WO2019092909A1 - Oil-filled transformer - Google Patents

Oil-filled transformer Download PDF

Info

Publication number
WO2019092909A1
WO2019092909A1 PCT/JP2018/020938 JP2018020938W WO2019092909A1 WO 2019092909 A1 WO2019092909 A1 WO 2019092909A1 JP 2018020938 W JP2018020938 W JP 2018020938W WO 2019092909 A1 WO2019092909 A1 WO 2019092909A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
container
filled transformer
lid
heat transfer
Prior art date
Application number
PCT/JP2018/020938
Other languages
French (fr)
Japanese (ja)
Inventor
美稀 山崎
直道 工藤
邦彦 安東
桑原 正尚
佐藤 孝平
海津 朋宏
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2019092909A1 publication Critical patent/WO2019092909A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/22Cooling by heat conduction through solid or powdered fillings

Definitions

  • the present invention relates to a heat dissipation structure of an oil filled transformer, in particular, an oil filled transformer.
  • the container of an oil-filled electrical device such as an oil-filled transformer contains insulating oil as an insulating medium.
  • the insulating oil is expanded by the temperature rise due to the electric heat of the electric device, and the internal pressure of the container is increased, so the container needs to have a sufficient strength so as not to deform.
  • the heat dissipation performance which can control the temperature rise of insulating oil with low heat conduction is required.
  • Patent Document 1 JP-A-53-35122
  • FIGS. 7 and 8 the upper and lower end portions of the fin-like overhanging portion 2 as a heat dissipating rib are drawn inwardly to form a surface joint portion 3 in close contact. Then, welding the upper and lower end portions of the overhanging portion 2 along the surface joint portion 3 and making the welding line uniaxially only, while a convex or concave reinforcing bead on the plate field of the overhanging portion 2
  • the reinforcement beads 4 are formed to increase the mechanical strength of the overhang portion 2.
  • insulating oil 6 is considered to be convective in the path of the arrows when heated by energization of the conductor of coil 7 inside, and heat dissipation ribs are used to increase the heat dissipation area. 2 is provided largely. That is, when the insulating oil 6 is heated by the conductor of the coil 7 provided on the iron core 9, it rises upward, flows from there to the inside of the heat dissipating rib 2, and is cooled by the heat dissipating function of the heat dissipating rib 2. The circulation which descends from the outer peripheral side of the heat radiation rib 2 and returns to the coil 7 side is expected. As shown in FIG.
  • An object of the present invention is to provide an oil-impregnated transformer capable of achieving both a reduction in size and a reduction in weight of a container while securing desired heat dissipation performance.
  • An oil-filled transformer having an iron core, a coil wound around the iron core, a container for containing the iron core and the coil, and a lid for closing the upper part of the container, wherein the container contains an insulating oil.
  • a heat transfer member having a thermal conductivity higher than that of the insulating oil is provided through the upper surface and the lower surface of the lid, or the lower surface of the lid is in contact with the insulating oil It is characterized in that it is arranged as follows.
  • the container since it is not necessary to provide the container with the heat radiation rib, the container can be made smaller and lighter.
  • the heat dissipating rib is not provided, there is no fear that the heat dissipating rib is bent due to the rise in the internal pressure of the container, and reliability in strength can be secured.
  • FIG. 6 is a perspective view showing an example of a container of the oil-filled transformer of the first embodiment.
  • FIG. 2 is a cross-sectional view showing an example of an oil-impregnated transformer of Example 1; It is explanatory drawing of the upper surface of the modification of the oil-impregnated transformer of Example 1.
  • FIG. It is explanatory drawing of the upper surface of the modification of the oil-impregnated transformer of Example 1.
  • FIG. It is explanatory drawing of the upper surface of the modification of the oil-impregnated transformer of Example 1.
  • FIG. 1 It is explanatory drawing of the upper surface of the modification of the oil-impregnated transformer of Example 1.
  • FIG. It is a perspective view which shows an example of the container of the conventional oil-filled transformer. It is a front view which shows the conventional radiation rib attached to a container. It is explanatory drawing which shows the convection of the oil in the conventional oil-filled transformer. It is explanatory drawing which shows the convection of the oil in a small oil-filled transformer. It is sectional drawing of the oil-impregnated transformer of Example 2 of this invention. It is explanatory drawing of the upper surface of the oil-impregnated transformer of Example 2. FIG. It is sectional drawing of the oil-impregnated transformer of Example 3 of this invention.
  • FIG. 18 is a cross-sectional view of a modification of the single-phase above-column oil-filled transformer of the fourth embodiment.
  • FIG. 16 is a temperature rise distribution map by heat transfer analysis of the single-phase, pole-mounted, oil-filled transformer of the fourth embodiment. It is a temperature rise distribution figure by heat transfer analysis of the conventional single phase pole top oil-filled transformer. It is sectional drawing of the single phase pole top oil-impregnated transformer of Example 5 of this invention.
  • FIG. 1A is a cross-sectional view of the oil-filled transformer
  • FIG. 1B is a top view of the container lid of FIG. 1A.
  • FIG. 1A shows a three-phase three-leg oil filled transformer consisting of U phase 11, V phase 12, and W phase 13.
  • FIG. 1A shows a three-phase three-leg oil filled transformer consisting of U phase 11, V phase 12, and W phase 13.
  • the oil-filled transformer of this embodiment includes an iron core 9, a coil 7 (U phase 11, V phase 12, W phase 13) wound around the iron core 9, an iron core 9, a coil 7 and an iron core 9 or a coil 7. It has the container 1 which accommodates the fixing member (not shown) arrange
  • the insulating oil 6 is accommodated in the container 1 to a position higher than the upper portion of the fixing member.
  • the lid 15 is provided with a plate-shaped cooling fin 16 penetrating the upper surface and the lower surface, and the cooling fin 16 is formed of a heat transfer member having a thermal conductivity higher than that of the insulating oil 6.
  • the insulating oil 6 is in contact with the cooling fins 16, and the insulating oil 6 is disposed between the lower end of the heat transfer member and the fixing member.
  • the cooling fins 16 are contained in the insulating oil, and it is preferable that the contact area between the cooling fins 16 and the insulating oil 6 be large in terms of heat transfer.
  • the cooling fins 16 are disposed on both sides avoiding the high pressure bushings 18, 19, 20 and the low pressure bushings 21, 22, 23.
  • a plurality of cooling fins 16 are provided in parallel to the short side of the container 1.
  • the height of the cooling fin 16 may be equal to the height of the bushing, but is not limited thereto.
  • the coil 7 is provided close to the side surface of the container 1, the convection of the insulating oil 6 in the container 1 is small, and the cooling is mainly performed by It is done by heat conduction. Therefore, cooling is less dependent on the direction of the cooling fins 16 in the container 1, and it is sufficient to provide as many cooling fins 16 as possible.
  • the installation direction of the cooling fins 16 outside the container 1 may not be able to prevent the flow of heat due to the distribution of heat, and it may be installed in the direction in which air is convective.
  • the coil 7 and the iron core 9 When the oil-filled transformer is operated, the coil 7 and the iron core 9 generate heat and the temperature of the insulating oil 6 rises, but the heat is transferred to the outside of the container 1 through the cooling fin 16 which is a heat transfer member. Heat is dissipated inside. Further, the container 1 and the lid 15 of the container are usually formed of a steel plate, and part of the heat is also transferred from the cooling fins 16 to the lid 15 of the container and is also dissipated from the lid 15 into the air.
  • the coil 7 of one or more phases is housed inside the rectangular parallelepiped container 1 and the insulating oil 6 is filled around the coil.
  • the heat dissipation rib 2 is provided in the outer side of the container 1 by fixed spacing over the perimeter.
  • the primary coil portion and the secondary coil portion constituting the coil 7 become heat sources due to energization, so the contact portion of the coil between the U-phase, V-phase and W-phase becomes the maximum temperature among the conductor portions.
  • FIG. 1A in the iron core-coil assembly in which the iron core 9 and the coil 7 are assembled, a plurality of phases (U phase 11, V phase 12 and A coil 7 of W phase 13) is provided.
  • FIG. 2A shows a perspective view of the container 1 of the oil-filled transformer
  • FIG. 2B shows a cross-sectional view of the container 1 containing the coil 7 and the like.
  • a recess 1a or the like is provided on the surface of the container 1 facing the portion where the coils 7 of a plurality of phases approach, so that the insulating oil 6 provided on the outer periphery of the coil 7 has a constant layer thickness. ing.
  • the recess 1 a extends in the axial direction of the coil 7 and is recessed toward a portion where coils of a plurality of phases approach.
  • the surface of the container 1 is formed by a curved surface extending along the outer peripheral surface of the coil 7 so that the insulating oil 6 on the outer peripheral surface of the coil 7 has a substantially constant layer thickness. This makes it possible to reduce the distance from the container periphery to the necessary distance for insulation performance while securing the required distance for insulation performance.
  • the thermal conductivity of the insulating oil 6 is, for example, as small as 0.12 W / m ⁇ K, but the thermal conductivity of the metal container is, for example, relatively large as 80 W / m ⁇ K. Heat dissipation performance can be improved by reducing the thickness of the insulating oil having low heat transfer performance and reducing the distance to the container having a relatively large heat transfer.
  • embossing it is preferable to form a plurality of projections or depressions (dimples) on the surface of the container 1 by, for example, embossing, to increase the surface area of the container.
  • a container 1 which contains an iron core 9, a coil 7 wound around the iron core 9, the iron core 9, the coil 7, and a fixing member disposed on the iron core or the coil.
  • a transformer 15 having a lid 15 at the upper part of the container 1, wherein the insulating oil 6 is accommodated in the container 1 to a position higher than the upper part of the fixing member, and penetrates the upper and lower parts of the lid 15;
  • a heat transfer member (cooling fin 16) having a thermal conductivity higher than that of the insulating oil 6, and the insulating oil 6 is in contact with the heat transfer member, and the lower end of the heat transfer member and the fixing member The insulating oil 6 is disposed in between.
  • significant reduction in size and weight can be realized by reducing the distance for convection of the insulating oil without providing the heat dissipation ribs, and the heat source can be reduced by thinning the insulating oil layer.
  • the heat dissipation from the coil can be improved.
  • the cooling fins 16 equal to the height of the bushings are made to penetrate the lid using the bushing penetration and sealing method that has already been established, and by contacting the oil, no heat dissipating ribs around the container are provided. The heat transfer role similar to the heat dissipating rib can be expected.
  • 3 to 5 show modified examples in which the installation position of the cooling fin 16 is changed.
  • 3 to 5 are views of the oil filled transformer as seen from above the lid.
  • a plurality of cooling fins 16 are provided on both sides of the bushings 18 to 23 along the long side of the container 1.
  • a plurality of cooling fins 16 are provided diagonally on the side of the container 1 on both sides of the bushings 18 to 23.
  • a plurality of cooling fins 16 are provided on both sides of the bushings 18 to 23 in a V shape.
  • FIG. 6 shows another modification using the cooling pin.
  • a plurality of rod-like (cylindrical or prismatic) cooling pins 30 which vertically penetrate the lid 15 of the container are disposed. Similar to the cooling fins 15, the heat of the insulating oil 6 is transferred through the cooling pins 30 and dissipated to the outside of the container.
  • the shape may be changed between the inside and the outside of the container 1 so as to be a rod-shaped cooling pin on the inside and a plate-shaped cooling fin on the outside.
  • the cooling fins 16 and the cooling pins 30 which are installed through the lid 15 used in the present embodiment can be attached to the existing oil-filled transformer, and after attachment, the same sealing material as the bushing is used. If you overturn.
  • FIG. 11A is a cross-sectional view of the oil-filled transformer
  • FIG. 11B is a top view of the container lid of FIG. 11A.
  • FIG. 11A shows a three-phase three-leg oil filled transformer consisting of U phase 11, V phase 12, and W phase 13.
  • the oil-filled transformer of this embodiment includes an iron core 9, a coil 7 (U phase 11, V phase 12, W phase 13) wound around the iron core 9, an iron core 9, a coil 7 and an iron core 9 or a coil 7.
  • the container 1 which accommodates the fixing member (not shown) arrange
  • the insulating oil 6 is accommodated in the container 1 to a position higher than the upper portion of the fixing member.
  • the container 1 and the lid 15 of the container are usually formed of steel plates.
  • the cooling fins 16 formed of the heat transfer member are in contact with the lid 15 of the container, and the heat of the insulating oil 6 is transferred to the lid 15 of the container through the cooling fins 16 and dissipated into the air from the lid 15 Ru.
  • the heat dissipating rib 2 is provided around the container 1.
  • the heat dissipating rib 2 it is preferable to arrange the heat dissipating fins 16 in the container so as not to prevent the convection of the insulating oil 6. Note that the heat dissipating rib 2 may not be provided as long as heat can be sufficiently dissipated from the lid 15 of the container.
  • the heat dissipation rib is provided around the container, and while the installation area is the same as the conventional, the heat is dissipated by radiating heat from the lid of the container as well.
  • the capacity can be improved, and the current-carrying capacity can be made larger than in the prior art.
  • FIG. 12A and 12B show an oil filled transformer according to a third embodiment of the present invention.
  • FIG. 12A is a cross-sectional view of the oil-filled transformer
  • FIG. 12B is a top view of the container lid of FIG. 12A.
  • FIG. 12A shows a three-phase three-leg oil filled transformer consisting of U phase 11, V phase 12, and W phase 13.
  • the oil-filled transformer of this embodiment includes an iron core 9, a coil 7 (U phase 11, V phase 12, W phase 13) wound around the iron core 9, an iron core 9, a coil 7 and an iron core 9 or a coil 7.
  • the container 1 which accommodates the fixing member (not shown) arrange
  • the insulating oil 6 is accommodated in the container 1 to a position higher than the upper portion of the fixing member.
  • the heat of the insulating oil 6 is transferred to the outside of the container through the cooling fins 16 formed of the heat transfer member, and dissipated into the air.
  • the heat dissipating rib 2 is provided around the container 1 and the heat is dissipated to the outside via the heat dissipating rib 2 as well.
  • the heat dissipating rib 2 it is preferable to arrange the heat dissipating fins 16 in the container so as not to prevent the convection of the insulating oil 6.
  • the heat dissipation rib is provided around the container, and while the installation area is the same as the conventional, the heat is dissipated by radiating heat from the lid of the container as well.
  • the capacity can be improved, and the current-carrying capacity can be made larger than in the prior art.
  • FIG. 13 shows a single-phase, pole-mounted, oil-filled transformer of Embodiment 4 of the present invention.
  • FIG. 13 is a cross-sectional view of a single-phase pole-mounted oil-filled transformer.
  • the single-phase oil-filled transformer of this embodiment includes an iron core 9, a coil 7 wound around the iron core 9, an iron core 9, a coil 7, and fixing members disposed on the iron core 9 or coil 7 (see FIG. Not shown) and a lid 15 at the top of the container.
  • the insulating oil 6 is accommodated in the container 1 to a position higher than the upper portion of the fixing member.
  • a cooling fin 16 formed of a heat transfer member having a thermal conductivity higher than that of the insulating oil 6 is provided through the upper and lower surfaces of the lid, and the insulating oil 6 is in contact with the cooling fin 16.
  • a large number of cooling fins are provided on the upper surface of the lid 15 in addition to the cooling fins 16 penetrating the upper and lower surfaces of the lid, and the cooling fins 16 and the lid 15 are in contact with each other.
  • the terminals are provided on the side plates of the container without providing the terminals on the lid.
  • the fixing member (not shown) disposed on the upper part of the iron core 9 or the coil 7, the lead wire of the terminal or the like is present in the central part or the peripheral part of the container There is a portion (central portion or peripheral portion) where the fins 16 can not be installed.
  • FIG. 13 shows a configuration assuming that there is a portion where the cooling fins 16 can not be installed at the inner peripheral portion of the container, and the cooling fins 16 penetrating the lid of the container are provided only at the central portion and provided at the other peripheral portions.
  • the cooling fins 16 are formed in a structure not passing through the lid.
  • FIG. 14 shows a configuration assuming that there is a portion where the cooling fin 16 can not be installed at the central portion inside the container, and the cooling fin 16 penetrating the lid of the container is provided only at the peripheral portion, and the other lids are central
  • the cooling fin 16 provided in the part is formed in the structure which has not penetrated the lid
  • the cooling fins 16 formed of the heat transfer member are in contact with the lid 15 of the container, and the heat of the insulating oil 6 is dissipated into the air through the cooling fins 16 penetrating the lid, and the cooling fins 16 The heat is transferred to the lid 15 of the container, and from the cooling fins not passing through the lid 15, the heat is dissipated into the air.
  • the plurality of cooling fins 16 and the lid 15 of the container can be integrally formed of aluminum or the like.
  • FIG. 15 is obtained by finite element analysis for the oil-impregnated transformer in which the cooling fins 16 are partially provided in the insulating oil 6 to transfer the heat of the insulating oil 6 to the lid 15 according to the present embodiment. Shows the temperature distribution results.
  • FIG. 16 shows temperature distribution results obtained by finite element analysis for the conventional oil-filled transformer without the cooling fins 16. As shown in FIG. 15, by providing the cooling fins 16 in the insulating oil 6, the temperatures of the iron core 9, the coil 7 and the insulating oil 6 can be lowered.
  • the cooling fin 16 is partially provided in the insulating oil 6 so that the heat of the insulating oil 6 is transferred to the lid, and the cooling fin is maximally provided on the outside of the lid, so that the heat radiation area is made By increasing and radiating heat, it is possible to achieve both downsizing of the oil-filled transformer container and improvement of the heat radiation performance.
  • FIG. 17 shows a single-phase above-column oil-filled transformer of Embodiment 5 of the present invention.
  • a container inner heat transfer member 24 made of a material having a thermal conductivity larger than that of the container 1 is provided around the inside of the container 1.
  • a cylindrical container heat transfer member 24 made of aluminum may be provided in close contact with the inside of the container 1.
  • the container inner heat transfer member 24 may be provided not on the entire circumference of the container but on a part of the container.
  • the heat of the insulating oil 6 is transferred to the container 1 through the container inner heat transfer member 24 having a large thermal conductivity, and is dissipated from the container 1 into the air. Also, although the temperature of the insulating oil is low at the bottom of the container 1 and high at the top, by providing the container inner heat transfer member 24 on the inner periphery of the container 1, the temperature of the insulating oil at the top of the container is lowered. Can.
  • the heat of the insulating oil can be efficiently transferred to the container, and the container can dissipate heat by natural convection of air. Further, by providing the heat transfer member in close contact with the container, it is possible to ensure the strength of the container with respect to the load of the internal pressure due to the rise in oil temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformer Cooling (AREA)
  • Housings And Mounting Of Transformers (AREA)

Abstract

Provided is an oil-filled transformer wherein a desired thermal radiation capability is secured while allowing for a reduction in both the size and weight of the container. This oil-filled transformer comprises an iron core, a coil wound around the iron core, a container accommodating the iron core and the coil, and a lid closing the upper part of the container, with insulation oil being housed in the container. The transformer is provided with a thermal conductive member having a higher thermal conductivity than the insulation oil, the thermal conductive member traversing the upper surface and the lower surface of the lid or being disposed on the lower surface of the lid. The thermal conductive member is disposed so as to be in contact with the insulation oil.

Description

油入変圧器Oil-filled transformer
 本発明は、油入変圧器、特に油入変圧器の放熱構造に関する。 The present invention relates to a heat dissipation structure of an oil filled transformer, in particular, an oil filled transformer.
 一般に油入電気機器、例えば油入変圧器の容器には、絶縁媒体として絶縁油が入っている。その絶縁油は電気機器の通電熱で温度上昇することによって膨張し、容器の内圧が上昇するので、容器は変形しないように充分な強度を必要とする。また、熱伝導が低い絶縁油の温度上昇を抑制できる放熱性能が要求される。 In general, the container of an oil-filled electrical device such as an oil-filled transformer contains insulating oil as an insulating medium. The insulating oil is expanded by the temperature rise due to the electric heat of the electric device, and the internal pressure of the container is increased, so the container needs to have a sufficient strength so as not to deform. Moreover, the heat dissipation performance which can control the temperature rise of insulating oil with low heat conduction is required.
 この種の容器の従来技術としては、特開昭53-35122号公報(特許文献1)に示される公知技術がある。この公知技術は、図7と図8に示すように、放熱リブとしてのひれ状張出部2の上下端部を、内方に絞り込んで密着した面接合部3を形成する。そして、上記面接合部3に沿って上記張出部2の上下端部を溶接し、その溶接線を一軸のみとする一方、前記張出部2の板場に凸状または凹状の補強用ビード4を形成し、上記補強用ビード4により張出部2の機械的強度の増大を図るようにしている。 As a prior art of this kind of container, there is a publicly known art shown in JP-A-53-35122 (Patent Document 1). In this known technique, as shown in FIGS. 7 and 8, the upper and lower end portions of the fin-like overhanging portion 2 as a heat dissipating rib are drawn inwardly to form a surface joint portion 3 in close contact. Then, welding the upper and lower end portions of the overhanging portion 2 along the surface joint portion 3 and making the welding line uniaxially only, while a convex or concave reinforcing bead on the plate field of the overhanging portion 2 The reinforcement beads 4 are formed to increase the mechanical strength of the overhang portion 2.
特開昭53-35122号公報JP-A-53-35122
 特許文献1の従来例では、放熱リブとしてのひれ状張出部2は、容器内で絶縁油の温度上昇によって内圧が高くなった場合、補強用ビード4により張出部2の横方向および縦方向に対しての強度向上を図っている。 In the conventional example of Patent Document 1, when the internal pressure is increased due to the temperature rise of the insulating oil in the container, the fin-like overhanging portion 2 as the heat dissipating rib is formed by the reinforcing bead 4 in the lateral direction and the longitudinal direction of the overhanging portion 2 We are aiming to improve the strength in the direction.
 しかし、放熱リブに補強用ビード4を設けて強度向上を図っている分、放熱リブの面接合部3への負荷が大きくなり、より高度な接合方法が必要とされ、コストアップにつながる課題がある。 However, since the reinforcement bead 4 is provided on the heat dissipating rib to improve the strength, the load on the surface joint portion 3 of the heat dissipating rib is increased, a more advanced bonding method is required, and the cost increase is a problem. is there.
 一般に油入変圧器において、図9に示すように、絶縁油6は、内部のコイル7の導体の通電によって熱せられると、矢印の経路で対流すると考えられ、放熱面積を大きくするために放熱リブ2を大きく設けている。すなわち、絶縁油6は、鉄心9に設けたコイル7の導体によって熱せられると、その上方に上昇し、そこから放熱リブ2の内部側に流れ、放熱リブ2の放熱作用によって冷却されることにより、放熱リブ2の外周側から下降してコイル7側に戻る循環が期待される。図9に示すように循環を問題なく行わせるためには、コイル7と放熱リブ2との間の距離を大きく設ける必要があり、容器が大型化する課題がある。一方、容器内部の絶縁性能を確保するために絶縁油を浸す絶縁距離は小さい。これは、コイル7の外周はすでに絶縁紙で保護されているため、絶縁油を絶縁紙に浸透させて確実に絶縁を担保しているからである。そこで、図10に示すように、コイル7と放熱リブ2との間の距離を絶縁性能が確保できる距離まで小さくすると大幅な小型化ができるが、絶縁油6の対流による放熱効果は小さくなってしまうという課題がある。 Generally in oil-filled transformers, as shown in FIG. 9, insulating oil 6 is considered to be convective in the path of the arrows when heated by energization of the conductor of coil 7 inside, and heat dissipation ribs are used to increase the heat dissipation area. 2 is provided largely. That is, when the insulating oil 6 is heated by the conductor of the coil 7 provided on the iron core 9, it rises upward, flows from there to the inside of the heat dissipating rib 2, and is cooled by the heat dissipating function of the heat dissipating rib 2. The circulation which descends from the outer peripheral side of the heat radiation rib 2 and returns to the coil 7 side is expected. As shown in FIG. 9, in order to cause circulation without any problem, it is necessary to provide a large distance between the coil 7 and the heat dissipating rib 2, and there is a problem that the container becomes large. On the other hand, the insulation distance for immersing the insulation oil is small in order to ensure the insulation performance inside the container. This is because the outer periphery of the coil 7 is already protected by the insulating paper, so the insulating oil is made to penetrate the insulating paper to ensure the insulation. Therefore, as shown in FIG. 10, if the distance between the coil 7 and the heat dissipating rib 2 is reduced to a distance at which the insulation performance can be secured, significant downsizing can be achieved, but the heat dissipating effect by the convection of the insulating oil 6 is reduced. There is a problem of
 本発明は、所望の放熱性能を確保するとともに、容器の小型化・軽量化を両立できる油入変圧器を提供することを目的とする。 An object of the present invention is to provide an oil-impregnated transformer capable of achieving both a reduction in size and a reduction in weight of a container while securing desired heat dissipation performance.
 上記課題を解決するための、本発明の「油入変圧器」の一例を挙げるならば、
鉄心と、前記鉄心に巻き回されたコイルと、前記鉄心および前記コイルを収容する容器と、前記容器の上部を塞ぐ蓋とを有し、前記容器には絶縁油が収容された油入変圧器であって、前記蓋の上面と下面を貫通し、若しくは、前記蓋の下面に前記絶縁油よりも熱伝導率が高い伝熱部材が設けられ、前記伝熱部材は、前記絶縁油が接触するように配置されていることを特徴とする。
If an example of the "oil-filled transformer" of the present invention for solving the above-mentioned subject is mentioned,
An oil-filled transformer having an iron core, a coil wound around the iron core, a container for containing the iron core and the coil, and a lid for closing the upper part of the container, wherein the container contains an insulating oil. A heat transfer member having a thermal conductivity higher than that of the insulating oil is provided through the upper surface and the lower surface of the lid, or the lower surface of the lid is in contact with the insulating oil It is characterized in that it is arranged as follows.
 本発明によれば、容器に放熱リブを設ける必要がなくなるので、容器の小型化・軽量化を実現できる。 According to the present invention, since it is not necessary to provide the container with the heat radiation rib, the container can be made smaller and lighter.
 また、放熱リブを設けないので、容器の内圧上昇により放熱リブがたわむなどの恐れがなくなり、強度における信頼性が確保できる。 Further, since the heat dissipating rib is not provided, there is no fear that the heat dissipating rib is bent due to the rise in the internal pressure of the container, and reliability in strength can be secured.
本発明の実施例1の油入変圧器の断面図である。It is sectional drawing of the oil-impregnated transformer of Example 1 of this invention. 実施例1の油入変圧器の上面の説明図である。It is explanatory drawing of the upper surface of the oil-impregnated transformer of Example 1. FIG. 実施例1の油入変圧器の容器の一例を示す斜視図である。FIG. 6 is a perspective view showing an example of a container of the oil-filled transformer of the first embodiment. 実施例1の油入変圧器の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of an oil-impregnated transformer of Example 1; 実施例1の油入変圧器の、変形例の上面の説明図である。It is explanatory drawing of the upper surface of the modification of the oil-impregnated transformer of Example 1. FIG. 実施例1の油入変圧器の、変形例の上面の説明図である。It is explanatory drawing of the upper surface of the modification of the oil-impregnated transformer of Example 1. FIG. 実施例1の油入変圧器の、変形例の上面の説明図である。It is explanatory drawing of the upper surface of the modification of the oil-impregnated transformer of Example 1. FIG. 実施例1の油入変圧器の、他の変形例の上面の説明図である。It is explanatory drawing of the upper surface of the other modification of the oil-impregnated transformer of Example 1. FIG. 従来の油入変圧器の容器の一例を示す斜視図である。It is a perspective view which shows an example of the container of the conventional oil-filled transformer. 容器に取り付ける、従来の放熱リブを示す正面図である。It is a front view which shows the conventional radiation rib attached to a container. 従来の油入変圧器内における油の対流を示す説明図である。It is explanatory drawing which shows the convection of the oil in the conventional oil-filled transformer. 小型の油入変圧器内における油の対流を示す説明図である。It is explanatory drawing which shows the convection of the oil in a small oil-filled transformer. 本発明の実施例2の油入変圧器の断面図である。It is sectional drawing of the oil-impregnated transformer of Example 2 of this invention. 実施例2の油入変圧器の上面の説明図である。It is explanatory drawing of the upper surface of the oil-impregnated transformer of Example 2. FIG. 本発明の実施例3の油入変圧器の断面図である。It is sectional drawing of the oil-impregnated transformer of Example 3 of this invention. 実施例3の油入変圧器の上面の説明図である。It is explanatory drawing of the upper surface of the oil-impregnated transformer of Example 3. FIG. 本発明の実施例4の単相柱上油入変圧器の断面図である。It is sectional drawing of the single phase pole top oil-impregnated transformer of Example 4 of this invention. 実施例4の単相柱上油入変圧器の変形例の断面図である。FIG. 18 is a cross-sectional view of a modification of the single-phase above-column oil-filled transformer of the fourth embodiment. 実施例4の単相柱上油入変圧器の伝熱解析による温度上昇分布図である。FIG. 16 is a temperature rise distribution map by heat transfer analysis of the single-phase, pole-mounted, oil-filled transformer of the fourth embodiment. 従来の単相柱上油入変圧器の伝熱解析による温度上昇分布図である。It is a temperature rise distribution figure by heat transfer analysis of the conventional single phase pole top oil-filled transformer. 本発明の実施例5の単相柱上油入変圧器の断面図である。It is sectional drawing of the single phase pole top oil-impregnated transformer of Example 5 of this invention.
 以下、本発明の実施例について図面を用いて説明する。なお、実施例を説明するための各図において、同一の構成要素には同一の名称、符号を付して、その繰り返しの説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each of the drawings for explaining the embodiments, the same components are denoted by the same names and reference numerals, and the repetitive description thereof will be omitted.
 図1Aおよび図1Bに、本発明の実施例1の油入変圧器を示す。図1Aは油入変圧器の断面図であり、図1Bは図1Aの容器蓋を上面から見た図である。図1Aは、U相11、V相12、W相13からなる3相3脚構造の油入変圧器を示す。 The oil-filled transformer of Example 1 of this invention is shown in FIG. 1A and 1B. 1A is a cross-sectional view of the oil-filled transformer, and FIG. 1B is a top view of the container lid of FIG. 1A. FIG. 1A shows a three-phase three-leg oil filled transformer consisting of U phase 11, V phase 12, and W phase 13. FIG.
 本実施例の油入変圧器は、鉄心9と、鉄心9に巻き回されたコイル7(U相11、V相12、W相13)と、鉄心9、コイル7および鉄心9またはコイル7の上部に配置される固定部材(図に示さず)を収容する容器1と、容器の上部に容器を塞ぐ蓋15とを有している。容器1には、固定部材の上部よりも高い位置まで絶縁油6が収容されている。蓋15には、上面と下面を貫通して板状の冷却フィン16が設けられており、冷却フィン16は絶縁油6よりも熱伝導率が高い伝熱部材で形成されている。冷却フィン16には絶縁油6が接触し、伝熱部材の下端と固定部材との間には絶縁油6が配置されている。冷却フィン16の材料としては、熱伝導率が高い材料であるアルミニウムや銅を用いることができるが、軽量化の点では純アルミニウムやアルミニウム合金が好ましい。冷却フィン16は絶縁油中に入れられており、伝熱の点から、冷却フィン16と絶縁油6との接触面積が大きい方が好ましい。 The oil-filled transformer of this embodiment includes an iron core 9, a coil 7 (U phase 11, V phase 12, W phase 13) wound around the iron core 9, an iron core 9, a coil 7 and an iron core 9 or a coil 7. It has the container 1 which accommodates the fixing member (not shown) arrange | positioned in the upper part, and the lid | cover 15 which closes a container on the upper part of a container. The insulating oil 6 is accommodated in the container 1 to a position higher than the upper portion of the fixing member. The lid 15 is provided with a plate-shaped cooling fin 16 penetrating the upper surface and the lower surface, and the cooling fin 16 is formed of a heat transfer member having a thermal conductivity higher than that of the insulating oil 6. The insulating oil 6 is in contact with the cooling fins 16, and the insulating oil 6 is disposed between the lower end of the heat transfer member and the fixing member. As a material of the cooling fin 16, although aluminum and copper which are materials with high thermal conductivity can be used, pure aluminum and an aluminum alloy are preferable at the point of weight reduction. The cooling fins 16 are contained in the insulating oil, and it is preferable that the contact area between the cooling fins 16 and the insulating oil 6 be large in terms of heat transfer.
 図1Bに示すように、冷却フィン16は、高圧ブッシング18,19,20および低圧ブッシング21,22,23を避けて両側に配置されている。図1Bでは、冷却フィン16は容器1の短辺に平行に複数設けられている。冷却フィン16の高さは、ブッシングの高さと同等にすれば良いが、これに限られるものではない。 As shown in FIG. 1B, the cooling fins 16 are disposed on both sides avoiding the high pressure bushings 18, 19, 20 and the low pressure bushings 21, 22, 23. In FIG. 1B, a plurality of cooling fins 16 are provided in parallel to the short side of the container 1. The height of the cooling fin 16 may be equal to the height of the bushing, but is not limited thereto.
 本実施例の油入変圧器では、コイル7は容器1の側面に近づけて設けられており、容器1内の絶縁油6の対流は少なく、冷却は主に伝熱部材である冷却フィン16の熱伝導により行われる。そのため、冷却は、容器1内の冷却フィン16の方向に依存することは少なく、冷却フィン16をなるべく多く設ければよい。容器1の外の冷却フィン16の設置方向は熱の分布による熱の流れを防げることなく、空気が対流する方向に設置すればよい。 In the oil-impregnated transformer of this embodiment, the coil 7 is provided close to the side surface of the container 1, the convection of the insulating oil 6 in the container 1 is small, and the cooling is mainly performed by It is done by heat conduction. Therefore, cooling is less dependent on the direction of the cooling fins 16 in the container 1, and it is sufficient to provide as many cooling fins 16 as possible. The installation direction of the cooling fins 16 outside the container 1 may not be able to prevent the flow of heat due to the distribution of heat, and it may be installed in the direction in which air is convective.
 油入変圧器を運転すると、コイル7や鉄心9が発熱し、絶縁油6の温度が上昇するが、伝熱部材である冷却フィン16を通して容器1の外に伝熱され、冷却フィン16から空気中に放熱される。また、容器1や容器の蓋15は、通常、鋼板で形成されており、熱の一部は冷却フィン16から容器の蓋15にも伝熱され、蓋15からも空気中に放熱される。 When the oil-filled transformer is operated, the coil 7 and the iron core 9 generate heat and the temperature of the insulating oil 6 rises, but the heat is transferred to the outside of the container 1 through the cooling fin 16 which is a heat transfer member. Heat is dissipated inside. Further, the container 1 and the lid 15 of the container are usually formed of a steel plate, and part of the heat is also transferred from the cooling fins 16 to the lid 15 of the container and is also dissipated from the lid 15 into the air.
 放熱面積を多くする従来の容器構造では、図7および図9に示すように、直方体形状の容器1の内部に1相以上のコイル7を収納し、その周囲に絶縁油6を満たしている。そして、容器1の外側には全周に渡って放熱リブ2を一定間隔で設けている。コイル7を構成する一次コイル部、二次コイル部は通電による発熱源になるため、U相、V相、W相の相間のコイルの接触部が導体部の中で最大の温度となる。さらに、相間のコイルの接触部では容器周囲または放熱リブとの距離が大きいため、放熱性能が低くなり、高温になりやすくなる。また、図10に示される、コイル7と放熱リブ2との間の距離を小さくして小型化した油入変圧器においては、絶縁油6の対流が起きにくくなり放熱効果が小さくなってしまう。 In the conventional container structure in which the heat radiation area is increased, as shown in FIGS. 7 and 9, the coil 7 of one or more phases is housed inside the rectangular parallelepiped container 1 and the insulating oil 6 is filled around the coil. And the heat dissipation rib 2 is provided in the outer side of the container 1 by fixed spacing over the perimeter. The primary coil portion and the secondary coil portion constituting the coil 7 become heat sources due to energization, so the contact portion of the coil between the U-phase, V-phase and W-phase becomes the maximum temperature among the conductor portions. Furthermore, at the contact portion of the coil between the phases, since the distance between the container periphery or the heat dissipating rib is large, the heat dissipating performance is lowered and the temperature is apt to be high. Further, in the oil filled transformer which is reduced in size by reducing the distance between the coil 7 and the heat radiation rib 2 shown in FIG. 10, the convection of the insulating oil 6 hardly occurs and the heat radiation effect is reduced.
 本実施例では、図1Aに示すように、鉄心9とコイル7とを組み立てた鉄心-コイル組立体には、鉄心9の複数の脚部にそれぞれ複数の相(U相11,V相12,W相13)のコイル7が設けられている。図2Aに油入変圧器の容器1の斜視図を示し、図2Bにコイル7などを収容した容器1の断面図を示す。図に示すように、コイル7の外周に設ける絶縁油6が一定の層厚になるように、複数の相のコイル7が近接する部位に面している容器1の面に凹部1aなどを設けている。凹部1aは、コイル7の軸方向に延び、複数の相のコイルが近接する部位に向かって凹んでいる。本実施例では、容器1の面をコイル7の外周面に沿って延びる曲面で形成し、コイル7の外周面の絶縁油6がほぼ一定の層厚となるようにしている。これによって、絶縁性能上の必要距離を確保しながら、容器周囲との距離を絶縁性能上の必要距離まで小さくできる。絶縁油6の熱伝導は、たとえば、0.12W/m・Kと熱伝導が小さいが、金属製の容器の熱伝導は例えば、80W/m・Kと比較的大きい。熱伝導性能が低い絶縁油の厚さを薄くし、熱伝導が比較的大きい容器までの距離を小さくすることで放熱性能を向上できる。 In this embodiment, as shown in FIG. 1A, in the iron core-coil assembly in which the iron core 9 and the coil 7 are assembled, a plurality of phases (U phase 11, V phase 12 and A coil 7 of W phase 13) is provided. FIG. 2A shows a perspective view of the container 1 of the oil-filled transformer, and FIG. 2B shows a cross-sectional view of the container 1 containing the coil 7 and the like. As shown in the figure, a recess 1a or the like is provided on the surface of the container 1 facing the portion where the coils 7 of a plurality of phases approach, so that the insulating oil 6 provided on the outer periphery of the coil 7 has a constant layer thickness. ing. The recess 1 a extends in the axial direction of the coil 7 and is recessed toward a portion where coils of a plurality of phases approach. In the present embodiment, the surface of the container 1 is formed by a curved surface extending along the outer peripheral surface of the coil 7 so that the insulating oil 6 on the outer peripheral surface of the coil 7 has a substantially constant layer thickness. This makes it possible to reduce the distance from the container periphery to the necessary distance for insulation performance while securing the required distance for insulation performance. The thermal conductivity of the insulating oil 6 is, for example, as small as 0.12 W / m · K, but the thermal conductivity of the metal container is, for example, relatively large as 80 W / m · K. Heat dissipation performance can be improved by reducing the thickness of the insulating oil having low heat transfer performance and reducing the distance to the container having a relatively large heat transfer.
 更に、本実施例において、例えばエンボス加工によって、容器1の表面に複数の凸部または凹部(ディンプル)を形成し、容器の表面積を広げるのが好ましい。容器の表面にディンプルを形成することにより、容器の表面積を増やして放熱性能を向上させることができる、また、ディンプルを形成することにより、容器の強度を向上させることができる。 Furthermore, in the present embodiment, it is preferable to form a plurality of projections or depressions (dimples) on the surface of the container 1 by, for example, embossing, to increase the surface area of the container. By forming dimples on the surface of the container, the surface area of the container can be increased to improve the heat radiation performance, and by forming the dimples, the strength of the container can be improved.
 本実施例は、鉄心9と、前記鉄心9に巻き回されたコイル7と、前記鉄心9、前記コイル7、および前記鉄心または前記コイルの上部に配置される固定部材とを収容する容器1と、前記容器1の上部に蓋15とを有する変圧器であって、前記容器1には、前記固定部材の上部よりも高い位置まで絶縁油6が収容され、前記蓋15の上部と下部を貫通し、前記絶縁油6よりも熱伝導率が高い伝熱部材(冷却フィン16)が設けられ、前記伝熱部材には前記絶縁油6が接触し、前記伝熱部材の下端と前記固定部材との間には前記絶縁油6が配置されているものである。 In this embodiment, a container 1 is provided which contains an iron core 9, a coil 7 wound around the iron core 9, the iron core 9, the coil 7, and a fixing member disposed on the iron core or the coil. A transformer 15 having a lid 15 at the upper part of the container 1, wherein the insulating oil 6 is accommodated in the container 1 to a position higher than the upper part of the fixing member, and penetrates the upper and lower parts of the lid 15; A heat transfer member (cooling fin 16) having a thermal conductivity higher than that of the insulating oil 6, and the insulating oil 6 is in contact with the heat transfer member, and the lower end of the heat transfer member and the fixing member The insulating oil 6 is disposed in between.
 本実施例によれば、放熱リブを設けることなく絶縁油の対流のための距離を低減することで大幅な小型化・軽量化を実現でき、また、絶縁油の層を薄くすることにより、熱源であるコイルからの放熱性を向上させることができる。また、既に設置が確立されているブッシングの貫通・密閉方法を利用して、ブッシング高さと同等の冷却フィン16を蓋に貫通させ、油に接触させることにより、容器周囲の放熱リブを設けなくても放熱リブ同様の伝熱役割が期待できる。さらに、容器周囲の放熱リブを設けないので、容器の内圧上昇により放熱リブがたわむなどの恐れがなく、圧力上昇時に応力が集中する放熱リブの面接合部がないので、強度における信頼性が確保できる。 According to the present embodiment, significant reduction in size and weight can be realized by reducing the distance for convection of the insulating oil without providing the heat dissipation ribs, and the heat source can be reduced by thinning the insulating oil layer. The heat dissipation from the coil can be improved. In addition, the cooling fins 16 equal to the height of the bushings are made to penetrate the lid using the bushing penetration and sealing method that has already been established, and by contacting the oil, no heat dissipating ribs around the container are provided. The heat transfer role similar to the heat dissipating rib can be expected. Furthermore, since the heat dissipating rib around the container is not provided, there is no fear that the heat dissipating rib will be bent due to the internal pressure rise of the container, and there is no surface joint of the heat dissipating rib where stress concentrates at the pressure rise. it can.
 図3~図5に、冷却フィン16設置位置を変更した変形例を示す。図3~図5は油入変圧器を蓋の上から見た図である。 3 to 5 show modified examples in which the installation position of the cooling fin 16 is changed. 3 to 5 are views of the oil filled transformer as seen from above the lid.
 図3の変形例は、ブッシング18~23の両側に、容器1の長辺に沿って、複数の冷却フィン16を設けたものである。図4の変形例は、ブッシング18~23の両側に、容器1の辺に斜めに、複数の冷却フィン16を設けたものである。図5の変形例は、ブッシング18~23の両側に、ハの字状に、複数の冷却フィン16を設けたものである。 In the modification of FIG. 3, a plurality of cooling fins 16 are provided on both sides of the bushings 18 to 23 along the long side of the container 1. In the modification of FIG. 4, a plurality of cooling fins 16 are provided diagonally on the side of the container 1 on both sides of the bushings 18 to 23. In the modification of FIG. 5, a plurality of cooling fins 16 are provided on both sides of the bushings 18 to 23 in a V shape.
 図6に、冷却ピンを用いた他の変形例を示す。この変形例は、冷却フィン16に代えて、容器の蓋15を上下に貫通する複数の棒状(円柱状または角柱状)の冷却ピン30を配置したものである。冷却フィン15と同様に、絶縁油6の熱が冷却ピン30を介して伝熱され、容器の外に放熱される。容器1の内側と外側で形状を変えて、内側では棒状の冷却ピンとし、外側では板状の冷却フィンとしても良い。 FIG. 6 shows another modification using the cooling pin. In this modification, in place of the cooling fins 16, a plurality of rod-like (cylindrical or prismatic) cooling pins 30 which vertically penetrate the lid 15 of the container are disposed. Similar to the cooling fins 15, the heat of the insulating oil 6 is transferred through the cooling pins 30 and dissipated to the outside of the container. The shape may be changed between the inside and the outside of the container 1 so as to be a rod-shaped cooling pin on the inside and a plate-shaped cooling fin on the outside.
 なお、本実施例に用いる蓋15に貫通させて設置する冷却フィン16や冷却ピン30は、既設の油入変圧器にも取り付けることが可能で、取り付け後にブッシングと同様の密閉材を用いて周囲を覆えば良い。 The cooling fins 16 and the cooling pins 30 which are installed through the lid 15 used in the present embodiment can be attached to the existing oil-filled transformer, and after attachment, the same sealing material as the bushing is used. If you overturn.
 図11Aおよび図11Bに、本発明の実施例2の油入変圧器を示す。図11Aは油入変圧器の断面図であり、図11Bは図11Aの容器蓋を上面から見た図である。図11Aは、U相11、V相12、W相13からなる3相3脚構造の油入変圧器を示す。 The oil-filled transformer of Example 2 of this invention is shown to FIG. 11A and 11B. 11A is a cross-sectional view of the oil-filled transformer, and FIG. 11B is a top view of the container lid of FIG. 11A. FIG. 11A shows a three-phase three-leg oil filled transformer consisting of U phase 11, V phase 12, and W phase 13.
 本実施例の油入変圧器は、鉄心9と、鉄心9に巻き回されたコイル7(U相11、V相12、W相13)と、鉄心9、コイル7、および鉄心9またはコイル7の上部に配置される固定部材(図に示さず)とを収容する容器1と、容器の上部に蓋15とを有している。容器1には、固定部材の上部よりも高い位置まで絶縁油6が収容されている。蓋の下面には絶縁油6よりも熱伝導率が高い伝熱部材で形成された冷却フィン16が設けられ、冷却フィン16には絶縁油6が接触している。 The oil-filled transformer of this embodiment includes an iron core 9, a coil 7 (U phase 11, V phase 12, W phase 13) wound around the iron core 9, an iron core 9, a coil 7 and an iron core 9 or a coil 7. The container 1 which accommodates the fixing member (not shown) arrange | positioned at upper part, and the lid | cover 15 on the upper part of a container. The insulating oil 6 is accommodated in the container 1 to a position higher than the upper portion of the fixing member. A cooling fin 16 formed of a heat transfer member having a thermal conductivity higher than that of the insulating oil 6 is provided on the lower surface of the lid, and the insulating oil 6 is in contact with the cooling fin 16.
 容器1や容器の蓋15は、通常、鋼板で形成されている。伝熱部材で形成された冷却フィン16は容器の蓋15に接触しており、絶縁油6の熱は冷却フィン16を介して容器の蓋15に伝熱され、蓋15から空気中に放熱される。 The container 1 and the lid 15 of the container are usually formed of steel plates. The cooling fins 16 formed of the heat transfer member are in contact with the lid 15 of the container, and the heat of the insulating oil 6 is transferred to the lid 15 of the container through the cooling fins 16 and dissipated into the air from the lid 15 Ru.
 本実施例においては、図9,10に示される従来の油入変圧器と同様に、容器1の周囲に放熱リブ2が設けられている。放熱リブ2を設ける場合には、容器内の放熱フィン16が絶縁油6の対流を妨げないように配置するのが好ましい。なお、容器の蓋15から十分に放熱ができれば、放熱リブ2は設けないでもよい。 In the present embodiment, as in the conventional oil-filled transformer shown in FIGS. 9 and 10, the heat dissipating rib 2 is provided around the container 1. When the heat dissipating rib 2 is provided, it is preferable to arrange the heat dissipating fins 16 in the container so as not to prevent the convection of the insulating oil 6. Note that the heat dissipating rib 2 may not be provided as long as heat can be sufficiently dissipated from the lid 15 of the container.
 本実施例によれば、従来の油入変圧器と同様に、容器の周囲に放熱リブが設けられていて、据付面積は従来と同等でありながら、容器の蓋からも放熱することによって、放熱容量を向上することができ、通電容量を従来よりも大きくすることができる。 According to the present embodiment, as in the conventional oil-filled transformer, the heat dissipation rib is provided around the container, and while the installation area is the same as the conventional, the heat is dissipated by radiating heat from the lid of the container as well. The capacity can be improved, and the current-carrying capacity can be made larger than in the prior art.
 図12Aおよび図12Bに、本発明の実施例3の油入変圧器を示す。図12Aは油入変圧器の断面図であり、図12Bは図12Aの容器蓋を上面から見た図である。図12Aは、U相11、V相12、W相13からなる3相3脚構造の油入変圧器を示す。 12A and 12B show an oil filled transformer according to a third embodiment of the present invention. FIG. 12A is a cross-sectional view of the oil-filled transformer, and FIG. 12B is a top view of the container lid of FIG. 12A. FIG. 12A shows a three-phase three-leg oil filled transformer consisting of U phase 11, V phase 12, and W phase 13.
 本実施例の油入変圧器は、鉄心9と、鉄心9に巻き回されたコイル7(U相11、V相12、W相13)と、鉄心9、コイル7、および鉄心9またはコイル7の上部に配置される固定部材(図に示さず)とを収容する容器1と、容器の上部に蓋15とを有している。容器1には、固定部材の上部よりも高い位置まで絶縁油6が収容されている。蓋15の上面と下面を貫通して絶縁油6よりも熱伝導率が高い伝熱部材で形成されている冷却フィン16が設けられ、冷却フィン16は絶縁油6に接触している。 The oil-filled transformer of this embodiment includes an iron core 9, a coil 7 (U phase 11, V phase 12, W phase 13) wound around the iron core 9, an iron core 9, a coil 7 and an iron core 9 or a coil 7. The container 1 which accommodates the fixing member (not shown) arrange | positioned at upper part, and the lid | cover 15 on the upper part of a container. The insulating oil 6 is accommodated in the container 1 to a position higher than the upper portion of the fixing member. A cooling fin 16 formed of a heat transfer member having a thermal conductivity higher than that of the insulating oil 6 is provided through the upper and lower surfaces of the lid 15, and the cooling fin 16 is in contact with the insulating oil 6.
 実施例1と同様に、絶縁油6の熱は伝熱部材で形成された冷却フィン16を介して容器の外に伝熱され、空気中に放熱される。 As in the first embodiment, the heat of the insulating oil 6 is transferred to the outside of the container through the cooling fins 16 formed of the heat transfer member, and dissipated into the air.
 本実施例においては、従来の油入変圧器と同様に、容器1の周囲に放熱リブ2が設けられており、放熱リブ2を介しても外部に放熱される。放熱リブ2を設ける場合には、容器内の放熱フィン16が絶縁油6の対流を妨げないように配置するのが好ましい。 In the present embodiment, as in the conventional oil-filled transformer, the heat dissipating rib 2 is provided around the container 1 and the heat is dissipated to the outside via the heat dissipating rib 2 as well. When the heat dissipating rib 2 is provided, it is preferable to arrange the heat dissipating fins 16 in the container so as not to prevent the convection of the insulating oil 6.
 本実施例によれば、従来の油入変圧器と同様に、容器の周囲に放熱リブが設けられていて、据付面積は従来と同等でありながら、容器の蓋からも放熱することによって、放熱容量を向上することができ、通電容量を従来よりも大きくすることができる。 According to the present embodiment, as in the conventional oil-filled transformer, the heat dissipation rib is provided around the container, and while the installation area is the same as the conventional, the heat is dissipated by radiating heat from the lid of the container as well. The capacity can be improved, and the current-carrying capacity can be made larger than in the prior art.
 図13に、本発明の実施例4の単相柱上油入変圧器を示す。図13は単相柱上油入変圧器の断面図である。本実施例の単相油入変圧器は、鉄心9と、鉄心9に巻き回されたコイル7と、鉄心9、コイル7、および鉄心9またはコイル7の上部に配置される固定部材(図に示さず)とを収容する容器1と、容器の上部に蓋15とを有している。容器1には、固定部材の上部よりも高い位置まで絶縁油6が収容されている。蓋の上面と下面を貫通して絶縁油6よりも熱伝導率が高い伝熱部材で形成されている冷却フィン16が設けられ、冷却フィン16には絶縁油6が接触している。蓋15の上面には、蓋の上面と下面を貫通する冷却フィン16以外にも、多数の冷却フィンが設けられており、冷却フィン16と蓋15は接触している。 FIG. 13 shows a single-phase, pole-mounted, oil-filled transformer of Embodiment 4 of the present invention. FIG. 13 is a cross-sectional view of a single-phase pole-mounted oil-filled transformer. The single-phase oil-filled transformer of this embodiment includes an iron core 9, a coil 7 wound around the iron core 9, an iron core 9, a coil 7, and fixing members disposed on the iron core 9 or coil 7 (see FIG. Not shown) and a lid 15 at the top of the container. The insulating oil 6 is accommodated in the container 1 to a position higher than the upper portion of the fixing member. A cooling fin 16 formed of a heat transfer member having a thermal conductivity higher than that of the insulating oil 6 is provided through the upper and lower surfaces of the lid, and the insulating oil 6 is in contact with the cooling fin 16. A large number of cooling fins are provided on the upper surface of the lid 15 in addition to the cooling fins 16 penetrating the upper and lower surfaces of the lid, and the cooling fins 16 and the lid 15 are in contact with each other.
 単相柱上油入変圧器においては、通常、蓋に端子を設けることなく、容器の側板に端子を設けている。そのために、鉄心9またはコイル7の上部に配置される固定部材(図に示さず)の上において、容器の中央部又は周囲部に端子のリード線などが存在し、蓋を貫通している冷却フィン16が設置できない部分(中央部又は周囲部)が生じる。 In the single-phase oil-in-place transformer, generally, the terminals are provided on the side plates of the container without providing the terminals on the lid. For that purpose, on the fixing member (not shown) disposed on the upper part of the iron core 9 or the coil 7, the lead wire of the terminal or the like is present in the central part or the peripheral part of the container There is a portion (central portion or peripheral portion) where the fins 16 can not be installed.
 図13は、容器内周囲部に冷却フィン16が設置できない部分がある場合を想定した構成で、容器の蓋を貫通する冷却フィン16が中央部だけに設けられ、その他の蓋の周囲部に設けられている冷却フィン16は蓋を貫通していない構造に形成されている。逆に、図14は、容器内中央部に冷却フィン16が設置できない部分がある場合を想定した構成で、容器の蓋を貫通する冷却フィン16が周囲部だけに設けられ、その他の蓋の中央部に設けた冷却フィン16は蓋を貫通していない構造に形成されている。 FIG. 13 shows a configuration assuming that there is a portion where the cooling fins 16 can not be installed at the inner peripheral portion of the container, and the cooling fins 16 penetrating the lid of the container are provided only at the central portion and provided at the other peripheral portions. The cooling fins 16 are formed in a structure not passing through the lid. Conversely, FIG. 14 shows a configuration assuming that there is a portion where the cooling fin 16 can not be installed at the central portion inside the container, and the cooling fin 16 penetrating the lid of the container is provided only at the peripheral portion, and the other lids are central The cooling fin 16 provided in the part is formed in the structure which has not penetrated the lid | cover.
 伝熱部材で形成された冷却フィン16は容器の蓋15に接触しており、絶縁油6の熱は、蓋を貫通する冷却フィン16を介して空気中に放熱されるとともに、冷却フィン16を介して容器の蓋15に伝熱され、蓋15を貫通しない冷却フィンからも空気中に放熱される。なお、複数の冷却フィン16と容器の蓋15とをアルミニウム等で一体形成することもできる。 The cooling fins 16 formed of the heat transfer member are in contact with the lid 15 of the container, and the heat of the insulating oil 6 is dissipated into the air through the cooling fins 16 penetrating the lid, and the cooling fins 16 The heat is transferred to the lid 15 of the container, and from the cooling fins not passing through the lid 15, the heat is dissipated into the air. The plurality of cooling fins 16 and the lid 15 of the container can be integrally formed of aluminum or the like.
 図15は、本実施例による、部分的に冷却フィン16を絶縁油6中に設けて絶縁油6の熱を蓋15に伝熱させるようにした油入変圧器について、有限要素解析により得られた温度分布結果を示している。比較のために図16に、冷却フィン16を設けない従来の油入変圧器について、有限要素解析により得られた温度分布結果を示している。図15に示すように、冷却フィン16を絶縁油6中に設けることにより、鉄心9,コイル7および絶縁油6の温度を下げることができる。 FIG. 15 is obtained by finite element analysis for the oil-impregnated transformer in which the cooling fins 16 are partially provided in the insulating oil 6 to transfer the heat of the insulating oil 6 to the lid 15 according to the present embodiment. Shows the temperature distribution results. For comparison, FIG. 16 shows temperature distribution results obtained by finite element analysis for the conventional oil-filled transformer without the cooling fins 16. As shown in FIG. 15, by providing the cooling fins 16 in the insulating oil 6, the temperatures of the iron core 9, the coil 7 and the insulating oil 6 can be lowered.
 本実施例によれば、部分的に冷却フィン16を絶縁油6中に設けて絶縁油6の熱を蓋に伝熱させ、蓋の外側に最大限に冷却フィンを設けることにより、放熱面積を増加させて放熱することで、油入変圧器の容器の小型化と放熱性能の向上を両立することができる。 According to this embodiment, the cooling fin 16 is partially provided in the insulating oil 6 so that the heat of the insulating oil 6 is transferred to the lid, and the cooling fin is maximally provided on the outside of the lid, so that the heat radiation area is made By increasing and radiating heat, it is possible to achieve both downsizing of the oil-filled transformer container and improvement of the heat radiation performance.
 図17に、本発明の実施例5の単相柱上油入変圧器を示す。図13の冷却フィンの構成に加えて、容器1の内側の周囲に容器1より熱伝導率が大きい材料による容器内側伝熱部材24を設ける。例えば円筒状の容器の場合、容器1の内側にアルミニウムから成る円筒状の容器内側伝熱部材24を密着して設ければ良い。なお、容器内側伝熱部材24は、容器の全周ではなく、容器の一部に設けても良い。 FIG. 17 shows a single-phase above-column oil-filled transformer of Embodiment 5 of the present invention. In addition to the configuration of the cooling fins in FIG. 13, a container inner heat transfer member 24 made of a material having a thermal conductivity larger than that of the container 1 is provided around the inside of the container 1. For example, in the case of a cylindrical container, a cylindrical container heat transfer member 24 made of aluminum may be provided in close contact with the inside of the container 1. The container inner heat transfer member 24 may be provided not on the entire circumference of the container but on a part of the container.
 絶縁油6の熱は、熱伝導率が大きい容器内側伝熱部材24を介して容器1に伝えられ、容器1から空気中に放熱される。また、絶縁油の温度は容器1の底部で低く、上部で高くなっているが、容器1の内周に容器内側伝熱部材24を設けることにより、容器の上部の絶縁油の温度を下げることができる。 The heat of the insulating oil 6 is transferred to the container 1 through the container inner heat transfer member 24 having a large thermal conductivity, and is dissipated from the container 1 into the air. Also, although the temperature of the insulating oil is low at the bottom of the container 1 and high at the top, by providing the container inner heat transfer member 24 on the inner periphery of the container 1, the temperature of the insulating oil at the top of the container is lowered. Can.
 本実施例によると、容器の内側に熱伝導率が大きい伝熱部材を設けることにより、絶縁油の熱を効率よく容器に伝熱して、容器から空気の自然対流により放熱させることができる。また、容器に密着して伝熱部材を設けることにより、油温度上昇による内圧の負荷に対し容器の強度を確保することができる。 According to this embodiment, by providing a heat transfer member having a large thermal conductivity inside the container, the heat of the insulating oil can be efficiently transferred to the container, and the container can dissipate heat by natural convection of air. Further, by providing the heat transfer member in close contact with the container, it is possible to ensure the strength of the container with respect to the load of the internal pressure due to the rise in oil temperature.
1 容器
2 放熱リブ
3 面接合部
4 補強用ビード
6 絶縁油
7 コイル
9 鉄心(コア)
11 U相コイル
12 V相コイル
13 W相コイル
15 蓋
16 冷却フィン
18 U相高圧ブッシング
19 V相高圧ブッシング
20 W相高圧ブッシング
21 U相低圧ブッシング
22 V相低圧ブッシング
23 W相低圧ブッシング
24 容器内側伝熱部材
30 冷却ピン
Reference Signs List 1 container 2 heat radiation rib 3 surface joint 4 bead for reinforcement 6 insulating oil 7 coil 9 core (core)
11 U phase coil 12 V phase coil 13 W phase coil 15 lid 16 cooling fin 18 U phase high pressure bushing 19 V phase high pressure bushing 20 W phase high pressure bushing 21 U phase low pressure bushing 22 V phase low pressure bushing 23 W phase low pressure bushing 24 inside Heat transfer member 30 cooling pin

Claims (15)

  1.  鉄心と、前記鉄心に巻き回されたコイルと、前記鉄心および前記コイルを収容する容器と、前記容器の上部を塞ぐ蓋とを有し、前記容器には絶縁油が収容された油入変圧器であって、
     前記蓋の上面と下面を貫通し、若しくは、前記蓋の下面に前記絶縁油よりも熱伝導率が高い伝熱部材が設けられ、
     前記伝熱部材は、前記絶縁油が接触するように配置されていることを特徴とする油入変圧器。
    An oil-filled transformer having an iron core, a coil wound around the iron core, a container for containing the iron core and the coil, and a lid for closing the upper part of the container, wherein the container contains an insulating oil. And
    A heat transfer member having a thermal conductivity higher than that of the insulating oil is provided through the upper and lower surfaces of the lid, or on the lower surface of the lid,
    The said heat transfer member is arrange | positioned so that the said insulating oil may contact, The oil-filled transformer characterized by the above-mentioned.
  2.  請求項1記載の油入変圧器において、
     前記伝熱部材は、冷却フィンまたは冷却ピンであることを特徴とする油入変圧器。
    In the oil-filled transformer according to claim 1,
    The oil filled transformer, wherein the heat transfer member is a cooling fin or a cooling pin.
  3.  請求項1記載の油入変圧器において、
     前記伝熱部材は、前記蓋に接触するように設けられていることを特徴とする油入変圧器。
    In the oil-filled transformer according to claim 1,
    The oil-impregnated transformer, wherein the heat transfer member is provided to be in contact with the lid.
  4.  請求項1記載の油入変圧器において、
     前記容器の周囲に、複数の放熱リブが設けられていることを特徴とする油入変圧器。
    In the oil-filled transformer according to claim 1,
    A plurality of heat dissipating ribs are provided around the container, and the oil filled transformer according to claim 1.
  5.  請求項1記載の油入変圧器において、
     前記容器は、前記コイルの外周面に沿って延びる面で形成し、前記コイルの外周面と前記容器との間の前記絶縁油が一定の層厚となるようにしたことを特徴とする油入変圧器。
    In the oil-filled transformer according to claim 1,
    The container is formed of a surface extending along the outer peripheral surface of the coil, and the insulating oil between the outer peripheral surface of the coil and the container has a constant layer thickness. Transformer.
  6.  請求項1記載の油入変圧器において、
     前記容器の表面に、複数の凸部または凹部を形成したことを特徴とする油入変圧器。
    In the oil-filled transformer according to claim 1,
    A plurality of convex portions or concave portions are formed on the surface of the container.
  7.  請求項1記載の油入変圧器において、
     前記油入変圧器は、3相3脚構造であることを特徴とする油入変圧器。
    In the oil-filled transformer according to claim 1,
    The oil filled transformer is characterized in that it has a three-phase three-leg structure.
  8.  請求項7記載の油入変圧器において、
     前記蓋には、高圧用および低圧用ブッシングが設けられ、
     前記高圧用および低圧用ブッシングを避けて、複数の前記伝熱部材が配置されていることを特徴とする油入変圧器。
    In the oil-filled transformer according to claim 7,
    The lid is provided with high and low pressure bushings.
    A plurality of the heat transfer members are disposed to avoid the high pressure and low pressure bushings.
  9.  請求項1記載の油入変圧器において、
     前記油入変圧器は、単相構造であることを特徴とする油入変圧器。
    In the oil-filled transformer according to claim 1,
    The oil filled transformer is characterized in that it has a single phase structure.
  10.  請求項9記載の油入変圧器において、
     前記蓋には、下面の一部に前記伝熱部材が設けられ、上面の全面に複数の前記伝熱部材が設けられていることを特徴とする油入変圧器。
    In the oil-filled transformer according to claim 9,
    An oil immersion transformer characterized in that the heat transfer member is provided on a part of the lower surface of the lid, and a plurality of the heat transfer members are provided on the entire surface of the upper surface.
  11.  請求項1記載の油入変圧器において、
     前記容器および前記蓋の材料は、鋼板であることを特徴とする油入変圧器。
    In the oil-filled transformer according to claim 1,
    The material of the said container and the said lid | cover is a steel plate, The oil-filled transformer characterized by the above-mentioned.
  12.  請求項1記載の油入変圧器において、
     前記伝熱部材の材料は、純アルミニウムまたはアルミニウム合金であることを特徴とする油入変圧器。
    In the oil-filled transformer according to claim 1,
    The material of the heat transfer member is pure aluminum or an aluminum alloy.
  13.  請求項2記載の油入変圧器において、
     前記蓋と、前記冷却フィンまたは前記冷却ピンとは、一体形成されていることを特徴とする油入変圧器。
    In the oil-filled transformer according to claim 2,
    An oil filled transformer characterized in that the lid and the cooling fin or the cooling pin are integrally formed.
  14.  請求項1記載の油入変圧器において、
     前記容器の内側に、前記絶縁油よりも熱伝導率が高い容器内側伝熱部材が密着して設けられていることを特徴とする油入変圧器。
    In the oil-filled transformer according to claim 1,
    An oil-impregnated transformer characterized in that a container inner heat transfer member having a thermal conductivity higher than that of the insulating oil is provided in close contact with the inside of the container.
  15.  鉄心と、前記鉄心に巻き回されたコイルと、前記鉄心、前記コイル、および前記鉄心または前記コイルの上部に配置される固定部材とを収容する容器と、前記容器の上部に蓋とを有する変圧器であって、
     前記容器には、前記固定部材の上部よりも高い位置まで絶縁油が収容され、
     前記蓋の上部と下部を貫通し、前記絶縁油よりも熱伝導率が高い伝熱部材が設けられ、
     前記伝熱部材には前記絶縁油が接触し、前記伝熱部材の下端と前記固定部材との間には前記絶縁油が配置されていることを特徴とする変圧器。
    A transformer having a container for accommodating an iron core, a coil wound around the iron core, the iron core, the coil, and a fixing member disposed on the iron core or the coil upper part, and a lid on the container upper part And it is
    Insulating oil is contained in the container to a position higher than the upper portion of the fixing member,
    A heat transfer member is provided which penetrates the upper and lower portions of the lid and has a thermal conductivity higher than that of the insulating oil,
    The insulating oil is in contact with the heat transfer member, and the insulating oil is disposed between the lower end of the heat transfer member and the fixing member.
PCT/JP2018/020938 2017-11-07 2018-05-31 Oil-filled transformer WO2019092909A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017214443A JP2019087630A (en) 2017-11-07 2017-11-07 Oil-filled transformer
JP2017-214443 2017-11-07

Publications (1)

Publication Number Publication Date
WO2019092909A1 true WO2019092909A1 (en) 2019-05-16

Family

ID=66437639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020938 WO2019092909A1 (en) 2017-11-07 2018-05-31 Oil-filled transformer

Country Status (2)

Country Link
JP (1) JP2019087630A (en)
WO (1) WO2019092909A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5258722U (en) * 1975-10-28 1977-04-28
JPS5596626U (en) * 1978-12-26 1980-07-04
JPS55120119U (en) * 1979-02-19 1980-08-26
JPS61109115U (en) * 1984-12-20 1986-07-10
JPS6242513Y2 (en) * 1981-05-29 1987-10-31
JPS6314410Y2 (en) * 1981-05-29 1988-04-22
JPH09120917A (en) * 1995-10-25 1997-05-06 Matsushita Electric Ind Co Ltd Transformer device
JPH09120918A (en) * 1995-10-25 1997-05-06 Matsushita Electric Ind Co Ltd Transformer
JPH09213533A (en) * 1996-02-07 1997-08-15 Matsushita Electric Ind Co Ltd Stationary induction electromagnetic apparatus
JP2008041929A (en) * 2006-08-07 2008-02-21 Japan Ae Power Systems Corp Stationary induction electric appliance
WO2017110124A1 (en) * 2015-12-22 2017-06-29 株式会社日立産機システム Oil-filled transformer

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5258722U (en) * 1975-10-28 1977-04-28
JPS5596626U (en) * 1978-12-26 1980-07-04
JPS55120119U (en) * 1979-02-19 1980-08-26
JPS6242513Y2 (en) * 1981-05-29 1987-10-31
JPS6314410Y2 (en) * 1981-05-29 1988-04-22
JPS61109115U (en) * 1984-12-20 1986-07-10
JPH09120917A (en) * 1995-10-25 1997-05-06 Matsushita Electric Ind Co Ltd Transformer device
JPH09120918A (en) * 1995-10-25 1997-05-06 Matsushita Electric Ind Co Ltd Transformer
JPH09213533A (en) * 1996-02-07 1997-08-15 Matsushita Electric Ind Co Ltd Stationary induction electromagnetic apparatus
JP2008041929A (en) * 2006-08-07 2008-02-21 Japan Ae Power Systems Corp Stationary induction electric appliance
WO2017110124A1 (en) * 2015-12-22 2017-06-29 株式会社日立産機システム Oil-filled transformer

Also Published As

Publication number Publication date
JP2019087630A (en) 2019-06-06

Similar Documents

Publication Publication Date Title
CN107516591B (en) Reactor device
JP6356465B2 (en) Winding parts and heat dissipation structure
EP1829063A1 (en) Two part transformer core, transformer and method of manufacture
JP6596676B2 (en) Reactor
CN107924745B (en) Oil-immersed transformer
KR101423178B1 (en) Inductor with the cooling structure
WO2019092909A1 (en) Oil-filled transformer
JP4948363B2 (en) Transformer
EP2568484A1 (en) Electro-magnetic device having a polymer housing
JP4838753B2 (en) Oil-filled stationary induction device
JP4953270B2 (en) Amorphous iron core transformer
JP2017041497A (en) Reactor
JPWO2018167947A1 (en) Trance
JP6459002B2 (en) Trance
JP2020061505A (en) Cooling structure of reactor and electric power conversion device
JP6398907B2 (en) Reactor
JP6351460B2 (en) Oil-filled transformer
JP7308726B2 (en) stationary induction motor
JP2005175067A (en) Oil-immersed stationary induction apparatus
JP6045103B2 (en) Coil parts and mounting structure of coil parts
JP2019096782A (en) Oil-filled transformer
JP2017017234A (en) Transformer and manufacturing method of the same
KR100664509B1 (en) Shell-type transformer and manufacture method
JP6742251B2 (en) Switchgear
JP2020043125A (en) Oil-filled transformer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18875161

Country of ref document: EP

Kind code of ref document: A1