WO2017110409A1 - Method for inspecting phosphor layer-attached optical semiconductor element - Google Patents

Method for inspecting phosphor layer-attached optical semiconductor element Download PDF

Info

Publication number
WO2017110409A1
WO2017110409A1 PCT/JP2016/085779 JP2016085779W WO2017110409A1 WO 2017110409 A1 WO2017110409 A1 WO 2017110409A1 JP 2016085779 W JP2016085779 W JP 2016085779W WO 2017110409 A1 WO2017110409 A1 WO 2017110409A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical semiconductor
phosphor layer
semiconductor element
sealing element
light
Prior art date
Application number
PCT/JP2016/085779
Other languages
French (fr)
Japanese (ja)
Inventor
近藤 隆
吉田 直子
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2017110409A1 publication Critical patent/WO2017110409A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to an inspection method for an optical semiconductor element with a phosphor layer.
  • an optical semiconductor device such as a light emitting diode device is formed by forming a large number of optical semiconductor elements (LEDs) on a wafer, separating them, and then mounting them on a diode substrate for supplying power to the LEDs. Is obtained. And before mounting and singulation, an inspection probe is brought into contact with the LED, and an electrical inspection is performed (for example, refer to Patent Document 1).
  • LEDs optical semiconductor elements
  • the white light emitting device includes, for example, a diode substrate, a blue LED that is mounted thereon and emits blue light, and a phosphor layer that can convert blue light into yellow light and covers the LED (for example, Patent Documents). 2).
  • a white light emitting device emits high-energy white light by mixing the blue light emitted from the LED and transmitted through the phosphor layer and the yellow light in which part of the blue light is wavelength-converted in the phosphor layer. Emits light.
  • a light emission inspection is performed on an LED before mounting, that is, an LED with a phosphor layer including a blue LED and a phosphor layer.
  • an inspection probe is brought into contact with the electrode of the LED with a phosphor layer to cause the LED with the phosphor layer to emit light, the light is measured with a detector, and the chromaticity of the light and its variation are inspected. .
  • the former method has a problem that it takes a lot of time to move a large number of LEDs with phosphor layers individually.
  • the distance between a large number of phosphor layer-attached LEDs is widened, which causes a problem that a large amount of space is required.
  • An object of the present invention is to provide a method for inspecting an optical semiconductor element with a phosphor layer capable of inspecting an optical semiconductor element with a phosphor layer accurately, quickly and in a space-saving manner.
  • the present invention [1] is a method for inspecting an optical semiconductor element with a phosphor layer comprising an optical semiconductor element and a phosphor layer, and a plurality of the optical semiconductor elements with a phosphor layer are arranged at intervals in the plane direction.
  • a partition wall is disposed between the phosphor layer-attached optical semiconductor element, the light transmittance of the partition wall is 20% or less, and a length in an orthogonal direction perpendicular to the surface direction of the partition wall is the one fluorescent light.
  • the orthogonal length of the optical semiconductor element with body layer It includes an inspection method of a long fluorescent layer with optical semiconductor element also.
  • the partition wall is arranged between one optical semiconductor element with a phosphor layer and another optical semiconductor element with a phosphor layer arranged adjacent thereto.
  • the light transmittance of a partition is 20% or less, and the orthogonal direction length of a partition is longer than the orthogonal direction length of one optical semiconductor element with a phosphor layer. Therefore, light from one optical semiconductor element with a phosphor layer is suppressed from reaching another optical semiconductor element with a phosphor layer, and light from another optical semiconductor element with a phosphor layer is detected. Can be suppressed. Therefore, one optical semiconductor element with a phosphor layer can be detected with high accuracy.
  • the partition wall is arranged to inspect the single optical semiconductor element with the phosphor layer, it is not necessary to individually move the optical semiconductor element with the phosphor layer to the inspection region, and the inspection time can be shortened. it can. Furthermore, it is not necessary to increase the distance between the optical semiconductor elements with a phosphor layer, and the inspection can be performed in a small space.
  • light from one optical semiconductor element with a phosphor layer can be more reliably suppressed from reaching another optical semiconductor element with a phosphor layer. Therefore, the one optical semiconductor element with a phosphor layer can be detected with higher accuracy.
  • the present invention [3] provides the inspection method for an optical semiconductor element with a phosphor layer according to [1] or [2], wherein the partition wall is disposed so as to surround the one optical semiconductor element with a phosphor layer. Contains.
  • light from one optical semiconductor element with a phosphor layer can be arranged in any direction with respect to one optical semiconductor element with one phosphor layer.
  • it can suppress more reliably that it reaches
  • the element assembly includes a base material on which the phosphor layer-attached optical semiconductor element is disposed, and in the light emitting step, the one phosphor layer-attached optical semiconductor element and the other phosphor
  • the inspection method for an optical semiconductor element with a phosphor layer according to any one of [1] to [3], wherein the partition is arranged on one surface in the thickness direction of the base material between the optical semiconductor element with a layer. Contains.
  • the partition wall may be disposed on one surface of the base material of the element assembly, a precise jig and operation are not required, and an optical semiconductor element with a phosphor layer can be easily obtained. Can be detected.
  • the present invention [5] includes the method for inspecting an optical semiconductor element with a phosphor layer according to any one of [1] to [3], wherein the inspection probe includes the partition wall.
  • the inspection probe is provided with the partition wall in advance, the step of arranging the partition wall in the element assembly is not required. Therefore, the optical semiconductor element with a phosphor layer can be detected more quickly.
  • an optical semiconductor element with a phosphor layer can be inspected accurately, quickly, and in a space-saving manner.
  • FIG. 1A to 1B show an embodiment of a partition arrangement element assembly used in the inspection method of the present invention
  • FIG. 1A is a plan view
  • FIG. 1B is a cross-sectional view taken along line AA in FIG. 1A
  • 2A to 2E show a first embodiment of the inspection method of the present invention.
  • FIG. 2A is a step of preparing a substrate
  • FIG. 2B is a step of arranging a partition
  • FIG. 2C is a step of arranging a sealing element.
  • 2D shows a step of setting the element assembly in the inspection apparatus
  • FIG. 2E shows a step of emitting and detecting the sealing element.
  • 3A to 3D show a second embodiment of the inspection method of the present invention, in which FIG.
  • FIG. 3A is a step of preparing a substrate
  • FIG. 3B is a step of arranging a sealing element
  • FIG. 3C is an element assembly.
  • FIG. 3D shows a step of emitting and detecting the sealing element.
  • 4A to 4B show modified examples of the sealing element used in the inspection method of the present invention
  • FIG. 4A is a cross-sectional view of a form in which no electrode protrudes
  • FIG. 4B is a cross-sectional view of a form having a reflector. Indicates.
  • the vertical direction of the paper surface is the front-back direction (first direction)
  • the upper side of the paper surface is the front side (one side in the first direction)
  • the lower side of the paper surface is the rear side (the other side in the first direction).
  • the left and right direction on the paper surface is the left and right direction (second direction orthogonal to the first direction)
  • the left side on the paper surface is the left side (second side in the second direction)
  • the right side on the paper surface is the right side (the other side in the second direction).
  • the paper thickness direction is the vertical direction (the third direction orthogonal to the first direction and the second direction, the thickness direction), the front side of the paper is the upper side (one side in the third direction, the one side in the thickness direction), and the back side of the paper is the lower side (The other side in the third direction, the other side in the thickness direction). Specifically, it conforms to the direction arrow in each figure.
  • Embodiment of the inspection method of the sealing element 1 is equipped with a base material preparation process, a partition arrangement
  • a transparent base material 2 as an example of the base material is prepared.
  • the transparent substrate 2 supports and transports the plurality of sealing elements 1 until the inspection of the plurality of sealing elements 1 is performed.
  • the transparent substrate 2 has a substantially rectangular plate shape with a predetermined thickness in plan view, and a predetermined direction (surface direction, specifically, left-right direction) orthogonal to the thickness direction. And has a flat upper surface (one surface in the thickness direction) and a flat lower surface (the other surface in the thickness direction).
  • the transparent substrate 2 examples include polyester films such as polyethylene terephthalate (PET) films, polyolefin films such as polyethylene films and polypropylene films, such as polycarbonate films, polyvinyl chloride films, polystyrene films, acrylic films, and silicone resins. Examples thereof include resin films such as films and fluororesin films.
  • PET polyethylene terephthalate
  • polyolefin films such as polyethylene films and polypropylene films
  • polycarbonate films such as polycarbonate films, polyvinyl chloride films, polystyrene films, acrylic films, and silicone resins.
  • resin films such as films and fluororesin films.
  • An adhesive layer may be formed on the upper surface of the transparent substrate 2 in order to temporarily fix the sealing element 1.
  • the pressure-sensitive adhesive material forming the pressure-sensitive adhesive layer include pressure-sensitive adhesives such as acrylic pressure-sensitive adhesives and silicone-based pressure sensitive adhesives.
  • the adhesive layer may be, for example, an active energy ray irradiation release sheet whose adhesive strength is reduced by irradiation with active energy rays (specifically, an active energy ray irradiation release sheet described in JP-A-2005-286003). It can also be formed from.
  • Such a transparent substrate 2 may be a commercially available product such as an array tape or a dicing tape.
  • the thickness of the transparent substrate 2 is, for example, 40 ⁇ m or more, preferably 50 ⁇ m or more, and, for example, 1000 ⁇ m or less, preferably 800 ⁇ m or less.
  • a support member 19 is provided at the peripheral end of the transparent base material 2 to suppress deformation such as warping and bending of the transparent base material 2.
  • the support member 19 is made of metal, hard resin, or the like, and has a substantially frame shape in plan view (specifically, a ring shape, see the imaginary line in FIG. 1A).
  • the support member 19 is fixed to the upper surface of the transparent substrate 2 through an adhesive layer.
  • the shielding member 3 is arranged on the transparent base 2 as shown in FIG. 2B.
  • the shielding member 3 is formed in a lattice shape having a substantially rectangular shape in plan view, and integrally includes a frame portion 4 and a partition wall 5.
  • the frame portion 4 is formed in a substantially frame shape in plan view, extends in the front-rear direction, and has two first frame portions 4 a that are spaced apart in the left-right direction, and extends in the left-right direction, and the front end and the rear of the two first frame portions 4 a And two second frame portions 4b connecting the ends.
  • the width W1 (front-rear direction length or left-right direction length) of the frame part 4 is, for example, 1 mm or more, preferably 5 mm or more, and for example, 50 mm or less, preferably from the viewpoint of handleability. 10 mm or less.
  • the height (vertical length) of the frame part 4 is, for example, the same as the height H of the partition wall 5 to be described later.
  • the partition wall 5 includes a plurality (four) of first partition walls 5a and a plurality (four) of second partition walls 5b.
  • the plurality of first partition walls 5a are arranged between the two first frame portions 4a so as to be approximately equally divided in the left-right direction, extend in the front-rear direction, and are installed between the two second frame portions 4b.
  • the plurality of second partition walls 5b are arranged between the two second frame portions 4b so as to be substantially equally divided in the front-rear direction, extend in the left-right direction, and are installed between the two first frame portions 4a.
  • the first partition wall 5a and the second partition wall 5b divide the inside of the frame portion 4 into a grid pattern, thereby forming a plurality (25) of openings 6.
  • the plurality of openings 6 are aligned and arranged in the frame 4 so that there are 5 rows in the front-rear direction and 5 rows in the left-right direction.
  • the opening 6 has a substantially rectangular shape in plan view, more specifically, a substantially square shape in plan view.
  • a width W2 (length in the front-rear direction or length in the left-right direction) of the partition wall 5 is, for example, 10 ⁇ m or more, preferably 50 ⁇ m or more, more preferably 100 ⁇ m or more, and for example, 5 mm or less, preferably 3 mm or less.
  • the width W2 By setting the width W2 to be equal to or more than the above lower limit, the mechanical strength of the shielding member 3 can be increased and the light transmittance can be reduced.
  • the width W2 to be equal to or less than the above upper limit, the gap area other than the shielding member 3 and the sealing element 1 can be reduced, and the number of the sealing elements 1 arranged per unit area can be increased.
  • the height H (orthogonal direction length) of the partition wall 5 is longer than the height T of the sealing element 1 (described later), and exceeds 1.0 times the height T of the sealing element 1. Is 1.2 times or more, more preferably 1.5 times or more, still more preferably 2.0 times or more, and for example, 10 times or less.
  • the height H is, for example, 100 ⁇ m or more, preferably 400 ⁇ m or more, more preferably 600 ⁇ m or more, further preferably 850 ⁇ m or more, and for example, 30 mm or less, preferably 5 mm or less, More preferably, it is 3 mm or less.
  • the height H of the partition wall 5 is 1.2 times or more the height T of the sealing element 1, the light from one sealing element 1 reaches the other sealing element 1. It can suppress more reliably.
  • the probe needle 26 (described later) can be reliably brought into contact with the electrode 9.
  • the front-rear direction length or the left-right direction length of the opening 6 is, for example, 0.5 mm or more, preferably 1.5 mm or more, and for example, 10 mm or less, preferably 5 mm or less.
  • the light transmittance of the partition walls 5 is, for example, 20% or less, preferably 10% or less, more preferably in the width direction (direction connecting the sealing elements 1 adjacent to each other; the length in the front-rear direction or the length in the left-right direction). 5% or less. Thereby, it can suppress that the light of the sealing element 1 arrives at the other adjacent sealing element 1.
  • the light transmittance is obtained by measuring using a spectrophotometer under conditions of a wavelength region of 300 to 850 nm and a scanning speed of 1000 nm / min.
  • the material of the shielding member 3 is not limited as long as it is a material capable of shielding light, and examples thereof include a resin composition, metal, and wood. From the viewpoints of lightness, workability, adhesion to a transparent substrate, and the like, a resin composition is preferable.
  • Examples of the resin composition include a dye composition containing a resin and a dye.
  • the resin examples include a thermoplastic resin that is plasticized by heating, for example, a thermosetting resin that is cured by heating, for example, an active energy ray curable that is cured by irradiation with active energy rays (for example, ultraviolet rays, electron beams, etc.). Resin etc. are mentioned.
  • thermoplastic resin examples include vinyl acetate resin, ethylene / vinyl acetate copolymer (EVA), vinyl chloride resin, EVA / vinyl chloride resin copolymer, and the like.
  • curable resin such as a thermosetting resin and an active energy ray curable resin
  • examples of the curable resin include silicone resin, epoxy resin, polyimide resin, phenol resin, urea resin, melamine resin, and unsaturated polyester resin.
  • thermosetting resins preferably thermosetting resins and active energy ray curable resins, more preferably thermosetting resins, and still more preferably silicone resins.
  • examples of the silicone resin include thermosetting silicone resin compositions such as a two-stage curable silicone resin composition and a one-stage curable silicone resin composition.
  • Examples of the two-step curable silicone resin composition include a condensation reaction / addition reaction curable silicone resin composition.
  • condensation reaction / addition reaction curable silicone resin compositions include first to eighth condensation / addition reaction curing described in JP2010-265436A, JP2013-187227A, and the like.
  • Type silicone resin composition for example, described in JP2013-091705A, JP2013-001815A, JP2013-001814A, JP2013-001813A, JP2012-102167A, etc.
  • a cage-type octasilsesquioxane-containing silicone resin composition for example, described in JP2013-091705A, JP2013-001815A, JP2013-001814A, JP2013-001813A, JP2012-102167A, etc.
  • a cage-type octasilsesquioxane-containing silicone resin composition for example, described in JP2013-091705A, JP2013-001815A
  • Examples of the one-step curable silicone resin composition include an addition reaction curable silicone resin composition.
  • the addition reaction curable silicone resin composition contains, for example, an alkenyl group-containing polysiloxane, a hydrosilyl group-containing polysiloxane, and a hydrosilylation catalyst.
  • addition reaction curable silicone resin compositions include phenyl silicone resin compositions described in JP-A-2015-73084, for example, ELASTOSIL series (manufactured by Asahi Kasei Wacker Silicone, Inc., specifically, , ELASTOSIL LR7665), KE series (manufactured by Shin-Etsu Silicone), and the like.
  • These resins can be used alone or in combination of two or more.
  • an epoxy resin, a silicone resin, and the like are preferable, and a silicone resin is more preferable.
  • the content ratio of the resin in the dye composition is, for example, 50% by mass or more, preferably 90% by mass or more, and for example, 99.8% by mass or less, preferably 97% by mass or less.
  • the dye may be, for example, a black dye, white dye, or colored dye (blue dye, yellow dye, brown pigment, red dye, etc.). From the viewpoint of ease, etc., black pigments and white pigments are preferable, and black pigments are more preferable.
  • black pigment examples include black pigments such as carbon black, graphite, copper oxide, manganese dioxide, titanium black, chromium oxide, and iron oxide.
  • These pigments can be used alone or in combination of two or more.
  • the content ratio of the pigment in the pigment composition is, for example, 0.2% by mass or more, preferably 3% by mass or more, and for example, 50% by mass or less, preferably 10% by mass or less.
  • additives described later can be added to the dye composition in an appropriate proportion.
  • the shielding member 3 is formed, for example, by forming a dye composition prepared by mixing a resin and a dye into a sheet (flat plate shape), and then using a cutting machine such as a cutting machine or a Thomason blade to form the opening 6. It can be manufactured by forming.
  • the shielding member 3 can also be produced by forming the opening 6 in the resin sheet and subsequently applying a paint containing a pigment to the resin sheet surface.
  • the shielding member 3 is arranged on the upper surface of the transparent base material 2 inside the support member 19 so as to be separated from the support member 19 by a predetermined distance. As a result, the plurality of transparent base materials 2 are exposed from the plurality of openings 6.
  • a plurality of sealing elements 1 are prepared, and then the plurality of sealing elements 1 are arranged on the transparent substrate 2 on which the shielding member 3 is arranged.
  • the sealing element 1 is formed in a substantially rectangular shape in plan view and side sectional view, and includes a light emitting surface 11, an electrode surface 12, and a side surface 13.
  • the light emitting surface 11 is the lower surface of the sealing element 1 and corresponds to the lower surface of the phosphor layer 8.
  • the light emitting surface 11 has a flat shape.
  • the electrode surface 12 is an upper surface of the sealing element 1 and is a surface on which an electrode 9 (described later) is formed.
  • the electrode surface 12 is disposed to face the light emitting surface 11 with an interval on the upper side.
  • the side surface 13 connects the peripheral edge of the light emitting surface 11 and the peripheral edge of the electrode surface 12.
  • the height T (length in the orthogonal direction) of the sealing element 1 is, for example, 10 ⁇ m or more, preferably 100 ⁇ m or more, and for example, 1000 ⁇ m or less, preferably 700 ⁇ m or less.
  • the height of the sealing element 1 is the length excluding the protruding electrode 9, that is, the vertical distance between the light emitting surface 11 and the electrode surface 12. Show.
  • the front-rear direction length or the left-right direction length L of the sealing element 1 is, for example, 0.1 mm or more, preferably 0.5 mm or more, and, for example, 5 mm or less, preferably 3 mm or less. .
  • the sealing element 1 includes an optical semiconductor element 7 and a phosphor layer 8 that covers the optical semiconductor element 7.
  • Examples of the optical semiconductor element 7 include a blue LED (light emitting diode element) that emits blue light.
  • a blue LED light emitting diode element
  • a plurality (two) of electrodes 9 are formed so as to slightly protrude upward from the electrode surface 12.
  • the phosphor layer 8 is formed so as to seal the optical semiconductor element 7. Specifically, it is formed in a substantially rectangular shape in plan view and a substantially rectangular shape in side view so as to cover the lower surface and the peripheral side surface of the optical semiconductor element 7 and expose the upper surface of the optical semiconductor element 7. Further, the lower surface of the phosphor layer 8 is in contact with the upper surface of the transparent substrate 2.
  • the phosphor layer 8 is formed from a phosphor composition.
  • the phosphor composition contains a phosphor and a resin.
  • the phosphor has a wavelength conversion function, and examples thereof include a yellow phosphor capable of converting blue light into yellow light, and a red phosphor capable of converting blue light into red light.
  • yellow phosphor examples include silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 ; Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)), for example, Y 3 Al Garnet-type phosphors having a garnet-type crystal structure such as 5 O 12 : Ce (YAG (yttrium, aluminum, garnet): Ce), Tb 3 Al 3 O 12 : Ce (TAG (terbium, aluminum, garnet): Ce) Examples thereof include oxynitride phosphors such as Ca- ⁇ -SiAlON. Examples of the red phosphor include nitride phosphors such as CaAlSiN 3 : Eu and CaSiN 2 : Eu.
  • silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 ; Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)
  • These phosphors can be used alone or in combination of two or more.
  • the phosphor content in the phosphor composition is, for example, 1% by mass or more, preferably 2% by mass or more, and for example, 75% by mass or less, preferably 60% by mass or less.
  • Resin is a transparent resin that disperses the phosphor and seals the optical semiconductor element 7.
  • transparent resins include the above-described thermoplastic resins, thermosetting resins, active energy ray curable resins, and the like.
  • curable resins such as thermosetting resins and active energy ray curable resins are used. More preferably, a thermosetting resin is mentioned, More preferably, a silicone resin is mentioned.
  • These transparent resins can be used alone or in combination of two or more.
  • the content ratio of the resin in the phosphor composition is, for example, 25% by mass or more, preferably 40% by mass or more, and for example, 99% by mass or less, preferably 98% by mass or less.
  • the phosphor composition includes organic fillers, inorganic fillers, anti-aging agents, modifiers, surfactants, dyes, pigments, anti-discoloring agents, ultraviolet absorbers, creep hardening inhibitors, plasticizers. Additives such as a thixotropic agent and an antifungal agent can be added at an appropriate ratio.
  • the height of the phosphor layer 8 (length in the vertical direction between the uppermost surface and the lowermost surface) (in FIG. 1B, the height T of the sealing element 1) is, for example, 10 ⁇ m or more, preferably 100 ⁇ m or more. For example, it is 1000 micrometers or less, Preferably, it is 700 micrometers or less.
  • L is, for example, 0.1 mm or more, preferably 0.5 mm or more, and for example, 5 mm or less, preferably 3 mm or less.
  • the sealing element 1 is, for example, a step of arranging a plurality of optical semiconductor elements 7 on the surface of the release sheet at intervals so that the electrode side surface (upper surface in FIG. 1B) contacts the surface of the release sheet, The step of laminating the phosphor layer 8 (phosphor composition) on the optical semiconductor element 7 and the release sheet so as to cover the light emitting side surface (the lower surface in FIG. 1B) and the side surfaces, and then the phosphor layer 8 and the release layer It is obtained by the process of cutting the sheet and separating the sealing element 1 into individual pieces.
  • the phosphor composition is a curable resin
  • the phosphor composition is laminated and then cured by applying heat or active energy as appropriate.
  • a plurality of sealing elements 1 are arranged on the upper surface of the transparent substrate 2. Specifically, the plurality of sealing elements 1 are arranged in the plurality of openings 6 of the shielding member 3 so that one sealing element 1 corresponds to one opening 6.
  • the sealing element 1 is disposed in the central region of the opening 6. That is, in one sealing element 1, the interval between the partition wall 5 positioned on the front side and the leading edge of the sealing element 1 (front side interval), and the partition wall 5 positioned on the rear side and the rear end edge of the sealing element 1 The sealing element 1 is arranged so that the interval (rear side interval) is equal. Similarly, the sealing element 1 is arranged so that the left interval and the right interval are equal.
  • the arrangement of the sealing element 1 includes, for example, a method of picking up using a conveying jig such as a collet.
  • an element assembly 16 including the transparent base material 2 and a plurality of sealing elements 1 arranged on the upper surface of the transparent base material 2 at intervals in the surface direction (front-rear direction and left-right direction) is obtained. Further, on the upper surface of the transparent substrate 2 of the element assembly 16, there is one sealing element 1, and the other sealing element 1 disposed adjacent to the one sealing element 1 in the front-rear direction or the left-right direction. Between them, the shielding member 3 is arranged so that the partition wall 5 is arranged.
  • An interval D (front interval, rear interval, left interval, right interval) between the sealing element 1 and the partition wall 5 is, for example, 10 ⁇ m or more, preferably 100 ⁇ m or more, and, for example, 5 mm or less, preferably Is 1 mm or less.
  • the distance D is equal to or less than the above upper limit, the gap area other than the partition wall 5 and the sealing element 1 can be reduced, and the number of sealing elements 1 arranged per unit area can be increased.
  • the distance D is equal to or more than the lower limit, the positional accuracy between the sealing element 1 and the partition wall 5 can be improved.
  • the distance between adjacent sealing elements 1 is, for example, 30 ⁇ m or more, preferably 250 ⁇ m or more, and for example, 15 mm or less, preferably 3 mm or less.
  • the sealing element 1 is caused to emit light individually, and in the detection process, light emitted individually is detected. That is, the light emission process and the detection process are performed simultaneously.
  • the partition arrangement element assembly 15 is set in the inspection region inside the inspection apparatus 20. That is, the element assembly 16 and the shielding member 3 disposed on the upper surface thereof are set in the inspection apparatus 20.
  • the inspection device 20 is provided with a fixing mechanism (not shown) that fixes the partition arrangement element assembly 15 to an inspection region in the middle of the light emitting unit 21 (described later) and the detection unit 22 (described later).
  • the partition arrangement element assembly 15 is fixed by a fixing mechanism.
  • the inspection apparatus 20 includes a light emitting unit 21 and a detection unit 22.
  • the light emitting unit 21 includes a test head 23 and an inspection probe 24.
  • the test head 23 supplies a voltage and a signal current necessary for the light emission inspection to the sealing element 1 through the inspection probe 24.
  • the inspection probe 24 includes a probe jig 25 and a plurality of (two) probe needles 26.
  • the probe jig 25 is provided on the lower surface of the test head 23.
  • the probe jig 25 supports the probe needle 26 and adjusts the angle and position of the probe needle 26.
  • the plurality of probe needles 26 are fixed to the probe jig 25 so that the distance between the probe needles 26 decreases downward so that the tips of the probe needles 26 can contact the electrode 9 of the sealing element 1.
  • the light emitting unit 21 is provided with a light emitting unit moving mechanism (not shown) capable of independently moving the light emitting unit 21 in the front-rear direction, the left-right direction, and the up-down direction.
  • a light emitting unit moving mechanism (not shown) capable of independently moving the light emitting unit 21 in the front-rear direction, the left-right direction, and the up-down direction.
  • the detection unit 22 detects light emitted from the sealing element 1 toward the lower side.
  • the detection unit 22 is disposed opposite to the lower side of the light emitting unit 21 with a space from the light emitting unit 21.
  • the detection unit 22 is formed in a substantially circular shape in a plan view in which a cross-sectional area in a plan view is increased upward.
  • the detection unit 22 is provided with a detection unit moving mechanism (not shown) that can move the detection unit 22 independently in the front-rear direction, the left-right direction, and the vertical direction.
  • the light emitting unit 21 is moved in the front-rear direction and the left-right direction by the light emitting unit moving mechanism, and is arranged above one (arbitrary) sealing element 1.
  • the detection unit 22 is moved in the front-rear direction and the left-right direction by the detection unit moving mechanism, and the detection unit 22 is arranged to face the light-emitting unit 21 with an interval in the vertical direction with one sealing element interposed therebetween. .
  • the detection unit 22 faces the lower side of the partition arrangement element assembly 15 with a space from the partition arrangement element assembly 15 so as to include the one sealing element 1 when projected in the vertical direction. Be placed.
  • the light emitting unit 21 is moved in the vertical direction by the light emitting unit moving mechanism, and the plurality of probe needles 26 are brought into contact with each of the electrodes 9 of one sealing element 1.
  • the signal current from the test head 23 reaches the electrode 9 through the probe needle 26, and the sealing element 1 emits light.
  • the detection part 22 detects the light (white light) from the sealing element 1, and measures the characteristic and property of the light. Specifically, for example, the chromaticity CIE of light is measured.
  • the light emission process and the detection process are repeated until the light emission inspection of all the sealing elements 1 arranged in the element assembly 16 is completed.
  • a correction process can be implemented with respect to the obtained chromaticity after completion
  • the correction value is adjusted with respect to the chromaticity of the sealing element 1 obtained as described above.
  • the correction value is, for example, (1) First, the plurality of sealing elements 1 are individually moved in different inspection areas, and the chromaticity (CIE) is inspected, and an average value of these chromaticities is obtained. (2) On the other hand, the inspection method of the present invention (for example, the first inspection) is performed on the element assembly 16 including the plurality of sealing elements 1, The average value of chromaticity is calculated, and then determined by calculating the difference between the reference value of (3) (1) and the average value of (2). The correction value obtained by the first inspection method should be used for the second and subsequent inspections of the inspection method of the present invention (that is, the element assembly 16 different from the first time). Can do.
  • CIE chromaticity
  • the probe needle 26 is brought into contact with one sealing element 1 to cause the one sealing element 1 to emit light, and the detection process detects light from the one sealing element 1. It has. Further, in the light emitting process, the light transmittance is 20% or less between one sealing element 1 and another sealing element 1 disposed adjacent thereto, and the height H is one sealing element. A partition wall 5 higher than a height T of 1 is disposed. For this reason, the light emission of one sealing element 1 can be accurately detected.
  • the partition wall 5 is disposed so as to surround one sealing element 1. For this reason, the light from one sealing element 1 reaches the other sealing element 1 even if the other sealing element 1 is arranged in any direction of front, rear, left and right with respect to one sealing element 1. Can be more reliably suppressed.
  • the shielding member 3 is disposed on the upper surface of the transparent substrate 2 between one sealing element 1 and another sealing element 1 in the light emitting process. For this reason, the sealing element 1 can be easily detected without requiring a precise jig or operation.
  • Second Embodiment A second embodiment of the method for inspecting the sealing element 1 according to the present invention will be described with reference to FIGS. 3A to 3D.
  • symbol is attached
  • 2nd Embodiment of the inspection method of the sealing element 1 is equipped with a base material preparation process, an element arrangement
  • a transparent substrate 2 is prepared as shown in FIG. 3A.
  • the base material preparation process of the second embodiment can be performed in the same manner as the base material preparation process of the first embodiment described above with reference to FIG. 2A.
  • a plurality of sealing elements 1 are prepared, and the plurality of sealing elements 1 are arranged on the transparent substrate 2.
  • the element placement step of the second embodiment can be performed in the same manner as the element placement step of the first embodiment described above with reference to FIG. 2C.
  • the partition arrangement step is not performed before the element arrangement step.
  • the sealing element 1 is caused to emit light individually.
  • the element assembly 16 is moved to the inspection area inside the inspection apparatus 20.
  • the light emitting unit 21 includes a test head 23 and an inspection probe 24, and the inspection probe 24 includes a probe jig 25, a plurality of probe needles 26, and a partition wall 5.
  • the partition wall 5 is provided on the lower surface of the probe jig 25.
  • the partition wall 5 is formed in a substantially frame shape (annular shape, rectangular frame shape, etc.) in plan view so as to be able to surround the periphery of one sealing element 1.
  • the height H of the partition wall 5 is higher than the height T of the sealing element 1, for example.
  • the height H of the partition wall 5 exceeds 1.0 times, preferably 1.2 times or more, and for example 10 times the height H of the sealing element 1. It is as follows. More specifically, the height H is, for example, 100 ⁇ m or more, preferably 400 ⁇ m or more, and for example, 10 mm or less, preferably 5 mm or less.
  • the height H By making the height H equal to or higher than the lower limit, when the probe needle 26 is brought into contact with the terminal, the lower end of the partition wall 5 can be brought into contact with the upper surface of the transparent substrate 2, and the light of the sealing element 1 is Reaching another adjacent sealing element 1 can be reliably suppressed. On the other hand, by setting the height H to the upper limit or less, the probe needle 26 can be reliably brought into contact with the electrode 9.
  • the inspection probe 24 is brought into contact with the sealing element 1.
  • the inspection probe 24 is moved in the front-rear direction, the left-right direction, and the up-down direction by the light emitting unit moving mechanism, and the plurality of probe needles 26 are brought into contact with each of the electrodes 9 of one sealing element 1.
  • the signal current from the test head 23 reaches the electrode 9 through the probe needle 26, and the sealing element 1 emits light.
  • the detection process of the second embodiment is performed in the same manner as the detection process of the first embodiment described above with reference to FIG. 2D.
  • the detection unit 22 captures the light (white light) from the sealing element 1 and measures the characteristics and properties of the light.
  • the light emission process and the detection process are repeated until the light emission inspection of all the sealing elements 1 arranged in the element assembly 16 is completed.
  • the correction process can be performed in the same manner as in the first embodiment.
  • the inspection probe 24 includes the partition wall 5.
  • the partition arrangement step can be omitted.
  • the plurality of sealing elements 1 can be detected more quickly.
  • the shielding member 3 is disposed on the upper surface of the transparent base material 2, and then the plurality of sealing elements 1 are disposed.
  • a plurality of sealing elements are disposed on the upper surface of the transparent base material 2.
  • the stop element 1 and subsequently arrange the shielding member 3. That is, the element assembly 16 can be prepared first, and then the shielding member 3 can be disposed on the upper surface of the element assembly 16.
  • the detection unit 22 is moved simultaneously with the movement of the light emission unit 21. For example, first, the light emission unit 21 is moved, and one sealing element 1 is moved. Then, the detector 22 can be moved in a state where the light is emitted.
  • the light emitting unit 21 and the detecting unit 22 are moved in the front / rear and left / right directions and arranged above or below the element assembly 16.
  • the element assembly 16 can also be moved in the front-rear and left-right directions and disposed in the middle of the light emitting unit 21 and the detection unit 22 in the vertical direction.
  • the transparent substrate 2 has a substantially rectangular shape in a plan view, but may be a substantially circular shape in a plan view, for example, although not shown.
  • the external shape of the shielding member 3 and the support member 19 is a substantially rectangular shape in plan view, for example, although not illustrated, it may be a substantially circular shape in plan view.
  • the shape of the opening 6 is a substantially rectangular shape in a plan view, but may be a substantially circular shape in a plan view, for example, although not shown.
  • the sealing elements 1 are aligned and arranged in a plurality of rows in the front-rear direction and the left-right direction, but the number of rows is not limited.
  • the elements 1 can also be arranged in a line in either the front-rear direction or the left-right direction.
  • the support member 19 is disposed on the peripheral edge of the transparent substrate 2, but the support member 19 may not be disposed. In the case where the support member 19 is not disposed, the hard transparent substrate 2 is preferably used as the transparent substrate 2.
  • the electrode 9 protrudes from the electrode surface 12, but the electrode 9 may not protrude from the electrode surface 12 as shown in FIG. 4A, for example. That is, the electrode surface 12 can be a flat plane.
  • the sealing element of FIG. 1B does not include the reflector 30, but the sealing element 1 may include the reflector 30 as shown in FIG. 4B, for example.
  • the sealing element 1 in FIG. 4B includes a reflector 30 so as to be in contact with and surround the side surface of the optical semiconductor element 7, and includes a phosphor layer 8 on the lower surface of the reflector 30 and the optical semiconductor element 7.
  • ⁇ Production of shielding member> 95 parts by mass of a silicone resin composition (LR7665, manufactured by Asahi Wacker Co., Ltd., addition reaction curable type) and 5 parts by mass of carbon black were mixed to prepare a dye composition (dye concentration of 5 wt%). The dye composition was applied to an applicator and dried at 100 ° C. for 10 minutes to obtain a shielding sheet having a thickness (height H) of 480 ⁇ m.
  • the light transmittance in the thickness direction when the shielding sheet was formed to a thickness of 50 ⁇ m was 1% or less.
  • the light transmittance was measured using a spectrophotometer (manufactured by JASCO Corporation, “UV-visible-near infrared spectrophotometer V670”) under the conditions of a wavelength region of 300 to 850 nm and a scanning speed of 1000 nm / min.
  • sealing element As the optical semiconductor element, an LED chip manufactured by Epistar (1.14 mm ⁇ 1.14 mm ⁇ height 150 ⁇ m) was used. Twenty-five sealing elements (1.64 mm ⁇ 1.64 mm ⁇ height T400 ⁇ m) were produced by sealing the light emitting side surface and side surfaces of this optical semiconductor element with a phosphor-containing silicone resin (see FIG. 1B). .
  • this sealing element was individually fixed to an array tape (described later), and an optical inspection was performed using a semiconductor test apparatus (described later). As a result, it was confirmed that the chromaticity (CIE, y) in the 25 sealing elements was 0.399 to 0.409, the average value was 0.404, and the range was 0.010.
  • an array tape (thickness 78 ⁇ m, “SPV”, manufactured by Nitto Denko Corporation) having an adhesive layer laminated on the upper surface was used.
  • a ring (corresponding to the support member 19) having a rectangular frame shape in plan view was fixed to the peripheral end portion of the upper surface of the transparent substrate, and the array tape was reinforced (see FIG. 2A).
  • a shielding member was disposed on the upper surface of the transparent substrate (see FIG. 2B).
  • a partition arrangement element assembly was set in an inspection region of a semiconductor test apparatus (chip prober (tape prober), “WPF”, manufactured by Optsystem Co., Ltd.) (see FIG. 2D). Subsequently, by moving the inspection probe and the detection unit of the light emitting unit with respect to each sealing element, the sealing element is caused to emit light, and the white light is detected, and the chromaticity of the light (CIE, y) was measured (see FIG. 2E).
  • Example 2 The chromaticity of the sealing element was measured in the same manner as in Example 1 except that the thickness of the shielding sheet, that is, the height H of the shielding member (frame portion and partition wall) was 800 ⁇ m.
  • Example 3 The chromaticity of the sealing element was measured in the same manner as in Example 1 except that the height H of the shielding member was 1000 ⁇ m.
  • Example 4 The chromaticity of the sealing element was measured in the same manner as in Example 1 except that the partition wall width W2 was set to 200 ⁇ m.
  • the light transmittance of the shielding sheet having a thickness of 200 ⁇ m was 1% or less.
  • Example 5 The chromaticity of the sealing element was measured in the same manner as in Example 1 except that the partition wall width W2 was set to 2 mm. In addition, the light transmittance of 2 mm thickness of the shielding sheet was 1% or less.
  • Example 6 The chromaticity of the sealing element was measured in the same manner as in Example 1 except that the partition wall width W2 was 5 mm. In addition, the light transmittance of 5 mm thickness of the shielding sheet was 1% or less.
  • Example 7 A shielding sheet was obtained in the same manner as in Example 1 except that the mixing ratio of carbon black was changed and the pigment concentration was changed to 0.2 wt% to produce a shielding member.
  • the light transmittance of the shielding sheet having a thickness of 50 ⁇ m was 17%.
  • the chromaticity of the sealing element was measured in the same manner as in Example 1 except that this shielding member was used.
  • Comparative Example 1 The chromaticity of the sealing element was measured in the same manner as in Example 1 except that the shielding member was not used and the distance between the sealing elements (front-rear direction distance and left-right direction distance) was 200 ⁇ m.
  • Comparative Example 2 The chromaticity of the sealing element was measured in the same manner as in Example 1 except that the height H of the shielding member was 400 ⁇ m.
  • Comparative Example 3 The chromaticity of the sealing element was measured in the same manner as in Example 1 except that the height H of the shielding member was 320 ⁇ m.
  • Comparative Example 4 A shielding sheet was obtained in the same manner as in Example 1 except that the blending ratio of carbon black was changed and the pigment concentration was changed to 0.1 wt% to produce a shielding member.
  • the light transmittance of 50 ⁇ m thickness of the shielding sheet was 23%.
  • the chromaticity of the sealing element was measured in the same manner as in Example 1 except that this shielding member was used.
  • Example 1 the above results were corrected. Specifically, first, as described above in ⁇ Preparation of sealing element>, the average value of the CIE and y values of 25 sealing elements measured individually was 0.404. The reference value was used. In Example 1, the CIE and y values of 25 sealing elements were 0.389 to 0.396, and the average value was 0.394. Therefore, the correction value is set to +0.010 from these differences. Next, this correction value was added to the CIE, y value before correction in Examples 1 to 7. The results are shown in Table 1.
  • the method for inspecting an optical semiconductor element with a phosphor layer of the present invention can be used for optical applications such as inspection of a white light semiconductor device, for example.

Abstract

Disclosed is a method for inspecting a phosphor layer-attached optical semiconductor element that is provided with an optical semiconductor element and a phosphor layer. The present invention is provided with: a light emitting step for bringing an inspection probe into contact with one phosphor layer-attached optical semiconductor element, and having the one phosphor layer-attached optical semiconductor element emit light, said one phosphor layer-attached optical semiconductor element being among an element assembly wherein a plurality of phosphor layer-attached optical semiconductor elements are disposed in the surface direction by being separated from each other; and a detection step for detecting light emitted from the one phosphor layer-attached optical semiconductor element. In the light emitting step, partition walls are disposed between the one phosphor layer-attached optical semiconductor element and other phosphor layer-attached optical semiconductor elements disposed adjacent to the one phosphor layer-attached optical semiconductor element in the surface direction, the light transmission rate of the partition walls is equal to or lower than 20 %, and the orthogonal direction length of each of the partition walls, said orthogonal direction length being orthogonal to the surface direction length, is longer than the orthogonal direction length of the one phosphor layer-attached optical semiconductor element.

Description

蛍光体層付光半導体素子の検査方法Inspection method of optical semiconductor element with phosphor layer
 本発明は、蛍光体層付光半導体素子の検査方法に関する。 The present invention relates to an inspection method for an optical semiconductor element with a phosphor layer.
 従来から、発光ダイオード装置などの光半導体装置は、ウェハ上に多数の光半導体素子(LED)を形成し、これを個片化した後、電力をLEDに供給するためのダイオード基板に実装することにより得られる。そして、実装および個片化の前に、LEDに対して、検査プローブを接触させて、電気的検査が実施されている(例えば、特許文献1参照。)。 Conventionally, an optical semiconductor device such as a light emitting diode device is formed by forming a large number of optical semiconductor elements (LEDs) on a wafer, separating them, and then mounting them on a diode substrate for supplying power to the LEDs. Is obtained. And before mounting and singulation, an inspection probe is brought into contact with the LED, and an electrical inspection is performed (for example, refer to Patent Document 1).
 近年、天井照明などの白色発光装置が急速に普及している。白色発光装置は、例えば、ダイオード基板と、それに実装され、青色光を発光する青色LEDと、青色光を黄色光に変換でき、LEDを被覆する蛍光体層とを備えている(例えば、特許文献2参照。)。そのような白色発光装置は、LEDから発光されて蛍光体層を透過した青色光と、蛍光体層において青色光の一部が波長変換された黄色光との混色によって、高エネルギーの白色光を発光する。 In recent years, white light emitting devices such as ceiling lighting have been rapidly spreading. The white light emitting device includes, for example, a diode substrate, a blue LED that is mounted thereon and emits blue light, and a phosphor layer that can convert blue light into yellow light and covers the LED (for example, Patent Documents). 2). Such a white light emitting device emits high-energy white light by mixing the blue light emitted from the LED and transmitted through the phosphor layer and the yellow light in which part of the blue light is wavelength-converted in the phosphor layer. Emits light.
特開平6-168991号公報Japanese Patent Laid-Open No. 6-168991 特開2015-73084号公報Japanese Patent Laying-Open No. 2015-73084
 このような白色発光装置を検査する場合においても、実装前のLED、すなわち、青色LEDと蛍光体層とを備えた蛍光体層付LEDに対して、発光検査が実施されることが要望されている。具体的には、蛍光体層付LEDの電極に検査プローブを接触させることにより、蛍光体層付LEDを発光させ、その光を検知器で測定し、その光の色度およびそのばらつきを検査する。 Even in the case of inspecting such a white light emitting device, it is desired that a light emission inspection is performed on an LED before mounting, that is, an LED with a phosphor layer including a blue LED and a phosphor layer. Yes. Specifically, an inspection probe is brought into contact with the electrode of the LED with a phosphor layer to cause the LED with the phosphor layer to emit light, the light is measured with a detector, and the chromaticity of the light and its variation are inspected. .
 この場合、検査の効率化のため、複数の蛍光体層付LEDを搬送基材上に整列配置して、その状態で、個別に発光検査を実施することが検討される。 In this case, in order to increase the efficiency of the inspection, it is considered to arrange a plurality of LEDs with phosphor layers on the transport substrate and to individually perform the light emission inspection in that state.
 ところが、複数の蛍光体層付LEDが集合した状態で、蛍光体層付LEDを個別に発光させて検査を実施すると、想定する色度よりも黄色側に検知されたり、各蛍光体層付LED間のばらつきが、実際のばらつきよりも大きく検知される不具合が生じる。 However, when the inspection is performed by individually emitting the LEDs with the phosphor layers in a state where the plurality of LEDs with the phosphor layers are gathered, it is detected on the yellow side from the assumed chromaticity, or each LED with the phosphor layers There arises a problem in which the variation between them is detected to be larger than the actual variation.
 すなわち、このような検査によると、検査対象とする蛍光体層付LEDを発光させた場合に、その光が隣接する蛍光体層付LEDの蛍光体層も励起発光させてしまい、その隣接する蛍光体層付LEDの光も同時に検知してしまうため、上記した不具合を生じる。 That is, according to such an inspection, when an LED with a phosphor layer to be inspected is caused to emit light, the phosphor layer of the LED with an adjacent phosphor layer is also excited to emit light, and the adjacent fluorescent light is emitted. Since the light of the LED with the body layer is also detected at the same time, the above-described problem occurs.
 この不具合を解消するため、検査対象とする一の蛍光体層付LEDを搬送基材とは別の検査領域に移動させて、検査を実施する方法、互いに隣接する蛍光体層付LEDの間の距離を広げる方法などが検討される。 In order to eliminate this problem, a method for inspecting by moving one LED with a phosphor layer to be inspected to an inspection region different from the transport base material, between the LEDs with phosphor layers adjacent to each other Methods to increase the distance will be considered.
 しかしながら、前者の方法では、多数の蛍光体層付LEDを個別に移動させるため、多くの時間を要するという不具合が生じる。後者の方法では、多数の蛍光体層付LEDの間の距離を広げるため、多くのスペースを要するという不具合が生じる。 However, the former method has a problem that it takes a lot of time to move a large number of LEDs with phosphor layers individually. In the latter method, the distance between a large number of phosphor layer-attached LEDs is widened, which causes a problem that a large amount of space is required.
 本発明の目的は、蛍光体層付光半導体素子を精度よく、迅速にかつ省スペースで検査することができる蛍光体層付光半導体素子の検査方法を提供することにある。 An object of the present invention is to provide a method for inspecting an optical semiconductor element with a phosphor layer capable of inspecting an optical semiconductor element with a phosphor layer accurately, quickly and in a space-saving manner.
 本発明[1]は、光半導体素子および蛍光体層を備える蛍光体層付光半導体素子を検査する方法であって、前記蛍光体層付光半導体素子が面方向において互いに間隔を隔てて複数配置されている素子集合体において、一の蛍光体層付光半導体素子に検査プローブを接触させて、前記一の蛍光体層付光半導体素子を発光させる発光工程、および、前記一の蛍光体層付光半導体素子からの光を検知する検知工程を備え、前記発光工程において、前記一の蛍光体層付光半導体素子と、前記一の蛍光体層付光半導体素子と面方向に隣接配置される他の蛍光体層付光半導体素子との間に、隔壁が配置され、前記隔壁の光透過率が20%以下であり、前記隔壁の前記面方向と直交する直交方向長さが、前記一の蛍光体層付光半導体素子の直交方向長さよりも長い蛍光体層付光半導体素子の検査方法を含んでいる。 The present invention [1] is a method for inspecting an optical semiconductor element with a phosphor layer comprising an optical semiconductor element and a phosphor layer, and a plurality of the optical semiconductor elements with a phosphor layer are arranged at intervals in the plane direction. A light emitting step of bringing an inspection probe into contact with the one optical semiconductor element with a phosphor layer to emit light from the one optical semiconductor element with the phosphor layer, and the one with the phosphor layer A detecting step of detecting light from the optical semiconductor element, and in the light emitting step, the optical semiconductor element with one phosphor layer, and the other optical semiconductor element with the phosphor layer are arranged adjacent to each other in a plane direction A partition wall is disposed between the phosphor layer-attached optical semiconductor element, the light transmittance of the partition wall is 20% or less, and a length in an orthogonal direction perpendicular to the surface direction of the partition wall is the one fluorescent light. The orthogonal length of the optical semiconductor element with body layer It includes an inspection method of a long fluorescent layer with optical semiconductor element also.
 このような検査方法によれば、発光工程において、一の蛍光体層付光半導体素子と、それに隣接配置される他の蛍光体層付光半導体素子との間に、隔壁が配置される。また、隔壁の光透過率が20%以下であり、隔壁の直交方向長さが、一の蛍光体層付光半導体素子の直交方向長さよりも長い。そのため、一の蛍光体層付光半導体素子からの光が、他の蛍光体層付光半導体素子に到達することを抑制して、他の蛍光体層付光半導体素子からの光を検知することを抑制することができる。よって、一の蛍光体層付光半導体素子を精度よく検知することができる。 According to such an inspection method, in the light emitting process, the partition wall is arranged between one optical semiconductor element with a phosphor layer and another optical semiconductor element with a phosphor layer arranged adjacent thereto. Moreover, the light transmittance of a partition is 20% or less, and the orthogonal direction length of a partition is longer than the orthogonal direction length of one optical semiconductor element with a phosphor layer. Therefore, light from one optical semiconductor element with a phosphor layer is suppressed from reaching another optical semiconductor element with a phosphor layer, and light from another optical semiconductor element with a phosphor layer is detected. Can be suppressed. Therefore, one optical semiconductor element with a phosphor layer can be detected with high accuracy.
 また、隔壁を配置して、一の蛍光体層付光半導体素子の検査を実施するため、蛍光体層付光半導体素子を個別に検査領域に移動させる必要がなく、検査時間を短縮することができる。さらに、蛍光体層付光半導体素子の間の距離を広げる必要がなく、省スペースで検査することができる。 In addition, since the partition wall is arranged to inspect the single optical semiconductor element with the phosphor layer, it is not necessary to individually move the optical semiconductor element with the phosphor layer to the inspection region, and the inspection time can be shortened. it can. Furthermore, it is not necessary to increase the distance between the optical semiconductor elements with a phosphor layer, and the inspection can be performed in a small space.
 本発明[2]は、前記隔壁の前記直交方向長さが、前記一の蛍光体層付光半導体素子の前記直交方向長さの1.2倍以上である[1]に記載の蛍光体層付光半導体素子の検査方法を含んでいる。 The phosphor layer according to [1], wherein the perpendicular length of the partition wall is 1.2 times or more of the perpendicular direction length of the optical semiconductor element with the phosphor layer. An inspection method for an attached optical semiconductor element is included.
 このような検査方法によれば、一の蛍光体層付光半導体素子からの光が、他の蛍光体層付光半導体素子に到達することをより確実に抑制することができる。よって、一の蛍光体層付光半導体素子をより一層精度よく検知することができる。 According to such an inspection method, light from one optical semiconductor element with a phosphor layer can be more reliably suppressed from reaching another optical semiconductor element with a phosphor layer. Therefore, the one optical semiconductor element with a phosphor layer can be detected with higher accuracy.
 本発明[3]は、前記隔壁が、前記一の蛍光体層付光半導体素子を囲むように配置されている[1]または[2]に記載の蛍光体層付光半導体素子の検査方法を含んでいる。 The present invention [3] provides the inspection method for an optical semiconductor element with a phosphor layer according to [1] or [2], wherein the partition wall is disposed so as to surround the one optical semiconductor element with a phosphor layer. Contains.
 このような検査方法によれば、一の蛍光体層付光半導体素子に対して他の蛍光体層付光半導体素子をどの方向に配置しても一の蛍光体層付光半導体素子からの光が、他の蛍光体層付光半導体素子に到達することをより確実に抑制することができる。 According to such an inspection method, light from one optical semiconductor element with a phosphor layer can be arranged in any direction with respect to one optical semiconductor element with one phosphor layer. However, it can suppress more reliably that it reaches | attains another optical semiconductor element with a fluorescent substance layer.
 本発明[4]は、前記素子集合体は、前記蛍光体層付光半導体素子を配置する基材を備え、前記発光工程において、前記一の蛍光体層付光半導体素子と前記他の蛍光体層付光半導体素子との間の前記基材の厚み方向一方面に、前記隔壁を配置する[1]~[3]のいずれか一項に記載の蛍光体層付光半導体素子の検査方法を含んでいる。 In the present invention [4], the element assembly includes a base material on which the phosphor layer-attached optical semiconductor element is disposed, and in the light emitting step, the one phosphor layer-attached optical semiconductor element and the other phosphor The inspection method for an optical semiconductor element with a phosphor layer according to any one of [1] to [3], wherein the partition is arranged on one surface in the thickness direction of the base material between the optical semiconductor element with a layer. Contains.
 このような検査方法によれば、素子集合体の基材の一方面に、前記隔壁を配置すればよいため、精密な治具や操作を要せず、簡便に蛍光体層付光半導体素子を検知することができる。 According to such an inspection method, since the partition wall may be disposed on one surface of the base material of the element assembly, a precise jig and operation are not required, and an optical semiconductor element with a phosphor layer can be easily obtained. Can be detected.
 本発明[5]は、前記検査プローブが、前記隔壁を備える[1]~[3]のいずれか一項に記載の蛍光体層付光半導体素子の検査方法を含んでいる。 The present invention [5] includes the method for inspecting an optical semiconductor element with a phosphor layer according to any one of [1] to [3], wherein the inspection probe includes the partition wall.
 このような検査方法によれば、予め検査プローブが隔壁を備えているため、素子集合体に隔壁を配置する工程を要しない。そのため、蛍光体層付光半導体素子をより迅速に検知することができる。 According to such an inspection method, since the inspection probe is provided with the partition wall in advance, the step of arranging the partition wall in the element assembly is not required. Therefore, the optical semiconductor element with a phosphor layer can be detected more quickly.
 本発明の半導体素子の検査方法によれば、蛍光体層付光半導体素子を精度よく、迅速にかつ省スペースで検査することができる。 According to the method for inspecting a semiconductor element of the present invention, an optical semiconductor element with a phosphor layer can be inspected accurately, quickly, and in a space-saving manner.
図1A-図1Bは、本発明の検査方法で用いる隔壁配置素子集合体の一実施形態を示し、図1Aは、平面図、図1Bは、図1AのA-Aにおける断面図を示す。1A to 1B show an embodiment of a partition arrangement element assembly used in the inspection method of the present invention, FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along line AA in FIG. 1A. 図2A-図2Eは、本発明の検査方法の第1実施形態を示し、 図2Aは、基材を用意する工程、図2Bは、隔壁を配置する工程、図2Cは、封止素子を配置する工程、図2Dは、素子集合体を検査装置にセットする工程、図2Eは、封止素子を発光し、検知する工程を示す。2A to 2E show a first embodiment of the inspection method of the present invention. FIG. 2A is a step of preparing a substrate, FIG. 2B is a step of arranging a partition, and FIG. 2C is a step of arranging a sealing element. 2D shows a step of setting the element assembly in the inspection apparatus, and FIG. 2E shows a step of emitting and detecting the sealing element. 図3A-図3Dは、本発明の検査方法の第2実施形態を示し、 図3Aは、基材を用意する工程、図3Bは、封止素子を配置する工程、図3Cは、素子集合体を検査装置にセットする工程、図3Dは、封止素子を発光し、検知する工程を示す。3A to 3D show a second embodiment of the inspection method of the present invention, in which FIG. 3A is a step of preparing a substrate, FIG. 3B is a step of arranging a sealing element, and FIG. 3C is an element assembly. FIG. 3D shows a step of emitting and detecting the sealing element. 図4A-図4Bは、本発明の検査方法に用いる封止素子の変形例を示し、図4Aは、電極が突出していない形態の断面図、図4Bは、リフレクタを備えている形態の断面図を示す。4A to 4B show modified examples of the sealing element used in the inspection method of the present invention, FIG. 4A is a cross-sectional view of a form in which no electrode protrudes, and FIG. 4B is a cross-sectional view of a form having a reflector. Indicates.
  <第1実施形態>
 図1Aにおいて、紙面上下方向は、前後方向(第1方向)であり、紙面上側が前側(第1方向一方側)、紙面下側が後側(第1方向他方側)である。紙面左右方向は、左右方向(第1方向に直交する第2方向)であり、紙面左側が左側(第2方向一方側)、紙面右側が右側(第2方向他方側)である。紙厚方向は、上下方向(第1方向および第2方向に直交する第3方向、厚み方向)であり、紙面手前側が上側(第3方向一方側、厚み方向一方側)、紙面奥側が下側(第3方向他方側、厚み方向他方側)である。具体的には、各図の方向矢印に準拠する。
<First Embodiment>
In FIG. 1A, the vertical direction of the paper surface is the front-back direction (first direction), the upper side of the paper surface is the front side (one side in the first direction), and the lower side of the paper surface is the rear side (the other side in the first direction). The left and right direction on the paper surface is the left and right direction (second direction orthogonal to the first direction), the left side on the paper surface is the left side (second side in the second direction), and the right side on the paper surface is the right side (the other side in the second direction). The paper thickness direction is the vertical direction (the third direction orthogonal to the first direction and the second direction, the thickness direction), the front side of the paper is the upper side (one side in the third direction, the one side in the thickness direction), and the back side of the paper is the lower side (The other side in the third direction, the other side in the thickness direction). Specifically, it conforms to the direction arrow in each figure.
 図1A-図2Eを参照して、本発明における蛍光体層付光半導体素子1(以下、「封止素子」ともいう。)を検査する方法の第1実施形態について説明する。 1A to 2E, a first embodiment of a method for inspecting a phosphor layer-attached optical semiconductor element 1 (hereinafter also referred to as “sealing element”) in the present invention will be described.
 封止素子1の検査方法の第1実施形態は、基材用意工程、隔壁配置工程、素子配置工程、発光工程、検知工程を備える。 1st Embodiment of the inspection method of the sealing element 1 is equipped with a base material preparation process, a partition arrangement | positioning process, an element arrangement | positioning process, a light emission process, and a detection process.
 基材用意工程では、図2Aに示すように、基材の一例としての透明基材2を用意する。 In the base material preparing step, as shown in FIG. 2A, a transparent base material 2 as an example of the base material is prepared.
 透明基材2は、複数の封止素子1の検査を実施するまでの間、複数の封止素子1を支持および搬送する。透明基材2は、図1Aおよび図1Bに示すように、所定の厚みを有する平面視略矩形状の板状をなし、厚み方向と直交する所定方向(面方向、具体的には、左右方向および前後方向)に延び、平坦な上面(厚み方向一方面)および平坦な下面(厚み方向他方面)を有している。 The transparent substrate 2 supports and transports the plurality of sealing elements 1 until the inspection of the plurality of sealing elements 1 is performed. As shown in FIGS. 1A and 1B, the transparent substrate 2 has a substantially rectangular plate shape with a predetermined thickness in plan view, and a predetermined direction (surface direction, specifically, left-right direction) orthogonal to the thickness direction. And has a flat upper surface (one surface in the thickness direction) and a flat lower surface (the other surface in the thickness direction).
 透明基材2としては、例えば、ポリエチレンテレフタレート(PET)フィルムなどのポリエステルフィルム、例えば、ポリエチレンフィルム、ポリプロピレンフィルムなどのポリオレフィンフィルム、例えば、ポリカーボネートフィルム、ポリ塩化ビニルフィルム、ポリスチレンフィルム、アクリルフィルム、シリコーン樹脂フィルム、フッ素樹脂フィルムなどの樹脂フィルムなどが挙げられる。 Examples of the transparent substrate 2 include polyester films such as polyethylene terephthalate (PET) films, polyolefin films such as polyethylene films and polypropylene films, such as polycarbonate films, polyvinyl chloride films, polystyrene films, acrylic films, and silicone resins. Examples thereof include resin films such as films and fluororesin films.
 透明基材2の上面には、封止素子1を仮固定するために、粘着層が形成されていてもよい。粘着層を形成する粘着材料としては、例えば、アクリル系感圧接着剤、シリコーン系感圧接着剤などの感圧接着剤が挙げられる。また、粘着層を、例えば、活性エネルギー線の照射によって粘着力が低下する活性エネルギー線照射剥離シート(具体的には、特開2005-286003号公報などに記載される活性エネルギー線照射剥離シート)などから形成することもできる。 An adhesive layer may be formed on the upper surface of the transparent substrate 2 in order to temporarily fix the sealing element 1. Examples of the pressure-sensitive adhesive material forming the pressure-sensitive adhesive layer include pressure-sensitive adhesives such as acrylic pressure-sensitive adhesives and silicone-based pressure sensitive adhesives. In addition, the adhesive layer may be, for example, an active energy ray irradiation release sheet whose adhesive strength is reduced by irradiation with active energy rays (specifically, an active energy ray irradiation release sheet described in JP-A-2005-286003). It can also be formed from.
 このような透明基材2は、例えば、配列テープ、ダイシングテープなどとして、市販品を用いることができる。 Such a transparent substrate 2 may be a commercially available product such as an array tape or a dicing tape.
 透明基材2の厚みは、例えば、40μm以上、好ましくは、50μm以上であり、また、例えば、1000μm以下、好ましくは、800μm以下である。 The thickness of the transparent substrate 2 is, for example, 40 μm or more, preferably 50 μm or more, and, for example, 1000 μm or less, preferably 800 μm or less.
 透明基材2の周端部には、透明基材2の反りや撓みなどの変形を抑制するための支持部材19が設けられている。支持部材19は、金属、硬質樹脂などからなり、平面視略枠形状(具体的には、リング形状、図1Aの仮想線参照)を有している。支持部材19は、粘着層を介して、透明基材2の上面に固定されている。 A support member 19 is provided at the peripheral end of the transparent base material 2 to suppress deformation such as warping and bending of the transparent base material 2. The support member 19 is made of metal, hard resin, or the like, and has a substantially frame shape in plan view (specifically, a ring shape, see the imaginary line in FIG. 1A). The support member 19 is fixed to the upper surface of the transparent substrate 2 through an adhesive layer.
 隔壁配置工程では、図2Bに示すように、遮蔽部材3を透明基材2の上に配置する。 In the partition arrangement step, the shielding member 3 is arranged on the transparent base 2 as shown in FIG. 2B.
 遮蔽部材3は、平面視略矩形状の格子状に形成されており、枠部4と隔壁5とを一体的に備えている。 The shielding member 3 is formed in a lattice shape having a substantially rectangular shape in plan view, and integrally includes a frame portion 4 and a partition wall 5.
 枠部4は、平面視略枠形状に形成され、前後方向に延び、左右方向に間隔を隔てる2つの第1枠部4aと、左右方向に延び、2つの第1枠部4aの前端および後端を連結する2つの第2枠部4bとを備えている。 The frame portion 4 is formed in a substantially frame shape in plan view, extends in the front-rear direction, and has two first frame portions 4 a that are spaced apart in the left-right direction, and extends in the left-right direction, and the front end and the rear of the two first frame portions 4 a And two second frame portions 4b connecting the ends.
 枠部4の幅W1(前後方向長さまたは左右方向長さ)は、取扱い性の観点から、それぞれ、例えば、1mm以上、好ましくは、5mm以上であり、また、例えば、50mm以下、好ましくは、10mm以下である。枠部4の高さ(上下方向長さ)は、例えば、後述する隔壁5の高さHと同一である。 The width W1 (front-rear direction length or left-right direction length) of the frame part 4 is, for example, 1 mm or more, preferably 5 mm or more, and for example, 50 mm or less, preferably from the viewpoint of handleability. 10 mm or less. The height (vertical length) of the frame part 4 is, for example, the same as the height H of the partition wall 5 to be described later.
 隔壁5は、複数(4つ)の第1隔壁5aと、複数(4つ)の第2隔壁5bとを備えている。複数の第1隔壁5aは、2つの第1枠部4aの間において、それらの間を左右方向において略等分するように配置され、前後方向に延び、2つの第2枠部4b間に架設されている。複数の第2隔壁5bは、2つの第2枠部4bの間において、それらの間を前後方向において略等分するように配置され、左右方向に延び、2つの第1枠部4a間に架設されている。第1隔壁5aおよび第2隔壁5bは、枠部4内を碁盤目形状に区画し、これによって、複数(25個)の開口部6が形成されている。複数の開口部6内は、枠部4内において、前後方向に5列、左右方向に5列となるように整列配置されている。開口部6は、平面視略矩形状、より具体的には、平面視略正方形状を有している。 The partition wall 5 includes a plurality (four) of first partition walls 5a and a plurality (four) of second partition walls 5b. The plurality of first partition walls 5a are arranged between the two first frame portions 4a so as to be approximately equally divided in the left-right direction, extend in the front-rear direction, and are installed between the two second frame portions 4b. Has been. The plurality of second partition walls 5b are arranged between the two second frame portions 4b so as to be substantially equally divided in the front-rear direction, extend in the left-right direction, and are installed between the two first frame portions 4a. Has been. The first partition wall 5a and the second partition wall 5b divide the inside of the frame portion 4 into a grid pattern, thereby forming a plurality (25) of openings 6. The plurality of openings 6 are aligned and arranged in the frame 4 so that there are 5 rows in the front-rear direction and 5 rows in the left-right direction. The opening 6 has a substantially rectangular shape in plan view, more specifically, a substantially square shape in plan view.
 隔壁5の幅W2(前後方向長さまたは左右方向長さ)は、それぞれ、例えば、10μm以上、好ましくは、50μm以上、より好ましくは、100μm以上であり、また、例えば、5mm以下、好ましくは、3mm以下である。幅W2を上記下限以上とすることにより、遮蔽部材3の機械強度を高めることができ、また、光透過率を低減させることができる。一方、幅W2を上記上限以下とすることにより、遮蔽部材3や封止素子1以外の隙間面積を減少させて、単位面積当たりの封止素子1の配置数を増加させることができる。 A width W2 (length in the front-rear direction or length in the left-right direction) of the partition wall 5 is, for example, 10 μm or more, preferably 50 μm or more, more preferably 100 μm or more, and for example, 5 mm or less, preferably 3 mm or less. By setting the width W2 to be equal to or more than the above lower limit, the mechanical strength of the shielding member 3 can be increased and the light transmittance can be reduced. On the other hand, by setting the width W2 to be equal to or less than the above upper limit, the gap area other than the shielding member 3 and the sealing element 1 can be reduced, and the number of the sealing elements 1 arranged per unit area can be increased.
 隔壁5の高さH(直交方向長さ)は、封止素子1(後述)の高さTよりも長く、封止素子1の高さTに対して、1.0倍を超過し、好ましくは、1.2倍以上、より好ましくは、1.5倍以上、さらに好ましくは、2.0倍以上であり、また、例えば、10倍以下である。具体的には、高さHは、例えば、100μm以上、好ましくは、400μm以上、より好ましくは、600μm以上、さらに好ましくは、850μm以上であり、また、例えば、30mm以下、好ましくは、5mm以下、より好ましくは、3mm以下である。高さHを上記下限以上とすることにより、封止素子1の光が、隣接する他の封止素子1に到達することを抑制することができる。特に、隔壁5の高さHが、封止素子1の高さTの1.2倍以上であると、一の封止素子1からの光が、他の封止素子1に到達することをより確実に抑制することができる。一方、高さHを上記上限以下とすることにより、プローブ針26(後述)を電極9に確実に接触させることができる。 The height H (orthogonal direction length) of the partition wall 5 is longer than the height T of the sealing element 1 (described later), and exceeds 1.0 times the height T of the sealing element 1. Is 1.2 times or more, more preferably 1.5 times or more, still more preferably 2.0 times or more, and for example, 10 times or less. Specifically, the height H is, for example, 100 μm or more, preferably 400 μm or more, more preferably 600 μm or more, further preferably 850 μm or more, and for example, 30 mm or less, preferably 5 mm or less, More preferably, it is 3 mm or less. By setting the height H to be equal to or higher than the above lower limit, the light of the sealing element 1 can be prevented from reaching another adjacent sealing element 1. In particular, when the height H of the partition wall 5 is 1.2 times or more the height T of the sealing element 1, the light from one sealing element 1 reaches the other sealing element 1. It can suppress more reliably. On the other hand, by setting the height H to the upper limit or less, the probe needle 26 (described later) can be reliably brought into contact with the electrode 9.
 開口部6の前後方向長さまたは左右方向長さは、それぞれ、例えば、0.5mm以上、好ましくは、1.5mm以上であり、また、例えば、10mm以下、好ましくは、5mm以下である。 The front-rear direction length or the left-right direction length of the opening 6 is, for example, 0.5 mm or more, preferably 1.5 mm or more, and for example, 10 mm or less, preferably 5 mm or less.
 隔壁5の光透過率は、幅方向(互いに隣接する封止素子1を結ぶ方向;前後方向長さまたは左右方向長さ)において、例えば、20%以下、好ましくは、10%以下、より好ましくは、5%以下である。これにより、封止素子1の光が、隣接する他の封止素子1に到達することを抑制することができる。光透過率は、分光光度計を用いて、波長領域300~850nm、走査速度1000nm/minの条件にて測定することにより求められる。 The light transmittance of the partition walls 5 is, for example, 20% or less, preferably 10% or less, more preferably in the width direction (direction connecting the sealing elements 1 adjacent to each other; the length in the front-rear direction or the length in the left-right direction). 5% or less. Thereby, it can suppress that the light of the sealing element 1 arrives at the other adjacent sealing element 1. The light transmittance is obtained by measuring using a spectrophotometer under conditions of a wavelength region of 300 to 850 nm and a scanning speed of 1000 nm / min.
 遮蔽部材3の材料は、光を遮蔽できる材料であれば限定されず、例えば、樹脂組成物、金属、木材などが挙げられる。軽量性、加工性、透明基材との密着性などの観点から、好ましくは、樹脂組成物が挙げられる。 The material of the shielding member 3 is not limited as long as it is a material capable of shielding light, and examples thereof include a resin composition, metal, and wood. From the viewpoints of lightness, workability, adhesion to a transparent substrate, and the like, a resin composition is preferable.
 樹脂組成物としては、例えば、樹脂および色素を含有する色素組成物が挙げられる。 Examples of the resin composition include a dye composition containing a resin and a dye.
 樹脂としては、例えば、加熱により可塑化する熱可塑性樹脂、例えば、加熱により硬化する熱硬化性樹脂、例えば、活性エネルギー線(例えば、紫外線、電子線など)の照射により硬化する活性エネルギー線硬化性樹脂などが挙げられる。 Examples of the resin include a thermoplastic resin that is plasticized by heating, for example, a thermosetting resin that is cured by heating, for example, an active energy ray curable that is cured by irradiation with active energy rays (for example, ultraviolet rays, electron beams, etc.). Resin etc. are mentioned.
  熱可塑性樹脂としては、例えば、酢酸ビニル樹脂、エチレン・酢酸ビニル共重合体(EVA)、塩化ビニル樹脂、EVA・塩化ビニル樹脂共重合体などが挙げられる。 Examples of the thermoplastic resin include vinyl acetate resin, ethylene / vinyl acetate copolymer (EVA), vinyl chloride resin, EVA / vinyl chloride resin copolymer, and the like.
  熱硬化性樹脂および活性エネルギー線硬化性樹脂などの硬化性樹脂としては、例えば、シリコーン樹脂、エポキシ樹脂、ポリイミド樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂などが挙げられる。 Examples of the curable resin such as a thermosetting resin and an active energy ray curable resin include silicone resin, epoxy resin, polyimide resin, phenol resin, urea resin, melamine resin, and unsaturated polyester resin.
  これら樹脂として、好ましくは、熱硬化性樹脂、活性エネルギー線硬化性樹脂などの硬化性樹脂が挙げられ、より好ましくは、熱硬化性樹脂が挙げられ、さらに好ましくは、シリコーン樹脂が挙げられる。 These resins are preferably curable resins such as thermosetting resins and active energy ray curable resins, more preferably thermosetting resins, and still more preferably silicone resins.
  また、シリコーン樹脂としては、例えば、2段階硬化型シリコーン樹脂組成物、1段階硬化型シリコーン樹脂組成物などの熱硬化性シリコーン樹脂組成物などが挙げられる。 Further, examples of the silicone resin include thermosetting silicone resin compositions such as a two-stage curable silicone resin composition and a one-stage curable silicone resin composition.
  2段階硬化型シリコーン樹脂組成物としては、例えば、縮合反応・付加反応硬化型シリコーン樹脂組成物が挙げられる。このような縮合反応・付加反応硬化型シリコーン樹脂組成物としては、例えば、特開2010-265436号公報、特開2013-187227号公報などに記載される第1~第8の縮合・付加反応硬化型シリコーン樹脂組成物、例えば、特開2013-091705号公報、特開2013-001815号公報、特開2013-001814号公報、特開2013-001813号公報、特開2012-102167号公報などに記載されるかご型オクタシルセスキオキサン含有シリコーン樹脂組成物などが挙げられる。 Examples of the two-step curable silicone resin composition include a condensation reaction / addition reaction curable silicone resin composition. Examples of such condensation reaction / addition reaction curable silicone resin compositions include first to eighth condensation / addition reaction curing described in JP2010-265436A, JP2013-187227A, and the like. Type silicone resin composition, for example, described in JP2013-091705A, JP2013-001815A, JP2013-001814A, JP2013-001813A, JP2012-102167A, etc. And a cage-type octasilsesquioxane-containing silicone resin composition.
  1段階硬化型シリコーン樹脂組成物としては、例えば、付加反応硬化型シリコーン樹脂組成物などが挙げられる。 Examples of the one-step curable silicone resin composition include an addition reaction curable silicone resin composition.
  付加反応硬化型シリコーン樹脂組成物は、例えば、アルケニル基含有ポリシロキサンと、ヒドロシリル基含有ポリシロキサンと、ヒドロシリル化触媒とを含有する。このような付加反応硬化型シリコーン樹脂組成物としては、例えば、特開2015-73084号公報などに記載されるフェニル系シリコーン樹脂組成物、例えば、ELASTOSILシリーズ(旭化成ワッカーシリコーン社製、具体的には、ELASTOSIL LR7665)、KERシリーズ(信越シリコーン社製)などのメチル系シリコーン樹脂組成物などが挙げられる。 The addition reaction curable silicone resin composition contains, for example, an alkenyl group-containing polysiloxane, a hydrosilyl group-containing polysiloxane, and a hydrosilylation catalyst. Examples of such addition reaction curable silicone resin compositions include phenyl silicone resin compositions described in JP-A-2015-73084, for example, ELASTOSIL series (manufactured by Asahi Kasei Wacker Silicone, Inc., specifically, , ELASTOSIL LR7665), KE series (manufactured by Shin-Etsu Silicone), and the like.
 これら樹脂は、単独で使用または2種以上を併用することができる。 These resins can be used alone or in combination of two or more.
 好ましくは、ハンドリングや加工性の観点から、エポキシ樹脂、シリコーン樹脂などが挙げられ、より好ましくは、シリコーン樹脂が挙げられる。 Preferably, from the viewpoints of handling and workability, an epoxy resin, a silicone resin, and the like are preferable, and a silicone resin is more preferable.
 色素組成物における樹脂の含有割合は、例えば、50質量%以上、好ましくは、90質量%以上であり、また、例えば、99.8質量%以下、好ましくは、97質量%以下である。 The content ratio of the resin in the dye composition is, for example, 50% by mass or more, preferably 90% by mass or more, and for example, 99.8% by mass or less, preferably 97% by mass or less.
 色素としては、例えば、黒色色素、白色色素、有色色素(青色色素、黄色色素、褐色顔料、赤色色素など)のいずれであってもよいが、色度のシフト量の抑制、検査測定の補正の容易性などの観点から、好ましくは、黒色色素、白色色素が挙げられ、より好ましくは、黒色色素が挙げられる。 The dye may be, for example, a black dye, white dye, or colored dye (blue dye, yellow dye, brown pigment, red dye, etc.). From the viewpoint of ease, etc., black pigments and white pigments are preferable, and black pigments are more preferable.
 黒色色素としては、例えば、カーボンブラック、グラファイト、酸化銅、二酸化マンガン、チタンブラック、酸化クロム、酸化鉄などの黒色顔料が挙げられる。 Examples of the black pigment include black pigments such as carbon black, graphite, copper oxide, manganese dioxide, titanium black, chromium oxide, and iron oxide.
 これら色素は、単独で使用または2種以上を併用することができる。 These pigments can be used alone or in combination of two or more.
 色素組成物における色素の含有割合は、例えば、0.2質量%以上、好ましくは、3質量%以上であり、また、例えば、50質量%以下、好ましくは、10質量%以下である。 The content ratio of the pigment in the pigment composition is, for example, 0.2% by mass or more, preferably 3% by mass or more, and for example, 50% by mass or less, preferably 10% by mass or less.
 色素組成物には、上記成分以外に、その他の公知の添加剤(例えば、後述する添加剤)を配合適宜の割合で添加することができる。 In addition to the above components, other known additives (for example, additives described later) can be added to the dye composition in an appropriate proportion.
 遮蔽部材3は、例えば、樹脂および色素を混合して調製された色素組成物をシート(平板状)に成形し、続いて、カッティングマシン、トマソン刃などの切断機を用いて、開口部6を形成することにより作製することができる。また、遮蔽部材3は、樹脂シートに開口部6を形成し、続いて、その樹脂シート表面に、色素を含有する塗料を塗布することによっても作製することができる。 The shielding member 3 is formed, for example, by forming a dye composition prepared by mixing a resin and a dye into a sheet (flat plate shape), and then using a cutting machine such as a cutting machine or a Thomason blade to form the opening 6. It can be manufactured by forming. The shielding member 3 can also be produced by forming the opening 6 in the resin sheet and subsequently applying a paint containing a pigment to the resin sheet surface.
 そして、遮蔽部材3は、透明基材2の上面に支持部材19の内側に、支持部材19と所定間隔が隔てられるように配置されている。これによって、複数の開口部6から複数の透明基材2が露出している。 The shielding member 3 is arranged on the upper surface of the transparent base material 2 inside the support member 19 so as to be separated from the support member 19 by a predetermined distance. As a result, the plurality of transparent base materials 2 are exposed from the plurality of openings 6.
 素子配置工程では、図2Cが示すように、複数の封止素子1を用意し、続いて、複数の封止素子1を、遮蔽部材3が配置された透明基材2の上に配置する。 In the element arrangement step, as shown in FIG. 2C, a plurality of sealing elements 1 are prepared, and then the plurality of sealing elements 1 are arranged on the transparent substrate 2 on which the shielding member 3 is arranged.
 まず、複数の封止素子1を用意する。 First, a plurality of sealing elements 1 are prepared.
 封止素子1は、図1Bに示すように、平面視および側断面視において略矩形状に形成されており、発光面11と、電極面12と、側面13とを備えている。 As shown in FIG. 1B, the sealing element 1 is formed in a substantially rectangular shape in plan view and side sectional view, and includes a light emitting surface 11, an electrode surface 12, and a side surface 13.
 発光面11は、封止素子1における下面であり、蛍光体層8の下面に相当する。発光面11は、平坦な形状を有している。 The light emitting surface 11 is the lower surface of the sealing element 1 and corresponds to the lower surface of the phosphor layer 8. The light emitting surface 11 has a flat shape.
 電極面12は、封止素子1における上面であり、電極9(後述)が形成されている面である。電極面12は、発光面11に対して上側に間隔を隔てて対向配置されている。 The electrode surface 12 is an upper surface of the sealing element 1 and is a surface on which an electrode 9 (described later) is formed. The electrode surface 12 is disposed to face the light emitting surface 11 with an interval on the upper side.
 側面13は、発光面11の周端縁と、電極面12の周端縁とを連結している。 The side surface 13 connects the peripheral edge of the light emitting surface 11 and the peripheral edge of the electrode surface 12.
 封止素子1の高さT(直交方向長さ)は、例えば、10μm以上、好ましくは、100μm以上であり、また、例えば、1000μm以下、好ましくは、700μm以下である。なお、電極9が電極面12から突出している場合は、封止素子1の高さは、突出している電極9を除外した長さ、すなわち、発光面11と電極面12との上下方向距離を示す。 The height T (length in the orthogonal direction) of the sealing element 1 is, for example, 10 μm or more, preferably 100 μm or more, and for example, 1000 μm or less, preferably 700 μm or less. When the electrode 9 protrudes from the electrode surface 12, the height of the sealing element 1 is the length excluding the protruding electrode 9, that is, the vertical distance between the light emitting surface 11 and the electrode surface 12. Show.
 封止素子1の前後方向長さまたは左右方向長さLは、それぞれ、例えば、0.1mm以上、好ましくは、0.5mm以上であり、また、例えば、5mm以下、好ましくは、3mm以下である。 The front-rear direction length or the left-right direction length L of the sealing element 1 is, for example, 0.1 mm or more, preferably 0.5 mm or more, and, for example, 5 mm or less, preferably 3 mm or less. .
 封止素子1は、光半導体素子7と、それを被覆する蛍光体層8とを備えている。 The sealing element 1 includes an optical semiconductor element 7 and a phosphor layer 8 that covers the optical semiconductor element 7.
 光半導体素子7としては、例えば、青色光を発光する青色LED(発光ダイオード素子)が挙げられる。光半導体素子7の上面、すなわち、封止素子1の電極面12には、複数(2個)の電極9が、電極面12から上側に向かってわずかに突出するように形成されている。 Examples of the optical semiconductor element 7 include a blue LED (light emitting diode element) that emits blue light. On the upper surface of the optical semiconductor element 7, that is, on the electrode surface 12 of the sealing element 1, a plurality (two) of electrodes 9 are formed so as to slightly protrude upward from the electrode surface 12.
 蛍光体層8は、光半導体素子7を封止するように形成されている。詳しくは、光半導体素子7の下面および周側面を被覆し、光半導体素子7の上面を露出するように、平面視略矩形状および側面視略矩形状に形成されている。また、蛍光体層8の下面は、透明基材2の上面と接触している。 The phosphor layer 8 is formed so as to seal the optical semiconductor element 7. Specifically, it is formed in a substantially rectangular shape in plan view and a substantially rectangular shape in side view so as to cover the lower surface and the peripheral side surface of the optical semiconductor element 7 and expose the upper surface of the optical semiconductor element 7. Further, the lower surface of the phosphor layer 8 is in contact with the upper surface of the transparent substrate 2.
 蛍光体層8は、蛍光体組成物から形成されている。蛍光体組成物は、蛍光体および樹脂を含有している。 The phosphor layer 8 is formed from a phosphor composition. The phosphor composition contains a phosphor and a resin.
 蛍光体は、波長変換機能を有しており、例えば、青色光を黄色光に変換することのできる黄色蛍光体、青色光を赤色光に変換することのできる赤色蛍光体などが挙げられる。 The phosphor has a wavelength conversion function, and examples thereof include a yellow phosphor capable of converting blue light into yellow light, and a red phosphor capable of converting blue light into red light.
 黄色蛍光体としては、例えば、(Ba,Sr,Ca)SiO;Eu、(Sr,Ba)SiO:Eu(バリウムオルソシリケート(BOS))などのシリケート蛍光体、例えば、YAl12:Ce(YAG(イットリウム・アルミニウム・ガーネット):Ce)、TbAl12:Ce(TAG(テルビウム・アルミニウム・ガーネット):Ce)などのガーネット型結晶構造を有するガーネット型蛍光体、例えば、Ca-α-SiAlONなどの酸窒化物蛍光体などが挙げられる。赤色蛍光体としては、例えば、CaAlSiN:Eu、CaSiN:Euなどの窒化物蛍光体などが挙げられる。 Examples of the yellow phosphor include silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 ; Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)), for example, Y 3 Al Garnet-type phosphors having a garnet-type crystal structure such as 5 O 12 : Ce (YAG (yttrium, aluminum, garnet): Ce), Tb 3 Al 3 O 12 : Ce (TAG (terbium, aluminum, garnet): Ce) Examples thereof include oxynitride phosphors such as Ca-α-SiAlON. Examples of the red phosphor include nitride phosphors such as CaAlSiN 3 : Eu and CaSiN 2 : Eu.
 これら蛍光体は、単独で使用または2種以上を併用することができる。 These phosphors can be used alone or in combination of two or more.
 蛍光体組成物における蛍光体の含有割合は、例えば、1質量%以上、好ましくは、2質量%以上であり、また、例えば、75質量%以下、好ましくは、60質量%以下である。 The phosphor content in the phosphor composition is, for example, 1% by mass or more, preferably 2% by mass or more, and for example, 75% by mass or less, preferably 60% by mass or less.
 樹脂は、蛍光体を分散させ、光半導体素子7を封止する透明樹脂である。このような透明樹脂としては、上記した熱可塑性樹脂、熱硬化性樹脂、活性エネルギー線硬化性樹脂などが挙げられ、好ましくは、熱硬化性樹脂、活性エネルギー線硬化性樹脂などの硬化性樹脂が挙げられ、より好ましくは、熱硬化性樹脂が挙げられ、さらに好ましくは、シリコーン樹脂が挙げられる。 Resin is a transparent resin that disperses the phosphor and seals the optical semiconductor element 7. Examples of such transparent resins include the above-described thermoplastic resins, thermosetting resins, active energy ray curable resins, and the like. Preferably, curable resins such as thermosetting resins and active energy ray curable resins are used. More preferably, a thermosetting resin is mentioned, More preferably, a silicone resin is mentioned.
 これら透明樹脂は、単独で使用または2種以上を併用することができる。 These transparent resins can be used alone or in combination of two or more.
 蛍光体組成物における樹脂の含有割合は、例えば、25質量%以上、好ましくは、40質量%以上であり、また、例えば、99質量%以下、好ましくは、98質量%以下である。 The content ratio of the resin in the phosphor composition is, for example, 25% by mass or more, preferably 40% by mass or more, and for example, 99% by mass or less, preferably 98% by mass or less.
 蛍光体組成物には、上記成分以外には、有機フィラー、無機フィラー、老化防止剤、変性剤、界面活性剤、染料、顔料、変色防止剤、紫外線吸収剤、クリープハードニング防止剤、可塑剤、チクソ性付与剤、防カビ剤などの添加剤を配合適宜の割合で添加することができる。 蛍光体層8の高さ(最上面と最下面との上下方向長さ)(図1Bにおいては、封止素子1の高さT)は、例えば、10μm以上、好ましくは、100μm以上であり、また、例えば、1000μm以下、好ましくは、700μm以下である。蛍光体層8の前後方向長さおよび左右方向長さ(特に蛍光体層8の下面(発光面11)における長さ、図1Bにおいては、封止素子1の前後方向長さおよび左右方向長さL)は、それぞれ、例えば、0.1mm以上、好ましくは、0.5mm以上であり、また、例えば、5mm以下、好ましくは、3mm以下である。 In addition to the above components, the phosphor composition includes organic fillers, inorganic fillers, anti-aging agents, modifiers, surfactants, dyes, pigments, anti-discoloring agents, ultraviolet absorbers, creep hardening inhibitors, plasticizers. Additives such as a thixotropic agent and an antifungal agent can be added at an appropriate ratio. The height of the phosphor layer 8 (length in the vertical direction between the uppermost surface and the lowermost surface) (in FIG. 1B, the height T of the sealing element 1) is, for example, 10 μm or more, preferably 100 μm or more. For example, it is 1000 micrometers or less, Preferably, it is 700 micrometers or less. The length in the front-rear direction and the length in the left-right direction of the phosphor layer 8 (particularly the length on the lower surface (light emitting surface 11) of the phosphor layer 8, in FIG. 1B, the length in the front-rear direction and the length in the left-right direction of the sealing element 1). L) is, for example, 0.1 mm or more, preferably 0.5 mm or more, and for example, 5 mm or less, preferably 3 mm or less.
 封止素子1は、例えば、電極側の面(図1Bでは上面)が剥離シートの表面に接触するように、複数の光半導体素子7を剥離シートの表面に間隔を隔てて配置する工程、次いで、発光側の面(図1Bでは下面)および側面を被覆するように、蛍光体層8(蛍光体組成物)を光半導体素子7および剥離シートに積層する工程、次いで、蛍光体層8および剥離シートを切断して、封止素子1を個片化する工程により、得られる。なお、蛍光体組成物が硬化性樹脂である場合には、蛍光体組成物を積層後、適宜、熱または活性エネルギーを付与して、硬化する。 The sealing element 1 is, for example, a step of arranging a plurality of optical semiconductor elements 7 on the surface of the release sheet at intervals so that the electrode side surface (upper surface in FIG. 1B) contacts the surface of the release sheet, The step of laminating the phosphor layer 8 (phosphor composition) on the optical semiconductor element 7 and the release sheet so as to cover the light emitting side surface (the lower surface in FIG. 1B) and the side surfaces, and then the phosphor layer 8 and the release layer It is obtained by the process of cutting the sheet and separating the sealing element 1 into individual pieces. When the phosphor composition is a curable resin, the phosphor composition is laminated and then cured by applying heat or active energy as appropriate.
 続いて、複数の封止素子1を、透明基材2の上面に配置する。具体的には、1つの開口部6に1つの封止素子1が対応するように、複数の封止素子1を遮蔽部材3の複数の開口部6内に配置する。 Subsequently, a plurality of sealing elements 1 are arranged on the upper surface of the transparent substrate 2. Specifically, the plurality of sealing elements 1 are arranged in the plurality of openings 6 of the shielding member 3 so that one sealing element 1 corresponds to one opening 6.
 また、封止素子1は、開口部6の中央領域に配置する。すなわち、一の封止素子1において、前側に位置する隔壁5と封止素子1の先端縁との間隔(前側間隔)と、後側に位置する隔壁5と封止素子1の後端縁との間隔(後側間隔)とが等しくなるように、封止素子1を配置する。また、同様に、左側間隔と右側間隔とが等しくなるように、封止素子1を配置する。 Further, the sealing element 1 is disposed in the central region of the opening 6. That is, in one sealing element 1, the interval between the partition wall 5 positioned on the front side and the leading edge of the sealing element 1 (front side interval), and the partition wall 5 positioned on the rear side and the rear end edge of the sealing element 1 The sealing element 1 is arranged so that the interval (rear side interval) is equal. Similarly, the sealing element 1 is arranged so that the left interval and the right interval are equal.
 封止素子1の配置は、例えば、コレットなどの搬送治具を用いてピックアップする方法が挙げられる。 The arrangement of the sealing element 1 includes, for example, a method of picking up using a conveying jig such as a collet.
 これにより、透明基材2と、透明基材2の上面に配置される遮蔽部材3と、透明基材2の上面であって開口部6内に設けられる複数の封止素子1とを備える隔壁配置素子集合体15が得られる。 Thereby, the partition provided with the transparent base material 2, the shielding member 3 arrange | positioned on the upper surface of the transparent base material 2, and the some sealing element 1 provided in the opening part 6 on the upper surface of the transparent base material 2. A placement element assembly 15 is obtained.
 すなわち、透明基材2と、その上面に、面方向(前後方向および左右方向)において互いに間隔を隔てて配置されている複数の封止素子1とを備える素子集合体16が得られる。また、その素子集合体16の透明基材2の上面には、一の封止素子1と、その一の封止素子1と前後方向または左右方向に隣接配置される他の封止素子1との間に、隔壁5が配置されるように、遮蔽部材3が配置されている。 That is, an element assembly 16 including the transparent base material 2 and a plurality of sealing elements 1 arranged on the upper surface of the transparent base material 2 at intervals in the surface direction (front-rear direction and left-right direction) is obtained. Further, on the upper surface of the transparent substrate 2 of the element assembly 16, there is one sealing element 1, and the other sealing element 1 disposed adjacent to the one sealing element 1 in the front-rear direction or the left-right direction. Between them, the shielding member 3 is arranged so that the partition wall 5 is arranged.
 封止素子1と隔壁5との間隔D(前側間隔、後側間隔、左側間隔、右側間隔)は、それぞれ、例えば、10μm以上、好ましくは、100μm以上であり、また、例えば、5mm以下、好ましくは、1mm以下である。間隔Dを上記上限以下とすることにより、隔壁5や封止素子1以外の隙間面積を減少させて、単位面積当たりの封止素子1の配置数を増加させることができる。一方、上記間隔Dを上記下限以上とすることにより、封止素子1と隔壁5との位置精度を良好にすることができる。 An interval D (front interval, rear interval, left interval, right interval) between the sealing element 1 and the partition wall 5 is, for example, 10 μm or more, preferably 100 μm or more, and, for example, 5 mm or less, preferably Is 1 mm or less. By setting the distance D to be equal to or less than the above upper limit, the gap area other than the partition wall 5 and the sealing element 1 can be reduced, and the number of sealing elements 1 arranged per unit area can be increased. On the other hand, when the distance D is equal to or more than the lower limit, the positional accuracy between the sealing element 1 and the partition wall 5 can be improved.
 隣接する封止素子1同士の距離(前後方向距離または左右方向距離)は、それぞれ、例えば、30μm以上、好ましくは、250μm以上であり、また、例えば、15mm以下、好ましくは、3mm以下である。 The distance between adjacent sealing elements 1 (front-rear direction distance or left-right direction distance) is, for example, 30 μm or more, preferably 250 μm or more, and for example, 15 mm or less, preferably 3 mm or less.
 発光工程では、封止素子1を個別に発光させるとともに、検知工程では、個別に発光される光を検知する。すなわち、発光工程と検知工程とを同時に実施する。 In the light emission process, the sealing element 1 is caused to emit light individually, and in the detection process, light emitted individually is detected. That is, the light emission process and the detection process are performed simultaneously.
 発光工程および検知工程では、図2Dに示すように、まず、検査装置20内部の検査領域に、隔壁配置素子集合体15をセットする。すなわち、検査装置20内部に、素子集合体16およびその上面に配置される遮蔽部材3をセットする。詳しくは、検査装置20には、隔壁配置素子集合体15を発光部21(後述)と検知部22(後述)との上下方向途中の検査領域に固定する固定機構(図示せず)が設けられており、隔壁配置素子集合体15は、固定機構によって固定される。 In the light emission process and the detection process, as shown in FIG. 2D, first, the partition arrangement element assembly 15 is set in the inspection region inside the inspection apparatus 20. That is, the element assembly 16 and the shielding member 3 disposed on the upper surface thereof are set in the inspection apparatus 20. Specifically, the inspection device 20 is provided with a fixing mechanism (not shown) that fixes the partition arrangement element assembly 15 to an inspection region in the middle of the light emitting unit 21 (described later) and the detection unit 22 (described later). The partition arrangement element assembly 15 is fixed by a fixing mechanism.
 検査装置20は、発光部21と検知部22とを備えている。 The inspection apparatus 20 includes a light emitting unit 21 and a detection unit 22.
 発光部21は、テストヘッド23と検査プローブ24とを備えている。 The light emitting unit 21 includes a test head 23 and an inspection probe 24.
 テストヘッド23は、検査プローブ24を介して、発光検査に必要な電圧や信号電流を封止素子1に供給する。 The test head 23 supplies a voltage and a signal current necessary for the light emission inspection to the sealing element 1 through the inspection probe 24.
 検査プローブ24は、プローブ治具25と複数(2つ)のプローブ針26とを備えている。 The inspection probe 24 includes a probe jig 25 and a plurality of (two) probe needles 26.
 プローブ治具25は、テストヘッド23の下面に設けられている。プローブ治具25は、プローブ針26を支持し、プローブ針26の角度や位置を調整する。 The probe jig 25 is provided on the lower surface of the test head 23. The probe jig 25 supports the probe needle 26 and adjusts the angle and position of the probe needle 26.
 複数のプローブ針26は、それぞれの先端が封止素子1の電極9に接触可能なように、下方に向かって互いの間隔が狭まるように、プローブ治具25に固定されている。 The plurality of probe needles 26 are fixed to the probe jig 25 so that the distance between the probe needles 26 decreases downward so that the tips of the probe needles 26 can contact the electrode 9 of the sealing element 1.
 また、発光部21には、発光部21を前後方向、左右方向および上下方向にそれぞれ独立に移動可能な発光部移動機構(図示せず)が設けられている。 Further, the light emitting unit 21 is provided with a light emitting unit moving mechanism (not shown) capable of independently moving the light emitting unit 21 in the front-rear direction, the left-right direction, and the up-down direction.
 検知部22は、封止素子1から下側に向かって発光される光を検知する。検知部22は、発光部21と間隔を隔てて、発光部21の下側に対向配置されている。検知部22は、上方に向かって平面視断面積が広がる平面視略円形状に形成されている。 The detection unit 22 detects light emitted from the sealing element 1 toward the lower side. The detection unit 22 is disposed opposite to the lower side of the light emitting unit 21 with a space from the light emitting unit 21. The detection unit 22 is formed in a substantially circular shape in a plan view in which a cross-sectional area in a plan view is increased upward.
 また、検知部22には、検知部22を前後方向、左右方向および上下方向にそれぞれ独立に移動可能な検知部移動機構(図示せず)が設けられている。 The detection unit 22 is provided with a detection unit moving mechanism (not shown) that can move the detection unit 22 independently in the front-rear direction, the left-right direction, and the vertical direction.
 次いで、発光部移動機構により発光部21を前後方向および左右方向に移動させて、一(任意)の封止素子1の上側に配置する。それとともに、検知部移動機構により検知部22を前後方向および左右方向に移動させて、検知部22を上下方向において、一の封止素子を挟んで、発光部21と間隔を隔てて対向配置させる。これにより、検知部22は、上下方向に投影したときにその一の封止素子1を含むように、隔壁配置素子集合体15と間隔を隔てて、隔壁配置素子集合体15の下側に対向配置される。 Next, the light emitting unit 21 is moved in the front-rear direction and the left-right direction by the light emitting unit moving mechanism, and is arranged above one (arbitrary) sealing element 1. At the same time, the detection unit 22 is moved in the front-rear direction and the left-right direction by the detection unit moving mechanism, and the detection unit 22 is arranged to face the light-emitting unit 21 with an interval in the vertical direction with one sealing element interposed therebetween. . Thereby, the detection unit 22 faces the lower side of the partition arrangement element assembly 15 with a space from the partition arrangement element assembly 15 so as to include the one sealing element 1 when projected in the vertical direction. Be placed.
 その後、図2Eに示すように、発光部移動機構により、発光部21を上下方向に移動させて、複数のプローブ針26を一の封止素子1の電極9のそれぞれに接触させる。 Thereafter, as shown in FIG. 2E, the light emitting unit 21 is moved in the vertical direction by the light emitting unit moving mechanism, and the plurality of probe needles 26 are brought into contact with each of the electrodes 9 of one sealing element 1.
 これにより、テストヘッド23からの信号電流が、プローブ針26を介して電極9に到達して、封止素子1が発光する。 Thereby, the signal current from the test head 23 reaches the electrode 9 through the probe needle 26, and the sealing element 1 emits light.
 このとき、一の封止素子1から発光された光のうち、隣接する封止素子1へ向かう光は、隔壁5によって隣接する封止素子1へ到達することが遮られる。 At this time, of the light emitted from one sealing element 1, the light traveling toward the adjacent sealing element 1 is blocked by the partition wall 5 from reaching the adjacent sealing element 1.
 そして、検知部22が、封止素子1からの光(白色光)を検知し、その光の特性や性質を測定する。詳しくは、例えば、光の色度CIEを測定する。 And the detection part 22 detects the light (white light) from the sealing element 1, and measures the characteristic and property of the light. Specifically, for example, the chromaticity CIE of light is measured.
 素子集合体16に配置されている全ての封止素子1の発光検査が終了するまで、上記発光工程および上記検知工程を繰り返す。 The light emission process and the detection process are repeated until the light emission inspection of all the sealing elements 1 arranged in the element assembly 16 is completed.
 なお、検知工程終了後、得られた色度に対して、補正工程を実施することができる。 In addition, a correction process can be implemented with respect to the obtained chromaticity after completion | finish of a detection process.
 補正工程では、上記により、得られた封止素子1の色度に対して、補正値を加減する。 In the correction process, the correction value is adjusted with respect to the chromaticity of the sealing element 1 obtained as described above.
 補正値は、例えば、(1)まず、複数の封止素子1に対して、個別に別の検査領域にて移動させて色度(CIE)を検査して、これらの色度の平均値を基準値として算出し、(2)一方、これらの複数の封止素子1を備える素子集合体16に対して、本発明の検査方法(例えば、第1回目の検査)を実施して、これらの色度の平均値を算出し、次いで、(3)(1)の基準値と(2)の平均値との差を計算することにより、決定される。なお、本発明の検査方法の第2回目以降(すなわち、第1回目とは別の素子集合体16)の検査に対しても、この第1回目の検査方法で得た補正値を使用することができる。 The correction value is, for example, (1) First, the plurality of sealing elements 1 are individually moved in different inspection areas, and the chromaticity (CIE) is inspected, and an average value of these chromaticities is obtained. (2) On the other hand, the inspection method of the present invention (for example, the first inspection) is performed on the element assembly 16 including the plurality of sealing elements 1, The average value of chromaticity is calculated, and then determined by calculating the difference between the reference value of (3) (1) and the average value of (2). The correction value obtained by the first inspection method should be used for the second and subsequent inspections of the inspection method of the present invention (that is, the element assembly 16 different from the first time). Can do.
 これによって、より正確な色度を算出でき、より精度よく発光検査を実施することができる。 This makes it possible to calculate a more accurate chromaticity and to perform a light emission inspection with higher accuracy.
 <作用効果>
 そして、この検査方法は、一の封止素子1にプローブ針26を接触させて、一の封止素子1を発光させる発光工程、および、一の封止素子1からの光を検知する検知工程を備えている。また、発光工程において、一の封止素子1と、隣接配置される他の封止素子1との間に、光透過率が20%以下であって、その高さHが一の封止素子1の高さTよりも高い隔壁5が配置されている。このため、一の封止素子1の発光を精度よく検知することができる。
<Effect>
In this inspection method, the probe needle 26 is brought into contact with one sealing element 1 to cause the one sealing element 1 to emit light, and the detection process detects light from the one sealing element 1. It has. Further, in the light emitting process, the light transmittance is 20% or less between one sealing element 1 and another sealing element 1 disposed adjacent thereto, and the height H is one sealing element. A partition wall 5 higher than a height T of 1 is disposed. For this reason, the light emission of one sealing element 1 can be accurately detected.
 一方、複数の封止素子1を、隔壁5を配置することなく透明基材2の上に整列配置して、その状態で、個別に発光検査を実施すると、想定する色度よりも黄色側に検知されたり、各封止素子1間のばらつきが大きく検知されるという不具合が生じる。この不具合は、検査対象とする封止素子1を発光させた場合に、その光が隣接する封止素子1の蛍光体層8も励起発光させてしまい、その隣接する封止素子1の光も同時に検知してしまうことに起因する。 On the other hand, when a plurality of sealing elements 1 are arranged on the transparent base material 2 without arranging the partition walls 5 and the light emission inspection is performed individually in that state, the yellow side of the assumed chromaticity is displayed. There arises a problem that it is detected or a large variation between the sealing elements 1 is detected. This defect is that when the sealing element 1 to be inspected is caused to emit light, the phosphor layer 8 of the adjacent sealing element 1 is also excited to emit light, and the light of the adjacent sealing element 1 is also emitted. This is due to the simultaneous detection.
 しかし、この検査方法では、発光工程において、一の封止素子1と、隣接配置される他の封止素子1との間に、上記特定の隔壁5を配置するので、一の封止素子1からの光が、他の封止素子1に到達することを抑制することができ、そのため、他の封止素子1からの光を検知することを抑制することができる。その結果、一の封止素子1を精度よく検知することができる。 However, in this inspection method, since the specific partition wall 5 is disposed between one sealing element 1 and another adjacent sealing element 1 in the light emitting step, the one sealing element 1 From the other sealing elements 1 can be suppressed, and therefore detection of light from the other sealing elements 1 can be suppressed. As a result, one sealing element 1 can be detected with high accuracy.
 また、この検査方法では、隔壁5を配置して、一の封止素子1の検査を実施するため、封止素子1を1つずつ、別の検査領域に移動させる必要がなく、検査時間を短縮することができる。さらに、封止素子1同士の距離を広げる必要がなく、省スペースで検査することができる。 Further, in this inspection method, since the partition wall 5 is arranged and the inspection of one sealing element 1 is performed, it is not necessary to move the sealing elements 1 one by one to another inspection region, and the inspection time is reduced. It can be shortened. Furthermore, it is not necessary to increase the distance between the sealing elements 1, and the inspection can be performed in a space-saving manner.
 また、この検査方法では、隔壁5が、一の封止素子1を囲むように配置されている。このため、一の封止素子1に対して他の封止素子1を前後左右のどの方向に配置しても一の封止素子1からの光が、他の封止素子1に到達することをより確実に抑制することができる。 Further, in this inspection method, the partition wall 5 is disposed so as to surround one sealing element 1. For this reason, the light from one sealing element 1 reaches the other sealing element 1 even if the other sealing element 1 is arranged in any direction of front, rear, left and right with respect to one sealing element 1. Can be more reliably suppressed.
 また、この検査方法では、発光工程において、一の封止素子1と他の封止素子1との間の透明基材2の上面に、遮蔽部材3を配置する。このため、精密な治具や操作を要せず、簡便に封止素子1を検知することができる。 In this inspection method, the shielding member 3 is disposed on the upper surface of the transparent substrate 2 between one sealing element 1 and another sealing element 1 in the light emitting process. For this reason, the sealing element 1 can be easily detected without requiring a precise jig or operation.
  <第2実施形態>
 図3A-図3Dを参照して、本発明における封止素子1を検査する方法の第2実施形態について説明する。なお、以降の各図において、上記と同様の部材には同一の符号を付し、その説明を省略する。
Second Embodiment
A second embodiment of the method for inspecting the sealing element 1 according to the present invention will be described with reference to FIGS. 3A to 3D. In addition, in each subsequent figure, the same code | symbol is attached | subjected to the member similar to the above, and the description is abbreviate | omitted.
 封止素子1の検査方法の第2実施形態は、基材用意工程、素子配置工程、発光工程、検知工程を備える。 2nd Embodiment of the inspection method of the sealing element 1 is equipped with a base material preparation process, an element arrangement | positioning process, a light emission process, and a detection process.
 基材用意工程は、図3Aに示すように、透明基材2を用意する。具体的には、第2実施形態の基材用意工程は、図2Aで上記した第1実施形態の基材用意工程と同様に実施することができる。 In the substrate preparation step, a transparent substrate 2 is prepared as shown in FIG. 3A. Specifically, the base material preparation process of the second embodiment can be performed in the same manner as the base material preparation process of the first embodiment described above with reference to FIG. 2A.
 素子配置工程では、図3Bに示すように、複数の封止素子1を用意し、複数の封止素子1を透明基材2の上に配置する。 In the element arrangement step, as shown in FIG. 3B, a plurality of sealing elements 1 are prepared, and the plurality of sealing elements 1 are arranged on the transparent substrate 2.
 具体的には、第2実施形態の素子配置工程は、図2Cで上記した第1実施形態の素子配置工程と同様に実施することができる。 Specifically, the element placement step of the second embodiment can be performed in the same manner as the element placement step of the first embodiment described above with reference to FIG. 2C.
 なお、第2実施形態では、素子配置工程の前に、隔壁配置工程を実施しない。これにより、透明基材2と、透明基材2の上面に配置される複数の封止素子1とを備える素子集合体16が得られる。 In the second embodiment, the partition arrangement step is not performed before the element arrangement step. Thereby, the element aggregate | assembly 16 provided with the transparent base material 2 and the some sealing element 1 arrange | positioned on the upper surface of the transparent base material 2 is obtained.
 発光工程では、封止素子1を個別に発光させる。 In the light emitting process, the sealing element 1 is caused to emit light individually.
 発光工程では、まず、検査装置20内部の検査領域に、素子集合体16に移動させる。 In the light emission process, first, the element assembly 16 is moved to the inspection area inside the inspection apparatus 20.
 発光部21は、テストヘッド23と検査プローブ24とを備え、検査プローブ24は、プローブ治具25と、複数のプローブ針26と、隔壁5とを備えている。 The light emitting unit 21 includes a test head 23 and an inspection probe 24, and the inspection probe 24 includes a probe jig 25, a plurality of probe needles 26, and a partition wall 5.
 隔壁5は、プローブ治具25の下面に設けられている。隔壁5は、1つの封止素子1の周囲を囲むことが可能なように、平面視略枠形状(円環状、矩形枠状など)に形成されている。隔壁5の高さHは、例えば、封止素子1の高さTよりも高い。具体的には、隔壁5の高さHは、封止素子1の高さHに対して、1.0倍を超過し、好ましくは、1.2倍以上であり、また、例えば、10倍以下である。より具体的には、高さHは、例えば、100μm以上、好ましくは、400μm以上であり、また、例えば、10mm以下、好ましくは、5mm以下である。高さHを上記下限以上とすることにより、プローブ針26を端子に接触させた場合に、隔壁5の下端を透明基材2の上面に接触させることができ、封止素子1の光が、隣接する他の封止素子1に到達することを確実に抑制することができる。一方、高さHを上記上限以下とすることにより、プローブ針26を電極9に確実に接触させることができる。 The partition wall 5 is provided on the lower surface of the probe jig 25. The partition wall 5 is formed in a substantially frame shape (annular shape, rectangular frame shape, etc.) in plan view so as to be able to surround the periphery of one sealing element 1. The height H of the partition wall 5 is higher than the height T of the sealing element 1, for example. Specifically, the height H of the partition wall 5 exceeds 1.0 times, preferably 1.2 times or more, and for example 10 times the height H of the sealing element 1. It is as follows. More specifically, the height H is, for example, 100 μm or more, preferably 400 μm or more, and for example, 10 mm or less, preferably 5 mm or less. By making the height H equal to or higher than the lower limit, when the probe needle 26 is brought into contact with the terminal, the lower end of the partition wall 5 can be brought into contact with the upper surface of the transparent substrate 2, and the light of the sealing element 1 is Reaching another adjacent sealing element 1 can be reliably suppressed. On the other hand, by setting the height H to the upper limit or less, the probe needle 26 can be reliably brought into contact with the electrode 9.
 続いて、検査プローブ24を封止素子1に接触させる。 Subsequently, the inspection probe 24 is brought into contact with the sealing element 1.
 具体的には、発光部移動機構により、検査プローブ24を前後方向、左右方向および上下方向に移動させて、複数のプローブ針26を一の封止素子1の電極9のそれぞれに接触させる。 Specifically, the inspection probe 24 is moved in the front-rear direction, the left-right direction, and the up-down direction by the light emitting unit moving mechanism, and the plurality of probe needles 26 are brought into contact with each of the electrodes 9 of one sealing element 1.
 これにより、テストヘッド23からの信号電流がプローブ針26を介して電極9に到達して、封止素子1が発光する。 Thereby, the signal current from the test head 23 reaches the electrode 9 through the probe needle 26, and the sealing element 1 emits light.
 このとき、隔壁5の下端を透明基材2の上面に接触させる。これにより、封止素子1の光が、隣接する他の封止素子1に到達することを確実に抑制することができる。 At this time, the lower end of the partition wall 5 is brought into contact with the upper surface of the transparent substrate 2. Thereby, it can suppress reliably that the light of the sealing element 1 arrives at the other adjacent sealing element 1.
 検知工程では、一の封止素子1からの光を検知する。 In the detection process, light from one sealing element 1 is detected.
 具体的には、第2実施形態の検知工程は、図2Dで上記した第1実施形態の検知工程と同様に実施する。 Specifically, the detection process of the second embodiment is performed in the same manner as the detection process of the first embodiment described above with reference to FIG. 2D.
 これにより、検知部22が、封止素子1からの光(白色光)を捕捉し、その光の特性や性質を測定する。 Thereby, the detection unit 22 captures the light (white light) from the sealing element 1 and measures the characteristics and properties of the light.
 素子集合体16に配置されている全ての封止素子1の発光検査が終了するまで、上記発光工程および上記検知工程を繰り返す。 The light emission process and the detection process are repeated until the light emission inspection of all the sealing elements 1 arranged in the element assembly 16 is completed.
 また、検知工程後、第1実施形態と同様にして、補正工程を実施することもできる。 Further, after the detection process, the correction process can be performed in the same manner as in the first embodiment.
 そして、第2実施形態の検査方法においても、第1実施形態と同様の作用効果を奏する。特に、第2実施形態の検査方法では、検査プローブ24が、隔壁5を備える。このため隔壁配置工程を省略できる。その結果、複数の封止素子1をより迅速に検知することができる。 And also in the test | inspection method of 2nd Embodiment, there exists an effect similar to 1st Embodiment. In particular, in the inspection method of the second embodiment, the inspection probe 24 includes the partition wall 5. For this reason, the partition arrangement step can be omitted. As a result, the plurality of sealing elements 1 can be detected more quickly.
 <変形例>
 第1実施形態では、透明基材2の上面に、遮蔽部材3を配置し、続いて、複数の封止素子1を配置しているが、例えば、透明基材2の上面に、複数の封止素子1を配置し、続いて、遮蔽部材3を配置することもできる。すなわち、先に、素子集合体16を作製し、続いて、その素子集合体16の上面に、遮蔽部材3を配置することができる。
<Modification>
In the first embodiment, the shielding member 3 is disposed on the upper surface of the transparent base material 2, and then the plurality of sealing elements 1 are disposed. For example, a plurality of sealing elements are disposed on the upper surface of the transparent base material 2. It is also possible to arrange the stop element 1 and subsequently arrange the shielding member 3. That is, the element assembly 16 can be prepared first, and then the shielding member 3 can be disposed on the upper surface of the element assembly 16.
 第1実施形態および第2実施形態の発光および検知工程では、発光部21の移動と同時に検知部22を移動しているが、例えば、まず、発光部21を移動させ、一の封止素子1を発光させた状態にして、続いて、検知部22を移動させることもできる。 In the light emission and detection process of the first embodiment and the second embodiment, the detection unit 22 is moved simultaneously with the movement of the light emission unit 21. For example, first, the light emission unit 21 is moved, and one sealing element 1 is moved. Then, the detector 22 can be moved in a state where the light is emitted.
 第1実施形態および第2実施形態では、発光工程および検知工程において、発光部21および検知部22を前後左右方向に移動させて、素子集合体16の上方または下方に配置させているが、例えば、素子集合体16を前後左右方向に移動させて、発光部21および検知部22の上下方向中間に配置させることもできる。 In the first embodiment and the second embodiment, in the light emitting step and the detecting step, the light emitting unit 21 and the detecting unit 22 are moved in the front / rear and left / right directions and arranged above or below the element assembly 16. The element assembly 16 can also be moved in the front-rear and left-right directions and disposed in the middle of the light emitting unit 21 and the detection unit 22 in the vertical direction.
 第1実施形態および第2実施形態では、透明基材2は、平面視略矩形状であるが、例えば、図示しないが、平面視略円形状とすることもできる。また、遮蔽部材3や支持部材19の外形は、平面視略矩形状であるが、例えば、図示しないが、平面視略円形状とすることもできる。 In the first embodiment and the second embodiment, the transparent substrate 2 has a substantially rectangular shape in a plan view, but may be a substantially circular shape in a plan view, for example, although not shown. Moreover, although the external shape of the shielding member 3 and the support member 19 is a substantially rectangular shape in plan view, for example, although not illustrated, it may be a substantially circular shape in plan view.
 また、第1実施形態では、図1Aに示すように、開口部6の形状は、平面視略矩形状であるが、例えば、図示しないが、平面視略円形状とすることもできる。 Further, in the first embodiment, as shown in FIG. 1A, the shape of the opening 6 is a substantially rectangular shape in a plan view, but may be a substantially circular shape in a plan view, for example, although not shown.
 また、第1実施形態および第2実施形態では、封止素子1は、前後方向および左右方向に複数列となるように整列配置されているが、列の数は限定されず、例えば、封止素子1は、前後方向または左右方向のいずれかの方向において、1列で整列配置することもできる。 Further, in the first embodiment and the second embodiment, the sealing elements 1 are aligned and arranged in a plurality of rows in the front-rear direction and the left-right direction, but the number of rows is not limited. The elements 1 can also be arranged in a line in either the front-rear direction or the left-right direction.
 第1実施形態および第2実施形態では、支持部材19を透明基材2の周端縁に配置しているが、支持部材19を配置しなくてもよい。支持部材19を配置しない場合は、好ましくは、透明基材2として、硬質の透明基材2を用いる。  In the first embodiment and the second embodiment, the support member 19 is disposed on the peripheral edge of the transparent substrate 2, but the support member 19 may not be disposed. In the case where the support member 19 is not disposed, the hard transparent substrate 2 is preferably used as the transparent substrate 2. *
 また、図1Bの封止素子1は、電極9は、電極面12から突出しているが、例えば、図4Aに示すように、電極9は、電極面12から突出しないようにすることもできる。すなわち、電極面12は、平坦な平面とすることができる。 Further, in the sealing element 1 of FIG. 1B, the electrode 9 protrudes from the electrode surface 12, but the electrode 9 may not protrude from the electrode surface 12 as shown in FIG. 4A, for example. That is, the electrode surface 12 can be a flat plane.
 また、図1Bの封止素子は、リフレクタ30を備えていないが、例えば、図4Bに示すように、封止素子1は、リフレクタ30を備えることもできる。図4Bの封止素子1は、光半導体素子7の側面と接触し、側面を囲むようにリフレクタ30を備え、リフレクタ30および光半導体素子7の下面に蛍光体層8を備えている。 Further, the sealing element of FIG. 1B does not include the reflector 30, but the sealing element 1 may include the reflector 30 as shown in FIG. 4B, for example. The sealing element 1 in FIG. 4B includes a reflector 30 so as to be in contact with and surround the side surface of the optical semiconductor element 7, and includes a phosphor layer 8 on the lower surface of the reflector 30 and the optical semiconductor element 7.
 以下に実施例および比較例を示し、本発明をさらに具体的に説明するが、本発明は、何ら実施例および比較例に限定されない。以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the examples and comparative examples. Specific numerical values such as blending ratio (content ratio), physical property values, and parameters used in the following description are described in the above-mentioned “Mode for Carrying Out the Invention”, and the corresponding blending ratio (content ratio) ), Physical property values, parameters, etc. The upper limit value (numerical value defined as “less than” or “less than”) or lower limit value (number defined as “greater than” or “exceeded”) may be substituted. it can.
 <遮蔽部材の作製>
 シリコーン樹脂組成物(LR7665、旭ワッカー社製、付加反応硬化型)95質量部およびカーボンブラック5質量部を混合して、色素組成物(色素濃度5wt%)を調製した。色素組成物を、アプリケータに塗布して、100℃で10分間乾燥させることにより、厚み(高さH)480μmの遮蔽シートを得た。
<Production of shielding member>
95 parts by mass of a silicone resin composition (LR7665, manufactured by Asahi Wacker Co., Ltd., addition reaction curable type) and 5 parts by mass of carbon black were mixed to prepare a dye composition (dye concentration of 5 wt%). The dye composition was applied to an applicator and dried at 100 ° C. for 10 minutes to obtain a shielding sheet having a thickness (height H) of 480 μm.
 カッティングマシンを用いて、遮蔽シートに平面視正方形(2.04mm×2.04mm)の開口部を25個(5列×5列)に等間隔に形成して、遮蔽部材を作製した。このとき、枠部の幅W1は、5mm、隔壁の幅W2は、50μmとした。 遮蔽 Using a cutting machine, 25 square (2.04 mm x 2.04 mm) openings in a plan view were formed in the shielding sheet at regular intervals (5 rows x 5 rows) to produce a shielding member. At this time, the width W1 of the frame portion was 5 mm, and the width W2 of the partition wall was 50 μm.
 なお、遮蔽シートを50μm厚みに成形したときの厚み方向の光透過率は、1%以下であった。光透過率は、分光光度計(日本分光社製、「紫外可視近赤外分光光度計V670」)を用いて、波長領域300~850nm、走査速度1000nm/minの条件にて測定した。 The light transmittance in the thickness direction when the shielding sheet was formed to a thickness of 50 μm was 1% or less. The light transmittance was measured using a spectrophotometer (manufactured by JASCO Corporation, “UV-visible-near infrared spectrophotometer V670”) under the conditions of a wavelength region of 300 to 850 nm and a scanning speed of 1000 nm / min.
 <封止素子の用意>
 光半導体素子として、Epistar社製のLEDチップ(1.14mm×1.14mm×高さ150μm)を用いた。この光半導体素子の発光側の面および側面を蛍光体含有シリコーン樹脂で封止することにより、封止素子(1.64mm×1.64mm×高さT400μm)を25個作製した(図1B参照)。
<Preparation of sealing element>
As the optical semiconductor element, an LED chip manufactured by Epistar (1.14 mm × 1.14 mm × height 150 μm) was used. Twenty-five sealing elements (1.64 mm × 1.64 mm × height T400 μm) were produced by sealing the light emitting side surface and side surfaces of this optical semiconductor element with a phosphor-containing silicone resin (see FIG. 1B). .
 なお、この封止素子を、個別に、配列テープ(後述)に固定して半導体試験装置(後述)で光学検査を実施した。その結果、25個の封止素子において、色度(CIE,y)が0.399~0.409であり、平均値は0.404、レンジは0.010であることを確認した。 In addition, this sealing element was individually fixed to an array tape (described later), and an optical inspection was performed using a semiconductor test apparatus (described later). As a result, it was confirmed that the chromaticity (CIE, y) in the 25 sealing elements was 0.399 to 0.409, the average value was 0.404, and the range was 0.010.
 <検査方法>
 透明基材として、上面に粘着層が積層した配列テープ(厚み78μm、「SPV」、日東電工社製)を用いた。透明基材の上面の周端部に平面視矩形枠形状のリング(支持部材19に相当)を固定し、配列テープを補強した(図2A参照)。
<Inspection method>
As the transparent substrate, an array tape (thickness 78 μm, “SPV”, manufactured by Nitto Denko Corporation) having an adhesive layer laminated on the upper surface was used. A ring (corresponding to the support member 19) having a rectangular frame shape in plan view was fixed to the peripheral end portion of the upper surface of the transparent substrate, and the array tape was reinforced (see FIG. 2A).
 次いで、透明基材の上面に遮蔽部材を配置した(図2B参照)。 Next, a shielding member was disposed on the upper surface of the transparent substrate (see FIG. 2B).
 次いで、25個の開口部のそれぞれに、上記で用意した封止素子を配置することにより、素子集合体の上に遮蔽部材が配置された隔壁配置素子集合体を得た(図2C、図1A、図1B参照)。 Next, the sealing element prepared above was arranged in each of the 25 openings to obtain a partition arrangement element assembly in which a shielding member was arranged on the element assembly (FIGS. 2C and 1A). FIG. 1B).
 次いで、半導体試験装置(チッププローバ(テーププローバ)、「WPF」、オプトシステム社製)の検査領域に、隔壁配置素子集合体をセットした(図2D参照)。続いて、各封止素子に対して、発光部の検査プローブおよび検知部を移動させることにより、封止素子を発光させて、その白色光を検知し、その光の色度(CIE、y)を測定した(図2E参照)。 Next, a partition arrangement element assembly was set in an inspection region of a semiconductor test apparatus (chip prober (tape prober), “WPF”, manufactured by Optsystem Co., Ltd.) (see FIG. 2D). Subsequently, by moving the inspection probe and the detection unit of the light emitting unit with respect to each sealing element, the sealing element is caused to emit light, and the white light is detected, and the chromaticity of the light (CIE, y) Was measured (see FIG. 2E).
 実施例2
 遮蔽シートの厚み、すなわち、遮蔽部材(枠部および隔壁)の高さHを800μmにした以外は、実施例1と同様にして、封止素子の色度を測定した。
Example 2
The chromaticity of the sealing element was measured in the same manner as in Example 1 except that the thickness of the shielding sheet, that is, the height H of the shielding member (frame portion and partition wall) was 800 μm.
 実施例3
 遮蔽部材の高さHを1000μmにした以外は、実施例1と同様にして、封止素子の色度を測定した。
Example 3
The chromaticity of the sealing element was measured in the same manner as in Example 1 except that the height H of the shielding member was 1000 μm.
 実施例4
 隔壁の幅W2を200μmにした以外は、実施例1と同様にして、封止素子の色度を測定した。なお、遮蔽シートの200μm厚みの光透過率は、1%以下であった。
Example 4
The chromaticity of the sealing element was measured in the same manner as in Example 1 except that the partition wall width W2 was set to 200 μm. The light transmittance of the shielding sheet having a thickness of 200 μm was 1% or less.
 実施例5
 隔壁の幅W2を2mmにした以外は、実施例1と同様にして、封止素子の色度を測定した。なお、遮蔽シートの2mm厚みの光透過率は、1%以下であった。
Example 5
The chromaticity of the sealing element was measured in the same manner as in Example 1 except that the partition wall width W2 was set to 2 mm. In addition, the light transmittance of 2 mm thickness of the shielding sheet was 1% or less.
 実施例6
 隔壁の幅W2を5mmにした以外は、実施例1と同様にして、封止素子の色度を測定した。なお、遮蔽シートの5mm厚みの光透過率は、1%以下であった。
Example 6
The chromaticity of the sealing element was measured in the same manner as in Example 1 except that the partition wall width W2 was 5 mm. In addition, the light transmittance of 5 mm thickness of the shielding sheet was 1% or less.
 実施例7
 カーボンブラックの配合割合を変更し、色素濃度を0.2wt%とした以外は、実施例1と同様にして、遮蔽シートを得て、遮蔽部材を作製した。遮蔽シートの50μm厚みの光透過率は、17%であった。
Example 7
A shielding sheet was obtained in the same manner as in Example 1 except that the mixing ratio of carbon black was changed and the pigment concentration was changed to 0.2 wt% to produce a shielding member. The light transmittance of the shielding sheet having a thickness of 50 μm was 17%.
 この遮蔽部材を用いた以外は、実施例1と同様にして、封止素子の色度を測定した。 The chromaticity of the sealing element was measured in the same manner as in Example 1 except that this shielding member was used.
 比較例1
 遮蔽部材を用いず、かつ、各封止素子の間の距離(前後方向距離および左右方向距離)を200μmにした以外は、実施例1と同様にして、封止素子の色度を測定した。
Comparative Example 1
The chromaticity of the sealing element was measured in the same manner as in Example 1 except that the shielding member was not used and the distance between the sealing elements (front-rear direction distance and left-right direction distance) was 200 μm.
 比較例2
 遮蔽部材の高さHを400μmにした以外は、実施例1と同様にして、封止素子の色度を測定した。
Comparative Example 2
The chromaticity of the sealing element was measured in the same manner as in Example 1 except that the height H of the shielding member was 400 μm.
 比較例3
 遮蔽部材の高さHを320μmにした以外は、実施例1と同様にして、封止素子の色度を測定した。
Comparative Example 3
The chromaticity of the sealing element was measured in the same manner as in Example 1 except that the height H of the shielding member was 320 μm.
 比較例4
 カーボンブラックの配合割合を変更し、色素濃度を0.1wt%とした以外は、実施例1と同様にして、遮蔽シートを得て、遮蔽部材を作製した。遮蔽シートの50μm厚みの光透過率は、23%であった。
Comparative Example 4
A shielding sheet was obtained in the same manner as in Example 1 except that the blending ratio of carbon black was changed and the pigment concentration was changed to 0.1 wt% to produce a shielding member. The light transmittance of 50 μm thickness of the shielding sheet was 23%.
 この遮蔽部材を用いた以外は、実施例1と同様にして、封止素子の色度を測定した。 The chromaticity of the sealing element was measured in the same manner as in Example 1 except that this shielding member was used.
 <色度の評価>
 実施例1~7および比較例1~4の色度の測定において、中央(3行目×3列目)に配置された封止素子の色度(CIE、y)、外側に配置された16個の封止素子の色度の平均、および、これらの差Rを表1に示す。
<Evaluation of chromaticity>
In the measurement of the chromaticity of Examples 1 to 7 and Comparative Examples 1 to 4, the chromaticity (CIE, y) of the sealing element disposed at the center (third row × third column), 16 disposed outside. Table 1 shows the average chromaticity of the individual sealing elements and the difference R between them.
 また、実施例1~7では、上記結果に対して、補正を実施した。具体的には、まず、<封止素子の用意>で上記したように、個別に測定した25個の封止素子のCIE、y値の平均値は、0.404であったため、この値を基準値とした。また、実施例1では、25個の封止素子のCIE、y値は、0.389~0.396であり、平均値は、0.394であった。よって、これらの差から、補正値を+0.010とした。次いで、この補正値を、実施例1~7の補正前のCIE,y値に加算した。この結果を表1に示す。 In Examples 1 to 7, the above results were corrected. Specifically, first, as described above in <Preparation of sealing element>, the average value of the CIE and y values of 25 sealing elements measured individually was 0.404. The reference value was used. In Example 1, the CIE and y values of 25 sealing elements were 0.389 to 0.396, and the average value was 0.394. Therefore, the correction value is set to +0.010 from these differences. Next, this correction value was added to the CIE, y value before correction in Examples 1 to 7. The results are shown in Table 1.
 なお、比較例では、中央の封止素子と最外周の封止素子との差が0.020以上であり、隣接する封止素子の発光の影響を受けていることが明らかであり、補正は意味をなさないため、補正は実施しなかった。 In the comparative example, it is clear that the difference between the sealing element at the center and the sealing element at the outermost periphery is 0.020 or more, which is influenced by the light emission of the adjacent sealing element. No correction was made because it does not make sense.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be interpreted in a limited manner. Variations of the present invention that are apparent to one of ordinary skill in the art are within the scope of the following claims.
 本発明の蛍光体層付光半導体素子の検査方法は、例えば、白色光半導体装置の検査などの光学用途などに用いることができる。 The method for inspecting an optical semiconductor element with a phosphor layer of the present invention can be used for optical applications such as inspection of a white light semiconductor device, for example.
1 封止素子
2 透明基材
5 隔壁
7 光半導体素子
8 蛍光体層
16 素子集合体
24 検査プローブ
DESCRIPTION OF SYMBOLS 1 Sealing element 2 Transparent base material 5 Partition 7 Optical semiconductor element 8 Phosphor layer 16 Element assembly 24 Inspection probe

Claims (5)

  1.  光半導体素子および蛍光体層を備える蛍光体層付光半導体素子を検査する方法であって、
     前記蛍光体層付光半導体素子が面方向において互いに間隔を隔てて複数配置されている素子集合体において、一の蛍光体層付光半導体素子に検査プローブを接触させて、前記一の蛍光体層付光半導体素子を発光させる発光工程、および、
     前記一の蛍光体層付光半導体素子からの光を検知する検知工程
    を備え、
     前記発光工程において、前記一の蛍光体層付光半導体素子と、前記一の蛍光体層付光半導体素子と面方向に隣接配置される他の蛍光体層付光半導体素子との間に、隔壁が配置され、
     前記隔壁の光透過率が、20%以下であり、
     前記隔壁の前記面方向と直交する直交方向長さが、前記一の蛍光体層付光半導体素子の直交方向長さよりも長いことを特徴とする、蛍光体層付光半導体素子の検査方法。
    A method for inspecting an optical semiconductor element with a phosphor layer comprising an optical semiconductor element and a phosphor layer,
    In the element assembly in which a plurality of the optical semiconductor elements with phosphor layers are arranged at intervals in the plane direction, an inspection probe is brought into contact with one optical semiconductor element with phosphor layers, and the one phosphor layer A light emitting step of emitting light from the attached semiconductor element; and
    A detection step of detecting light from the optical semiconductor element with one phosphor layer;
    In the light emitting step, a partition wall is provided between the one optical semiconductor element with a phosphor layer and another optical semiconductor element with a phosphor layer arranged adjacent to the one optical semiconductor element with the phosphor layer in a plane direction. Is placed,
    The light transmittance of the partition wall is 20% or less,
    The inspection method of an optical semiconductor element with a phosphor layer, wherein an orthogonal direction length orthogonal to the surface direction of the partition wall is longer than an orthogonal direction length of the one optical semiconductor element with a phosphor layer.
  2.  前記隔壁の前記直交方向長さが、前記一の蛍光体層付光半導体素子の前記直交方向長さの1.2倍以上であることを特徴とする、請求項1に記載の蛍光体層付光半導体素子の検査方法。 2. The phosphor layer-attached device according to claim 1, wherein the perpendicular length of the partition wall is 1.2 times or more of the orthogonal direction length of the one optical semiconductor element with the phosphor layer. 3. Inspection method for optical semiconductor elements.
  3.  前記隔壁が、前記一の蛍光体層付光半導体素子を囲むように配置されていることを特徴とする、請求項1に記載の蛍光体層付光半導体素子の検査方法。 2. The inspection method for an optical semiconductor element with a phosphor layer according to claim 1, wherein the partition wall is disposed so as to surround the one optical semiconductor element with a phosphor layer.
  4.  前記素子集合体は、前記蛍光体層付光半導体素子を配置する基材を備え、
     前記発光工程において、前記一の蛍光体層付光半導体素子と前記他の蛍光体層付光半導体素子との間の前記基材の厚み方向一方面に、前記隔壁を配置することを特徴とする、請求項1に記載の蛍光体層付光半導体素子の検査方法。
    The element assembly includes a base material on which the phosphor layer-attached optical semiconductor element is disposed,
    In the light emitting step, the partition is disposed on one surface in the thickness direction of the base material between the one optical semiconductor element with a phosphor layer and the other optical semiconductor element with a phosphor layer. The inspection method of the optical semiconductor element with a fluorescent substance layer of Claim 1.
  5.  前記検査プローブが、前記隔壁を備えることを特徴とする、請求項1に記載の蛍光体層付光半導体素子の検査方法。 The inspection method for an optical semiconductor element with a phosphor layer according to claim 1, wherein the inspection probe includes the partition wall.
PCT/JP2016/085779 2015-12-24 2016-12-01 Method for inspecting phosphor layer-attached optical semiconductor element WO2017110409A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015251143A JP2017116372A (en) 2015-12-24 2015-12-24 Method for inspecting optical semiconductor element having phosphor layer
JP2015-251143 2015-12-24

Publications (1)

Publication Number Publication Date
WO2017110409A1 true WO2017110409A1 (en) 2017-06-29

Family

ID=59090069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085779 WO2017110409A1 (en) 2015-12-24 2016-12-01 Method for inspecting phosphor layer-attached optical semiconductor element

Country Status (2)

Country Link
JP (1) JP2017116372A (en)
WO (1) WO2017110409A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7346259B2 (en) * 2019-11-18 2023-09-19 株式会社日本マイクロニクス measurement system
JP7472611B2 (en) 2020-04-03 2024-04-23 大日本印刷株式会社 Mesh member for image display device, substrate for image display device, and image display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013547A (en) * 2010-06-30 2012-01-19 Panasonic Corp Entire light quantity measuring system, entire light quantity measuring device, and entire light quantity measuring method
WO2012073357A1 (en) * 2010-12-01 2012-06-07 パイオニア株式会社 Light-receiving module for semiconductor light-emitting element and inspection device for semiconductor light-emitting element
JP2013096909A (en) * 2011-11-02 2013-05-20 Micronics Japan Co Ltd Probe card and inspection apparatus
WO2015036887A1 (en) * 2013-09-13 2015-03-19 Koninklijke Philips N.V. Frame based package for flip-chip led
JP2015125003A (en) * 2013-12-25 2015-07-06 株式会社アイテックシステム Luminaire
JP2016130715A (en) * 2015-01-15 2016-07-21 パイオニア株式会社 Measuring apparatus and control method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013547A (en) * 2010-06-30 2012-01-19 Panasonic Corp Entire light quantity measuring system, entire light quantity measuring device, and entire light quantity measuring method
WO2012073357A1 (en) * 2010-12-01 2012-06-07 パイオニア株式会社 Light-receiving module for semiconductor light-emitting element and inspection device for semiconductor light-emitting element
JP2013096909A (en) * 2011-11-02 2013-05-20 Micronics Japan Co Ltd Probe card and inspection apparatus
WO2015036887A1 (en) * 2013-09-13 2015-03-19 Koninklijke Philips N.V. Frame based package for flip-chip led
JP2015125003A (en) * 2013-12-25 2015-07-06 株式会社アイテックシステム Luminaire
JP2016130715A (en) * 2015-01-15 2016-07-21 パイオニア株式会社 Measuring apparatus and control method

Also Published As

Publication number Publication date
JP2017116372A (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP5840377B2 (en) Reflective resin sheet and method for manufacturing light-emitting diode device
US9219015B2 (en) Phosphor layer-covered optical semiconductor element, producing method thereof, optical semiconductor device, and producing method thereof
JP6519311B2 (en) Light emitting device
KR101515282B1 (en) Semiconductor light emitting device and method for manufacturing the same
JP5670249B2 (en) Light emitting element transfer sheet manufacturing method, light emitting device manufacturing method, light emitting element transfer sheet, and light emitting device
CN109690181B (en) Sheet for covering optical semiconductor element
KR101932982B1 (en) Fluorescent-material-containing resin sheet and light-emitting device
SG189315A1 (en) Resin sheet laminated body, method for producing same, and method for producing led chip with phosphor-containing resin sheet using same
KR20140022019A (en) Light emitting device and method for manufacturing same
KR20170123644A (en) Light source assembly with improved color uniformity
JP6421952B2 (en) Light-emitting diode color conversion substrate and method for manufacturing the same
CN103531697A (en) Encapsulating layer-covered semiconductor element, producing method thereof, and semiconductor device
WO2017110409A1 (en) Method for inspecting phosphor layer-attached optical semiconductor element
KR20160101911A (en) Sealing sheet provided with double-sided separator, and method for manufacturing semiconductor device
TW201541671A (en) Wavelength conversion member and method for manufacturing same
JP2016027668A (en) Manufacturing method of light emitting diode device
KR101549406B1 (en) Substrate for color conversion of led and method of fabricating threof
TW201522940A (en) Phosphor-sheet evaluation method and manufacturing method
TW201541670A (en) Wavelength conversion member and method for producing same
US10211377B2 (en) Method for manufacturing light-emitting diode package
KR101589700B1 (en) Method for fabricating Light emitting diode package
KR20180124738A (en) Light emitting device and method for manufacturing the same
TW202024681A (en) Method of manufacturing plate-like member and laminate
WO2017051994A1 (en) Equipment for manufacturing three-dimensional fluorescent layer
JP2015073140A (en) Light-emitting diode device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878302

Country of ref document: EP

Kind code of ref document: A1