WO2017109893A1 - Friction material composition, and friction material and friction member using friction material composition - Google Patents

Friction material composition, and friction material and friction member using friction material composition Download PDF

Info

Publication number
WO2017109893A1
WO2017109893A1 PCT/JP2015/086011 JP2015086011W WO2017109893A1 WO 2017109893 A1 WO2017109893 A1 WO 2017109893A1 JP 2015086011 W JP2015086011 W JP 2015086011W WO 2017109893 A1 WO2017109893 A1 WO 2017109893A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction material
friction
fiber
copper
material composition
Prior art date
Application number
PCT/JP2015/086011
Other languages
French (fr)
Japanese (ja)
Inventor
一也 馬場
永吉 央幸
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2017557585A priority Critical patent/JPWO2017109893A1/en
Priority to PCT/JP2015/086011 priority patent/WO2017109893A1/en
Publication of WO2017109893A1 publication Critical patent/WO2017109893A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing

Definitions

  • the present invention relates to a friction material composition, and relates to a so-called non-asbestos friction material composition comprising a friction material composition including a binder, an organic filler, an inorganic filler, and a fiber base material, and substantially free of asbestos. .
  • the present invention also relates to a friction material and a friction member using the friction material composition.
  • Friction materials used for brake pads and brake linings include friction materials composed of binders, organic fillers, inorganic fillers and fibrous base materials, which have a stable coefficient of friction and unpleasant noise. It is widely adopted in major regions such as Japan, North America, South America, and Asia except Europe.
  • Friction materials such as brake pads and brake linings play a role of braking by rubbing against facing materials such as disc rotors and brake drums to convert their kinetic energy into thermal energy. For this reason, the friction material is required to have a high friction coefficient for braking, stability of the friction coefficient that does not change during use, and wear resistance that does not easily wear during braking. In addition, some energy may be converted into vibrational energy along with the energy conversion during braking. Therefore, the friction material is required to be less susceptible to squeal and vibration. Further, the friction material is required to have a long pad life, difficult to cut the facing material, and less wheel dust.
  • EPB brake pads are required to have a parking performance such as a high coefficient of static friction that can stop the vehicle and resistance to cracking due to repeated high-load braking (the friction material should not be cracked or chipped after braking).
  • a parking performance such as a high coefficient of static friction that can stop the vehicle and resistance to cracking due to repeated high-load braking (the friction material should not be cracked or chipped after braking).
  • the friction material adheres to the facing material due to rust generated at the friction interface when the vehicle is stationary abnormal noise may occur when the friction material adhered at the time of departure of the vehicle and the facing material are separated, or surface separation of the friction material may occur. Since (rust peeling) is likely to occur, crack resistance that does not cause surface peeling at the time of departure is required.
  • General friction materials include binders, fiber base materials, metal powders, inorganic fillers, organic fillers, etc., and in order to develop the above characteristics, one or a combination of two or more types is used. included.
  • Organic fibers, metal fibers, inorganic fibers, etc. are used as the fiber base material.
  • metal Copper and copper alloys are used in large quantities as fibers.
  • JP 2002-138273 A Japanese Patent Laying-Open No. 2015-093933
  • the friction material with a reduced copper content has poor wear resistance and crack resistance, and it has been difficult to obtain an excellent friction material that satisfies all the performance of the conventional friction material. Furthermore, it is essential for the friction material for EPB to maintain a high static friction coefficient.
  • the present invention uses a friction material composition that can provide a high static friction coefficient, crack resistance and wear resistance even when the content of copper and copper alloy is small, and further uses the friction material composition. It is an object of the present invention to provide a friction material and a friction member.
  • the inventors of the present invention have (1) that when the fibrillated acrylic fiber and the fibrillated aramid fiber are used in combination, (1) the strength of the friction material can be improved and crack resistance can be improved. While finding that it is possible to increase the coefficient of static friction to increase the coefficient of friction, further studies are conducted, and the total content of fibrillated acrylic fiber and fibrillated aramid fiber as organic fiber in the fiber base is 3 By adjusting the content ratio of the fibrillated acrylic fiber and the fibrillated aramid fiber to 4: 6 to 7: 3, even if the content of copper and copper alloy is 0.5% by mass or less. In addition, it can give the friction material crack resistance that prevents the friction material from being destroyed even if rust sticking occurs, and can improve the wear resistance of the friction material. It has been found that parking performance can be improved by increasing the coefficient of static friction of the friction material.
  • the friction material composition of the present invention is based on the above knowledge.
  • the friction material composition includes a binder, an organic filler, an inorganic filler, and a fiber substrate, and includes copper as an element.
  • the content of copper is 0.5% by mass or less
  • the fiber base material contains fibrillated acrylic fiber and fibrillated aramid fiber as organic components, and the total content thereof is 3% by mass.
  • the content ratio of the fibrillated acrylic fiber and the fibrillated aramid fiber is from 4: 6 to 7: 3.
  • the friction material of the present invention is formed by molding the friction material composition described above, and the friction member of the present invention integrates the friction material formed by molding the friction material composition and a back metal. It will be.
  • the friction material composition of the present invention When used for a friction material such as a disc brake pad or a brake lining for automobiles, it does not contain copper in the wear powder generated during braking or contains 0.5% of copper. It is environmentally friendly because it is a very small amount of mass% or less, and exhibits excellent static friction coefficient, crack resistance and wear resistance in high load repeated braking. Moreover, the friction material and friction member which have the said characteristic can be provided by using the friction material composition of this invention.
  • (A) is a top view which shows an example of the brake pad (friction member) which concerns on one Embodiment of this invention, (b), (c) is each AA cross section of (a), (b) Shows the case without an adhesive layer having a predetermined thickness, and (c) shows the case with an adhesive layer having a predetermined thickness.
  • the friction material composition of the present invention is a friction material composition containing no asbestos, a so-called non-asbestos friction material composition.
  • the friction material composition of this embodiment is a friction material composition characterized by not containing copper as an element or containing copper in an amount of 0.5% by mass or less. That is, it is a friction material that does not substantially contain environmentally harmful copper and copper alloy, has a copper content of 0.5% by mass or less, and preferably has a content of 0% by mass. For this reason, even if abrasion powder is generated during braking, it does not cause river, lake or marine pollution.
  • said "copper as an element” shows the content rate in the total friction material composition of the copper element contained in copper, copper alloy, and a copper compound, such as fibrous form and a powder form.
  • the friction material composition of the present invention is a friction material composition including a binder, an organic filler, an inorganic filler, and a fiber base material, and fibrillated acrylic fiber and fibrillated aramid are used as organic fibers in the fiber base material.
  • a fiber is contained as an essential component, the total content thereof is 3 to 10% by mass, and the content ratio of the fibrillated acrylic fiber to the fibrillated aramid fiber is 4: 6 to 7: 3 And
  • Fibrillated acrylic fiber and fibrillated aramid fiber contains fibrillated acrylic fiber as an essential component as a fiber base material from the viewpoint of improving the static friction coefficient and crack resistance.
  • Fibrilized acrylic fiber is an acrylic fiber that has been split into fibers and has fluff. Examples of the fibrillated acrylic fibers include CFF fibers manufactured by Sterling fibers Inc., which are commercially available.
  • the fibrillation state of the fibrillated acrylic fiber can be defined as the freeness, and the freeness of the fibrillated acrylic fiber is preferably 200 to 315 ml, more preferably 220 to 310 ml, and 250 to 300 ml. More preferably.
  • the freeness herein means a CSF (Canadian Standard Freeness) value measured according to TAPPIT-227. By setting it in this range, a better static friction coefficient, crack resistance, wear resistance, and sound vibration properties (there is less likely to generate squeal or vibration during braking) of the friction material.
  • the fiber length of the fibrillated acrylic fiber is preferably 3 to 12 mm, and more preferably 5 to 10 mm. By setting it within this range, better frictional strength, crack resistance, and wear resistance of the friction material are exhibited.
  • the content of the fibrillated acrylic fiber is 2% by mass or more, good shear strength, crack resistance, and wear resistance are exhibited, and when the content is 8% by mass or less, fibrillation in the friction composition is achieved. Deterioration of shear strength and crack resistance due to uneven distribution of acrylic fibers and other materials can be further suppressed.
  • the friction material composition of the present invention contains a fibrillated aramid fiber as an essential component from the viewpoint of improving crack resistance and wear resistance at high temperatures.
  • the fibrillated aramid fiber of the present invention is an aramid fiber having a plurality of branches. Examples of such aramid fibers include Twaron 1099, 1095, 3091 manufactured by Teijin Ltd., Kevlar 1F538, 1F1710 manufactured by Toray DuPont Co., Ltd., and the like.
  • the state of fibrillation of the fibrillated aramid fiber can be defined by a BET specific surface area, and the BET specific surface area is preferably 5 to 15 m 2 / g. Since the fibrillated aramid fiber in the present invention has high fiber strength and many branches, the friction material strength is effectively improved even in a composition not containing copper.
  • the total content of the fibrillated acrylic fiber and fibrillated aramid fiber is preferably 3% by mass to 10% by mass, more preferably 4% by mass to 9% by mass, and 5% by mass to 8% by mass. More preferably it is. When it is 3% by mass or more, crack resistance and wear resistance are manifested, and when it is 10% by mass or less, crack resistance and wear resistance due to uneven distribution of fibrillated organic fibers and other materials in the friction material composition. Deterioration can be prevented.
  • the content ratio of the fibrillated acrylic fiber and fibrillated aramid fiber is preferably in the range of 4: 6 to 7: 3, more preferably 5: 5 to 6: 4.
  • the fiber base material generally exhibits a reinforcing action or the like in the friction material.
  • the friction material composition of the present invention can use organic fibers, inorganic fibers, metal fibers, carbon fibers, etc., which are usually used as fiber base materials, and these can be used alone or in combination of two or more. Can do.
  • organic fiber in addition to the fibrillated aramid fiber and fibrillated acrylic fiber, cellulose fiber, non-fibrillated aramid fiber, non-fibrillated acrylic fiber, phenol resin fiber (having a crosslinked structure) and the like can be used. These can be used in combination with fibrillated acrylic fiber and fibrillated aramid fiber as essential components.
  • the content of the fiber base material in the friction material composition of the present invention includes copper or copper alloy metal fibers, and is preferably 5 to 40% by mass, and preferably 8 to 30% by mass in the friction material composition. More preferably, the content is 10 to 20% by mass.
  • ceramic fiber As the inorganic fiber, ceramic fiber, biodegradable ceramic fiber, mineral fiber, glass fiber, potassium titanate fiber, silicate fiber, flame-resistant fiber, carbon fiber, wollastonite and the like can be used. A combination of more than one species can be used.
  • a carbon-type fiber here, a flame-resistant fiber, a pitch-type carbon fiber, a PAN-type carbon fiber, activated carbon fiber, etc. can be used, These can be used individually or in combination of 2 or more types. .
  • the mineral fiber referred to here is a man-made inorganic fiber melt-spun mainly composed of blast furnace slag such as slag wool, basalt such as basalt fiber, and other natural rocks, and is a natural mineral containing Al element. Is more preferable. Specifically, those containing SiO 2 , Al 2 O 3 , CaO, MgO, FeO, Na 2 O, etc., or those containing one or more of these compounds can be used, more preferably. Of these, those containing Al element can be used as mineral fibers.
  • the average fiber length of the entire mineral fiber is preferably 500 ⁇ m or less. More preferably, it is 100 to 400 ⁇ m.
  • the average fiber length refers to a number average fiber length indicating an average value of the lengths of all corresponding fibers. For example, the average fiber length of 200 ⁇ m indicates that 50 mineral fibers used as a friction material composition raw material are randomly selected, the fiber length is measured with an optical microscope, and the average value is 200 ⁇ m.
  • the mineral fiber used in the present invention is preferably biosoluble from the viewpoint of human harm.
  • biosoluble mineral fiber refers to a mineral fiber having a characteristic that even if it is taken into the human body, it is partially decomposed and discharged outside the body in a short time.
  • the chemical composition is alkali oxide, alkaline earth oxide total amount (total amount of oxides of sodium, potassium, calcium, magnesium, barium) is 18% by mass or more, and in a short-term biopermanent test by respiration, A fiber with a mass half-life of 20 ⁇ m or more that is less than 40 days or that has no evidence of excessive carcinogenicity in an intraperitoneal test or that has no associated pathogenicity or tumor development in a long-term respiratory test (EU Directive 97 / 69 / EC Nota Q (carcinogenic exclusion)).
  • biodegradable mineral fibers examples include SiO 2 —Al 2 O 3 —CaO—MgO—FeO—Na 2 O fibers, and the like, including SiO 2 , Al 2 O 3 , CaO, MgO, FeO, Na Examples thereof include fibers containing 2 O or the like in any combination.
  • Commercially available products include Roxul series made by LAPINUS FIBERS BV. “Roxul” includes SiO 2 , Al 2 O 3 , CaO, MgO, FeO, Na 2 O and the like.
  • copper or copper alloy fiber can be used for improving crack resistance and wear resistance.
  • the content of the entire copper in the friction material composition is within a range not exceeding 5 mass% as the copper element in consideration of environmental friendliness. It is preferable that the content of the copper or copper alloy fiber does not exceed 0.5 mass%.
  • fiber of copper or copper alloy copper fiber, brass fiber, bronze fiber or the like can be used, and these can be used alone or in combination of two or more.
  • metal fiber other than copper and copper alloy may be used in such an amount that the content in the friction material composition of the present invention does not exceed 0.5 mass%.
  • Metal fibers other than copper and copper alloys may be contained from the viewpoints of improving the friction coefficient and crack resistance, but avoiding deterioration of wear resistance by the content not exceeding 0.5 mass%.
  • metal fibers other than copper and copper alloys are not contained (content 0 mass%).
  • metal fibers other than copper and copper alloys include fibers in the form of simple metals or alloys such as aluminum, iron, zinc, tin, titanium, nickel, magnesium, and silicon, and fibers mainly composed of metals such as cast iron fibers. These can be used alone or in combination of two or more.
  • the inorganic filler is included as a friction modifier for avoiding deterioration of the heat resistance, wear resistance, friction coefficient and the like of the friction material.
  • the inorganic filler in the friction material composition of the present invention is not particularly limited as long as it is usually an inorganic filler used for a friction material.
  • inorganic fillers include mica, graphite, coke, antimony trifluidized, tin sulfide, molybdenum disulfide, fluidized bismuth, zinc sulfide and other metal sulfides, potassium titanate, lithium potassium titanate, sodium titanate, Titanates such as magnesium potassium titanate, calcium hydroxide, calcium oxide, sodium carbonate, calcium carbonate, magnesium carbonate, barium sulfate, dolomite, coke, mica, vermiculite, calcium sulfate, granular potassium titanate, plate-like potassium titanate , Talc, clay, zeolite, zirconium silicate, zirconium oxide, mullite, chromite, titanium oxide, magnesium oxide, silica, triiron tetroxide, zinc oxide, garnet, ⁇ -alumina, ⁇
  • calcium hydroxide, calcium carbonate, and zinc oxide contribute to the prevention of rusting of the friction material when included in the friction material composition. preferable.
  • the content of the inorganic filler in the friction material composition of the present invention is preferably 30 to 80% by mass, more preferably 40 to 78% by mass, and 50 to 75% by mass. Further preferred.
  • the inorganic filler here includes the mica, graphite, and metal sulfide. When the content of the inorganic filler is in the range of 30 to 80% by mass, deterioration of heat resistance can be avoided.
  • the binding material binds and integrates an organic filler, an inorganic filler, a fiber base material, and the like included in the friction material composition to give a predetermined shape and strength.
  • a binder contained in the friction material composition of this invention Generally, the thermosetting resin used as a binder of a friction material can be used.
  • thermosetting resin examples include phenolic resins, epoxy resins, polyimide resins, and the like, and acrylic modified phenolic resins, silicone modified phenolic resins, cashew modified phenolic resins, epoxy modified phenolic resins, and alkylbenzene modified phenolic resins.
  • modified phenolic resins such as these can also be mentioned, and these can be used alone or in combination of two or more.
  • the content of the binder in the friction material composition of the present invention is preferably 5 to 20% by mass, and more preferably 6 to 14% by mass.
  • Organic filler is included as a friction modifier for improving the sound vibration performance and wear resistance of the friction material.
  • cashew particles or various rubber components that are usually used as an organic filler in the friction material can be used as the organic filler.
  • the cashew particles may be those usually used for friction materials obtained by pulverizing a hardened cashew nut shell oil.
  • the rubber component for example, natural rubber, acrylonitrile-butadiene rubber (NBR), acrylic rubber, isoprene rubber, polybutadiene rubber (BR), styrene butadiene rubber (SBR), silicone rubber, and the like can be used.
  • Tire rubber or the like obtained by disposing of the tire can be used as a rubber component. These rubber components are used alone or in combination of two or more. Further, cashew particles and a rubber component may be used in combination, or cashew particles coated with a rubber component may be used.
  • the content of the organic filler in the friction material composition of the present invention is preferably 1 to 20% by mass, more preferably 1 to 10% by mass, and 4 to 8% by mass. Further preferred.
  • the friction material becomes hard and deterioration of sound vibration performance such as squealing can be avoided. Also, heat resistance deteriorates and strength decreases due to thermal history. Can be avoided.
  • the mass ratio of the cashew particles and the rubber component is preferably 1: 4 to 10: 1, and preferably 1: 3 to 9: 1. More preferred is 1: 2 to 8: 1.
  • the friction material composition of this invention can mix
  • the total content of copper does not exceed 0.5% by mass as copper element, and metal powder such as copper powder, brass powder, bronze powder, etc. is blended. Can do.
  • an organic additive such as a fluorine-based polymer such as PTFE (polytetrafluoroethylene) can be blended.
  • the friction material of the present invention is formed by molding the friction material composition, and can be used as a friction material for disc brake pads and brake linings of automobiles. Since the friction material of the present invention exhibits excellent stability of friction coefficient, low frequency noise resistance and crack resistance, it is suitable for a friction material of a disk brake pad having a large load during braking.
  • the friction material of the present invention can be manufactured by molding the friction material composition of the present invention by a generally used method, and is preferably manufactured by hot pressing. Specifically, the friction material composition of the present invention is uniformly mixed using a mixer such as a Laedige mixer ("Radiger” is a registered trademark), a pressure kneader, an Eirich mixer (“Eirich” is a registered trademark), or the like. The mixture is preformed in a molding die, and the obtained preform is molded in a molding temperature of 140 to 160 ° C. and a molding pressure of 20 to 50 MPa for 4 to 10 minutes. Heat treatment is performed at 180 to 250 ° C. for 2 to 10 hours. In addition, painting, scorch treatment, and polishing treatment are performed as necessary.
  • a mixer such as a Laedige mixer ("Radiger” is a registered trademark), a pressure kneader, an Eirich mixer (“Eirich” is a registered trademark), or the like.
  • the mixture is preformed in
  • the friction member of this invention uses the said friction material as a friction material used as a friction surface.
  • Examples of the friction member include the following configurations. (1) Configuration of friction material only. (2) The structure which has a back metal and the friction material which consists of a friction material composition of this invention used as a friction surface on this back metal. (3) In the configuration of (2) above, between the back metal and the friction material, a primer layer for the purpose of surface modification for enhancing the adhesion effect of the back metal, and for the purpose of bonding the back metal and the friction material A configuration in which an adhesive layer is further interposed.
  • the backing metal is usually used as a friction member in order to improve the mechanical strength of the friction member.
  • the material is metal or fiber reinforced plastic, specifically iron, stainless steel, inorganic fiber reinforced plastic. And carbon fiber reinforced plastics.
  • the primer layer and the adhesive layer may be those used for friction members such as brake shoes.
  • the friction material composition of the present invention is useful as a “covering material” of a friction member because it has a high coefficient of static friction, crack resistance and wear resistance even if the content of copper and copper alloy is small. It is particularly useful as an “upholstery material” for a friction member for EPB brakes that requires parking performance. Furthermore, since it has high crack resistance as a friction material, it can be molded and used as a “underlay material” of a friction member.
  • the “upper material” is a friction material that becomes the friction surface of the friction member
  • the “underlay material” is a friction material that is interposed between the friction material that becomes the friction surface of the friction member and the back metal. It is a layer for the purpose of improving the shear strength and crack resistance in the vicinity of the adhesion part with the back metal.
  • FIG. 1 shows a brake pad 1 of an automotive disc brake which is a friction member according to an embodiment of the present invention.
  • the brake pad 1 is configured by adhering a plate-shaped friction material 2 to one surface of a plate-shaped back metal 3 made of cast iron, and a disk rotor in which a surface 21 of the friction material 2 is a facing material. A friction surface that is pressed against (not shown) is configured.
  • the brake pad 1 as a whole is formed in an arc shape along the circumferential direction of the disk rotor, and a slit 22 extending in the radial direction is formed at the circumferential central portion on the surface 21 side of the friction material 2, and both circumferential ends.
  • a chamfer 23 is formed on the front side.
  • the friction material 2 is formed by molding the friction material composition described above, and the brake pad 1 has, for example, the above-described configuration of [friction member] (2) or (3).
  • FIG.1 (b) is sectional drawing which shows the structure of (2).
  • FIG. 1C is a cross-sectional view showing the configuration of (3), and reference numeral 4 denotes an adhesive layer provided at a predetermined thickness between the friction material 2 and the back metal 3.
  • the brake pad 1 is pre-molded with the friction material 2 obtained by preparing and mixing the above-mentioned various materials as a raw material, and is heated and pressed together with the back metal 3 while the preform is adhered to the back metal 3. After the molding, necessary processes (heat treatment, painting, scorch process, polishing process, etc.) are performed, and the friction material 2 is manufactured by forming the slit 22 and the chamfer 23.
  • Examples 1 to 6 and Comparative Examples 1 to 7 (Production of disc brake pad) The materials were blended according to the blending ratios shown in Table 1 and Table 2, and the friction material compositions of Examples 1 to 6 and Comparative Examples 1 to 7 were obtained. The unit of the blending amount of each component in Table 1 and Table 2 is mass% in the friction material composition.
  • the various raw materials used are as follows.
  • Phenolic resin manufactured by Hitachi Chemical Co., Ltd. (trade name: HP491UP) (Organic filler) ⁇ Cashew particles: manufactured by Tohoku Kako Co., Ltd. (trade name: FF-1090) ⁇ NBR: Bayer Co., Ltd. (trade name: Baymod NXL 38.20) (Inorganic filler) ⁇ Graphite: TIMICAL (trade name: KS15) -Barium sulfate: manufactured by Sakai Chemical Industry Co., Ltd.
  • the obtained friction material compositions of Examples 1 to 6 and Comparative Examples 1 to 7 were mixed with a Readyge mixer (manufactured by Matsubo Co., Ltd., trade name: Ladyge mixer M20), and this mixture was formed into a molding press ( Oji Machine Industry Co., Ltd.) and the resulting preform is made of steel using a molding press (Sanki Seiko Co., Ltd.) for 6 minutes at a molding temperature of 140 ° C. and a molding pressure of 20 MPa. And press-molded together with the back metal. Subsequently, the obtained molded product was heat-treated at 200 ° C.
  • the disc brake pad (friction material thickness 11 mm, friction material projection area 45 cm 2 ) was obtained.
  • Level 1 No cracking.
  • Level 2 Cracks to the extent that a 0.1 mm thickness gauge does not enter the friction surface or side surface of the friction material.
  • Level 3 Cracks were generated to the extent that a 0.1 mm thickness gauge entered the friction surface or side surface of the friction material. In addition, if a crack that does not (or does not enter) the thickness gauge occurs on one of the friction surface and the side surface of the friction material and a crack that causes (or does not enter) the thickness gauge on the other occurs, level 3 To do.
  • Each of the static friction coefficient based on the JASO C436 and the crack resistance and wear resistance based on the JASO C427 were evaluated using a dynamometer at an inertia of 95 kgf ⁇ m 2 . Further, a built-in type A parking brake device in which a friction material is also used as a service brake and incorporated in a wheel brake is used, and is a general collet type caliper for EPB. A general ventilated type was used for the disk rotor.
  • the friction material of Comparative Example 2 containing only fibrillated aramid fibers and not containing fibrillated acrylic fibers, and Comparative Example 3 containing only fibrillated acrylic fibers and not containing fibrillated aramid fibers, fibrillated acrylic fibers and The friction material of Comparative Example 4 in which the total content of fibrillated aramid fibers is less than 3% by mass, the friction material of Comparative Example 5 in which the total content of fibrillated acrylic fibers and fibrillated aramid fibers exceeds 10% by mass, and fibrillated
  • the friction material of Comparative Examples 6 and 7 in which the content ratio of the acrylic fiber and the fibrillated aramid fiber deviates from the range of 4: 6 to 7: 3 is any one of wear resistance, static friction coefficient, and crack resistance. It was confirmed that the required characteristics were not met.
  • the friction material composition of the present invention is particularly useful as a friction material for an electric parking brake (EPB) because it has a high coefficient of static friction and high crack resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Braking Arrangements (AREA)

Abstract

Provided are: a friction material composition by the usage of which a friction material having a high static friction coefficient, excellent crack resistance, and excellent abrasion resistance can be provided even when the contained amounts of copper and copper alloys are low; and a friction material and a friction member using the friction material composition. The friction material composition contains a binder, an organic filler, an inorganic filler, and a fibrous base material, wherein: elemental copper is not contained or the contained percentage of copper is 0.5 mass% or less; and, particularly, the fibrous base material contains fibrillated acrylic fibers and fibrillated aramid fibers as essential organic-fiber components, of which the total contained amount is 3-10 mass%, the contained ratio of the fibrillated acrylic fibers with respect to the fibrillated aramid fibers being 4:6 to 7:3.

Description

摩擦材組成物、該摩擦材組成物を用いた摩擦材および摩擦部材Friction material composition, friction material and friction member using the friction material composition
 本発明は、摩擦材組成物に係り、結合材、有機充填材、無機充填材および繊維基材を含む摩擦材組成物からなり、アスベストを実質的に含まない、いわゆるノンアスベスト摩擦材組成物に関する。また、本発明は、該摩擦材組成物を用いた摩擦材および摩擦部材に関する。 The present invention relates to a friction material composition, and relates to a so-called non-asbestos friction material composition comprising a friction material composition including a binder, an organic filler, an inorganic filler, and a fiber base material, and substantially free of asbestos. . The present invention also relates to a friction material and a friction member using the friction material composition.
 自動車などのブレーキには、主にディスクブレーキとドラムブレーキが採用されており、摩擦材としてはブレーキパッドやブレーキライニングが使用されている。ブレーキパッドやブレーキライニングに使用される摩擦材としては、結合材、有機充填材、無機充填材および繊維基材を含む摩擦材組成物からなる摩擦材が、摩擦係数の安定性と、不快なノイズや振動等が低い低騒音性に優れることから、欧州を除く日本や北米、南米、アジア等の主要地域で広く採用されている。 Disc brakes and drum brakes are mainly used for automobile brakes, and brake pads and brake linings are used as friction materials. Friction materials used for brake pads and brake linings include friction materials composed of binders, organic fillers, inorganic fillers and fibrous base materials, which have a stable coefficient of friction and unpleasant noise. It is widely adopted in major regions such as Japan, North America, South America, and Asia except Europe.
 ブレーキパッドやブレーキライニング等の摩擦材は、ディスクロータやブレーキドラムなどの対面材と摩擦することにより、その運動エネルギーを熱エネルギーに変換することで制動の役割を果たす。このため、摩擦材は、制動を行うための高い摩擦係数と、使用時に摩擦係数が変化しない摩擦係数の安定性と、制動時に容易に摩耗しない耐摩耗性が要求される。また、制動時のエネルギー変換に伴い、一部が振動エネルギーへと変換される場合が生じることがあるが、この場合、振動エネルギーがブレーキ起因の振動や鳴きとなるため、使用者に不快感を与えることとなり、著しく摩擦材の商品性が低下するため、摩擦材には、鳴きおよび振動等が発生しにくいことが要求される。さらに、摩擦材には、パッド寿命が長いこと、対面材を削り難いこと、ホイールダストの少ないこと等についても要求される。 Friction materials such as brake pads and brake linings play a role of braking by rubbing against facing materials such as disc rotors and brake drums to convert their kinetic energy into thermal energy. For this reason, the friction material is required to have a high friction coefficient for braking, stability of the friction coefficient that does not change during use, and wear resistance that does not easily wear during braking. In addition, some energy may be converted into vibrational energy along with the energy conversion during braking. Therefore, the friction material is required to be less susceptible to squeal and vibration. Further, the friction material is required to have a long pad life, difficult to cut the facing material, and less wheel dust.
 また最近では、坂道発進補助など自動制御による利便性の向上、パーキングブレーキレバーのスイッチ化による車内空間の有効活用などのメリットから電動パーキングブレーキ(EPB)が急速に普及している。このようなEPB用ブレーキパッドには、車両を静止できる高い静摩擦係数、高負荷繰返し制動による耐クラック性(制動後、摩擦材にクラックや欠けがないこと)等のパーキング性能が要求される。また、車両の静止時に摩擦界面で発生した錆によって摩擦材が対面材と固着すると、車両の発車時に固着した摩擦材と対面材が剥離する際に、異音が発生したり摩擦材の表面剥離(錆剥離)が生じやすくなったりするため、発車時に表面剥離が生じない耐クラック性が要求される。 In recent years, electric parking brakes (EPB) have become widespread rapidly due to advantages such as improved convenience by automatic control such as assistance for starting a slope, and effective use of the interior space by switching the parking brake lever. Such EPB brake pads are required to have a parking performance such as a high coefficient of static friction that can stop the vehicle and resistance to cracking due to repeated high-load braking (the friction material should not be cracked or chipped after braking). In addition, if the friction material adheres to the facing material due to rust generated at the friction interface when the vehicle is stationary, abnormal noise may occur when the friction material adhered at the time of departure of the vehicle and the facing material are separated, or surface separation of the friction material may occur. Since (rust peeling) is likely to occur, crack resistance that does not cause surface peeling at the time of departure is required.
 一般的な摩擦材には、結合材、繊維基材、金属粉、無機充填材および有機充填材等が含まれ、前記特性を発現させるために、それぞれ1種もしくは2種以上を組み合わせたものが含まれる。繊維基材としては、有機繊維、金属繊維、無機繊維等が用いられているが、特に高温制動での摩擦係数の保持や耐摩耗性、高負荷制動の耐クラック性を向上させるために、金属繊維として銅および銅合金などが多量に使用されている。 General friction materials include binders, fiber base materials, metal powders, inorganic fillers, organic fillers, etc., and in order to develop the above characteristics, one or a combination of two or more types is used. included. Organic fibers, metal fibers, inorganic fibers, etc. are used as the fiber base material. In order to improve the friction coefficient retention and wear resistance at high temperature braking, and crack resistance at high load braking, metal Copper and copper alloys are used in large quantities as fibers.
 しかし近年、これら銅および銅合金を含有する摩擦材は、制動により発生する摩耗粉に銅を多量に含み、それが河川、湖や海洋汚染などの原因となることが示唆されているため、米国を中心に摩擦材における銅成分の使用量を制限する法律が、カリフォルニア、ワシントンを中心に既に施行されている。そこで、銅および銅合金などの金属を含まずに、摩擦係数、耐摩耗性および耐ロータ摩耗性が良好な摩擦材を提供するために、酸化マグネシウムと黒鉛を摩擦材中に45~80体積%含有し、酸化マグネシウムと黒鉛の比を1/1~4/1とする方法が提案(特許文献1)されている。また、このような銅および銅合金などの金属を含まない摩擦材において、水酸化カルシウムを含有させて摩擦材のpHを11.7以上とすることで摩擦材の貼り付きに起因する相手材の錆の発生を抑制することが提案(特許文献2)されている。 However, in recent years, friction materials containing copper and copper alloys contain a large amount of copper in the abrasion powder generated by braking, which has been suggested to cause rivers, lakes, marine pollution, etc. Laws that limit the amount of copper used in friction materials are already in force, mainly in California and Washington. Therefore, in order to provide a friction material that does not contain metals such as copper and copper alloys and has a good friction coefficient, wear resistance, and rotor wear resistance, magnesium oxide and graphite are contained in the friction material in an amount of 45 to 80% by volume. A method has been proposed in which the ratio of magnesium oxide to graphite is 1/1 to 4/1 (Patent Document 1). Further, in such a friction material that does not contain a metal such as copper and copper alloy, calcium hydroxide is included so that the friction material has a pH of 11.7 or more, so that the mating material caused by sticking of the friction material It has been proposed (Patent Document 2) to suppress the occurrence of rust.
特開2002-138273号公報JP 2002-138273 A 特開2015-093933号公報Japanese Patent Laying-Open No. 2015-093933
 しかしながら、特許文献1のブレーキ用摩擦材では、高い静摩擦係数、高負荷繰返し制動における耐クラック性、耐摩耗性といった諸特性の全てに優れた摩擦材を得ることは困難である。 However, with the brake friction material disclosed in Patent Document 1, it is difficult to obtain a friction material that is excellent in all of various characteristics such as a high static friction coefficient, crack resistance in high load repeated braking, and wear resistance.
 一方、摩擦材に含まれる銅以外の金属繊維として、スチール繊維や鋳鉄繊維などの鉄系繊維が耐クラック性改善や摩擦係数向上の目的で用いられるが、鉄系繊維は対面材への攻撃性が高いため、摩擦係数の安定性、ホイールダスト、耐摩耗性、鳴きを悪化させるという欠点があり、また、亜鉛繊維、アルミニウム繊維等の銅以外で一般的に摩擦材に用いられる非鉄金属繊維は、銅や鉄系繊維と比較して耐熱温度が低いものが多く、摩擦材のおよそ300℃以上の高温時に耐摩耗性を悪化させるという課題がある。  On the other hand, as a metal fiber other than copper contained in the friction material, steel fibers such as steel fibers and cast iron fibers are used for the purpose of improving crack resistance and coefficient of friction. Therefore, non-ferrous metal fibers generally used for friction materials other than copper, such as zinc fibers and aluminum fibers, are disadvantageous in that the friction coefficient stability, wheel dust, wear resistance, and noise are worsened. In many cases, the heat-resistant temperature is lower than that of copper or iron-based fibers, and there is a problem that the wear resistance is deteriorated when the friction material is at a high temperature of about 300 ° C. or higher.
 前述したように、銅の含有量を少なくした摩擦材は、耐摩耗性や耐クラック性が悪く、従来の摩擦材の性能を全て満足させる優れた摩擦材を得ることは困難であった。またさらに、高い静摩擦係数を保持することもEPB用摩擦材には必須である。 As described above, the friction material with a reduced copper content has poor wear resistance and crack resistance, and it has been difficult to obtain an excellent friction material that satisfies all the performance of the conventional friction material. Furthermore, it is essential for the friction material for EPB to maintain a high static friction coefficient.
 これらのことから、本発明は、銅および銅合金の含有量が少なくても、高い静摩擦係数、耐クラック性および耐摩耗性を与えることができる摩擦材組成物、さらに該摩擦材組成物を用いた摩擦材および摩擦部材を提供することを目的とする。 For these reasons, the present invention uses a friction material composition that can provide a high static friction coefficient, crack resistance and wear resistance even when the content of copper and copper alloy is small, and further uses the friction material composition. It is an object of the present invention to provide a friction material and a friction member.
 本発明者らは、鋭意検討を重ねた結果、フィブリル化アクリル繊維とフィブリル化アラミド繊維を併用すると、(1)摩擦材の強度を向上させて耐クラック性を向上させることができること、(2)静摩擦係数を高めて摩擦係数を高いものとすることができること、を見出すとともに、さらに検討を進め、繊維基材のうちの有機物繊維として、フィブリル化アクリル繊維とフィブリル化アラミド繊維の合計含有量を3質量%から10質量%とし、さらに該フィブリル化アクリル繊維とフィブリル化アラミド繊維の含有比率を4:6~7:3とすることで、銅および銅合金の含有量が0.5質量%以下でも、錆固着が発生しても摩擦材の破壊が生じ難い耐クラック性を摩擦材に付与できるとともに摩擦材の耐摩耗性を向上させることができ、かつ摩擦材の静摩擦係数を高めてパーキング性能を向上させることができることを見出した。 As a result of intensive studies, the inventors of the present invention have (1) that when the fibrillated acrylic fiber and the fibrillated aramid fiber are used in combination, (1) the strength of the friction material can be improved and crack resistance can be improved. While finding that it is possible to increase the coefficient of static friction to increase the coefficient of friction, further studies are conducted, and the total content of fibrillated acrylic fiber and fibrillated aramid fiber as organic fiber in the fiber base is 3 By adjusting the content ratio of the fibrillated acrylic fiber and the fibrillated aramid fiber to 4: 6 to 7: 3, even if the content of copper and copper alloy is 0.5% by mass or less. In addition, it can give the friction material crack resistance that prevents the friction material from being destroyed even if rust sticking occurs, and can improve the wear resistance of the friction material. It has been found that parking performance can be improved by increasing the coefficient of static friction of the friction material.
 本発明の摩擦材組成物は、上記知見によるものであり、具体的には、結合材、有機充填材、無機充填材および繊維基材を含む摩擦材組成物であって、元素として銅を含まない、または銅の含有率が0.5質量%以下であり、前記繊維基材は、有機物繊維としてフィブリル化アクリル繊維とフィブリル化アラミド繊維を必須成分として含有し、その合計含有量が3質量%から10質量%であり、さらに該フィブリル化アクリル繊維とフィブリル化アラミド繊維の含有比率が4:6~7:3であることを特徴とする。 The friction material composition of the present invention is based on the above knowledge. Specifically, the friction material composition includes a binder, an organic filler, an inorganic filler, and a fiber substrate, and includes copper as an element. Or the content of copper is 0.5% by mass or less, and the fiber base material contains fibrillated acrylic fiber and fibrillated aramid fiber as organic components, and the total content thereof is 3% by mass. Further, the content ratio of the fibrillated acrylic fiber and the fibrillated aramid fiber is from 4: 6 to 7: 3.
 また、本発明の摩擦材は、上記の摩擦材組成物を成形してなるものであり、本発明の摩擦部材は、上記の摩擦材組成物を成形してなる摩擦材と裏金とを一体化してなるものである。 The friction material of the present invention is formed by molding the friction material composition described above, and the friction member of the present invention integrates the friction material formed by molding the friction material composition and a back metal. It will be.
 本発明の摩擦材組成物は、自動車用ディスクブレーキパッドやブレーキライニングなどの摩擦材に用いた際に、制動時に発生する摩耗粉中に銅を含まない、もしくは銅を含有するとしても0.5質量%以下と極微量であることから環境に優しく、優れた静摩擦係数、高負荷繰返し制動における耐クラック性および耐摩耗性を示すことができる。また、本発明の摩擦材組成物を用いることにより、上記特性を有する摩擦材および摩擦部材を提供できる。 When the friction material composition of the present invention is used for a friction material such as a disc brake pad or a brake lining for automobiles, it does not contain copper in the wear powder generated during braking or contains 0.5% of copper. It is environmentally friendly because it is a very small amount of mass% or less, and exhibits excellent static friction coefficient, crack resistance and wear resistance in high load repeated braking. Moreover, the friction material and friction member which have the said characteristic can be provided by using the friction material composition of this invention.
(a)は本発明の一実施形態に係るブレーキパッド(摩擦部材)の一例を示す平面図であり、(b)、(c)はそれぞれ(a)のA-A断面であって(b)は所定厚さの接着層なしの場合、(c)は所定厚さの接着層ありの場合を示している。(A) is a top view which shows an example of the brake pad (friction member) which concerns on one Embodiment of this invention, (b), (c) is each AA cross section of (a), (b) Shows the case without an adhesive layer having a predetermined thickness, and (c) shows the case with an adhesive layer having a predetermined thickness.
 1…ブレーキパッド(摩擦部材) 
 2…摩擦材 
22…スリット 
23…チャンファー 
 3…裏金 
 4…接着層 
1 ... Brake pad (friction member)
2. Friction material
22 ... Slit
23 ... Chan fur
3 ... Back metal
4 ... Adhesive layer
 以下、本発明の摩擦材組成物、これを用いた摩擦材および摩擦部材について詳述する。なお、本発明の摩擦材組成物は、アスベストを含有しない摩擦材組成物、いわゆるノンアスベスト摩擦材組成物である。本実施形態の摩擦材組成物は、元素としての銅を含まない、もしくは銅を含有する場合において銅の含有量が0.5質量%以下であることを特徴とする摩擦材組成物である。すなわち、環境有害性の高い銅および銅合金を実質的に含有せず、元素としての銅の含有量が0.5質量%以下であり、好ましくは含有量が0質量%の摩擦材である。このため、制動時に摩耗粉が発生しても、河川、湖や海洋汚染の原因とならない。なお、上記の「元素としての銅」とは、繊維状や粉末状等の銅、銅合金および銅化合物に含まれる銅元素の、全摩擦材組成物中における含有率を示す。 Hereinafter, the friction material composition of the present invention, the friction material using the same, and the friction member will be described in detail. The friction material composition of the present invention is a friction material composition containing no asbestos, a so-called non-asbestos friction material composition. The friction material composition of this embodiment is a friction material composition characterized by not containing copper as an element or containing copper in an amount of 0.5% by mass or less. That is, it is a friction material that does not substantially contain environmentally harmful copper and copper alloy, has a copper content of 0.5% by mass or less, and preferably has a content of 0% by mass. For this reason, even if abrasion powder is generated during braking, it does not cause river, lake or marine pollution. In addition, said "copper as an element" shows the content rate in the total friction material composition of the copper element contained in copper, copper alloy, and a copper compound, such as fibrous form and a powder form.
[摩擦材組成物] 
 本発明の摩擦材組成物は、結合材、有機充填材、無機充填材および繊維基材を含む摩擦材組成物であって、繊維基材のうち有機物繊維として、フィブリル化アクリル繊維とフィブリル化アラミド繊維を必須成分として含有し、その合計含有量を3質量%から10質量%含有し、さらに該フィブリル化アクリル繊維とフィブリル化アラミド繊維の含有比率が4:6~7:3であることを特徴とする。
[Friction material composition]
The friction material composition of the present invention is a friction material composition including a binder, an organic filler, an inorganic filler, and a fiber base material, and fibrillated acrylic fiber and fibrillated aramid are used as organic fibers in the fiber base material. A fiber is contained as an essential component, the total content thereof is 3 to 10% by mass, and the content ratio of the fibrillated acrylic fiber to the fibrillated aramid fiber is 4: 6 to 7: 3 And
(フィブリル化アクリル繊維とフィブリル化アラミド繊維) 
 本発明の摩擦材組成物は、静摩擦係数および耐クラック性向上の観点から、繊維基材として、フィブリル化アクリル繊維を必須成分として含有する。フィブリル化アクリル繊維とは、分繊化し、毛羽立ちをもったアクリル繊維である。上記フィブリル化アクリル繊維としては、例えば、Sterling fibers Inc.製CFF fiberが挙げられ、これらは商業的に入手できる。フィブリル化アクリル繊維のフィブリル化の状態は濾水度として定義でき、フィブリル化アクリル繊維の濾水度は200~315mlであることが好ましく、220~310mlであることがより好ましく、250~300mlであることがさらに好ましい。ここでいう濾水度とはTAPPIT-227に従って測定されるCSF(Canadian Standard Freeness)値のことである。この範囲とすることで、摩擦材のより良好な静摩擦係数、耐クラック性、耐摩耗性、音振性(制動時に鳴きや振動が発生し難い)が発現する。
(Fibrillated acrylic fiber and fibrillated aramid fiber)
The friction material composition of the present invention contains fibrillated acrylic fiber as an essential component as a fiber base material from the viewpoint of improving the static friction coefficient and crack resistance. Fibrilized acrylic fiber is an acrylic fiber that has been split into fibers and has fluff. Examples of the fibrillated acrylic fibers include CFF fibers manufactured by Sterling fibers Inc., which are commercially available. The fibrillation state of the fibrillated acrylic fiber can be defined as the freeness, and the freeness of the fibrillated acrylic fiber is preferably 200 to 315 ml, more preferably 220 to 310 ml, and 250 to 300 ml. More preferably. The freeness herein means a CSF (Canadian Standard Freeness) value measured according to TAPPIT-227. By setting it in this range, a better static friction coefficient, crack resistance, wear resistance, and sound vibration properties (there is less likely to generate squeal or vibration during braking) of the friction material.
 上記フィブリル化アクリル繊維の繊維長は、3~12mmであることが好ましく、5~10mmであることがより好ましい。この範囲とすることで摩擦材のより良好な剪断強度、耐クラック性、耐摩耗性が発現する。 The fiber length of the fibrillated acrylic fiber is preferably 3 to 12 mm, and more preferably 5 to 10 mm. By setting it within this range, better frictional strength, crack resistance, and wear resistance of the friction material are exhibited.
 上記フィブリル化アクリル繊維は、含有量を、2質量%以上とすることで良好な剪断強度、耐クラック性、耐摩耗性が発現し、8質量%以下とすることで摩擦組成物中のフィブリル化アクリル繊維と他材料の偏在による剪断強度、耐クラック性の悪化をより抑制することができる。 When the content of the fibrillated acrylic fiber is 2% by mass or more, good shear strength, crack resistance, and wear resistance are exhibited, and when the content is 8% by mass or less, fibrillation in the friction composition is achieved. Deterioration of shear strength and crack resistance due to uneven distribution of acrylic fibers and other materials can be further suppressed.
 さらに、本発明の摩擦材組成物は、高温での耐クラック性や耐摩耗性向上の観点からフィブリル化アラミド繊維を必須成分として含有する。本発明のフィブリル化アラミド繊維とは、複数の枝分かれを有するアラミド繊維である。このようなアラミド繊維としては、帝人株式会社製Twaron1099,1095,3091、東レ・デュポン株式会社製ケブラー1F538,1F1710などが挙げられる。フィブリル化アラミド繊維のフィブリル化の状態は、BET比表面積で定義することができ、BET比表面積が5~15m/gであることが好ましい。本発明におけるフィブリル化アラミド繊維は、繊維強度が高く多数の枝分かれを有するため、銅を含有しない組成においても効果的に摩擦材強度を向上させる。 Furthermore, the friction material composition of the present invention contains a fibrillated aramid fiber as an essential component from the viewpoint of improving crack resistance and wear resistance at high temperatures. The fibrillated aramid fiber of the present invention is an aramid fiber having a plurality of branches. Examples of such aramid fibers include Twaron 1099, 1095, 3091 manufactured by Teijin Ltd., Kevlar 1F538, 1F1710 manufactured by Toray DuPont Co., Ltd., and the like. The state of fibrillation of the fibrillated aramid fiber can be defined by a BET specific surface area, and the BET specific surface area is preferably 5 to 15 m 2 / g. Since the fibrillated aramid fiber in the present invention has high fiber strength and many branches, the friction material strength is effectively improved even in a composition not containing copper.
 上記フィブリル化アクリル繊維およびフィブリル化アラミド繊維の合計含有量は3質量%~10質量%であることが好ましく、4質量%~9質量%であることがより好ましく、5質量%から8質量%であることがさらに好ましい。3質量%以上とすることで耐クラック性および耐摩耗性が発現し、10質量%以下とすることで摩擦材組成中のフィブリル化有機繊維と他材料の偏在による耐クラック性および耐摩耗性の悪化を防ぐことができる。 The total content of the fibrillated acrylic fiber and fibrillated aramid fiber is preferably 3% by mass to 10% by mass, more preferably 4% by mass to 9% by mass, and 5% by mass to 8% by mass. More preferably it is. When it is 3% by mass or more, crack resistance and wear resistance are manifested, and when it is 10% by mass or less, crack resistance and wear resistance due to uneven distribution of fibrillated organic fibers and other materials in the friction material composition. Deterioration can be prevented.
 さらに、上記フィブリル化アクリル繊維およびフィブリル化アラミド繊維の含有比率は、4:6~7:3の範囲であることが好ましく、5:5~6:4であることがさらに好ましい。上記範囲の含有比率とすることで、高い静摩擦係数と耐クラック性を発現することができる。 Furthermore, the content ratio of the fibrillated acrylic fiber and fibrillated aramid fiber is preferably in the range of 4: 6 to 7: 3, more preferably 5: 5 to 6: 4. By setting the content ratio in the above range, a high static friction coefficient and crack resistance can be expressed.
(繊維基材) 
 繊維基材は、摩擦材において一般に補強作用等を示すものである。本発明の摩擦材組成物は、通常、繊維基材として用いられる有機繊維、無機繊維、金属繊維、炭素系繊維等を用いることができ、これらを単独でまたは2種類以上を組み合わせて使用することができる。
(Fiber substrate)
The fiber base material generally exhibits a reinforcing action or the like in the friction material. The friction material composition of the present invention can use organic fibers, inorganic fibers, metal fibers, carbon fibers, etc., which are usually used as fiber base materials, and these can be used alone or in combination of two or more. Can do.
 上記有機繊維としては、前記フィブリル化アラミド繊維およびフィブリル化アクリル繊維以外に、セルロース繊維、ノンフィブリル化アラミド繊維、ノンフィブリル化アクリル繊維、フェノール樹脂繊維(架橋構造を有する)等を用いることができ、これらをフィブリル化アクリル繊維およびフィブリル化アラミド繊維を必須成分として、さらに組み合わせて使用することができる。 As the organic fiber, in addition to the fibrillated aramid fiber and fibrillated acrylic fiber, cellulose fiber, non-fibrillated aramid fiber, non-fibrillated acrylic fiber, phenol resin fiber (having a crosslinked structure) and the like can be used. These can be used in combination with fibrillated acrylic fiber and fibrillated aramid fiber as essential components.
 本発明の摩擦材組成物における、繊維基材の含有量は、銅または銅合金の金属繊維を含み、摩擦材組成物において5~40質量%であることが好ましく、8~30質量%であることがより好ましく、10~20質量%であることがさらに好ましい。繊維基材の含有量を5~40質量%の範囲とすることで、摩擦材としての最適な気孔率が得られ、鳴き防止ができ、適正な材料強度が得られ、耐摩耗性を発現させることができる。 The content of the fiber base material in the friction material composition of the present invention includes copper or copper alloy metal fibers, and is preferably 5 to 40% by mass, and preferably 8 to 30% by mass in the friction material composition. More preferably, the content is 10 to 20% by mass. By setting the content of the fiber base in the range of 5 to 40% by mass, an optimum porosity as a friction material can be obtained, squeal can be prevented, an appropriate material strength can be obtained, and wear resistance can be exhibited. be able to.
 上記無機繊維としては、セラミック繊維、生分解性セラミック繊維、鉱物繊維、ガラス繊維、チタン酸カリウム繊維、シリケート繊維、耐炎化繊維、炭素繊維、ウォラストナイト等を用いることができ、1種または2種以上を組み合わせて用いることができる。 As the inorganic fiber, ceramic fiber, biodegradable ceramic fiber, mineral fiber, glass fiber, potassium titanate fiber, silicate fiber, flame-resistant fiber, carbon fiber, wollastonite and the like can be used. A combination of more than one species can be used.
 なお、ここでいう炭素系繊維としては、耐炎化繊維、ピッチ系炭素繊維、PAN系炭素繊維、活性炭繊維等を用いることができ、これらを単独でまたは2種類以上を組み合わせて使用することができる。 In addition, as a carbon-type fiber here, a flame-resistant fiber, a pitch-type carbon fiber, a PAN-type carbon fiber, activated carbon fiber, etc. can be used, These can be used individually or in combination of 2 or more types. .
 また、ここでいう鉱物繊維とは、スラグウール等の高炉スラグ、バサルトファイバー等の玄武岩、その他の天然岩石等を主成分として溶融紡糸した人造無機繊維であり、Al元素を含む天然鉱物であることがより好ましい。具体的には、SiO、Al、CaO、MgO、FeO、NaO等が含まれるもの、またはこれら化合物が1種または2種以上含有されるものを用いることができ、より好ましくはこれらのうちAl元素を含むものが、鉱物繊維として用いることができる。 The mineral fiber referred to here is a man-made inorganic fiber melt-spun mainly composed of blast furnace slag such as slag wool, basalt such as basalt fiber, and other natural rocks, and is a natural mineral containing Al element. Is more preferable. Specifically, those containing SiO 2 , Al 2 O 3 , CaO, MgO, FeO, Na 2 O, etc., or those containing one or more of these compounds can be used, more preferably. Of these, those containing Al element can be used as mineral fibers.
 摩擦材組成物中に含まれる鉱物繊維全体の平均繊維長が大きくなるほど接着強度は低下する傾向があるため、鉱物繊維全体の平均繊維長は500μm以下が好ましい。より好ましくは、100~400μmである。ここで、平均繊維長とは、該当する全ての繊維の長さの平均値を示した数平均繊維長のことをいう。例えば200μmの平均繊維長とは、摩擦材組成物原料として用いる鉱物繊維を無作為に50個選択し、光学顕微鏡で繊維長を測定し、その平均値が200μmであることを示す。  Since the adhesive strength tends to decrease as the average fiber length of the entire mineral fiber contained in the friction material composition increases, the average fiber length of the entire mineral fiber is preferably 500 μm or less. More preferably, it is 100 to 400 μm. Here, the average fiber length refers to a number average fiber length indicating an average value of the lengths of all corresponding fibers. For example, the average fiber length of 200 μm indicates that 50 mineral fibers used as a friction material composition raw material are randomly selected, the fiber length is measured with an optical microscope, and the average value is 200 μm.
 本発明で用いる鉱物繊維は、人体有害性の観点で生体溶解性であることが好ましい。ここでいう生体溶解性の鉱物繊維とは、人体内に取り込まれた場合でも短時間で一部分解され体外に排出される特徴を有する鉱物繊維である。具体的には、化学組成がアルカリ酸化物、アルカリ土類酸化物総量(ナトリウム、カリウム、カルシウム、マグネシウム、バリウムの酸化物の総量)が18質量%以上で、かつ呼吸による短期バイオ永続試験で、20μm以上の繊維の質量半減期が40日以内または腹膜内試験で過度の発癌性の証拠がないかまたは長期呼吸試験で関連の病原性や腫瘍発生がないことを満たす繊維を示す(EU指令97/69/ECのNota Q(発癌性適用除外))。このような生体分解性鉱物繊維としては、SiO-Al-CaO-MgO-FeO-NaO系繊維等が挙げられ、SiO、Al、CaO、MgO、FeO、NaO等を任意の組み合わせで含有した繊維が挙げられる。市販品としてはLAPINUS FIBERS B.V製のRoxulシリーズなどが挙げられる。「Roxul」は、SiO、Al、CaO、MgO、FeO、NaO等が含まれる。 The mineral fiber used in the present invention is preferably biosoluble from the viewpoint of human harm. The term “biosoluble mineral fiber” as used herein refers to a mineral fiber having a characteristic that even if it is taken into the human body, it is partially decomposed and discharged outside the body in a short time. Specifically, the chemical composition is alkali oxide, alkaline earth oxide total amount (total amount of oxides of sodium, potassium, calcium, magnesium, barium) is 18% by mass or more, and in a short-term biopermanent test by respiration, A fiber with a mass half-life of 20 μm or more that is less than 40 days or that has no evidence of excessive carcinogenicity in an intraperitoneal test or that has no associated pathogenicity or tumor development in a long-term respiratory test (EU Directive 97 / 69 / EC Nota Q (carcinogenic exclusion)). Examples of such biodegradable mineral fibers include SiO 2 —Al 2 O 3 —CaO—MgO—FeO—Na 2 O fibers, and the like, including SiO 2 , Al 2 O 3 , CaO, MgO, FeO, Na Examples thereof include fibers containing 2 O or the like in any combination. Commercially available products include Roxul series made by LAPINUS FIBERS BV. “Roxul” includes SiO 2 , Al 2 O 3 , CaO, MgO, FeO, Na 2 O and the like.
 上記金属繊維としては、耐クラック性および耐摩耗性の向上のため、銅または銅合金の繊維を用いることができる。ただし、銅または銅合金の繊維を含有させる場合、環境への優しさを考慮すると、該摩擦材組成物中における、銅全体の含有量が、銅元素として5質量%を超えない範囲であることが好ましく、銅または銅合金の繊維の含有量が0.5質量%を超えない量であることが好ましい。 As the metal fiber, copper or copper alloy fiber can be used for improving crack resistance and wear resistance. However, when the fiber of copper or copper alloy is contained, the content of the entire copper in the friction material composition is within a range not exceeding 5 mass% as the copper element in consideration of environmental friendliness. It is preferable that the content of the copper or copper alloy fiber does not exceed 0.5 mass%.
 銅または銅合金の繊維としては、銅繊維、黄銅繊維、青銅繊維等を用いることができ、これらを単独でまたは2種類以上を組み合わせて使用することができる。 As the fiber of copper or copper alloy, copper fiber, brass fiber, bronze fiber or the like can be used, and these can be used alone or in combination of two or more.
 また、上記金属繊維として、本発明の摩擦材組成物中の含有量が0.5質量%を超えない量で、銅および銅合金以外の金属繊維を用いてもよい。銅および銅合金以外の金属繊維は、摩擦係数の向上および耐クラック性の観点から含有させてもよいが、含有量が0.5質量%を超えないことで、耐摩耗性の悪化を避けることができ、好ましくは銅および銅合金以外の金属繊維を含有しないこと(含有量0質量%)である。 Further, as the metal fiber, metal fiber other than copper and copper alloy may be used in such an amount that the content in the friction material composition of the present invention does not exceed 0.5 mass%. Metal fibers other than copper and copper alloys may be contained from the viewpoints of improving the friction coefficient and crack resistance, but avoiding deterioration of wear resistance by the content not exceeding 0.5 mass%. Preferably, metal fibers other than copper and copper alloys are not contained (content 0 mass%).
 銅および銅合金以外の金属繊維としては、例えば、アルミニウム、鉄、亜鉛、錫、チタン、ニッケル、マグネシウム、シリコン等の金属単体または合金形態の繊維や、鋳鉄繊維などの金属を主成分とする繊維が挙げられ、これらを単独でまたは2種類以上を組み合わせて使用することができる。 Examples of metal fibers other than copper and copper alloys include fibers in the form of simple metals or alloys such as aluminum, iron, zinc, tin, titanium, nickel, magnesium, and silicon, and fibers mainly composed of metals such as cast iron fibers. These can be used alone or in combination of two or more.
(無機充填材) 
 無機充填材は、摩擦材の耐熱性や耐摩耗性、摩擦係数等の悪化を避けるための摩擦調整材として含まれるものである。 
(Inorganic filler)
The inorganic filler is included as a friction modifier for avoiding deterioration of the heat resistance, wear resistance, friction coefficient and the like of the friction material.
 本発明の摩擦材組成物における無機充填材としては、通常、摩擦材に用いられる無機充填材であれば特に制限はない。無機充填材としては、例えば、マイカ、黒鉛、コークス、三流化アンチモン、硫化スズ、二硫化モリブデン、流化ビスマス、硫化亜鉛等の金属硫化物、チタン酸カリウム、チタン酸リチウムカリウム、チタン酸ナトリウム、チタン酸マグネシウムカリウム等のチタン酸塩、水酸化カルシウム、酸化カルシウム、炭酸ナトリウム、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、ドロマイト、コークス、マイカ、バーミキュライト、硫酸カルシウム、粒状チタン酸カリウム、板状チタン酸カリウム、タルク、クレー、ゼオライト、ケイ酸ジルコニウム、酸化ジルコニウム、ムライト、クロマイト、酸化チタン、酸化マグネシウム、シリカ、四酸化三鉄、酸化亜鉛、ガーネット、α-アルミナ、γ-アルミナ、炭化珪素等を用いることができ、また金属粉末として鉄粉末、鋳鉄粉末、アルミニウム粉末、ニッケル粉末およびこれら種々成分からなる合金粉末等も用いることができ、これらを単独でまたは2種類以上を組み合わせて使用することができる。 The inorganic filler in the friction material composition of the present invention is not particularly limited as long as it is usually an inorganic filler used for a friction material. Examples of inorganic fillers include mica, graphite, coke, antimony trifluidized, tin sulfide, molybdenum disulfide, fluidized bismuth, zinc sulfide and other metal sulfides, potassium titanate, lithium potassium titanate, sodium titanate, Titanates such as magnesium potassium titanate, calcium hydroxide, calcium oxide, sodium carbonate, calcium carbonate, magnesium carbonate, barium sulfate, dolomite, coke, mica, vermiculite, calcium sulfate, granular potassium titanate, plate-like potassium titanate , Talc, clay, zeolite, zirconium silicate, zirconium oxide, mullite, chromite, titanium oxide, magnesium oxide, silica, triiron tetroxide, zinc oxide, garnet, α-alumina, γ-alumina, silicon carbide, etc. Can Moreover, iron powder, cast iron powder, aluminum powder, nickel powder, and alloy powders composed of these various components can be used as the metal powder, and these can be used alone or in combination of two or more.
 なお、上記の無機充填材のうち、水酸化カルシウム、炭酸カルシウムおよび酸化亜鉛は、摩擦材組成物に含有させると摩擦材の錆発生の防止に寄与するため、摩擦材組成物に含有させることが好ましい。 Of the above inorganic fillers, calcium hydroxide, calcium carbonate, and zinc oxide contribute to the prevention of rusting of the friction material when included in the friction material composition. preferable.
 本発明の摩擦材組成物中における、無機充填材の含有量は、30~80質量%であることが好ましく、40~78質量%であることがより好ましく、50~75質量%であることがさらに好ましい。ここでいう無機充填材は、前記の雲母や黒鉛、金属硫化物を含む。無機充填材の含有量を30~80質量%の範囲とすることで、耐熱性の悪化を避けることができる。 The content of the inorganic filler in the friction material composition of the present invention is preferably 30 to 80% by mass, more preferably 40 to 78% by mass, and 50 to 75% by mass. Further preferred. The inorganic filler here includes the mica, graphite, and metal sulfide. When the content of the inorganic filler is in the range of 30 to 80% by mass, deterioration of heat resistance can be avoided.
(結合材) 
 結合材は、摩擦材組成物に含まれる有機充填材、無機充填材および繊維基材などを結合して一体化し、所定の形状と強度を与えるものである。本発明の摩擦材組成物に含まれる結合材としては特に制限はなく、一般的に、摩擦材の結合材として用いられる熱硬化性樹脂を用いることができる。
(Binder)
The binding material binds and integrates an organic filler, an inorganic filler, a fiber base material, and the like included in the friction material composition to give a predetermined shape and strength. There is no restriction | limiting in particular as a binder contained in the friction material composition of this invention, Generally, the thermosetting resin used as a binder of a friction material can be used.
 上記熱硬化性樹脂としては、例えば、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂等が挙げられ、さらには、アクリル変性フェノール樹脂、シリコーン変性フェノール樹脂、カシュー変性フェノール樹脂、エポキシ変性フェノール樹脂およびアルキルベンゼン変性フェノール樹脂等の各種変性フェノール樹脂なども挙げられ、これらを単独でまたは2種類以上を組み合わせて使用することができる。特に、良好な耐熱性、成形性および摩擦係数を与えることから、フェノール樹脂、アクリル変性フェノール樹脂、シリコーン変性フェノール樹脂、アルキルベンゼン変性フェノール樹脂を用いることが好ましい。  Examples of the thermosetting resin include phenolic resins, epoxy resins, polyimide resins, and the like, and acrylic modified phenolic resins, silicone modified phenolic resins, cashew modified phenolic resins, epoxy modified phenolic resins, and alkylbenzene modified phenolic resins. Various modified phenolic resins such as these can also be mentioned, and these can be used alone or in combination of two or more. In particular, it is preferable to use a phenol resin, an acrylic-modified phenol resin, a silicone-modified phenol resin, or an alkylbenzene-modified phenol resin because it provides good heat resistance, moldability, and a friction coefficient.
 本発明の摩擦材組成物中における、結合材の含有量は、5~20質量%であることが好ましく、6~14質量%であることがより好ましい。結合材の含有量を5~20質量%の範囲とすることで、摩擦材の強度低下をより抑制でき、また、摩擦材の気孔率が減少し、弾性率が高くなることによる鳴きなどの音振性能(制動時に鳴きや振動が発生し難い)の悪化をより抑制できる。 The content of the binder in the friction material composition of the present invention is preferably 5 to 20% by mass, and more preferably 6 to 14% by mass. By setting the binder content in the range of 5 to 20% by mass, the strength of the friction material can be further suppressed, and the porosity of the friction material is reduced and noise such as squeal due to an increase in elastic modulus. It is possible to further suppress the deterioration of vibration performance (sound and vibration are less likely to occur during braking).
(有機充填材) 
 有機充填材は、摩擦材の音振性能や耐摩耗性などを向上させるための摩擦調整材として含まれるものである。 
(Organic filler)
The organic filler is included as a friction modifier for improving the sound vibration performance and wear resistance of the friction material.
 本発明の摩擦材組成物は、有機充填材として、通常、摩擦材に有機充填材として用いられるカシューパーティクルや各種のゴム成分などを用いることができる。上記カシューパーティクルは、カシューナッツシェルオイルを硬化させたものを粉砕して得られる、通常、摩擦材に用いられるものであればよい。ゴム成分としては、例えば、天然ゴム、アクリロニトリル-ブタジエンゴム(NBR)、アクリルゴム、イソプレンゴム、ポリブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、シリコーンゴム等を用いることができ、また、例えば廃タイヤを処分して得られるタイヤゴム等をゴム成分として利用することができる。ゴム成分としては、これらを単独でまたは2種類以上を組み合わせて使用される。また、カシューパーティクルとゴム成分とを併用してもよく、カシューパーティクルをゴム成分で被覆したものを用いてもよい。 In the friction material composition of the present invention, cashew particles or various rubber components that are usually used as an organic filler in the friction material can be used as the organic filler. The cashew particles may be those usually used for friction materials obtained by pulverizing a hardened cashew nut shell oil. As the rubber component, for example, natural rubber, acrylonitrile-butadiene rubber (NBR), acrylic rubber, isoprene rubber, polybutadiene rubber (BR), styrene butadiene rubber (SBR), silicone rubber, and the like can be used. Tire rubber or the like obtained by disposing of the tire can be used as a rubber component. These rubber components are used alone or in combination of two or more. Further, cashew particles and a rubber component may be used in combination, or cashew particles coated with a rubber component may be used.
 本発明の摩擦材組成物中における、有機充填材の含有量は、1~20質量%であることが好ましく、1~10質量%であることがより好ましく、4~8質量%であることがさらに好ましい。有機充填材の含有量を1~20質量%の範囲とすることで、摩擦材が硬くなって鳴きなどの音振性能の悪化を避けることができ、また耐熱性の悪化、熱履歴による強度低下を避けることができる。また、カシューパーティクルとゴム成分とを併用する場合、カシューパーティクルとゴム成分とは、質量比で1:4~10:1の割合であることが好ましく、1:3~9:1であることがより好ましく、1:2~8:1であることが特に好ましい。 The content of the organic filler in the friction material composition of the present invention is preferably 1 to 20% by mass, more preferably 1 to 10% by mass, and 4 to 8% by mass. Further preferred. By setting the organic filler content in the range of 1 to 20% by mass, the friction material becomes hard and deterioration of sound vibration performance such as squealing can be avoided. Also, heat resistance deteriorates and strength decreases due to thermal history. Can be avoided. When cashew particles and a rubber component are used in combination, the mass ratio of the cashew particles and the rubber component is preferably 1: 4 to 10: 1, and preferably 1: 3 to 9: 1. More preferred is 1: 2 to 8: 1.
(その他の材料) 
 本発明の摩擦材組成物は、前記の結合材、有機充填材、無機充填材、繊維基材以外に、必要に応じてその他の材料を配合することができる。
(Other materials)
The friction material composition of this invention can mix | blend other materials as needed other than the said binder, an organic filler, an inorganic filler, and a fiber base material.
 例えば、本発明の摩擦材組成物中における、銅全体の含有量が、銅元素として0.5質量%を超えない範囲で、銅粉、黄銅粉、青銅粉等の金属粉末などを配合することができる。また、耐摩耗性の観点から、例えばPTFE(ポリテトラフルオロエチレン)などのフッ素系ポリマーのような有機添加材などを配合することができる。 For example, in the friction material composition of the present invention, the total content of copper does not exceed 0.5% by mass as copper element, and metal powder such as copper powder, brass powder, bronze powder, etc. is blended. Can do. From the viewpoint of wear resistance, for example, an organic additive such as a fluorine-based polymer such as PTFE (polytetrafluoroethylene) can be blended.
[摩擦材] 
 本発明の摩擦材は、上記摩擦材組成物を成形してなり、自動車などのディスクブレーキパッドやブレーキライニングなどの摩擦材として使用することができる。本発明の摩擦材は優れた摩擦係数の安定性、耐低周波異音性および耐クラック性を示すため、制動時に負荷の大きいディスクブレーキパッドの摩擦材に好適である。
[Friction material]
The friction material of the present invention is formed by molding the friction material composition, and can be used as a friction material for disc brake pads and brake linings of automobiles. Since the friction material of the present invention exhibits excellent stability of friction coefficient, low frequency noise resistance and crack resistance, it is suitable for a friction material of a disk brake pad having a large load during braking.
 本発明の摩擦材は、本発明の摩擦材組成物を一般に使用されている方法で成形して製造することができ、好ましくは加熱加圧成形して製造される。詳細には、本発明の摩擦材組成物をレーディゲミキサー(「レーディゲ」は登録商標)、加圧ニーダー、アイリッヒミキサー(「アイリッヒ」は登録商標)等の混合機を用いて均一に混合し、この混合物を成形金型にて予備成形し、得られた予備成形物を成形温度140~160℃、成形圧力20~50MPaの条件で4~10分間で成形し、得られた成形物を180~250℃で2~10時間熱処理する。また、必要に応じて塗装、スコーチ処理、研磨処理を行う。  The friction material of the present invention can be manufactured by molding the friction material composition of the present invention by a generally used method, and is preferably manufactured by hot pressing. Specifically, the friction material composition of the present invention is uniformly mixed using a mixer such as a Laedige mixer ("Radiger" is a registered trademark), a pressure kneader, an Eirich mixer ("Eirich" is a registered trademark), or the like. The mixture is preformed in a molding die, and the obtained preform is molded in a molding temperature of 140 to 160 ° C. and a molding pressure of 20 to 50 MPa for 4 to 10 minutes. Heat treatment is performed at 180 to 250 ° C. for 2 to 10 hours. In addition, painting, scorch treatment, and polishing treatment are performed as necessary.
[摩擦部材] 
 本発明の摩擦部材は、上記摩擦材を摩擦面となる摩擦材として用いてなる。上記摩擦部材としては、例えば、下記の構成などが挙げられる。
(1)摩擦材のみの構成。 
(2)裏金と、該裏金の上に摩擦面となる本発明の摩擦材組成物からなる摩擦材とを有する構成。 
(3)上記(2)の構成において、裏金と摩擦材との間に、裏金の接着効果を高めるための表面改質を目的としたプライマー層、および、裏金と摩擦材との接着を目的とした接着層をさらに介在させた構成。
[Friction material]
The friction member of this invention uses the said friction material as a friction material used as a friction surface. Examples of the friction member include the following configurations.
(1) Configuration of friction material only.
(2) The structure which has a back metal and the friction material which consists of a friction material composition of this invention used as a friction surface on this back metal.
(3) In the configuration of (2) above, between the back metal and the friction material, a primer layer for the purpose of surface modification for enhancing the adhesion effect of the back metal, and for the purpose of bonding the back metal and the friction material A configuration in which an adhesive layer is further interposed.
 上記裏金は、摩擦部材の機械的強度の向上のために、通常、摩擦部材として用いるものであり、材質としては、金属または繊維強化プラスチック等、具体的には、鉄、ステンレス、無機繊維強化プラスチック、炭素繊維強化プラスチック等が挙げられる。プライマー層および接着層は、通常、ブレーキシュー等の摩擦部材に用いられるものであればよい。 The backing metal is usually used as a friction member in order to improve the mechanical strength of the friction member. The material is metal or fiber reinforced plastic, specifically iron, stainless steel, inorganic fiber reinforced plastic. And carbon fiber reinforced plastics. The primer layer and the adhesive layer may be those used for friction members such as brake shoes.
 本発明の摩擦材組成物は、銅および銅合金の含有量が少なくても、高い静摩擦係数、耐クラック性および耐摩耗性に優れるため、摩擦部材の「上張り材」として有用であり、高いパーキング性能が要求されるEPBブレーキ用摩擦部材の「上張り材」として、特に有用である。さらに摩擦材として高い耐クラック性を有するため、摩擦部材の「下張り材」として成形して用いることもできる。なお、「上張り材」とは、摩擦部材の摩擦面となる摩擦材であり、「下張り材」とは、摩擦部材の摩擦面となる摩擦材と裏金との間に介在する、摩擦材と裏金との接着部付近の剪断強度、耐クラック性向上を目的とした層のことである。 The friction material composition of the present invention is useful as a “covering material” of a friction member because it has a high coefficient of static friction, crack resistance and wear resistance even if the content of copper and copper alloy is small. It is particularly useful as an “upholstery material” for a friction member for EPB brakes that requires parking performance. Furthermore, since it has high crack resistance as a friction material, it can be molded and used as a “underlay material” of a friction member. The “upper material” is a friction material that becomes the friction surface of the friction member, and the “underlay material” is a friction material that is interposed between the friction material that becomes the friction surface of the friction member and the back metal. It is a layer for the purpose of improving the shear strength and crack resistance in the vicinity of the adhesion part with the back metal.
 図1は、本発明の一実施形態に係る摩擦部材である自動車用ディスクブレーキのブレーキパッド1を示している。このブレーキパッド1は、板状に成形された摩擦材2が鋳鉄からなる板状の裏金3の片面に接着されて構成されたものであり、摩擦材2の表面21が対面材であるディスクロータ(図示せず)に圧接させられる摩擦面を構成する。ブレーキパッド1は全体がディスクロータの周方向に沿った弧状に形成されており、摩擦材2の表面21側の周方向中央部には、径方向に延びるスリット22が形成され、周方向両端部にはチャンファー23が形成されている。 FIG. 1 shows a brake pad 1 of an automotive disc brake which is a friction member according to an embodiment of the present invention. The brake pad 1 is configured by adhering a plate-shaped friction material 2 to one surface of a plate-shaped back metal 3 made of cast iron, and a disk rotor in which a surface 21 of the friction material 2 is a facing material. A friction surface that is pressed against (not shown) is configured. The brake pad 1 as a whole is formed in an arc shape along the circumferential direction of the disk rotor, and a slit 22 extending in the radial direction is formed at the circumferential central portion on the surface 21 side of the friction material 2, and both circumferential ends. A chamfer 23 is formed on the front side.
 摩擦材2は上記した摩擦材組成物を成形してなるものであり、ブレーキパッド1は、例えば上記した[摩擦部材](2)または(3)の構成を有するものである。図1(b)は(2)の構成を示す断面図である。図1(c)は(3)の構成を示す断面図であって、符合4は摩擦材2と裏金3との間に所定厚さに設けられた接着層である。 The friction material 2 is formed by molding the friction material composition described above, and the brake pad 1 has, for example, the above-described configuration of [friction member] (2) or (3). FIG.1 (b) is sectional drawing which shows the structure of (2). FIG. 1C is a cross-sectional view showing the configuration of (3), and reference numeral 4 denotes an adhesive layer provided at a predetermined thickness between the friction material 2 and the back metal 3.
 ブレーキパッド1は、上記各種材料を調製・混合して得た摩擦材組成物を原料として摩擦材2を予備成形し、その予備成形物を裏金3に接着させた状態で裏金3とともに加熱加圧成形し、この後、必要な処理(熱処理、塗装、スコーチ処理、研磨処理等)を行うとともに、スリット22およびチャンファー23を形成する加工を摩擦材2に施して製造される。 The brake pad 1 is pre-molded with the friction material 2 obtained by preparing and mixing the above-mentioned various materials as a raw material, and is heated and pressed together with the back metal 3 while the preform is adhered to the back metal 3. After the molding, necessary processes (heat treatment, painting, scorch process, polishing process, etc.) are performed, and the friction material 2 is manufactured by forming the slit 22 and the chamfer 23.
 以下、本発明を実施例によりさらに詳細に説明する。なお、本発明はこれらの例によって何ら制限されるものではない。  Hereinafter, the present invention will be described in more detail with reference to examples. In addition, this invention is not restrict | limited at all by these examples.
[実施例1~6および比較例1~7] 
(ディスクブレーキパッドの作製) 
 表1および表2に示す配合比率に従って材料を配合し、実施例1~6および比較例1~7の摩擦材組成物を得た。表1および表2の各成分の配合量の単位は、摩擦材組成物中の質量%である。また、使用した各種原材料は次のとおりである。
[Examples 1 to 6 and Comparative Examples 1 to 7]
(Production of disc brake pad)
The materials were blended according to the blending ratios shown in Table 1 and Table 2, and the friction material compositions of Examples 1 to 6 and Comparative Examples 1 to 7 were obtained. The unit of the blending amount of each component in Table 1 and Table 2 is mass% in the friction material composition. The various raw materials used are as follows.
(結合材) 
・フェノール樹脂:日立化成(株)製(商品名:HP491UP) 
(有機充填材) 
・カシューパーティクル:東北化工(株)製(商品名:FF-1090) 
・NBR:バイエル社製(商品名:Baymod NXL 38.20) 
(無機充填材) 
・黒鉛:TIMICAL(商品名:KS15) 
・硫酸バリウム:堺化学工業(株)製(商品名:硫酸バリウムBA) 
・三硫化アンチモン:TRIBOTECC製(商品名:DBPC 2004) 
・チタン酸カリウム:(株)クボタ(商品名:TXAX-MA) 
・酸化ジルコニウム:第一希元素化学工業製(商品名:BRQZ) 
・水酸化カルシウム:秩父石灰工業(株)製(商品名:SA-149) 
(繊維基材) 
・フィブリル化アクリル繊維(有機繊維):スターリングファイバー製(商品名:CFF V110-1) 
・フィブリル化アラミド繊維(有機繊維):東レ・デュポン(株)製(商品名:1F538) 
・鉄繊維(金属繊維):GMT製 ♯0 
・銅繊維(金属繊維):Sunny Metal製(商品名:SCA-1070)
・鉱物繊維(無機繊維):LAPINUS FIBERS B.V製(商品名:RB240 Roxul)
(Binder)
・ Phenolic resin: manufactured by Hitachi Chemical Co., Ltd. (trade name: HP491UP)
(Organic filler)
・ Cashew particles: manufactured by Tohoku Kako Co., Ltd. (trade name: FF-1090)
・ NBR: Bayer Co., Ltd. (trade name: Baymod NXL 38.20)
(Inorganic filler)
・ Graphite: TIMICAL (trade name: KS15)
-Barium sulfate: manufactured by Sakai Chemical Industry Co., Ltd. (trade name: barium sulfate BA)
-Antimony trisulfide: manufactured by TRIBOTECC (trade name: DBPC 2004)
・ Potassium titanate: Kubota Corporation (trade name: TXAX-MA)
・ Zirconium oxide: manufactured by Daiichi Rare Element Chemical Industry (trade name: BRQZ)
・ Calcium hydroxide: manufactured by Chichibu Lime Industry Co., Ltd. (trade name: SA-149)
(Fiber substrate)
-Fibrilized acrylic fiber (organic fiber): Made of Stirling fiber (trade name: CFF V110-1)
・ Fibrilized aramid fiber (organic fiber): manufactured by Toray DuPont Co., Ltd. (trade name: 1F538)
・ Iron fiber (metal fiber): GMT # 0
・ Copper fiber (metal fiber): Sunny Metal (trade name: SCA-1070)
・ Mineral fiber (inorganic fiber): LAPINUS FIBERS BV (trade name: RB240 Roxul)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 得られた実施例1~6および比較例1~7の摩擦材組成物を、レディーゲミキサー((株)マツボー社製、商品名:レディーゲミキサーM20)で混合し、この混合物を成形プレス(王子機械工業(株)製)で予備成形し、得られた予備成形物を成形温度140℃、成形圧力20MPaの条件で6分間、成形プレス(三起精工(株)製)を用いて鋼製の裏金とともに加熱加圧成形した。次いで、得られた成形品を200℃で5時間熱処理し、ロータリー研磨機を用いて研磨し、摩擦材両端に24mmの平行チャンファーと中央に3mmのスリットを付設した後、520℃で5分間のスコーチ処理を行って、ディスクブレーキパッド(摩擦材の厚さ11mm、摩擦材投影面積45cm)を得た。 The obtained friction material compositions of Examples 1 to 6 and Comparative Examples 1 to 7 were mixed with a Readyge mixer (manufactured by Matsubo Co., Ltd., trade name: Ladyge mixer M20), and this mixture was formed into a molding press ( Oji Machine Industry Co., Ltd.) and the resulting preform is made of steel using a molding press (Sanki Seiko Co., Ltd.) for 6 minutes at a molding temperature of 140 ° C. and a molding pressure of 20 MPa. And press-molded together with the back metal. Subsequently, the obtained molded product was heat-treated at 200 ° C. for 5 hours, polished using a rotary polishing machine, and provided with a 24 mm parallel chamfer on both ends of the friction material and a 3 mm slit in the center, and then at 520 ° C. for 5 minutes. The disc brake pad (friction material thickness 11 mm, friction material projection area 45 cm 2 ) was obtained.
 上記のようにして作製した実施例1~6および比較例1~7のディスクブレーキパッドについて、以下の評価を行った。それらの結果を表1および表2に併記する。 The disk brake pads of Examples 1 to 6 and Comparative Examples 1 to 7 manufactured as described above were evaluated as follows. The results are also shown in Tables 1 and 2.
(1)静摩擦係数の評価 
 静摩擦係数は、自動車技術会規格JASO C436に準拠して測定し、試験項目7の第二静的効力試験の静摩擦係数を評価した。
(1) Evaluation of static friction coefficient
The static friction coefficient was measured according to the Japan Society of Automotive Engineers standard JASO C436, and the static friction coefficient of the second static efficacy test of Test Item 7 was evaluated.
(2)耐クラック性の評価 
 耐クラック性は、自動車技術会規格JASO C427に示されるブレーキ温度400℃の制動(初速度50km/h、終速度0km/h、減速度0.3G、制動前ブレーキ温度100℃)を摩擦材が半分の厚みとなるまで繰り返し、摩擦材側面および摩擦面のクラックの発生を測定した。クラックの発生は、下記に従い、3段階評点にて評価した。及第点は水準2である。
(2) Evaluation of crack resistance
As for crack resistance, the friction material is braked at a braking temperature of 400 ° C. (initial speed 50 km / h, final speed 0 km / h, deceleration 0.3 G, braking temperature 100 ° C. before braking) shown in the Japan Society of Automotive Engineers standard JASO C427. Repeatedly until the thickness became half, the occurrence of cracks on the friction material side surface and the friction surface was measured. The occurrence of cracks was evaluated with a three-point score according to the following. The second point is level 2.
 水準1:クラック発生なし。 
 水準2:摩擦材の摩擦面または側面に0.1mmのシックネスゲージが入らない程度のクラックが発生。 
 水準3:摩擦材の摩擦面または側面に0.1mmのシックネスゲージが入る程度のクラックが発生。 
 なお、摩擦材の摩擦面および側面の一方にシックネスゲージが入らない(または入る)程度のクラックが発生し、他方にシックネスゲージが入る(または入らない)程度のクラックが発生した場合、水準3とする。
Level 1: No cracking.
Level 2: Cracks to the extent that a 0.1 mm thickness gauge does not enter the friction surface or side surface of the friction material.
Level 3: Cracks were generated to the extent that a 0.1 mm thickness gauge entered the friction surface or side surface of the friction material.
In addition, if a crack that does not (or does not enter) the thickness gauge occurs on one of the friction surface and the side surface of the friction material and a crack that causes (or does not enter) the thickness gauge on the other occurs, level 3 To do.
(3)耐摩耗性の評価 
 耐摩耗性は、自動車技術会規格JASO C427に基づき測定し、ブレーキ温度100℃および300℃の制動1000回相当の摩擦材の摩耗量を評価した。 
(3) Evaluation of wear resistance
The wear resistance was measured based on the Japan Society of Automotive Engineers standard JASO C427, and the wear amount of the friction material corresponding to 1000 brakings at a brake temperature of 100 ° C. and 300 ° C. was evaluated.
 なお、上記JASO C436準拠による静摩擦係数、上記JASO C427準拠による耐クラック性および耐摩耗性のそれぞれの評価は、ダイナモメータを用い、イナーシャ95kgf・mで評価を行った。また、摩擦材が常用ブレーキと兼用でホイールブレーキに組み込まれた組込式Aの駐車ブレーキ装置を用いており、一般的なコレットタイプのEPB用キャリパである。ディスクロータには一般的なベンチレーテッドタイプを用いた。 Each of the static friction coefficient based on the JASO C436 and the crack resistance and wear resistance based on the JASO C427 were evaluated using a dynamometer at an inertia of 95 kgf · m 2 . Further, a built-in type A parking brake device in which a friction material is also used as a service brake and incorporated in a wheel brake is used, and is a general collet type caliper for EPB. A general ventilated type was used for the disk rotor.
(4)評価の結果 
 表1および表2より、フィブリル化アクリル繊維とフィブリル化アラミド繊維を必須成分として含有し、その合計含有量が3質量%から10質量%であり、かつ該フィブリル化アクリル繊維とフィブリル化アラミド繊維の含有比率が4:6~7:3の範囲にある実施例1~6の摩擦材は、従来の銅を含有する比較例1の摩擦材よりも静摩擦係数が高い値を示すとともに、従来の銅を含有する比較例1の摩擦材と同等の耐クラック性および耐摩耗性を示すことが確認された。
(4) Results of evaluation
From Tables 1 and 2, the fibrillated acrylic fiber and the fibrillated aramid fiber are contained as essential components, the total content thereof is 3% by mass to 10% by mass, and the fibrillated acrylic fiber and the fibrillated aramid fiber The friction materials of Examples 1 to 6 whose content ratio is in the range of 4: 6 to 7: 3 show a higher static friction coefficient than the friction material of Comparative Example 1 containing conventional copper and the conventional copper. It was confirmed that crack resistance and wear resistance equivalent to the friction material of Comparative Example 1 containing
 これに対し、フィブリル化アラミド繊維のみを含有しフィブリル化アクリル繊維を含有しない比較例2、フィブリル化アクリル繊維のみを含有しフィブリル化アラミド繊維を含有しない比較例3の摩擦材、フィブリル化アクリル繊維とフィブリル化アラミド繊維の合計含有量が3質量%に満たない比較例4の摩擦材、フィブリル化アクリル繊維とフィブリル化アラミド繊維の合計含有量が10質量%を超える比較例5の摩擦材、フィブリル化アクリル繊維とフィブリル化アラミド繊維の含有比率が4:6~7:3の範囲の範囲から逸脱した比較例6、7の摩擦材は、耐摩耗性、静止摩擦係数、耐クラック性のいずれかが要求特性を満たさないことが確認された。 In contrast, the friction material of Comparative Example 2 containing only fibrillated aramid fibers and not containing fibrillated acrylic fibers, and Comparative Example 3 containing only fibrillated acrylic fibers and not containing fibrillated aramid fibers, fibrillated acrylic fibers and The friction material of Comparative Example 4 in which the total content of fibrillated aramid fibers is less than 3% by mass, the friction material of Comparative Example 5 in which the total content of fibrillated acrylic fibers and fibrillated aramid fibers exceeds 10% by mass, and fibrillated The friction material of Comparative Examples 6 and 7 in which the content ratio of the acrylic fiber and the fibrillated aramid fiber deviates from the range of 4: 6 to 7: 3 is any one of wear resistance, static friction coefficient, and crack resistance. It was confirmed that the required characteristics were not met.
 本発明の摩擦材組成物は、静止摩擦係数が高く、かつ耐クラック性が高いことから、電動パーキングブレーキ(EPB)用摩擦材として特に有用なものである。 The friction material composition of the present invention is particularly useful as a friction material for an electric parking brake (EPB) because it has a high coefficient of static friction and high crack resistance.

Claims (3)

  1.  結合材、有機充填材、無機充填材および繊維基材を含む摩擦材組成物であって、 
     元素として銅を含まない、または銅の含有率が0.5質量%以下であり、 
     前記繊維基材は、有機物繊維としてフィブリル化アクリル繊維とフィブリル化アラミド繊維を必須成分として含有し、その合計含有量が3質量%から10質量%であり、かつ該フィブリル化アクリル繊維とフィブリル化アラミド繊維の含有比率が4:6~7:3である摩擦材組成物。
    A friction material composition comprising a binder, an organic filler, an inorganic filler, and a fiber substrate,
    Does not contain copper as an element, or the copper content is 0.5% by mass or less,
    The fiber base material contains fibrillated acrylic fiber and fibrillated aramid fiber as essential components as organic fibers, the total content thereof is 3% by mass to 10% by mass, and the fibrillated acrylic fiber and fibrillated aramid A friction material composition having a fiber content ratio of 4: 6 to 7: 3.
  2.  請求項1に記載の摩擦材組成物を成形してなる摩擦材。  A friction material formed by molding the friction material composition according to claim 1.
  3.  請求項1に記載の摩擦材組成物を成形してなる摩擦材と裏金とを用いて形成される摩擦部材。  A friction member formed using a friction material obtained by molding the friction material composition according to claim 1 and a back metal.
PCT/JP2015/086011 2015-12-24 2015-12-24 Friction material composition, and friction material and friction member using friction material composition WO2017109893A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017557585A JPWO2017109893A1 (en) 2015-12-24 2015-12-24 Friction material composition, friction material and friction member using the friction material composition
PCT/JP2015/086011 WO2017109893A1 (en) 2015-12-24 2015-12-24 Friction material composition, and friction material and friction member using friction material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/086011 WO2017109893A1 (en) 2015-12-24 2015-12-24 Friction material composition, and friction material and friction member using friction material composition

Publications (1)

Publication Number Publication Date
WO2017109893A1 true WO2017109893A1 (en) 2017-06-29

Family

ID=59089760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086011 WO2017109893A1 (en) 2015-12-24 2015-12-24 Friction material composition, and friction material and friction member using friction material composition

Country Status (2)

Country Link
JP (1) JPWO2017109893A1 (en)
WO (1) WO2017109893A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021010003A1 (en) * 2019-07-18 2021-01-21

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03237183A (en) * 1990-02-14 1991-10-23 Akebono Brake Ind Co Ltd Non-asbestos friction material
JP2002285143A (en) * 2001-03-23 2002-10-03 Akebono Brake Res & Dev Center Ltd Friction material
JP2008503660A (en) * 2004-06-25 2008-02-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Acrylic and para-aramid pulp and method for producing the same
WO2012066964A1 (en) * 2010-11-19 2012-05-24 日立化成工業株式会社 Non-asbestos friction-material composition, and friction material and friction member using same
JP2015074716A (en) * 2013-10-09 2015-04-20 日本ブレーキ工業株式会社 Friction material composition, friction material and friction member using friction material composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03237183A (en) * 1990-02-14 1991-10-23 Akebono Brake Ind Co Ltd Non-asbestos friction material
JP2002285143A (en) * 2001-03-23 2002-10-03 Akebono Brake Res & Dev Center Ltd Friction material
JP2008503660A (en) * 2004-06-25 2008-02-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Acrylic and para-aramid pulp and method for producing the same
WO2012066964A1 (en) * 2010-11-19 2012-05-24 日立化成工業株式会社 Non-asbestos friction-material composition, and friction material and friction member using same
JP2015074716A (en) * 2013-10-09 2015-04-20 日本ブレーキ工業株式会社 Friction material composition, friction material and friction member using friction material composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021010003A1 (en) * 2019-07-18 2021-01-21
WO2021010003A1 (en) * 2019-07-18 2021-01-21 日清紡ブレーキ株式会社 Friction material composition, friction material, and disk brake pad
JP7467465B2 (en) 2019-07-18 2024-04-15 日清紡ブレーキ株式会社 Friction material composition, friction material and disc brake pad

Also Published As

Publication number Publication date
JPWO2017109893A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
JP6558465B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JP5051330B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JP5979003B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JP6281755B1 (en) Friction material composition, and friction material and friction member using the same
JP5790175B2 (en) Non-asbestos friction material composition
JP6481775B2 (en) Friction material composition, friction material and friction member
JP7140102B2 (en) Friction material composition, friction material and friction member
WO2016084628A1 (en) Friction material composition, and friction material and friction member using said friction material composition
WO2012066965A1 (en) Non-asbestos friction-material composition, and friction material and friction member using same
JP5263454B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JPWO2019082350A1 (en) Friction member, friction material composition for underlaying material and friction material
JP6490942B2 (en) Friction material composition, friction material and friction member
JP6493956B2 (en) Friction material composition, friction material and friction member
CN113366082A (en) Friction material composition, friction material, and friction member
JP6512817B2 (en) Friction material composition, friction material using friction material composition and friction member
JP6493957B2 (en) Friction material composition, friction material and friction member
JP2017186469A (en) Friction material composition, friction material and friction member using friction material composition
WO2016103972A1 (en) Friction material composition, friction material using said friction material composition, and friction member
JP2016098362A (en) Friction material composition, friction material using friction material composition and friction member
WO2017109893A1 (en) Friction material composition, and friction material and friction member using friction material composition
JP2020019966A (en) Friction material and friction member
JP6553355B2 (en) Friction material composition, friction material using friction material composition and friction member
JP6445299B2 (en) Friction material composition, friction material using friction material composition, and friction member
JP2016079248A (en) Friction material composition, friction material, and friction member
JP2019151854A (en) Friction material composition, friction material, and friction member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911331

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017557585

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15911331

Country of ref document: EP

Kind code of ref document: A1