー(d)は、重量平均分子量10,000、固形分濃度50質量%、二重結合当量2,000g/eq、Tg5℃であった。
(Comparative Synthesis Example 1) Urethane (Meth) Acrylate Polymer (d)
The reaction is carried out in the same manner as in Synthesis Example 1 except that hexamethylene diisocyanate, polycarbonate diol (weight average molecular weight 400) and dimethylolbutanoic acid are reacted at 70 ° C. for 18 hours, and urethane (meth) acrylate type Polymer (d) was obtained.
The resulting urethane (meth) acrylate polymer (d) had a weight-average molecular weight of 10,000, a solid concentration of 50% by mass, a double bond equivalent of 2,000 g / eq, and a Tg of 5 ° C.
(比較合成例2)ウレタン(メタ)アクリレート系ポリマー(e)
 ヘキサメチレンジイソシアネートと、ポリカーボネートジオール(重量平均分子量400)とジメチロールブタン酸とを、70℃で72時間反応させたこと以外は合成例1と同様の方法により反応を行い、ウレタン(メタ)アクリレート系ポリマー(e)を得た。
 得られたウレタン(メタ)アクリレート系ポリマー(e)は、重量平均分子量180,000、固形分濃度50質量%、二重結合当量2,000g/eq、Tg5℃であった。
(Comparative Synthesis Example 2) Urethane (Meth) Acrylate Polymer (e)
The reaction is carried out in the same manner as in Synthesis Example 1 except that hexamethylene diisocyanate, polycarbonate diol (weight average molecular weight 400) and dimethylolbutanoic acid are reacted at 70 ° C. for 72 hours, and urethane (meth) acrylate type Polymer (e) was obtained.
The resulting urethane (meth) acrylate polymer (e) had a weight average molecular weight of 180,000, a solid concentration of 50% by mass, a double bond equivalent of 2,000 g / eq, and a Tg of 5 ° C.
<実施例1>
(1)光硬化性樹脂組成物の調製
 反応容器の中に、ウレタン(メタ)アクリレート系ポリマー(a)100質量部を加え、さらに、水酸基含有(メタ)アクリレート系モノマー(a)70質量部、光重合開始剤(a)1.5質量部、及び溶剤としてメチルエチルケトン150質量部を加えて均一に撹拌し、樹脂組成物を得た。
Example 1
(1) Preparation of Photocurable Resin Composition In a reaction vessel, 100 parts by mass of a urethane (meth) acrylate polymer (a) is added, and 70 parts by mass of a hydroxyl group-containing (meth) acrylate monomer (a), 1.5 parts by mass of the photopolymerization initiator (a) and 150 parts by mass of methyl ethyl ketone as a solvent were added and uniformly stirred to obtain a resin composition.
(2)耐発泡性の評価
(2-1)接着シートの作製
 上記(1)で得られた樹脂組成物を、乾燥後の厚さが100μmとなるように膜厚75μmのPETフィルム上に塗布し、130℃で5分間乾燥させた後、反対面にも膜厚75μmのPETフィルムを設置し、両面にPETフィルム(保護フィルム)を備えた接着シートを得た。
(2) Evaluation of Foaming Resistance (2-1) Preparation of Adhesive Sheet The resin composition obtained in the above (1) was coated on a PET film having a thickness of 75 μm so that the thickness after drying would be 100 μm. After drying at 130 ° C. for 5 minutes, a PET film having a thickness of 75 μm was placed on the opposite surface to obtain an adhesive sheet provided with a PET film (protective film) on both sides.
(2-2)測定用サンプルの作製
 接着シートの片面保護フィルム(PETフィルム)を剥離し、樹脂組成物層を1.0mm厚さの透明なポリカーボネート板(帝人株式会社製「PC-1151」、40mm角)へ真空ラミネートにより貼り合わせた。真空ラミネートは、温度25~50℃、圧力0.01~0.05MPa、真空引き60秒、加圧30秒で実施した。次いで、もう片面の保護フィルムを剥離し、樹脂組成物層に1.0mm厚さの透明なポリカーボネート板(帝人株式会社製「PC-1151」、40mm角)を上記真空ラミネートの条件と同条件にて貼り合わせた後、オートクレーブ処理を行い、UV露光することにより測定用サンプルを得た。オートクレーブは温度60℃、圧力0.6MPa、時間1時間にて実施した。UV露光は超高圧水銀ランプ光源を用いて、λ=365nmにおける積算光量が5,000mJ/cmとなるように実施し、測定用サンプルを得た。
(2-2) Preparation of sample for measurement The single-sided protective film (PET film) of the adhesive sheet was peeled off, and the resin composition layer was a transparent polycarbonate plate of 1.0 mm thickness (“PC-1151” manufactured by Teijin Limited, It bonded together by vacuum lamination to 40 mm square. The vacuum lamination was performed at a temperature of 25 to 50 ° C., a pressure of 0.01 to 0.05 MPa, a vacuum of 60 seconds, and a pressure of 30 seconds. Next, the protective film on the other side was peeled off, and a transparent polycarbonate plate ("PC-1151" manufactured by Teijin Limited, 40 mm square) with a thickness of 1.0 mm was used as a resin composition layer under the same conditions as the above vacuum lamination conditions. After bonding, they were autoclaved and exposed to UV light to obtain a measurement sample. The autoclave was carried out at a temperature of 60 ° C. under a pressure of 0.6 MPa for 1 hour. The UV exposure was performed using an extra-high pressure mercury lamp light source so that the integrated light quantity at λ = 365 nm was 5,000 mJ / cm 2 to obtain a measurement sample.
(2-3)評価方法
[1.貼合時の外観確認]
 接着シートのポリカーボネート板への貼合時に、ポリカーボネート板と樹脂組成物層との界面に発泡が見られるか否かを目視にして確認したところ、発泡は見られず、良好な貼付状態を維持できた。
[2.UV硬化後の外観確認]
 測定用サンプルを、温度85℃、湿度85%の環境下に250時間静置した後、温度23℃、湿度50%の室温環境に取り出した。測定用サンプルを目視にて観察し、測定用サンプル内に発泡が見られるか否かを確認した(発泡はポリカーボネート板と樹脂組成物層との界面に発生するが、ポリカーボネート板は透明であるため測定用サンプル内で気泡が発生したように見える)。結果を表1に示す。
 〔評価基準〕
  ○:発泡がない。
  ×:発泡がある。
(2-3) Evaluation method [1. Appearance confirmation at the time of bonding]
It was confirmed by visual observation whether or not foaming was observed at the interface between the polycarbonate plate and the resin composition layer when the adhesive sheet was adhered to the polycarbonate plate. No foaming was observed, and a good adhered state could be maintained. The
[2. Appearance check after UV curing]
The measurement sample was allowed to stand in an environment of a temperature of 85 ° C. and a humidity of 85% for 250 hours and then taken out to a room temperature environment of a temperature of 23 ° C. and a humidity of 50%. The measurement sample was visually observed to confirm whether or not foaming was observed in the measurement sample (foaming occurs at the interface between the polycarbonate plate and the resin composition layer, but the polycarbonate plate is transparent) Air bubbles appear to be generated in the measurement sample). The results are shown in Table 1.
〔Evaluation criteria〕
○: There is no foaming.
X: There is foam.
(3)耐湿熱白化性の評価
(3-1)接着シートの作製
 上記「(2-1)接着シートの作製」と同様にして、接着シートを作製した。
(3) Evaluation of Moisture Resistance Heat Whitening Property (3-1) Preparation of Adhesive Sheet An adhesive sheet was prepared in the same manner as the above-mentioned "(2-1) Preparation of adhesive sheet".
(3-2)測定用サンプルの作製
 上記「(2-2)測定用サンプルの作製」と同様にして、測定用サンプルを作製した。
(3-2) Production of Measurement Sample A measurement sample was produced in the same manner as the above-mentioned “(2-2) Production of measurement sample”.
(3-3)評価方法
 測定用サンプルを、温度85℃、湿度85%の環境下に250時間静置した後、温度23℃、湿度50%の室温環境に取り出した。測定用サンプルを目視にて観察し、1時間以内に測定用サンプルの樹脂組成物層が白濁するか否かを確認した。結果を表1に示す。
 〔評価基準〕
  ○:樹脂組成物層の白濁がない。
  ×:樹脂組成物層の全体又は一部に白濁がある。
(3-3) Evaluation Method The measurement sample was left to stand in an environment of a temperature of 85 ° C. and a humidity of 85% for 250 hours, and then taken out to a room temperature environment of a temperature of 23 ° C. and a humidity of 50%. The sample for measurement was visually observed, and it was confirmed within one hour whether the resin composition layer of the sample for measurement became cloudy. The results are shown in Table 1.
〔Evaluation criteria〕
○: There is no cloudiness of the resin composition layer.
X: There is white turbidity on all or part of the resin composition layer.
(4)ヘイズの測定
(4-1)接着シートの作製
 上記「(2-1)接着シートの作製」と同様にして、接着シートを作製した。
(4) Measurement of Haze (4-1) Production of Adhesive Sheet An adhesive sheet was produced in the same manner as the above-mentioned "(2-1) Production of adhesive sheet".
(4-2)測定用サンプルの作製
 上記「(2-2)測定用サンプルの作製」と同様にして、測定用サンプルを作製した。
(4-2) Production of Measurement Sample A measurement sample was produced in the same manner as the above-mentioned "(2-2) Production of measurement sample".
(4-3)測定方法
 測定用サンプルを、温度85℃、湿度85%の環境下に250時間静置した後、温度23℃、湿度50%の室温環境に取り出し、ヘイズメーター(株式会社村上色彩技術研究所製「HM-150」)を用いてヘイズを測定した。なお、測定は室温環境に取り出して1時間以内に行った。得られた測定値より、以下の評価基準に基づき評価した。結果を表1に示す。
 〔評価基準〕
  ○:ヘイズ値1%未満
  ×:ヘイズ値1%以上
(4-3) Measurement method After leaving the sample for measurement for 250 hours under the environment of temperature 85 ° C and humidity 85%, it is taken out to room temperature environment of temperature 23 ° C and humidity 50%, and haze meter (Murakami Co., Ltd. The haze was measured using "HM-150" manufactured by Technical Research Laboratory. In addition, the measurement was taken out to room temperature environment, and performed within 1 hour. It evaluated based on the following evaluation criteria from the obtained measured value. The results are shown in Table 1.
〔Evaluation criteria〕
○: Haze value less than 1% ×: Haze value 1% or more
(5)貼合性の評価
(5-1)接着シートの作製
 上記「(2-1)接着シートの作製」と同様にして、接着シートを作製した。
(5) Evaluation of bonding property (5-1) Production of adhesive sheet An adhesive sheet was produced in the same manner as the above "(2-1) Production of adhesive sheet".
(5-2)測定用サンプルの作製
 接着シートの片面保護フィルム(PETフィルム)を剥離し、樹脂組成物層を1.0mm厚さの透明なポリカーボネート板(帝人株式会社製「PC-1151」、5.5インチ相当サイズ)へ真空ラミネートにより貼り合わせた。真空ラミネートは、温度25~50℃、圧力0.01~0.05MPa、真空引き60秒、加圧30秒で実施した。次いで、もう片面の保護フィルムを剥離し、樹脂組成物層に5.5インチの液晶パネルを上記真空ラミネートの条件と同条件にて貼り合わせた後、オートクレーブ処理を行い、UV露光することにより測定用サンプルを得た。オートクレーブは温度60℃、圧力0.6MPa、時間1時間にて実施した。UV露光は超高圧水銀ランプ光源を用いて、λ=365nmにおける積算光量が5,000mJ/cmとなるように実施し、測定用サンプルを得た。
(5-2) Preparation of sample for measurement The single-sided protective film (PET film) of the adhesive sheet was peeled off, and the resin composition layer was a 1.0 mm thick transparent polycarbonate plate ("PC-1151" manufactured by Teijin Limited, It bonded to a 5.5 inch equivalent size by vacuum lamination. The vacuum lamination was performed at a temperature of 25 to 50 ° C., a pressure of 0.01 to 0.05 MPa, a vacuum of 60 seconds, and a pressure of 30 seconds. Next, the other side of the protective film is peeled off, and a 5.5-inch liquid crystal panel is attached to the resin composition layer under the same conditions as the above vacuum lamination conditions, and then subjected to an autoclave treatment and UV exposure. I got a sample for. The autoclave was carried out at a temperature of 60 ° C. under a pressure of 0.6 MPa for 1 hour. The UV exposure was performed using an extra-high pressure mercury lamp light source so that the integrated light quantity at λ = 365 nm was 5,000 mJ / cm 2 to obtain a measurement sample.
(5-3)評価方法
 液晶パネルを点灯させ、目視にて表示ムラがあるか否かを確認した。結果を表1に示す。
 〔評価基準〕
  ○:表示ムラがない。
  ×:表示ムラがある。
(5-3) Evaluation Method The liquid crystal panel was turned on and it was visually confirmed whether or not there was display unevenness. The results are shown in Table 1.
〔Evaluation criteria〕
○: There is no display unevenness.
X: There is display unevenness.
(6)製膜性の評価
(6-1)接着シートの作製
 上記(1)で得られた樹脂組成物を、乾燥後の厚さが100μmとなるように膜厚75μmのPETフィルム上に塗布し、130℃で5分間乾燥させた後、反対面に膜厚50μmのPETフィルムを設置し、両面にPETフィルムを備えた接着シートを得た。
(6) Evaluation of Film Formability (6-1) Preparation of Adhesive Sheet The resin composition obtained in the above (1) was coated on a PET film having a thickness of 75 μm so that the thickness after drying would be 100 μm. After drying at 130 ° C. for 5 minutes, a PET film with a film thickness of 50 μm was placed on the opposite side to obtain an adhesive sheet provided with a PET film on both sides.
(6-2)測定用サンプルの作製
 接着シートの両端をスリットした後、直径6インチφのABS管に100m長さを弛みなく巻き取り、ロール状態の測定用サンプルを得た。
(6-2) Preparation of Measurement Sample After slitting both ends of the adhesive sheet, a 100 m length was taken up without slack in an ABS tube having a diameter of 6 inch φ to obtain a sample for measurement of a roll state.
(6-3)評価方法
 測定用サンプルを、ABS管の軸線が床面に対して水平となる状態で、温度23℃、湿度50%の室温環境下に7日間放置し、ロールの巻き状態を下記評価基準に基づき評価した。結果を表1に示す。
 〔評価基準〕
  ○:接着シートが皺がない状態で巻かれており、ロール端部からの樹脂組成物のはみ出しもない。
  △:ロール状態の接着シートに若干の皺(ゆるい皺)が見られるがロールから引き出した際には皺は残らず、またロール端部から樹脂組成物が若干はみ出しているが重なる接着シートへの移行は無く、引き出し可能であり、実使用上の問題はない。
  ×:ロール状態の接着シートに皺が見られロールから引き出した際に皺が残り、またロール端部から樹脂組成物がはみ出し、重なる接着シートへの移行があるため、引き出しが困難であり、実使用上に問題がある。
(6-3) Evaluation method The sample for measurement is allowed to stand in a room temperature environment of temperature 23 ° C. and humidity 50% for 7 days, with the axis of the ABS tube being horizontal to the floor surface, It evaluated based on the following evaluation criteria. The results are shown in Table 1.
〔Evaluation criteria〕
:: The adhesive sheet is wound without wrinkles, and there is no protrusion of the resin composition from the end of the roll.
Δ: Some wrinkles (loose wrinkles) are observed in the adhesive sheet in the roll state, but no wrinkles remain when pulled out from the roll, and the resin composition slightly protrudes from the end of the roll but to the adhesive sheet which overlaps There is no transition, it can be withdrawn and there is no problem in practical use.
X: When the adhesive sheet in the form of a roll is wrinkled and pulled out from the roll, the wrinkles remain, and the resin composition protrudes from the end of the roll and there is a transition to an overlapping adhesive sheet. There is a problem in use.
(7)貯蔵弾性率(E’)の測定
(7-1)接着シートの作製
 上記「(2-1)接着シートの作製」と同様にして、接着シートを作製した。
(7) Measurement of Storage Elastic Modulus (E ′) (7-1) Preparation of Adhesive Sheet An adhesive sheet was prepared in the same manner as the above “(2-1) Preparation of adhesive sheet”.
(7-2)測定用サンプルの作製
[UV硬化前サンプル]
 接着シートを幅5mm、長さ50mmにサイズカットし、両面の保護フィルム(PETフィルム)を剥離して測定用サンプルを得た。
[UV硬化後サンプル]
 接着シートに超高圧水銀ランプ光源を用いて、λ=365nmにおける積算光量が5,000mJ/cmとなるようにUV露光することにより、樹脂組成物層を硬化させた。その後、両面の保護フィルム(PETフィルム)を剥離し、幅5mm、長さ50mmにサイズカットして測定用サンプルを得た。
(7-2) Preparation of sample for measurement [sample before UV curing]
The adhesive sheet was cut in size to a width of 5 mm and a length of 50 mm, and the protective films (PET films) on both sides were peeled off to obtain a measurement sample.
[Sample after UV curing]
The resin composition layer was cured by UV exposure using an ultrahigh pressure mercury lamp light source for the adhesive sheet so that the integrated light quantity at λ = 365 nm would be 5,000 mJ / cm 2 . Thereafter, the protective films (PET films) on both sides were peeled off and size-cut to 5 mm in width and 50 mm in length to obtain a measurement sample.
(7-3)測定方法
 UV硬化前の測定用サンプルとUV硬化後の測定用サンプルについて、動的粘弾性測定装置(TA Instruments製 RSA-G2)を用いて貯蔵弾性率E’を測定した。測定条件は、昇温速度10.0℃/minにて温度範囲-50~100℃で実施し、周波数1Hzとした。25℃、50℃、100℃における貯蔵弾性率E’を表1に示す。なお、表中、「5000以下」とあるのは、樹脂組成物層が溶融してしまい測定できなかったことを意味する。
(7-3) Measurement Method The storage elastic modulus E ′ was measured for the measurement sample before UV curing and the measurement sample after UV curing using a dynamic viscoelasticity measuring apparatus (RSA-G2 manufactured by TA Instruments). The measurement conditions were a temperature range of −50 to 100 ° C. at a temperature raising rate of 10.0 ° C./min, and a frequency of 1 Hz. The storage modulus E ′ at 25 ° C., 50 ° C. and 100 ° C. is shown in Table 1. In the table, "5000 or less" means that the resin composition layer was melted and could not be measured.
<実施例2>
 各成分の種類及び含有量を表1に記載されたとおりに変更した以外は実施例1と同様の方法により実施例2の光硬化性樹脂組成物を作製し、実施例1と同様に評価を行った。結果を表1に示す。
 なお、耐発泡性の評価において、接着シートのポリカーボネート板への貼合時に発泡は見られず、良好な貼付状態であった。
Example 2
A photocurable resin composition of Example 2 was produced by the same method as Example 1 except that the type and content of each component were changed as described in Table 1, and evaluation was made in the same manner as Example 1. went. The results are shown in Table 1.
In addition, in evaluation of foaming resistance, foaming was not seen at the time of the bonding to the polycarbonate board of an adhesive sheet, but it was a favorable sticking state.
<実施例3>
 各成分の種類及び含有量を表1に記載されたとおりに変更した以外は実施例1と同様の方法により実施例3の光硬化性樹脂組成物を作製し、実施例1と同様に評価を行った。結果を表1に示す。
 なお、耐発泡性の評価において、接着シートのポリカーボネート板への貼合時に発泡は見られず、良好な貼付状態であった。
Example 3
A photocurable resin composition of Example 3 was prepared by the same method as Example 1 except that the type and content of each component were changed as described in Table 1, and evaluation was made in the same manner as Example 1. went. The results are shown in Table 1.
In addition, in evaluation of foaming resistance, foaming was not seen at the time of the bonding to the polycarbonate board of an adhesive sheet, but it was a favorable sticking state.
<実施例4>
 各成分の種類及び含有量を表1に記載されたとおりに変更した以外は実施例1と同様の方法により実施例4の光硬化性樹脂組成物を作製し、実施例1と同様に評価を行った。結果を表1に示す。
 なお、耐発泡性の評価において、接着シートのポリカーボネート板への貼合時に発泡は見られず、良好な貼付状態であった。
Example 4
A photocurable resin composition of Example 4 was produced in the same manner as in Example 1 except that the type and content of each component were changed as described in Table 1, and evaluation was made in the same manner as in Example 1. went. The results are shown in Table 1.
In addition, in evaluation of foaming resistance, foaming was not seen at the time of the bonding to the polycarbonate board of an adhesive sheet, but it was a favorable sticking state.
<実施例5>
 各成分の種類及び含有量を表1に記載されたとおりに変更した以外は実施例1と同様の方法により実施例5の光硬化性樹脂組成物を作製し、実施例1と同様に評価を行った。結果を表1に示す。
 なお、耐発泡性の評価において、接着シートのポリカーボネート板への貼合時に発泡は見られず、良好な貼付状態であった。
Example 5
A photocurable resin composition of Example 5 was produced by the same method as Example 1 except that the type and content of each component were changed as described in Table 1, and evaluation was made in the same manner as Example 1. went. The results are shown in Table 1.
In addition, in evaluation of foaming resistance, foaming was not seen at the time of the bonding to the polycarbonate board of an adhesive sheet, but it was a favorable sticking state.
<実施例6>
 各成分の種類及び含有量を表1に記載されたとおりに変更した以外は実施例1と同様の方法により実施例6の光硬化性樹脂組成物を作製し、実施例1と同様に評価を行った。結果を表1に示す。
 なお、耐発泡性の評価において、接着シートのポリカーボネート板への貼合時に発泡は見られず、良好な貼付状態であった。
Example 6
A photocurable resin composition of Example 6 was produced in the same manner as in Example 1 except that the type and content of each component were changed as described in Table 1, and evaluation was made in the same manner as in Example 1. went. The results are shown in Table 1.
In addition, in evaluation of foaming resistance, foaming was not seen at the time of the bonding to the polycarbonate board of an adhesive sheet, but it was a favorable sticking state.
<実施例7>
 各成分の種類及び含有量を表1に記載されたとおりに変更した以外は実施例1と同様の方法により実施例7の光硬化性樹脂組成物を作製し、実施例1と同様に評価を行った。結果を表1に示す。
 なお、実施例7の光硬化性樹脂組成物は他の実施例に比べて樹脂が柔らかく、耐発泡性の評価において、接着シートをポリカーボネート板へ貼り合せた際、その界面に若干の気泡が発生したが、実使用上は問題のないレベルであった。
Example 7
A photocurable resin composition of Example 7 was produced by the same method as Example 1 except that the type and content of each component were changed as described in Table 1, and evaluation was made in the same manner as Example 1. went. The results are shown in Table 1.
In the photocurable resin composition of Example 7, the resin is softer than in the other examples, and some bubbles are generated at the interface when the adhesive sheet is bonded to a polycarbonate plate in the evaluation of the foam resistance. However, there was no problem in practical use.
<実施例8>
 各成分の種類及び含有量を表1に記載されたとおりに変更した以外は実施例1と同様の方法により実施例8の光硬化性樹脂組成物を作製し、実施例1と同様に評価を行った。結果を表1に示す。
 なお、耐発泡性の評価において、接着シートのポリカーボネート板への貼合時に発泡は見られず、良好な貼付状態であった。
Example 8
A photocurable resin composition of Example 8 was produced in the same manner as in Example 1 except that the type and content of each component were changed as described in Table 1, and evaluation was made in the same manner as in Example 1. went. The results are shown in Table 1.
In addition, in evaluation of foaming resistance, foaming was not seen at the time of the bonding to the polycarbonate board of an adhesive sheet, but it was a favorable sticking state.
<実施例9>
 各成分の種類及び含有量を表1に記載されたとおりに変更した以外は実施例1と同様の方法により実施例9の光硬化性樹脂組成物を作製し、実施例1と同様に評価を行った。結果を表1に示す。
 なお、耐発泡性の評価において、接着シートのポリカーボネート板への貼合時に発泡は見られず、良好な貼付状態であった。
Example 9
A photocurable resin composition of Example 9 was prepared by the same method as Example 1 except that the type and content of each component were changed as described in Table 1, and evaluation was made in the same manner as Example 1. went. The results are shown in Table 1.
In addition, in evaluation of foaming resistance, foaming was not seen at the time of the bonding to the polycarbonate board of an adhesive sheet, but it was a favorable sticking state.
<比較例1>
 各成分の種類及び含有量を表2に記載されたとおりに変更した以外は実施例1と同様の方法により比較例1の光硬化性樹脂組成物を作製し、実施例1と同様に評価を行った。結果を表2に示す。
 なお、耐発泡性の評価において、接着シートのポリカーボネート板への貼合時に発泡は見られず、良好な貼付状態であった。
Comparative Example 1
A photocurable resin composition of Comparative Example 1 was produced by the same method as Example 1 except that the type and content of each component were changed as described in Table 2, and evaluation was made in the same manner as Example 1. went. The results are shown in Table 2.
In addition, in evaluation of foaming resistance, foaming was not seen at the time of the bonding to the polycarbonate board of an adhesive sheet, but it was a favorable sticking state.
<比較例2>
 各成分の種類及び含有量を表2に記載されたとおりに変更した以外は実施例1と同様の方法により比較例2の光硬化性樹脂組成物を作製し、実施例1と同様に評価を行った。結果を表2に示す。
 なお、耐発泡性の評価において、接着シートのポリカーボネート板への貼合時に発泡は見られず、良好な貼付状態であった。
Comparative Example 2
A photocurable resin composition of Comparative Example 2 was produced by the same method as in Example 1 except that the type and content of each component were changed as described in Table 2, and evaluation was made in the same manner as in Example 1. went. The results are shown in Table 2.
In addition, in evaluation of foaming resistance, foaming was not seen at the time of the bonding to the polycarbonate board of an adhesive sheet, but it was a favorable sticking state.
<比較例3>
 各成分の種類及び含有量を表2に記載されたとおりに変更した以外は実施例1と同様の方法により比較例3の光硬化性樹脂組成物を作製し、実施例1と同様に評価を行った。結果を表2に示す。
 なお、比較例3の光硬化性樹脂組成物は、接着シートをポリカーボネート板に貼り合せると直ぐにその界面に気泡が発生した。
Comparative Example 3
A photocurable resin composition of Comparative Example 3 was produced by the same method as Example 1 except that the type and content of each component were changed as described in Table 2, and evaluation was made in the same manner as Example 1. went. The results are shown in Table 2.
In the photocurable resin composition of Comparative Example 3, air bubbles were generated at the interface as soon as the adhesive sheet was bonded to the polycarbonate plate.
<比較例4>
 各成分の種類及び含有量を表2に記載されたとおりに変更した以外は実施例1と同様の方法により比較例4の光硬化性樹脂組成物を作製し、実施例1と同様に評価を行った。結果を表2に示す。
 なお、耐発泡性の評価において、接着シートのポリカーボネート板への貼合時に発泡は見られず、良好な貼付状態であった。
Comparative Example 4
A photocurable resin composition of Comparative Example 4 was produced in the same manner as in Example 1 except that the type and content of each component were changed as described in Table 2, and evaluation was made in the same manner as Example 1. went. The results are shown in Table 2.
In addition, in evaluation of foaming resistance, foaming was not seen at the time of the bonding to the polycarbonate board of an adhesive sheet, but it was a favorable sticking state.
<比較例5>
 各成分の種類及び含有量を表2に記載されたとおりに変更した以外は実施例1と同様の方法により比較例5の光硬化性樹脂組成物を作製し、実施例1と同様に評価を行った。結果を表2に示す。
 なお、耐発泡性の評価において、接着シートのポリカーボネート板への貼合時に発泡は見られず、良好な貼付状態であった。
Comparative Example 5
A photocurable resin composition of Comparative Example 5 was produced by the same method as Example 1 except that the type and content of each component were changed as described in Table 2, and evaluation was made in the same manner as Example 1. went. The results are shown in Table 2.
In addition, in evaluation of foaming resistance, foaming was not seen at the time of the bonding to the polycarbonate board of an adhesive sheet, but it was a favorable sticking state.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1、2の結果より、実施例1~9はいずれも、硬化物の100℃での引張貯蔵弾性率(E’)が1.0×10Pa以上であって、十分な硬度を備えていた。また、耐湿熱白化性と貼合性にも優れており、耐発泡性と耐湿熱性に優れ、且つ被着体への形状追従性にも優れることがわかった。これに対し、比較例1~5は水酸基含有(メタ)アクリレート系モノマーの含有量が少ないため耐湿熱白化性に劣り、比較例2,3は硬化物の100℃での引張貯蔵弾性率(E’)が1.0×10Paに満たないため耐発泡性に劣り、比較例4は25℃の未硬化状態の引張貯蔵弾性率が3.0×10Pa以上であるため貼合性が悪く形状追従性に劣るものであった。 From the results of Tables 1 and 2, in all of Examples 1 to 9, the cured product has a tensile storage elastic modulus (E ′) at 100 ° C. of 1.0 × 10 6 Pa or more, and has sufficient hardness. It was Moreover, it turned out that it is excellent also in moisture-heat-and-heat whitening property and bonding property, is excellent in foaming resistance and moisture-heat resistance, and excellent also in shape following property to a to-be-adhered body. On the other hand, Comparative Examples 1 to 5 are inferior in wet heat resistance to whitening because the content of the hydroxyl group-containing (meth) acrylate monomer is low, and Comparative Examples 2 and 3 show tensile storage elastic modulus at 100 ° C. of cured product (E ') Is less than 1.0 × 10 6 Pa, the foam resistance is inferior, and Comparative Example 4 has a tensile storage modulus of 3.0 × 10 6 Pa or more in an uncured state at 25 ° C. And the shape following ability was inferior.
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2017年10月5日出願の日本特許出願(特願2017-195369)に基づくものであり、その内容はここに参照として取り込まれる。 Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on Japanese Patent Application (Japanese Patent Application No. 2017-195369) filed on October 5, 2017, the contents of which are incorporated herein by reference.
 本発明の光硬化性樹脂組成物を含む接着シートは、特に車載用の液晶表示ディスプレイ等の接着剤としての産業上利用可能性を有する。 The adhesive sheet containing the photocurable resin composition of the present invention has industrial applicability as an adhesive for liquid crystal displays especially for vehicles.

Claims (9)

  1.  (A)ウレタン(メタ)アクリレート系ポリマーと、(B)水酸基含有(メタ)アクリレート系モノマーと、(C)光重合開始剤とを含有する光硬化性樹脂組成物であって、
     前記(A)ウレタン(メタ)アクリレート系ポリマーの重量平均分子量が30,000~150,000であり、
     前記(A)ウレタン(メタ)アクリレート系ポリマー100質量部に対して、前記(B)水酸基含有(メタ)アクリレート系モノマーを40質量部以上含有し、
     前記光硬化性樹脂組成物を光硬化させて得られる硬化物の100℃での引張貯蔵弾性率(E’)が1.0×10Pa以上である光硬化性樹脂組成物。
    A photocurable resin composition comprising (A) a urethane (meth) acrylate polymer, (B) a hydroxyl group-containing (meth) acrylate monomer, and (C) a photopolymerization initiator,
    The weight average molecular weight of the (A) urethane (meth) acrylate polymer is 30,000 to 150,000,
    40 parts by mass or more of the (B) hydroxyl group-containing (meth) acrylate based monomer is contained with respect to 100 parts by mass of the (A) urethane (meth) acrylate based polymer,
    The photocurable resin composition whose tensile storage elastic modulus (E ') in 100 degreeC of the cured | curing material obtained by photocuring the said photocurable resin composition is 1.0 * 10 < 6 > Pa or more.
  2.  前記光硬化性樹脂組成物を乾燥させて得られる未硬化物の25℃での引張貯蔵弾性率(E’)が5.0×10Pa以上である、請求項1に記載の光硬化性樹脂組成物。 The photocurable of Claim 1 whose tensile storage elastic modulus (E ') in 25 degreeC of the unhardened material obtained by drying said photocurable resin composition is 5.0 * 10 < 5 > Pa or more. Resin composition.
  3.  前記(A)ウレタン(メタ)アクリレート系ポリマー100質量部に対して、前記(B)水酸基含有(メタ)アクリレート系モノマーを40~120質量部含有する、請求項1又は2に記載の光硬化性樹脂組成物。 The photocurable resin according to claim 1 or 2, wherein 40 to 120 parts by mass of the (B) hydroxyl group-containing (meth) acrylate based monomer is contained with respect to 100 parts by mass of the (A) urethane (meth) acrylate based polymer. Resin composition.
  4.  前記(A)ウレタン(メタ)アクリレート系ポリマーの二重結合当量が1,000~5,000g/eqである、請求項1~3のいずれか1項に記載の光硬化性樹脂組成物。 The photocurable resin composition according to any one of claims 1 to 3, wherein a double bond equivalent of the (A) urethane (meth) acrylate polymer is 1,000 to 5,000 g / eq.
  5.  前記(A)ウレタン(メタ)アクリレート系ポリマー100質量部に対して、前記(C)光重合開始剤を0.5質量部以上含有する、請求項1~4のいずれか1項に記載の光硬化性樹脂組成物。 The light according to any one of claims 1 to 4, which comprises 0.5 parts by mass or more of the (C) photopolymerization initiator per 100 parts by mass of the (A) urethane (meth) acrylate polymer. Curable resin composition.
  6.  請求項1~5のいずれか1項に記載の光硬化性樹脂組成物を含む接着シート。 An adhesive sheet comprising the photocurable resin composition according to any one of claims 1 to 5.
  7.  タッチパネル式入出力装置及び画像表示装置のうちの少なくとも1つの情報表示装置を構成する部材の貼り合わせに用いられる、請求項6に記載の接着シート。 The adhesive sheet according to claim 6, which is used for bonding members constituting at least one information display device of a touch panel type input / output device and an image display device.
  8.  前記情報表示装置が車載用装置である、請求項7に記載の接着シート。 The adhesive sheet according to claim 7, wherein the information display device is an on-vehicle device.
  9.  請求項6~8のいずれか1項に記載の接着シートを含む情報表示装置。 An information display device comprising the adhesive sheet according to any one of claims 6 to 8.
PCT/JP2018/033330 2017-10-05 2018-09-07 Photocurable resin composition and adhesive sheet WO2019069621A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019505269A JP7068271B2 (en) 2017-10-05 2018-09-07 Photocurable resin composition and adhesive sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-195369 2017-10-05
JP2017195369 2017-10-05

Publications (1)

Publication Number Publication Date
WO2019069621A1 true WO2019069621A1 (en) 2019-04-11

Family

ID=65994536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033330 WO2019069621A1 (en) 2017-10-05 2018-09-07 Photocurable resin composition and adhesive sheet

Country Status (3)

Country Link
JP (1) JP7068271B2 (en)
TW (1) TWI808993B (en)
WO (1) WO2019069621A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244652A1 (en) * 2018-06-19 2019-12-26 Dic株式会社 Adhesive sheet, article, and article production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013510A1 (en) * 2014-07-22 2016-01-28 日本合成化学工業株式会社 Active energy ray-curable pressure sensitive adhesive composition, and pressure sensitive adhesive and pressure sensitive adhesive sheet using same
WO2016080439A1 (en) * 2014-11-18 2016-05-26 日本合成化学工業株式会社 Active-energy-ray-curable composition, active-energy-ray-curable adhesive composition, adhesive, adhesive sheet, and novel urethane (meth)acrylate
WO2017110845A1 (en) * 2015-12-22 2017-06-29 日本合成化学工業株式会社 Active energy ray-curable resin composition and method for producing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102280540B1 (en) 2016-12-20 2021-07-21 아라까와 가가꾸 고교 가부시끼가이샤 Ultraviolet ray-curable adhesive agent, cured product and adhesive sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013510A1 (en) * 2014-07-22 2016-01-28 日本合成化学工業株式会社 Active energy ray-curable pressure sensitive adhesive composition, and pressure sensitive adhesive and pressure sensitive adhesive sheet using same
WO2016080439A1 (en) * 2014-11-18 2016-05-26 日本合成化学工業株式会社 Active-energy-ray-curable composition, active-energy-ray-curable adhesive composition, adhesive, adhesive sheet, and novel urethane (meth)acrylate
WO2017110845A1 (en) * 2015-12-22 2017-06-29 日本合成化学工業株式会社 Active energy ray-curable resin composition and method for producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244652A1 (en) * 2018-06-19 2019-12-26 Dic株式会社 Adhesive sheet, article, and article production method
JPWO2019244652A1 (en) * 2018-06-19 2020-06-25 Dic株式会社 Adhesive sheet, article and method for producing article

Also Published As

Publication number Publication date
TW201922994A (en) 2019-06-16
JPWO2019069621A1 (en) 2019-11-14
TWI808993B (en) 2023-07-21
JP7068271B2 (en) 2022-05-16

Similar Documents

Publication Publication Date Title
JP6502295B2 (en) UV curable resin composition
JP4900241B2 (en) Active energy ray-curable adhesive composition
KR102050932B1 (en) Photocurable sheet-type adhesive composition for optical use
TWI512075B (en) Composition of photohardenable transparent adhesive sheet
TWI585175B (en) Resin composition and adhesive for UV hardening adhesive
TW201923011A (en) Adhesive composition and adhesive sheet
JP5540220B2 (en) Radiation curable adhesive composition for optical member and adhesive optical member
JPWO2010092995A1 (en) Radiation curable adhesive composition for optical member and adhesive optical member
WO2013088889A1 (en) Production method for transparent double-sided adhesive sheet, and transparent double-sided adhesive sheet
JPWO2014141866A1 (en) Hard coat film, protective film, and image display device
JP6786793B2 (en) Adhesive tape and its manufacturing method
JPWO2008056751A1 (en) Active energy ray-curable adhesive composition
JP5098722B2 (en) Curable resin composition, film laminate for sticking, and laminate for impact absorption
JP5724760B2 (en) Adhesive member composition and adhesive member
JP6593147B2 (en) UV curable adhesive composition
WO2019069621A1 (en) Photocurable resin composition and adhesive sheet
JP6704013B2 (en) Double-sided adhesive sheet, 3D liquid crystal panel and manufacturing method thereof
JP2016060117A (en) Hard coat film, protective film and information display
JP6249215B2 (en) Adhesive sheet, image display device and manufacturing method thereof
JP6390390B2 (en) Adhesive sheet, article and method for producing article
CN112752817A (en) Adhesive composition for surface protection sheet and surface protection sheet
JP7513029B2 (en) Adhesive sheet
CN108977102B (en) Double-sided adhesive sheet, 3D liquid crystal panel and manufacturing method thereof
WO2021019868A1 (en) Adhesive sheet and adhesive agent composition
KR20120025181A (en) Optical clear adhesive composition and adhesive sheet comprising the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019505269

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18865187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18865187

Country of ref document: EP

Kind code of ref document: A1