WO2017110124A1 - Oil-filled transformer - Google Patents

Oil-filled transformer Download PDF

Info

Publication number
WO2017110124A1
WO2017110124A1 PCT/JP2016/071975 JP2016071975W WO2017110124A1 WO 2017110124 A1 WO2017110124 A1 WO 2017110124A1 JP 2016071975 W JP2016071975 W JP 2016071975W WO 2017110124 A1 WO2017110124 A1 WO 2017110124A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
tank
filled transformer
coils
iron core
Prior art date
Application number
PCT/JP2016/071975
Other languages
French (fr)
Japanese (ja)
Inventor
美稀 山崎
学 土肥
丸山 英介
天兒 洋一
諒介 御子柴
憲一 相馬
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to CN201680046442.7A priority Critical patent/CN107924745B/en
Publication of WO2017110124A1 publication Critical patent/WO2017110124A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling

Definitions

  • the present invention relates to an oil-filled transformer, and more particularly to a heat dissipation structure of the oil-filled transformer.
  • oil-filled electrical equipment for example, a tank of an oil-filled transformer
  • the insulating oil expands when the temperature rises due to the energization heat of the transformer, and the internal pressure of the tank rises. Therefore, the tank needs to have sufficient strength so as not to be deformed.
  • the heat dissipation performance which can suppress the temperature rise of insulating oil with low heat conduction is requested
  • Patent Document 1 Japanese Patent Laid-Open No. 53-35122
  • the upper and lower end portions of the fin-like projecting portion 2 as the heat radiating ribs are narrowed inward to form a closely joined surface joining portion 3.
  • the upper and lower ends of the overhanging portion 2 are welded along the surface joint portion 3 so that the welding line is only uniaxial, while a convex or concave reinforcing bead is formed on the platen of the overhanging portion 2. 4, and the mechanical strength of the overhang portion 2 is increased by the reinforcing bead 4.
  • Patent Document 2 Japanese Utility Model Publication No. 56-67732
  • a concave groove 4 is formed along the tank height direction from the outside toward the inside of the oil passage at an appropriate cylinder on both sides of the heat radiating lip 2 of the wave radiator.
  • JP 53-35122 A Japanese Utility Model Publication No. 56-67732
  • the fin-like overhang portion 2 as the heat radiating rib is formed by the reinforcing bead 4 when the internal pressure becomes high due to the temperature rise of the insulating oil in the tank.
  • the strength of the horizontal direction and the vertical direction is improved.
  • the reinforcement beads 4 are provided on the heat dissipating ribs to improve the strength, the load on the surface joining portion 3 of the heat dissipating ribs is increased, and a more advanced joining method is required, leading to an increase in cost. is there.
  • the present invention achieves desired heat dissipation performance by providing a heat dissipating rib and thinning the insulating oil layer that is a heat insulating wall, rather than heat dissipation by convection of insulating oil, and at the same time, reducing the size of the tank It is an object of the present invention to provide an oil-filled transformer that can achieve both strength and tank strength.
  • An oil-filled transformer in which an iron core-coil assembly in which an iron core and a coil are assembled is housed in a tank and insulating oil is put therein.
  • the iron core-coil assembly includes a plurality of coils respectively attached to a plurality of legs of the iron core, and shafts of the plurality of coils are disposed on a tank surface facing a portion where the plurality of coils are adjacent to each other.
  • a concave portion extending in a direction and recessed toward a portion where the plurality of coils are close to each other is provided, and a distance between the portion where the plurality of coils are close to the tank surface is shortened.
  • the present invention it is possible to achieve a significant reduction in size and weight by reducing the distance for the convection of the insulating oil without providing a heat radiating rib in the tank, and by reducing the insulating oil layer, The heat dissipation from a certain coil can be improved. Further, since the heat radiating rib is not provided, there is no fear that the heat radiating rib is bent due to an increase in the internal pressure of the tank. Furthermore, since there is no surface bonding portion of the heat dissipating rib where stress is concentrated when the pressure is increased, reliability in strength can be secured.
  • Example 1 of the present invention It is a tank part perspective view of Example 1 of the present invention. It is a cross-sectional view of the oil-filled transformer of Example 1 of the present invention. It is a tank part perspective view of Example 2 of the present invention. It is a cross-sectional view of the oil-filled transformer of Example 2 of the present invention. It is a tank part perspective view of Example 3 of the present invention. It is a cross-sectional view of the oil-filled transformer of Example 3 of the present invention. It is a cross-sectional view of the oil-filled transformer of Example 4 of the present invention. It is a perspective view which shows an example of the conventional oil-filled transformer. It is a front view which shows the conventional heat radiating rib attached to a tank.
  • FIG. 10 is a transverse sectional view taken along line A-A ′ of FIG. 9.
  • FIG. 1A and 1B show an oil-filled transformer according to Example 1 of the present invention.
  • FIG. 1A is a perspective view of a tank of an oil-filled transformer
  • FIG. 1B is a top view of a cross section of the oil-filled transformer in which an iron core-coil assembly is housed in the tank.
  • the figure shows a three-phase three-legged oil-filled transformer composed of a U phase 11, a V phase 12, and a W phase 13.
  • the tank 1 includes a flange 1c for attaching a lid, a bottom plate 1d, and a body portion 1e disposed between the bottom plate 1d and the flange 1c.
  • An iron core-coil assembly 8 assembled with a coil and an insulating oil 6 for insulating the core-coil assembly 8 are accommodated.
  • the body portion 1e is formed by pressing a sheet-like book board, for example, a steel plate.
  • a coil 7 having one or more phases is housed in a rectangular parallelepiped tank 1, and an insulating oil 6 is filled around it.
  • the heat-dissipation rib 2 is provided in the outer periphery of the tank 1 at fixed intervals over the perimeter. Since the primary coil portion 7a and the secondary coil portion 7b constituting the coil 7 serve as heat generation sources by energization, the contact portions 11a and 12a of the coils between the U phase 11, V phase 12 and W phase 13 are in the conductor portion. At maximum temperature.
  • the distance 6a between the periphery of the tank or the heat radiating rib is large at the contact portion of the coil between the phases, the heat radiating performance is lowered and the temperature tends to be high. Further, in the oil-filled transformer shown in FIG. 9 that is reduced in size by reducing the distance between the coil 7 and the heat radiating rib 2, the convection of the insulating oil 6 hardly occurs and the heat radiation effect is reduced.
  • the iron core-coil assembly 8 in which the iron core 9 and the coil 7 are assembled has a plurality of phases (U phase 11, V phase 12, A W-phase 13) coil 7 is provided.
  • the recessed part 1a is provided in the surface of the tank which faces the site
  • the recess 1a extends in the axial direction of the coil 7 and is recessed toward a portion where a plurality of phase coils are close to each other.
  • the surface of the tank 1 is formed by a curved surface extending along the outer peripheral surface of the coil 7 so that the insulating oil 6 on the outer peripheral surface of the coil 7 has a substantially constant layer thickness.
  • This makes it possible to reduce the distance 6a from the tank periphery to the required distance 6b in terms of insulation performance while securing the required distance 6b in terms of insulation performance.
  • the heat conduction of the insulating oil is small, for example, 0.12 W / m ⁇ K, but the heat conduction of the metal tank is relatively large, for example, 80 w / m ⁇ K.
  • the heat radiation performance can be improved by reducing the thickness of the insulating oil having a low thermal conductivity and reducing the distance to the tank having a relatively large thermal conductivity.
  • reference numeral 10 denotes a reinforcing plate.
  • the present embodiment it is possible to realize a significant reduction in size and weight by reducing the distance for the convection of the insulating oil without providing a heat radiating rib, and by reducing the thickness of the insulating oil, It is possible to improve the heat dissipation from the coil. Further, since the heat radiating rib is not provided, there is no fear that the heat radiating rib is bent due to an increase in the internal pressure of the tank. Furthermore, since there is no surface bonding portion of the heat dissipating rib where stress is concentrated when the pressure is increased, reliability in strength can be ensured.
  • FIG. 2A and 2B show an oil-filled transformer according to a second embodiment of the present invention.
  • FIG. 2A is a perspective view of the tank of the oil-filled transformer
  • FIG. 2B is a top view of a cross section of the oil-filled transformer in which the iron core-coil assembly is housed in the tank.
  • Example 2 a plurality of convex portions (embossed portions) 1b are formed on the body portion 1e of the tank in order to increase the heat radiation area around the tank.
  • Each convex part (embossed part) 1b is arrange
  • each convex part (embossed part) 1b protrudes, for example in hemispherical shape, and the inside of a convex part and the inside of the trunk
  • a continuous convex portion (embossed portion) 1b is provided on the surface of the body portion 1e of the tank so as to be inside the outermost periphery of the bottom plate 1d of the tank to form a heat radiating surface for high heat transfer.
  • the embossed portion 1b is a convex portion, but may be a concave portion.
  • Respect radiator structure according to the conventional heat dissipation ribs for example, heat transfer coefficient of the heat radiation ribs shown in FIG. 10 is a sectional view of the A-A 'in FIG. 9, for example, in the case of 10 4 ⁇ Gr H ⁇ Pr ⁇ 10 7, It is obtained by theoretical calculation according to the following equation (1).
  • Pr is the Prandtl number
  • H is the height of the rib (m)
  • h is the average heat transfer coefficient (W / m 2 ° C)
  • k represents thermal conductivity (W / m ° C.).
  • the heat transfer coefficient of the hemisphere (diameter d) corresponding to the embossed portion in FIG. 2B, which is the embodiment, is obtained by the following theoretical formula (2) when 0 ⁇ Gr H ⁇ Pr ⁇ 10 7 , for example. .
  • the heat transfer coefficient depends on the height H of the heat radiating rib and the diameter d of the emboss, but the normal rib height (for example, 100 mm) and the emboss (for example, 40 mm), the embossing has a higher heat transfer coefficient (for example, 20% higher).
  • the embossed unevenness of FIG. 2B in this embodiment is one method for increasing the heat radiation area without increasing the height of the rib.
  • the convex portion or the concave portion is formed in the body portion of the tank, the heat radiation area can be increased and the heat radiation performance can be further improved. Moreover, the strength of the tank can be improved by forming convex portions or concave portions (embossed portions).
  • FIG. 3A and 3B show an oil-filled transformer according to Example 3 of the present invention.
  • FIG. 3A is a perspective view of the tank part of the oil-filled transformer
  • FIG. 3B is a top view of a cross section of the oil-filled transformer in which the iron core-coil assembly is housed in the tank part.
  • Example 1 or Example 2 the shape of the tank is formed as a curved surface so as to maintain a certain distance from the outer periphery of the coil.
  • a combination of planes is provided so as to substantially follow the outer periphery of the coil. It was formed by. That is, as shown in FIG. 3B, a concave portion 1a having a triangular cross section is provided on the surface of the tank facing the portions 11a and 12a where the plurality of phase coils 7 are close to each other.
  • the distance 6a between the outer peripheral surface of the coil 7 and the tank surface can be reduced to the required distance 6b in terms of insulation performance while ensuring the required distance 6b in terms of insulation performance.
  • the body portion 1e of the tank may be flat without providing an embossed portion, and as shown in FIG. 3A, the embossed portion 1b is formed on the body portion 1e of the tank. May be provided.
  • the tank body is formed by a combination of planes, so that the manufacture becomes easy.
  • FIG. 4 shows an oil-filled transformer according to a fourth embodiment of the present invention.
  • FIG. 4 is a top view of a cross section of an oil-filled transformer in which an iron core-coil assembly is housed in a tank portion.
  • Example 1 or Example 2 uses the present invention for an oil-filled transformer having a three-phase three-leg structure, but in this example, the present invention is used for a single-phase transformer.
  • the coils 7 are provided on the two legs of the frame-shaped iron core 9, respectively. Since the primary coil portion 7a and the secondary coil portion 7b constituting the coil 7 serve as heat generation sources by energization, the contact portion between the two central coils has the maximum temperature among the conductor portions.
  • a recess 1a is provided on the surface.
  • the tank is formed with a curved surface along the outer periphery of the coil, but may be formed with a combination of planes as shown in FIG. 3B.
  • the embossed part 1b is formed in the trunk
  • a tank of an oil-filled transformer is formed of a steel plate (for example, SS400, SPCC).
  • the tank of the oil-filled transformer is formed of a high-strength aluminum material (for example, Al6069 and Al6061 which are 6000 series (Al-Mg-Si series: aluminum magnesium silicon alloy)).
  • a high-strength aluminum material is aluminum having a greater proof stress.
  • a high-strength aluminum material has a wide elastic region because it has an elastic modulus of about 70 GPa regardless of the heat treatment state and chemical composition, and can tolerate a larger strain during a high-pressure cycle test. Therefore, it is excellent in pressure resistance, fatigue, and corrosion, has a thermal conductivity four times that of SS400, and a density that is about 1/3 that of SS400, and is suitable for an oil-filled transformer tank.
  • a high-strength aluminum alloy is used as the material of the tank of the oil-filled transformer, it is possible to provide a light-weight oil-filled transformer having excellent strength, good heat dissipation performance, and light weight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformer Cooling (AREA)
  • Housings And Mounting Of Transformers (AREA)

Abstract

Provided is an oil-filled transformer such that desired heat-dissipation capability is achieved by the thinning of an insulation oil layer serving as a heat-insulating wall and not by installing heat-dissipation ribs to dissipate heat by convection of insulation oil, while achieving both tank size reduction and tank strength. The oil-filled transformer comprises, housed inside a tank, an iron core-coil assembly assembled from an iron core and coils, and insulation oil introduced therein. The iron core-coil assembly comprises a plurality of coils respectively mounted onto a plurality of leg portions of the iron core. On a tank surface facing a site where the plurality of coils are adjacent, a recessed portion is provided extending in the axial direction of the plurality of coils and recessed toward the site where the plurality of coils are adjacent, the distance between the tank surface and the site where the plurality of coils are adjacent having been shortened. In addition, a plurality of protrusions or recesses are formed on the tank surface to broaden the tank surface area.

Description

油入変圧器Oil-filled transformer
 本発明は、油入変圧器、特に油入変圧器の放熱構造に関するものである。 The present invention relates to an oil-filled transformer, and more particularly to a heat dissipation structure of the oil-filled transformer.
 一般に油入電気機器、例えば油入変圧器のタンクには、変圧器の絶縁媒体として絶縁油が入っている。その絶縁油は変圧器の通電熱で温度上昇することによって膨張し、タンクの内圧が上昇するので、タンクは変形しないように充分な強度を必要とする。また、熱伝導が低い絶縁油の温度上昇を抑制できる放熱性能が要求される。 In general, oil-filled electrical equipment, for example, a tank of an oil-filled transformer, contains insulating oil as an insulating medium for the transformer. The insulating oil expands when the temperature rises due to the energization heat of the transformer, and the internal pressure of the tank rises. Therefore, the tank needs to have sufficient strength so as not to be deformed. Moreover, the heat dissipation performance which can suppress the temperature rise of insulating oil with low heat conduction is requested | required.
 この種のタンクの従来技術としては、特開昭53-35122号公報(特許文献1)に示される公知技術がある。この公知技術は、図5と図6に示すように、放熱リブとしてのひれ状張出部2の上下端部を、内方に絞り込んで密着した面接合部3を形成する。そして、上記面接合部3に沿って上記張出部2の上下端部を溶接し、その溶接線を一軸のみとする一方、前記張出部2の板場に凸状または凹状の補強用ビード4を形成し、上記補強用ビード4により張出部2の機械的強度の増大を図るようにしている。 As a conventional technique of this type of tank, there is a known technique disclosed in Japanese Patent Laid-Open No. 53-35122 (Patent Document 1). In this known technique, as shown in FIGS. 5 and 6, the upper and lower end portions of the fin-like projecting portion 2 as the heat radiating ribs are narrowed inward to form a closely joined surface joining portion 3. Then, the upper and lower ends of the overhanging portion 2 are welded along the surface joint portion 3 so that the welding line is only uniaxial, while a convex or concave reinforcing bead is formed on the platen of the overhanging portion 2. 4, and the mechanical strength of the overhang portion 2 is increased by the reinforcing bead 4.
 また、従来技術の他の例としては、実開昭56-67732号公報(特許文献2)に示される公知技術がある。この公知技術は、図7に示すように、波形放熱器の放熱リプ2の両側面適当筒所に、外側から油道部内に向って、タンク高さ方向に沿って凹状溝部4を形成する。放熱リブ2にタンク高さ方向に沿って凹状溝部4を設けたことにより、内圧に対する機械的強度を高め、かつ、油の自然対流効率を高め、放熱効率の高いものが得られるようにしている。このように、上記に示す従来例では、補強用ビード4によりタンクの強度を増大し得るようにしている。 As another example of the prior art, there is a known technique disclosed in Japanese Utility Model Publication No. 56-67732 (Patent Document 2). In this known technique, as shown in FIG. 7, a concave groove 4 is formed along the tank height direction from the outside toward the inside of the oil passage at an appropriate cylinder on both sides of the heat radiating lip 2 of the wave radiator. By providing the heat sink rib 2 with the concave groove 4 along the tank height direction, the mechanical strength against the internal pressure is increased, the natural convection efficiency of the oil is increased, and a high heat dissipation efficiency can be obtained. . Thus, in the conventional example shown above, the strength of the tank can be increased by the reinforcing bead 4.
特開昭53-35122号公報JP 53-35122 A 実開昭56-67732号公報Japanese Utility Model Publication No. 56-67732
 図5、図6、図7に示す従来例では、放熱リブとしてのひれ状張出部2は、タンク内で絶縁油の温度上昇によって内圧が高くなった場合、補強用ビード4により張出部2の横方向および縦方向に対しての強度向上を図っている。 In the conventional example shown in FIGS. 5, 6, and 7, the fin-like overhang portion 2 as the heat radiating rib is formed by the reinforcing bead 4 when the internal pressure becomes high due to the temperature rise of the insulating oil in the tank. The strength of the horizontal direction and the vertical direction is improved.
 しかし、放熱リブに補強用ビード4を設けて強度向上を図っている分、放熱リブの面接合部3への負荷が大きくなり、より高度な接合方法が必要とされ、コストアップにつながる課題がある。 However, since the reinforcement beads 4 are provided on the heat dissipating ribs to improve the strength, the load on the surface joining portion 3 of the heat dissipating ribs is increased, and a more advanced joining method is required, leading to an increase in cost. is there.
 一般に油入変圧器において、絶縁油6は、内部のコイル7の導体の通電によって熱せられると、図8に示す矢印の経路で対流すると考えられ、放熱面積を大きくするために放熱リブ2を大きく設けている。すなわち、絶縁油6は、鉄心9に設けたコイル7の導体によって熱せられると、その上方に上昇し、そこから放熱リブ2の内部側に流れ、該放熱リブ2の放熱作用によって冷却されることにより、放熱リブ2の外周側から下降してコイル7側に戻る循環が期待される。図8に示すように循環を問題なく行わせるためには、コイル7と放熱リブ2との間の距離を大きく設ける必要があり、タンクが大型化する課題がある。一方、タンク内部の絶縁性能を確保するために絶縁油を浸す絶縁距離は小さい。これは、コイル7の外周はすでに絶縁紙で保護されているため、絶縁油を絶縁紙に浸透させて確実に絶縁を担保しているからである。そこで、図9に示すように、コイル7と放熱リブ2との間の距離を絶縁性能が確保できる距離まで小さくすると大幅な小型化ができるが、絶縁油6の対流による放熱効果は小さくなってしまうという課題がある。 In general, in an oil-filled transformer, when the insulating oil 6 is heated by energization of the conductor of the internal coil 7, it is considered that the insulating oil 6 convects along the path of the arrow shown in FIG. Provided. That is, when the insulating oil 6 is heated by the conductor of the coil 7 provided on the iron core 9, the insulating oil 6 rises upward, flows from there to the inside of the heat radiating rib 2, and is cooled by the heat radiating action of the heat radiating rib 2. Therefore, circulation that descends from the outer peripheral side of the heat radiating rib 2 and returns to the coil 7 side is expected. As shown in FIG. 8, in order to perform circulation without any problem, it is necessary to provide a large distance between the coil 7 and the heat radiating rib 2, and there is a problem that the tank is enlarged. On the other hand, in order to ensure the insulation performance inside the tank, the insulation distance in which the insulation oil is immersed is small. This is because the outer periphery of the coil 7 is already protected by the insulating paper, so that the insulating oil is infiltrated into the insulating paper to ensure the insulation. Therefore, as shown in FIG. 9, if the distance between the coil 7 and the heat radiating rib 2 is reduced to a distance that can ensure the insulation performance, the size can be greatly reduced, but the heat dissipation effect due to the convection of the insulating oil 6 is reduced. There is a problem of end.
 本発明は、前記従来技術の問題点に鑑み、放熱リブを設けて絶縁油の対流による放熱ではなく、断熱壁である絶縁油層を薄くすることにより所望の放熱性能を達成すると同時に、タンクの小型化とタンクの強度が両立できる油入変圧器を提供することを目的とする。 In view of the problems of the prior art, the present invention achieves desired heat dissipation performance by providing a heat dissipating rib and thinning the insulating oil layer that is a heat insulating wall, rather than heat dissipation by convection of insulating oil, and at the same time, reducing the size of the tank It is an object of the present invention to provide an oil-filled transformer that can achieve both strength and tank strength.
 上記課題を解決するための、本発明の油入変圧器の一例を挙げるならば、鉄心とコイルとを組み立てた鉄心-コイル組立体をタンク内に収納し、絶縁油を入れてなる油入変圧器であって、前記鉄心-コイル組立体は、鉄心の複数の脚部にそれぞれ取り付けた複数のコイルを備え、前記複数のコイルが近接する部位に面するタンク面に、前記複数のコイルの軸方向に延び、前記複数のコイルが近接する部位に向かって凹む凹部を設け、前記複数のコイルが近接する部位と前記タンク面との距離を短縮したものである。 An example of an oil-filled transformer according to the present invention for solving the above-described problem will be described. An oil-filled transformer in which an iron core-coil assembly in which an iron core and a coil are assembled is housed in a tank and insulating oil is put therein. The iron core-coil assembly includes a plurality of coils respectively attached to a plurality of legs of the iron core, and shafts of the plurality of coils are disposed on a tank surface facing a portion where the plurality of coils are adjacent to each other. A concave portion extending in a direction and recessed toward a portion where the plurality of coils are close to each other is provided, and a distance between the portion where the plurality of coils are close to the tank surface is shortened.
 本発明において、前記タンクの表面に複数の凸部または凹部を形成し、タンクの表面積を広げるのが好ましい。 In the present invention, it is preferable to form a plurality of convex portions or concave portions on the surface of the tank to increase the surface area of the tank.
 本発明によれば、タンクに放熱リブを設けることなく絶縁油の対流のための距離を低減することで大幅な小型化・軽量化を実現でき、絶縁油の層を薄くすることにより、熱源であるコイルからの放熱性を向上させることができる。また、放熱リブを設けないので、タンクの内圧上昇により放熱リブがたわむなどの恐れがない。さらに、圧力上昇時に応力が集中する放熱リブの面接合部がないので、強度における信頼性が確保できる。 According to the present invention, it is possible to achieve a significant reduction in size and weight by reducing the distance for the convection of the insulating oil without providing a heat radiating rib in the tank, and by reducing the insulating oil layer, The heat dissipation from a certain coil can be improved. Further, since the heat radiating rib is not provided, there is no fear that the heat radiating rib is bent due to an increase in the internal pressure of the tank. Furthermore, since there is no surface bonding portion of the heat dissipating rib where stress is concentrated when the pressure is increased, reliability in strength can be secured.
本発明の実施例1のタンク部斜視図である。It is a tank part perspective view of Example 1 of the present invention. 本発明の実施例1の油入変圧器の横断面図である。It is a cross-sectional view of the oil-filled transformer of Example 1 of the present invention. 本発明の実施例2のタンク部斜視図である。It is a tank part perspective view of Example 2 of the present invention. 本発明の実施例2の油入変圧器の横断面図である。It is a cross-sectional view of the oil-filled transformer of Example 2 of the present invention. 本発明の実施例3のタンク部斜視図である。It is a tank part perspective view of Example 3 of the present invention. 本発明の実施例3の油入変圧器の横断面図である。It is a cross-sectional view of the oil-filled transformer of Example 3 of the present invention. 本発明の実施例4の油入変圧器の横断面図である。It is a cross-sectional view of the oil-filled transformer of Example 4 of the present invention. 従来の油入変圧器の一例を示す斜視図である。It is a perspective view which shows an example of the conventional oil-filled transformer. タンクに取り付ける、従来の放熱リブを示す正面図である。It is a front view which shows the conventional heat radiating rib attached to a tank. 従来の放熱リブの他の例を示す正面図である。It is a front view which shows the other example of the conventional heat radiation rib. 油入変圧器内における油の対流を示す説明図である。It is explanatory drawing which shows the convection of the oil in an oil-filled transformer. 小型の油入変圧器内における油の対流を示す説明図である。It is explanatory drawing which shows the convection of the oil in a small oil-filled transformer. 図9のA-A’線における、横断面図である。FIG. 10 is a transverse sectional view taken along line A-A ′ of FIG. 9.
 以下、本発明の実施例を図面を用いて説明する。なお、実施例を説明するための各図において、同一の構成要素には同一の名称、符号を付して、その繰り返しの説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings for explaining the embodiments, the same components are denoted by the same names and symbols, and the repeated explanation thereof is omitted.
 図1Aおよび図1Bに、本発明の実施例1の油入変圧器を示す。図1Aは油入変圧器のタンクの斜視図であり、図1Bはタンク内部に鉄心-コイル組立体を収納した油入変圧器の横断面を上から見た図である。図は、U相11、V相12、W相13からなる3相3脚構造の油入変圧器を示す。 1A and 1B show an oil-filled transformer according to Example 1 of the present invention. FIG. 1A is a perspective view of a tank of an oil-filled transformer, and FIG. 1B is a top view of a cross section of the oil-filled transformer in which an iron core-coil assembly is housed in the tank. The figure shows a three-phase three-legged oil-filled transformer composed of a U phase 11, a V phase 12, and a W phase 13.
 本実施例のタンク1は、図1Aに示すように、蓋を取付けるためのフランジ1cと、底板1dと、該底板1d及びフランジ1c間に配設される胴体部1eとを備え、これらにより鉄心とコイルとを組み立てた鉄心-コイル組立体8及びこれを絶縁するための絶縁油6を収容するように構成されている。前記胴体部1eは、シート状の簿板、例えば鋼板をプレス加工によって成形されたものである。 As shown in FIG. 1A, the tank 1 according to the present embodiment includes a flange 1c for attaching a lid, a bottom plate 1d, and a body portion 1e disposed between the bottom plate 1d and the flange 1c. An iron core-coil assembly 8 assembled with a coil and an insulating oil 6 for insulating the core-coil assembly 8 are accommodated. The body portion 1e is formed by pressing a sheet-like book board, for example, a steel plate.
 放熱面積を多くする従来のタンク構造は、図9および図10に示すように、直方体形状のタンク1の内部に1相以上のコイル7を収納し、その周囲に絶縁油6を満たしている。そして、タンク1の外側には全周に渡って放熱リブ2を一定間隔で設けている。コイル7を構成する一次コイル部7a、二次コイル部7bは通電による発熱源になるため、U相11、V相12、W相13の相間のコイルの接触部11a、12aが導体部の中で最大の温度となる。さらに、相間のコイルの接触部ではタンク周囲または放熱リブとの距離6aが大きいため、放熱性能が低くなり、高温になりやすくなる。また、図9に示される、コイル7と放熱リブ2との間の距離を小さくして小型化した油入変圧器においては、絶縁油6の対流が起きにくくなり放熱効果が小さくなってしまう。 As shown in FIGS. 9 and 10, in the conventional tank structure that increases the heat radiation area, a coil 7 having one or more phases is housed in a rectangular parallelepiped tank 1, and an insulating oil 6 is filled around it. And the heat-dissipation rib 2 is provided in the outer periphery of the tank 1 at fixed intervals over the perimeter. Since the primary coil portion 7a and the secondary coil portion 7b constituting the coil 7 serve as heat generation sources by energization, the contact portions 11a and 12a of the coils between the U phase 11, V phase 12 and W phase 13 are in the conductor portion. At maximum temperature. Furthermore, since the distance 6a between the periphery of the tank or the heat radiating rib is large at the contact portion of the coil between the phases, the heat radiating performance is lowered and the temperature tends to be high. Further, in the oil-filled transformer shown in FIG. 9 that is reduced in size by reducing the distance between the coil 7 and the heat radiating rib 2, the convection of the insulating oil 6 hardly occurs and the heat radiation effect is reduced.
 本実施例では、図1Bに示すように、鉄心9とコイル7とを組み立てた鉄心-コイル組立体8は、鉄心9の複数の脚部にそれぞれ複数の相(U相11,V相12,W相13)のコイル7が設けられている。そして、コイル7外周に設ける絶縁油6が一定の層厚になるように、複数の相のコイル7が近接する部位11a、12aに面しているタンクの面に凹部1aを設けている。凹部1aは、コイル7の軸方向に延び、複数の相のコイルが近接する部位に向かって凹んでいる。本実施例では、タンク1の面をコイル7の外周面に沿って延びる曲面で形成し、コイル7の外周面の絶縁油6がほぼ一定の層厚となるようにしている。これによって、絶縁性能上の必要距離6bを確保しながら、タンク周囲との距離6aを絶縁性能上の必要距離6bまで小さくできる。絶縁油の熱伝導は、たとえば、0.12W/m・Kと熱伝導が小さいが、金属製のタンクの熱伝導は例えば、80w/m・Kと比較的大きい。熱伝導性能が低い絶縁油の厚さを薄くし、熱伝導が比較的大きいタンクまでの距離を小さくすることで放熱性能が向上できる。なお、図において、符号10は補強板を示す。 In this embodiment, as shown in FIG. 1B, the iron core-coil assembly 8 in which the iron core 9 and the coil 7 are assembled has a plurality of phases (U phase 11, V phase 12, A W-phase 13) coil 7 is provided. And the recessed part 1a is provided in the surface of the tank which faces the site | parts 11a and 12a which the coil 7 of a some phase adjoins so that the insulating oil 6 provided in the outer periphery of the coil 7 may become fixed layer thickness. The recess 1a extends in the axial direction of the coil 7 and is recessed toward a portion where a plurality of phase coils are close to each other. In the present embodiment, the surface of the tank 1 is formed by a curved surface extending along the outer peripheral surface of the coil 7 so that the insulating oil 6 on the outer peripheral surface of the coil 7 has a substantially constant layer thickness. This makes it possible to reduce the distance 6a from the tank periphery to the required distance 6b in terms of insulation performance while securing the required distance 6b in terms of insulation performance. The heat conduction of the insulating oil is small, for example, 0.12 W / m · K, but the heat conduction of the metal tank is relatively large, for example, 80 w / m · K. The heat radiation performance can be improved by reducing the thickness of the insulating oil having a low thermal conductivity and reducing the distance to the tank having a relatively large thermal conductivity. In the figure, reference numeral 10 denotes a reinforcing plate.
 本実施例によれば、放熱リブを設けることなく絶縁油の対流のための距離を低減することで大幅な小型化・軽量化を実現でき、また、絶縁油の層を薄くすることにより、熱源であるコイルからの放熱性を向上させることができる。また、放熱リブを設けないので、タンクの内圧上昇により放熱リブがたわむなどの恐れがない。さらに、圧力上昇時に応力が集中する放熱リブの面接合部がないので、強度における信頼性が確保できる。 According to the present embodiment, it is possible to realize a significant reduction in size and weight by reducing the distance for the convection of the insulating oil without providing a heat radiating rib, and by reducing the thickness of the insulating oil, It is possible to improve the heat dissipation from the coil. Further, since the heat radiating rib is not provided, there is no fear that the heat radiating rib is bent due to an increase in the internal pressure of the tank. Furthermore, since there is no surface bonding portion of the heat dissipating rib where stress is concentrated when the pressure is increased, reliability in strength can be ensured.
 図2Aおよび図2Bに、本発明の実施例2の油入変圧器を示す。図2Aは油入変圧器のタンクの斜視図であり、図2Bはタンクに鉄心-コイル組立体を収納した油入変圧器の横断面を上から見た図である。 2A and 2B show an oil-filled transformer according to a second embodiment of the present invention. FIG. 2A is a perspective view of the tank of the oil-filled transformer, and FIG. 2B is a top view of a cross section of the oil-filled transformer in which the iron core-coil assembly is housed in the tank.
 図に示すように、実施例2では、タンク周囲の放熱面積を多くするために、タンクの胴体部1eに複数の凸部(エンボス部)1bを形成している。各凸部(エンボス部)1bは、胴体部1eの周囲に適宜の間隔をもって、並列配列や千鳥配列などで配置される。そして、各凸部(エンボス部)1bは、例えば半球状に張り出して形成され、凸部の内部と胴体部1eの内部とが連続している。 As shown in the figure, in Example 2, a plurality of convex portions (embossed portions) 1b are formed on the body portion 1e of the tank in order to increase the heat radiation area around the tank. Each convex part (embossed part) 1b is arrange | positioned by the parallel arrangement | sequence, staggered arrangement | sequence, etc. with the suitable space | interval around the trunk | drum 1e. And each convex part (embossed part) 1b protrudes, for example in hemispherical shape, and the inside of a convex part and the inside of the trunk | drum 1e are continuing.
 図2Aでは、タンクの底板1dの最外周より内側になるようにタンクの胴体部1eの表面に連続的な凸部(エンボス部)1bを設けて、高熱伝達の放熱面を形成している。図では、エンボス部1bを凸部としているが、凹部としても良い。 In FIG. 2A, a continuous convex portion (embossed portion) 1b is provided on the surface of the body portion 1e of the tank so as to be inside the outermost periphery of the bottom plate 1d of the tank to form a heat radiating surface for high heat transfer. In the figure, the embossed portion 1b is a convex portion, but may be a concave portion.
 従来の放熱リブによる放熱構造に関して、例えば、図9のA-A’の断面図である図10に示す放熱リブの熱伝達率は、例えば、104≦GrH・Pr≦107の場合、次の式(1)による理論計算で求められる。 Respect radiator structure according to the conventional heat dissipation ribs, for example, heat transfer coefficient of the heat radiation ribs shown in FIG. 10 is a sectional view of the A-A 'in FIG. 9, for example, in the case of 10 4 ≦ Gr H · Pr ≦ 10 7, It is obtained by theoretical calculation according to the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 GrHはグラスホフ数(GrH=gβ|Tw-Ta|H3/v)、Prはプラントル数、Hはリブの高さ(m)、hは平均熱伝達率(W/m2℃)、kは熱伝導率(W/m℃)を示す。 Gr H is the Grashof number (Gr H = gβ | Tw-Ta | H 3 / v), Pr is the Prandtl number, H is the height of the rib (m), h is the average heat transfer coefficient (W / m 2 ° C), k represents thermal conductivity (W / m ° C.).
 本実施例である図2Bのエンボス部に相当する半球(直径d)の熱伝達率は、例えば、0≦GrH・Pr≦107の場合、次の式(2)による理論式で求められる。 The heat transfer coefficient of the hemisphere (diameter d) corresponding to the embossed portion in FIG. 2B, which is the embodiment, is obtained by the following theoretical formula (2) when 0 ≦ Gr H · Pr ≦ 10 7 , for example. .
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(1)と式(2)で示すように、熱伝達率は放熱リブの高さHやエンボスの直径dに依存するが、通常のリブの高さ(例えば、100mm)とエンボス(例えば、40mm)ではエンボスの方が熱伝達率は高い(例えば、20%高い)。 As shown in the formula (1) and the formula (2), the heat transfer coefficient depends on the height H of the heat radiating rib and the diameter d of the emboss, but the normal rib height (for example, 100 mm) and the emboss (for example, 40 mm), the embossing has a higher heat transfer coefficient (for example, 20% higher).
 また、図8に示す放熱リブ構造におけるフィン効率は次の式(3)により理論的に求められることができる。 Further, the fin efficiency in the heat dissipating rib structure shown in FIG. 8 can be theoretically obtained by the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 放熱リブの方のフィン効率は、例えば(リブ高さH=100mm、板厚t=2mm)64%となっている。つまり、放熱リブによる放熱面積はその64%が放熱として効いていることを示す。つまり、リブの高さを大きくして放熱面積を大きくしても、全ての増加面積が放熱していることではない。本実施例の図2Bのエンボスタイプの凸凹は、リブの高さを大きくせずに放熱面積を増やす方法の一つである。 The fin efficiency of the heat radiating rib is, for example, 64% (rib height H = 100 mm, plate thickness t = 2 mm). That is, 64% of the heat radiation area by the heat radiation rib is effective as heat radiation. That is, even if the height of the rib is increased to increase the heat dissipation area, not all the increased areas are dissipating heat. The embossed unevenness of FIG. 2B in this embodiment is one method for increasing the heat radiation area without increasing the height of the rib.
 本実施例によれば、実施例1の作用効果に加えて、タンクの胴体部に凸部または凹部(エンボス部)を形成したので、放熱面積を広くでき、放熱性をより向上させることができる。また、凸部または凹部(エンボス部)を形成することにより、タンクの強度を向上することができる。 According to the present embodiment, in addition to the function and effect of the first embodiment, since the convex portion or the concave portion (embossed portion) is formed in the body portion of the tank, the heat radiation area can be increased and the heat radiation performance can be further improved. . Moreover, the strength of the tank can be improved by forming convex portions or concave portions (embossed portions).
 図3Aおよび図3Bに、本発明の実施例3の油入変圧器を示す。図3Aは油入変圧器のタンク部の斜視図であり、図3Bはタンク部に鉄心-コイル組立体を収納した油入変圧器の横断面を上から見た図である。 3A and 3B show an oil-filled transformer according to Example 3 of the present invention. FIG. 3A is a perspective view of the tank part of the oil-filled transformer, and FIG. 3B is a top view of a cross section of the oil-filled transformer in which the iron core-coil assembly is housed in the tank part.
 実施例1或いは実施例2では、タンクの形状を、コイルの外周部から一定の距離を保つように、曲面で形成したが、本実施例は、コイルの外周にほぼ沿うように、平面の組み合わせで形成したものである。すなわち、図3Bに示すように、複数の相のコイル7が近接する部位11a、12aに面しているタンクの面に、断面が三角形状の凹部1aを設ける。これにより、絶縁性能上の必要距離6bを確保しながら、コイル7の外周面とタンクの面との距離6aを絶縁性能上の必要距離6bまで小さくすることができる。 In Example 1 or Example 2, the shape of the tank is formed as a curved surface so as to maintain a certain distance from the outer periphery of the coil. However, in this example, a combination of planes is provided so as to substantially follow the outer periphery of the coil. It was formed by. That is, as shown in FIG. 3B, a concave portion 1a having a triangular cross section is provided on the surface of the tank facing the portions 11a and 12a where the plurality of phase coils 7 are close to each other. As a result, the distance 6a between the outer peripheral surface of the coil 7 and the tank surface can be reduced to the required distance 6b in terms of insulation performance while ensuring the required distance 6b in terms of insulation performance.
 本実施例において、図3Bに示すように、タンクの胴体部1eにエンボス部を設けることなく平面状にしても良いし、また、図3Aに示すように、タンクの胴体部1eにエンボス部1bを設けても良い。 In this embodiment, as shown in FIG. 3B, the body portion 1e of the tank may be flat without providing an embossed portion, and as shown in FIG. 3A, the embossed portion 1b is formed on the body portion 1e of the tank. May be provided.
 本実施例によれば、実施例1の作用効果に加えて、タンクの胴体部を、平面の組み合わせで形成したので、製造が容易となる。 According to the present embodiment, in addition to the effects of the first embodiment, the tank body is formed by a combination of planes, so that the manufacture becomes easy.
 図4に、本発明の実施例4の油入変圧器を示す。図4は、タンク部に鉄心-コイル組立体を収納した油入変圧器の横断面を上から見た図である。 FIG. 4 shows an oil-filled transformer according to a fourth embodiment of the present invention. FIG. 4 is a top view of a cross section of an oil-filled transformer in which an iron core-coil assembly is housed in a tank portion.
 実施例1或いは実施例2は、本発明を3相3脚構造の油入変圧器に用いたものであるが、本実施例は、本発明を単相の変圧器に用いたものである。 Example 1 or Example 2 uses the present invention for an oil-filled transformer having a three-phase three-leg structure, but in this example, the present invention is used for a single-phase transformer.
 単相の変圧器では、額縁状の鉄心9の2つの脚部にそれぞれコイル7が設けられている。コイル7を構成する一次コイル部7a、二次コイル部7bは通電による発熱源になるため、中央の2つのコイルの接触部が導体部の中で最大の温度となる。本実施例では、図に示すように、コイル外周に設ける絶縁油が一定の層厚になるように、鉄心-コイル組立体8の2つのコイル7が近接している部位に面しているタンクの面に凹部1aを設けている。 In the single-phase transformer, the coils 7 are provided on the two legs of the frame-shaped iron core 9, respectively. Since the primary coil portion 7a and the secondary coil portion 7b constituting the coil 7 serve as heat generation sources by energization, the contact portion between the two central coils has the maximum temperature among the conductor portions. In this embodiment, as shown in the figure, the tank facing the portion where the two coils 7 of the iron core-coil assembly 8 are close to each other so that the insulating oil provided on the outer periphery of the coil has a constant layer thickness. A recess 1a is provided on the surface.
 図4では、タンクの形状をコイルの外周に沿うように曲面で形成しているが、図3Bに示すように、平面の組み合わせで形成しても良い。また、図4では、タンクの胴体部にエンボス部1bを形成しているが、図1と同様に、エンボス部を設けなくても良い。 In FIG. 4, the tank is formed with a curved surface along the outer periphery of the coil, but may be formed with a combination of planes as shown in FIG. 3B. Moreover, although the embossed part 1b is formed in the trunk | drum of a tank in FIG. 4, it is not necessary to provide an embossed part similarly to FIG.
 本実施例によれば、単相の変圧器において、放熱リブを設けることなく絶縁油の対流のための距離を低減することで大幅な小型化・軽量化を実現でき、また、絶縁油の層を薄くすることにより、熱源であるコイルからの放熱性を向上させることができる。 According to this embodiment, in a single-phase transformer, it is possible to realize a significant reduction in size and weight by reducing the distance for convection of insulating oil without providing a heat radiating rib. By reducing the thickness, heat dissipation from the coil as a heat source can be improved.
 本実施例は、実施例1~4の油入変圧器のタンクの材質を改良したものである。一般に油入変圧器のタンクは鋼板(例えば、SS400,SPCC)で形成される。本実施例では、鋼板に代えて、油入変圧器のタンクを高強度アルミニウム材(例えば、6000系(Al-Mg-Si系:アルミマグネシウムシリコン合金)であるAl6069、Al6061)で形成する。特に高強度のアルミニウム材は、より大きな耐力を有するアルミニウムである。高強度アルミニウム材は、熱処理状態や化学成分によらず、弾性率は約70GPaであることにより、広い弾性領域を有し、高圧サイクル試験時により大きなひずみを許容できることになる。したがって、耐圧性・疲労・腐食に優れ、熱伝導率はSS400の4倍、密度はSS400の約1/3であり、油入変圧器のタンクに適している。 This example is an improvement of the material of the oil-filled transformer tank of Examples 1 to 4. In general, a tank of an oil-filled transformer is formed of a steel plate (for example, SS400, SPCC). In this embodiment, instead of the steel plate, the tank of the oil-filled transformer is formed of a high-strength aluminum material (for example, Al6069 and Al6061 which are 6000 series (Al-Mg-Si series: aluminum magnesium silicon alloy)). Particularly, a high-strength aluminum material is aluminum having a greater proof stress. A high-strength aluminum material has a wide elastic region because it has an elastic modulus of about 70 GPa regardless of the heat treatment state and chemical composition, and can tolerate a larger strain during a high-pressure cycle test. Therefore, it is excellent in pressure resistance, fatigue, and corrosion, has a thermal conductivity four times that of SS400, and a density that is about 1/3 that of SS400, and is suitable for an oil-filled transformer tank.
 本実施例によれば、油入変圧器のタンクの材料として高強度アルミニウム合金を用いたので、強度に優れ、放熱性能が良く、軽量な油入変圧器を提供できる。 According to the present embodiment, since a high-strength aluminum alloy is used as the material of the tank of the oil-filled transformer, it is possible to provide a light-weight oil-filled transformer having excellent strength, good heat dissipation performance, and light weight.
1 タンク
1a タンクの凹部
1b タンクのエンボス部
1c タンクのフランジ
1d タンクの底板
1e タンクの胴体部
2 放熱リブ
3 面接合部
4 補強用ビード
6 絶縁油
6a 相間接触部の絶縁距離
6b 必要絶縁距離
7 コイル
7a 二次コイル
7b 一次コイル
8 鉄心-コイル組立体
9 鉄心(コア)
10 補強板
11 U相
12 V相
13 W相
11a、12a 相間接触部
DESCRIPTION OF SYMBOLS 1 Tank 1a Tank recessed part 1b Tank embossed part 1c Tank flange 1d Tank bottom plate 1e Tank body part 2 Heat radiating rib 3 Surface joint part 4 Reinforcing bead 6 Insulating oil 6a Insulating distance 6b of interphase contact part Necessary insulating distance 7 Coil 7a Secondary coil 7b Primary coil 8 Iron core-coil assembly 9 Iron core (core)
10 Reinforcing plate 11 U phase 12 V phase 13 W phase 11a, 12a Interphase contact portion

Claims (10)

  1.  鉄心とコイルとを組み立てた鉄心-コイル組立体をタンク内に収納し、絶縁油を入れてなる油入変圧器であって、
     前記鉄心-コイル組立体は、鉄心の複数の脚部にそれぞれ取り付けた複数のコイルを備え、
     前記複数のコイルが近接する部位に面するタンク面に、前記複数のコイルの軸方向に延び、前記複数のコイルが近接する部位に向かって凹む凹部を設け、前記複数のコイルが近接する部位と前記タンク面との距離を短縮したことを特徴とする油入変圧器。
    An oil-filled transformer in which an iron core-coil assembly in which an iron core and a coil are assembled is stored in a tank and filled with insulating oil.
    The iron core-coil assembly includes a plurality of coils respectively attached to a plurality of legs of the iron core;
    A tank surface facing a portion where the plurality of coils are close to each other is provided with a recess extending in the axial direction of the plurality of coils and recessed toward the portion where the plurality of coils are close to each other, and the portion where the plurality of coils are close to each other An oil-filled transformer characterized in that a distance from the tank surface is shortened.
  2.  請求項1記載の油入変圧器において、
     前記タンク面を、前記複数のコイルの外周面に沿って延びる曲面で形成し、前記コイルの外周面の絶縁油が一定の層厚となるようにしたことを特徴とする油入変圧器。
    The oil-filled transformer according to claim 1,
    An oil-filled transformer, wherein the tank surface is formed by a curved surface extending along the outer peripheral surfaces of the plurality of coils, and the insulating oil on the outer peripheral surface of the coils has a constant layer thickness.
  3.  請求項1記載の油入変圧器において、
     前記タンク面を、前記複数のコイルの外周面に沿う複数の平面の組み合わせで形成し、前記コイルの外周面とタンク面との距離が、直方体形状のタンクに比べて、短くなるようにしたことを特徴とする油入変圧器。
    The oil-filled transformer according to claim 1,
    The tank surface is formed by a combination of a plurality of planes along the outer peripheral surface of the plurality of coils, and the distance between the outer peripheral surface of the coil and the tank surface is shorter than that of a rectangular parallelepiped tank. Oil-filled transformer characterized by.
  4.  請求項1記載の油入変圧器において、
     前記タンクの表面に、複数の凸部または凹部を形成し、タンクの表面積を広げたことを特徴とする油入変圧器。
    The oil-filled transformer according to claim 1,
    An oil-filled transformer characterized in that a plurality of convex portions or concave portions are formed on the surface of the tank to increase the surface area of the tank.
  5.  請求項4記載の油入変圧器において、
     前記タンクの表面の複数の凸部または凹部は、並列配列もしくは千鳥配列で連続して配置されていることを特徴とする油入変圧器。
    The oil-filled transformer according to claim 4,
    The oil-filled transformer, wherein a plurality of convex portions or concave portions on the surface of the tank are continuously arranged in a parallel arrangement or a staggered arrangement.
  6.  請求項1記載の油入変圧器において、
     前記鉄心-コイル組立体は、3相3脚構造であることを特徴とする油入変圧器。
    The oil-filled transformer according to claim 1,
    The oil-filled transformer, wherein the iron core-coil assembly has a three-phase three-leg structure.
  7.  請求項1記載の油入変圧器において、
     前記鉄心-コイル組立体は、単相構造であることを特徴とする油入変圧器。
    The oil-filled transformer according to claim 1,
    The oil-filled transformer, wherein the iron core-coil assembly has a single-phase structure.
  8.  請求項1記載の油入変圧器において、
     前記タンクの材料は、鋼板であることを特徴とする油入変圧器。
    The oil-filled transformer according to claim 1,
    The oil-filled transformer, wherein the material of the tank is a steel plate.
  9.  請求項1記載の油入変圧器において、
     前記タンクの材料は、高強度アルミニウム材料であることを特徴とする油入変圧器。
    The oil-filled transformer according to claim 1,
    The oil-filled transformer is characterized in that the material of the tank is a high-strength aluminum material.
  10.  請求項9記載の油入変圧器において、
     前記タンクの材料は、Al-Mg-Si系合金であることを特徴とする油入変圧器。
    The oil-filled transformer according to claim 9,
    The oil-filled transformer, wherein the material of the tank is an Al-Mg-Si alloy.
PCT/JP2016/071975 2015-12-22 2016-07-27 Oil-filled transformer WO2017110124A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680046442.7A CN107924745B (en) 2015-12-22 2016-07-27 Oil-immersed transformer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015249622A JP6342883B2 (en) 2015-12-22 2015-12-22 Oil-filled transformer
JP2015-249622 2015-12-22

Publications (1)

Publication Number Publication Date
WO2017110124A1 true WO2017110124A1 (en) 2017-06-29

Family

ID=59091068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071975 WO2017110124A1 (en) 2015-12-22 2016-07-27 Oil-filled transformer

Country Status (4)

Country Link
JP (1) JP6342883B2 (en)
CN (1) CN107924745B (en)
TW (1) TWI603348B (en)
WO (1) WO2017110124A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019092909A1 (en) * 2017-11-07 2019-05-16 株式会社日立産機システム Oil-filled transformer
CN114050032A (en) * 2021-11-11 2022-02-15 国网河南省电力公司商丘供电公司 Isolation transformer based on power network safety system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7247489B2 (en) * 2018-08-24 2023-03-29 富士電機株式会社 Reactor unit and power converter
KR102181171B1 (en) * 2018-12-28 2020-11-20 현대일렉트릭앤에너지시스템(주) Transformer
CN110323732B (en) * 2019-08-07 2024-02-27 安徽科盟电子科技有限公司 Arc suppression coil
CN110428952A (en) * 2019-09-04 2019-11-08 中车株洲电机有限公司 Tractive transformer and rail vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328817U (en) * 1976-08-20 1978-03-11
JPS5661023U (en) * 1979-10-15 1981-05-23
JPS58197286A (en) * 1982-05-14 1983-11-16 Tokyo Electric Power Co Inc:The Cooling structure of underground buried transformer
JPS5934605A (en) * 1982-08-23 1984-02-25 Hitachi Ltd Tank for oil immersed electric apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3234493A (en) * 1963-06-17 1966-02-08 Mc Graw Edison Co Distribution transformer having a molded insulative casing and oil dielectric
JPS5386509U (en) * 1976-12-20 1978-07-17
JPS6030087B2 (en) * 1977-01-25 1985-07-15 株式会社東芝 stationary induction appliance
JPS608413Y2 (en) * 1980-04-15 1985-03-25 株式会社ダイヘン Case for oil-filled electrical equipment
CN102360749A (en) * 2011-06-16 2012-02-22 青岛变压器集团有限公司 Oil tank of large-size oil immersed type transformer
CN103137290A (en) * 2011-12-05 2013-06-05 中电电气(江苏)股份有限公司 Novel oil immersed non-crystal alloy transformer tank
WO2014170978A1 (en) * 2013-04-17 2014-10-23 株式会社日立産機システム Transformer
CN203966746U (en) * 2014-07-21 2014-11-26 红旗集团温州变压器有限公司 Oil-filled transformer with respirator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328817U (en) * 1976-08-20 1978-03-11
JPS5661023U (en) * 1979-10-15 1981-05-23
JPS58197286A (en) * 1982-05-14 1983-11-16 Tokyo Electric Power Co Inc:The Cooling structure of underground buried transformer
JPS5934605A (en) * 1982-08-23 1984-02-25 Hitachi Ltd Tank for oil immersed electric apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019092909A1 (en) * 2017-11-07 2019-05-16 株式会社日立産機システム Oil-filled transformer
CN114050032A (en) * 2021-11-11 2022-02-15 国网河南省电力公司商丘供电公司 Isolation transformer based on power network safety system
CN114050032B (en) * 2021-11-11 2023-09-19 国网河南省电力公司商丘供电公司 Isolation transformer based on power network safety system

Also Published As

Publication number Publication date
JP6342883B2 (en) 2018-06-13
CN107924745B (en) 2019-07-26
TW201724132A (en) 2017-07-01
CN107924745A (en) 2018-04-17
TWI603348B (en) 2017-10-21
JP2017117871A (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP6342883B2 (en) Oil-filled transformer
WO2017010536A1 (en) Cooling device
JP5252781B2 (en) Capacitor cooling structure and power conversion device
JP2012163227A (en) Heat pipe and electronic component
JP2010140969A (en) Stacked module structure
JP2008041882A (en) Reactor
JP2021052098A (en) Heat dissipation structure of electrical component assembly, heat conductive sheet, method for manufacturing electrical component assembly
JP2016025137A (en) Reactor device
CN111836514B (en) Heat exchange device and submarine electronic system
JP6363264B1 (en) Transformer
JP2015095502A (en) Mounting structure for wiring component
JP4446811B2 (en) Capacitor mounting structure of power converter
JP2013232476A (en) Heat radiation structure of reactor
JP6328828B1 (en) Oil-filled transformer and manufacturing method of tank used therefor.
JP5834758B2 (en) Semiconductor module
JP6505925B2 (en) Transformer
JP2009260012A (en) Static induction electrical apparatus
CN210896908U (en) Oil-immersed heat-dissipation transformer
JP7455771B2 (en) Oil-immersed transformer tanks and oil-immersed transformers
WO2019092909A1 (en) Oil-filled transformer
WO2018181933A1 (en) Heat sink
JP6047848B2 (en) Reactor heat dissipation structure
JP3648874B2 (en) Tank for electrical equipment
JP2013258343A (en) Heat exchanger of semiconductor element
JP2019096782A (en) Oil-filled transformer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878027

Country of ref document: EP

Kind code of ref document: A1