WO2017110808A1 - Wiring structure, method for manufacturing same, and electronic device - Google Patents
Wiring structure, method for manufacturing same, and electronic device Download PDFInfo
- Publication number
- WO2017110808A1 WO2017110808A1 PCT/JP2016/087954 JP2016087954W WO2017110808A1 WO 2017110808 A1 WO2017110808 A1 WO 2017110808A1 JP 2016087954 W JP2016087954 W JP 2016087954W WO 2017110808 A1 WO2017110808 A1 WO 2017110808A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- conductor
- wiring structure
- wiring
- insulating layer
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
Definitions
- the present invention relates to a wiring structure, a manufacturing method thereof, and an electronic device.
- the present invention relates to a wiring structure including interlayer connection vias and wiring, a method for manufacturing the wiring structure, and an electronic device using the wiring structure.
- a multilayer wiring structure in which upper and lower desired wirings are connected via interlayer connection vias uses, for example, an epoxy-based photocurable insulating resist, An insulating layer having a through hole for forming an interlayer connection via and a recess for forming a wiring is formed on the lower wiring, and a diffusion suppression layer for preventing copper diffusion is formed on the insulating layer, Next, a metal thin film layer is formed, and using this metal thin film layer as a seed electrode layer, copper is deposited in the through holes and the recesses by electroplating to form a conductive layer, and then the conductive layer located on the insulating layer is CMP ( It is manufactured by repeating the process of allowing copper to exist only in the recesses by polishing and flattening with Chemical Mechanical Polishing (Patent Documents 1 to 3).
- JP 2000-236145 A Japanese Patent Laid-Open No. 2001-15517 JP 2006-66517 A
- a first insulating layer having a recess on a first surface, a first conductor layer located in the recess and protruding from the first surface, and a first conductor layer,
- a wiring structure having a conductor barrier layer interposed between the first insulating layer and the first insulating layer.
- a first insulating layer having a recess on a first surface, a first conductor layer located in the recess and protruding from the first surface, and a first conductor layer
- a wiring structure having a conductor barrier layer interposed between the first insulating layer and an alloy anchor layer located on the first conductor layer exposed on the first surface.
- a base material located on the second surface opposite to the first surface may be further included.
- a second insulating layer located on the first surface may be further included.
- the height of the first conductor layer in the stacking direction may be higher than the height of the conductor barrier layer.
- the first conductor layer may be copper, and the conductor barrier layer may be either a chromium / titanium composite layer or a molybdenum alloy layer.
- the conductor barrier layer may have a thickness in the range of 50 to 100 nm.
- a silane coupling agent layer may be further provided on the alloy anchor layer.
- the alloy anchor layer may be a copper tin alloy layer or a copper tin nickel alloy layer.
- the alloy anchor layer may have a thickness in the range of 50 to 100 nm.
- An electronic device including a wiring structure, a core substrate that is electrically connected to the first conductor layer, and a semiconductor element that is electrically connected to the second conductor layer may be used.
- a conductor barrier layer forming step, a conductor layer forming step of forming a seed electrode layer so as to cover at least the conductor barrier layer, and forming a conductor layer on the seed electrode layer by electroplating; and a conductor barrier on the first surface A method for manufacturing a wiring structure is provided, which includes a polishing step of polishing a conductor layer using a layer as a stopper, and a removal step of removing a conductor barrier layer on a first surface.
- an alloy anchor layer forming step of forming an alloy anchor layer on the conductor layer by immersing the first surface in the displacement plating solution may be further included.
- the alloy anchor layer may be a copper tin alloy layer or a copper tin nickel alloy layer.
- the silane coupling agent layer forming step of forming a silane coupling agent layer on the alloy anchor layer by bringing the silane coupling agent into contact with the first surface and then washing is further performed. May be included.
- the recess may be formed using an imprint method.
- the recess may be formed using a photolithography method.
- the conductor layer may be chemically polished.
- polishing step after the conductor layer is chemically polished, chemical mechanical polishing may be further performed.
- polishing step chemical polishing with higher selectivity of the conductor layer than the conductor barrier layer may be performed.
- the conductor layer may be subjected to chemical mechanical polishing.
- the conductor barrier layer may have a hardness greater than the hardness of the conductor layer.
- the conductor barrier layer is either a chromium / titanium composite layer or a molybdenum alloy layer, and in the conductor layer forming step, the conductor layer may be copper.
- the wiring structure of the present invention is excellent in insulation reliability and high-frequency characteristics of the wiring, can reduce the pitch of the wiring, and is excellent in adhesion between the wiring structures.
- the method for manufacturing a wiring structure according to the present invention is excellent in insulation reliability and high-frequency characteristics of the wiring, enables a wiring pitch to be narrowed, and enables manufacturing of a wiring structure having excellent adhesion between wiring structures. is there.
- the electronic device of the present invention is excellent in high-frequency characteristics of the wiring, enables high-density wiring, and has excellent adhesion between the wiring structures constituting the structure, and has high reliability.
- FIG. 1 is a schematic partial sectional view showing an embodiment of a wiring structure according to the present invention.
- FIG. 2 is a schematic partial sectional view showing an embodiment of a wiring structure having a three-layer structure.
- FIG. 3A is a process diagram for explaining an embodiment of a method for producing a wiring structure according to the present invention.
- FIG. 3B is a process diagram for explaining an embodiment of a method for manufacturing a wiring structure according to the present invention.
- FIG. 3C is a process diagram for explaining an embodiment of a method for manufacturing a wiring structure according to the present invention.
- FIG. 4A is a process diagram for explaining an embodiment of a method for producing a wiring structure according to the present invention.
- FIG. 4B is a process diagram for explaining an embodiment of a method for manufacturing a wiring structure according to the present invention.
- FIG. 4C is a process diagram for describing an embodiment of a method for manufacturing a wiring structure according to the present invention.
- FIG. 5A is a process diagram for explaining an embodiment of a method for producing a wiring structure according to the present invention.
- FIG. 5B is a process diagram for describing an embodiment of a method for manufacturing a wiring structure according to the present invention.
- FIG. 5C is a process diagram for describing an embodiment of a method for manufacturing a wiring structure according to the present invention.
- FIG. 6 is an enlarged view of a portion surrounded by a chain line circle in FIG. 5A.
- FIG. 7 is an enlarged view of a portion surrounded by a chain line circle in FIG. 5B.
- FIG. 8 is an enlarged view of a portion surrounded by a chain line circle in FIG. 5C.
- FIG. 9A is a process diagram for explaining an embodiment of a method for producing a wiring structure according to the present invention.
- FIG. 9B is a process diagram for describing an embodiment of a method for manufacturing a wiring structure according to the present invention.
- FIG. 9C is a process diagram for describing an embodiment of a method for manufacturing a wiring structure according to the present invention.
- FIG. 10 is a schematic partial cross-sectional view showing an embodiment of the electronic device of the present invention.
- FIG. 11 is an enlarged cross-sectional view of a portion surrounded by a circle in FIG. FIG.
- FIG. 12 is a schematic partial cross-sectional view corresponding to FIG. 11 showing another embodiment of the electronic device of the present invention.
- FIG. 13 is a partial plan view showing an embodiment of a wiring structure according to the present invention.
- 14 is an enlarged partial sectional view taken along line II of the wiring structure shown in FIG.
- FIG. 15 is a partial enlarged cross-sectional view of the wiring structure shown in FIG.
- FIG. 16 is a partial perspective view showing an insulating layer constituting the wiring structure.
- FIG. 17 is a schematic partial cross-sectional view showing an embodiment of a wiring structure having a three-layer structure.
- FIG. 18 is a schematic partial cross-sectional view showing another embodiment of the wiring structure of the present invention.
- FIG. 19 is a partial perspective view showing an insulating layer constituting the wiring structure shown in FIG.
- FIG. 20A is a process diagram for describing an embodiment of a method for producing a wiring structure according to the present invention.
- FIG. 20B is a process diagram for describing one embodiment of a method for producing a wiring structure according to the present invention.
- FIG. 20C is a process diagram for describing an embodiment of a method for manufacturing a wiring structure according to the present invention.
- FIG. 21 is a schematic partial cross-sectional view showing an embodiment of the electronic device of the present invention.
- FIG. 22 is an enlarged cross-sectional view of a portion surrounded by a circle in FIG.
- FIG. 23 is a schematic partial cross-sectional view corresponding to FIG.
- FIG. 22 showing another embodiment of the electronic device of the present invention.
- FIG. 24 is a schematic partial cross-sectional view showing another embodiment of the electronic device of the present invention.
- FIG. 25 is a schematic partial cross-sectional view showing another embodiment of the electronic device of the present invention.
- FIG. 26 is a schematic partial cross-sectional view showing another embodiment of the electronic device of the present invention.
- FIG. 1 is a schematic partial sectional view showing an embodiment of a wiring structure according to the present invention.
- a wiring structure 1 includes an insulating layer 3 positioned on a base material 2, and a recess 4 and a pad portion for wiring formation positioned on the surface 3 a side opposite to the base material 2 of the insulating layer 3.
- a wiring layer 11 including an interlayer connection via 16 integrated with the pad portion 15 and positioned in the through hole 6 is provided.
- the surface 14 a of the wiring 14 opposite to the substrate 2 and the surface 15 a of the pad portion 15 opposite to the substrate 2 are in a state protruding from the surface 3 a of the insulating layer 3.
- a conductor barrier layer 18 is interposed between the wiring 14, the pad portion 15, the interlayer connection via 16, and the insulating layer 3. That is, the conductor barrier layer 18 is disposed on the inner surface of the recess 4 for forming the wiring, the recess 5 for forming the pad portion, and the through hole 6 for forming the interlayer connection via located in the insulating layer 3.
- the wiring 14, the pad portion 15, and the interlayer connection via 16 are in contact with the conductor barrier layer 18.
- the conductor barrier layer 18 is indicated by a bold line.
- the base material 2 may have desired wiring and pad portions. However, in the illustrated example, the base material 2 is described as a substrate shape for convenience.
- the insulating layer 3 ensures electrical insulation between the wirings 14 or between the wirings 14 and the pad portions 15, and when the wiring structures are laminated to form a multilayer structure.
- an epoxy-based material, a benzocyclobutene-based material, a polybenzoxazole-based material, a polyimide-based material, a fluorine-based material, a maleimide-based material, or the like is preferable.
- the insulating layer 3 preferably has a thickness t in the range of about 2 to 8 ⁇ m, for example, immediately below the wiring 14 and immediately below the pad portion 15.
- the wiring 14 can be set as appropriate within a range of, for example, a width of 0.5 to 10 ⁇ m and a thickness of 0.5 to 10 ⁇ m.
- planar view shape of the pad portion 15 when the planar view shape of the pad portion 15 is circular, it can be appropriately set within a range of, for example, a diameter of 5 to 20 ⁇ m and a thickness of 0.5 to 10 ⁇ m.
- shape of the interlayer connection via 16 is, for example, a columnar shape, a frustoconical shape, etc., and the diameter can be appropriately set in the range of 2 to 12 ⁇ m, and the thickness is equal to the thickness t of the insulating layer 3 described above. It will be compatible.
- the conductor constituting the wiring 14, the pad portion 15, and the interlayer connection via 16 is preferably made of a material having a surface resistance of 1 ⁇ / ⁇ or less such as copper, nickel, nickel chrome alloy or the like.
- the height h at which the surface 14a of the wiring 14 and the surface 15a of the pad portion 15 protrude from the surface 3a of the insulating layer 3 can be, for example, about 50 to 120 nm, preferably about 60 to 100 nm.
- the height at which the surface 14a of the wiring 14 and the surface 15a of the pad portion 15 protrude from the end portion 18a of the conductor barrier layer 18 may be h or more.
- the conductor barrier layer 18 suppresses the diffusion of the conductor components constituting the wiring 14, the pad portion 15, and the interlayer connection via 16 into the insulating layer 3.
- Cr / Ti is laminated from the insulating layer 3 side.
- a Cr / Ti composite layer or a molybdenum alloy is particularly suitable as a material that does not easily cause the occurrence of the problem and has excellent adhesion to the insulating layer 3.
- the thickness of the conductor barrier layer 18 can be appropriately set depending on the material used.
- the thickness of the conductor barrier layer 18 indicates the thickness in the direction perpendicular to the contact surface between the insulating layer 3 and the conductor barrier layer 18.
- the insulating layer 3, the Cr layer, and the Ti layer are arranged in this order so that the Cr layer is in contact with the insulating layer 3 and the Ti layer is in contact with the Cr layer.
- the thickness of the Cr layer located on the insulating layer 3 side can be in the range of 10 to 20 nm, for example, and the thickness of the Ti layer can be in the range of 40 to 100 nm, for example.
- the thickness of the Cr layer is less than 10 nm, the adhesion with the insulating layer 3 is insufficient, and when it exceeds 20 nm, the front and back conductivity of the conductor barrier layer 18 is lowered and the conduction function of the interlayer connection via is insufficient. Absent. Further, if the thickness of the Ti layer is less than 40 nm, the effect of suppressing the diffusion of the conductor becomes insufficient, and if it exceeds 100 nm, the internal stress increases and the adhesion with the Cr layer is lowered, which is not preferable. When a molybdenum alloy is used as the conductor barrier layer 18, for example, the thickness can be in the range of 50 to 100 nm.
- the conductor barrier layer 18 made of molybdenum alloy is less than 50 nm, the effect of suppressing the diffusion of the conductor becomes insufficient.
- the thickness exceeds 100 nm the internal stress increases and the adhesion to the insulating layer 3 decreases, The front and back conductivity of the conductor barrier layer 18 is undesirably lowered.
- the conductor barrier layer 18 and the conductor layer 10 are formed on the surface 3a of the insulating layer 3, and the conductor layer 10 is polished using the conductor barrier layer 18 as a stopper.
- the conductor barrier layer 18 on the surface 3a of the insulating layer 3 is removed by performing flash etching. Therefore, the height h at which the surface 14 a of the wiring 14 and the surface 15 a of the pad portion 15 protrude from the surface 3 a of the insulating layer 3 corresponds to the thickness of the conductor barrier layer 18.
- FIG. 2 is a schematic partial cross-sectional view illustrating an example of a three-layer wiring structure including a wiring structure 1A including a wiring layer 11A, a wiring structure 1B including a wiring layer 11B, and a wiring structure 1C including a wiring layer 11C. It is. As shown in FIG.
- the adhesion strength of the insulating layer 3B to the wiring layer 11A and the adhesion strength of the insulating layer 3C to the wiring layer 11B are high, and the three-layer wiring structure 1ML is excellent in insulation reliability, and also has a wiring structure. Excellent mutual adhesion. Unlike the conventional wiring structure in which the surface of the wiring and the surface of the pad portion are roughened in order to improve the adhesion between the wiring structures, the high frequency characteristics of the wiring are excellent.
- the wiring structure having a three-layer structure is taken as an example, but the number of constituent layers of the wiring structure having a multilayer structure is not particularly limited.
- the wiring structure includes one type of wiring having a cross-sectional shape, but may include two or more types of wiring having a cross-sectional shape.
- the plurality of pad portions 15 there may be one connected to the wiring 14 and one separated from the wiring 14.
- the pad portion 15 that is separated from the wiring 14 becomes a dummy pad portion, but in order to ensure the strength uniformity in the plane of the wiring structure, the presence of the dummy pad portion that is separated from the wiring 14 exists. Is advantageous.
- FIG. 3 to 5 are process diagrams for explaining an embodiment of a method for manufacturing a wiring structure according to the present invention, and show an example of manufacturing the wiring structure 1 described above.
- 6 to 8 are enlarged sectional views showing a part of the process drawings.
- an insulating layer having a recess for forming a pad portion, a through hole for forming an interlayer connection via located in the recess, and a recess for forming a wiring is used as a base.
- Form on the material is an example in which an insulating layer is formed by using an imprint method.
- a recess for forming a pad portion and a through hole for forming an interlayer connection via located in the recess are formed on the insulating layer.
- a mold 51 for forming an insulating layer having a recess for forming a wiring by an imprint method is prepared (FIG. 3A).
- the mold 51 includes a mold base 52 and a concavo-convex structure 53 located on the main surface 52 a of the mold base 52.
- the concavo-convex structure 53 of the mold 51 includes a convex portion 54 having a linear shape in plan view and a convex portion 55 having a circular shape in plan view.
- the convex portion 54 having a linear shape in plan view is a convex portion for forming a concave portion for forming a wiring in the insulating layer.
- the convex part 55 having a circular shape in plan view is a convex part for forming a concave part for forming the pad part in the insulating layer, and a light shielding is provided at a substantially central part of the top flat surface 55a of the convex part 55.
- Layer 56 is located.
- the linear convex-shaped part 54 is pulled out.
- some of the plurality of convex portions 55 may be separated from the linear convex portion 54.
- a photocurable insulating resist is supplied onto the base material 2, the base material 2 and the mold 51 are brought close to each other, and the photocurable insulating resist is developed between the base material 2 and the mold 51 to be photocurable.
- An insulating resist layer 3 ′ is formed (FIG. 3B).
- the base material 2 is described in a substrate shape for convenience, but may have a desired wiring and pad portion.
- the photo-curable insulating resist used include epoxy-based, benzocyclobutene-based, polybenzoxazole-based, polyimide-based, fluorine-based, and maleimide-based resists.
- the photo-curable insulating resist layer 3 ′ located between the two layers 2 is left uncured (FIG. 3C)
- the light irradiated from the mold 51 side is a photo-curable insulating resist layer positioned immediately below the light shielding layer 56. It is preferable to use parallel light in order to prevent light wraparound that causes 3 'curing.
- the mold 51 is separated from the insulating material layer 3 ′′ and the remaining photocurable insulating resist layer 3 ′ (FIG. 4A). In this step, at least a part of the remaining photocurable insulating resist layer 3 ′ is molded. It may adhere to 51 and be removed together with the mold 51.
- the insulating material layer 3 ′′ is developed to remove the remaining photo-curable insulating resist layer 3 ′ and subjected to a post-bake treatment.
- the recess 4 for forming the wiring, the recess 5 for forming the pad portion, and the like are obtained (FIG. 4B).
- the surface 3a of the insulating layer 3 including the inner wall surface of the recess 4 for forming the wiring, the recess 5 for forming the pad portion and the inner wall surface of the through hole 6 for forming the interlayer connection via is formed.
- a conductor barrier layer 18 is formed (FIG. 4C).
- the conductor barrier layer 18 can be formed by a known vacuum film formation method such as a sputtering method.
- the conductor barrier layer 18 is also formed on the substrate 2 exposed in the through hole 6 for forming the interlayer connection via. In the illustrated example, the conductor barrier layer 18 is indicated by a bold line.
- the conductor barrier layer 18 suppresses the diffusion of the components of the conductor layer formed in the subsequent process into the insulating layer 3. Further, in the subsequent step of polishing the conductor layer, the conductor barrier layer 18 has a hardness higher than that of the conductor so that the conductor barrier layer 18 acts as a stopper.
- a conductor barrier layer 18 can be, for example, a composite layer in which Cr / Ti is laminated from the insulating layer 3 side when the conductor to be formed in the subsequent process is copper (Vickers hardness: 0.8 GPa).
- molybdenum alloy titanium compound such as TiN, tungsten alloy, silicon compound such as SiN, nickel compound such as NiP, cobalt alloy such as CoWP, tantalum compound such as TaN, etc.
- a Cr / Ti composite layer or a molybdenum alloy is particularly suitable as a material that does not easily cause the occurrence of the problem and has excellent adhesion to the insulating layer 3.
- the Cr layer (Vickers hardness: 1.06 GPa) ensures adhesion between the insulating layer 3 and the Ti layer, and the Ti layer (Vickers hardness: 1 .3 GPa) suppresses the diffusion of the conductor into the insulating layer 3 and acts as a stopper in the polishing process.
- the thickness of the Cr layer of such a Cr / Ti composite layer can be in the range of 10 to 20 nm, for example, and the thickness of the Ti layer can be in the range of 50 to 100 nm, for example.
- the thickness of the Cr layer is less than 10 nm, the adhesion with the insulating layer 3 becomes insufficient, and when it exceeds 20 nm, the front and back conductivity of the conductor barrier layer 18 is not preferable. Further, if the thickness of the Ti layer is less than 50 nm, the effect of suppressing the diffusion of the conductor becomes insufficient, and if it exceeds 100 nm, the internal stress increases and the adhesion with the Cr layer is lowered, which is not preferable.
- molybdenum alloy used as the conductor barrier layer 18 the following molybdenum alloys can be mentioned, for example.
- MoNiTi 24 to 27.7% Ni / 6 to 12%
- Ti MoTiZrC 0.5% Ti / 0.08% Zr / 0.01 to 0.04%
- C MoLa 0.03 to 0.7% La 2 O 3 MoY: 0.47% Y 2 O 3 /0.08% Ce 2 O 3 MoRe: 5.0% Re; 41% Re MoW: 20% W; 30% W; 50% W MoCu: 15.0% Cu; 30% Cu MoNb: 9.71% Nb MoTa: 10.75% Ta
- a MoNiTi alloy (Vickers hardness: 1.53 GPa) can be easily formed by a known vacuum film forming method and has good adhesion to the insulating layer 3, and The effect of suppressing the diffusion of the conductor and the stopper function in the polishing process are good.
- the thickness of the conductor barrier layer 18 can be set in the range of 50 to 100 nm, for example.
- the thickness of the conductor barrier layer 18 when using the MoNiTi alloy is less than 50 nm, the effect of suppressing the diffusion of the conductor becomes insufficient, and when it exceeds 100 nm, the internal stress increases and the adhesion to the insulating layer 3 decreases, In addition, the front and back conductivity of the conductor barrier layer 18 is undesirably lowered.
- a seed electrode layer is formed on the conductor barrier layer 18, and a conductor is deposited on the seed electrode layer by electroplating to form a recess 4 for forming a wiring, a recess for forming a pad portion. 5.
- the conductor layer 10 is formed so as to fill the through hole 6 for forming the interlayer connection via located in the recess 5 for forming the pad portion (FIG. 5A).
- FIG. 6 is an enlarged view of a portion surrounded by a chain line in FIG. 5A.
- the seed electrode layer is preferably made of a material having a surface resistance of 1 ⁇ / ⁇ or less, such as copper, nickel, nickel-chromium alloy, etc., and may be formed in a thickness range of 10 to 500 nm by a known vacuum film formation method such as sputtering. it can. Since this sheet electrode layer is integrated with the conductor layer 10, the seed electrode layer is omitted in the illustrated example.
- the conductor layer 10 forms a wiring, a pad portion, and an interlayer connection via constituting the wiring structure.
- a material having a surface resistance of 1 ⁇ / ⁇ or less such as copper, nickel, nickel chrome alloy or the like is preferable. .
- Such a conductor layer 10 can be formed to be thicker than the insulating layer 3 by about several ⁇ m.
- FIG. 7 is an enlarged view of a portion surrounded by a chain line in FIG. 5B.
- the conductor layer 10 can be polished by CMP (Chemical Mechanical Polishing).
- CMP Chemical Mechanical Polishing
- the hardness of the conductor barrier layer 18 is larger than the hardness of the conductor layer 10, so that the conductor barrier layer 18 acts as a polishing stopper.
- the chemical mechanical polishing of the conductor layer 10 can be stopped when the conductor barrier layer 18 located on the surface 3a of the insulating layer 3 is reached.
- the polishing process of the conductor layer 10 may be chemical polishing including etching, electrolytic polishing, and the like.
- the chemical polishing of the conductor layer 10 a method in which the selectivity of the conductor layer 10 is higher than that of the conductor barrier layer 18 can be used. As a result, the conductor layer 10 can be selectively polished, and the conductor barrier layer 18 acts as a polishing stopper. The chemical polishing of the conductor layer 10 can be stopped when the conductor barrier layer 18 located on the surface 3a of the insulating layer 3 is reached. Further, the polishing process of the conductor layer 10 may be a combination of chemical polishing and chemical mechanical polishing. For example, after most of the conductor layer 10 is chemically polished, the residue may be removed by chemical mechanical polishing.
- the wiring 14 is located in the wiring forming recess 4, the pad 15 is located in the pad forming recess 5, and the interlayer connection via forming through hole 6 is located.
- the wiring layer 11 including the interlayer connection via 16 can be formed, and a wiring structure having excellent insulation reliability can be easily manufactured.
- the exposed conductor barrier layer 18 located on the surface 3a of the insulating layer 3 is removed (FIG. 5C).
- FIG. 8 is an enlarged view of a portion surrounded by a chain line in FIG. 5C.
- the conductor barrier layer 18 can be removed by performing flash etching.
- the conductor barrier layer 18 is a composite layer of Cr / Ti
- the Ti layer is removed by flash etching using a mixed solution of potassium hydroxide and hydrogen peroxide, and then an aqueous potassium ferricyanide solution, or
- the Cr layer can be removed by flash etching using an aqueous cerium ammonium nitrate solution.
- a mixed solution of potassium hydroxide and hydrogen peroxide can be removed using a flash etching solution.
- the wiring structure 1 includes a wiring layer 11 including a wiring 14 located in the concave portion 4 of the insulating layer 3, a pad portion 15 located in the concave portion 5, and an interlayer connection via 16 located integrally with the pad portion 15 and located in the through hole 6. It has.
- the surface 14 a of the wiring 14 and the surface 15 a of the pad portion 15 are in a state of protruding from the surface 3 a of the insulating layer 3.
- the end 18 a of the conductor barrier layer 18 is at the same height as the surface 3 a of the insulating layer 3.
- the surface 14 a of the wiring 14 and the surface 15 a of the pad portion 15 are in a state of protruding from the end portion 18 a of the conductor barrier layer 18.
- the conductor barrier layer 18 remains at the bottom of the through hole 6 for forming the interlayer connection via and the base material 2 has wiring and pad portions, between these and the interlayer connection via 16 in the through hole 6.
- the conductor barrier layer 18 is interposed between the two.
- the conductor barrier layer 18 has a thickness of 100 nm or less as described above. Therefore, even if the surface resistance is several tens ⁇ / ⁇ or more, the conduction function of the interlayer connection via is not hindered.
- the wiring structure layer can be formed in multiple layers by repeating the above series of steps a desired number of times. For example, by repeating the above series of steps three times, a wiring structure 1ML having a three-layer structure as shown in FIG. 2 can be manufactured. As shown in FIG. 2, the wiring structure 1 ML of a three-layer structure, the wiring layer 11A on which the wiring structure 1A is provided is therefore protrudes from the insulating layer 3A, a wiring structure located on the interconnection structure 1A The insulating layer 3B of 1B and the wiring layer 11A can be manufactured in an engaged state.
- the wiring structure 1 ML is provided that has high adhesion strength of the insulating layer 3B to the wiring layer 11A, high adhesion strength of the insulating layer 3C to the wiring layer 11B, excellent insulation reliability, and excellent adhesion between the wiring structures. can do.
- the wiring structure having a three-layer structure is taken as an example, but the number of constituent layers of the wiring structure having a multilayer structure is not particularly limited. Further, the configuration of the wiring layer included in the wiring structure is not particularly limited.
- the material of the mold base 52 constituting the mold 51 is a material that can transmit irradiation light for curing them.
- glass such as quartz glass, silicate glass, calcium fluoride, magnesium fluoride, and acrylic glass, sapphire and gallium nitride, and resins such as polycarbonate, polystyrene, acrylic, and polypropylene, or these Any laminate material can be used.
- the mold 51 does not have to be light transmissive, and other than the above materials, for example, metal such as silicon, nickel, titanium, and aluminum And these alloys, oxides, nitrides, or these arbitrary laminated materials can be used.
- the thickness of the mold base 52 can be set in consideration of the strength of the material, suitability for handling, and the like, and can be set as appropriate within a range of about 300 ⁇ m to 10 mm, for example.
- the main surface 52a side of the mold base 52 may have a convex structure having two or more steps, or a mesa structure. In this case, the uppermost step is the main surface 52a, and the uneven structure 53 is formed on the main surface 52a.
- the convex part 54 provided in the mold 51 is a convex part for forming the concave part for forming the wiring in the insulating layer as described above.
- the width is 0.5 to 10 ⁇ m
- the height from the main surface 52a is The thickness can be appropriately set in the range of 0.5 to 10 ⁇ m.
- the convex-shaped part 55 is a convex part for forming the recessed part for pad part formation in an insulating layer as mentioned above.
- the diameter of the convex shape portion 55 may be appropriately set within the range of 5 to 30 ⁇ m and the height from the main surface 52a within the range of 0.5 to 10 ⁇ m. it can.
- the light shielding layer 56 located at the center of the top flat surface 55a of the convex portion 55 is irradiated from the other surface 52b side of the mold base 52 in imprinting using a photocurable resin material to be molded. It is a layer that can be shielded to the extent that light curing of the resin material to be molded by light does not occur.
- a light shielding layer 56 can be, for example, a layer having an optical density (OD) of 2 or more, preferably 3 or more, and the material thereof is, for example, chromium, molybdenum, titanium, aluminum, silver, nickel or the like. Can be mentioned.
- the thickness of the light shielding layer 56 can be appropriately set so that the optical density is 2 or more.
- the thickness is preferably about 50 to 150 nm.
- the thickness of the chromium light-shielding layer 56 is less than 50 nm, the optical density is less than 2 and the light-shielding property is insufficient.
- the thickness of the light shielding layer 56 is preferably 100 nm or more.
- the thickness of the chromium light-shielding layer 56 exceeds 150 nm, the internal stress of the light-shielding layer 56 is increased, peeling is likely to occur, and the durability is lowered.
- the mold to be used may not include the light shielding layer 56, and a further convex shape portion may be positioned at a substantially central portion of the top flat surface 55 a of the convex shape portion 55 instead.
- the further convex portion is a convex portion for forming a through hole for forming an interlayer connection via in the insulating layer.
- the shape of the convex portion is a circular shape, for example, the convex portion is a columnar shape, a truncated cone shape, etc., and the diameter can be appropriately set in the range of 2 to 12 ⁇ m, and the thickness is This corresponds to the thickness t of the insulating layer 3 described above.
- Such a mold can penetrate the insulating layer 3 because the thickness of the convex portion 55 and the further convex portion corresponds to the thickness of the insulating layer 3.
- the insulating layer 3 is formed by the imprint method, but the insulating layer 3 may be formed by a photolithography method.
- FIG. 9 is a process diagram for explaining an embodiment of the method for manufacturing a wiring structure according to the present invention.
- the insulating layer forming step a recessed part for forming a pad part on the insulating layer and a position in the recessed part are shown.
- an insulating layer having a through hole for forming an interlayer connection via and a recess for forming a wiring is formed by a photolithography method.
- the same elements as those shown in FIGS. 3 and 4 are denoted by the same reference numerals.
- an insulating layer having a recess for forming a pad portion, a through hole for forming an interlayer connection via located in the recess, and a recess for forming a wiring is formed on the insulating layer by a photolithography method.
- a mask 91 is prepared (FIG. 9A).
- the mask 91 includes a light-transmitting region 93 that transmits exposure light, semi-transparent regions 94 and 95 that transmit part of the exposure light, and a light-blocking region 96 that blocks exposure light.
- the semi-transparent region 94 having a linear shape in plan view is a region for forming a recess for forming a wiring in the insulating layer.
- the semi-transparent region 95 having a circular shape in plan view is a region for forming a recess for forming the pad portion in the insulating layer, and a light-shielding region 96 is provided at a substantially central portion of the semi-transparent region 95. positioned. Note that a linear semi-transparent region 94 is drawn out from the desired semi-transparent region 95. However, some of the plurality of semi-transparent regions 95 may be separated from the linear semi-transparent region 94.
- a pattern having at least three thicknesses is formed by performing exposure and development using this multi-tone photomask.
- the present invention is not limited to this.
- two-step exposure may be performed using a photomask having a light transmitting region and a light shielding region.
- a multi-tone exposure is performed by using a mask that shields the semi-transparent regions 94 and 95 in one exposure and using a mask that transmits the semi-transparent regions 94 and 95 in the other exposure. It can be carried out.
- a photocurable insulating resist is supplied onto the substrate 2 to form a photocurable insulating resist layer 3 ′ on the substrate 2 (FIG. 9B).
- the base material 2 is described in a substrate shape for convenience, but may have a desired wiring and pad portion.
- the photo-curable insulating resist used include epoxy-based, benzocyclobutene-based, polybenzoxazole-based, polyimide-based, fluorine-based, and maleimide-based resists.
- the mask 91 is brought into contact, and light irradiation is performed from the back surface 92b side of the mask 91 to cure the photocurable insulating resist layer 3 ′ to form an insulating material layer 3 ′′.
- the photocurable insulating resist layer 3 ′ located between the light regions 94 and 95 and the base material 2 is left in the whole or part thereof uncured (FIG. 9C). It is preferable to use parallel light in order to prevent light from wrapping around such that the photo-curable insulating resist layer 3 ′ located directly below 96 is cured.
- the insulating material layer 3 ′′ and the remaining photocurable insulating resist layer 3 ′ are separated from the mask 91. In this step, at least a part of the remaining photocurable insulating resist layer 3 ′ adheres to the mask 91. Then, it may be removed together with the mask 91.
- the insulating material layer 3 ′′ is developed to remove the remaining photocurable insulating resist layer 3 ′ and subjected to a post-bake treatment.
- An insulating layer 3 having a recess 5 for forming a portion and a through hole 6 for forming an interlayer connection via located in the recess 5 can be obtained (FIG. 4B).
- FIG. 10 is a schematic partial cross-sectional view showing an embodiment of the electronic device of the present invention
- FIG. 11 is a partially enlarged cross-sectional view of a portion surrounded by a circle in FIG. 10 and 11, the electronic device 100 is obtained by forming a multilayer wiring structure 1 ML on a core substrate 31 and mounting a semiconductor element 101 via connection pads 81.
- the multilayer wiring structure 1 ML is the above-described wiring structure of the present invention, and such a multilayer wiring structure 1 ML can be manufactured by the manufacturing method of the present invention. The description in is omitted.
- FIG. 10 is a schematic partial cross-sectional view showing an embodiment of the electronic device of the present invention
- FIG. 11 is a partially enlarged cross-sectional view of a portion surrounded by a circle in FIG. 10 and 11, the electronic device 100 is obtained by forming a multilayer wiring structure 1 ML on a core substrate 31 and mounting a semiconductor element 101 via connection pads 81.
- the multilayer wiring structure 1 ML is the
- the insulating layer 3A is an interlayer insulating layer constituting the multilayer wiring structure 1 ML, 3B, 3C, and the solder resist 71, the underfill resin 72 Is not shaded.
- the semiconductor element 101 can be, for example, a memory element, a logic element, or the like. In the illustrated example, the semiconductor element 101 is uniformly shaded regardless of its structure.
- the core substrate 31 has a multilayer structure in which a core base material 32 and a plurality of conductor layers 35 are laminated on both surfaces of the core base material 32 with an insulating layer 34 interposed therebetween.
- the core base material 32 includes a plurality of front and back conductive via portions 33 penetrating the core base material 32, and the surface of the core base material 32 (in the illustrated example, the surface side on which the multilayer wiring structure 1ML is disposed). , A conductor layer 33a connected to a predetermined front / back conduction via portion 33, and a conductor layer 33a ′ connected to a predetermined front / back conduction via portion 33 on the back surface of the core substrate 32.
- Such a core base material 32 may be an electrically insulating material such as glass, glass cloth-containing epoxy resin, bismaleimide triazine resin, polyphenylene ether resin, or the like.
- Conductive layers 35A and 35B are laminated on the surface side of the core base material 32 via insulating layers 34A and 34B.
- the conductor layer 33a and the conductor layer 35A positioned above and below via the insulating layer 34A are connected by the interlayer connector 36A, and the conductor layer 35A and the conductor layer 35B positioned above and below via the insulating layer 34B are connected by the interlayer connector 36B.
- Conductive layers 35A ′ and 35B ′ are laminated on the back surface side of the core base material 32 via insulating layers 34A ′ and 34B ′.
- the conductor layer 35B located on the surface side of the core substrate 31 is a pad portion, and a multilayer wiring structure 1ML is disposed so as to be connected to the pad portion.
- the multilayer wiring structure 1ML has a wiring layer 11 composed of three wiring layers 11A, 11B, and 11C.
- a semiconductor element 101 is mounted on a pad portion of the wiring layer 11C via a connection pad 81.
- the nickel layer 61 on the pad portion of the multilayer wiring structure 1 ML wiring layer 11C, with the gold layer 62 is provided, a solder resist as the nickel layer 61, a gold layer 62 is exposed 71 is disposed.
- connection pad 81 is thermocompression bonded to connect the gold layer 62 and the terminal 101 a of the semiconductor element 101. Further, the gap between the semiconductor element 101 and the multilayer wiring structure 1 ML underfill resin 72 was heated and cured to fill the thermosetting resin is filled.
- the plurality of semiconductor elements 101 mounted in this manner may be different kinds of semiconductor elements.
- the electronic device may include a multilayer wiring structure 1 ′ ML as shown in FIG.
- FIG. 12 is a partial enlarged cross-sectional view of the electronic device corresponding to FIG.
- the multilayer wiring structure 1 ′ ML in the electronic device 100 ′ shown in FIG. 12 has a through hole 7 for bump formation on the uppermost wiring structure 1C constituting the multilayer wiring structure 1ML.
- An insulating layer 3D provided and a bump 17 located in the through hole 7 are provided.
- the surface 17 a of the bump 17 is in a state protruding from the surface of the insulating layer 3 D, and the terminal 101 a of the semiconductor element 101 is connected to the bump 17 via the connection pad 81.
- the gap between the semiconductor element 101 and the wiring structure 1 is filled with an underfill resin 72 that is filled with a thermosetting resin and heat-cured.
- Such an electronic device 100 ′ does not require the formation of the nickel layer 61 and the gold layer 62 described above, and the configuration of the mounting portion of the semiconductor element 101 via the connection pad 81 is simpler than that of the electronic device 100. As a result, the number of steps is reduced, and the material cost can be reduced.
- FIG. 13 is a partial plan view showing an embodiment of a wiring structure according to the present invention.
- 14 is an enlarged partial sectional view taken along line II of the wiring structure shown in FIG. 13, and
- FIG. 15 is a partial enlarged view of the wiring structure shown in FIG.
- FIG. 16 is a partial perspective view showing an insulating layer constituting the wiring structure.
- this embodiment is essentially the same as Embodiment 1 of this invention except the structure of an alloy anchor layer and a silane coupling agent layer, and the repeated description is abbreviate
- the wiring structure 10 includes an insulating layer 3 positioned on the base material 2 and a wiring forming recess 4 positioned on the surface 3a side of the insulating layer 3 opposite to the base material 2. And the recessed portion 5 for forming the pad portion, the through hole 6 for forming the interlayer connection via located in the recessed portion 5, the wiring 14 located in the recessed portion 4 of the insulating layer 3, and the pad portion located in the recessed portion 5. 15, a wiring layer 21 including an interlayer connection via 16 integrated with the pad portion 15 and positioned in the through hole 6 is provided.
- the surface 14 a of the wiring 14 opposite to the substrate 2 and the surface 15 a of the pad portion 15 opposite to the substrate 2 are in a state protruding from the surface 3 a of the insulating layer 3.
- a conductor barrier layer 18 is interposed between the wiring 14, the pad portion 15, the interlayer connection via 16, and the insulating layer 3. That is, the conductor barrier layer 18 is disposed on the inner surface of the recess 4 for forming the wiring, the recess 5 for forming the pad portion, and the through hole 6 for forming the interlayer connection via located in the insulating layer 3.
- the wiring 14, the pad portion 15, and the interlayer connection via 16 are in contact with the conductor barrier layer 18.
- An end 18 a opposite to the substrate 2 in the stacking direction of the conductor barrier layer 18 is exposed on the surface 3 a side of the insulating layer 3.
- the end 18a of the conductor barrier layer 18 is at the same height as the surface 3a of the insulating layer 3 or is in a depressed state. That is, the surface 14 a of the wiring 14 and the surface 15 a of the pad portion 15 are in a state of protruding from the end portion 18 a of the conductor barrier layer 18.
- An alloy anchor layer 27 is located at a portion where the wiring 14 and the pad portion 15 are exposed on the surface 3 a side of the insulating layer 3, and a silane coupling agent layer 28 is formed on the alloy anchor layer 27. positioned. In FIG. 14, the silane coupling agent layer 28 is indicated by a bold line.
- the base material 2 may have desired wiring and pad portions. However, in the illustrated example, the base material 2 is described as a substrate shape for convenience.
- the alloy anchor layer 27 is a layer for ensuring adhesion and barrier properties between the wiring 14, the pad portion 15 and the silane coupling agent layer 28.
- the alloy anchor layer 27 contains the same metal as the conductor constituting the underlying wiring 14 and pad portion 15 and a metal that improves adhesion of the silane coupling agent by adding a hydroxyl group.
- the conductor is copper
- the same metal as the lower conductor is the same copper, and thus the alloy anchor layer 27 can exhibit good adhesion to the lower wiring 14 and the pad portion 15.
- tin, iron, aluminum, copper, chromium etc. can be mentioned as a metal which provides a hydroxyl group.
- the alloy anchor layer 27 can be an alloy of such a metal imparting a hydroxyl group and a conductor constituting the wiring 14 and the pad portion 15.
- the alloy anchor layer 27 is A copper tin alloy layer, a copper iron alloy layer, a copper aluminum alloy layer, a chromium copper alloy layer, or the like can be used.
- the alloy anchor layer 27 is a copper-tin alloy layer, tin has a function of imparting a hydroxyl group to the surface of the alloy anchor layer 27, that is, the interface side with the silane coupling agent layer 28. By reacting with the coupling agent, the silane coupling agent layer 28 can be present on the wiring 14 and the pad portion 15 through the alloy anchor layer 27 with good adhesion.
- the alloy anchor layer 27 made of a copper-tin alloy layer also has a function as a conductor barrier layer. As a result, the conductor 14 and the pad portion 15 are prevented from diffusing the conductor even in the portion exposed to the surface 3a side of the insulating layer 3.
- the alloy anchor layer 27 can further contain one or more of nickel, titanium, chromium, etc. as other metals.
- nickel when the alloy anchor layer 27 is a copper tin nickel alloy layer, nickel can stably form the alloy anchor layer in the alloy anchor layer forming step in the wiring structure manufacturing method described later.
- the composition weight ratio of the same metal as the underlying conductor / the metal exhibiting the function of imparting a hydroxyl group / other metal is in the range of 60 to 95/5 to 40/0 to 5. can do.
- the alloy anchor layer 27 When the composition weight ratio in the alloy anchor layer 27 is out of the above range, the alloy anchor layer 27 performs the above-described action, that is, the action of fixing the silane coupling agent layer 28 on the wiring 14 and the pad portion 15 with a good adhesion. In addition, the effect of suppressing the diffusion of the conductor from the wiring 14 and the pad portion 15 may be insufficient.
- the thickness of the alloy anchor layer 27 can be set in the range of 50 to 100 nm, preferably 60 to 80 nm. When the thickness of the alloy anchor layer 27 is less than 50 nm, the action of the alloy anchor layer 27 may be insufficiently expressed.
- the silane coupling agent layer 28 provides adhesion between the wiring 14 and the pad portion 15 of the wiring structure 10 and the insulating layer of the upper wiring structure. It is to improve.
- silicon atoms of the silane coupling agent constituting the silicon atom are bonded to the alloy anchor layer 27 through oxygen atoms, and reactive functional groups are bonded to the silicon atoms.
- This reactive functional group is a group that reacts with the organic component of the upper insulating layer.
- amino group, epoxy group, mercapto group, sulfide group, acyl group, acetyl group, methacryl group, vinyl group, unsaturated group It may be a group selected from the group consisting of hydrocarbon groups.
- a reactive functional group is bonded to a silicon atom via a bond — (CH 2 ) n —.
- N in this bond is an integer of 1 to 10, but since the thickness of the silane coupling agent layer 28 is preferably uniform, n is preferably in the range of 1 to 3.
- Such a silane coupling agent layer 28 has a thickness of 5 nm or less, preferably a monomolecular layer of a silane coupling agent.
- the silane coupling agent layer 28 usually has a surface resistance of 1000 ⁇ / ⁇ or more, but if the thickness is 5 nm or less, an interlayer connection via in the wiring structure laminated on the pad portion 15 and the wiring structure 10. It will not interfere with the conduction function.
- the wiring structure 10 when the wiring structure 10 is laminated to form a multilayer structure, electrical insulation of the upper and lower wirings by the insulating layer 3 can be reliably obtained, and the upper and lower wiring structures can be obtained.
- the adhesion strength is high.
- the adhesion between the wiring 14 and the pad portion 15 of the lower wiring structure 10 and the insulating layer 3 of the upper wiring structure 10 becomes sufficiently high. Accordingly, it is not necessary to roughen the surfaces of the wiring 14 and the pad portion 15, there is no rough surface along the longitudinal direction of the wiring, and the high-frequency characteristics of the wiring are excellent. A stable connection between the pad portion and the upper interlayer connection via can be obtained.
- the insulation reliability between the wires or between the wires and the pads is excellent, and the high pitch is achieved by the narrow pitch. Densification is possible.
- FIG. 17 is a schematic partial cross-sectional view showing an example of a three-layer wiring structure including a wiring structure 10A including a wiring layer 21A, a wiring structure 10B including a wiring layer 21B, and a wiring structure 10C including a wiring layer 21C. It is. As shown in FIG. 17, in the wiring structure 10ML having a three-layer structure, the wiring layer 21A included in the wiring structure 10A protrudes from the insulating layer 3A, so that the wiring structure positioned on the wiring structure 10A. 10B insulating layer 3B and wiring layer 21A are engaged.
- the silane coupling agent layer 28 is located on the wiring 14 and the pad portion 15 exposed on the surface side of the insulating layer 3A via the alloy anchor layer 27. Adhesiveness between the insulating layer 3B and the wiring layer 21A of the wiring structure 10B located on the wiring structure 10A is sufficiently high. Similarly, since the wiring layer 21B included in the wiring structure 10B protrudes from the insulating layer 3B, the insulating layer 3C of the wiring structure 10C located on the wiring structure 10B is engaged with the wiring layer 21B. It has become.
- the silane coupling agent layer 28 is located on the wiring 14 and the pad portion 15 exposed on the surface side of the insulating layer 3B via the alloy anchor layer 27.
- the adhesion between the insulating layer 3C and the wiring layer 21B of the wiring structure 10C located on the wiring structure 10B is sufficiently high. Therefore, wiring structure 10 ML of three-layer structure, the adhesion strength of the insulating layer 3B for the wiring layer 21A, are those high adhesion strength of the insulating layer 3C for the wiring layer 21B, which is excellent in insulation reliability, the wiring structure Excellent mutual adhesion.
- the high frequency characteristics of the wiring are excellent.
- the wiring structure having a three-layer structure is taken as an example, but the number of constituent layers of the wiring structure having a multilayer structure is not particularly limited.
- the silane coupling agent layer 28 on the alloy anchor layer 27 located in the pad portion 15 has an annular shape in plan view, exists at a predetermined width from the periphery of the alloy anchor layer 27, and is centered on the alloy anchor layer 27. It may not exist in the part.
- FIG. 18 shows an example having such a silane coupling agent layer as the above-described three-layer wiring structure 10 ML
- FIG. 19 shows a single layer constituting the wiring structure 10 ML .
- the silane coupling agent layer 28 located on the pad portion 15 has a predetermined width W from the periphery to the center of the alloy anchor layer 27 having a circular shape in plan view.
- the existing planar view shape is annular.
- the width W of the silane coupling agent layer 28 is, for example, the interlayer connection of the upper wiring structure 10B at a portion where the silane coupling agent layer 28 does not exist and the alloy anchor layer 27 is exposed in the lower wiring structure 10A.
- the via 16 can be set to be connectable via the conductor barrier layer 18. In this way, the lower layer alloy anchor layer 27 and the upper interlayer connection via 16 (conductor barrier layer 18) are directly connected, so that the connection resistance in the interlayer connection can be further reduced.
- the thickness of the cyclic silane coupling agent layer 28 located on the pad portion 15 via the alloy anchor layer 27 and the thickness of the silane coupling agent located on the wiring 14 via the alloy anchor layer 27 exceeds 5 nm. It may be a thing. However, the width W of the silane coupling agent layer 28 is slightly large, and a part of the silane coupling agent layer 28 exists between the lower alloy anchor layer 27 and the upper interlayer connection via 16 (conductor barrier layer 18). It may be.
- the wiring structure includes one type of wiring in the cross-sectional shape, but may include two or more types of cross-sectional wiring. Further, among the plurality of pad portions 15, there may be one connected to the wiring 14 and one separated from the wiring 14. The pad portion 15 that is separated from the wiring 14 becomes a dummy pad portion, but in order to ensure the strength uniformity in the plane of the wiring structure, the presence of the dummy pad portion that is separated from the wiring 14 exists. Is advantageous.
- FIG. 20 is a process diagram for explaining an embodiment of a method for manufacturing a wiring structure according to the present invention, and shows an example of manufacturing the wiring structure 10 described above.
- the insulating layer forming step, the conductor barrier layer forming step, the conductor layer forming step, the polishing step, and the removing step are the same as those in the first embodiment. Is omitted.
- the structure shown in FIG. 20A is obtained using the same manufacturing method as in the first embodiment.
- the structure includes a wiring layer 21 including a wiring 14 positioned in the recess 4 of the insulating layer 3, a pad portion 15 positioned in the recess 5, and an interlayer connection via 16 positioned integrally with the pad portion 15 and positioned in the through hole 6. ing.
- the surface 14 a of the wiring 14 and the surface 15 a of the pad portion 15 are in a state of protruding from the surface 3 a of the insulating layer 3.
- the end 18 a of the conductor barrier layer 18 is at the same height as the surface 3 a of the insulating layer 3. That is, the surface 14 a of the wiring 14 and the surface 15 a of the pad portion 15 are in a state of protruding from the end portion 18 a of the conductor barrier layer 18.
- an alloy anchor layer 27 is formed on the surface of the wiring 14 exposed on the surface 3a side of the insulating layer 3 and the surface of the pad portion 15 (FIG. 20B). Formation of the alloy anchor layer 27 can be performed by immersing it in a displacement plating solution. For example, when a copper tin alloy layer is formed as the alloy anchor layer 27, copper is eluted and tin is deposited on the surface of the wiring 14 and the surface of the pad portion 15 by dipping in a substitution tin plating solution. A copper-tin alloy layer can be formed. In this case, since tin has a lower potential than copper, a substituted tin plating solution containing a chemical that lowers the potential of copper is used. As such a substitution tin plating solution, for example, Mec Co., Ltd. flat bond GT etc. can be mentioned.
- the alloy anchor layer 27 (copper tin alloy layer) formed in this way, tin is alloyed with copper and unevenly distributed on the surface side in the thickness direction. Thereby, a copper tin alloy layer expresses favorable adhesive strength with respect to the wiring 14 and the pad part 15 which consist of copper.
- a hydroxyl group is imparted to the surface of the alloy anchor layer 27 by tin unevenly distributed on the surface of the copper-tin alloy layer. Therefore, in the formation of the silane coupling agent layer 28 to be described later, it becomes easy for the silicon atoms of the silane coupling agent to be bonded to the alloy anchor layer 27 via the oxygen atoms, and the silane coupling agent layer 28 is bonded to the alloy anchor layer.
- the surface side of the copper tin alloy layer also has a function as a conductor barrier layer for copper as a conductor.
- the alloy anchor layer 27 can be formed to have a thickness in the range of 50 to 100 nm, preferably in the range of 60 to 80 nm.
- the thickness of the alloy anchor layer 27 to be formed is less than 50 nm, the action of the alloy anchor layer 27, that is, the action of fixing the silane coupling agent layer 28 on the wiring 14 and the pad portion 15 with a good adhesion force, the wiring 14 In some cases, the effect of suppressing the diffusion of the conductor from the pad portion 15 may be insufficient.
- the alloy anchor layer 27 can be formed stably by including at least one kind of nickel or the like in the displacement tin plating solution. For example, since nickel suppresses substitution of tin and copper by forming a tin-nickel alloy, it is easy to control the alloy anchor layer to be formed to have a desired thickness.
- a silane coupling agent layer 28 is formed on the alloy anchor layer 27 (FIG. 20C). In the illustrated example, the silane coupling agent layer 28 is indicated by a thick line.
- the silane coupling agent layer 28 can be formed by bringing a silane coupling agent into contact with the insulating layer 3 including the alloy anchor layer 27 and then washing. In the silane coupling agent in contact with the alloy anchor layer 27, the silicon atoms move to the surface of the alloy anchor layer 27 through hydrogen bonds with the hydroxyl group imparted to the surface of the alloy anchor layer 27 as described above. Through the dehydration condensation reaction, a strong covalent bond is generated with the surface of the alloy anchor layer 27, and the silane coupling agent layer 28 is formed.
- the silane coupling agent to be used can be appropriately selected.
- the reactive functional group of the silane coupling agent is, for example, from the group consisting of an amino group, an epoxy group, a mercapto group, a sulfide group, an acyl group, an acetyl group, a methacryl group, a vinyl group, a carboxylic acid, and an unsaturated hydrocarbon group.
- selected groups which are bonded to the silicon atom via a bond-(CH 2 ) n- .
- N in the bond is an integer of 1 to 10, but the molecular weight is preferably low in order to make it more uniform than the thickness of the silane coupling agent layer 28. Therefore, n is preferably in the range of 1 to 3.
- the thickness of the silane coupling agent layer 28 to be formed is 5 nm or less, preferably a monomolecular layer of the silane coupling agent. If the thickness of the silane coupling agent layer 28 to be formed exceeds 5 nm, the electrical resistance between the pad portion 15 and the interlayer connection via in the wiring structure laminated on the wiring structure 10 is not preferable.
- This wiring structure 10 includes a wiring layer 21 including a wiring 14 located in the concave portion 4 of the insulating layer 3, a pad portion 15 located in the concave portion 5, and an interlayer connection via 16 located integrally with the pad portion 15 and located in the through hole 6. It has.
- the surface 14 a of the wiring 14 and the surface 15 a of the pad portion 15 are in a state of protruding from the surface 3 a of the insulating layer 3.
- the end 18 a of the conductor barrier layer 18 is at the same height as the surface 3 a of the insulating layer 3.
- a silane coupling agent layer 28 is located at a portion exposed from the insulating layer 3 of the wiring 14 and the pad portion 15 via an alloy anchor layer 27. Accordingly, when the wiring structure 10 is laminated to form a multilayer structure, the wiring 14 and the pad portion 15 of the lower wiring structure 10 and the upper wiring structure 10 are formed due to the presence of the silane coupling agent layer 28. Adhesiveness with the insulating layer 3 is sufficiently high.
- the conductor barrier layer 18 remains at the bottom of the through hole 6 for forming the interlayer connection via and the base material 2 has wiring and pad portions, between these and the interlayer connection via 16 in the through hole 6.
- the conductor barrier layer 18 is interposed between the two. However, since the thickness of the conductor barrier layer 18 is in the range of 50 to 100 nm as described above, even if the surface resistance is several tens of ⁇ / ⁇ or more, the conductive function of the interlayer connection via is not affected. Absent.
- the wiring structure can be formed in multiple layers by repeating the above-described series of steps a desired number of times. For example, by repeating the above series of steps three times, a wiring structure 10ML having a three-layer structure as shown in FIG. 17 can be manufactured.
- the silane coupling agent layer 28 exists between the pad portion 15 of the lower wiring structure and the interlayer connection via 16 of the upper wiring structure, but as described above, the silane coupling agent layer 28. Therefore, even if the surface resistance is 1000 ⁇ / ⁇ or more, the conduction function of the interlayer connection via is not hindered.
- the silane coupling agent layer 28 on the alloy anchor layer 27 located in the pad portion 15 has an annular shape.
- a structure that has an annular shape in plan view and exists at a predetermined width from the periphery of the alloy anchor layer 27 and does not exist at the center of the alloy anchor layer 27 can be formed as follows. For example, a case where the upper wiring structure 10B is formed on the wiring structure 10A will be described. In the step of forming the insulating layer of the wiring structure 10B, the silane coupling agent layer 28 of the lower wiring structure 10A is exposed in the through hole 6 when the through hole 6 for forming the interlayer connection via is formed.
- the silane coupling agent layer 28 included in the wiring structure 10A is electrically connected to the interlayer connection via of the upper wiring structure 10B.
- the silane coupling agent layer 28 may have an annular shape in plan view and may be present at a predetermined width from the periphery of the alloy anchor layer 27 and may not be present at the center of the alloy anchor layer 27.
- the ring agent layer 28 With regard to the ring agent layer 28, a desired portion at the center is exposed, and the exposed silane coupling agent layer 28 is removed by dry etching to form a silane coupling agent layer 28 having a circular shape in plan view. Thereafter, an upper wiring structure 10B may be formed.
- the silane coupling agent layer 28 in the uppermost wiring structure 10C of the three-layer wiring structure 10ML shown in FIG. 18 can be formed by such a method.
- FIG. 21 is a schematic partial cross-sectional view showing an embodiment of the electronic device of the present invention
- FIG. 22 is a partially enlarged cross-sectional view of a portion surrounded by a circle in FIG. 21 and 22, an electronic device 200 is obtained by forming a multilayer wiring structure 10 ML on a core substrate 131 and mounting semiconductor elements 111 and 112 via connection pads 171.
- the multilayer wiring structure 10 ML is the above-described wiring structure of the present invention, and such a multilayer wiring structure 10 ML can be manufactured by the manufacturing method of the present invention. The description in is omitted.
- FIG. 1 is a schematic partial cross-sectional view showing an embodiment of the electronic device of the present invention
- FIG. 22 is a partially enlarged cross-sectional view of a portion surrounded by a circle in FIG. 21 and 22, an electronic device 200 is obtained by forming a multilayer wiring structure 10 ML on a core substrate 131 and mounting semiconductor elements 111 and 112 via connection pads 171.
- the insulating layer 3A is an interlayer insulating layer constituting the multilayer wiring structure 10 ML, 13B, 13C, 13D , and a solder resist 161, a sealing
- the resin 162 is not shaded.
- the semiconductor elements 111 and 112 can be, for example, memory elements, logic elements, etc., but in the illustrated example, they are uniformly shaded regardless of their structures.
- the core substrate 131 has a multilayer structure in which a core base material 132 and a plurality of conductor layers 135 are laminated on both surfaces of the core base material 132 with an insulating layer 34 interposed therebetween.
- the core base material 132 includes a plurality of front and back conductive via portions 133 penetrating the core base material 132 and the surface of the core base material 132 (in the illustrated example, the surface side on which the multilayer wiring structure 10ML is disposed). , A conductor layer 133a connected to a predetermined front / back conduction via portion 133, and a conductor layer 133a ′ connected to a predetermined front / back conduction via portion 133 on the back surface of the core base material 132.
- a core substrate 132 may be, for example, glass, glass cloth-containing epoxy resin, bismaleimide triazine resin, polyphenylene ether resin, silicon, or the like.
- Conductive layers 135A and 135B are laminated on the surface side of the core base material 132 via insulating layers 34A and 134B.
- the conductor layer 133a positioned above and below the conductor layer 135A is connected by an interlayer connector 136A via the insulating layer 34A, and the conductor layer 135A and conductor layer 135B positioned vertically via the insulating layer 34B are connected by the interlayer connector 136B. Connected with.
- conductor layers 135A ′, 135B ′, and 135C ′ are laminated on the back surface side of the core base material 132 through insulating layers 34A ′, 134B ′, and 134C ′.
- the conductor layer 133a 'positioned above and below the conductor layer 135A' via the insulating layer 34A ' is connected by the interlayer connector 136A', and the conductor layer 135A 'positioned above and below the conductor layer via the insulating layer 34B'.
- a solder resist 138 is disposed so as to expose a desired portion of the conductor layer 135C ′, and a solder ball 151 is located on the exposed conductor layer 135C ′ via a nickel layer 141 and a gold layer 142.
- the conductor layer 135B located on the surface side of the core substrate 131 is a pad portion, and the surface of the conductor layer 135B is exposed on the surface flattened by the flattening resin 137.
- a multilayer wiring structure 10ML is disposed so as to be connected to the conductor layer 135B (pad portion).
- Wiring structure 10 ML of this multilayer wiring layers 21A, 21B, 21C has a wiring layer 21 made of four layers of 21D, the semiconductor device via the connection pads 171 on the pad portion of the wiring layer 21C 111 , 112 are implemented.
- the nickel layer 146 on the pad portion of the wiring layer 21C of the multilayer wiring structure 10 ML, with the gold layer 147 is provided, a solder resist as the nickel layer 146, a gold layer 147 is exposed 161 is disposed.
- the connection pad 171 connects the gold layer 147 and the terminals 111a and 112a of the semiconductor elements 111 and 112 by thermocompression bonding.
- the gap between the semiconductor elements 111 and 112 and the multilayer wiring structure 10 ML is a sealing resin 162 which is heated and cured to fill the thermosetting resin is filled.
- the electronic device of the present invention may include a multilayer wiring structure 10 ′ ML as shown in FIG.
- FIG. 23 is a partial enlarged cross-sectional view of an electronic device corresponding to FIG.
- the multilayer wiring structure 10 ′ ML in the electronic device 200 ′ shown in FIG. 23 has a three-layer structure having wiring layers 21A, 21B, and 21C, and bumps are formed on the uppermost wiring layer 21C and insulating layer 3C. 19A, an insulating layer 3D having a through hole 19B for an interlayer connection via located in the recess 19A, a bump 29A located in the recess 19A, and an interlayer connection via 29B located in the through hole 19B It is.
- the surface of the bump 29A protrudes from the surface of the insulating layer 3D, and the terminals 111a and 112a of the semiconductor elements 111 and 112 are connected to the bump 29A via the connection pads 171. .
- a gap between the semiconductor elements 111 and 112 and the wiring structure 10 ′ ML is filled with a sealing resin 162 that is filled with a thermosetting resin and heat-cured.
- Such an electronic device 200 ′ does not require the formation of the nickel layer 146 and the gold layer 147, and the configuration of the mounting portion of the semiconductor elements 111 and 112 via the connection pads 171 is simpler than that of the electronic device 200. Thus, the number of processes is reduced, and the material cost can be reduced.
- FIG. 24 is a schematic partial cross-sectional view showing another embodiment of the electronic device of the present invention.
- the electronic device 201 includes a multilayer wiring structure 10 on a resin-encapsulated semiconductor element 211 in which semiconductor elements 221 and 222 are encapsulated with an encapsulating resin 231 so that terminals 221a and 222a are exposed.
- ML is formed and solder balls 261 are disposed.
- the multilayer wiring structure 10 ML is the above-described wiring structure of the present invention, and such a multilayer wiring structure 10 ML can be manufactured by the manufacturing method of the present invention. The description in is omitted.
- the semiconductor elements 221, 222 can be, for example, memory elements, logic elements, etc., but in the illustrated example, they are uniformly hatched regardless of their structures.
- the multilayer wiring structure 10ML has a wiring layer 21 including three wiring layers 21A, 21B, and 21C, and includes a through hole 241A for an interlayer connection via on the wiring layer 21C and the insulating layer 3C.
- An insulating layer 231, an interlayer connection via 241 located in the through hole 241 A, and a bump 245 located on the insulating layer 231 connected to the interlayer connection via 241 are provided.
- Solder balls 261 are located on the bumps 245 with the nickel layer 251 and the gold layer 252 interposed therebetween.
- the electronic device of the present invention may be an electronic device 201 ′ in which a solder resist 271 is disposed so that the solder balls 261 are exposed.
- FIG. 26 is a schematic partial cross-sectional view showing another embodiment of the electronic device of the present invention.
- the electronic device 301 forms the single-layer wiring structure 10 on the resin-encapsulated semiconductor element 311 in which the semiconductor element 321 is encapsulated with an encapsulating resin 331 so that the terminal 321a is exposed.
- the solder balls 361 are disposed.
- the single-layer wiring structure 10 is the above-described wiring structure of the present invention, and such a wiring structure 10 can be manufactured by the manufacturing method of the present invention. Is omitted.
- the single-layer wiring structure 10 has a wiring layer 21 including wirings 14, pad portions 15, and interlayer connection vias 16, and solder balls 361 are located on the desired pad portions 15.
- a silane coupling agent layer (not shown) is formed on the wiring 14 and the pad portion 15 of the wiring structure 10 via an alloy anchor layer (not shown).
- a silane coupling agent layer has an effect of improving the adhesion with an epoxy-based mold sealing resin when mounting a semiconductor chip.
- Such an electronic device of the present invention has excellent high-frequency characteristics of wiring, enables high-density wiring, and is excellent in adhesion between the wiring structures constituting the circuit, and has high reliability.
- the above-described embodiment of the electronic device is an exemplification, and the present invention is not limited to the embodiment.
- the multilayer wiring structure 10 ML and the silane coupling agent layer 28 constituting the single-layer wiring structure 10 have an annular shape in plan view, and exist with a predetermined width from the periphery of the alloy anchor layer 27. A structure that does not exist in the central portion of the alloy anchor layer 27 may be used.
- Example 1 As an imprint mold, a concavo-convex structure having a convex portion with a height of 2 ⁇ m from the main surface was provided on one surface of a mold substrate made of 675 ⁇ m thick quartz glass (65 mm square). A mold was prepared.
- the concavo-convex structure provided in this mold is composed of two types of convex portions, ie, a convex portion having a linear shape in plan view and a convex portion having a circular shape in plan view.
- the linear convex portion was a line / space (5 ⁇ m / 5 ⁇ m) shape.
- the circular convex portion had a diameter of 30 ⁇ m and existed at a density of 225 pieces / mm 2 (65 ⁇ m pitch). Further, a light shielding layer made of a chromium thin film having a diameter of 20 ⁇ m is located at a substantially central portion of the top plane of the convex portion having a circular shape in plan view.
- an insulating layer was formed using the above-mentioned imprint mold (insulating layer forming step). That is, a silicon substrate was prepared as a transfer substrate, and a chromium titanium thin film and a copper thin film were laminated on the surface of the transfer substrate by sputtering. Next, an epoxy-based UV-curable insulating resist solution (SU-8 3000 series manufactured by Nippon Kayaku Co., Ltd.) is supplied onto the copper thin film on the surface of the transfer substrate so that the film thickness after post-baking is about 6 ⁇ m. After coating, the resist film was obtained by drying by soft baking using a hot plate.
- the mold is pressed against the resist film, and in this state, an ultraviolet ray of a parallel light component including a wavelength component of 350 to 405 nm is irradiated from the back side of the mold to generate acid at a selected portion of the resist film, and then PEB (Post The resist film was first-cured by heat treatment using exposure (bake). Thereafter, the mold is pulled off, and development processing is performed with PM thinner (propylene glycol monomethyl ether acetate) to form a pattern structure on the transfer substrate, followed by post-baking (nitrogen atmosphere 180 ° C., 60 minutes) for secondary curing. went. Thereby, an insulating layer was formed on the silicon substrate (see FIG. 4B).
- PM thinner propylene glycol monomethyl ether acetate
- This insulating layer has a recess for forming a wiring in the shape of a line / space (5 ⁇ m / 5 ⁇ m), a recess for forming a pad portion having a diameter of 30 ⁇ m, and a through-hole having a diameter of 20 ⁇ m located at a substantially central portion of the recess.
- the copper thin film was exposed in the through hole.
- the inner wall surface of the wiring forming recess, the surface of the insulating layer including the recess for forming the pad portion and the inner wall surface of the through hole for forming the interlayer connection via, and the through hole are exposed.
- a chromium layer thinness 15 nm
- a titanium layer thinness 50 nm
- the chromium layer had a Vickers hardness of 1.06 GPa
- the titanium layer had a Vickers hardness of 1.3 GPa.
- a copper thin film (thickness 200 nm) is formed on the conductor barrier layer by sputtering to form a seed electrode layer, and copper is deposited by electroplating using this seed electrode layer as a plating electrode.
- a conductor made of copper (Vickers hardness: 0.8 GPa) so as to fill a recess for forming a wiring, a recess for forming a pad, and a through hole for forming an interlayer connection via located in the recess for forming the pad A layer was formed (see FIG. 5A). This conductor layer was formed to be about 3 ⁇ m thicker than the insulating layer.
- the conductor layer was polished by CMP (polishing step). In this polishing, the conductor barrier layer acted as a polishing stopper (see FIG. 7).
- the exposed conductor barrier layer located on the surface of the insulating layer was removed (see FIG. 5C). That is, first, the titanium layer was removed by flash etching using a mixed solution of potassium hydroxide and hydrogen peroxide, and then the chromium layer was removed by flash etching using an aqueous potassium ferricyanide solution. Thereby, a wiring structure was manufactured on the silicon substrate. In this wiring structure, the surface of the wiring and the surface of the pad portion protruded 65 nm from the insulating layer. The edge part of the conductor barrier layer was the same height as the surface of the insulating layer. Moreover, the thickness of the insulating layer was 6 ⁇ m, and it was confirmed that it had the expected thickness.
- the above-mentioned ultraviolet curable insulating resist solution is supplied and coated so that the film thickness after post-baking is about 6 ⁇ m, and then dried by soft baking using a hot plate. A membrane was obtained.
- the resist film was irradiated with ultraviolet rays having a parallel light component including a wavelength component of 350 to 405 nm, and the same primary curing and secondary curing as described above were performed to form an insulating layer. Thereafter, the peel strength of this insulating layer was measured under the following conditions. As a result, it was 0.38 kN / m, and when the wiring structures were laminated, it was confirmed that good adhesion between the wiring structures was obtained. .
- a molybdenum alloy layer (thickness 50 nm) is formed by a sputtering method using a MoNiTi alloy (MTD-54 manufactured by Hitachi Metals, Vickers hardness: 1.53 GPa) as a target.
- a wiring structure was manufactured in the same manner as in Example 1 except that the molybdenum alloy layer was removed by flash etching using a mixed solution of potassium hydroxide and hydrogen peroxide.
- the surface of the wiring and the surface of the pad portion protruded from the insulating layer by 50 nm.
- the edge part of the conductor barrier layer was the same height as the surface of the insulating layer.
- the thickness of the insulating layer was 6 ⁇ m, and it was confirmed that it had the expected thickness.
- an insulating layer was formed in the same manner as in Example 1, and then the peel strength of this insulating layer was measured. As a result, it was 0.38 kN / m. It was confirmed that good adhesion between structures was obtained.
- Example 1 In the conductor barrier layer forming step, an aluminum layer (thickness: 100 nm, Vickers hardness: 0.17 GPa) is formed by a sputtering method instead of the chromium layer / titanium layer in Example 1 to form a conductor barrier layer. Thereafter, the conductor forming step was performed in the same manner as in Example 1. Next, in the same manner as in Example 1, the conductor layer was polished by CMP. In this polishing, the conductor barrier layer does not act as a polishing stopper, and the polishing cannot be stopped when the conductor layer on the insulating layer is polished.
- the polishing proceeds to the insulating layer, and the thickness of the insulating layer is 4 As a result, the insulating layer was thinner than those in Examples 1 and 2.
- a wiring structure was obtained in which the surface of the wiring and the surface of the pad portion were flush with the surface of the insulating layer.
- the edge part of the conductor barrier layer was the same height as the surface of the insulating layer.
- an insulating layer was formed in the same manner as in Example 1, and then the peel strength of this insulating layer was measured. As a result, it was 0.15 kN / m. It was confirmed that the adhesion between the structures was inferior to the wiring structures of Examples 1 and 2.
- Comparative Example 2 A wiring structure was manufactured in the same manner as in Comparative Example 1. Next, a roughening process using a hydrogen peroxide-sulfuric acid based chemical solution was performed to roughen the surface of the wiring and the surface of the pad portion, thereby obtaining a wiring structure. As a result of measuring the average roughness of the surface of the wiring and the surface of the pad portion before and after the roughening treatment using a surface roughness meter, it was confirmed that the average roughness increased from 21 nm to 110 nm. On this wiring structure, an insulating layer was formed in the same manner as in Example 1, and then the peel strength of this insulating layer was measured. As a result, it was 0.32 kN / m. From this result, when the wiring structures are stacked, the wiring structures of Examples 1 and 2 can have the same or better adhesion than the conventional wiring structures in which the surface of the wiring and the surface of the pad portion are roughened. Was confirmed.
- the chromium layer (thickness 15 nm, Vickers hardness: 1.06 GPa) and nickel layer (thickness 50 nm, Vickers hardness: 0) are formed by sputtering instead of the chromium layer / titanium layer of Example 1. .9 GPa) to form a conductor barrier layer.
- the film stress of the nickel layer is large, the adhesion between the conductor barrier layer and the epoxy insulating layer cannot be obtained, the conductor barrier layer is peeled off, and the process cannot proceed.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
The purpose of the present invention is to provide an exceptionally reliable wiring structure, a method for easily manufacturing a wiring structure of such description, and an electronic device in which the wiring structure is used. According to one embodiment of the present invention, there is provided a wiring structure having: a first insulation layer that has a concave portion in a first surface; a first conductor layer positioned in the concave portion, the first conductor layer protruding from the first surface; a conductor barrier layer interposed between the first conductor layer and the first insulation layer; and a second insulation layer positioned on the first surface.
Description
本発明は、配線構造体とその製造方法および電子装置に関する。特に、層間接続ビアと配線を備える配線構造体と、この配線構造体の製造方法と、配線構造体を用いた電子装置に関する。
The present invention relates to a wiring structure, a manufacturing method thereof, and an electronic device. In particular, the present invention relates to a wiring structure including interlayer connection vias and wiring, a method for manufacturing the wiring structure, and an electronic device using the wiring structure.
層間接続ビアを介して上下の所望の配線を接続したような多層の配線構造体は、例えば、エポキシ系等の光硬化性絶縁レジストを用いて、パッド部形成用の凹部と、この凹部内に位置する層間接続ビア形成用の貫通孔と、配線形成用の凹部とを有する絶縁層を下層の配線上に形成し、この絶縁層上に、銅の拡散を防止する拡散抑制層を形成し、次いで、金属薄膜層を形成し、この金属薄膜層をシード電極層として電気めっきにより貫通孔と凹部に銅を析出させて導電層を形成し、その後、絶縁層上に位置する導電層をCMP(Chemical Mechanical Polishing)にて研磨して平坦化することにより凹部のみに銅を存在させる工程を所望の回数繰り返すことにより製造される(特許文献1~3)。
For example, a multilayer wiring structure in which upper and lower desired wirings are connected via interlayer connection vias uses, for example, an epoxy-based photocurable insulating resist, An insulating layer having a through hole for forming an interlayer connection via and a recess for forming a wiring is formed on the lower wiring, and a diffusion suppression layer for preventing copper diffusion is formed on the insulating layer, Next, a metal thin film layer is formed, and using this metal thin film layer as a seed electrode layer, copper is deposited in the through holes and the recesses by electroplating to form a conductive layer, and then the conductive layer located on the insulating layer is CMP ( It is manufactured by repeating the process of allowing copper to exist only in the recesses by polishing and flattening with Chemical Mechanical Polishing (Patent Documents 1 to 3).
しかし、絶縁層上に突出する導電層を研磨して平坦化する際に、導電層が研磨されて絶縁層と同一面となったところで研磨を正確に停止することは難しく、絶縁層まで研磨されることになる。このため、絶縁層に所望の厚みが確保できず、絶縁信頼性が低下するという問題があった。
また、絶縁層上に位置する導電層をCMPにより平坦化して形成した下層の配線構造体のパッド部、配線と、上層の配線構造体の絶縁層との密着性が不十分な場合がある。このような場合、この密着性が不十分な箇所に銅が拡散し易く、同じ配線構造体の隣接する配線間、あるいは、配線とパッド間の短絡が生じるという問題があった。さらに、下層のパッド部と上層の層間接続ビアとの接続不良を誘発するという問題もあった。
配線間、あるいは、配線とパッド間の短絡は、配線間、あるいは、配線とパッド間の間隔を広げることで抑制することができるが、狭ピッチ化による高密度化の要請に反するものとなる。また、CMPによる平坦化を実施した後に、絶縁層の凹部に存在しているパッド部や配線の表面を粗化することにより、下層の配線構造体のパッド部、配線と、上層の配線構造体の絶縁層との密着性を向上させることができる。しかし、このような粗面化により、配線の長手方向に沿って粗面が連続することとなり、配線の高周波特性が低下するという問題があった。 本発明は、上述のような実状に鑑みてなされたものであり、信頼性に優れる配線構造体と、このような配線構造体を簡便に製造する方法と、配線構造体を用いた電子装置とを提供することを目的とする。 However, when the conductive layer protruding on the insulating layer is polished and flattened, it is difficult to stop the polishing accurately when the conductive layer is polished and becomes flush with the insulating layer. Will be. For this reason, there was a problem that a desired thickness could not be secured in the insulating layer, and insulation reliability was lowered.
In addition, there may be insufficient adhesion between the pad portion and wiring of the lower wiring structure formed by planarizing the conductive layer located on the insulating layer by CMP and the insulating layer of the upper wiring structure. In such a case, there is a problem that copper easily diffuses in a portion having insufficient adhesion, and a short circuit occurs between adjacent wirings of the same wiring structure or between the wirings and the pads. In addition, there is a problem of inducing a connection failure between the lower pad portion and the upper interlayer connection via.
A short circuit between wirings or between a wiring and a pad can be suppressed by increasing the distance between wirings or between a wiring and a pad, but it is against the demand for higher density due to a narrow pitch. In addition, after performing planarization by CMP, the surface of the pad portion and the wiring existing in the concave portion of the insulating layer is roughened, so that the pad portion and the wiring of the lower wiring structure and the upper wiring structure Adhesion with the insulating layer can be improved. However, such roughening causes a problem that the rough surface continues along the longitudinal direction of the wiring and the high-frequency characteristics of the wiring deteriorate. The present invention has been made in view of the above-described circumstances, and has a highly reliable wiring structure, a method for easily manufacturing such a wiring structure, and an electronic device using the wiring structure. The purpose is to provide.
また、絶縁層上に位置する導電層をCMPにより平坦化して形成した下層の配線構造体のパッド部、配線と、上層の配線構造体の絶縁層との密着性が不十分な場合がある。このような場合、この密着性が不十分な箇所に銅が拡散し易く、同じ配線構造体の隣接する配線間、あるいは、配線とパッド間の短絡が生じるという問題があった。さらに、下層のパッド部と上層の層間接続ビアとの接続不良を誘発するという問題もあった。
配線間、あるいは、配線とパッド間の短絡は、配線間、あるいは、配線とパッド間の間隔を広げることで抑制することができるが、狭ピッチ化による高密度化の要請に反するものとなる。また、CMPによる平坦化を実施した後に、絶縁層の凹部に存在しているパッド部や配線の表面を粗化することにより、下層の配線構造体のパッド部、配線と、上層の配線構造体の絶縁層との密着性を向上させることができる。しかし、このような粗面化により、配線の長手方向に沿って粗面が連続することとなり、配線の高周波特性が低下するという問題があった。 本発明は、上述のような実状に鑑みてなされたものであり、信頼性に優れる配線構造体と、このような配線構造体を簡便に製造する方法と、配線構造体を用いた電子装置とを提供することを目的とする。 However, when the conductive layer protruding on the insulating layer is polished and flattened, it is difficult to stop the polishing accurately when the conductive layer is polished and becomes flush with the insulating layer. Will be. For this reason, there was a problem that a desired thickness could not be secured in the insulating layer, and insulation reliability was lowered.
In addition, there may be insufficient adhesion between the pad portion and wiring of the lower wiring structure formed by planarizing the conductive layer located on the insulating layer by CMP and the insulating layer of the upper wiring structure. In such a case, there is a problem that copper easily diffuses in a portion having insufficient adhesion, and a short circuit occurs between adjacent wirings of the same wiring structure or between the wirings and the pads. In addition, there is a problem of inducing a connection failure between the lower pad portion and the upper interlayer connection via.
A short circuit between wirings or between a wiring and a pad can be suppressed by increasing the distance between wirings or between a wiring and a pad, but it is against the demand for higher density due to a narrow pitch. In addition, after performing planarization by CMP, the surface of the pad portion and the wiring existing in the concave portion of the insulating layer is roughened, so that the pad portion and the wiring of the lower wiring structure and the upper wiring structure Adhesion with the insulating layer can be improved. However, such roughening causes a problem that the rough surface continues along the longitudinal direction of the wiring and the high-frequency characteristics of the wiring deteriorate. The present invention has been made in view of the above-described circumstances, and has a highly reliable wiring structure, a method for easily manufacturing such a wiring structure, and an electronic device using the wiring structure. The purpose is to provide.
本発明の一実施形態によると、第1の面に凹部を有する第1の絶縁層と、凹部に位置し、第1の面から突出している第1の導体層と、第1の導体層と第1の絶縁層との間に介在する導体バリア層と、を有する配線構造体が提供される。
According to one embodiment of the present invention, a first insulating layer having a recess on a first surface, a first conductor layer located in the recess and protruding from the first surface, and a first conductor layer, There is provided a wiring structure having a conductor barrier layer interposed between the first insulating layer and the first insulating layer.
本発明の一実施形態によると、第1の面に凹部を有する第1の絶縁層と、凹部に位置し、第1の面から突出している第1の導体層と、第1の導体層と第1の絶縁層との間に介在する導体バリア層と、第1の面に露出する第1の導体層上に位置する合金アンカー層と、を有する配線構造体が提供される。
According to one embodiment of the present invention, a first insulating layer having a recess on a first surface, a first conductor layer located in the recess and protruding from the first surface, and a first conductor layer, There is provided a wiring structure having a conductor barrier layer interposed between the first insulating layer and an alloy anchor layer located on the first conductor layer exposed on the first surface.
第1の面とは反対側の第2の面に位置する基材を、さらに有してもよい。
A base material located on the second surface opposite to the first surface may be further included.
第1の面上に位置する第2の絶縁層を、さらに有してもよい。
A second insulating layer located on the first surface may be further included.
第1の面において、第1の導体層の積層方向の高さは導体バリア層の高さよりも高くてもよい。
In the first surface, the height of the first conductor layer in the stacking direction may be higher than the height of the conductor barrier layer.
第1の導体層は銅であり、導体バリア層はクロム/チタンの複合層、モリブデン合金層のいずれかであってもよい。
The first conductor layer may be copper, and the conductor barrier layer may be either a chromium / titanium composite layer or a molybdenum alloy layer.
導体バリア層は、厚みが50~100nmの範囲であってもよい。
The conductor barrier layer may have a thickness in the range of 50 to 100 nm.
合金アンカー層上に位置するシランカップリング剤層をさらに有してもよい。
A silane coupling agent layer may be further provided on the alloy anchor layer.
合金アンカー層は、銅スズ合金層あるいは銅スズニッケル合金層であってもよい。
The alloy anchor layer may be a copper tin alloy layer or a copper tin nickel alloy layer.
合金アンカー層は、厚みが50~100nmの範囲であってもよい。
The alloy anchor layer may have a thickness in the range of 50 to 100 nm.
第1の絶縁層を貫通して凹部と接続する第1の貫通孔と、第2の絶縁層を貫通して凹部と接続する第2の貫通孔と、第2の貫通孔に位置し、第1の導体層と電気的に接続する第2の導体層と、をさらに有し、第1の導体層は、凹部および第1の貫通孔に位置し、導体バリア層は第1の導体層と第1の絶縁層との間に介在してもよい。
A first through hole penetrating the first insulating layer and connected to the concave portion; a second through hole penetrating the second insulating layer and connected to the concave portion; and the second through hole, A second conductor layer electrically connected to the first conductor layer, wherein the first conductor layer is located in the recess and the first through hole, and the conductor barrier layer includes the first conductor layer and It may be interposed between the first insulating layer and the first insulating layer.
配線構造体と、第1の導体層と電気的に接続するコア基板と、第2の導体層と電気的に接続する半導体素子と、を備える電子装置であってもよい。
An electronic device including a wiring structure, a core substrate that is electrically connected to the first conductor layer, and a semiconductor element that is electrically connected to the second conductor layer may be used.
本発明の一実施形態によると、第1の面に凹部を有する絶縁層を基材上に形成する絶縁層形成工程と、凹部の内壁面を含む第1の面に、導体バリア層を形成する導体バリア層形成工程と、導体バリア層を少なくとも被覆するようにシード電極層を形成し、シード電極層上に電気めっきにより導体層を形成する導体層形成工程と、第1の面上の導体バリア層をストッパーとして導体層を研磨する研磨工程と、第1の面上の導体バリア層を除去する除去工程と、を有する配線構造体の製造方法が提供される。
According to one embodiment of the present invention, an insulating layer forming step of forming an insulating layer having a recess on the first surface on a substrate, and forming a conductor barrier layer on the first surface including the inner wall surface of the recess. A conductor barrier layer forming step, a conductor layer forming step of forming a seed electrode layer so as to cover at least the conductor barrier layer, and forming a conductor layer on the seed electrode layer by electroplating; and a conductor barrier on the first surface A method for manufacturing a wiring structure is provided, which includes a polishing step of polishing a conductor layer using a layer as a stopper, and a removal step of removing a conductor barrier layer on a first surface.
除去工程の後、第1の面を置換めっき液中に浸漬することにより、導体層上に合金アンカー層を形成する合金アンカー層形成工程をさらに含んでもよい。
After the removing step, an alloy anchor layer forming step of forming an alloy anchor layer on the conductor layer by immersing the first surface in the displacement plating solution may be further included.
合金アンカー層形成工程において、合金アンカー層は、銅スズ合金層あるいは銅スズニッケル合金層であってもよい。
In the alloy anchor layer forming step, the alloy anchor layer may be a copper tin alloy layer or a copper tin nickel alloy layer.
合金アンカー層形成工程の後、第1の面にシランカップリング剤を接触させ、その後、洗浄することにより、合金アンカー層上にシランカップリング剤層を形成するシランカップリング剤層形成工程をさらに含んでもよい。
After the alloy anchor layer forming step, the silane coupling agent layer forming step of forming a silane coupling agent layer on the alloy anchor layer by bringing the silane coupling agent into contact with the first surface and then washing is further performed. May be included.
絶縁層形成工程において、インプリント方法を用いて凹部を形成してもよい。
In the insulating layer forming step, the recess may be formed using an imprint method.
絶縁層形成工程において、フォトリソグラフィー方法を用いて凹部を形成してもよい。
In the insulating layer forming step, the recess may be formed using a photolithography method.
研磨工程において、導体層は化学研磨してもよい。
In the polishing step, the conductor layer may be chemically polished.
研磨工程において、導体層を化学研磨した後、さらに化学機械研磨してもよい。
In the polishing step, after the conductor layer is chemically polished, chemical mechanical polishing may be further performed.
研磨工程において、導体バリア層より導体層の選択性が高い化学研磨をしてもよい。
In the polishing step, chemical polishing with higher selectivity of the conductor layer than the conductor barrier layer may be performed.
研磨工程において、導体層は化学機械研磨してもよい。
In the polishing process, the conductor layer may be subjected to chemical mechanical polishing.
導体バリア層は、導体層の硬度よりも大きい硬度を具備してもよい。
The conductor barrier layer may have a hardness greater than the hardness of the conductor layer.
導体バリア層形成工程において、導体バリア層はクロム/チタンの複合層、モリブデン合金層のいずれかであり、導体層形成工程において、導体層は銅であってもよい。
In the conductor barrier layer forming step, the conductor barrier layer is either a chromium / titanium composite layer or a molybdenum alloy layer, and in the conductor layer forming step, the conductor layer may be copper.
本発明の配線構造体は、絶縁信頼性、配線の高周波特性に優れ、配線の狭ピッチ化が可能になるとともに、配線構造体相互の密着性に優れる。
本発明の配線構造体の製造方法は、絶縁信頼性、配線の高周波特性に優れ、配線の狭ピッチ化が可能になるとともに、配線構造体相互の密着性に優れる配線構造体の製造が可能である。
本発明の電子装置は、配線の高周波特性が優れ、配線の高密度化が可能であるとともに、構成する配線構造体相互の密着性に優れており、信頼性の高いものである。 The wiring structure of the present invention is excellent in insulation reliability and high-frequency characteristics of the wiring, can reduce the pitch of the wiring, and is excellent in adhesion between the wiring structures.
The method for manufacturing a wiring structure according to the present invention is excellent in insulation reliability and high-frequency characteristics of the wiring, enables a wiring pitch to be narrowed, and enables manufacturing of a wiring structure having excellent adhesion between wiring structures. is there.
The electronic device of the present invention is excellent in high-frequency characteristics of the wiring, enables high-density wiring, and has excellent adhesion between the wiring structures constituting the structure, and has high reliability.
本発明の配線構造体の製造方法は、絶縁信頼性、配線の高周波特性に優れ、配線の狭ピッチ化が可能になるとともに、配線構造体相互の密着性に優れる配線構造体の製造が可能である。
本発明の電子装置は、配線の高周波特性が優れ、配線の高密度化が可能であるとともに、構成する配線構造体相互の密着性に優れており、信頼性の高いものである。 The wiring structure of the present invention is excellent in insulation reliability and high-frequency characteristics of the wiring, can reduce the pitch of the wiring, and is excellent in adhesion between the wiring structures.
The method for manufacturing a wiring structure according to the present invention is excellent in insulation reliability and high-frequency characteristics of the wiring, enables a wiring pitch to be narrowed, and enables manufacturing of a wiring structure having excellent adhesion between wiring structures. is there.
The electronic device of the present invention is excellent in high-frequency characteristics of the wiring, enables high-density wiring, and has excellent adhesion between the wiring structures constituting the structure, and has high reliability.
以下、本発明の実施形態について図面を参照しながら説明する。
尚、図面は模式的または概念的なものであり、各部材の寸法、部材間の大きさの比等は、必ずしも現実のものと同一とは限らず、また、同じ部材等を表す場合であっても、図面により互いの寸法や比が異なって表される場合もある。なお、本実施の形態で参照する図面において、同一部分または同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Note that the drawings are schematic or conceptual, and the dimensions of each member, the ratio of sizes between the members, etc. are not necessarily the same as the actual ones, and represent the same members. However, in some cases, the dimensions and ratios may be different depending on the drawing. Note that in the drawings referred to in this embodiment, the same portions or portions having similar functions are denoted by the same reference numerals, and repetitive description thereof is omitted.
尚、図面は模式的または概念的なものであり、各部材の寸法、部材間の大きさの比等は、必ずしも現実のものと同一とは限らず、また、同じ部材等を表す場合であっても、図面により互いの寸法や比が異なって表される場合もある。なお、本実施の形態で参照する図面において、同一部分または同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Note that the drawings are schematic or conceptual, and the dimensions of each member, the ratio of sizes between the members, etc. are not necessarily the same as the actual ones, and represent the same members. However, in some cases, the dimensions and ratios may be different depending on the drawing. Note that in the drawings referred to in this embodiment, the same portions or portions having similar functions are denoted by the same reference numerals, and repetitive description thereof is omitted.
<実施形態1>
[配線構造体]
図1は、本発明の配線構造体の一実施形態を示す概略部分断面図である。図1において、配線構造体1は、基材2上に位置する絶縁層3と、この絶縁層3の基材2とは反対側の表面3a側に位置する配線形成用の凹部4およびパッド部形成用の凹部5と、この凹部5内に位置する層間接続ビア形成用の貫通孔6と、このような絶縁層3の凹部4に位置する配線14、凹部5に位置するパッド部15、このパッド部15と一体となり貫通孔6に位置する層間接続ビア16からなる配線層11を備えている。そして、配線14の基材2とは反対側の表面14a、およびパッド部15の基材2とは反対側の表面15aは、絶縁層3の表面3aから突出した状態となっている。また、配線14、パッド部15、層間接続ビア16と絶縁層3との間には導体バリア層18が介在している。すなわち、導体バリア層18は、絶縁層3に位置する配線形成用の凹部4、パッド部形成用の凹部5、および層間接続ビア形成用の貫通孔6の内側の表面に配置される。配線14、パッド部15、層間接続ビア16は、導体バリア層18と接している。尚、図示例では、導体バリア層18を太線で示している。導体バリア層18の積層方向における基材2とは反対側の端部18aは、絶縁層3の表面3a側に露出している。導体バリア層18の端部18aは、絶縁層3の表面3aと同じ高さまたは陥没した状態となっている。すなわち、配線14の表面14a、およびパッド部15の表面15aは、導体バリア層18の端部18aより突出した状態となっている。
基材2は、所望の配線、パッド部を有するものであってよい。但し、図示例では、基材2は便宜的に基板形状として記載している。 <Embodiment 1>
[Wiring structure]
FIG. 1 is a schematic partial sectional view showing an embodiment of a wiring structure according to the present invention. In FIG. 1, awiring structure 1 includes an insulating layer 3 positioned on a base material 2, and a recess 4 and a pad portion for wiring formation positioned on the surface 3 a side opposite to the base material 2 of the insulating layer 3. A recess 5 for forming, a through hole 6 for forming an interlayer connection via located in the recess 5, a wiring 14 positioned in the recess 4 of the insulating layer 3, a pad portion 15 positioned in the recess 5, A wiring layer 11 including an interlayer connection via 16 integrated with the pad portion 15 and positioned in the through hole 6 is provided. The surface 14 a of the wiring 14 opposite to the substrate 2 and the surface 15 a of the pad portion 15 opposite to the substrate 2 are in a state protruding from the surface 3 a of the insulating layer 3. A conductor barrier layer 18 is interposed between the wiring 14, the pad portion 15, the interlayer connection via 16, and the insulating layer 3. That is, the conductor barrier layer 18 is disposed on the inner surface of the recess 4 for forming the wiring, the recess 5 for forming the pad portion, and the through hole 6 for forming the interlayer connection via located in the insulating layer 3. The wiring 14, the pad portion 15, and the interlayer connection via 16 are in contact with the conductor barrier layer 18. In the illustrated example, the conductor barrier layer 18 is indicated by a bold line. An end 18 a opposite to the substrate 2 in the stacking direction of the conductor barrier layer 18 is exposed on the surface 3 a side of the insulating layer 3. The end 18a of the conductor barrier layer 18 is at the same height as the surface 3a of the insulating layer 3 or is in a depressed state. That is, the surface 14 a of the wiring 14 and the surface 15 a of the pad portion 15 are in a state of protruding from the end portion 18 a of the conductor barrier layer 18.
Thebase material 2 may have desired wiring and pad portions. However, in the illustrated example, the base material 2 is described as a substrate shape for convenience.
[配線構造体]
図1は、本発明の配線構造体の一実施形態を示す概略部分断面図である。図1において、配線構造体1は、基材2上に位置する絶縁層3と、この絶縁層3の基材2とは反対側の表面3a側に位置する配線形成用の凹部4およびパッド部形成用の凹部5と、この凹部5内に位置する層間接続ビア形成用の貫通孔6と、このような絶縁層3の凹部4に位置する配線14、凹部5に位置するパッド部15、このパッド部15と一体となり貫通孔6に位置する層間接続ビア16からなる配線層11を備えている。そして、配線14の基材2とは反対側の表面14a、およびパッド部15の基材2とは反対側の表面15aは、絶縁層3の表面3aから突出した状態となっている。また、配線14、パッド部15、層間接続ビア16と絶縁層3との間には導体バリア層18が介在している。すなわち、導体バリア層18は、絶縁層3に位置する配線形成用の凹部4、パッド部形成用の凹部5、および層間接続ビア形成用の貫通孔6の内側の表面に配置される。配線14、パッド部15、層間接続ビア16は、導体バリア層18と接している。尚、図示例では、導体バリア層18を太線で示している。導体バリア層18の積層方向における基材2とは反対側の端部18aは、絶縁層3の表面3a側に露出している。導体バリア層18の端部18aは、絶縁層3の表面3aと同じ高さまたは陥没した状態となっている。すなわち、配線14の表面14a、およびパッド部15の表面15aは、導体バリア層18の端部18aより突出した状態となっている。
基材2は、所望の配線、パッド部を有するものであってよい。但し、図示例では、基材2は便宜的に基板形状として記載している。 <
[Wiring structure]
FIG. 1 is a schematic partial sectional view showing an embodiment of a wiring structure according to the present invention. In FIG. 1, a
The
絶縁層3は、配線14間、あるいは、配線14とパッド部15間の電気的絶縁、および、配線構造体を積層して多層構造としたときに、上下の配線の電気的絶縁が確実に得られるものであればよく、例えば、エポキシ系、ベンゾシクロブテン系、ポリベンゾオキサゾール系、ポリイミド系、フッ素系、マレイミド系等の材質からなるものが好適である。また、絶縁層3は、例えば、配線14の直下、パッド部15の直下での厚みtが2~8μm程度の範囲であることが好ましい。
配線14は、例えば、幅0.5~10μm、厚み0.5~10μmの範囲で適宜設定することができる。また、パッド部15は、その平面視形状が円形状である場合、例えば、直径5~20μm、厚み0.5~10μmの範囲で適宜設定することができる。さらに、層間接続ビア16の形状は、例えば、円柱形状、截頭円錐形状等であり、その直径は2~12μmの範囲で適宜設定することができ、厚みは上記の絶縁層3の厚みtに対応したものとなる。このような配線14、パッド部15、層間接続ビア16を構成する導体は、例えば、銅、ニッケル、ニッケルクロム合金等の表面抵抗が1Ω/□以下の材質が好ましい。また、配線14の表面14a、およびパッド部15の表面15aが絶縁層3の表面3aから突出する高さhは、例えば、50~120nm、好ましくは60~100nm程度とすることができる。配線14の表面14a、およびパッド部15の表面15aが、導体バリア層18の端部18aから突出する高さはh以上であってもよい。 The insulatinglayer 3 ensures electrical insulation between the wirings 14 or between the wirings 14 and the pad portions 15, and when the wiring structures are laminated to form a multilayer structure. For example, an epoxy-based material, a benzocyclobutene-based material, a polybenzoxazole-based material, a polyimide-based material, a fluorine-based material, a maleimide-based material, or the like is preferable. The insulating layer 3 preferably has a thickness t in the range of about 2 to 8 μm, for example, immediately below the wiring 14 and immediately below the pad portion 15.
Thewiring 14 can be set as appropriate within a range of, for example, a width of 0.5 to 10 μm and a thickness of 0.5 to 10 μm. Further, when the planar view shape of the pad portion 15 is circular, it can be appropriately set within a range of, for example, a diameter of 5 to 20 μm and a thickness of 0.5 to 10 μm. Further, the shape of the interlayer connection via 16 is, for example, a columnar shape, a frustoconical shape, etc., and the diameter can be appropriately set in the range of 2 to 12 μm, and the thickness is equal to the thickness t of the insulating layer 3 described above. It will be compatible. The conductor constituting the wiring 14, the pad portion 15, and the interlayer connection via 16 is preferably made of a material having a surface resistance of 1Ω / □ or less such as copper, nickel, nickel chrome alloy or the like. Further, the height h at which the surface 14a of the wiring 14 and the surface 15a of the pad portion 15 protrude from the surface 3a of the insulating layer 3 can be, for example, about 50 to 120 nm, preferably about 60 to 100 nm. The height at which the surface 14a of the wiring 14 and the surface 15a of the pad portion 15 protrude from the end portion 18a of the conductor barrier layer 18 may be h or more.
配線14は、例えば、幅0.5~10μm、厚み0.5~10μmの範囲で適宜設定することができる。また、パッド部15は、その平面視形状が円形状である場合、例えば、直径5~20μm、厚み0.5~10μmの範囲で適宜設定することができる。さらに、層間接続ビア16の形状は、例えば、円柱形状、截頭円錐形状等であり、その直径は2~12μmの範囲で適宜設定することができ、厚みは上記の絶縁層3の厚みtに対応したものとなる。このような配線14、パッド部15、層間接続ビア16を構成する導体は、例えば、銅、ニッケル、ニッケルクロム合金等の表面抵抗が1Ω/□以下の材質が好ましい。また、配線14の表面14a、およびパッド部15の表面15aが絶縁層3の表面3aから突出する高さhは、例えば、50~120nm、好ましくは60~100nm程度とすることができる。配線14の表面14a、およびパッド部15の表面15aが、導体バリア層18の端部18aから突出する高さはh以上であってもよい。 The insulating
The
導体バリア層18は、配線14、パッド部15、層間接続ビア16を構成する導体の成分が絶縁層3に拡散することを抑制するものであり、例えば、絶縁層3側からCr/Tiを積層した複合層、モリブデン合金、あるいは、TiN等のチタン合金、タングステン合金、SiN等の珪素合金、NiP等のニッケル合金、CoWP等のコバルト合金、TaN等のタンタル合金等が挙げられる。これらの中で、所望のエッチング溶液を用いたウエットエッチング性、希硫酸や塩酸に対する耐酸化性、銅の熱拡散防止性、耐湿性に優れ、表面抵抗が数十Ω/□以下であり、クラックが生じ難く、絶縁層3との密着性が優れるものとして、Cr/Tiの複合層、モリブデン合金が特に好適である。
The conductor barrier layer 18 suppresses the diffusion of the conductor components constituting the wiring 14, the pad portion 15, and the interlayer connection via 16 into the insulating layer 3. For example, Cr / Ti is laminated from the insulating layer 3 side. And a composite alloy, a molybdenum alloy, a titanium alloy such as TiN, a tungsten alloy, a silicon alloy such as SiN, a nickel alloy such as NiP, a cobalt alloy such as CoWP, and a tantalum alloy such as TaN. Among these, wet etching using a desired etching solution, oxidation resistance to dilute sulfuric acid and hydrochloric acid, copper thermal diffusion prevention, moisture resistance, surface resistance is several tens of Ω / □ or less, and cracks In particular, a Cr / Ti composite layer or a molybdenum alloy is particularly suitable as a material that does not easily cause the occurrence of the problem and has excellent adhesion to the insulating layer 3.
このような導体バリア層18の厚みは、使用する材料により適宜設定することができる。ここで導体バリア層18の厚みとは、絶縁層3と導体バリア層18との接触面に対して垂直方向の厚みを示す。例えば、導体バリア層18としてCr/Tiの複合層を用いる場合、Cr層は絶縁層3と接し、Ti層はCr層と接するように、絶縁層3、Cr層、Ti層の順に配置される。絶縁層3側に位置するCr層の厚みは、例えば、10~20nmの範囲とすることができ、Ti層の厚みは、例えば、40~100nmの範囲とすることができる。Cr層の厚みが10nm未満であると、絶縁層3との密着性が不十分となり、20nmを超えると導体バリア層18の表裏導通性が低下して層間接続ビアの導通機能が不十分となり好ましくない。また、Ti層の厚みが40nm未満であると、導体の拡散抑制効果が不充分となり、100nmを超えると、内部応力が増大してCr層との密着性が低下することとなり好ましくない。また、導体バリア層18としてモリブデン合金を用いる場合、例えば、厚みを50~100nmの範囲とすることができる。モリブデン合金からなる導体バリア層18の厚みが50nm未満であると、導体の拡散抑制効果が不充分となり、100nmを超えると、内部応力が増大して絶縁層3に対する密着性が低下し、また、導体バリア層18の表裏導通性が低下することとなり好ましくない。なお、後述するように、本発明に係る配線構造体は、絶縁層3の表面3aに、導体バリア層18と導体層10とを形成し、導体バリア層18をストッパーとして導体層10を研磨し、絶縁層3の表面3a上の導体バリア層18を、フラッシュエッチングを行うことで除去する。このため、配線14の表面14a、およびパッド部15の表面15aが絶縁層3の表面3aから突出する高さhは、導体バリア層18の厚みに対応したものとなる。
The thickness of the conductor barrier layer 18 can be appropriately set depending on the material used. Here, the thickness of the conductor barrier layer 18 indicates the thickness in the direction perpendicular to the contact surface between the insulating layer 3 and the conductor barrier layer 18. For example, when a Cr / Ti composite layer is used as the conductor barrier layer 18, the insulating layer 3, the Cr layer, and the Ti layer are arranged in this order so that the Cr layer is in contact with the insulating layer 3 and the Ti layer is in contact with the Cr layer. . The thickness of the Cr layer located on the insulating layer 3 side can be in the range of 10 to 20 nm, for example, and the thickness of the Ti layer can be in the range of 40 to 100 nm, for example. When the thickness of the Cr layer is less than 10 nm, the adhesion with the insulating layer 3 is insufficient, and when it exceeds 20 nm, the front and back conductivity of the conductor barrier layer 18 is lowered and the conduction function of the interlayer connection via is insufficient. Absent. Further, if the thickness of the Ti layer is less than 40 nm, the effect of suppressing the diffusion of the conductor becomes insufficient, and if it exceeds 100 nm, the internal stress increases and the adhesion with the Cr layer is lowered, which is not preferable. When a molybdenum alloy is used as the conductor barrier layer 18, for example, the thickness can be in the range of 50 to 100 nm. When the thickness of the conductor barrier layer 18 made of molybdenum alloy is less than 50 nm, the effect of suppressing the diffusion of the conductor becomes insufficient. When the thickness exceeds 100 nm, the internal stress increases and the adhesion to the insulating layer 3 decreases, The front and back conductivity of the conductor barrier layer 18 is undesirably lowered. As will be described later, in the wiring structure according to the present invention, the conductor barrier layer 18 and the conductor layer 10 are formed on the surface 3a of the insulating layer 3, and the conductor layer 10 is polished using the conductor barrier layer 18 as a stopper. The conductor barrier layer 18 on the surface 3a of the insulating layer 3 is removed by performing flash etching. Therefore, the height h at which the surface 14 a of the wiring 14 and the surface 15 a of the pad portion 15 protrude from the surface 3 a of the insulating layer 3 corresponds to the thickness of the conductor barrier layer 18.
このような構成をとることで、配線構造体1は、積層して多層構造としたときに、絶縁層3による上下の配線の電気的絶縁が確実に得られ、また、上下の配線構造体の密着強度が高いものとなる。図2は、配線層11Aを備える配線構造体1A、配線層11Bを備える配線構造体1B、配線層11Cを備える配線構造体1Cからなる3層構造の配線構造体の例を示す概略部分断面図である。図2に示されるように、3層構造の配線構造体1MLでは、配線構造体1Aが備える配線層11Aが、絶縁層3Aから突出しているので、配線構造体1A上に位置する配線構造体1Bの絶縁層3Bと配線層11Aとが係合した状態となっている。同様に、配線構造体1Bが備える配線層11Bは、絶縁層3Bから突出しているので、配線構造体1B上に位置する配線構造体1Cの絶縁層3Cと配線層11Bとが係合した状態となっている。したがって、配線層11Aに対する絶縁層3Bの密着強度、配線層11Bに対する絶縁層3Cの密着強度が高いものであり、3層構造の配線構造体1MLは、絶縁信頼性に優れるとともに、配線構造体相互の密着性に優れている。そして、配線構造体相互の密着性を向上させるために配線の表面、パッド部の表面を粗化した従来の配線構造体と異なり、配線の高周波特性が優れている。
尚、上記説明では、3層構造の配線構造体を例としているが、多層構造の配線構造体の構成層の数には特に限定はない。 By adopting such a configuration, when thewiring structure 1 is laminated to form a multilayer structure, electrical insulation of the upper and lower wirings by the insulating layer 3 can be reliably obtained, and the upper and lower wiring structures can be obtained. The adhesion strength is high. FIG. 2 is a schematic partial cross-sectional view illustrating an example of a three-layer wiring structure including a wiring structure 1A including a wiring layer 11A, a wiring structure 1B including a wiring layer 11B, and a wiring structure 1C including a wiring layer 11C. It is. As shown in FIG. 2, in the wiring structure 1ML having a three-layer structure, since the wiring layer 11A provided in the wiring structure 1A protrudes from the insulating layer 3A, the wiring structure positioned on the wiring structure 1A. The insulating layer 3B of 1B and the wiring layer 11A are engaged. Similarly, since the wiring layer 11B provided in the wiring structure 1B protrudes from the insulating layer 3B, the insulating layer 3C of the wiring structure 1C located on the wiring structure 1B and the wiring layer 11B are engaged with each other. It has become. Therefore, the adhesion strength of the insulating layer 3B to the wiring layer 11A and the adhesion strength of the insulating layer 3C to the wiring layer 11B are high, and the three-layer wiring structure 1ML is excellent in insulation reliability, and also has a wiring structure. Excellent mutual adhesion. Unlike the conventional wiring structure in which the surface of the wiring and the surface of the pad portion are roughened in order to improve the adhesion between the wiring structures, the high frequency characteristics of the wiring are excellent.
In the above description, the wiring structure having a three-layer structure is taken as an example, but the number of constituent layers of the wiring structure having a multilayer structure is not particularly limited.
尚、上記説明では、3層構造の配線構造体を例としているが、多層構造の配線構造体の構成層の数には特に限定はない。 By adopting such a configuration, when the
In the above description, the wiring structure having a three-layer structure is taken as an example, but the number of constituent layers of the wiring structure having a multilayer structure is not particularly limited.
上述の配線構造体の実施形態は例示であり、本発明は当該実施形態に限定されるものではない。例えば、上述の実施形態では、配線構造体は断面形状が1種の配線を備えているが、2種以上の断面形状の配線を備えるものであってもよい。
また、複数のパッド部15の中には、配線14と接続しているもの、および配線14と離間しているものが存在してもよい。配線14と離間しているパッド部15は、ダミーのパッド部となるが、配線構造体の面内の強度均一性を確保するためには、配線14と離間しているダミーのパッド部の存在が有利となる。 The above-described embodiment of the wiring structure is an example, and the present invention is not limited to this embodiment. For example, in the above-described embodiment, the wiring structure includes one type of wiring having a cross-sectional shape, but may include two or more types of wiring having a cross-sectional shape.
Further, among the plurality ofpad portions 15, there may be one connected to the wiring 14 and one separated from the wiring 14. The pad portion 15 that is separated from the wiring 14 becomes a dummy pad portion, but in order to ensure the strength uniformity in the plane of the wiring structure, the presence of the dummy pad portion that is separated from the wiring 14 exists. Is advantageous.
また、複数のパッド部15の中には、配線14と接続しているもの、および配線14と離間しているものが存在してもよい。配線14と離間しているパッド部15は、ダミーのパッド部となるが、配線構造体の面内の強度均一性を確保するためには、配線14と離間しているダミーのパッド部の存在が有利となる。 The above-described embodiment of the wiring structure is an example, and the present invention is not limited to this embodiment. For example, in the above-described embodiment, the wiring structure includes one type of wiring having a cross-sectional shape, but may include two or more types of wiring having a cross-sectional shape.
Further, among the plurality of
[配線構造体の製造方法]
図3から図5は、本発明の配線構造体の製造方法の一実施形態を説明するための工程図であり、上述の配線構造体1を製造する例を示している。また、図6から図8は工程図の一部を示す拡大断面図である。
本実施形態では、まず、絶縁層形成工程にて、パッド部形成用の凹部と、当該凹部内に位置する層間接続ビア形成用の貫通孔と、配線形成用の凹部とを有する絶縁層を基材上に形成する。本実施形態は、インプリント方法を用いて絶縁層を形成する例であり、ここでは、絶縁層上に、パッド部形成用の凹部と、当該凹部内に位置する層間接続ビア形成用の貫通孔と、配線形成用の凹部とを有する絶縁層をインプリント方法により形成するためのモールド51を準備する(図3A)。このモールド51は、モールド用基材52と、このモールド用基材52の主面52aに位置する凹凸構造53と、を有している。モールド51が有する凹凸構造53には、平面視形状が線状の凸形状部54と、平面視形状が円形状の凸形状部55が存在している。平面視形状が線状の凸形状部54は、配線形成用の凹部を絶縁層に形成するための凸部である。一方、平面視形状が円形状の凸形状部55は、パッド部形成用の凹部を絶縁層に形成するための凸部であり、この凸形状部55の頂部平面55aの略中央部には遮光層56が位置している。尚、所望の凸形状部55からは、線状の凸形状部54が引き出されている。しかしながら、複数の凸形状部55の中には、線状の凸形状部54と離間しているものが存在してもよい。 [Method for manufacturing wiring structure]
3 to 5 are process diagrams for explaining an embodiment of a method for manufacturing a wiring structure according to the present invention, and show an example of manufacturing thewiring structure 1 described above. 6 to 8 are enlarged sectional views showing a part of the process drawings.
In this embodiment, first, in the insulating layer forming step, an insulating layer having a recess for forming a pad portion, a through hole for forming an interlayer connection via located in the recess, and a recess for forming a wiring is used as a base. Form on the material. The present embodiment is an example in which an insulating layer is formed by using an imprint method. Here, a recess for forming a pad portion and a through hole for forming an interlayer connection via located in the recess are formed on the insulating layer. And amold 51 for forming an insulating layer having a recess for forming a wiring by an imprint method is prepared (FIG. 3A). The mold 51 includes a mold base 52 and a concavo-convex structure 53 located on the main surface 52 a of the mold base 52. The concavo-convex structure 53 of the mold 51 includes a convex portion 54 having a linear shape in plan view and a convex portion 55 having a circular shape in plan view. The convex portion 54 having a linear shape in plan view is a convex portion for forming a concave portion for forming a wiring in the insulating layer. On the other hand, the convex part 55 having a circular shape in plan view is a convex part for forming a concave part for forming the pad part in the insulating layer, and a light shielding is provided at a substantially central part of the top flat surface 55a of the convex part 55. Layer 56 is located. In addition, from the desired convex-shaped part 55, the linear convex-shaped part 54 is pulled out. However, some of the plurality of convex portions 55 may be separated from the linear convex portion 54.
図3から図5は、本発明の配線構造体の製造方法の一実施形態を説明するための工程図であり、上述の配線構造体1を製造する例を示している。また、図6から図8は工程図の一部を示す拡大断面図である。
本実施形態では、まず、絶縁層形成工程にて、パッド部形成用の凹部と、当該凹部内に位置する層間接続ビア形成用の貫通孔と、配線形成用の凹部とを有する絶縁層を基材上に形成する。本実施形態は、インプリント方法を用いて絶縁層を形成する例であり、ここでは、絶縁層上に、パッド部形成用の凹部と、当該凹部内に位置する層間接続ビア形成用の貫通孔と、配線形成用の凹部とを有する絶縁層をインプリント方法により形成するためのモールド51を準備する(図3A)。このモールド51は、モールド用基材52と、このモールド用基材52の主面52aに位置する凹凸構造53と、を有している。モールド51が有する凹凸構造53には、平面視形状が線状の凸形状部54と、平面視形状が円形状の凸形状部55が存在している。平面視形状が線状の凸形状部54は、配線形成用の凹部を絶縁層に形成するための凸部である。一方、平面視形状が円形状の凸形状部55は、パッド部形成用の凹部を絶縁層に形成するための凸部であり、この凸形状部55の頂部平面55aの略中央部には遮光層56が位置している。尚、所望の凸形状部55からは、線状の凸形状部54が引き出されている。しかしながら、複数の凸形状部55の中には、線状の凸形状部54と離間しているものが存在してもよい。 [Method for manufacturing wiring structure]
3 to 5 are process diagrams for explaining an embodiment of a method for manufacturing a wiring structure according to the present invention, and show an example of manufacturing the
In this embodiment, first, in the insulating layer forming step, an insulating layer having a recess for forming a pad portion, a through hole for forming an interlayer connection via located in the recess, and a recess for forming a wiring is used as a base. Form on the material. The present embodiment is an example in which an insulating layer is formed by using an imprint method. Here, a recess for forming a pad portion and a through hole for forming an interlayer connection via located in the recess are formed on the insulating layer. And a
次に、基材2上に光硬化性絶縁レジストを供給し、基材2とモールド51を近接させて、基材2とモールド51との間に光硬化性絶縁レジストを展開して光硬化性絶縁レジスト層3′を形成する(図3B)。図示例では、基材2は便宜的に基板形状に記載しているが、所望の配線、パッド部を有するものであってよい。使用する光硬化性絶縁レジストとしては、例えば、エポキシ系、ベンゾシクロブテン系、ポリベンゾオキサゾール系、ポリイミド系、フッ素系、マレイミド系等を挙げることができる。
次いで、モールド51のモールド用基材52の裏面52b側から光照射を行い、光硬化性絶縁レジスト層3′を硬化させて絶縁材層3″とするとともに、モールド51の遮光層56と基材2との間に位置する光硬化性絶縁レジスト層3′を未硬化のまま残存させる(図3C)。モールド51側から照射する光は、遮光層56の直下に位置する光硬化性絶縁レジスト層3′の硬化が生じるような光の回り込みを防止するため、平行光を使用することが好適である。
次に、絶縁材層3″および残存する光硬化性絶縁レジスト層3′と、モールド51を引き離す(図4A)。この工程では、残存する光硬化性絶縁レジスト層3′の少なくとも一部がモールド51に付着して、モールド51と共に除去されてもよい。 Next, a photocurable insulating resist is supplied onto thebase material 2, the base material 2 and the mold 51 are brought close to each other, and the photocurable insulating resist is developed between the base material 2 and the mold 51 to be photocurable. An insulating resist layer 3 ′ is formed (FIG. 3B). In the illustrated example, the base material 2 is described in a substrate shape for convenience, but may have a desired wiring and pad portion. Examples of the photo-curable insulating resist used include epoxy-based, benzocyclobutene-based, polybenzoxazole-based, polyimide-based, fluorine-based, and maleimide-based resists.
Next, light irradiation is performed from theback surface 52b side of the mold base 52 of the mold 51 to cure the photocurable insulating resist layer 3 'to the insulating material layer 3 ", and the light shielding layer 56 of the mold 51 and the base material. The photo-curable insulating resist layer 3 ′ located between the two layers 2 is left uncured (FIG. 3C) The light irradiated from the mold 51 side is a photo-curable insulating resist layer positioned immediately below the light shielding layer 56. It is preferable to use parallel light in order to prevent light wraparound that causes 3 'curing.
Next, themold 51 is separated from the insulating material layer 3 ″ and the remaining photocurable insulating resist layer 3 ′ (FIG. 4A). In this step, at least a part of the remaining photocurable insulating resist layer 3 ′ is molded. It may adhere to 51 and be removed together with the mold 51.
次いで、モールド51のモールド用基材52の裏面52b側から光照射を行い、光硬化性絶縁レジスト層3′を硬化させて絶縁材層3″とするとともに、モールド51の遮光層56と基材2との間に位置する光硬化性絶縁レジスト層3′を未硬化のまま残存させる(図3C)。モールド51側から照射する光は、遮光層56の直下に位置する光硬化性絶縁レジスト層3′の硬化が生じるような光の回り込みを防止するため、平行光を使用することが好適である。
次に、絶縁材層3″および残存する光硬化性絶縁レジスト層3′と、モールド51を引き離す(図4A)。この工程では、残存する光硬化性絶縁レジスト層3′の少なくとも一部がモールド51に付着して、モールド51と共に除去されてもよい。 Next, a photocurable insulating resist is supplied onto the
Next, light irradiation is performed from the
Next, the
次いで、絶縁材層3″を現像して残存する光硬化性絶縁レジスト層3′を除去し、ポストベーク処理を施す。これにより、配線形成用の凹部4と、パッド部形成用の凹部5と、この凹部5内に位置する層間接続ビア形成用の貫通孔6を有する絶縁層3を得る(図4B)。
次に、導体バリア層形成工程にて、配線形成用の凹部4の内壁面、パッド部形成用の凹部5と層間接続ビア形成用の貫通孔6の内壁面を含む絶縁層3の表面3aに導体バリア層18を形成する(図4C)。導体バリア層18は、スパッタリング法等の公知の真空成膜法により形成することができる。この導体バリア層18は、層間接続ビア形成用の貫通孔6に露出している基材2上にも形成される。尚、図示例では、導体バリア層18を太線で示している。 Subsequently, the insulatingmaterial layer 3 ″ is developed to remove the remaining photo-curable insulating resist layer 3 ′ and subjected to a post-bake treatment. Thereby, the recess 4 for forming the wiring, the recess 5 for forming the pad portion, and the like. Then, the insulating layer 3 having the through hole 6 for forming the interlayer connection via located in the recess 5 is obtained (FIG. 4B).
Next, in the conductor barrier layer forming step, thesurface 3a of the insulating layer 3 including the inner wall surface of the recess 4 for forming the wiring, the recess 5 for forming the pad portion and the inner wall surface of the through hole 6 for forming the interlayer connection via is formed. A conductor barrier layer 18 is formed (FIG. 4C). The conductor barrier layer 18 can be formed by a known vacuum film formation method such as a sputtering method. The conductor barrier layer 18 is also formed on the substrate 2 exposed in the through hole 6 for forming the interlayer connection via. In the illustrated example, the conductor barrier layer 18 is indicated by a bold line.
次に、導体バリア層形成工程にて、配線形成用の凹部4の内壁面、パッド部形成用の凹部5と層間接続ビア形成用の貫通孔6の内壁面を含む絶縁層3の表面3aに導体バリア層18を形成する(図4C)。導体バリア層18は、スパッタリング法等の公知の真空成膜法により形成することができる。この導体バリア層18は、層間接続ビア形成用の貫通孔6に露出している基材2上にも形成される。尚、図示例では、導体バリア層18を太線で示している。 Subsequently, the insulating
Next, in the conductor barrier layer forming step, the
この導体バリア層18は、後工程にて形成する導体層の成分が絶縁層3に拡散することを抑制するものである。また、後工程である導体層の研磨工程において、導体バリア層18をストッパーとして作用させるために、導体バリア層18の硬度は、導体の硬度よりも大きいものとする。このような導体バリア層18は、後工程にて形成する導体が銅(ビッカース硬度:0.8GPa)である場合、例えば、絶縁層3側からCr/Tiを積層した複合層とすることができ、また、モリブデン合金、TiN等のチタン化合物、タングステン合金、SiN等の珪素化合物、NiP等のニッケル化合物、CoWP等のコバルト合金、TaN等のタンタル化合物等のいずれか1種からなるものとすることができる。これらの中で、所望のエッチング溶液を用いたウエットエッチング性、希硫酸や塩酸に対する耐酸化性、銅の熱拡散防止性、耐湿性に優れ、表面抵抗が数十Ω/□以下であり、クラックが生じ難く、絶縁層3との密着性が優れるものとして、Cr/Tiの複合層、モリブデン合金が特に好適である。
The conductor barrier layer 18 suppresses the diffusion of the components of the conductor layer formed in the subsequent process into the insulating layer 3. Further, in the subsequent step of polishing the conductor layer, the conductor barrier layer 18 has a hardness higher than that of the conductor so that the conductor barrier layer 18 acts as a stopper. Such a conductor barrier layer 18 can be, for example, a composite layer in which Cr / Ti is laminated from the insulating layer 3 side when the conductor to be formed in the subsequent process is copper (Vickers hardness: 0.8 GPa). In addition, it shall consist of any one of molybdenum alloy, titanium compound such as TiN, tungsten alloy, silicon compound such as SiN, nickel compound such as NiP, cobalt alloy such as CoWP, tantalum compound such as TaN, etc. Can do. Among these, wet etching using a desired etching solution, oxidation resistance to dilute sulfuric acid and hydrochloric acid, copper thermal diffusion prevention, moisture resistance, surface resistance is several tens of Ω / □ or less, and cracks In particular, a Cr / Ti composite layer or a molybdenum alloy is particularly suitable as a material that does not easily cause the occurrence of the problem and has excellent adhesion to the insulating layer 3.
導体バリア層18としてCr/Tiの複合層を用いる場合、Cr層(ビッカース硬度:1.06GPa)は絶縁層3とTi層との密着性を確保するものであり、Ti層(ビッカース硬度:1.3GPa)は導体が絶縁層3に拡散することを抑制するとともに、研磨工程におけるストッパーとして作用する。このようなCr/Tiの複合層のCr層の厚みは、例えば、10~20nmの範囲とすることができ、Ti層の厚みは、例えば、50~100nmの範囲とすることができる。Cr層の厚みが10nm未満であると、絶縁層3との密着性が不十分となり、20nmを超えると導体バリア層18の表裏導通性が低下して好ましくない。また、Ti層の厚みが50nm未満であると、導体の拡散抑制効果が不充分となり、100nmを超えると、内部応力が増大してCr層との密着性が低下することとなり好ましくない。
When a composite layer of Cr / Ti is used as the conductor barrier layer 18, the Cr layer (Vickers hardness: 1.06 GPa) ensures adhesion between the insulating layer 3 and the Ti layer, and the Ti layer (Vickers hardness: 1 .3 GPa) suppresses the diffusion of the conductor into the insulating layer 3 and acts as a stopper in the polishing process. The thickness of the Cr layer of such a Cr / Ti composite layer can be in the range of 10 to 20 nm, for example, and the thickness of the Ti layer can be in the range of 50 to 100 nm, for example. When the thickness of the Cr layer is less than 10 nm, the adhesion with the insulating layer 3 becomes insufficient, and when it exceeds 20 nm, the front and back conductivity of the conductor barrier layer 18 is not preferable. Further, if the thickness of the Ti layer is less than 50 nm, the effect of suppressing the diffusion of the conductor becomes insufficient, and if it exceeds 100 nm, the internal stress increases and the adhesion with the Cr layer is lowered, which is not preferable.
また、導体バリア層18として用いるモリブデン合金としては、例えば、下記のようなモリブデン合金を挙げることができる。
MoNiTi : 24~27.7%Ni/6~12%Ti
MoTiZrC : 0.5%Ti/0.08%Zr/0.01~0.04%C
MoLa : 0.03~0.7%La2O3
MoY : 0.47%Y2O3/0.08%Ce2O3
MoRe : 5.0%Re ; 41%Re
MoW : 20%W ; 30%W ; 50%W
MoCu : 15.0%Cu ; 30%Cu
MoNb : 9.71%Nb
MoTa : 10.75%Ta Moreover, as a molybdenum alloy used as theconductor barrier layer 18, the following molybdenum alloys can be mentioned, for example.
MoNiTi: 24 to 27.7% Ni / 6 to 12% Ti
MoTiZrC: 0.5% Ti / 0.08% Zr / 0.01 to 0.04% C
MoLa: 0.03 to 0.7% La 2 O 3
MoY: 0.47% Y 2 O 3 /0.08% Ce 2 O 3
MoRe: 5.0% Re; 41% Re
MoW: 20% W; 30% W; 50% W
MoCu: 15.0% Cu; 30% Cu
MoNb: 9.71% Nb
MoTa: 10.75% Ta
MoNiTi : 24~27.7%Ni/6~12%Ti
MoTiZrC : 0.5%Ti/0.08%Zr/0.01~0.04%C
MoLa : 0.03~0.7%La2O3
MoY : 0.47%Y2O3/0.08%Ce2O3
MoRe : 5.0%Re ; 41%Re
MoW : 20%W ; 30%W ; 50%W
MoCu : 15.0%Cu ; 30%Cu
MoNb : 9.71%Nb
MoTa : 10.75%Ta Moreover, as a molybdenum alloy used as the
MoNiTi: 24 to 27.7% Ni / 6 to 12% Ti
MoTiZrC: 0.5% Ti / 0.08% Zr / 0.01 to 0.04% C
MoLa: 0.03 to 0.7% La 2 O 3
MoY: 0.47% Y 2 O 3 /0.08% Ce 2 O 3
MoRe: 5.0% Re; 41% Re
MoW: 20% W; 30% W; 50% W
MoCu: 15.0% Cu; 30% Cu
MoNb: 9.71% Nb
MoTa: 10.75% Ta
これらのモリブデン合金のなかで、例えば、MoNiTi合金(ビッカース硬度:1.53GPa)は、公知の真空成膜法による形成が容易であり、且つ絶縁層3との密着性が良好であり、また、導体の拡散抑制効果、研磨工程におけるストッパー機能が良好である。このようなMoNiTi合金を用いる場合の導体バリア層18の厚みは、例えば、50~100nmの範囲とすることができる。MoNiTi合金を用いる場合の導体バリア層18の厚みが50nm未満であると、導体の拡散抑制効果が不充分となり、100nmを超えると、内部応力が増大して絶縁層3に対する密着性が低下し、また、導体バリア層18の表裏導通性が低下することとなり好ましくない。
Among these molybdenum alloys, for example, a MoNiTi alloy (Vickers hardness: 1.53 GPa) can be easily formed by a known vacuum film forming method and has good adhesion to the insulating layer 3, and The effect of suppressing the diffusion of the conductor and the stopper function in the polishing process are good. When such a MoNiTi alloy is used, the thickness of the conductor barrier layer 18 can be set in the range of 50 to 100 nm, for example. When the thickness of the conductor barrier layer 18 when using the MoNiTi alloy is less than 50 nm, the effect of suppressing the diffusion of the conductor becomes insufficient, and when it exceeds 100 nm, the internal stress increases and the adhesion to the insulating layer 3 decreases, In addition, the front and back conductivity of the conductor barrier layer 18 is undesirably lowered.
次いで、導体形成工程にて、導体バリア層18上にシード電極層を形成し、このシード電極層上に電気めっきにより導体を被着して、配線形成用の凹部4、パッド部形成用の凹部5、このパッド部形成用の凹部5内に位置する層間接続ビア形成用の貫通孔6を埋めるように導体層10を形成する(図5A)。図6は、図5Aにおいて鎖線で囲まれる部位の拡大図である。
シード電極層は、例えば、銅、ニッケル、ニッケルクロム合金等の表面抵抗が1Ω/□以下の材質が好ましく、スパッタリング法等の公知の真空成膜法により厚み10~500nmの範囲で形成することができる。尚、このシート電極層は導体層10と一体となるため、図示例では、シード電極層を省略している。また、導体層10は、配線構造体を構成する配線、パッド部、層間接続ビアを形成するものであり、例えば、銅、ニッケル、ニッケルクロム合金等の表面抵抗が1Ω/□以下の材質が好ましい。このような導体層10は、絶縁層3よりも数μm程度厚くなるように形成することができる。 Next, in a conductor forming step, a seed electrode layer is formed on theconductor barrier layer 18, and a conductor is deposited on the seed electrode layer by electroplating to form a recess 4 for forming a wiring, a recess for forming a pad portion. 5. The conductor layer 10 is formed so as to fill the through hole 6 for forming the interlayer connection via located in the recess 5 for forming the pad portion (FIG. 5A). FIG. 6 is an enlarged view of a portion surrounded by a chain line in FIG. 5A.
The seed electrode layer is preferably made of a material having a surface resistance of 1 Ω / □ or less, such as copper, nickel, nickel-chromium alloy, etc., and may be formed in a thickness range of 10 to 500 nm by a known vacuum film formation method such as sputtering. it can. Since this sheet electrode layer is integrated with theconductor layer 10, the seed electrode layer is omitted in the illustrated example. The conductor layer 10 forms a wiring, a pad portion, and an interlayer connection via constituting the wiring structure. For example, a material having a surface resistance of 1Ω / □ or less such as copper, nickel, nickel chrome alloy or the like is preferable. . Such a conductor layer 10 can be formed to be thicker than the insulating layer 3 by about several μm.
シード電極層は、例えば、銅、ニッケル、ニッケルクロム合金等の表面抵抗が1Ω/□以下の材質が好ましく、スパッタリング法等の公知の真空成膜法により厚み10~500nmの範囲で形成することができる。尚、このシート電極層は導体層10と一体となるため、図示例では、シード電極層を省略している。また、導体層10は、配線構造体を構成する配線、パッド部、層間接続ビアを形成するものであり、例えば、銅、ニッケル、ニッケルクロム合金等の表面抵抗が1Ω/□以下の材質が好ましい。このような導体層10は、絶縁層3よりも数μm程度厚くなるように形成することができる。 Next, in a conductor forming step, a seed electrode layer is formed on the
The seed electrode layer is preferably made of a material having a surface resistance of 1 Ω / □ or less, such as copper, nickel, nickel-chromium alloy, etc., and may be formed in a thickness range of 10 to 500 nm by a known vacuum film formation method such as sputtering. it can. Since this sheet electrode layer is integrated with the
次に、研磨工程にて、導体層10を研磨する(図5B)。図7は、図5Bにおいて鎖線で囲まれる部位の拡大図である。導体層10の研磨は、CMP(Chemical Mechanical Polishing、化学機械研磨)にて行うことができる。この導体層10の化学機械研磨では、導体バリア層18の硬度が導体層10の硬度よりも大きいので、導体バリア層18が研磨のストッパーとして作用する。導体層10の化学機械研磨は、絶縁層3の表面3a上に位置する導体バリア層18に達した時点で停止することができる。しかしながらこれに限定されず、導体層10の研磨工程は、エッチング、電解研磨などを含む化学研磨であってもよい。導体層10の化学研磨では、導体バリア層18より導体層10の選択性が高い方法を用いることができる。これによって導体層10を選択的に研磨することができ、導体バリア層18が研磨のストッパーとして作用する。導体層10の化学研磨は、絶縁層3の表面3a上に位置する導体バリア層18に達した時点で停止することができる。また、導体層10の研磨工程は、化学研磨と化学機械研磨の組み合わせであってもよい。例えば、導体層10の大部分を化学研磨した後、残存物を化学機械研磨により除去してもよい。これにより、絶縁層3を研磨することなく、配線形成用の凹部4に位置する配線14、パッド部形成用の凹部5に位置するパッド部15、層間接続ビア形成用の貫通孔6に位置する層間接続ビア16からなる配線層11を形成することができ、絶縁信頼性に優れる配線構造体を簡便に製造することができる。
次いで、除去工程にて、絶縁層3の表面3a上に位置して露出している導体バリア層18を除去する(図5C)。図8は、図5Cにおいて鎖線で囲まれる部位の拡大図である。導体バリア層18は、フラッシュエッチングを行うことにより除去することができる。例えば、導体バリア層18がCr/Tiの複合層である場合、まず、水酸化カリウムと過酸化水素の混合液を使用してTi層をフラッシュエッチングして除去し、その後、フェリシアン化カリウム水溶液、または硝酸セリウムアンモニウム水溶液を使用してCr層をフラッシュエッチングして除去することができる。また、導体バリア層18がモリブデン合金で形成されている場合、例えば、水酸化カリウムと過酸化水素の混合液をフラッシュエッチング液として使用して除去することができる。 Next, theconductor layer 10 is polished in a polishing step (FIG. 5B). FIG. 7 is an enlarged view of a portion surrounded by a chain line in FIG. 5B. The conductor layer 10 can be polished by CMP (Chemical Mechanical Polishing). In the chemical mechanical polishing of the conductor layer 10, the hardness of the conductor barrier layer 18 is larger than the hardness of the conductor layer 10, so that the conductor barrier layer 18 acts as a polishing stopper. The chemical mechanical polishing of the conductor layer 10 can be stopped when the conductor barrier layer 18 located on the surface 3a of the insulating layer 3 is reached. However, it is not limited to this, The polishing process of the conductor layer 10 may be chemical polishing including etching, electrolytic polishing, and the like. In the chemical polishing of the conductor layer 10, a method in which the selectivity of the conductor layer 10 is higher than that of the conductor barrier layer 18 can be used. As a result, the conductor layer 10 can be selectively polished, and the conductor barrier layer 18 acts as a polishing stopper. The chemical polishing of the conductor layer 10 can be stopped when the conductor barrier layer 18 located on the surface 3a of the insulating layer 3 is reached. Further, the polishing process of the conductor layer 10 may be a combination of chemical polishing and chemical mechanical polishing. For example, after most of the conductor layer 10 is chemically polished, the residue may be removed by chemical mechanical polishing. Thus, without polishing the insulating layer 3, the wiring 14 is located in the wiring forming recess 4, the pad 15 is located in the pad forming recess 5, and the interlayer connection via forming through hole 6 is located. The wiring layer 11 including the interlayer connection via 16 can be formed, and a wiring structure having excellent insulation reliability can be easily manufactured.
Next, in the removing step, the exposedconductor barrier layer 18 located on the surface 3a of the insulating layer 3 is removed (FIG. 5C). FIG. 8 is an enlarged view of a portion surrounded by a chain line in FIG. 5C. The conductor barrier layer 18 can be removed by performing flash etching. For example, when the conductor barrier layer 18 is a composite layer of Cr / Ti, first, the Ti layer is removed by flash etching using a mixed solution of potassium hydroxide and hydrogen peroxide, and then an aqueous potassium ferricyanide solution, or The Cr layer can be removed by flash etching using an aqueous cerium ammonium nitrate solution. Further, when the conductor barrier layer 18 is formed of a molybdenum alloy, for example, a mixed solution of potassium hydroxide and hydrogen peroxide can be removed using a flash etching solution.
次いで、除去工程にて、絶縁層3の表面3a上に位置して露出している導体バリア層18を除去する(図5C)。図8は、図5Cにおいて鎖線で囲まれる部位の拡大図である。導体バリア層18は、フラッシュエッチングを行うことにより除去することができる。例えば、導体バリア層18がCr/Tiの複合層である場合、まず、水酸化カリウムと過酸化水素の混合液を使用してTi層をフラッシュエッチングして除去し、その後、フェリシアン化カリウム水溶液、または硝酸セリウムアンモニウム水溶液を使用してCr層をフラッシュエッチングして除去することができる。また、導体バリア層18がモリブデン合金で形成されている場合、例えば、水酸化カリウムと過酸化水素の混合液をフラッシュエッチング液として使用して除去することができる。 Next, the
Next, in the removing step, the exposed
これにより、配線構造体1が得られる。この配線構造体1は、絶縁層3の凹部4に位置する配線14、凹部5に位置するパッド部15、このパッド部15と一体となり貫通孔6に位置する層間接続ビア16からなる配線層11を備えている。そして、配線14の表面14a、およびパッド部15の表面15aは、絶縁層3の表面3aから突出した状態となっている。導体バリア層18の端部18aは、絶縁層3の表面3aと同じ高さになっている。すなわち、配線14の表面14a、およびパッド部15の表面15aは、導体バリア層18の端部18aより突出した状態となっている。
尚、層間接続ビア形成用の貫通孔6の底部には、導体バリア層18が残存し、基材2が配線、パッド部を有する場合、これらと貫通孔6内の層間接続ビア16との間に導体バリア層18が介在することになる。しかし、導体バリア層18は、上記のように厚みが100nm以下であり、このため、表面抵抗が数十Ω/□以上であっても、層間接続ビアの導通機能に支障を与えることはない。
本発明では、上記の一連の工程を所望の回数繰り返すことにより、配線構造体層を多層に形成することができる。例えば、上記の一連の工程を3回繰り返すことにより、図2に示すような3層構造の配線構造体1MLを製造することができる。図2に示されるように、3層構造の配線構造体1MLでは、配線構造体1Aが備える配線層11Aが、絶縁層3Aから突出しているので、配線構造体1A上に位置する配線構造体1Bの絶縁層3Bと配線層11Aとが係合した状態に製造することができる。同様に、配線構造体1Bが備える配線層11Bは、絶縁層3Bから突出しているので、配線構造体1B上に位置する配線構造体1Cの絶縁層3Cと配線層11Bとが係合した状態に製造することができる。したがって、配線層11Aに対する絶縁層3Bの密着強度、配線層11Bに対する絶縁層3Cの密着強度が高く、絶縁信頼性に優れるとともに、配線構造体相互の密着性に優れた配線構造体1MLを提供することができる。また、配線構造体相互の密着性を向上させるために配線の表面、パッド部の表面を粗化した従来の配線構造体と比べて、高周波特性に優れた配線構造体1MLを提供することができる。
尚、上記説明では、3層構造の配線構造体を例としているが、多層構造の配線構造体の構成層の数には特に限定はない。また、配線構造体が有する配線層の構成にも特に限定はない。 Thereby, thewiring structure 1 is obtained. The wiring structure 1 includes a wiring layer 11 including a wiring 14 located in the concave portion 4 of the insulating layer 3, a pad portion 15 located in the concave portion 5, and an interlayer connection via 16 located integrally with the pad portion 15 and located in the through hole 6. It has. The surface 14 a of the wiring 14 and the surface 15 a of the pad portion 15 are in a state of protruding from the surface 3 a of the insulating layer 3. The end 18 a of the conductor barrier layer 18 is at the same height as the surface 3 a of the insulating layer 3. That is, the surface 14 a of the wiring 14 and the surface 15 a of the pad portion 15 are in a state of protruding from the end portion 18 a of the conductor barrier layer 18.
In the case where theconductor barrier layer 18 remains at the bottom of the through hole 6 for forming the interlayer connection via and the base material 2 has wiring and pad portions, between these and the interlayer connection via 16 in the through hole 6. The conductor barrier layer 18 is interposed between the two. However, the conductor barrier layer 18 has a thickness of 100 nm or less as described above. Therefore, even if the surface resistance is several tens Ω / □ or more, the conduction function of the interlayer connection via is not hindered.
In the present invention, the wiring structure layer can be formed in multiple layers by repeating the above series of steps a desired number of times. For example, by repeating the above series of steps three times, a wiring structure 1ML having a three-layer structure as shown in FIG. 2 can be manufactured. As shown in FIG. 2, thewiring structure 1 ML of a three-layer structure, the wiring layer 11A on which the wiring structure 1A is provided is therefore protrudes from the insulating layer 3A, a wiring structure located on the interconnection structure 1A The insulating layer 3B of 1B and the wiring layer 11A can be manufactured in an engaged state. Similarly, since the wiring layer 11B provided in the wiring structure 1B protrudes from the insulating layer 3B, the insulating layer 3C of the wiring structure 1C located on the wiring structure 1B and the wiring layer 11B are engaged with each other. Can be manufactured. Therefore, the wiring structure 1 ML is provided that has high adhesion strength of the insulating layer 3B to the wiring layer 11A, high adhesion strength of the insulating layer 3C to the wiring layer 11B, excellent insulation reliability, and excellent adhesion between the wiring structures. can do. In addition, it is possible to provide a wiring structure 1 ML having excellent high frequency characteristics as compared with a conventional wiring structure in which the surface of the wiring and the surface of the pad portion are roughened in order to improve the adhesion between the wiring structures. it can.
In the above description, the wiring structure having a three-layer structure is taken as an example, but the number of constituent layers of the wiring structure having a multilayer structure is not particularly limited. Further, the configuration of the wiring layer included in the wiring structure is not particularly limited.
尚、層間接続ビア形成用の貫通孔6の底部には、導体バリア層18が残存し、基材2が配線、パッド部を有する場合、これらと貫通孔6内の層間接続ビア16との間に導体バリア層18が介在することになる。しかし、導体バリア層18は、上記のように厚みが100nm以下であり、このため、表面抵抗が数十Ω/□以上であっても、層間接続ビアの導通機能に支障を与えることはない。
本発明では、上記の一連の工程を所望の回数繰り返すことにより、配線構造体層を多層に形成することができる。例えば、上記の一連の工程を3回繰り返すことにより、図2に示すような3層構造の配線構造体1MLを製造することができる。図2に示されるように、3層構造の配線構造体1MLでは、配線構造体1Aが備える配線層11Aが、絶縁層3Aから突出しているので、配線構造体1A上に位置する配線構造体1Bの絶縁層3Bと配線層11Aとが係合した状態に製造することができる。同様に、配線構造体1Bが備える配線層11Bは、絶縁層3Bから突出しているので、配線構造体1B上に位置する配線構造体1Cの絶縁層3Cと配線層11Bとが係合した状態に製造することができる。したがって、配線層11Aに対する絶縁層3Bの密着強度、配線層11Bに対する絶縁層3Cの密着強度が高く、絶縁信頼性に優れるとともに、配線構造体相互の密着性に優れた配線構造体1MLを提供することができる。また、配線構造体相互の密着性を向上させるために配線の表面、パッド部の表面を粗化した従来の配線構造体と比べて、高周波特性に優れた配線構造体1MLを提供することができる。
尚、上記説明では、3層構造の配線構造体を例としているが、多層構造の配線構造体の構成層の数には特に限定はない。また、配線構造体が有する配線層の構成にも特に限定はない。 Thereby, the
In the case where the
In the present invention, the wiring structure layer can be formed in multiple layers by repeating the above series of steps a desired number of times. For example, by repeating the above series of steps three times, a wiring structure 1ML having a three-layer structure as shown in FIG. 2 can be manufactured. As shown in FIG. 2, the
In the above description, the wiring structure having a three-layer structure is taken as an example, but the number of constituent layers of the wiring structure having a multilayer structure is not particularly limited. Further, the configuration of the wiring layer included in the wiring structure is not particularly limited.
ここで、モールド51についてより詳細に説明する。モールド51を構成するモールド用基材52の材質は、インプリントに使用する被成形樹脂材料が光硬化性である場合には、これらを硬化させるための照射光が透過可能な材料を用いることができ、例えば、石英ガラス、珪酸系ガラス、フッ化カルシウム、フッ化マグネシウム、アクリルガラス等のガラス類の他、サファイアや窒化ガリウム、更にはポリカーボネート、ポリスチレン、アクリル、ポリプロピレン等の樹脂、あるいは、これらの任意の積層材を用いることができる。また、使用する被成形樹脂材料が光硬化性ではない場合には、モールド51は光透過性を具備しなくてもよく、上記の材料以外に、例えば、シリコンやニッケル、チタン、アルミニウム等の金属およびこれらの合金、酸化物、窒化物、あるいは、これらの任意の積層材を用いることができる。
Here, the mold 51 will be described in more detail. When the molding resin material used for imprinting is photocurable, the material of the mold base 52 constituting the mold 51 is a material that can transmit irradiation light for curing them. For example, glass such as quartz glass, silicate glass, calcium fluoride, magnesium fluoride, and acrylic glass, sapphire and gallium nitride, and resins such as polycarbonate, polystyrene, acrylic, and polypropylene, or these Any laminate material can be used. In addition, when the molding resin material to be used is not photocurable, the mold 51 does not have to be light transmissive, and other than the above materials, for example, metal such as silicon, nickel, titanium, and aluminum And these alloys, oxides, nitrides, or these arbitrary laminated materials can be used.
モールド用基材52の厚みは、材質の強度、取り扱い適性等を考慮して設定することができ、例えば、300μm~10mm程度の範囲で適宜設定することができる。尚、モールド用基材52の主面52a側が2段以上の凸構造、またはメサ構造となっていてもよく、この場合、最上段が主面52aであり、この主面52aに凹凸構造53が位置する。
モールド51が備える凸形状部54は、上記のように配線形成用の凹部を絶縁層に形成するための凸部であり、例えば、幅は0.5~10μm、主面52aからの高さは0.5~10μmの範囲で適宜設定することができる。
また、凸形状部55は、上記のようにパッド部形成用の凹部を絶縁層に形成するための凸部である。この凸形状部55の平面視形状が円形状である場合、例えば、凸形状部55の直径は5~30μm、主面52aからの高さは0.5~10μmの範囲で適宜設定することができる。 The thickness of themold base 52 can be set in consideration of the strength of the material, suitability for handling, and the like, and can be set as appropriate within a range of about 300 μm to 10 mm, for example. In addition, the main surface 52a side of the mold base 52 may have a convex structure having two or more steps, or a mesa structure. In this case, the uppermost step is the main surface 52a, and the uneven structure 53 is formed on the main surface 52a. To position.
Theconvex part 54 provided in the mold 51 is a convex part for forming the concave part for forming the wiring in the insulating layer as described above. For example, the width is 0.5 to 10 μm, and the height from the main surface 52a is The thickness can be appropriately set in the range of 0.5 to 10 μm.
Moreover, the convex-shapedpart 55 is a convex part for forming the recessed part for pad part formation in an insulating layer as mentioned above. In the case where the convex shape portion 55 has a circular shape in plan view, for example, the diameter of the convex shape portion 55 may be appropriately set within the range of 5 to 30 μm and the height from the main surface 52a within the range of 0.5 to 10 μm. it can.
モールド51が備える凸形状部54は、上記のように配線形成用の凹部を絶縁層に形成するための凸部であり、例えば、幅は0.5~10μm、主面52aからの高さは0.5~10μmの範囲で適宜設定することができる。
また、凸形状部55は、上記のようにパッド部形成用の凹部を絶縁層に形成するための凸部である。この凸形状部55の平面視形状が円形状である場合、例えば、凸形状部55の直径は5~30μm、主面52aからの高さは0.5~10μmの範囲で適宜設定することができる。 The thickness of the
The
Moreover, the convex-shaped
また、凸形状部55の頂部平面55aの中央部に位置する遮光層56は、光硬化性の被成形樹脂材料を用いたインプリントにおいて、モールド用基材52の他方の面52b側からの照射光による被成形樹脂材料の光硬化が生じない程度に遮光可能な層である。このような遮光層56は、例えば、光学濃度(OD)が2以上、好ましくは3以上の層とすることができ、その材質は、例えば、クロム、モリブデン、チタン、アルミニウム、銀、ニッケル等を挙げることができる。遮光層56の厚みは、光学濃度が2以上となるように適宜設定することができる。例えば、遮光層56の材質がクロムである場合、厚みは50~150nm程度が好ましい。クロムの遮光層56の厚みが50nm未満であると、光学濃度が2未満となり遮光性が不十分であり、特に高照度の光源を使用する場合には、より高い遮光性を得るために、クロムの遮光層56の厚みは100nm以上であることが好適である。また、クロムの遮光層56の厚みが150nmを超えると、遮光層56の内部応力が高くなり、剥離を生じ易くなって耐久性が低下するので好ましくない。
また、使用するモールドは、遮光層56を具備しなくてもよく、代わりに凸形状部55の頂部平面55aの略中央部にはさらなる凸形状部が位置してもよい。この場合、さらなる凸形状部は、層間接続ビア形成用の貫通孔を絶縁層に形成するための凸部である。この凸形状部の平面視形状が円形状である場合、例えば、凸形状部は円柱形状、截頭円錐形状等であり、その直径は2~12μmの範囲で適宜設定することができ、厚みは上記の絶縁層3の厚みtに対応したものとなる。このようなモールドは、凸形状部55とさらなる凸形状部との厚みが、絶縁層3の厚みに対応していることから、絶縁層3を貫通することができる。
上述の配線構造体の製造方法の実施形態は例示であり、本発明は当該実施形態に限定されるものではない。例えば、上述の実施形態では、インプリント法により絶縁層3を形成しているが、フォトリソグラフィー法により絶縁層3を形成してもよい。 Further, thelight shielding layer 56 located at the center of the top flat surface 55a of the convex portion 55 is irradiated from the other surface 52b side of the mold base 52 in imprinting using a photocurable resin material to be molded. It is a layer that can be shielded to the extent that light curing of the resin material to be molded by light does not occur. Such a light shielding layer 56 can be, for example, a layer having an optical density (OD) of 2 or more, preferably 3 or more, and the material thereof is, for example, chromium, molybdenum, titanium, aluminum, silver, nickel or the like. Can be mentioned. The thickness of the light shielding layer 56 can be appropriately set so that the optical density is 2 or more. For example, when the material of the light shielding layer 56 is chromium, the thickness is preferably about 50 to 150 nm. When the thickness of the chromium light-shielding layer 56 is less than 50 nm, the optical density is less than 2 and the light-shielding property is insufficient. In particular, when using a light source with high illuminance, The thickness of the light shielding layer 56 is preferably 100 nm or more. On the other hand, if the thickness of the chromium light-shielding layer 56 exceeds 150 nm, the internal stress of the light-shielding layer 56 is increased, peeling is likely to occur, and the durability is lowered.
In addition, the mold to be used may not include thelight shielding layer 56, and a further convex shape portion may be positioned at a substantially central portion of the top flat surface 55 a of the convex shape portion 55 instead. In this case, the further convex portion is a convex portion for forming a through hole for forming an interlayer connection via in the insulating layer. When the shape of the convex portion is a circular shape, for example, the convex portion is a columnar shape, a truncated cone shape, etc., and the diameter can be appropriately set in the range of 2 to 12 μm, and the thickness is This corresponds to the thickness t of the insulating layer 3 described above. Such a mold can penetrate the insulating layer 3 because the thickness of the convex portion 55 and the further convex portion corresponds to the thickness of the insulating layer 3.
The above-described embodiment of the method for manufacturing a wiring structure is an example, and the present invention is not limited to this embodiment. For example, in the above-described embodiment, the insulatinglayer 3 is formed by the imprint method, but the insulating layer 3 may be formed by a photolithography method.
また、使用するモールドは、遮光層56を具備しなくてもよく、代わりに凸形状部55の頂部平面55aの略中央部にはさらなる凸形状部が位置してもよい。この場合、さらなる凸形状部は、層間接続ビア形成用の貫通孔を絶縁層に形成するための凸部である。この凸形状部の平面視形状が円形状である場合、例えば、凸形状部は円柱形状、截頭円錐形状等であり、その直径は2~12μmの範囲で適宜設定することができ、厚みは上記の絶縁層3の厚みtに対応したものとなる。このようなモールドは、凸形状部55とさらなる凸形状部との厚みが、絶縁層3の厚みに対応していることから、絶縁層3を貫通することができる。
上述の配線構造体の製造方法の実施形態は例示であり、本発明は当該実施形態に限定されるものではない。例えば、上述の実施形態では、インプリント法により絶縁層3を形成しているが、フォトリソグラフィー法により絶縁層3を形成してもよい。 Further, the
In addition, the mold to be used may not include the
The above-described embodiment of the method for manufacturing a wiring structure is an example, and the present invention is not limited to this embodiment. For example, in the above-described embodiment, the insulating
図9は、本発明の配線構造体の製造方法の一実施形態を説明するための工程図であり、絶縁層形成工程において、絶縁層上にパッド部形成用の凹部と、当該凹部内に位置する層間接続ビア形成用の貫通孔と、配線形成用の凹部とを有する絶縁層を、フォトリソグラフィー法により形成する変形例を示している。図9において、図3および図4に示す要素と同じ要素には同一の符号を付した。
ここでは、絶縁層上に、パッド部形成用の凹部と、当該凹部内に位置する層間接続ビア形成用の貫通孔と、配線形成用の凹部とを有する絶縁層をフォトリソグラフィー法により形成するためのマスク91を準備する(図9A)。このマスク91は、露光光を透過する透光領域93と、露光光の一部を透過する半透光領域94、95と、露光光を遮光する遮光領域96と、を有している。絶縁層上の凹部が形成される領域には、平面視形状が線状の半透光領域94と、平面視形状が円形状の半透光領域95が存在している。平面視形状が線状の半透光領域94は、配線形成用の凹部を絶縁層に形成するための領域である。一方、平面視形状が円形状の半透光領域95は、パッド部形成用の凹部を絶縁層に形成するための領域であり、この半透光領域95の略中央部には遮光領域96が位置している。尚、所望の半透光領域95からは、線状の半透光領域94が引き出されている。しかしながら、複数の半透光領域95の中には、線状の半透光領域94と離間しているものが存在してもよい。このような多階調フォトマスクは、露光光の透過量が各領域により異なるので、この多階調フォトマスクを用いて露光・現像を行うことにより、少なくとも3つの厚さを有するパターンを形成することができる。しかしながらこれに限定されず、例えば、透光領域と遮光領域を有するフォトマスクを用いて2段階露光を行ってもよい。この場合、1回の露光では半透光領域94、95を遮光するマスクを用い、もう1回の露光では半透光領域94、95を透光するマスクを用いることで、多階調露光を行うことができる。 FIG. 9 is a process diagram for explaining an embodiment of the method for manufacturing a wiring structure according to the present invention. In the insulating layer forming step, a recessed part for forming a pad part on the insulating layer and a position in the recessed part are shown. In this modification, an insulating layer having a through hole for forming an interlayer connection via and a recess for forming a wiring is formed by a photolithography method. 9, the same elements as those shown in FIGS. 3 and 4 are denoted by the same reference numerals.
Here, an insulating layer having a recess for forming a pad portion, a through hole for forming an interlayer connection via located in the recess, and a recess for forming a wiring is formed on the insulating layer by a photolithography method. Amask 91 is prepared (FIG. 9A). The mask 91 includes a light-transmitting region 93 that transmits exposure light, semi-transparent regions 94 and 95 that transmit part of the exposure light, and a light-blocking region 96 that blocks exposure light. In the region where the concave portion is formed on the insulating layer, there are a semi-transparent region 94 having a linear shape in plan view and a semi-transparent region 95 having a circular shape in plan view. The semi-transparent region 94 having a linear shape in plan view is a region for forming a recess for forming a wiring in the insulating layer. On the other hand, the semi-transparent region 95 having a circular shape in plan view is a region for forming a recess for forming the pad portion in the insulating layer, and a light-shielding region 96 is provided at a substantially central portion of the semi-transparent region 95. positioned. Note that a linear semi-transparent region 94 is drawn out from the desired semi-transparent region 95. However, some of the plurality of semi-transparent regions 95 may be separated from the linear semi-transparent region 94. Since such a multi-tone photomask has a different amount of transmission of exposure light depending on each region, a pattern having at least three thicknesses is formed by performing exposure and development using this multi-tone photomask. be able to. However, the present invention is not limited to this. For example, two-step exposure may be performed using a photomask having a light transmitting region and a light shielding region. In this case, a multi-tone exposure is performed by using a mask that shields the semi-transparent regions 94 and 95 in one exposure and using a mask that transmits the semi-transparent regions 94 and 95 in the other exposure. It can be carried out.
ここでは、絶縁層上に、パッド部形成用の凹部と、当該凹部内に位置する層間接続ビア形成用の貫通孔と、配線形成用の凹部とを有する絶縁層をフォトリソグラフィー法により形成するためのマスク91を準備する(図9A)。このマスク91は、露光光を透過する透光領域93と、露光光の一部を透過する半透光領域94、95と、露光光を遮光する遮光領域96と、を有している。絶縁層上の凹部が形成される領域には、平面視形状が線状の半透光領域94と、平面視形状が円形状の半透光領域95が存在している。平面視形状が線状の半透光領域94は、配線形成用の凹部を絶縁層に形成するための領域である。一方、平面視形状が円形状の半透光領域95は、パッド部形成用の凹部を絶縁層に形成するための領域であり、この半透光領域95の略中央部には遮光領域96が位置している。尚、所望の半透光領域95からは、線状の半透光領域94が引き出されている。しかしながら、複数の半透光領域95の中には、線状の半透光領域94と離間しているものが存在してもよい。このような多階調フォトマスクは、露光光の透過量が各領域により異なるので、この多階調フォトマスクを用いて露光・現像を行うことにより、少なくとも3つの厚さを有するパターンを形成することができる。しかしながらこれに限定されず、例えば、透光領域と遮光領域を有するフォトマスクを用いて2段階露光を行ってもよい。この場合、1回の露光では半透光領域94、95を遮光するマスクを用い、もう1回の露光では半透光領域94、95を透光するマスクを用いることで、多階調露光を行うことができる。 FIG. 9 is a process diagram for explaining an embodiment of the method for manufacturing a wiring structure according to the present invention. In the insulating layer forming step, a recessed part for forming a pad part on the insulating layer and a position in the recessed part are shown. In this modification, an insulating layer having a through hole for forming an interlayer connection via and a recess for forming a wiring is formed by a photolithography method. 9, the same elements as those shown in FIGS. 3 and 4 are denoted by the same reference numerals.
Here, an insulating layer having a recess for forming a pad portion, a through hole for forming an interlayer connection via located in the recess, and a recess for forming a wiring is formed on the insulating layer by a photolithography method. A
次に、基材2上に光硬化性絶縁レジストを供給し、基材2上に光硬化性絶縁レジスト層3′を形成する(図9B)。図示例では、基材2は便宜的に基板形状に記載しているが、所望の配線、パッド部を有するものであってよい。使用する光硬化性絶縁レジストとしては、例えば、エポキシ系、ベンゾシクロブテン系、ポリベンゾオキサゾール系、ポリイミド系、フッ素系、マレイミド系等を挙げることができる。
次いで、マスク91を当接し、マスク91の裏面92b側から光照射を行い、光硬化性絶縁レジスト層3′を硬化させて絶縁材層3″とするとともに、マスク91の遮光領域96、半透光領域94、95と基材2との間に位置する光硬化性絶縁レジスト層3′を全部または一部未硬化のまま残存させる(図9C)。マスク91側から照射する光は、遮光領域96の直下に位置する光硬化性絶縁レジスト層3′の硬化が生じるような光の回り込みを防止するため、平行光を使用することが好適である。
次に、絶縁材層3″および残存する光硬化性絶縁レジスト層3′と、マスク91を引き離す。この工程では、残存する光硬化性絶縁レジスト層3′の少なくとも一部がマスク91に付着して、マスク91と共に除去されてもよい。 Next, a photocurable insulating resist is supplied onto thesubstrate 2 to form a photocurable insulating resist layer 3 ′ on the substrate 2 (FIG. 9B). In the illustrated example, the base material 2 is described in a substrate shape for convenience, but may have a desired wiring and pad portion. Examples of the photo-curable insulating resist used include epoxy-based, benzocyclobutene-based, polybenzoxazole-based, polyimide-based, fluorine-based, and maleimide-based resists.
Next, themask 91 is brought into contact, and light irradiation is performed from the back surface 92b side of the mask 91 to cure the photocurable insulating resist layer 3 ′ to form an insulating material layer 3 ″. The photocurable insulating resist layer 3 ′ located between the light regions 94 and 95 and the base material 2 is left in the whole or part thereof uncured (FIG. 9C). It is preferable to use parallel light in order to prevent light from wrapping around such that the photo-curable insulating resist layer 3 ′ located directly below 96 is cured.
Next, the insulatingmaterial layer 3 ″ and the remaining photocurable insulating resist layer 3 ′ are separated from the mask 91. In this step, at least a part of the remaining photocurable insulating resist layer 3 ′ adheres to the mask 91. Then, it may be removed together with the mask 91.
次いで、マスク91を当接し、マスク91の裏面92b側から光照射を行い、光硬化性絶縁レジスト層3′を硬化させて絶縁材層3″とするとともに、マスク91の遮光領域96、半透光領域94、95と基材2との間に位置する光硬化性絶縁レジスト層3′を全部または一部未硬化のまま残存させる(図9C)。マスク91側から照射する光は、遮光領域96の直下に位置する光硬化性絶縁レジスト層3′の硬化が生じるような光の回り込みを防止するため、平行光を使用することが好適である。
次に、絶縁材層3″および残存する光硬化性絶縁レジスト層3′と、マスク91を引き離す。この工程では、残存する光硬化性絶縁レジスト層3′の少なくとも一部がマスク91に付着して、マスク91と共に除去されてもよい。 Next, a photocurable insulating resist is supplied onto the
Next, the
Next, the insulating
次いで、上記の工程と同様に、絶縁材層3″を現像して残存する光硬化性絶縁レジスト層3′を除去し、ポストベーク処理を施す。これにより、配線形成用の凹部4と、パッド部形成用の凹部5と、この凹部5内に位置する層間接続ビア形成用の貫通孔6を有する絶縁層3を得ることができる(図4B)。
Next, as in the above step, the insulating material layer 3 ″ is developed to remove the remaining photocurable insulating resist layer 3 ′ and subjected to a post-bake treatment. An insulating layer 3 having a recess 5 for forming a portion and a through hole 6 for forming an interlayer connection via located in the recess 5 can be obtained (FIG. 4B).
[電子装置]
図10は、本発明の電子装置の一実施形態を示す概略部分断面図であり、図11は、図10において円で囲まれた箇所の部分拡大断面図である。図10、図11において、電子装置100は、コア基板31上に多層の配線構造体1MLを形成し、接続パッド81を介して半導体素子101を実装したものである。この実施形態では、多層の配線構造体1MLは、上述の本発明の配線構造体であり、このような多層の配線構造体1MLは、本発明の製造方法により製造することができ、ここでの説明は省略する。
尚、図10では、図面が煩雑になることを避けるために、多層の配線構造体1MLを構成する層間絶縁層である絶縁層3A,3B,3C、およびソルダーレジスト71、アンダーフィル樹脂72には斜線を付していない。また、半導体素子101は、例えば、メモリー素子、ロジック素子等とすることができるが、図示例では、その構造に関係なく画一的に斜線を付している。
コア基板31は、コア基材32と、このコア基材32の両面に複数の導体層35が絶縁層34を介して積層した多層構造を有している。 [Electronic device]
FIG. 10 is a schematic partial cross-sectional view showing an embodiment of the electronic device of the present invention, and FIG. 11 is a partially enlarged cross-sectional view of a portion surrounded by a circle in FIG. 10 and 11, theelectronic device 100 is obtained by forming a multilayer wiring structure 1 ML on a core substrate 31 and mounting a semiconductor element 101 via connection pads 81. In this embodiment, the multilayer wiring structure 1 ML is the above-described wiring structure of the present invention, and such a multilayer wiring structure 1 ML can be manufactured by the manufacturing method of the present invention. The description in is omitted.
In FIG. 10, in order to avoid drawing from being complicated, the insulatinglayer 3A is an interlayer insulating layer constituting the multilayer wiring structure 1 ML, 3B, 3C, and the solder resist 71, the underfill resin 72 Is not shaded. The semiconductor element 101 can be, for example, a memory element, a logic element, or the like. In the illustrated example, the semiconductor element 101 is uniformly shaded regardless of its structure.
Thecore substrate 31 has a multilayer structure in which a core base material 32 and a plurality of conductor layers 35 are laminated on both surfaces of the core base material 32 with an insulating layer 34 interposed therebetween.
図10は、本発明の電子装置の一実施形態を示す概略部分断面図であり、図11は、図10において円で囲まれた箇所の部分拡大断面図である。図10、図11において、電子装置100は、コア基板31上に多層の配線構造体1MLを形成し、接続パッド81を介して半導体素子101を実装したものである。この実施形態では、多層の配線構造体1MLは、上述の本発明の配線構造体であり、このような多層の配線構造体1MLは、本発明の製造方法により製造することができ、ここでの説明は省略する。
尚、図10では、図面が煩雑になることを避けるために、多層の配線構造体1MLを構成する層間絶縁層である絶縁層3A,3B,3C、およびソルダーレジスト71、アンダーフィル樹脂72には斜線を付していない。また、半導体素子101は、例えば、メモリー素子、ロジック素子等とすることができるが、図示例では、その構造に関係なく画一的に斜線を付している。
コア基板31は、コア基材32と、このコア基材32の両面に複数の導体層35が絶縁層34を介して積層した多層構造を有している。 [Electronic device]
FIG. 10 is a schematic partial cross-sectional view showing an embodiment of the electronic device of the present invention, and FIG. 11 is a partially enlarged cross-sectional view of a portion surrounded by a circle in FIG. 10 and 11, the
In FIG. 10, in order to avoid drawing from being complicated, the insulating
The
コア基材32は、このコア基材32を貫通する複数の表裏導通ビア部33と、コア基材32の表面(図示例では、多層の配線構造体1MLが配設されている面側)において所定の表裏導通ビア部33と接続している導体層33a、コア基材32の裏面において所定の表裏導通ビア部33と接続している導体層33a′を有している。このようなコア基材32は、例えば、ガラス、ガラスクロス含有のエポキシ樹脂、ビスマレイミドトリアジン樹脂、ポリフェニレンエーテル樹脂等の電気絶縁性材料であってよい。
このコア基材32の表面側には、絶縁層34A,34Bを介して、導体層35A,35Bが積層されている。そして、絶縁層34Aを介して上下に位置する導体層33aと導体層35Aが層間接続体36Aで接続され、絶縁層34Bを介して上下に位置する導体層35Aと導体層35Bが層間接続体36Bで接続されている。
また、コア基材32の裏面側には、絶縁層34A′,34B′を介して、導体層35A′,35B′が積層されている。そして、絶縁層34A′を介して上下に位置する導体層33a′と導体層35A′が層間接続体36A′で接続され、絶縁層34B′を介して上下に位置する導体層35A′と導体層35B′が層間接続体36B′で接続されている。また、導体層35B′の所望部位を露出するようにソルダーレジスト38が配設され、露出する導体層35B′には、はんだボール41を備えている。 Thecore base material 32 includes a plurality of front and back conductive via portions 33 penetrating the core base material 32, and the surface of the core base material 32 (in the illustrated example, the surface side on which the multilayer wiring structure 1ML is disposed). , A conductor layer 33a connected to a predetermined front / back conduction via portion 33, and a conductor layer 33a ′ connected to a predetermined front / back conduction via portion 33 on the back surface of the core substrate 32. Such a core base material 32 may be an electrically insulating material such as glass, glass cloth-containing epoxy resin, bismaleimide triazine resin, polyphenylene ether resin, or the like.
Conductive layers 35A and 35B are laminated on the surface side of the core base material 32 via insulating layers 34A and 34B. The conductor layer 33a and the conductor layer 35A positioned above and below via the insulating layer 34A are connected by the interlayer connector 36A, and the conductor layer 35A and the conductor layer 35B positioned above and below via the insulating layer 34B are connected by the interlayer connector 36B. Connected with.
Conductive layers 35A ′ and 35B ′ are laminated on the back surface side of the core base material 32 via insulating layers 34A ′ and 34B ′. Then, the conductor layer 33a 'positioned above and below the conductor layer 35A' via the insulating layer 34A 'is connected by the interlayer connector 36A', and the conductor layer 35A 'positioned above and below the conductor layer via the insulating layer 34B'. 35B 'is connected by an interlayer connector 36B'. Further, a solder resist 38 is disposed so as to expose a desired portion of the conductor layer 35B ', and the exposed conductor layer 35B' includes a solder ball 41.
このコア基材32の表面側には、絶縁層34A,34Bを介して、導体層35A,35Bが積層されている。そして、絶縁層34Aを介して上下に位置する導体層33aと導体層35Aが層間接続体36Aで接続され、絶縁層34Bを介して上下に位置する導体層35Aと導体層35Bが層間接続体36Bで接続されている。
また、コア基材32の裏面側には、絶縁層34A′,34B′を介して、導体層35A′,35B′が積層されている。そして、絶縁層34A′を介して上下に位置する導体層33a′と導体層35A′が層間接続体36A′で接続され、絶縁層34B′を介して上下に位置する導体層35A′と導体層35B′が層間接続体36B′で接続されている。また、導体層35B′の所望部位を露出するようにソルダーレジスト38が配設され、露出する導体層35B′には、はんだボール41を備えている。 The
このコア基板31の表面側に位置する導体層35Bはパッド部であり、このパッド部と接続するように多層の配線構造体1MLが配設されている。この多層の配線構造体1MLは、配線層11A,11B,11Cの3層からなる配線層11を有しており、配線層11Cのパッド部上に接続パッド81を介して半導体素子101が実装されている。図示例では、多層の配線構造体1MLの配線層11Cのパッド部上にはニッケル層61、金層62が設けられているとともに、このニッケル層61、金層62が露出するようにソルダーレジスト71が配設されている。そして、接続パッド81は熱圧着されることにより、金層62と半導体素子101の端子101aを接続している。また、半導体素子101と多層の配線構造体1MLとの間隙には、熱硬化性樹脂を充填して加熱硬化したアンダーフィル樹脂72が充填されている。このように実装される複数の半導体素子101は、異種の半導体素子であってもよい。
The conductor layer 35B located on the surface side of the core substrate 31 is a pad portion, and a multilayer wiring structure 1ML is disposed so as to be connected to the pad portion. The multilayer wiring structure 1ML has a wiring layer 11 composed of three wiring layers 11A, 11B, and 11C. A semiconductor element 101 is mounted on a pad portion of the wiring layer 11C via a connection pad 81. Has been. In the illustrated example, the nickel layer 61 on the pad portion of the multilayer wiring structure 1 ML wiring layer 11C, with the gold layer 62 is provided, a solder resist as the nickel layer 61, a gold layer 62 is exposed 71 is disposed. The connection pad 81 is thermocompression bonded to connect the gold layer 62 and the terminal 101 a of the semiconductor element 101. Further, the gap between the semiconductor element 101 and the multilayer wiring structure 1 ML underfill resin 72 was heated and cured to fill the thermosetting resin is filled. The plurality of semiconductor elements 101 mounted in this manner may be different kinds of semiconductor elements.
上記の電子装置は一例であり、本発明の配線構造体の製造方法を用いて製造できる電子装置は上記の例に限定されるものではない。例えば、電子装置は、図12に示されるような多層の配線構造体1′MLを備えるものであってもよい。図12は、図11相当の電子装置の部分拡大断面図である。図12に示される電子装置100′における多層の配線構造体1′MLは、上述の多層の配線構造体1MLを構成する最上層の配線構造体1C上に、バンプ形成用の貫通孔7を備える絶縁層3Dと、この貫通孔7に位置するバンプ17を備えるものである。このようなバンプ17の表面17aは、絶縁層3Dの表面から突出した状態となっており、このバンプ17上に、接続パッド81を介して半導体素子101の端子101aが接続されている。そして、半導体素子101と配線構造体1との間隙には、熱硬化性樹脂を充填して加熱硬化したアンダーフィル樹脂72が充填されている。このような電子装置100′は、上述のニッケル層61、金層62の成膜が不要であり、接続パッド81を介した半導体素子101の実装部位の構成が電子装置100に比べて簡易で、これにより工程数が少ないものとなり、材料コストの低減も可能である。
The above-described electronic device is an example, and the electronic device that can be manufactured using the method for manufacturing a wiring structure according to the present invention is not limited to the above example. For example, the electronic device may include a multilayer wiring structure 1 ′ ML as shown in FIG. FIG. 12 is a partial enlarged cross-sectional view of the electronic device corresponding to FIG. The multilayer wiring structure 1 ′ ML in the electronic device 100 ′ shown in FIG. 12 has a through hole 7 for bump formation on the uppermost wiring structure 1C constituting the multilayer wiring structure 1ML. An insulating layer 3D provided and a bump 17 located in the through hole 7 are provided. The surface 17 a of the bump 17 is in a state protruding from the surface of the insulating layer 3 D, and the terminal 101 a of the semiconductor element 101 is connected to the bump 17 via the connection pad 81. The gap between the semiconductor element 101 and the wiring structure 1 is filled with an underfill resin 72 that is filled with a thermosetting resin and heat-cured. Such an electronic device 100 ′ does not require the formation of the nickel layer 61 and the gold layer 62 described above, and the configuration of the mounting portion of the semiconductor element 101 via the connection pad 81 is simpler than that of the electronic device 100. As a result, the number of steps is reduced, and the material cost can be reduced.
<実施形態2>
[配線構造体]
図13は、本発明の配線構造体の一実施形態を示す部分平面図である。図14は、図13に示される配線構造体のI-I線における拡大部分断面図であり、図15は、図14に示される配線構造体の部分拡大図である。また、図16は、配線構造体を構成する絶縁層を示す部分斜視図である。なお本実施形態は、合金アンカー層とシランカップリング剤層の構成以外は、本発明の実施形態1と本質的に同じであり、その繰り返しの説明は省略する。
図13~図16において、配線構造体10は、基材2上に位置する絶縁層3と、この絶縁層3の基材2とは反対側の表面3a側に位置する配線形成用の凹部4およびパッド部形成用の凹部5と、この凹部5内に位置する層間接続ビア形成用の貫通孔6と、このような絶縁層3の凹部4に位置する配線14、凹部5に位置するパッド部15、このパッド部15と一体となり貫通孔6に位置する層間接続ビア16からなる配線層21を備えている。そして、配線14の基材2とは反対側の表面14a、およびパッド部15の基材2とは反対側の表面15aは、絶縁層3の表面3aから突出した状態となっている。また、配線14、パッド部15、層間接続ビア16と絶縁層3との間には導体バリア層18が介在している。すなわち、導体バリア層18は、絶縁層3に位置する配線形成用の凹部4、パッド部形成用の凹部5、および層間接続ビア形成用の貫通孔6の内側の表面に配置される。配線14、パッド部15、層間接続ビア16は、導体バリア層18と接している。導体バリア層18の積層方向における基材2とは反対側の端部18aは、絶縁層3の表面3a側に露出している。導体バリア層18の端部18aは、絶縁層3の表面3aと同じ高さまたは陥没した状態となっている。すなわち、配線14の表面14a、およびパッド部15の表面15aは、導体バリア層18の端部18aより突出した状態となっている。また、配線14およびパッド部15が絶縁層3の表面3a側に露出している部位には、合金アンカー層27が位置しており、この合金アンカー層27上にはシランカップリング剤層28が位置している。尚、図14では、シランカップリング剤層28を太線で示している。
基材2は、所望の配線、パッド部を有するものであってよい。但し、図示例では、基材2は便宜的に基板形状として記載している。 <Embodiment 2>
[Wiring structure]
FIG. 13 is a partial plan view showing an embodiment of a wiring structure according to the present invention. 14 is an enlarged partial sectional view taken along line II of the wiring structure shown in FIG. 13, and FIG. 15 is a partial enlarged view of the wiring structure shown in FIG. FIG. 16 is a partial perspective view showing an insulating layer constituting the wiring structure. In addition, this embodiment is essentially the same asEmbodiment 1 of this invention except the structure of an alloy anchor layer and a silane coupling agent layer, and the repeated description is abbreviate | omitted.
13 to 16, thewiring structure 10 includes an insulating layer 3 positioned on the base material 2 and a wiring forming recess 4 positioned on the surface 3a side of the insulating layer 3 opposite to the base material 2. And the recessed portion 5 for forming the pad portion, the through hole 6 for forming the interlayer connection via located in the recessed portion 5, the wiring 14 located in the recessed portion 4 of the insulating layer 3, and the pad portion located in the recessed portion 5. 15, a wiring layer 21 including an interlayer connection via 16 integrated with the pad portion 15 and positioned in the through hole 6 is provided. The surface 14 a of the wiring 14 opposite to the substrate 2 and the surface 15 a of the pad portion 15 opposite to the substrate 2 are in a state protruding from the surface 3 a of the insulating layer 3. A conductor barrier layer 18 is interposed between the wiring 14, the pad portion 15, the interlayer connection via 16, and the insulating layer 3. That is, the conductor barrier layer 18 is disposed on the inner surface of the recess 4 for forming the wiring, the recess 5 for forming the pad portion, and the through hole 6 for forming the interlayer connection via located in the insulating layer 3. The wiring 14, the pad portion 15, and the interlayer connection via 16 are in contact with the conductor barrier layer 18. An end 18 a opposite to the substrate 2 in the stacking direction of the conductor barrier layer 18 is exposed on the surface 3 a side of the insulating layer 3. The end 18a of the conductor barrier layer 18 is at the same height as the surface 3a of the insulating layer 3 or is in a depressed state. That is, the surface 14 a of the wiring 14 and the surface 15 a of the pad portion 15 are in a state of protruding from the end portion 18 a of the conductor barrier layer 18. An alloy anchor layer 27 is located at a portion where the wiring 14 and the pad portion 15 are exposed on the surface 3 a side of the insulating layer 3, and a silane coupling agent layer 28 is formed on the alloy anchor layer 27. positioned. In FIG. 14, the silane coupling agent layer 28 is indicated by a bold line.
Thebase material 2 may have desired wiring and pad portions. However, in the illustrated example, the base material 2 is described as a substrate shape for convenience.
[配線構造体]
図13は、本発明の配線構造体の一実施形態を示す部分平面図である。図14は、図13に示される配線構造体のI-I線における拡大部分断面図であり、図15は、図14に示される配線構造体の部分拡大図である。また、図16は、配線構造体を構成する絶縁層を示す部分斜視図である。なお本実施形態は、合金アンカー層とシランカップリング剤層の構成以外は、本発明の実施形態1と本質的に同じであり、その繰り返しの説明は省略する。
図13~図16において、配線構造体10は、基材2上に位置する絶縁層3と、この絶縁層3の基材2とは反対側の表面3a側に位置する配線形成用の凹部4およびパッド部形成用の凹部5と、この凹部5内に位置する層間接続ビア形成用の貫通孔6と、このような絶縁層3の凹部4に位置する配線14、凹部5に位置するパッド部15、このパッド部15と一体となり貫通孔6に位置する層間接続ビア16からなる配線層21を備えている。そして、配線14の基材2とは反対側の表面14a、およびパッド部15の基材2とは反対側の表面15aは、絶縁層3の表面3aから突出した状態となっている。また、配線14、パッド部15、層間接続ビア16と絶縁層3との間には導体バリア層18が介在している。すなわち、導体バリア層18は、絶縁層3に位置する配線形成用の凹部4、パッド部形成用の凹部5、および層間接続ビア形成用の貫通孔6の内側の表面に配置される。配線14、パッド部15、層間接続ビア16は、導体バリア層18と接している。導体バリア層18の積層方向における基材2とは反対側の端部18aは、絶縁層3の表面3a側に露出している。導体バリア層18の端部18aは、絶縁層3の表面3aと同じ高さまたは陥没した状態となっている。すなわち、配線14の表面14a、およびパッド部15の表面15aは、導体バリア層18の端部18aより突出した状態となっている。また、配線14およびパッド部15が絶縁層3の表面3a側に露出している部位には、合金アンカー層27が位置しており、この合金アンカー層27上にはシランカップリング剤層28が位置している。尚、図14では、シランカップリング剤層28を太線で示している。
基材2は、所望の配線、パッド部を有するものであってよい。但し、図示例では、基材2は便宜的に基板形状として記載している。 <
[Wiring structure]
FIG. 13 is a partial plan view showing an embodiment of a wiring structure according to the present invention. 14 is an enlarged partial sectional view taken along line II of the wiring structure shown in FIG. 13, and FIG. 15 is a partial enlarged view of the wiring structure shown in FIG. FIG. 16 is a partial perspective view showing an insulating layer constituting the wiring structure. In addition, this embodiment is essentially the same as
13 to 16, the
The
合金アンカー層27は、配線14、パッド部15とシランカップリング剤層28との密着性と、バリア性を確保するための層である。この合金アンカー層27には、下層である配線14、パッド部15を構成する導体と同じ金属と、水酸基を付与することによりシランカップリング剤の密着を向上させる金属とが含有されている。下層の導体と同じ金属とは、導体が銅である場合、同じ銅となり、これにより、合金アンカー層27は下層である配線14、パッド部15と良好な密着性を発現することができる。また、水酸基を付与する金属としては、スズ、鉄、アルミニウム、銅、クロム等を挙げることができる。したがって、合金アンカー層27は、このような水酸基を付与する金属と、配線14、パッド部15を構成する導体との合金とすることができ、導体が銅である場合、合金アンカー層27は、銅スズ合金層、銅鉄合金層、銅アルミニウム合金層、クロム銅合金層等とすることができる。例えば、合金アンカー層27が銅スズ合金層である場合、スズは、合金アンカー層27の表面、すなわち、シランカップリング剤層28との界面側に水酸基を付与する作用をなし、この水酸基がシランカップリング剤と反応することにより、シランカップリング剤層28は合金アンカー層27を介して配線14、パッド部15上に良好な密着力で存在可能となる。また、スズは、銅に比べて絶縁層3への拡散性が低いため、銅スズ合金層からなる合金アンカー層27は、導体バリア層としての機能も備えている。これにより、配線14、パッド部15は、絶縁層3の表面3a側に露出する部位においても、導体の拡散を抑制されることになる。
The alloy anchor layer 27 is a layer for ensuring adhesion and barrier properties between the wiring 14, the pad portion 15 and the silane coupling agent layer 28. The alloy anchor layer 27 contains the same metal as the conductor constituting the underlying wiring 14 and pad portion 15 and a metal that improves adhesion of the silane coupling agent by adding a hydroxyl group. When the conductor is copper, the same metal as the lower conductor is the same copper, and thus the alloy anchor layer 27 can exhibit good adhesion to the lower wiring 14 and the pad portion 15. Moreover, tin, iron, aluminum, copper, chromium etc. can be mentioned as a metal which provides a hydroxyl group. Therefore, the alloy anchor layer 27 can be an alloy of such a metal imparting a hydroxyl group and a conductor constituting the wiring 14 and the pad portion 15. When the conductor is copper, the alloy anchor layer 27 is A copper tin alloy layer, a copper iron alloy layer, a copper aluminum alloy layer, a chromium copper alloy layer, or the like can be used. For example, when the alloy anchor layer 27 is a copper-tin alloy layer, tin has a function of imparting a hydroxyl group to the surface of the alloy anchor layer 27, that is, the interface side with the silane coupling agent layer 28. By reacting with the coupling agent, the silane coupling agent layer 28 can be present on the wiring 14 and the pad portion 15 through the alloy anchor layer 27 with good adhesion. Moreover, since tin has a lower diffusibility to the insulating layer 3 than copper, the alloy anchor layer 27 made of a copper-tin alloy layer also has a function as a conductor barrier layer. As a result, the conductor 14 and the pad portion 15 are prevented from diffusing the conductor even in the portion exposed to the surface 3a side of the insulating layer 3.
また、合金アンカー層27は、他の金属として、ニッケル、チタン、クロム等の1種以上をさらに含有することができる。例えば、合金アンカー層27が銅スズニッケル合金層である場合、ニッケルは、後述する配線構造体の製造方法における合金アンカー層の形成工程で、合金アンカー層の形成を安定して行うことを可能とするものである。
このような合金アンカー層27における、下層の導体と同じ金属/水酸基を付与する機能を発現する金属/他の金属、の組成重量比は、60~95/5~40/0~5の範囲とすることができる。合金アンカー層27における組成重量比が上記の範囲から外れると、合金アンカー層27が上記の作用、すなわち、シランカップリング剤層28を配線14、パッド部15上に良好な密着力で固着させる作用、および、配線14、パッド部15からの導体の拡散を抑制するという作用の発現が不十分となることがある。また、合金アンカー層27の厚みは、50~100nm、好ましくは60~80nmの範囲で設定することができる。合金アンカー層27の厚みが50nm未満である場合、合金アンカー層27の作用の発現が不十分となることがある。また、100nmを超えると、合金アンカー層27の上記作用の更なる向上が得られず、皮膜応力によりクラックが生じやすくなり、また、合金アンカー層の形成に要する時間が長くなり好ましくない。 Moreover, thealloy anchor layer 27 can further contain one or more of nickel, titanium, chromium, etc. as other metals. For example, when the alloy anchor layer 27 is a copper tin nickel alloy layer, nickel can stably form the alloy anchor layer in the alloy anchor layer forming step in the wiring structure manufacturing method described later. To do.
In such analloy anchor layer 27, the composition weight ratio of the same metal as the underlying conductor / the metal exhibiting the function of imparting a hydroxyl group / other metal is in the range of 60 to 95/5 to 40/0 to 5. can do. When the composition weight ratio in the alloy anchor layer 27 is out of the above range, the alloy anchor layer 27 performs the above-described action, that is, the action of fixing the silane coupling agent layer 28 on the wiring 14 and the pad portion 15 with a good adhesion. In addition, the effect of suppressing the diffusion of the conductor from the wiring 14 and the pad portion 15 may be insufficient. The thickness of the alloy anchor layer 27 can be set in the range of 50 to 100 nm, preferably 60 to 80 nm. When the thickness of the alloy anchor layer 27 is less than 50 nm, the action of the alloy anchor layer 27 may be insufficiently expressed. On the other hand, if it exceeds 100 nm, further improvement of the above-described action of the alloy anchor layer 27 cannot be obtained, cracks are likely to occur due to film stress, and the time required for forming the alloy anchor layer is undesirably increased.
このような合金アンカー層27における、下層の導体と同じ金属/水酸基を付与する機能を発現する金属/他の金属、の組成重量比は、60~95/5~40/0~5の範囲とすることができる。合金アンカー層27における組成重量比が上記の範囲から外れると、合金アンカー層27が上記の作用、すなわち、シランカップリング剤層28を配線14、パッド部15上に良好な密着力で固着させる作用、および、配線14、パッド部15からの導体の拡散を抑制するという作用の発現が不十分となることがある。また、合金アンカー層27の厚みは、50~100nm、好ましくは60~80nmの範囲で設定することができる。合金アンカー層27の厚みが50nm未満である場合、合金アンカー層27の作用の発現が不十分となることがある。また、100nmを超えると、合金アンカー層27の上記作用の更なる向上が得られず、皮膜応力によりクラックが生じやすくなり、また、合金アンカー層の形成に要する時間が長くなり好ましくない。 Moreover, the
In such an
シランカップリング剤層28は、配線構造体10上に更に配線構造体を積層する場合において、配線構造体10の配線14、パッド部15と、上層の配線構造体の絶縁層との密着性を向上させるものである。このようなシランカップリング剤層28は、構成するシランカップリング剤の珪素原子が酸素原子を介して合金アンカー層27に結合しており、珪素原子には反応性官能基が結合している。この反応性官能基は、上層の絶縁層の有機成分と反応を生じる基であり、例えば、アミノ基、エポキシ基、メルカプト基、スルフィド基、アシル基、アセチル基、メタクリル基、ビニル基、不飽和炭化水素基からなる群から選択される基であってもよい。このような反応性官能基は、結合手-(CH2)n-を介して珪素原子に結合している。この結合手のnは1~10の整数であるが、シランカップリング剤層28の厚みが均一であることが好ましいので、nは1~3の範囲が好適である。このようなシランカップリング剤層28は、厚みが5nm以下、好ましくは、シランカップリング剤の単分子層であることが好ましい。シランカップリング剤層28は、通常、表面抵抗が1000Ω/□以上となるが、厚みが5nm以下であれば、パッド部15と、配線構造体10上に積層される配線構造体における層間接続ビアとの導通機能に支障を与えることはない。
When the wiring structure is further laminated on the wiring structure 10, the silane coupling agent layer 28 provides adhesion between the wiring 14 and the pad portion 15 of the wiring structure 10 and the insulating layer of the upper wiring structure. It is to improve. In such a silane coupling agent layer 28, silicon atoms of the silane coupling agent constituting the silicon atom are bonded to the alloy anchor layer 27 through oxygen atoms, and reactive functional groups are bonded to the silicon atoms. This reactive functional group is a group that reacts with the organic component of the upper insulating layer. For example, amino group, epoxy group, mercapto group, sulfide group, acyl group, acetyl group, methacryl group, vinyl group, unsaturated group It may be a group selected from the group consisting of hydrocarbon groups. Such a reactive functional group is bonded to a silicon atom via a bond — (CH 2 ) n —. N in this bond is an integer of 1 to 10, but since the thickness of the silane coupling agent layer 28 is preferably uniform, n is preferably in the range of 1 to 3. Such a silane coupling agent layer 28 has a thickness of 5 nm or less, preferably a monomolecular layer of a silane coupling agent. The silane coupling agent layer 28 usually has a surface resistance of 1000 Ω / □ or more, but if the thickness is 5 nm or less, an interlayer connection via in the wiring structure laminated on the pad portion 15 and the wiring structure 10. It will not interfere with the conduction function.
このような構成をとることで、配線構造体10は、積層して多層構造としたときに、絶縁層3による上下の配線の電気的絶縁が確実に得られ、また、上下の配線構造体の密着強度が高いものとなる。また、シランカップリング剤層28の存在によって、下層の配線構造体10の配線14、パッド部15と、上層の配線構造体10の絶縁層3との密着性が十分高いものとなる。したがって、配線14、パッド部15の表面を粗化することが不要であり、配線の長手方向に沿って粗面が存在することがなく、配線の高周波特性が優れたものであるとともに、下層のパッド部と上層の層間接続ビアとの安定した接続が得られる。さらに、このような高い密着性と、導体バリア層18、合金アンカー層27による導体バリア機能との共働により、配線間、あるいは、配線とパッド間の絶縁信頼性に優れ、狭ピッチ化による高密度化が可能となる。
By adopting such a configuration, when the wiring structure 10 is laminated to form a multilayer structure, electrical insulation of the upper and lower wirings by the insulating layer 3 can be reliably obtained, and the upper and lower wiring structures can be obtained. The adhesion strength is high. Further, due to the presence of the silane coupling agent layer 28, the adhesion between the wiring 14 and the pad portion 15 of the lower wiring structure 10 and the insulating layer 3 of the upper wiring structure 10 becomes sufficiently high. Accordingly, it is not necessary to roughen the surfaces of the wiring 14 and the pad portion 15, there is no rough surface along the longitudinal direction of the wiring, and the high-frequency characteristics of the wiring are excellent. A stable connection between the pad portion and the upper interlayer connection via can be obtained. Furthermore, by such cooperation of the high adhesion and the conductor barrier function by the conductor barrier layer 18 and the alloy anchor layer 27, the insulation reliability between the wires or between the wires and the pads is excellent, and the high pitch is achieved by the narrow pitch. Densification is possible.
図17は、配線層21Aを備える配線構造体10A、配線層21Bを備える配線構造体10B、配線層21Cを備える配線構造体10Cからなる3層構造の配線構造体の例を示す概略部分断面図である。図17に示されるように、3層構造の配線構造体10MLでは、配線構造体10Aが備える配線層21Aが、絶縁層3Aから突出しているので、配線構造体10A上に位置する配線構造体10Bの絶縁層3Bと配線層21Aとが係合した状態となっている。さらに、配線構造体10Aが備える配線層21Aにおいて、絶縁層3Aの表面側に露出する配線14およびパッド部15に、合金アンカー層27を介してシランカップリング剤層28が位置しているので、配線構造体10A上に位置する配線構造体10Bの絶縁層3Bと配線層21Aとの密着性が充分に高いものとなっている。同様に、配線構造体10Bが備える配線層21Bは、絶縁層3Bから突出しているので、配線構造体10B上に位置する配線構造体10Cの絶縁層3Cと配線層21Bとが係合した状態となっている。さらに、配線構造体10Bが備える配線層21Bにおいて、絶縁層3Bの表面側に露出する配線14およびパッド部15に、合金アンカー層27を介してシランカップリング剤層28が位置しているので、配線構造体10B上に位置する配線構造体10Cの絶縁層3Cと配線層21Bとの密着性が充分に高いものとなっている。したがって、3層構造の配線構造体10MLは、配線層21Aに対する絶縁層3Bの密着強度、配線層21Bに対する絶縁層3Cの密着強度が高いものであり、絶縁信頼性に優れるとともに、配線構造体相互の密着性に優れている。そして、配線構造体相互の密着性を向上させるために配線の表面、パッド部の表面を粗化した従来の配線構造体と異なり、配線の高周波特性が優れている。
尚、上記説明では、3層構造の配線構造体を例としているが、多層構造の配線構造体の構成層の数には特に限定はない。 FIG. 17 is a schematic partial cross-sectional view showing an example of a three-layer wiring structure including awiring structure 10A including a wiring layer 21A, a wiring structure 10B including a wiring layer 21B, and a wiring structure 10C including a wiring layer 21C. It is. As shown in FIG. 17, in the wiring structure 10ML having a three-layer structure, the wiring layer 21A included in the wiring structure 10A protrudes from the insulating layer 3A, so that the wiring structure positioned on the wiring structure 10A. 10B insulating layer 3B and wiring layer 21A are engaged. Further, in the wiring layer 21A provided in the wiring structure 10A, the silane coupling agent layer 28 is located on the wiring 14 and the pad portion 15 exposed on the surface side of the insulating layer 3A via the alloy anchor layer 27. Adhesiveness between the insulating layer 3B and the wiring layer 21A of the wiring structure 10B located on the wiring structure 10A is sufficiently high. Similarly, since the wiring layer 21B included in the wiring structure 10B protrudes from the insulating layer 3B, the insulating layer 3C of the wiring structure 10C located on the wiring structure 10B is engaged with the wiring layer 21B. It has become. Further, in the wiring layer 21B provided in the wiring structure 10B, the silane coupling agent layer 28 is located on the wiring 14 and the pad portion 15 exposed on the surface side of the insulating layer 3B via the alloy anchor layer 27. The adhesion between the insulating layer 3C and the wiring layer 21B of the wiring structure 10C located on the wiring structure 10B is sufficiently high. Therefore, wiring structure 10 ML of three-layer structure, the adhesion strength of the insulating layer 3B for the wiring layer 21A, are those high adhesion strength of the insulating layer 3C for the wiring layer 21B, which is excellent in insulation reliability, the wiring structure Excellent mutual adhesion. Unlike the conventional wiring structure in which the surface of the wiring and the surface of the pad portion are roughened in order to improve the adhesion between the wiring structures, the high frequency characteristics of the wiring are excellent.
In the above description, the wiring structure having a three-layer structure is taken as an example, but the number of constituent layers of the wiring structure having a multilayer structure is not particularly limited.
尚、上記説明では、3層構造の配線構造体を例としているが、多層構造の配線構造体の構成層の数には特に限定はない。 FIG. 17 is a schematic partial cross-sectional view showing an example of a three-layer wiring structure including a
In the above description, the wiring structure having a three-layer structure is taken as an example, but the number of constituent layers of the wiring structure having a multilayer structure is not particularly limited.
上述の配線構造体の実施形態は例示であり、本発明は当該実施形態に限定されるものではない。例えば、パッド部15に位置する合金アンカー層27上のシランカップリング剤層28は、平面視形状が環状であり、合金アンカー層27の周縁から所定の幅で存在し、合金アンカー層27の中央部には存在しないものであってもよい。図18は、このようなシランカップリング剤層を備える例を、上記の3層構造の配線構造体10MLで示したものであり、図19は、配線構造体10MLを構成する単層の配線構造体(図示例では配線構造体11A)を示す部分斜視図である。図18および図19に示されるように、パッド部15上に位置するシランカップリング剤層28は、平面視形状が円形状である合金アンカー層27の周縁から中心に向けて所定の幅Wで存在する平面視形状が環状のものとなっている。このシランカップリング剤層28の幅Wは、例えば、下層の配線構造体10Aにおいてシランカップリング剤層28が存在せず合金アンカー層27が露出する部位に、上層の配線構造体10Bの層間接続ビア16が導体バリア層18を介して接続可能となるように設定することができる。このように、下層の合金アンカー層27と上層の層間接続ビア16(導体バリア層18)とが直接接続することにより、層間接続における接続抵抗を更に低減することができる。この場合、パッド部15に合金アンカー層27を介して位置する環状のシランカップリング剤層28、および配線14上に合金アンカー層27を介して位置するシランカップリング剤の厚みは、5nmを超えるものであってもよい。但し、シランカップリング剤層28の幅Wが若干大きく、下層の合金アンカー層27と上層の層間接続ビア16(導体バリア層18)との間に、一部シランカップリング剤層28が存在していてもよい。
The above-described embodiment of the wiring structure is an example, and the present invention is not limited to this embodiment. For example, the silane coupling agent layer 28 on the alloy anchor layer 27 located in the pad portion 15 has an annular shape in plan view, exists at a predetermined width from the periphery of the alloy anchor layer 27, and is centered on the alloy anchor layer 27. It may not exist in the part. FIG. 18 shows an example having such a silane coupling agent layer as the above-described three-layer wiring structure 10 ML , and FIG. 19 shows a single layer constituting the wiring structure 10 ML . It is a fragmentary perspective view which shows a wiring structure (in the example of illustration, wiring structure 11A). As shown in FIGS. 18 and 19, the silane coupling agent layer 28 located on the pad portion 15 has a predetermined width W from the periphery to the center of the alloy anchor layer 27 having a circular shape in plan view. The existing planar view shape is annular. The width W of the silane coupling agent layer 28 is, for example, the interlayer connection of the upper wiring structure 10B at a portion where the silane coupling agent layer 28 does not exist and the alloy anchor layer 27 is exposed in the lower wiring structure 10A. The via 16 can be set to be connectable via the conductor barrier layer 18. In this way, the lower layer alloy anchor layer 27 and the upper interlayer connection via 16 (conductor barrier layer 18) are directly connected, so that the connection resistance in the interlayer connection can be further reduced. In this case, the thickness of the cyclic silane coupling agent layer 28 located on the pad portion 15 via the alloy anchor layer 27 and the thickness of the silane coupling agent located on the wiring 14 via the alloy anchor layer 27 exceeds 5 nm. It may be a thing. However, the width W of the silane coupling agent layer 28 is slightly large, and a part of the silane coupling agent layer 28 exists between the lower alloy anchor layer 27 and the upper interlayer connection via 16 (conductor barrier layer 18). It may be.
また、上述の実施形態では、配線構造体は断面形状が1種の配線を備えているが、2種以上の断面形状の配線を備えるものであってもよい。
また、複数のパッド部15の中には、配線14と接続しているもの、および、配線14と離間しているものが存在してもよい。配線14と離間しているパッド部15は、ダミーのパッド部となるが、配線構造体の面内の強度均一性を確保するためには、配線14と離間しているダミーのパッド部の存在が有利となる。 Moreover, in the above-described embodiment, the wiring structure includes one type of wiring in the cross-sectional shape, but may include two or more types of cross-sectional wiring.
Further, among the plurality ofpad portions 15, there may be one connected to the wiring 14 and one separated from the wiring 14. The pad portion 15 that is separated from the wiring 14 becomes a dummy pad portion, but in order to ensure the strength uniformity in the plane of the wiring structure, the presence of the dummy pad portion that is separated from the wiring 14 exists. Is advantageous.
また、複数のパッド部15の中には、配線14と接続しているもの、および、配線14と離間しているものが存在してもよい。配線14と離間しているパッド部15は、ダミーのパッド部となるが、配線構造体の面内の強度均一性を確保するためには、配線14と離間しているダミーのパッド部の存在が有利となる。 Moreover, in the above-described embodiment, the wiring structure includes one type of wiring in the cross-sectional shape, but may include two or more types of cross-sectional wiring.
Further, among the plurality of
[配線構造体の製造方法]
図20は、本発明の配線構造体の製造方法の一実施形態を説明するための工程図であり、上述の配線構造体10を製造する例を示している。 本実施形態に係る配線構造体の製造方法において、絶縁層形成工程、導体バリア層形成工程、導体層形成工程、研磨工程、および除去工程は実施形態1と同様であることから、その繰り返しの説明は省略する。実施形態1と同様の製造方法を用いて、図20Aに示す構造体が得られる。この構造体は、絶縁層3の凹部4に位置する配線14、凹部5に位置するパッド部15、このパッド部15と一体となり貫通孔6に位置する層間接続ビア16からなる配線層21を備えている。そして、配線14の表面14a、およびパッド部15の表面15aは、絶縁層3の表面3aから突出した状態となっている。導体バリア層18の端部18aは、絶縁層3の表面3aと同じ高さになっている。すなわち、配線14の表面14a、およびパッド部15の表面15aは、導体バリア層18の端部18aより突出した状態となっている。
次に、合金アンカー層形成工程にて、絶縁層3の表面3a側に露出している配線14の表面、パッド部15の表面に合金アンカー層27を形成する(図20B)。合金アンカー層27の形成は、置換めっき液中に浸漬することにより行うことができる。例えば、合金アンカー層27として、銅スズ合金層を形成する場合、置換スズめっき液中の浸漬することにより、配線14の表面、パッド部15の表面において銅の溶出とスズの析出が行われ、銅スズ合金層を形成することができる。この場合、スズは銅よりも電位が卑であるため、銅の電位を下げる薬品を含有する置換スズめっき液を使用する。このような置換スズめっき液としては、例えば、メック(株)製 フラットボンド GT等を挙げることができる。 [Method for manufacturing wiring structure]
FIG. 20 is a process diagram for explaining an embodiment of a method for manufacturing a wiring structure according to the present invention, and shows an example of manufacturing thewiring structure 10 described above. In the method for manufacturing a wiring structure according to the present embodiment, the insulating layer forming step, the conductor barrier layer forming step, the conductor layer forming step, the polishing step, and the removing step are the same as those in the first embodiment. Is omitted. The structure shown in FIG. 20A is obtained using the same manufacturing method as in the first embodiment. The structure includes a wiring layer 21 including a wiring 14 positioned in the recess 4 of the insulating layer 3, a pad portion 15 positioned in the recess 5, and an interlayer connection via 16 positioned integrally with the pad portion 15 and positioned in the through hole 6. ing. The surface 14 a of the wiring 14 and the surface 15 a of the pad portion 15 are in a state of protruding from the surface 3 a of the insulating layer 3. The end 18 a of the conductor barrier layer 18 is at the same height as the surface 3 a of the insulating layer 3. That is, the surface 14 a of the wiring 14 and the surface 15 a of the pad portion 15 are in a state of protruding from the end portion 18 a of the conductor barrier layer 18.
Next, in an alloy anchor layer forming step, analloy anchor layer 27 is formed on the surface of the wiring 14 exposed on the surface 3a side of the insulating layer 3 and the surface of the pad portion 15 (FIG. 20B). Formation of the alloy anchor layer 27 can be performed by immersing it in a displacement plating solution. For example, when a copper tin alloy layer is formed as the alloy anchor layer 27, copper is eluted and tin is deposited on the surface of the wiring 14 and the surface of the pad portion 15 by dipping in a substitution tin plating solution. A copper-tin alloy layer can be formed. In this case, since tin has a lower potential than copper, a substituted tin plating solution containing a chemical that lowers the potential of copper is used. As such a substitution tin plating solution, for example, Mec Co., Ltd. flat bond GT etc. can be mentioned.
図20は、本発明の配線構造体の製造方法の一実施形態を説明するための工程図であり、上述の配線構造体10を製造する例を示している。 本実施形態に係る配線構造体の製造方法において、絶縁層形成工程、導体バリア層形成工程、導体層形成工程、研磨工程、および除去工程は実施形態1と同様であることから、その繰り返しの説明は省略する。実施形態1と同様の製造方法を用いて、図20Aに示す構造体が得られる。この構造体は、絶縁層3の凹部4に位置する配線14、凹部5に位置するパッド部15、このパッド部15と一体となり貫通孔6に位置する層間接続ビア16からなる配線層21を備えている。そして、配線14の表面14a、およびパッド部15の表面15aは、絶縁層3の表面3aから突出した状態となっている。導体バリア層18の端部18aは、絶縁層3の表面3aと同じ高さになっている。すなわち、配線14の表面14a、およびパッド部15の表面15aは、導体バリア層18の端部18aより突出した状態となっている。
次に、合金アンカー層形成工程にて、絶縁層3の表面3a側に露出している配線14の表面、パッド部15の表面に合金アンカー層27を形成する(図20B)。合金アンカー層27の形成は、置換めっき液中に浸漬することにより行うことができる。例えば、合金アンカー層27として、銅スズ合金層を形成する場合、置換スズめっき液中の浸漬することにより、配線14の表面、パッド部15の表面において銅の溶出とスズの析出が行われ、銅スズ合金層を形成することができる。この場合、スズは銅よりも電位が卑であるため、銅の電位を下げる薬品を含有する置換スズめっき液を使用する。このような置換スズめっき液としては、例えば、メック(株)製 フラットボンド GT等を挙げることができる。 [Method for manufacturing wiring structure]
FIG. 20 is a process diagram for explaining an embodiment of a method for manufacturing a wiring structure according to the present invention, and shows an example of manufacturing the
Next, in an alloy anchor layer forming step, an
このように形成される合金アンカー層27(銅スズ合金層)では、厚み方向において表面側にスズが銅と合金化して偏在している。これにより、銅スズ合金層は銅からなる配線14、パッド部15に対して良好な密着強度を発現する。一方、銅スズ合金層の表面に偏在するスズにより、合金アンカー層27の表面には水酸基が付与される。したがって、後述するシランカップリング剤層28の形成において、シランカップリング剤の珪素原子が酸素原子を介して合金アンカー層27に結合することが容易となり、シランカップリング剤層28を、合金アンカー層27を介して配線14、パッド部15上に良好な密着力で固着させることができる。また、スズは、銅に比べて絶縁層3への拡散性が低いため、銅スズ合金層の表面側は、導体である銅に対する導体バリア層としての機能も具備する。
In the alloy anchor layer 27 (copper tin alloy layer) formed in this way, tin is alloyed with copper and unevenly distributed on the surface side in the thickness direction. Thereby, a copper tin alloy layer expresses favorable adhesive strength with respect to the wiring 14 and the pad part 15 which consist of copper. On the other hand, a hydroxyl group is imparted to the surface of the alloy anchor layer 27 by tin unevenly distributed on the surface of the copper-tin alloy layer. Therefore, in the formation of the silane coupling agent layer 28 to be described later, it becomes easy for the silicon atoms of the silane coupling agent to be bonded to the alloy anchor layer 27 via the oxygen atoms, and the silane coupling agent layer 28 is bonded to the alloy anchor layer. 27 can be fixed to the wiring 14 and the pad portion 15 with good adhesion. Further, since tin has a lower diffusibility to the insulating layer 3 than copper, the surface side of the copper tin alloy layer also has a function as a conductor barrier layer for copper as a conductor.
置換めっき液を使用した合金アンカー層27の形成では、厚みが50~100nmの範囲、好ましくは60~80nmの範囲となるように合金アンカー層27を形成することができる。形成する合金アンカー層27の厚みが50nm未満である場合、合金アンカー層27の作用、すなわち、シランカップリング剤層28を配線14、パッド部15上に良好な密着力で固着させる作用、配線14、パッド部15からの導体の拡散を抑制するという作用の発現が不十分となることがある。また、100nmを超えると、合金アンカー層27の上記作用の更なる向上が得られず、皮膜応力によりクラックが生じやすくなり、また、合金アンカー層の形成に要する時間が長くなり好ましくない。
また、置換めっき液を使用して合金アンカー層27を形成する場合、置換スズめっき液にニッケル等の1種以上を含有させることにより、合金アンカー層27の形成を安定して行うことができる。例えば、ニッケルは、スズ-ニッケル合金化によりスズと銅との置換を抑制するので、形成する合金アンカー層を所望の厚みとなるように制御することが容易となる。
次いで、シランカップリング剤層形成工程において、合金アンカー層27上にシランカップリング剤層28を形成する(図20C)。尚、図示例では、シランカップリング剤層28を太線で示している。 In forming thealloy anchor layer 27 using the displacement plating solution, the alloy anchor layer 27 can be formed to have a thickness in the range of 50 to 100 nm, preferably in the range of 60 to 80 nm. When the thickness of the alloy anchor layer 27 to be formed is less than 50 nm, the action of the alloy anchor layer 27, that is, the action of fixing the silane coupling agent layer 28 on the wiring 14 and the pad portion 15 with a good adhesion force, the wiring 14 In some cases, the effect of suppressing the diffusion of the conductor from the pad portion 15 may be insufficient. On the other hand, if it exceeds 100 nm, further improvement of the above-described action of the alloy anchor layer 27 cannot be obtained, cracks are likely to occur due to film stress, and the time required for forming the alloy anchor layer is undesirably increased.
Moreover, when forming thealloy anchor layer 27 using a displacement plating solution, the alloy anchor layer 27 can be formed stably by including at least one kind of nickel or the like in the displacement tin plating solution. For example, since nickel suppresses substitution of tin and copper by forming a tin-nickel alloy, it is easy to control the alloy anchor layer to be formed to have a desired thickness.
Next, in the silane coupling agent layer forming step, a silanecoupling agent layer 28 is formed on the alloy anchor layer 27 (FIG. 20C). In the illustrated example, the silane coupling agent layer 28 is indicated by a thick line.
また、置換めっき液を使用して合金アンカー層27を形成する場合、置換スズめっき液にニッケル等の1種以上を含有させることにより、合金アンカー層27の形成を安定して行うことができる。例えば、ニッケルは、スズ-ニッケル合金化によりスズと銅との置換を抑制するので、形成する合金アンカー層を所望の厚みとなるように制御することが容易となる。
次いで、シランカップリング剤層形成工程において、合金アンカー層27上にシランカップリング剤層28を形成する(図20C)。尚、図示例では、シランカップリング剤層28を太線で示している。 In forming the
Moreover, when forming the
Next, in the silane coupling agent layer forming step, a silane
シランカップリング剤層28は、シランカップリング剤を合金アンカー層27を含む絶縁層3に接触させ、その後、洗浄することにより形成することができる。合金アンカー層27と接触したシランカップリング剤は、上記のように合金アンカー層27の表面に付与された水酸基との水素結合を介して珪素原子が合金アンカー層27の表面に移行し、さらに、脱水縮合反応を経て、合金アンカー層27表面と強固な共有結合を生成して、シランカップリング剤層28が形成される。そして、このように形成されたシランカップリング剤層28の珪素原子には、有機成分との反応を生じる反応性官能基が結合しているので、この配線構造体の配線14、パッド部15と、上層の配線構造体10の絶縁層3との密着性が充分高いものとなる。
The silane coupling agent layer 28 can be formed by bringing a silane coupling agent into contact with the insulating layer 3 including the alloy anchor layer 27 and then washing. In the silane coupling agent in contact with the alloy anchor layer 27, the silicon atoms move to the surface of the alloy anchor layer 27 through hydrogen bonds with the hydroxyl group imparted to the surface of the alloy anchor layer 27 as described above. Through the dehydration condensation reaction, a strong covalent bond is generated with the surface of the alloy anchor layer 27, and the silane coupling agent layer 28 is formed. And since the reactive functional group which reacts with an organic component has couple | bonded with the silicon atom of the silane coupling agent layer 28 formed in this way, wiring 14 of this wiring structure, pad part 15 and The adhesion of the upper wiring structure 10 to the insulating layer 3 is sufficiently high.
使用するシランカップリング剤は適宜選択することができる。シランカップリング剤の反応性官能基としては、例えば、アミノ基、エポキシ基、メルカプト基、スルフィド基、アシル基、アセチル基、メタクリル基、ビニル基、カルボン酸、不飽和炭化水素基からなる群から選択される基を挙げることができ、これらは結合手-(CH2)n-を介して珪素原子に結合している。結合手のnは1~10の整数であるが、シランカップリング剤層28の厚みより均一にするためには分子量が低いことが好ましいので、nは1~3の範囲が好適である。形成するシランカップリング剤層28の厚みは、5nm以下、好ましくは、シランカップリング剤の単分子層であることが好ましい。形成するシランカップリング剤層28の厚みが5nmを超えると、パッド部15と、配線構造体10上に積層する配線構造体における層間接続ビアとの電気抵抗が大きくなり好ましくない。
The silane coupling agent to be used can be appropriately selected. The reactive functional group of the silane coupling agent is, for example, from the group consisting of an amino group, an epoxy group, a mercapto group, a sulfide group, an acyl group, an acetyl group, a methacryl group, a vinyl group, a carboxylic acid, and an unsaturated hydrocarbon group. There may be mentioned selected groups, which are bonded to the silicon atom via a bond-(CH 2 ) n- . N in the bond is an integer of 1 to 10, but the molecular weight is preferably low in order to make it more uniform than the thickness of the silane coupling agent layer 28. Therefore, n is preferably in the range of 1 to 3. The thickness of the silane coupling agent layer 28 to be formed is 5 nm or less, preferably a monomolecular layer of the silane coupling agent. If the thickness of the silane coupling agent layer 28 to be formed exceeds 5 nm, the electrical resistance between the pad portion 15 and the interlayer connection via in the wiring structure laminated on the wiring structure 10 is not preferable.
これにより、配線構造体10が得られる。この配線構造体10は、絶縁層3の凹部4に位置する配線14、凹部5に位置するパッド部15、このパッド部15と一体となり貫通孔6に位置する層間接続ビア16からなる配線層21を備えている。そして、配線14の表面14a、および、パッド部15の表面15aは、絶縁層3の表面3aから突出した状態となっている。導体バリア層18の端部18aは、絶縁層3の表面3aと同じ高さになっている。すなわち、配線14の表面14a、およびパッド部15の表面15aは、導体バリア層18の端部18aより突出した状態となっている。さらにこの配線構造体10は、配線14およびパッド部15の絶縁層3から露出する部位に、合金アンカー層27を介してシランカップリング剤層28が位置している。したがって、配線構造体10は、積層して多層構造としたときに、シランカップリング剤層28の存在によって、下層の配線構造体10の配線14、パッド部15と、上層の配線構造体10の絶縁層3との密着性が充分高いものとなる。これにより、配線14、パッド部15の表面を粗化することが不要となり、配線の長手方向に沿って粗面が存在することがなく、配線の高周波特性が優れたものであるとともに、下層のパッド部と上層の層間接続ビアとの接続が安定したものとなる。さらに、このような高い密着性と、導体バリア層18、合金アンカー層27による導体バリア機能との共働により、配線間、あるいは、配線とパッド間の絶縁信頼性に優れ、狭ピッチ化による高密度化が可能となる。
尚、層間接続ビア形成用の貫通孔6の底部には、導体バリア層18が残存し、基材2が配線、パッド部を有する場合、これらと貫通孔6内の層間接続ビア16との間に導体バリア層18が介在することになる。しかし、導体バリア層18は、上記のように厚みが50~100nmの範囲内であるため、表面抵抗が数十Ω/□以上であっても、層間接続ビアの導通機能に支障を与えることはない。 Thereby, thewiring structure 10 is obtained. This wiring structure 10 includes a wiring layer 21 including a wiring 14 located in the concave portion 4 of the insulating layer 3, a pad portion 15 located in the concave portion 5, and an interlayer connection via 16 located integrally with the pad portion 15 and located in the through hole 6. It has. The surface 14 a of the wiring 14 and the surface 15 a of the pad portion 15 are in a state of protruding from the surface 3 a of the insulating layer 3. The end 18 a of the conductor barrier layer 18 is at the same height as the surface 3 a of the insulating layer 3. That is, the surface 14 a of the wiring 14 and the surface 15 a of the pad portion 15 are in a state of protruding from the end portion 18 a of the conductor barrier layer 18. Further, in this wiring structure 10, a silane coupling agent layer 28 is located at a portion exposed from the insulating layer 3 of the wiring 14 and the pad portion 15 via an alloy anchor layer 27. Accordingly, when the wiring structure 10 is laminated to form a multilayer structure, the wiring 14 and the pad portion 15 of the lower wiring structure 10 and the upper wiring structure 10 are formed due to the presence of the silane coupling agent layer 28. Adhesiveness with the insulating layer 3 is sufficiently high. As a result, it is not necessary to roughen the surfaces of the wiring 14 and the pad portion 15, the rough surface does not exist along the longitudinal direction of the wiring, and the high-frequency characteristics of the wiring are excellent. The connection between the pad portion and the upper interlayer connection via becomes stable. Furthermore, by such cooperation of the high adhesion and the conductor barrier function by the conductor barrier layer 18 and the alloy anchor layer 27, the insulation reliability between the wires or between the wires and the pads is excellent, and the high pitch is achieved by the narrow pitch. Densification is possible.
In the case where theconductor barrier layer 18 remains at the bottom of the through hole 6 for forming the interlayer connection via and the base material 2 has wiring and pad portions, between these and the interlayer connection via 16 in the through hole 6. The conductor barrier layer 18 is interposed between the two. However, since the thickness of the conductor barrier layer 18 is in the range of 50 to 100 nm as described above, even if the surface resistance is several tens of Ω / □ or more, the conductive function of the interlayer connection via is not affected. Absent.
尚、層間接続ビア形成用の貫通孔6の底部には、導体バリア層18が残存し、基材2が配線、パッド部を有する場合、これらと貫通孔6内の層間接続ビア16との間に導体バリア層18が介在することになる。しかし、導体バリア層18は、上記のように厚みが50~100nmの範囲内であるため、表面抵抗が数十Ω/□以上であっても、層間接続ビアの導通機能に支障を与えることはない。 Thereby, the
In the case where the
本発明では、上記の一連の工程を所望の回数繰り返すことにより、配線構造体を多層に形成することができる。例えば、上記の一連の工程を3回繰り返すことにより、図17に示すような3層構造の配線構造体10MLを製造することができる。この場合、下層の配線構造体のパッド部15と、上層の配線構造体の層間接続ビア16との間にシランカップリング剤層28が存在するが、上記のように、シランカップリング剤層28の厚みが5nm以下であるため、表面抵抗が1000Ω/□以上であっても、層間接続ビアの導通機能に支障を与えることはない。
In the present invention, the wiring structure can be formed in multiple layers by repeating the above-described series of steps a desired number of times. For example, by repeating the above series of steps three times, a wiring structure 10ML having a three-layer structure as shown in FIG. 17 can be manufactured. In this case, the silane coupling agent layer 28 exists between the pad portion 15 of the lower wiring structure and the interlayer connection via 16 of the upper wiring structure, but as described above, the silane coupling agent layer 28. Therefore, even if the surface resistance is 1000Ω / □ or more, the conduction function of the interlayer connection via is not hindered.
また、配線構造体を多層に積層する場合であって、上述の図18、図19に示されるように、パッド部15に位置する合金アンカー層27上のシランカップリング剤層28が、環状の平面視形状環状であり、合金アンカー層27の周縁から所定の幅で存在し、合金アンカー層27の中央部には存在しない構造は、以下のように形成することができる。例えば、配線構造体10A上に、上層の配線構造体10Bを形成する場合について説明する。配線構造体10Bの絶縁層形成工程では、層間接続ビア形成用の貫通孔6を形成した段階で、この貫通孔6内に下層の配線構造体10Aのシランカップリング剤層28が露出する。この露出したシランカップリング剤層28をドライエッチングで除去することにより、配線構造体10Aが具備するシランカップリング剤層28のうち、上層の配線構造体10Bの層間接続ビアとの導通がなされるシランカップリング剤層28を、平面視形状が環状であり、合金アンカー層27の周縁から所定の幅で存在し、合金アンカー層27の中央部には存在しないものとすることができる。
Further, in the case where the wiring structure is laminated in multiple layers, as shown in FIG. 18 and FIG. 19, the silane coupling agent layer 28 on the alloy anchor layer 27 located in the pad portion 15 has an annular shape. A structure that has an annular shape in plan view and exists at a predetermined width from the periphery of the alloy anchor layer 27 and does not exist at the center of the alloy anchor layer 27 can be formed as follows. For example, a case where the upper wiring structure 10B is formed on the wiring structure 10A will be described. In the step of forming the insulating layer of the wiring structure 10B, the silane coupling agent layer 28 of the lower wiring structure 10A is exposed in the through hole 6 when the through hole 6 for forming the interlayer connection via is formed. By removing the exposed silane coupling agent layer 28 by dry etching, the silane coupling agent layer 28 included in the wiring structure 10A is electrically connected to the interlayer connection via of the upper wiring structure 10B. The silane coupling agent layer 28 may have an annular shape in plan view and may be present at a predetermined width from the periphery of the alloy anchor layer 27 and may not be present at the center of the alloy anchor layer 27.
尚、配線構造体10A上にエッチングレジストのパターンを形成し、配線構造体10Aが具備するシランカップリング剤層28のうち、上層の配線構造体10Bの層間接続ビアとの導通がなされるシランカップリング剤層28について、その中央の所望の部位が露出した状態とし、露出したシランカップリング剤層28をドライエッチングで除去して、平面視形状が環状のシランカップリング剤層28を形成し、その後、上層の配線構造体10Bを形成してもよい。図18に示される3層構造の配線構造体10MLの最上層の配線構造体10Cにおけるシランカップリング剤層28は、このような方法により形成することができる。
A silane cup that forms an etching resist pattern on the wiring structure 10A and is electrically connected to the interlayer connection via of the upper wiring structure 10B in the silane coupling agent layer 28 included in the wiring structure 10A. With regard to the ring agent layer 28, a desired portion at the center is exposed, and the exposed silane coupling agent layer 28 is removed by dry etching to form a silane coupling agent layer 28 having a circular shape in plan view. Thereafter, an upper wiring structure 10B may be formed. The silane coupling agent layer 28 in the uppermost wiring structure 10C of the three-layer wiring structure 10ML shown in FIG. 18 can be formed by such a method.
[電子装置]
図21は、本発明の電子装置の一実施形態を示す概略部分断面図であり、図22は、図21において円で囲まれた箇所の部分拡大断面図である。図21、図22において、電子装置200は、コア基板131上に多層の配線構造体10MLを形成し、接続パッド171を介して半導体素子111,112を実装したものである。この実施形態では、多層の配線構造体10MLは、上述の本発明の配線構造体であり、このような多層の配線構造体10MLは、本発明の製造方法により製造することができ、ここでの説明は省略する。
尚、図21では、図面が煩雑になることを避けるために、多層の配線構造体10MLを構成する層間絶縁層である絶縁層3A,13B,13C、13D、および、ソルダーレジスト161、封止樹脂162には斜線を付していない。また、半導体素子111,112は、例えば、メモリー素子、ロジック素子等することができるが、図示例では、その構造に関係なく画一的に斜線を付している。
コア基板131は、コア基材132と、このコア基材132の両面に複数の導体層135が絶縁層34を介して積層した多層構造を有している。 [Electronic device]
21 is a schematic partial cross-sectional view showing an embodiment of the electronic device of the present invention, and FIG. 22 is a partially enlarged cross-sectional view of a portion surrounded by a circle in FIG. 21 and 22, anelectronic device 200 is obtained by forming a multilayer wiring structure 10 ML on a core substrate 131 and mounting semiconductor elements 111 and 112 via connection pads 171. In this embodiment, the multilayer wiring structure 10 ML is the above-described wiring structure of the present invention, and such a multilayer wiring structure 10 ML can be manufactured by the manufacturing method of the present invention. The description in is omitted.
In FIG. 21, in order to avoid drawing from being complicated, the insulatinglayer 3A is an interlayer insulating layer constituting the multilayer wiring structure 10 ML, 13B, 13C, 13D , and a solder resist 161, a sealing The resin 162 is not shaded. The semiconductor elements 111 and 112 can be, for example, memory elements, logic elements, etc., but in the illustrated example, they are uniformly shaded regardless of their structures.
Thecore substrate 131 has a multilayer structure in which a core base material 132 and a plurality of conductor layers 135 are laminated on both surfaces of the core base material 132 with an insulating layer 34 interposed therebetween.
図21は、本発明の電子装置の一実施形態を示す概略部分断面図であり、図22は、図21において円で囲まれた箇所の部分拡大断面図である。図21、図22において、電子装置200は、コア基板131上に多層の配線構造体10MLを形成し、接続パッド171を介して半導体素子111,112を実装したものである。この実施形態では、多層の配線構造体10MLは、上述の本発明の配線構造体であり、このような多層の配線構造体10MLは、本発明の製造方法により製造することができ、ここでの説明は省略する。
尚、図21では、図面が煩雑になることを避けるために、多層の配線構造体10MLを構成する層間絶縁層である絶縁層3A,13B,13C、13D、および、ソルダーレジスト161、封止樹脂162には斜線を付していない。また、半導体素子111,112は、例えば、メモリー素子、ロジック素子等することができるが、図示例では、その構造に関係なく画一的に斜線を付している。
コア基板131は、コア基材132と、このコア基材132の両面に複数の導体層135が絶縁層34を介して積層した多層構造を有している。 [Electronic device]
21 is a schematic partial cross-sectional view showing an embodiment of the electronic device of the present invention, and FIG. 22 is a partially enlarged cross-sectional view of a portion surrounded by a circle in FIG. 21 and 22, an
In FIG. 21, in order to avoid drawing from being complicated, the insulating
The
コア基材132は、このコア基材132を貫通する複数の表裏導通ビア部133と、コア基材132の表面(図示例では、多層の配線構造体10MLが配設されている面側)において所定の表裏導通ビア部133と接続している導体層133a、コア基材132の裏面において所定の表裏導通ビア部133と接続している導体層133a′を有している。このようなコア基材132は、例えば、ガラス、ガラスクロス含有のエポキシ樹脂、ビスマレイミドトリアジン樹脂、ポリフェニレンエーテル樹脂、シリコン等であってよい。
このコア基材132の表面側には、絶縁層34A,134Bを介して、導体層135A,135Bが積層されている。そして、絶縁層34Aを介して上下に位置する導体層133aと導体層135Aが層間接続体136Aで接続され、絶縁層34Bを介して上下に位置する導体層135Aと導体層135Bが層間接続体136Bで接続されている。 Thecore base material 132 includes a plurality of front and back conductive via portions 133 penetrating the core base material 132 and the surface of the core base material 132 (in the illustrated example, the surface side on which the multilayer wiring structure 10ML is disposed). , A conductor layer 133a connected to a predetermined front / back conduction via portion 133, and a conductor layer 133a ′ connected to a predetermined front / back conduction via portion 133 on the back surface of the core base material 132. Such a core substrate 132 may be, for example, glass, glass cloth-containing epoxy resin, bismaleimide triazine resin, polyphenylene ether resin, silicon, or the like.
Conductive layers 135A and 135B are laminated on the surface side of the core base material 132 via insulating layers 34A and 134B. The conductor layer 133a positioned above and below the conductor layer 135A is connected by an interlayer connector 136A via the insulating layer 34A, and the conductor layer 135A and conductor layer 135B positioned vertically via the insulating layer 34B are connected by the interlayer connector 136B. Connected with.
このコア基材132の表面側には、絶縁層34A,134Bを介して、導体層135A,135Bが積層されている。そして、絶縁層34Aを介して上下に位置する導体層133aと導体層135Aが層間接続体136Aで接続され、絶縁層34Bを介して上下に位置する導体層135Aと導体層135Bが層間接続体136Bで接続されている。 The
また、コア基材132の裏面側には、絶縁層34A′,134B′,134C′を介して、導体層135A′,135B′,135C′が積層されている。そして、絶縁層34A′を介して上下に位置する導体層133a′と導体層135A′が層間接続体136A′で接続され、絶縁層34B′を介して上下に位置する導体層135A′と導体層135B′が層間接続体136B′で接続され、絶縁層34C′を介して上下に位置する導体層135B′と導体層135C′が層間接続体136C′で接続されている。また、導体層135C′の所望部位を露出するようにソルダーレジスト138が配設され、露出する導体層135C′には、ニッケル層141、金層142を介してはんだボール151が位置している。
Further, conductor layers 135A ′, 135B ′, and 135C ′ are laminated on the back surface side of the core base material 132 through insulating layers 34A ′, 134B ′, and 134C ′. The conductor layer 133a 'positioned above and below the conductor layer 135A' via the insulating layer 34A 'is connected by the interlayer connector 136A', and the conductor layer 135A 'positioned above and below the conductor layer via the insulating layer 34B'. 135B 'is connected by an interlayer connector 136B', and the conductor layer 135B 'positioned above and below the conductor layer 135C' is connected by an interlayer connector 136C 'via an insulating layer 34C'. Further, a solder resist 138 is disposed so as to expose a desired portion of the conductor layer 135C ′, and a solder ball 151 is located on the exposed conductor layer 135C ′ via a nickel layer 141 and a gold layer 142.
このコア基板131の表面側に位置する導体層135Bはパッド部であり、平坦化用樹脂137によって平坦化された面に導体層135Bの表面が露出している。この導体層135B(パッド部)と接続するように多層の配線構造体10MLが配設されている。この多層の配線構造体10MLは、配線層21A,21B,21C,21Dの4層からなる配線層21を有しており、配線層21Cのパッド部上に接続パッド171を介して半導体素子111,112が実装されている。図示例では、多層の配線構造体10MLの配線層21Cのパッド部上にはニッケル層146、金層147が設けられているとともに、このニッケル層146、金層147が露出するようにソルダーレジスト161が配設されている。そして、接続パッド171は熱圧着されることにより、金層147と半導体素子111,112の端子111a,112aを接続している。また、半導体素子111,112と多層の配線構造体10MLとの間隙には、熱硬化性樹脂を充填して加熱硬化した封止樹脂162が充填されている。
The conductor layer 135B located on the surface side of the core substrate 131 is a pad portion, and the surface of the conductor layer 135B is exposed on the surface flattened by the flattening resin 137. A multilayer wiring structure 10ML is disposed so as to be connected to the conductor layer 135B (pad portion). Wiring structure 10 ML of this multilayer wiring layers 21A, 21B, 21C, has a wiring layer 21 made of four layers of 21D, the semiconductor device via the connection pads 171 on the pad portion of the wiring layer 21C 111 , 112 are implemented. In the illustrated example, the nickel layer 146 on the pad portion of the wiring layer 21C of the multilayer wiring structure 10 ML, with the gold layer 147 is provided, a solder resist as the nickel layer 146, a gold layer 147 is exposed 161 is disposed. The connection pad 171 connects the gold layer 147 and the terminals 111a and 112a of the semiconductor elements 111 and 112 by thermocompression bonding. Further, the gap between the semiconductor elements 111 and 112 and the multilayer wiring structure 10 ML is a sealing resin 162 which is heated and cured to fill the thermosetting resin is filled.
また、本発明の電子装置は、図23に示されるような多層の配線構造体10′MLを備えるものであってもよい。図23は、図22相当の電子装置の部分拡大断面図である。図23に示される電子装置200′における多層の配線構造体10′MLは、配線層21A,21B,21Cを有する3層構造であり、最上層の配線層21C、絶縁層3C上に、バンプ形成用の凹部19Aと、この凹部19A内に位置する層間接続ビア用の貫通孔19Bを備える絶縁層3Dと、この凹部19Aに位置するバンプ29A、貫通孔19Bに位置する層間接続ビア29Bを備えるものである。このようなバンプ29Aの表面は、絶縁層3Dの表面から突出した状態となっており、このバンプ29A上に、接続パッド171を介して半導体素子111,112の端子111a,112aが接続されている。そして、半導体素子111,112と配線構造体10′MLとの間隙には、熱硬化性樹脂を充填して加熱硬化した封止樹脂162が充填されている。このような電子装置200′は、上述のニッケル層146、金層147の成膜が不要であり、接続パッド171を介した半導体素子111,112の実装部位の構成が電子装置200に比べて簡易で、これにより工程数が少ないものとなり、材料コストの低減も可能である。
In addition, the electronic device of the present invention may include a multilayer wiring structure 10 ′ ML as shown in FIG. FIG. 23 is a partial enlarged cross-sectional view of an electronic device corresponding to FIG. The multilayer wiring structure 10 ′ ML in the electronic device 200 ′ shown in FIG. 23 has a three-layer structure having wiring layers 21A, 21B, and 21C, and bumps are formed on the uppermost wiring layer 21C and insulating layer 3C. 19A, an insulating layer 3D having a through hole 19B for an interlayer connection via located in the recess 19A, a bump 29A located in the recess 19A, and an interlayer connection via 29B located in the through hole 19B It is. The surface of the bump 29A protrudes from the surface of the insulating layer 3D, and the terminals 111a and 112a of the semiconductor elements 111 and 112 are connected to the bump 29A via the connection pads 171. . A gap between the semiconductor elements 111 and 112 and the wiring structure 10 ′ ML is filled with a sealing resin 162 that is filled with a thermosetting resin and heat-cured. Such an electronic device 200 ′ does not require the formation of the nickel layer 146 and the gold layer 147, and the configuration of the mounting portion of the semiconductor elements 111 and 112 via the connection pads 171 is simpler than that of the electronic device 200. Thus, the number of processes is reduced, and the material cost can be reduced.
図24は、本発明の電子装置の他の実施形態を示す概略部分断面図である。図24において、電子装置201は、半導体素子221,222を、その端子221a,222aが露出するように封止樹脂231で封止した樹脂封止型半導体素子211上に、多層の配線構造体10MLを形成し、はんだボール261を配設したものである。この実施形態では、多層の配線構造体10MLは、上述の本発明の配線構造体であり、このような多層の配線構造体10MLは、本発明の製造方法により製造することができ、ここでの説明は省略する。
FIG. 24 is a schematic partial cross-sectional view showing another embodiment of the electronic device of the present invention. 24, the electronic device 201 includes a multilayer wiring structure 10 on a resin-encapsulated semiconductor element 211 in which semiconductor elements 221 and 222 are encapsulated with an encapsulating resin 231 so that terminals 221a and 222a are exposed. ML is formed and solder balls 261 are disposed. In this embodiment, the multilayer wiring structure 10 ML is the above-described wiring structure of the present invention, and such a multilayer wiring structure 10 ML can be manufactured by the manufacturing method of the present invention. The description in is omitted.
尚、半導体素子221,222は、例えば、メモリー素子、ロジック素子等することができるが、図示例では、その構造に関係なく画一的に斜線を付している。
多層の配線構造体10MLは、配線層21A,21B,21Cの3層からなる配線層21を有しており、配線層21C、絶縁層3C上に、層間接続ビア用の貫通孔241Aを備える絶縁層231と、この貫通孔241Aに位置する層間接続ビア241と、層間接続ビア241に接続して絶縁層231上に位置するバンプ245を備えている。バンプ245には、ニッケル層251、金層252を介してはんだボール261が位置している。
また、本発明の電子装置は、図25に示されるように、はんだボール261が露出するようにソルダーレジスト271が配設された電子装置201′であってもよい。 The semiconductor elements 221, 222 can be, for example, memory elements, logic elements, etc., but in the illustrated example, they are uniformly hatched regardless of their structures.
The multilayer wiring structure 10ML has a wiring layer 21 including three wiring layers 21A, 21B, and 21C, and includes a through hole 241A for an interlayer connection via on the wiring layer 21C and the insulating layer 3C. An insulating layer 231, an interlayer connection via 241 located in the through hole 241 A, and a bump 245 located on the insulating layer 231 connected to the interlayer connection via 241 are provided. Solder balls 261 are located on the bumps 245 with the nickel layer 251 and the gold layer 252 interposed therebetween.
In addition, as shown in FIG. 25, the electronic device of the present invention may be anelectronic device 201 ′ in which a solder resist 271 is disposed so that the solder balls 261 are exposed.
多層の配線構造体10MLは、配線層21A,21B,21Cの3層からなる配線層21を有しており、配線層21C、絶縁層3C上に、層間接続ビア用の貫通孔241Aを備える絶縁層231と、この貫通孔241Aに位置する層間接続ビア241と、層間接続ビア241に接続して絶縁層231上に位置するバンプ245を備えている。バンプ245には、ニッケル層251、金層252を介してはんだボール261が位置している。
また、本発明の電子装置は、図25に示されるように、はんだボール261が露出するようにソルダーレジスト271が配設された電子装置201′であってもよい。 The
The multilayer wiring structure 10ML has a wiring layer 21 including three
In addition, as shown in FIG. 25, the electronic device of the present invention may be an
図26は、本発明の電子装置の他の実施形態を示す概略部分断面図である。図26において、電子装置301は、半導体素子321を、その端子321aが露出するように封止樹脂331で封止した樹脂封止型半導体素子311上に、単層の配線構造体10を形成し、はんだボール361を配設したものである。この実施形態では、単層の配線構造体10は、上述の本発明の配線構造体であり、このような配線構造体10は、本発明の製造方法により製造することができ、ここでの説明は省略する。
単層の配線構造体10は、配線14、パッド部15、層間接続ビア16からなる配線層21を有しており、所望のパッド部15上には、はんだボール361が位置している。
このような配線層21が単層である電子装置301では、配線構造体10の配線14上、パッド部15上に、合金アンカー層(図示せず)を介してシランカップリング剤層(図示せず)が露出しているが、このようなシランカップリング剤層は、半導体チップ実装時にエポキシ系等のモールド封止樹脂との密着性が向上するという作用をなすものである。 FIG. 26 is a schematic partial cross-sectional view showing another embodiment of the electronic device of the present invention. In FIG. 26, the electronic device 301 forms the single-layer wiring structure 10 on the resin-encapsulated semiconductor element 311 in which the semiconductor element 321 is encapsulated with an encapsulating resin 331 so that the terminal 321a is exposed. The solder balls 361 are disposed. In this embodiment, the single-layer wiring structure 10 is the above-described wiring structure of the present invention, and such a wiring structure 10 can be manufactured by the manufacturing method of the present invention. Is omitted.
The single-layer wiring structure 10 has a wiring layer 21 including wirings 14, pad portions 15, and interlayer connection vias 16, and solder balls 361 are located on the desired pad portions 15.
In the electronic device 301 in which the wiring layer 21 is a single layer, a silane coupling agent layer (not shown) is formed on thewiring 14 and the pad portion 15 of the wiring structure 10 via an alloy anchor layer (not shown). However, such a silane coupling agent layer has an effect of improving the adhesion with an epoxy-based mold sealing resin when mounting a semiconductor chip.
単層の配線構造体10は、配線14、パッド部15、層間接続ビア16からなる配線層21を有しており、所望のパッド部15上には、はんだボール361が位置している。
このような配線層21が単層である電子装置301では、配線構造体10の配線14上、パッド部15上に、合金アンカー層(図示せず)を介してシランカップリング剤層(図示せず)が露出しているが、このようなシランカップリング剤層は、半導体チップ実装時にエポキシ系等のモールド封止樹脂との密着性が向上するという作用をなすものである。 FIG. 26 is a schematic partial cross-sectional view showing another embodiment of the electronic device of the present invention. In FIG. 26, the electronic device 301 forms the single-
The single-
In the electronic device 301 in which the wiring layer 21 is a single layer, a silane coupling agent layer (not shown) is formed on the
このような本発明の電子装置は、配線の高周波特性が優れ、配線の高密度化が可能であるとともに、構成する配線構造体相互の密着性に優れており、信頼性の高いものである。
上述の電子装置の実施形態は例示であり、本発明は当該実施形態に限定されるものではない。例えば、多層の配線構造体10ML、単層の配線構造体10を構成するシランカップリング剤層28が、環状の平面視形状環状であり、合金アンカー層27の周縁から所定の幅で存在し、合金アンカー層27の中央部には存在しない構造であってもよい。 Such an electronic device of the present invention has excellent high-frequency characteristics of wiring, enables high-density wiring, and is excellent in adhesion between the wiring structures constituting the circuit, and has high reliability.
The above-described embodiment of the electronic device is an exemplification, and the present invention is not limited to the embodiment. For example, themultilayer wiring structure 10 ML and the silane coupling agent layer 28 constituting the single-layer wiring structure 10 have an annular shape in plan view, and exist with a predetermined width from the periphery of the alloy anchor layer 27. A structure that does not exist in the central portion of the alloy anchor layer 27 may be used.
上述の電子装置の実施形態は例示であり、本発明は当該実施形態に限定されるものではない。例えば、多層の配線構造体10ML、単層の配線構造体10を構成するシランカップリング剤層28が、環状の平面視形状環状であり、合金アンカー層27の周縁から所定の幅で存在し、合金アンカー層27の中央部には存在しない構造であってもよい。 Such an electronic device of the present invention has excellent high-frequency characteristics of wiring, enables high-density wiring, and is excellent in adhesion between the wiring structures constituting the circuit, and has high reliability.
The above-described embodiment of the electronic device is an exemplification, and the present invention is not limited to the embodiment. For example, the
次に、実施例を挙げて本発明を更に詳細に説明する。
[実施例1]
まず、インプリント用のモールドとして、厚み675μmの石英ガラス(65mm角)からなるモールド用基材の一方の面に、主面からの高さが2μmである凸形状部を有する凹凸構造を備えたモールドを準備した。このモールドが備える凹凸構造は、平面視形状が線状の凸形状部と、平面視形状が円形状の凸形状部の2種の凸形状部で構成されるものとした。線状の凸形状部は、ライン/スペース(5μm/5μm)形状であった。また、円形状の凸形状部は、直径が30μmであり、225個/mm2(65μmピッチ)の密度で存在するものであった。さらに、平面視形状が円形状の凸形状部の頂部平面の略中央部には、直径20μmのクロム薄膜からなる遮光層が位置するものとした。 Next, the present invention will be described in more detail with reference to examples.
[Example 1]
First, as an imprint mold, a concavo-convex structure having a convex portion with a height of 2 μm from the main surface was provided on one surface of a mold substrate made of 675 μm thick quartz glass (65 mm square). A mold was prepared. The concavo-convex structure provided in this mold is composed of two types of convex portions, ie, a convex portion having a linear shape in plan view and a convex portion having a circular shape in plan view. The linear convex portion was a line / space (5 μm / 5 μm) shape. The circular convex portion had a diameter of 30 μm and existed at a density of 225 pieces / mm 2 (65 μm pitch). Further, a light shielding layer made of a chromium thin film having a diameter of 20 μm is located at a substantially central portion of the top plane of the convex portion having a circular shape in plan view.
[実施例1]
まず、インプリント用のモールドとして、厚み675μmの石英ガラス(65mm角)からなるモールド用基材の一方の面に、主面からの高さが2μmである凸形状部を有する凹凸構造を備えたモールドを準備した。このモールドが備える凹凸構造は、平面視形状が線状の凸形状部と、平面視形状が円形状の凸形状部の2種の凸形状部で構成されるものとした。線状の凸形状部は、ライン/スペース(5μm/5μm)形状であった。また、円形状の凸形状部は、直径が30μmであり、225個/mm2(65μmピッチ)の密度で存在するものであった。さらに、平面視形状が円形状の凸形状部の頂部平面の略中央部には、直径20μmのクロム薄膜からなる遮光層が位置するものとした。 Next, the present invention will be described in more detail with reference to examples.
[Example 1]
First, as an imprint mold, a concavo-convex structure having a convex portion with a height of 2 μm from the main surface was provided on one surface of a mold substrate made of 675 μm thick quartz glass (65 mm square). A mold was prepared. The concavo-convex structure provided in this mold is composed of two types of convex portions, ie, a convex portion having a linear shape in plan view and a convex portion having a circular shape in plan view. The linear convex portion was a line / space (5 μm / 5 μm) shape. The circular convex portion had a diameter of 30 μm and existed at a density of 225 pieces / mm 2 (65 μm pitch). Further, a light shielding layer made of a chromium thin film having a diameter of 20 μm is located at a substantially central portion of the top plane of the convex portion having a circular shape in plan view.
次に、上記のインプリント用のモールドを使用して、絶縁層を形成した(絶縁層形成工程)。すなわち、転写基材として、シリコン基板を準備し、この転写基板の表面にスパッタリング法でクロムチタン薄膜と銅薄膜を積層形成した。次いで、転写基材表面の銅薄膜上にエポキシ系の紫外線硬化型絶縁レジスト溶液(日本化薬(株)製 SU-8 3000シリーズ)を供給し、ポストベーク後の膜厚が約6μmとなるよう塗工した後、ホットプレートを用いたソフトベークにて乾燥してレジスト膜を得た。次いで、モールドを上記レジスト膜に押し付け、この状態でモールド背面側から350~405nmの波長成分を含む平行光成分の紫外線を照射してレジスト膜の選択部位に酸を発生させ、次いで、PEB(Post Exposure bake)にて加熱処理を行い、レジスト膜を1次硬化させた。その後、モールドを引き離し、PMシンナー(プロピレングリコールモノメチルエーテルアセテート)により現像処理を行って、転写基板上にパターン構造体を形成し、ポストベーク(窒素雰囲気180℃、60分間)にて2次硬化を行った。これにより、シリコン基板上に絶縁層を形成した(図4B参照)。この絶縁層は、配線形成用の凹部をライン/スペース(5μm/5μm)形状で有し、直径が30μmのパッド部形成用の凹部と、この凹部の略中央部に位置する直径20μmの貫通孔を備えるものであり、貫通孔には銅薄膜が露出するものであった。
Next, an insulating layer was formed using the above-mentioned imprint mold (insulating layer forming step). That is, a silicon substrate was prepared as a transfer substrate, and a chromium titanium thin film and a copper thin film were laminated on the surface of the transfer substrate by sputtering. Next, an epoxy-based UV-curable insulating resist solution (SU-8 3000 series manufactured by Nippon Kayaku Co., Ltd.) is supplied onto the copper thin film on the surface of the transfer substrate so that the film thickness after post-baking is about 6 μm. After coating, the resist film was obtained by drying by soft baking using a hot plate. Next, the mold is pressed against the resist film, and in this state, an ultraviolet ray of a parallel light component including a wavelength component of 350 to 405 nm is irradiated from the back side of the mold to generate acid at a selected portion of the resist film, and then PEB (Post The resist film was first-cured by heat treatment using exposure (bake). Thereafter, the mold is pulled off, and development processing is performed with PM thinner (propylene glycol monomethyl ether acetate) to form a pattern structure on the transfer substrate, followed by post-baking (nitrogen atmosphere 180 ° C., 60 minutes) for secondary curing. went. Thereby, an insulating layer was formed on the silicon substrate (see FIG. 4B). This insulating layer has a recess for forming a wiring in the shape of a line / space (5 μm / 5 μm), a recess for forming a pad portion having a diameter of 30 μm, and a through-hole having a diameter of 20 μm located at a substantially central portion of the recess. The copper thin film was exposed in the through hole.
次いで、導体バリア層形成工程にて、配線形成用の凹部の内壁面、パッド部形成用の凹部と層間接続ビア形成用の貫通孔の内壁面を含む絶縁層の表面、および貫通孔に露出する銅薄膜上に、スパッタリング法でクロム層(厚み15nm)、チタン層(厚み50nm)をこの順序で積層形成して、導体バリア層(Cr/Ti複合層)を形成した(図4C参照)。クロム層のビッカース硬度は1.06GPa、チタン層のビッカース硬度は1.3GPaであった。
次に、導体形成工程にて、導体バリア層上に、スパッタリング法で銅薄膜(厚み200nm)を形成してシード電極層とし、このシード電極層をめっき電極として、電気めっきにより銅を被着して、配線形成用の凹部、パッド部形成用の凹部、このパッド部形成用の凹部内に位置する層間接続ビア形成用の貫通孔を埋めるように銅(ビッカース硬度:0.8GPa)からなる導体層を形成した(図5A参照)。この導体層は、絶縁層よりも3μm程度厚くなるように形成した。
次いで、CMPにより、導体層を研磨した(研磨工程)。この研磨では、導体バリア層が研磨のストッパーとして作用した(図7参照)。 Next, in the conductor barrier layer forming step, the inner wall surface of the wiring forming recess, the surface of the insulating layer including the recess for forming the pad portion and the inner wall surface of the through hole for forming the interlayer connection via, and the through hole are exposed. On the copper thin film, a chromium layer (thickness 15 nm) and a titanium layer (thickness 50 nm) were laminated in this order by a sputtering method to form a conductor barrier layer (Cr / Ti composite layer) (see FIG. 4C). The chromium layer had a Vickers hardness of 1.06 GPa, and the titanium layer had a Vickers hardness of 1.3 GPa.
Next, in the conductor formation step, a copper thin film (thickness 200 nm) is formed on the conductor barrier layer by sputtering to form a seed electrode layer, and copper is deposited by electroplating using this seed electrode layer as a plating electrode. A conductor made of copper (Vickers hardness: 0.8 GPa) so as to fill a recess for forming a wiring, a recess for forming a pad, and a through hole for forming an interlayer connection via located in the recess for forming the pad A layer was formed (see FIG. 5A). This conductor layer was formed to be about 3 μm thicker than the insulating layer.
Next, the conductor layer was polished by CMP (polishing step). In this polishing, the conductor barrier layer acted as a polishing stopper (see FIG. 7).
次に、導体形成工程にて、導体バリア層上に、スパッタリング法で銅薄膜(厚み200nm)を形成してシード電極層とし、このシード電極層をめっき電極として、電気めっきにより銅を被着して、配線形成用の凹部、パッド部形成用の凹部、このパッド部形成用の凹部内に位置する層間接続ビア形成用の貫通孔を埋めるように銅(ビッカース硬度:0.8GPa)からなる導体層を形成した(図5A参照)。この導体層は、絶縁層よりも3μm程度厚くなるように形成した。
次いで、CMPにより、導体層を研磨した(研磨工程)。この研磨では、導体バリア層が研磨のストッパーとして作用した(図7参照)。 Next, in the conductor barrier layer forming step, the inner wall surface of the wiring forming recess, the surface of the insulating layer including the recess for forming the pad portion and the inner wall surface of the through hole for forming the interlayer connection via, and the through hole are exposed. On the copper thin film, a chromium layer (
Next, in the conductor formation step, a copper thin film (
Next, the conductor layer was polished by CMP (polishing step). In this polishing, the conductor barrier layer acted as a polishing stopper (see FIG. 7).
次に、除去工程にて、絶縁層の表面上に位置して露出している導体バリア層を除去した(図5C参照)。すなわち、まず、水酸化カリウムと過酸化水素の混合液を使用してチタン層をフラッシュエッチングして除去し、その後、フェリシアン化カリウム水溶液を使用してクロム層をフラッシュエッチングして除去した。
これにより、シリコン基板上に配線構造体を製造した。この配線構造体では、配線の表面、パッド部の表面が絶縁層から65nm突出した状態であった。導体バリア層の端部は、絶縁層の表面と同じ高さであった。また、絶縁層の厚みは6μmであり、所期の厚みを有することが確認された。 Next, in the removing step, the exposed conductor barrier layer located on the surface of the insulating layer was removed (see FIG. 5C). That is, first, the titanium layer was removed by flash etching using a mixed solution of potassium hydroxide and hydrogen peroxide, and then the chromium layer was removed by flash etching using an aqueous potassium ferricyanide solution.
Thereby, a wiring structure was manufactured on the silicon substrate. In this wiring structure, the surface of the wiring and the surface of the pad portion protruded 65 nm from the insulating layer. The edge part of the conductor barrier layer was the same height as the surface of the insulating layer. Moreover, the thickness of the insulating layer was 6 μm, and it was confirmed that it had the expected thickness.
これにより、シリコン基板上に配線構造体を製造した。この配線構造体では、配線の表面、パッド部の表面が絶縁層から65nm突出した状態であった。導体バリア層の端部は、絶縁層の表面と同じ高さであった。また、絶縁層の厚みは6μmであり、所期の厚みを有することが確認された。 Next, in the removing step, the exposed conductor barrier layer located on the surface of the insulating layer was removed (see FIG. 5C). That is, first, the titanium layer was removed by flash etching using a mixed solution of potassium hydroxide and hydrogen peroxide, and then the chromium layer was removed by flash etching using an aqueous potassium ferricyanide solution.
Thereby, a wiring structure was manufactured on the silicon substrate. In this wiring structure, the surface of the wiring and the surface of the pad portion protruded 65 nm from the insulating layer. The edge part of the conductor barrier layer was the same height as the surface of the insulating layer. Moreover, the thickness of the insulating layer was 6 μm, and it was confirmed that it had the expected thickness.
この配線構造体上に、上記の紫外線硬化型の絶縁レジスト溶液を供給し、ポストベーク後の膜厚が約6μmとなるよう塗工した後、ホットプレートを用いたソフトベークにて乾燥してレジスト膜を得た。次に、このレジスト膜に350~405nmの波長成分を含む平行光成分の紫外線を照射して、上記と同様の1次硬化、2次硬化を行って絶縁層を形成した。その後、この絶縁層の剥離強度を下記の条件で測定した結果、0.38kN/mであり、配線構造体を積層した場合、配線構造体相互の良好な密着性が得られることが確認された。
(剥離強度の測定)
JIS C 6481-1996に準拠し、10mm幅の試験片の端部に剥離しろを設け、その部分を把持して20mm/秒の速度で90度方向に引っ張り、このときに要する引き剥がしの力を測定した。 On this wiring structure, the above-mentioned ultraviolet curable insulating resist solution is supplied and coated so that the film thickness after post-baking is about 6 μm, and then dried by soft baking using a hot plate. A membrane was obtained. Next, the resist film was irradiated with ultraviolet rays having a parallel light component including a wavelength component of 350 to 405 nm, and the same primary curing and secondary curing as described above were performed to form an insulating layer. Thereafter, the peel strength of this insulating layer was measured under the following conditions. As a result, it was 0.38 kN / m, and when the wiring structures were laminated, it was confirmed that good adhesion between the wiring structures was obtained. .
(Measurement of peel strength)
In accordance with JIS C 6481-1996, a 10 mm wide test piece is provided with a peeling margin at the end, and the portion is gripped and pulled in the direction of 90 degrees at a speed of 20 mm / sec. It was measured.
(剥離強度の測定)
JIS C 6481-1996に準拠し、10mm幅の試験片の端部に剥離しろを設け、その部分を把持して20mm/秒の速度で90度方向に引っ張り、このときに要する引き剥がしの力を測定した。 On this wiring structure, the above-mentioned ultraviolet curable insulating resist solution is supplied and coated so that the film thickness after post-baking is about 6 μm, and then dried by soft baking using a hot plate. A membrane was obtained. Next, the resist film was irradiated with ultraviolet rays having a parallel light component including a wavelength component of 350 to 405 nm, and the same primary curing and secondary curing as described above were performed to form an insulating layer. Thereafter, the peel strength of this insulating layer was measured under the following conditions. As a result, it was 0.38 kN / m, and when the wiring structures were laminated, it was confirmed that good adhesion between the wiring structures was obtained. .
(Measurement of peel strength)
In accordance with JIS C 6481-1996, a 10 mm wide test piece is provided with a peeling margin at the end, and the portion is gripped and pulled in the direction of 90 degrees at a speed of 20 mm / sec. It was measured.
[実施例2]
導体バリア層形成工程にて、MoNiTi合金(日立金属(株)製 MTD-54、ビッカース硬度:1.53GPa)をターゲットとしたスパッタリング法により、モリブデン合金層(厚み50nm)を形成し、除去工程にて、水酸化カリウムと過酸化水素の混合液を使用してモリブデン合金層をフラッシュエッチングして除去した他は、実施例1と同様にして、配線構造体を製造した。この配線構造体では、配線の表面、パッド部の表面が絶縁層から50nm突出した状態であった。導体バリア層の端部は、絶縁層の表面と同じ高さであった。また、絶縁層の厚みは6μmであり、所期の厚みを有することが確認された。
この配線構造体上に、実施例1と同様に、絶縁層を形成し、その後、この絶縁層の剥離強度を測定した結果、0.38kN/mであり、配線構造体を積層した場合、配線構造体相互の良好な密着性が得られることが確認された。 [Example 2]
In the conductor barrier layer forming step, a molybdenum alloy layer (thickness 50 nm) is formed by a sputtering method using a MoNiTi alloy (MTD-54 manufactured by Hitachi Metals, Vickers hardness: 1.53 GPa) as a target. A wiring structure was manufactured in the same manner as in Example 1 except that the molybdenum alloy layer was removed by flash etching using a mixed solution of potassium hydroxide and hydrogen peroxide. In this wiring structure, the surface of the wiring and the surface of the pad portion protruded from the insulating layer by 50 nm. The edge part of the conductor barrier layer was the same height as the surface of the insulating layer. Moreover, the thickness of the insulating layer was 6 μm, and it was confirmed that it had the expected thickness.
On this wiring structure, an insulating layer was formed in the same manner as in Example 1, and then the peel strength of this insulating layer was measured. As a result, it was 0.38 kN / m. It was confirmed that good adhesion between structures was obtained.
導体バリア層形成工程にて、MoNiTi合金(日立金属(株)製 MTD-54、ビッカース硬度:1.53GPa)をターゲットとしたスパッタリング法により、モリブデン合金層(厚み50nm)を形成し、除去工程にて、水酸化カリウムと過酸化水素の混合液を使用してモリブデン合金層をフラッシュエッチングして除去した他は、実施例1と同様にして、配線構造体を製造した。この配線構造体では、配線の表面、パッド部の表面が絶縁層から50nm突出した状態であった。導体バリア層の端部は、絶縁層の表面と同じ高さであった。また、絶縁層の厚みは6μmであり、所期の厚みを有することが確認された。
この配線構造体上に、実施例1と同様に、絶縁層を形成し、その後、この絶縁層の剥離強度を測定した結果、0.38kN/mであり、配線構造体を積層した場合、配線構造体相互の良好な密着性が得られることが確認された。 [Example 2]
In the conductor barrier layer forming step, a molybdenum alloy layer (thickness 50 nm) is formed by a sputtering method using a MoNiTi alloy (MTD-54 manufactured by Hitachi Metals, Vickers hardness: 1.53 GPa) as a target. A wiring structure was manufactured in the same manner as in Example 1 except that the molybdenum alloy layer was removed by flash etching using a mixed solution of potassium hydroxide and hydrogen peroxide. In this wiring structure, the surface of the wiring and the surface of the pad portion protruded from the insulating layer by 50 nm. The edge part of the conductor barrier layer was the same height as the surface of the insulating layer. Moreover, the thickness of the insulating layer was 6 μm, and it was confirmed that it had the expected thickness.
On this wiring structure, an insulating layer was formed in the same manner as in Example 1, and then the peel strength of this insulating layer was measured. As a result, it was 0.38 kN / m. It was confirmed that good adhesion between structures was obtained.
[比較例1]
導体バリア層形成工程にて、実施例1のクロム層/チタン層の積層に替えて、スパッタリング法でアルミニウム層(厚み100nm、ビッカース硬度:0.17GPa)を形成して、導体バリア層を形成し、その後、実施例1と同様に、導体形成工程を実施した。
次いで、実施例1と同様に、CMPにより、導体層を研磨した。この研磨では、導体バリア層は研磨のストッパーとして作用せず、絶縁層上の導体層が研磨されたところで研磨を停止することができず、絶縁層の研磨まで進行し、絶縁層の厚みは4.5μmとなり、実施例1、実施例2に比べて絶縁層が薄いものとなってしまった。
上記の研磨工程により、配線の表面およびパッド部の表面は、絶縁層の表面と同一面となっている配線構造体を得た。導体バリア層の端部は、絶縁層の表面と同じ高さであった。
この配線構造体上に、実施例1と同様に、絶縁層を形成し、その後、この絶縁層の剥離強度を測定した結果、0.15kN/mであり、配線構造体を積層した場合、配線構造体相互の密着性が、実施例1、2の配線構造体に比べて劣ることが確認された。 [Comparative Example 1]
In the conductor barrier layer forming step, an aluminum layer (thickness: 100 nm, Vickers hardness: 0.17 GPa) is formed by a sputtering method instead of the chromium layer / titanium layer in Example 1 to form a conductor barrier layer. Thereafter, the conductor forming step was performed in the same manner as in Example 1.
Next, in the same manner as in Example 1, the conductor layer was polished by CMP. In this polishing, the conductor barrier layer does not act as a polishing stopper, and the polishing cannot be stopped when the conductor layer on the insulating layer is polished. The polishing proceeds to the insulating layer, and the thickness of the insulating layer is 4 As a result, the insulating layer was thinner than those in Examples 1 and 2.
Through the above polishing process, a wiring structure was obtained in which the surface of the wiring and the surface of the pad portion were flush with the surface of the insulating layer. The edge part of the conductor barrier layer was the same height as the surface of the insulating layer.
On this wiring structure, an insulating layer was formed in the same manner as in Example 1, and then the peel strength of this insulating layer was measured. As a result, it was 0.15 kN / m. It was confirmed that the adhesion between the structures was inferior to the wiring structures of Examples 1 and 2.
導体バリア層形成工程にて、実施例1のクロム層/チタン層の積層に替えて、スパッタリング法でアルミニウム層(厚み100nm、ビッカース硬度:0.17GPa)を形成して、導体バリア層を形成し、その後、実施例1と同様に、導体形成工程を実施した。
次いで、実施例1と同様に、CMPにより、導体層を研磨した。この研磨では、導体バリア層は研磨のストッパーとして作用せず、絶縁層上の導体層が研磨されたところで研磨を停止することができず、絶縁層の研磨まで進行し、絶縁層の厚みは4.5μmとなり、実施例1、実施例2に比べて絶縁層が薄いものとなってしまった。
上記の研磨工程により、配線の表面およびパッド部の表面は、絶縁層の表面と同一面となっている配線構造体を得た。導体バリア層の端部は、絶縁層の表面と同じ高さであった。
この配線構造体上に、実施例1と同様に、絶縁層を形成し、その後、この絶縁層の剥離強度を測定した結果、0.15kN/mであり、配線構造体を積層した場合、配線構造体相互の密着性が、実施例1、2の配線構造体に比べて劣ることが確認された。 [Comparative Example 1]
In the conductor barrier layer forming step, an aluminum layer (thickness: 100 nm, Vickers hardness: 0.17 GPa) is formed by a sputtering method instead of the chromium layer / titanium layer in Example 1 to form a conductor barrier layer. Thereafter, the conductor forming step was performed in the same manner as in Example 1.
Next, in the same manner as in Example 1, the conductor layer was polished by CMP. In this polishing, the conductor barrier layer does not act as a polishing stopper, and the polishing cannot be stopped when the conductor layer on the insulating layer is polished. The polishing proceeds to the insulating layer, and the thickness of the insulating layer is 4 As a result, the insulating layer was thinner than those in Examples 1 and 2.
Through the above polishing process, a wiring structure was obtained in which the surface of the wiring and the surface of the pad portion were flush with the surface of the insulating layer. The edge part of the conductor barrier layer was the same height as the surface of the insulating layer.
On this wiring structure, an insulating layer was formed in the same manner as in Example 1, and then the peel strength of this insulating layer was measured. As a result, it was 0.15 kN / m. It was confirmed that the adhesion between the structures was inferior to the wiring structures of Examples 1 and 2.
[比較例2]
比較例1と同様にして、配線構造体を製造した。次いで、過酸化水素硫酸系の薬液を用いた粗化処理を施して、配線の表面およびパッド部の表面を粗化して、配線構造体を得た。粗化処理の前後の配線の表面およびパッド部の表面の平均粗さを、表面粗さ計を用いて測定した結果、平均粗さは21nmから110nmへ増大したことを確認した。
この配線構造体上に、実施例1と同様に、絶縁層を形成し、その後、この絶縁層の剥離強度を測定した結果、0.32kN/mであった。この結果から、配線構造体を積層した場合、実施例1、2の配線構造体は、配線の表面およびパッド部の表面を粗化した従来の配線構造体と同等以上の密着性が得られることが確認された。 [Comparative Example 2]
A wiring structure was manufactured in the same manner as in Comparative Example 1. Next, a roughening process using a hydrogen peroxide-sulfuric acid based chemical solution was performed to roughen the surface of the wiring and the surface of the pad portion, thereby obtaining a wiring structure. As a result of measuring the average roughness of the surface of the wiring and the surface of the pad portion before and after the roughening treatment using a surface roughness meter, it was confirmed that the average roughness increased from 21 nm to 110 nm.
On this wiring structure, an insulating layer was formed in the same manner as in Example 1, and then the peel strength of this insulating layer was measured. As a result, it was 0.32 kN / m. From this result, when the wiring structures are stacked, the wiring structures of Examples 1 and 2 can have the same or better adhesion than the conventional wiring structures in which the surface of the wiring and the surface of the pad portion are roughened. Was confirmed.
比較例1と同様にして、配線構造体を製造した。次いで、過酸化水素硫酸系の薬液を用いた粗化処理を施して、配線の表面およびパッド部の表面を粗化して、配線構造体を得た。粗化処理の前後の配線の表面およびパッド部の表面の平均粗さを、表面粗さ計を用いて測定した結果、平均粗さは21nmから110nmへ増大したことを確認した。
この配線構造体上に、実施例1と同様に、絶縁層を形成し、その後、この絶縁層の剥離強度を測定した結果、0.32kN/mであった。この結果から、配線構造体を積層した場合、実施例1、2の配線構造体は、配線の表面およびパッド部の表面を粗化した従来の配線構造体と同等以上の密着性が得られることが確認された。 [Comparative Example 2]
A wiring structure was manufactured in the same manner as in Comparative Example 1. Next, a roughening process using a hydrogen peroxide-sulfuric acid based chemical solution was performed to roughen the surface of the wiring and the surface of the pad portion, thereby obtaining a wiring structure. As a result of measuring the average roughness of the surface of the wiring and the surface of the pad portion before and after the roughening treatment using a surface roughness meter, it was confirmed that the average roughness increased from 21 nm to 110 nm.
On this wiring structure, an insulating layer was formed in the same manner as in Example 1, and then the peel strength of this insulating layer was measured. As a result, it was 0.32 kN / m. From this result, when the wiring structures are stacked, the wiring structures of Examples 1 and 2 can have the same or better adhesion than the conventional wiring structures in which the surface of the wiring and the surface of the pad portion are roughened. Was confirmed.
[比較例3]
導体バリア層形成工程にて、実施例1のクロム層/チタン層の積層に替えて、スパッタリング法でクロム層(厚み15nm、ビッカース硬度:1.06GPa)、ニッケル層(厚み50nm、ビッカース硬度:0.9GPa)を形成して、導体バリア層を形成した。
しかし、ニッケル層の膜応力が大きく、導体バリア層とエポキシ系の絶縁層との密着が得られず、導体バリア層の剥離が生じ、その後の工程に進むことができなかった。 [Comparative Example 3]
In the conductor barrier layer forming step, the chromium layer (thickness 15 nm, Vickers hardness: 1.06 GPa) and nickel layer (thickness 50 nm, Vickers hardness: 0) are formed by sputtering instead of the chromium layer / titanium layer of Example 1. .9 GPa) to form a conductor barrier layer.
However, the film stress of the nickel layer is large, the adhesion between the conductor barrier layer and the epoxy insulating layer cannot be obtained, the conductor barrier layer is peeled off, and the process cannot proceed.
導体バリア層形成工程にて、実施例1のクロム層/チタン層の積層に替えて、スパッタリング法でクロム層(厚み15nm、ビッカース硬度:1.06GPa)、ニッケル層(厚み50nm、ビッカース硬度:0.9GPa)を形成して、導体バリア層を形成した。
しかし、ニッケル層の膜応力が大きく、導体バリア層とエポキシ系の絶縁層との密着が得られず、導体バリア層の剥離が生じ、その後の工程に進むことができなかった。 [Comparative Example 3]
In the conductor barrier layer forming step, the chromium layer (
However, the film stress of the nickel layer is large, the adhesion between the conductor barrier layer and the epoxy insulating layer cannot be obtained, the conductor barrier layer is peeled off, and the process cannot proceed.
種々の配線構造体、電子装置の製造に適用可能である。
Applicable for manufacturing various wiring structures and electronic devices.
1,1ML,1ML′,1A,1B,1C,10,10ML,10ML′,10A,10B,10C…配線構造体
2…基材
3,3A,3B,3C…絶縁層
4…配線形成用の凹部
5…パッド部形成用の凹部
6…層間接続ビア形成用の貫通孔
11,11A,11B,11C…配線層
14…配線
14a…配線の表面
15…パッド部
15a…パッド部の表面
16…層間接続ビア
18…導体バリア層
100,100′,200,200′…電子装置
31…コア基板
51…インプリント用のモールド
91…フォトリソグラフィー用のマスク
101,111,112…半導体素子 1,1 ML, 1 ML ', 1A , 1B, 1C, 10,10 ML, 10 ML', 10A, 10B, 10C ...wiring structure 2 ... substrate 3, 3A, 3B, 3C ... insulating layer 4 ... wire Recesses for forming 5 ... Recesses for forming pad parts 6 ... Through holes for forming interlayer connection vias 11, 11A, 11B, 11C ... Wiring layer 14 ... Wiring 14a ... Surface of wiring 15 ... Pad part 15a ... Surface of pad part DESCRIPTION OF SYMBOLS 16 ... Interlayer connection via 18 ... Conductor barrier layer 100,100 ', 200,200' ... Electronic device 31 ... Core substrate 51 ... Imprint mold 91 ... Photolithographic mask 101,111,112 ... Semiconductor element
2…基材
3,3A,3B,3C…絶縁層
4…配線形成用の凹部
5…パッド部形成用の凹部
6…層間接続ビア形成用の貫通孔
11,11A,11B,11C…配線層
14…配線
14a…配線の表面
15…パッド部
15a…パッド部の表面
16…層間接続ビア
18…導体バリア層
100,100′,200,200′…電子装置
31…コア基板
51…インプリント用のモールド
91…フォトリソグラフィー用のマスク
101,111,112…半導体素子 1,1 ML, 1 ML ', 1A , 1B, 1C, 10,10 ML, 10 ML', 10A, 10B, 10C ...
Claims (24)
- 第1の面に凹部を有する第1の絶縁層と、
前記凹部に位置し、前記第1の面から突出している第1の導体層と、
前記第1の導体層と前記第1の絶縁層との間に介在する導体バリア層と、を有する配線構造体。 A first insulating layer having a recess in the first surface;
A first conductor layer located in the recess and protruding from the first surface;
A wiring structure having a conductor barrier layer interposed between the first conductor layer and the first insulating layer. - 第1の面に凹部を有する第1の絶縁層と、
前記凹部に位置し、前記第1の面から突出している第1の導体層と、
前記第1の導体層と前記第1の絶縁層との間に介在する導体バリア層と、
前記第1の面に露出する前記第1の導体層上に位置する合金アンカー層と、を有する配線構造体。 A first insulating layer having a recess in the first surface;
A first conductor layer located in the recess and protruding from the first surface;
A conductor barrier layer interposed between the first conductor layer and the first insulating layer;
And an alloy anchor layer located on the first conductor layer exposed on the first surface. - 前記第1の面とは反対側の第2の面に位置する基材を、さらに有する請求項1または2に記載の配線構造体。 The wiring structure according to claim 1 or 2, further comprising a base material positioned on a second surface opposite to the first surface.
- 前記第1の面上に位置する第2の絶縁層を、さらに有する請求項3に記載の配線構造体。 The wiring structure according to claim 3, further comprising a second insulating layer located on the first surface.
- 前記第1の面において、前記第1の導体層の積層方向の高さは前記導体バリア層の高さよりも高い請求項4に記載の配線構造体。 The wiring structure according to claim 4, wherein, in the first surface, the height of the first conductor layer in the stacking direction is higher than the height of the conductor barrier layer.
- 前記第1の導体層は銅であり、前記導体バリア層はクロム/チタンの複合層、モリブデン合金層のいずれかである請求項4に記載の配線構造体。 5. The wiring structure according to claim 4, wherein the first conductor layer is copper, and the conductor barrier layer is a chromium / titanium composite layer or a molybdenum alloy layer.
- 前記導体バリア層は、厚みが50~100nmの範囲である請求項4に記載の配線構造体。 The wiring structure according to claim 4, wherein the conductor barrier layer has a thickness in the range of 50 to 100 nm.
- 前記合金アンカー層上に位置するシランカップリング剤層をさらに有する請求項2に記載の配線構造体。 The wiring structure according to claim 2, further comprising a silane coupling agent layer located on the alloy anchor layer.
- 前記合金アンカー層は、銅スズ合金層あるいは銅スズニッケル合金層である請求項2に記載の配線構造体。 The wiring structure according to claim 2, wherein the alloy anchor layer is a copper tin alloy layer or a copper tin nickel alloy layer.
- 前記合金アンカー層は、厚みが50~100nmの範囲である請求項2に記載の配線構造体。 The wiring structure according to claim 2, wherein the alloy anchor layer has a thickness in a range of 50 to 100 nm.
- 前記第1の絶縁層を貫通して前記凹部と接続する第1の貫通孔と、
前記第2の絶縁層を貫通して前記凹部と接続する第2の貫通孔と、
前記第2の貫通孔に位置し、前記第1の導体層と電気的に接続する第2の導体層と、をさらに有し、
前記第1の導体層は、前記凹部および前記第1の貫通孔に位置し、前記導体バリア層は前記第1の導体層と前記第1の絶縁層との間に介在する請求項4に記載の配線構造体。 A first through-hole penetrating the first insulating layer and connected to the recess;
A second through hole penetrating the second insulating layer and connected to the recess;
A second conductor layer located in the second through hole and electrically connected to the first conductor layer;
The said 1st conductor layer is located in the said recessed part and the said 1st through-hole, and the said conductor barrier layer is interposed between the said 1st conductor layer and the said 1st insulating layer. Wiring structure. - 請求項11に記載の配線構造体と、
前記第1の導体層と電気的に接続するコア基板と、
前記第2の導体層と電気的に接続する半導体素子と、を備える電子装置。 The wiring structure according to claim 11,
A core substrate electrically connected to the first conductor layer;
An electronic device comprising: a semiconductor element electrically connected to the second conductor layer. - 第1の面に凹部を有する絶縁層を基材上に形成する絶縁層形成工程と、
前記凹部の内壁面を含む前記第1の面に、導体バリア層を形成する導体バリア層形成工程と、
前記導体バリア層を少なくとも被覆するようにシード電極層を形成し、前記シード電極層上に電気めっきにより導体層を形成する導体層形成工程と、
前記第1の面上の前記導体バリア層をストッパーとして前記導体層を研磨する研磨工程と、
前記第1の面上の前記導体バリア層を除去する除去工程と、を有する配線構造体の製造方法。 An insulating layer forming step of forming an insulating layer having a recess on the first surface on the substrate;
A conductor barrier layer forming step of forming a conductor barrier layer on the first surface including the inner wall surface of the recess;
Forming a seed electrode layer so as to cover at least the conductor barrier layer, and forming a conductor layer on the seed electrode layer by electroplating; and
A polishing step of polishing the conductor layer using the conductor barrier layer on the first surface as a stopper;
And a removing step of removing the conductor barrier layer on the first surface. - 前記除去工程の後、前記第1の面を置換めっき液中に浸漬することにより、前記導体層上に合金アンカー層を形成する合金アンカー層形成工程をさらに含む請求項13に記載の配線構造体の製造方法。 The wiring structure according to claim 13, further comprising an alloy anchor layer forming step of forming an alloy anchor layer on the conductor layer by immersing the first surface in a displacement plating solution after the removing step. Manufacturing method.
- 前記合金アンカー層形成工程において、前記合金アンカー層は、銅スズ合金層あるいは銅スズニッケル合金層である請求項14に記載の配線構造体の製造方法。 The method for manufacturing a wiring structure according to claim 14, wherein in the alloy anchor layer forming step, the alloy anchor layer is a copper tin alloy layer or a copper tin nickel alloy layer.
- 前記合金アンカー層形成工程の後、前記第1の面にシランカップリング剤を接触させ、その後、洗浄することにより、前記合金アンカー層上にシランカップリング剤層を形成するシランカップリング剤層形成工程をさらに含む請求項15に記載の配線構造体の製造方法。 After the alloy anchor layer forming step, a silane coupling agent layer is formed on the alloy anchor layer by bringing a silane coupling agent into contact with the first surface and then washing. The method for manufacturing a wiring structure according to claim 15, further comprising a step.
- 前記絶縁層形成工程において、インプリント方法を用いて前記凹部を形成する請求項13または請求項14に記載の配線構造体の製造方法。 The method for manufacturing a wiring structure according to claim 13 or 14, wherein, in the insulating layer forming step, the recess is formed by using an imprint method.
- 前記絶縁層形成工程において、フォトリソグラフィー方法を用いて前記凹部を形成する請求項13または請求項14に記載の配線構造体の製造方法。 The method for manufacturing a wiring structure according to claim 13 or 14, wherein, in the insulating layer forming step, the concave portion is formed using a photolithography method.
- 前記研磨工程において、前記導体層は化学研磨する請求項13または請求項14に記載の配線構造体の製造方法。 The method for manufacturing a wiring structure according to claim 13 or 14, wherein the conductor layer is chemically polished in the polishing step.
- 前記研磨工程において、前記導体層を化学研磨した後、さらに化学機械研磨する請求項19に記載の配線構造体の製造方法。 20. The method for manufacturing a wiring structure according to claim 19, wherein, in the polishing step, the conductor layer is chemically polished and then further subjected to chemical mechanical polishing.
- 前記研磨工程において、前記導体バリア層より前記導体層の選択性が高い化学研磨をする請求項20に記載の配線構造体の製造方法。 21. The method of manufacturing a wiring structure according to claim 20, wherein in the polishing step, chemical polishing is performed such that the selectivity of the conductor layer is higher than that of the conductor barrier layer.
- 前記研磨工程において、前記導体層は化学機械研磨する請求項13または請求項14に記載の配線構造体の製造方法。 15. The method for manufacturing a wiring structure according to claim 13, wherein the conductor layer is subjected to chemical mechanical polishing in the polishing step.
- 前記導体バリア層は、前記導体層の硬度よりも大きい硬度を具備する請求項22に記載の配線構造体の製造方法。 The method for manufacturing a wiring structure according to claim 22, wherein the conductor barrier layer has a hardness larger than a hardness of the conductor layer.
- 前記導体バリア層形成工程において、前記導体バリア層はクロム/チタンの複合層、モリブデン合金層のいずれかであり、
前記導体層形成工程において、前記導体層は銅である請求項13または請求項14に記載の配線構造体の製造方法。 In the conductor barrier layer forming step, the conductor barrier layer is either a chromium / titanium composite layer or a molybdenum alloy layer,
The method for manufacturing a wiring structure according to claim 13 or 14, wherein, in the conductor layer forming step, the conductor layer is copper.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-250884 | 2015-12-24 | ||
JP2015250884 | 2015-12-24 | ||
JP2016137223 | 2016-07-12 | ||
JP2016-137223 | 2016-07-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017110808A1 true WO2017110808A1 (en) | 2017-06-29 |
Family
ID=59090363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/087954 WO2017110808A1 (en) | 2015-12-24 | 2016-12-20 | Wiring structure, method for manufacturing same, and electronic device |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201728235A (en) |
WO (1) | WO2017110808A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019197423A (en) * | 2018-05-10 | 2019-11-14 | シャープ株式会社 | Substrate manufacturing method and display device manufacturing method |
JP7461505B2 (en) | 2020-11-27 | 2024-04-03 | 京セラ株式会社 | Wiring Board |
WO2024203737A1 (en) * | 2023-03-30 | 2024-10-03 | 日本特殊陶業株式会社 | Substrate for mounting semiconductor element |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6986492B2 (en) * | 2018-06-01 | 2021-12-22 | 日東電工株式会社 | Wiring circuit board |
JP2020047644A (en) | 2018-09-14 | 2020-03-26 | キオクシア株式会社 | Semiconductor device |
TWI685283B (en) * | 2018-11-22 | 2020-02-11 | 大陸商光寶電子(廣州)有限公司 | Circuit board structure |
JP2023069390A (en) * | 2021-11-05 | 2023-05-18 | イビデン株式会社 | wiring board |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000277612A (en) * | 1999-03-29 | 2000-10-06 | Nec Corp | Manufacture of semiconductor device |
JP2002252457A (en) * | 2001-02-22 | 2002-09-06 | Kyocera Corp | Multilayer wiring board |
JP2006128309A (en) * | 2004-10-27 | 2006-05-18 | Shinko Electric Ind Co Ltd | Capacitor device and its manufacturing method |
JP2008166736A (en) * | 2006-12-06 | 2008-07-17 | Hitachi Via Mechanics Ltd | Method for manufacturing printed-circuit board, and printed-circuit board finishing machine |
JP2014090130A (en) * | 2012-10-31 | 2014-05-15 | Toppan Printing Co Ltd | Multilayer printed wiring board, and method of manufacturing the same |
-
2016
- 2016-12-20 WO PCT/JP2016/087954 patent/WO2017110808A1/en active Application Filing
- 2016-12-23 TW TW105143010A patent/TW201728235A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000277612A (en) * | 1999-03-29 | 2000-10-06 | Nec Corp | Manufacture of semiconductor device |
JP2002252457A (en) * | 2001-02-22 | 2002-09-06 | Kyocera Corp | Multilayer wiring board |
JP2006128309A (en) * | 2004-10-27 | 2006-05-18 | Shinko Electric Ind Co Ltd | Capacitor device and its manufacturing method |
JP2008166736A (en) * | 2006-12-06 | 2008-07-17 | Hitachi Via Mechanics Ltd | Method for manufacturing printed-circuit board, and printed-circuit board finishing machine |
JP2014090130A (en) * | 2012-10-31 | 2014-05-15 | Toppan Printing Co Ltd | Multilayer printed wiring board, and method of manufacturing the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019197423A (en) * | 2018-05-10 | 2019-11-14 | シャープ株式会社 | Substrate manufacturing method and display device manufacturing method |
JP7461505B2 (en) | 2020-11-27 | 2024-04-03 | 京セラ株式会社 | Wiring Board |
WO2024203737A1 (en) * | 2023-03-30 | 2024-10-03 | 日本特殊陶業株式会社 | Substrate for mounting semiconductor element |
Also Published As
Publication number | Publication date |
---|---|
TW201728235A (en) | 2017-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017110808A1 (en) | Wiring structure, method for manufacturing same, and electronic device | |
KR102263433B1 (en) | Semiconductor device, layered semiconductor device, sealed-then-layered semiconductor device, and manufacturing methods therefor | |
US7329957B2 (en) | Circuit device and manufacturing method thereof | |
TWI690045B (en) | Assembly structure, method of bonding using the same, and circuit board therefor | |
KR102338029B1 (en) | Semiconductor device, layered semiconductor device, sealed-then-layered semiconductor device, and manufacturing methods therefor | |
US8816507B2 (en) | Package-on-Package structures having buffer dams and method for forming the same | |
CN108292628A (en) | Full modelled perimeter stacked package equipment | |
TWI588912B (en) | Electronic package, package carrier, and methods of manufacturing electronic package and package carrier | |
US8697566B2 (en) | Bump structure and manufacturing method thereof | |
TW201740461A (en) | Fan-out wafer-level packages with improved topology | |
US20180286783A1 (en) | Method for producing semiconductor device and semiconductor device | |
KR101030356B1 (en) | Method manufacturing semiconductor package | |
CN114792634B (en) | Flexible packaging structure and manufacturing method thereof | |
TWI671864B (en) | Semiconductor package substrate and method of manufacturing the same | |
JP6729046B2 (en) | Wiring board, manufacturing method thereof, and manufacturing method of semiconductor device | |
US20090115036A1 (en) | Semiconductor chip package having metal bump and method of fabricating same | |
CN210467823U (en) | Rewiring layer | |
JP2008311593A (en) | Electronic device | |
US20220208698A1 (en) | Semiconductor device and method for making the same | |
CN112582333B (en) | Rewiring layer and preparation method thereof | |
TWI697078B (en) | Package substrate structure and method of bonding using the same | |
TW201637147A (en) | A semiconductor package using a contact in a plated sidewall encapsulant opening | |
TWI693647B (en) | Semiconductor device and method of manufacturing semiconductor device | |
TWI450371B (en) | Semiconductor device and manufacture method thereof | |
TW200901419A (en) | Packaging substrate surface structure and method for fabricating the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16878697 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16878697 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |