WO2017109262A1 - VARIANTES DE LA ADN POLIMERASA DEL BACTERIÓFAGO phi29 CON TERMOACTIVIDAD MEJORADA - Google Patents

VARIANTES DE LA ADN POLIMERASA DEL BACTERIÓFAGO phi29 CON TERMOACTIVIDAD MEJORADA Download PDF

Info

Publication number
WO2017109262A1
WO2017109262A1 PCT/ES2016/070928 ES2016070928W WO2017109262A1 WO 2017109262 A1 WO2017109262 A1 WO 2017109262A1 ES 2016070928 W ES2016070928 W ES 2016070928W WO 2017109262 A1 WO2017109262 A1 WO 2017109262A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
amplification
dna
variant
amino acid
Prior art date
Application number
PCT/ES2016/070928
Other languages
English (en)
French (fr)
Inventor
Margarita Salas Falgueras
José Mª LÁZARO BOLÓS
Miguel DE VEGA JOSÉ
Irene RODRÍGUEZ GARCÍA
Luis Serrano Pubul
Javier DELGADO BLANCO
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Fundació Centre De Regulació Genòmica
Institució Catalana De Recerca I Estudis Avançats
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Fundació Centre De Regulació Genòmica, Institució Catalana De Recerca I Estudis Avançats filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2017109262A1 publication Critical patent/WO2017109262A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • C12N9/1252DNA-directed DNA polymerase (2.7.7.7), i.e. DNA replicase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/10011Details dsDNA Bacteriophages
    • C12N2795/10211Podoviridae
    • C12N2795/10222New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Definitions

  • the present invention falls within the field of biotechnology, more specifically within the methods of amplification or replication of nucleic acids where variants of the enzyme DNA polymerase with improved thermostability and kits comprising the elements suitable for carrying out said methods are employed. .
  • the only enzyme required by bacteriophage ph29 to replicate its genome is its DNA polymerase, a 66 KDa monomeric protein, capable of catalyzing both the initiation of replication and the elongation of the synthesized chain.
  • this polymerase binds to a protein called "terminal" (TP), recognizes the end of the ph29 DNA and catalyzes the formation of a TP-dAMP covalent complex.
  • TP terminal protein
  • the DNA polymerase / TP heterodimer is dissociated and elongation of the nascent DNA chain is carried out.
  • PCR polymerase chain reaction
  • MDA is carried out using random sequence hexameric oligonucleotides that hybridize in different regions of the genome to be amplified and that are subsequently extended by DNA polymerase (enzyme that synthesizes DNA) of bacteriophage ph29, in an isothermal reaction at 30 ° C, without requiring cycles of denaturation / renaturation (unlike PCR), or prior knowledge of the sequence to be amplified.
  • DNA polymerase enzyme that synthesizes DNA
  • This MDA amplification methodology has proved very efficient as a previous step to sequencing, for the characterization of unknown viral genomes, for the genotyping of single nucleotide polymorphisms and, recently, for the description of new metagenomes.
  • TI DA template independent DNA synthesis
  • thermostable variants of the ph29 DNA polymerase that allow amplifying limiting amounts of DNA (in the range of picograms) at a temperature equal to or greater than 40 ° C.
  • some mutated variants of the enzyme are those described in US20140322759 or US20120034602. These new variants have great potential for addressing genomic, phylogenetic, epidemiological analysis, clinical diagnosis, forensic medicine and many of the procedures of modern molecular biology that depend on the amplification of minimal amounts of DNA.
  • the present invention provides variants of the bacteriophage ph29 DNA polymerase that exhibit greater activity than the natural, non-mutated enzyme, at elevated temperatures (greater than 30 ° C which is the optimum temperature of the natural enzyme).
  • the invention also provides a method for amplifying a template DNA where said variants are used and a kit comprising said variants together with the elements necessary to carry out said method.
  • the DNA polymerase variants described in the present invention have a higher thermostability, as well as a greater thermoactivity, than the natural DNA polymerase from which they originate. These variants have the advantage that they are capable of amplifying limiting amounts of DNA at higher temperatures than the natural enzyme, for example at temperatures of 40 ° C or higher, allowing to amplify amounts of DNA of the order of for example 10 picograms (pg) (Fig. 4 (A) and Fig. 6). These variants also have a higher amplification rate than natural DNA polymerase, since they allow obtaining the same yield of DNA amplification in a shorter time. Finally, said variants have an exonuclease activity, a polymerization activity and fidelity similar to those of the natural enzyme.
  • the variants of the present invention significantly improve the performance of the amplification reactions in which they are employed, especially the isothermal multiple displacement amplification reaction (MDA).
  • MDA isothermal multiple displacement amplification reaction
  • the variants of the bacteriophage ph29 DNA polymerase described in the present invention comprise at least one amino acid substitution at any of the positions E415, E416 and / or E417 of the amino acid sequence of the natural DNA polymerase, preferably in positions E416 and E417, more preferably in the three positions E415, E416 and E417, even more preferably by the amino acid lysine (K).
  • the inventors have further demonstrated that when these variants comprising substitutions in E416 and E417 or in E415, E416 and E417 also comprise an amino acid substitution in E218, or in E218 and in V267, the resulting variants yield even better results in the amplification of limiting amounts of DNA at a temperature equal to or greater than 40 ° C (Figs. 6 and 7).
  • the inventors have obtained nine mutants of the bacteriophage ph29 DNA polymerase that were more thermostable in extracts than natural or wild type DNA polymerase. Said mutant DNA polymerases were purified and all of them were more thermoactive than natural DNA polymerase.
  • the intrinsic properties of ph29 DNA polymerase high processivity, chain displacement and high fidelity, were maintained in the Mutant DNA polymerases at elevated temperatures, preferably at 40-42 ° C. These mutant DNA polymerases therefore allow obtaining DNA amplification at higher temperatures (preferably at 40-42 ° C) than those currently used (30 ° C).
  • the present invention relates to a variant of the bacteriophage ph29 DNA polymerase comprising an amino acid sequence having a sequence identity of at least 80%, preferably at least 85% , 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99%, with SEQ ID NO: 1 and comprises at least one amino acid substitution in the region (that is, in any amino acid in the region) consisting of positions 415 to 417, corresponding to positions 1 to 572 of SEQ ID NO: 1, where the DNA polymerase variant has an increased thermoactivity compared to DNA polymerase SEQ ID NO: 1.
  • this variant will also be referred to as "variant of the invention” or "DNA polymerase variant of the invention”.
  • variant refers to a DNA polymerase enzyme that comes from the bacteriophage ph ⁇ 29 DNA polymerase (SEQ ID NO: 1) by one or more substitutions of one or more amino acids at the points ( s) or positions described in the present invention within its amino acid sequence and, therefore, has a different sequence from that of the natural or wild type enzyme.
  • expression "variant of the bacteriophage ph29 DNA polymerase” means a polypeptide having DNA polymerase activity produced by chemical synthesis or recombinantly by an organism expressing a nucleotide sequence encoding the modified native DNA polymerase in the sense described in the present invention. Said modified nucleotide sequence is obtained by human intervention by modification of the nucleotide sequence encoding native DNA polymerase.
  • modification means herein any chemical modification of the amino acid or nucleic acid sequence of native DNA polymerase.
  • the "DNA polymerase of bacteriophage ph29" or “DNA polymerase of the ph29 type” is the enzyme product of the gene expression of the viral gene 2, involved in the initiation of replication and elongation of the bacteriophage ph29 DNA. It is a monomeric enzyme 66 KDa containing subdomains TPR1 and TPR2 in their polymerization domain, the latter of which provides the polymerase with the ability to couple the process polymerization to chain displacement. For initiation, this polymerase binds to a protein called “terminal” (TP), recognizes the end of the ph29 DNA and catalyzes the formation of a TP-dAMP covalent complex.
  • TP terminal protein
  • the DNA polymerase / TP heterodimer is dissociated and elongation of the nascent DNA chain is carried out.
  • the amino acid sequence of this bacteriophage ph29 DNA polymerase is SEQ ID NO: 1.
  • identity in the context of describing two or more polypeptide sequences, refers to a specified percentage of amino acid residue matches at positions from an alignment of two amino acid sequences. Sequence alignment procedures for comparison are well known in the art. The degree of identity can be determined by the Clustal method (Higgins, 1989, CABIOS 5: 151-153), the Wilbur-Lipman method (Wilbur and Lipman, 1983, Proceedings of the National Academy of Science USA 80: 726- 730), the GAG program, including GAP (Devereux et al.
  • the DNA polymerase variant of the invention may exhibit limited changes in its amino acid sequence. These changes allow the maintenance of the DNA polymerase variant function and the maintenance of the increased thermoactivity property compared to the DNA polymerase of SEQ ID NO: 1. These changes may be substitutions, deletions or additions.
  • the substitutions are conserved amino acids, which are amino acids with side chains and similar properties with respect to, for example, hydrophobic or aromatic properties. These substitutions include, but are not limited to, substitutions between Glu and Asp, Lys and Arg, Asn and Gln, Ser and Thr, and / or among the amino acids included in the following list: Ala, Leu, Val e lie. The changes do not lead to relevant modifications in the essential characteristics or properties of the variant of the invention.
  • the variant of the invention has increased thermoactivity compared to wild type or natural DNA polymerase, of SEQ ID NO: 1.
  • Thermoactivity means the activity of replication, amplification or elongation shown by a DNA polymerase when it is subjected at an elevated temperature, for example, at a temperature greater than 30 ° C, preferably between 35-45 ° C, more preferably between 39-43 ° C, even more preferably between 40-42 ° C, particularly at 40 ° C.
  • thermoactivity of the variant of the present invention can be determined by different types of tests known to those skilled in the art. Thus, it can be estimated, for example, but not limited, by analyzing the amount of the product (DNA) obtained during DNA synthesis.
  • the amount of product obtained in these reactions constitutes a measure of the activity or stability of the DNA polymerase variant at the temperature at which the amplification reaction was carried out.
  • the analysis of this product in agarose gels allows a qualitative assessment of the efficiency of the reaction.
  • a variant of DNA polymerase has "increased or increased thermoactivity" compared to DNA polymerase of SEQ ID NO: 1, when it presents a significant increase or increase (applying statistical criteria) in its thermoactivity with respect to the thermoactivity of the DNA polymerase of the bacteriophage ph29 of SEQ ID NO: 1 used for comparison.
  • XN Individual amino acids in an amino acid sequence are represented herein as XN, where X is the amino acid in the sequence (designated by the code of a universally accepted letter in the amino acid nomenclature), and N is the position in the sequence.
  • Amino acid substitutions are represented here as ⁇ ⁇ ⁇ 2 , where X ! is the amino acid in the sequence of the non-mutated enzyme, X 2 is the new amino acid in the sequence of the mutated enzyme (variant) and N is the position in the amino acid sequence in relation to the positions of SEQ ID NO: 1 .
  • amino acid substitution at positions 415, 416 and / or 417, corresponding to positions 1 to 572 of SEQ ID NO: 1 is by amino acids having the same properties, on, for example, hydrophobic or aromatic properties, that amino acid K. Therefore, such substitutions allow variants of the The invention maintains the same function as the preferred variants where the substitution is by K, including increased thermoactivity compared to DNA polymerase of SEQ ID NO: 1.
  • said amino acid substitutions in the present invention at positions 415, 416 and / or 417 of SEQ ID NO: 1 are preferably substitutions for positively charged amino acids, more preferably for the amino acid lysine (K).
  • the K in the positions described can be substituted in the variants of the invention for other positively charged conservative amino acids.
  • lysine and arginine are amino acids whose side chains are positively charged at neutral pH, whereby Lysine changes by arginine are conservative. Lysine changes by histidine are equally conservative.
  • this comprises an amino acid substitution selected from: E415K, E416K and E417K.
  • the variant of the invention comprises the two amino acid substitutions E416K and E417K.
  • the variant of the invention comprises the three amino acid substitutions E415K, E416K and E417K.
  • the variant of the invention further comprises an amino acid substitution at position 218 corresponding to positions 1 to 572 of SEQ ID NO: 1, where more preferably said substitution is E218M. Even more preferably, the variant of the invention comprises this substitution at position 218 when it further comprises: i) the two amino acid substitutions E416K and E417K, or ii) the three amino acid substitutions E415K, E416K and E417K.
  • the variant of the invention further comprises an amino acid substitution at position 267 corresponding to positions 1 to 572 of SEQ ID NO: 1, where more preferably said substitution is V267L. Even more preferably, the variant of the invention comprises this substitution at position 267 when it further comprises:
  • amino acid substitutions described herein introduced in the wild type polypeptide sequence of the bacteriophage ph29 DNA polymerase can be obtained by genetic engineering techniques or recombinant DNA, such as by mutating the DNA polymerase coding sequence by directed mutagenesis or they can be obtained from the chemical synthesis of the nucleotide sequence that codes for the sequence of the variant of the invention carrying said amino acid substitutions.
  • the DNA polymerase variant of the invention can be synthesized, for example, but without limitations, in vitro. For example, through the synthesis of solid phase peptides or recombinant DNA approaches.
  • the variant of the invention can be produced recombinantly, including its production as a mature peptide or as a preprotein that includes a signal peptide.
  • the variant of the invention preferably comprises an amino acid sequence selected from: SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 1 1 or SEQ ID NO: 12.
  • SEQ ID NO: 2 corresponds to SEQ ID NO: 1 of the bacteriophage ph ⁇ 29 DNA polymerase where the E of position 415 has been replaced by K, thus being a simple mutant (E415K).
  • SEQ ID NO: 3 corresponds to SEQ ID NO: 1 of the bacteriophage ph29 DNA polymerase where the E of position 416 has been replaced by K, thus being a simple mutant (E416K).
  • SEQ ID NO: 4 corresponds to SEQ ID NO: 1 of the polymerase DNA of the phycofiophage ph ⁇ 29 where the E of position 417 has been sus ⁇ i ⁇ ido by K, thus being a simple muierie (E417K).
  • SEQ ID NO: 5 corresponds to SEQ ID NO: 1 of the bacteriophage ph ⁇ 29 DNA polymerase where the E of positions 416 and 417 has been replaced by K, thus being a double mutant (E416K / E417K).
  • SEQ ID NO: 6 corresponds to SEQ ID NO: 1 of the bacteriophage ph ⁇ 29 DNA polymerase where the E of positions 415, 416 and 417 has been replaced by K, thus being a triple mutant (E415K / E416K / E417K).
  • SEQ ID NO: 9 corresponds to SEQ ID NO: 1 of the DNA polymerase of the phycofiophage ph ⁇ 29 where the E of positions 416 and 417 has been submissive by K and the E of position 218 has been removed by M, thus being a muterie iririple (E218M / E416K / E417K).
  • SEQ ID NO: 10 corresponds to SEQ ID NO: 1 of the polymerase DNA of the phycofiophage ph ⁇ 29 where the E of positions 416 and 417 has been removed by K, the E of position 218 has been removed by M and the V of position 267 has been removed by L, thus being a quadruple muierie (E218M / V267L / E416K / E417K).
  • SEQ ID NO: 11 corresponds to SEQ ID NO: 1 of the polymerase DNA of the phycofiophage ph ⁇ 29 where the E of positions 415, 416 and 417 has been removed by K and the E of position 218 has been removed by M, thus being a quadruple muierie (E218M / E415K / E416K / E417K).
  • SEQ ID NO: 12 corresponds to SEQ ID NO: 1 of the polymerase DNA of the phycofiophage ph ⁇ 29 where the E of positions 415, 416 and 417 has been removed by K, the E of position 218 has been removed by M and V of position 267 have been suspended by L, thus being a fivefold muierie (E218M / V267L / E415K / E416K / E417K).
  • the variance that comprises, preferably consisting of, SEQ ID NO: 6 is one of the most energetic of the various varianids described here. Therefore, in an even more preferred embodiment, the variance of the invention preferably comprises SEQ ID NO: 6.
  • the variant comprising, preferably consisting of, SEQ ID NO: 12 (fivefold mutant, E218M / V267L / E415K / E416K / E417K) is the most thermoactive among all the variants described herein, being able to amplify limiting amounts of DNA (of the order of picograms) at temperatures as high as for example but not limited to 43 ° C, with an amplification efficiency greater than that of the other variants.
  • the variant of the invention preferably comprises SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 1 1 or SEQ ID NO: 12; even more preferably it comprises, preferably consists of, SEQ ID NO: 1 1 or SEQ ID NO: 12.
  • the variant comprises, preferably consists of, SEQ ID NO: 12.
  • nucleotide sequence of the invention Another aspect of the invention relates to an isolated nucleotide sequence encoding the variant of the invention, hereafter referred to as the "nucleotide sequence of the invention".
  • nucleotide sequence is a nucleic acid molecule (polynucleotide) that has been removed from its natural environment (that is, it has undergone human manipulation) and may include DNA, RNA or derivatives of DNA or RNA, including cDNA.
  • the nucleotide sequence of the present invention may or may not be chemically or biochemically modified, and may be obtained artificially by cloning and selection procedures or by sequencing.
  • the nucleic acid sequence of the invention can encode the mature polypeptide or a preprotein consisting of a signal peptide bound to the mature enzyme that will have to be further processed.
  • the nucleotide sequence of the present invention may also comprise other elements, such as introns, non-coding sequences at the 3 'and / or 5' ends, ribosome binding sites, etc.
  • This nucleotide sequence can also include coding sequences for additional amino acids that are useful for purification or stability of the encoded peptide.
  • the nucleic acid sequence of the invention can be included in a genetic construct, preferably in an expression vector.
  • Said genetic construct may further comprise one or more gene expression regulatory sequences, such as promoters, terminators, etc.
  • the invention provides a genetic or gene construct comprising the nucleotide sequence of the invention, hereinafter "gene construct of the invention”.
  • said gene construct is an expression vector.
  • gene construct refers to a functional unit necessary for the transfer or expression of a gene of interest, herein, the nucleotide sequence of the invention as described, and regulatory sequences, including, for example, a promoter, operably linked to the sequence encoding the protein. It refers to a single or double stranded nucleic acid molecule that is isolated from a natural gene or that is modified to contain nucleic acid segments in a way that would not otherwise exist in nature.
  • the expression “nucleic acid construct” is synonymous with the expression “expression cassette", when the nucleic acid construct contains the control sequences required for the expression of the coding sequence.
  • expression vector also known as "expression construct” or “plasmid” refers to a linear or circular DNA molecule, which comprises the nucleic acid sequence of the invention operably linked to additional segments that provide transcription of the encoded peptide.
  • a plasmid is used to introduce a specific gene into a target cell. Once the expression vector is inside the cell, the protein that is encoded by the gene is produced by the ribosomal complexes of the cell transcription and translation machinery. Often the plasmid is It is engineered to contain regulatory sequences that act as enhancer and promoter regions and that lead to efficient transcription of the gene carried in the expression vector.
  • the objective of a well-designed expression vector is the production of large amounts of stable messenger RNA and, therefore, of proteins.
  • Expression vectors are basic tools of biotechnology and protein production, such as enzymes.
  • the expression vector of the invention is introduced into a host cell so that the vector is maintained as a chromosomal integrant or as an extrachromosomal self-replicating vector.
  • expression refers to the process by which a polypeptide is synthesized from a polynucleotide.
  • the term includes transcription of the polynucleotide into a messenger RNA (mRNA) and the translation of said mRNA into a protein or a polypeptide.
  • mRNA messenger RNA
  • expression vectors are phages, cosmids, phagemids, artificial yeast chromosomes (YAC), bacterial artificial chromosomes (BAC), human artificial chromosomes (HAC) or viral vectors, such as adenovirus, retrovirus or lentivirus.
  • Expression vectors suitable for the insertion of the polynucleotide of the invention are preferably plasmids used for the expression of proteins in prokaryotes such as, for example, such as pUC18, pUC19, Bluescript and their derivatives, mp18, mp19, pBR322, pMB9, Co1 E1, pCR1, RP4, pET plasmids, phage and shuttle vectors, such as pSA3 and pAT28; yeast expression vectors such as the 2-micron plasmid of Saccharomyces cerevisiae, integration plasmids, YEP vectors, centromere plasmids and the like; insect cell expression vectors such as the pAC series and pVL vectors; plant cell expression vectors such as piBi, pEarleyGate, PAVA, pCAMBIA, PGSA, PGWB, PMDC, PMY, pore series and the like, and other protein expression plasmids used in
  • the preparation of the variant of the invention can be carried out by any means known in the art, such as modification of a DNA sequence encoding the DNA polymerase of SEQ ID NO: 1, transformation of the DNA sequence. modified in a suitable host cell and expression of the modified DNA sequence to form the enzyme variant.
  • host cell of the invention relates to a host cell comprising the gene construct of the invention, hereafter referred to as "host cell of the invention".
  • host cell refers to any prokaryotic or eukaryotic organism that is the recipient of an expression vector, cloning or any other DNA molecule.
  • the term includes, therefore, any cultivable cell that can be modified by introducing DNA not naturally contained therein.
  • a host cell is one in which the polynucleotide of the invention can be expressed, resulting in a stable polypeptide, modified post-translationally and located in the appropriate subcellular compartment.
  • the choice of a suitable host cell may also be influenced by the choice of the detection signal.
  • constructs with reporter genes may provide a signal to be selected by activating or inhibiting transcription of the gene of interest in response to a transcription regulatory protein.
  • reporter genes eg, lacZ, luciferase, thymidine kinase or the green fluorescent protein "GFP”
  • GFP green fluorescent protein
  • Another aspect of the invention relates to the use of the host cell of the invention for obtaining the variant of the invention.
  • the host cell of the invention can be cultured for this purpose.
  • a culture of host cells refers to the process of maintaining and growing host cells. Cell cultures need contracted conditions of temperature, pH, percentages of gases (oxygen and carbon dioxide), as well as the presence of adequate nutrients to allow viability and cell division. Cell cultures can be grown on solid substrates such as agar, or in a liquid medium, allowing large numbers of suspended cells to be cultured.
  • purified refers to the isolation of the variant of the invention and its concentration, of the rest of the polypeptides present in the culture medium of the host cell of the invention.
  • the variant can be isolated by differential solubility, chromatography, electrophoresis or isoelectric focusing techniques.
  • Chromatography techniques can be based on molecular weight, ionic charge (based on the ionization state of amino acids in working conditions), protein affinity for certain chromatographic matrices or columns, or by purification labels, and can be done in column, on paper or on plate.
  • Protein isolation can be carried out, for example, by precipitation with ammonium sulfate, fast liquid chromatography (FPLC) or "High Performance Liquid Chromatography” (HPLC). , using automated systems that significantly reduce the purification time and increase the purification performance.
  • FPLC fast liquid chromatography
  • HPLC High Performance Liquid Chromatography
  • Another aspect of the invention relates to the use of the variant of the invention for the amplification, replication or sequencing of a template DNA.
  • the variant of the invention is the variant comprising, preferably consisting of, SEQ ID NO: 2. In another preferred embodiment, the variant of the invention is the variant comprising, preferably consisting of, SEQ ID NO: 3. In another preferred embodiment, the variant of the invention is the variant comprising, preferably consists of, SEQ ID NO: 4. In another preferred embodiment, the variant of the invention is the variant it comprises, preferably consists of , SEQ ID NO: 5. In another preferred embodiment, the variant of the invention is the variant comprising, preferably consists of, SEQ ID NO: 6. In another preferred embodiment, the variant of the invention is the variant comprising , preferably consists of, SEQ ID NO: 9.
  • the variant of the invention is the variant comprising, preferably consists of, SEQ ID NO: 10. In another preferred embodiment, they vary it.
  • the invention is the variant comprising, preferably consisting of, SEQ ID NO: 1 1.
  • the variant of the invention is the variant comprising, preferably consisting of, SEQ ID NO: 12.
  • amplification refers to the increase in the number of copies of a template DNA.
  • replication refers to the synthesis of a complementary DNA from a template DNA.
  • sequencing refers to the determination of the order of nucleotides of a template DNA.
  • PCR polymerase chain reaction
  • Other methods do not require a thermal cycling process, but are performed at an essentially constant temperature such as, but not limited to, rolling circle amplification (RCA), multiple displacement amplification (MDA), displacement amplification string (SDA) or loop amplification (LAMP).
  • RCA rolling circle amplification
  • MDA multiple displacement amplification
  • SDA displacement amplification string
  • LAMP loop amplification
  • the amplification of a template DNA by the DNA polymerase variant of the present invention can take place by a thermal cycling process or, preferably, at an essentially constant temperature (process or isothermal conditions).
  • isothermal conditions By “isothermal conditions” is meant “essentially constant temperature”.
  • amplification of a template DNA with the DNA polymerase variant of the present invention takes place at an essentially constant temperature.
  • the amplification referred to in the present invention is an isothermal multiple displacement amplification (MDA), rolling circle (RCA), chain displacement amplification (SDA) or loop amplification (LAMPA). More preferably, the amplification is MDA.
  • the amplification referred to in the present invention is carried out at a constant temperature of more than 30 ° C, preferably between 35-45 ° C, more preferably between 39-43 ° C, even more preferably between 40-42 ° C. More preferably the temperature is 40 ° C.
  • the template DNA is plasmid or genomic.
  • Another aspect of the invention relates to a method for amplification, replication or sequencing of a template DNA comprising: a. contacting a template DNA with a reaction mixture comprising:
  • the variant of the invention is the variant comprising, preferably consisting of, SEQ ID NO: 2.
  • the variant of the invention is the variant comprising, preferably consisting of, SEQ ID NO: 3.
  • the variant of the invention is the variant comprising, preferably consisting of, SEQ ID NO: 4.
  • the variant of the invention is the variant comprising, preferably consists of, SEQ ID NO: 5.
  • the variant of the invention is the variant comprising, preferably consists of, SEQ ID NO: 6.
  • the variant of the invention is the variant comprising, preferably consists of, SEQ ID NO: 9.
  • the variant of the invention is the variant comprising, preferably consisting of, SEQ ID NO: 10.
  • the variant of the invention is the variant comprising, preferably consisting of, SEQ ID NO: 1 1.
  • the variant of the invention is the variant comprising, preferably consisting of, SEQ ID NO: 12.
  • condition that allow amplification of DNA or synthesis of complementary DNA refers to the conditions under which the incorporation of nucleotides into nascent DNA can take place by complementing bases with the template nucleic acid.
  • the conditions under which DNA synthesis takes place include: (a) contacting the template nucleic acid with the DNA polymerase variant of the invention in a mixture which further comprises a primer, a bivalent cation, for example, Mg 2+ , and nucleotides, and (b) subjecting said mixture to a temperature sufficient for the DNA polymerase variant to initiate the incorporation of nucleotides into the primer by complementarity of bases with the template nucleic acid, and then a population of molecules of complementary DNA of different size. The separation of said population from complementary DNA molecules makes it possible to determine the nucleotide sequence of the template nucleic acid.
  • the DNA polymerase variant of the invention is at a concentration between 2 ng / ⁇ and 10 ng / ⁇ . In a more preferred embodiment, the DNA polymerase variant of the invention is at a concentration between 3 ng / ⁇ and 7 ng / ⁇ . In an even more preferred embodiment, the DNA polymerase variant of the invention is at a concentration of about 3.2 ng / ⁇ .
  • the magnesium chloride is at a concentration between 2 mM and 20 mM. In a more preferred embodiment, the magnesium chloride is at a concentration between 5 mM and 15 mM. In an even more preferred embodiment, the magnesium chloride is approximately 10 mM.
  • the incubation of step (b) takes place at a constant temperature of more than 30 ° C, preferably between 45 ° C, more preferably between 39-43 ° C, even more preferably between 40-42 ° C. In a more preferred embodiment, the temperature is 40 ° C.
  • template DNA refers to a DNA molecule that can serve as a substrate for the synthesis of a complementary DNA chain; that is, it refers to a DNA molecule that is to be replicated, amplified or sequenced.
  • the template DNA is plasmid DNA.
  • the template DNA is genomic DNA.
  • the amplification is an isothermal multiple displacement amplification (MDA), rolling circle (RCA), chain displacement amplification (SDA) or loop amplification (LAMPA). Even more preferably, the amplification is MDA.
  • primer refers to a DNA or RNA oligonucleotide complementary to the sequence of a particular template nucleic acid, which acts as a starting point for the addition of nucleotides in the complementary chain copy process to the sequence of said template nucleic acid, for example, but not limited to a PCR.
  • primer therefore refers to an oligonucleotide capable of acting as the starting point of DNA synthesis when it is under conditions of primer extension.
  • the primer is a DNA oligonucleotide.
  • the primers can be prepared by any suitable method, including, for example, but not limited to, direct chemical synthesis.
  • the primers can be designed to hybridize with specific sequences of deoxynucleotides in the template DNA (specific primers) or can be synthesized at random (arbitrary primers).
  • primer refers to a primer whose sequence is complementary to a specific sequence of deoxynucleotides in the template DNA to be amplified.
  • complementary it is meant that the primer can hybridize with a region of the template DNA so that it can act as the starting point of DNA synthesis when it is in conditions of primer extension.
  • that region has a 100% complementarity with a region of the template DNA. That is, each nucleotide in the region of complementarity with the primer it can form hydrogen bonds with a nucleotide present in the single strand template.
  • primers possessing a region with complementarity less than 100% with respect to the template DNA will function to carry out the method of replication, amplification or sequencing of the present invention.
  • arbitrary primer refers to a primer whose sequence is synthesized at random and used to initiate DNA synthesis at random positions of the template DNA.
  • a population of arbitrary primers is employed in the replication, amplification or sequencing method of the present invention.
  • arbitrary primers refers to a set of primers with a random sequence and which are used to initiate DNA synthesis at random positions of the template DNA.
  • the primer or oligonucleotide is arbitrary.
  • the arbitrary oligonucleotide is protected against exonuclease action 3 '- 5'.
  • the oligonucleotide employed in the method of the present invention is a hexamer (6 nucleotide oligonucleotide), octamer (8 nucleotide oligonucleotide) or decamer (10 nucleotide oligonucleotide).
  • the oligonucleotide is at a concentration between 2 ⁇ and 100 ⁇ . In a more preferred embodiment, the oligonucleotide is at a concentration between 20 ⁇ and 80 ⁇ . In an even more preferred embodiment, the oligonucleotide is at a concentration of between 40 and 60 ⁇ . In an even more preferred embodiment, the oligonucleotide is at a concentration of approximately 25 ⁇ .
  • dNTPs refers to deoxynucleosides triphosphate, such as, but not limited to, dATP, dCTP, dITP, dUTP, dGTP, dTTP, or derivatives thereof.
  • the deoxynucleoside triphosphates are dATP, dTTP, dGTP and dCTP. Even more preferably, these four dNTPs are in equimolar conditions.
  • the dNTPs are at a concentration between 100 ⁇ and 800 ⁇ . In a more preferred embodiment, the dNTPs they are at a concentration of between 200 ⁇ and 600 ⁇ . In an even more preferred embodiment, the dNTPs are at a concentration of approximately 500 ⁇ .
  • At least one dNTP or an oligonucleotide is labeled by techniques well known in the state of the art.
  • Detectable labels include, for example, radioactive isotopes, fluorescent labels, chemiluminescent labels, bioluminescent labels or enzymatic labels.
  • the buffer is Tris-hydrochloric, Tris-acetic or HEPES.
  • the buffer is at a pH between 7.0 and 8.5. In a more preferred embodiment, the buffer is at a pH between 7.2 and 8. In an even more preferred embodiment, the buffer is at a pH of about 7.5. In another embodiment, the buffer is at a concentration between 25 mM and 50 mM. In a more preferred embodiment, the buffer is at a concentration of between 30 mM and 45 mM. In an even more preferred embodiment, the buffer is at a concentration of approximately 40 mM.
  • kit of the invention Another aspect of the invention relates to a kit for the amplification of a template DNA comprising the variant of the invention, hereinafter "kit of the invention”.
  • said kit further comprises at least one oligonucleotide, preferably arbitrary, a buffer, dNTPs and magnesium chloride.
  • the oligonucleotide included in the kit of the invention is a hexamer, octamer or decamer.
  • the buffer included in the kit of the invention is Tris-hydrochloric, Tris-acetic or HEPES.
  • the kit of the invention comprises all those reagents necessary to carry out the method of the invention described above.
  • the kit can also include, without any limitation, buffers, enzymes, such as, but not limited to, polymerases, cofactors to obtain optimal activity of these, agents to prevent contamination, etc.
  • the kit can include all the supports and containers necessary for commissioning and optimization.
  • the kit may also contain other molecules, genes, proteins or probes of interest, which serve as positive and negative controls.
  • the kit further comprises instructions for carrying out the method of the invention.
  • Another aspect of the invention relates to the use of the kit of the invention for the amplification, replication or sequencing of a template DNA.
  • the amplification is an isothermal multiple displacement amplification (MDA), rolling circle (RCA), chain displacement amplification (SDA) or loop amplification (LAMPA). More preferably, the amplification is MDA.
  • the amplification is performed at a constant temperature of more than 30 ° C, preferably between 35-45 ° C, more preferably between 39-43 ° C, even more preferably between 40-42 ° C. Even more preferably the temperature is 40 ° C.
  • the template DNA is plasmid or genomic.
  • FIG. 1 Thermoactivity of mutant DNA polymerases E415K, E416K, E417K, E416K / E417K and E415K / E416K / E417K. Plasmid pJLPM amplification.
  • Plasmid pJLPM 100 pg (A) or 1 ng (B), was incubated in buffer A (40 mM Tris-HCI, pH 7.5, 50 mM KCI, 10 mM MgCI 2 , 45 mM (NH 4 ) 2 S0 4 , 0.025% Tween20), 25 ⁇ Random decimers, 500 ⁇ dNTPs and 40 ng of DNA polymerase from ph ⁇ 29 wild-type (wt), E415K, E416K, E417K, E416K / E417K or E415K / E416K / E417K, in 12.5 ⁇ for 6 hours at the indicated temperatures.
  • buffer A 40 mM Tris-HCI, pH 7.5, 50 mM KCI, 10 mM MgCI 2 , 45 mM (NH 4 ) 2 S0 4 , 0.025% Tween20
  • 25 ⁇ Random decimers 500 ⁇ dNTPs and 40 ng
  • 1.5 ⁇ of the amplified product was digested with EcoRI-HF and subjected to 0.7% agarose gel electrophoresis in 1xTBE (100 mM Tris, 100 mM H 3 B0 3 , 2 mM EDTA, pH 8), bearing as marker (M) a digested of the ph29 DNA with Hindlll.
  • FIG. 2 Thermoactivity of mutant DNA polymerases E415K, E416K, E417K, E416K / E417K and E415K / E416K / E417K.
  • FIG. 3 Amplification kinetics of plasmid pJLPM at 30 ° C with wild-type DNA polymerase and mutants E416K / E417K and E415K / E416K / E417K.
  • Plasmid pJLPM 100 pg was incubated in buffer A, 25 ⁇ random hexamers, 500 ⁇ dNTPs and 40 ng of DNA polymerase from ph29 wild-type (wt), E416K / E417K or E415K / E416K / E417K in 12.5 ⁇ at 30 ° C at the indicated times.
  • 1.5 ⁇ of the amplified product was digested with EcoRI-HF and subjected to 0.7% agarose gel electrophoresis in 1xTBE carrying as marker (M) a digested of ph29 DNA with Hindlll.
  • FIG. 4 Amplification kinetics of plasmid plJ702 with wild-type DNA polymerase at 30 ° C and mutants E416K / E417K and E415K / E416K / E417K at 40 ° C.
  • Exonucleolysis / polymerization activity with mutant DNA polymerases E416K / E417K and E415K / E416K / E417K.
  • the reaction mixture contained, in a final volume of 12.5 ⁇ , 50 mM Tris-HCI, pH 7.5, 10 mM MgCI 2 , 1 mM dithiothreitol, 4% (v / v) glycerol, 0.1 mg / ml bovine serum albumin, 1.2 nM of the sp1 / sp1 c + 18 substrate radioactively labeled at the 5 'end of the sp1 oligonucleotide, 20 ng of the wild-type (wt) phY29 DNA polymerase or E416K E417K or E415K E416K / E417K mutants, in the presence of the specified concentrations of the four dNTPs (as indicated).
  • FIG. 6 Thermoactivity of the mutant DNA polymerases E416K / E417K, E415K / E416K / E417K, E218M / E416K / E417K, E218M V267L / E416K / E417K, E218M / E415K / E416K / E417K / E218K / E218M / E174 / K4 Plasmid plJ702 amplification.
  • Plasmid plJ702 (10 pg) was incubated in buffer A (40 mM Tris-HCI pH 7.5, 50 mM KCI, 10 mM MgCI 2 , 45 mM (NH 4 ) S0 4 , 0.025% Tween20), 40 ng of the DNA polymerases indicated mutants, 25 ⁇ random decimers, 500 ⁇ dNTPs at 12.5 ⁇ for 6 hours at the indicated temperatures. 1.5 ⁇ of the amplified product was digested with BamHI-HF.
  • FIG. 7 Thermoactivity of mutant DNA polymerases E416K / E417K, E415K / E416K / E417K, E218M / E416K / E417K, E218M V267L / E416K / E417K, E218M / E415K / E416K / E417K / E218M / E174 / K4 Plasmid plJ702 amplification.
  • Plasmid plJ702 (1 ng) was incubated in buffer A (40 mM Tris-HCI pH 7.5, 50 mM KCI, 10 mM MgCI 2 , 45 mM (NH 4 ) S0 4 , 0.025% Tween20), 40 ng of the DNA polymerases indicated mutants, 25 ⁇ random dodecamers, 500 ⁇ dNTPs at 12.5 ⁇ for 6 hours at the indicated temperatures. 1.5 ⁇ of the amplified product was digested with BamHI-HF. FIG. 8.
  • the Exo / Pol assay was performed in a reaction mixture containing, in a final volume of 12.5 ⁇ , 50 mM Tris-HCI pH 7.5, 10 mM MgCI 2 , 1 mM DTT, 4% (v / v) glycerol , 0.1 mg / ml BSA, 1.2 nM of the sp1 substrate radiolabeled in 5 'hybridized to sp1 c + 18, 20 ng of the DNA polymerase wt and the mutants E218M / E416K / E417K and E218M / V267L / E416K / E417K, in the presence of the specified concentrations of the 4 dNTPs (as
  • FIG. 9 Exonucleolysis / polymerization activity with mutant DNA polymerases E218M / E415K / E416K / E417K and E218M V267L / E415K / E416K / E417K.
  • the Exo / Pol assay was performed in a reaction mixture containing, in a final volume of 12.5 ⁇ , 50 mM Tris-HCI pH 7.5, 10 mM MgCI 2 , 1 mM DTT, 4% (v / v) glycerol 0.1 mg / ml BSA, 1.2 nM of the sp1 substrate radiolabeled in 5 'hybridized to sp1c + 18, 20 ng of the DNA polymerase wt and the mutants E218M / E415K / E416K / E417K and E218M / V267L / E415K / E416K / E417K, in the presence of the specified concentrations of the 4 dNTPs (as indicated).
  • the Glu415, Glu416 and Glu417 residues of the TPR2 subdomain of the ph29 DNA polymerase are moderately conserved in the DNA polymerases having a terminal protein as a replication initiator.
  • the chain shift that occurs in the replication of the ph29 DNA could be carried out by electrostatic repulsion between the polyphosphate skeleton of the displaced DNA chain and said electronegative residues.
  • a change of the three residues, Glu415, Glu416 and Glu417, was made to lysine in order to replace the negative charges with positive charges.
  • E415K SEQ ID NO: 2
  • E416K SEQ ID NO: 3
  • E417K SEQ ID NO: 4
  • E415K / E416K SEQ ID NO: 7
  • E415K / E417K SEQ ID NO: 8
  • E416K / E417K SEQ ID NO: 5
  • the ineligibility of the 7 muanidi DNA polymerases was studied.
  • the E415K, E416K, E417K, E416K / E417K and E415K / E416K / E417K mute DNA polymerases were more inbred than wild-type DNA polymerase. Said DNA polymerases were purified for testing in Rolling Circle Amplification or circle circle (RCA).
  • Figure 2 shows the amplification of plasmid plJ702, with an ally contained in GC (70%).
  • Figure 3 shows that, using 100 pg of plasmid pJLPM, it is observed amplification with mutant DNA polymerases E416K / E417K and E415K / E416K / E417K after 2 h of incubation at 30 ° C while with wild-type DNA polymerase 3 hours are required to obtain the same amplification.
  • Figure 4 shows the amplification of 10 pg (A) or 100 pg (B) of plasmid plJ702 with wild-type DNA polymerase at 30 ° C and with mutant DNA polymerases E416K / E417K and E415K / E416K / E417K at 40 ° C depending on the incubation time. It can be seen that the amplification rate of both mutant proteins is greater than that of the wild-type polymerase, the triple mutant being higher than the double mutant.
  • Figure 5 shows an equilibrium test involving the activities of exonucleolysis and polymerization using as a susiraio an initiator / template ipo molecule. It can be seen that both muiyan DNA polymerases, E416K / E417K and E415K / E416K / E417K, have similar exonuclease activity to that of wild-type polymerase, as well as similar polymerization activity.
  • Figures 6 and 7 show the amplification of plasmid plJ702, 10pg and 1 ng, respectively, at growing tempors. It can be seen that, while the E416K / E417K and E415K / E416K / E417K varianies amplified at high temperatures, the E218M / E416K / E417K, E218M / V267L / E416K / E417K, E218M / E415K / E418K4 E415K / E416K / E417K were able to amplify to the iodines the tested empires, which went to 43 ° C for the 10pg case and 44.8 ° C for the 1 ng case.
  • Es ⁇ o implies that Variani esias that additionally comprise the E218M or E218M and V267L mutations had a greater eromoactivity, because they maintain their capacity to amplify nucleic acids at higher temperatures even than those of E416K / E417K and E415K / E416K / E417K.
  • Figure 8 shows an equilibrium test involving the exonucleolysis activities and polymerization of the variants E218M / E416K / E417K and E218M / V267L / E416K / E417K using as a substrate an initiator / template type molecule.
  • EXAMPLE 2 FIDELITY TESTS OF MUTANT POLYMERASES DNA E416K / E417K, E415K / E416K / E417K, E218M / E416K / E417K, E218M V267L / E416K / E417K, E218M / E415K / E17 / E415K / E17
  • 100 pg were amplified (at 41.3 ° C for the E416K / E417K and E415K / E416K / E417K and at 42.5 ° C for the E218M / E416K / E417K, E218M / V267L / E416K / E417K, E218M / E415K / E416K / E417K and E218M / V267L / E415K / E416K / E417K) and 1 ng (at 41.8 ° C) of plasmid pUC19 containing the lacZa gene, controlling wild-type DNA polymerase (at 30 ° C).
  • Amplified DNAs (1.8 ⁇ g) are digested with the restriction nucleases EcoRI-HF and Dpnl for 3 h at 37 ° C.
  • the digested products are purified with a Qiagen kit and 400 ng of the linearized plasmid pUC19 is circulated with T4 DNA ligase in a final volume of 200 ⁇ .
  • 24 ng of the ligated DNA is transformed into the Escherichia coli XL-1 line to determine the white and blue colonies. White colonies indicate mutants in the lacZa gene.
  • F 0 represents the control frequency in the plasmid DNA purified from bacteria, digested and treated under the same conditions.
  • d (ng of product / ng of input) was used.
  • the error rate (fidelity) of mutants E416K / E417K, and E415K / E416K / E417K is in the order of magnitude of the fidelity of wild-type DNA polymerase (wt), between 1 , 5 x 10 "7 and 6.5 x 10 " 7 . That is, both mutant proteins have a fidelity similar to that of wild-type DNA polymerase.
  • Table I Determination of the error rate of mutant DNA polymerases E416K / E417K and E415K / E416K / E417K with respect to wild-type.
  • Table II shows the error rate (fidelity) of the mutants E218M / E416K / E417K, E218M / V267L / E416K / E417K, E218M / E415K / E416K / E417K and
  • E218M / V267L / E415K / E416K / E417K which is in the order of magnitude of the fidelity of wild-type DNA polymerase (wt). That is, these mutant proteins have a fidelity similar to that of wild-type DNA polymerase.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

La presente invención proporciona variantes mutadas de la ADN polimerasa del bacteriófago phi29 que presentan mayor actividad que la enzima natural a temperaturas elevadas (superiores a 30ºC, preferiblemente a 40-42ºC).Dichas variantes son, por tanto, más termoactivas y presentan una mayor velocidad de amplificación en comparación con la enzima natural, mejorando significativamente el rendimiento de las reacciones de amplificación en las que se emplean. Además, las variantes de la invención permiten amplificar cantidades limitantes de ADN molde, del orden de picogramos. La invención también proporciona un método para la amplificación de un ADN molde donde se emplean dichas variantes y un kit que comprende dichas variantes junto con los elementos necesarios para llevar a cabo dicho método.

Description

VARIANTES DE LA ADN POLIMERASA DEL BACTERIÓFAGO ph¡29 CON TERMOACTIVIDAD MEJORADA
DESCRIPCIÓN
La presente invención se encuadra dentro del campo de la biotecnología, más específicamente dentro de los métodos de amplificación o replicación de ácidos nucleicos donde se emplean variantes de la enzima ADN polimerasa con termoestabilidad mejorada y kits que comprenden los elementos adecuados para llevar a cabo dichos métodos.
ESTADO DE LA TÉCNICA
La única enzima requerida por el bacteriófago ph¡29 para replicar su genoma es su ADN polimerasa, una proteína monomérica de 66 KDa, capaz de catalizar tanto la iniciación de la replicación como la elongación de la cadena sintetizada. Para la iniciación, esta polimerasa se une a una proteína denominada "terminal" (TP), reconoce el extremo del ADN de ph¡29 y cataliza la formación de un complejo covalente TP-dAMP. Tras la polimerización de 10 nucleótidos, se disocia el heterodímero ADN polimerasa/TP y se lleva a cabo la elongación de la cadena naciente de ADN.
Si bien la reacción en cadena de la polimerasa (PCR) es aún la metodología más utilizada en la amplificación de ADN, ésta depende de un conocimiento previo de las secuencias a amplificar, y genera amplicones relativamente pequeños. Muchos análisis genómicos dependen no solo de la longitud del material amplificado, sino también de una amplificación homogénea, por lo que son más ventajosas aquellas metodologías que permiten la amplificación eficiente y representativa de genomas completos, siendo la amplificación isotérmica por desplazamiento múltiple (MDA) la que está ganando terreno en el área de la amplificación de ADN.
La MDA se lleva a cabo utilizando oligonucleótidos hexaméricos de secuencia al azar que hibridan en distintas regiones del genoma a amplificar y que son extendidos posteriormente por la ADN polimerasa (enzima que sintetiza ADN) del bacteriófago ph¡29, en una reacción isotérmica a 30 °C, sin que se requieran ciclos de desnaturalización/renaturalización (a diferencia de la PCR), ni un conocimiento previo de la secuencia a amplificar.
El éxito de la MDA radica en las características intrínsecas y específicas de la ADN polimerasa de ph¡29:
1) capacidad de polimerizar más de 70.000 nucleótidos (las unidades que se ensamblan para construir el ADN) sin disociarse del ADN (Blanco et al. J Biol Chem. 1989; 264: 8935-8940);
2) capacidad de atravesar regiones de doble cadena, ya que el enzima acopla la síntesis del ADN a la apertura (desnaturalización) de las dos cadenas del ADN, haciendo innecesarios ciclos térmicos de desnaturalización; 3) elevada fidelidad de síntesis del ADN (Esteban et al. J Biol Chem. 1993; 268: 2719- 2726).
Esta metodología de amplificación MDA se ha mostrado muy eficiente como paso previo a la secuenciación, para la caracterización de genomas virales desconocidos, para el genotipado de polimorfismos de nucleótido único y, recientemente, para la descripción de nuevos metagenomas.
Sin embargo, a pesar de sus virtudes, la MDA adolece de algunos defectos. Uno de los más graves es la conocida síntesis de ADN independiente de molde (TI DA). En este caso, cualquier amplificación que tenga lugar en los controles en ausencia de molde no asegura una reacción adecuada de MDA en las muestras a estudiar que se hacen en paralelo. En condiciones de reacción libres de contaminación de ADN exógeno hay al menos dos factores responsables de TI DA: la contaminación endógena de ADN en la mezcla de reacción y el autoapareamiento de los hexámeros utilizados como iniciadores de la reacción de amplificación. En este último caso se han diseñado diferentes aproximaciones experimentales para disminuir la amplificación inespecífica del ADN, como son la utilización de hexámeros de ARN, ya que la polimerasa no puede utilizar ARN como molde en la reacción de polimerización, o bien la acción combinada de oligonucleótidos de mayor longitud con el aumento de la temperatura de reacción. En este caso se ha demostrado que la utilización de octámeros junto con una temperatura de reacción de 40 °C disminuye notablemente la TI DA. Esto es debido a que a esa temperatura la probabilidad de autoapareamiento estable de los octámeros y su posterior amplificación es muy reducida. La capacidad de llevar a cabo la reacción de amplificación a una temperatura tan elevada como 40 °C (10°C por encima de la temperatura óptima de la ADN polimerasa de ph¡29) es debida a la estabilidad térmica que le confiere el ADN a la polimerasa. La principal contrapartida es que la cantidad de ADN inicial a amplificar que pueda estabilizar al enzima ha de ser muy elevada (del orden de 50 ng). Por ello, se hace necesaria la obtención de variantes termoestables de la ADN polimerasa de ph¡29 que permitan amplificar cantidades limitantes de ADN (en el rango de picogramos) a temperatura igual o mayor de 40 °C. En este sentido, algunas variantes mutadas de la enzima son aquellas que se describen en US20140322759 ó US20120034602. Estas nuevas variantes tienen un gran potencial para el abordaje de estudios genómicos, filogenéticos, análisis epidemiológicos, diagnóstico clínico, medicina forense y muchos de los procedimientos de la biología molecular moderna que dependen de la amplificación de cantidades mínimas de ADN.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención proporciona variantes de la ADN polimerasa del bacteriófago ph¡29 que presentan mayor actividad que la enzima natural, no mutada, a temperaturas elevadas (superiores a 30°C que es la temperatura óptima de la enzima natural). La invención también proporciona un método para la amplificación de un ADN molde donde se emplean dichas variantes y un kit que comprende dichas variantes junto con los elementos necesarios para llevar a cabo dicho método.
Las variantes de ADN polimerasa descritas en la presente invención presentan una mayor termoestabilidad, así como una mayor termoactividad, que la ADN polimerasa natural de la que proceden. Estas variantes presentan la ventaja de que son capaces de amplificar cantidades limitantes de ADN a temperaturas más elevadas que la enzima natural, por ejemplo a temperaturas de 40°C o superiores, permitiendo amplificar cantidades de ADN del orden de por ejemplo 10 picogramos (pg) (Fig. 4(A) y Fig. 6). Dichas variantes presentan además una mayor velocidad de amplificación que la ADN polimerasa natural, ya que permiten obtener el mismo rendimiento de amplificación de ADN en un menor tiempo. Finalmente, dichas variantes presentan una actividad exonucleasa, una actividad de polimerización y una fidelidad similares a las de la enzima natural. Por tanto, las variantes de la presente invención mejoran significativamente el rendimiento de las reacciones de amplificación en las que se emplean, especialmente de la reacción de amplificación isotérmica por desplazamiento múltiple (MDA). La presente invención representa así una solución a la necesidad de disponer de variantes termoestables de la ADN polimerasa de ph¡29 que permitan amplificar cantidades limitantes de ADN (en el rango de picogramos) a temperatura igual o mayor de 40°C.
Los ejemplos mostrados más delante demuestran que una sustitución de aminoácido, preferiblemente por un aminoácido de carga positiva, en cualquier posición de la región que consiste en las posiciones 415 a 417 de la secuencia de aminoácidos de la ADN polimerasa de ph¡29 (SEQ ID NO: 1) conduce a una variante enzimática que presenta las propiedades ventajosas descritas en el párrafo anterior. Así, los inventores proponen esta región que va de los aminoácidos 415 a 417 en la secuencia aminoacídica de la ADN polimerasa tipo ph¡29 para el diseño de variantes enzimáticas con termoactividad mejorada. Por tanto, las variantes de la ADN polimerasa del bacteriófago ph¡29 descritas en la presente invención comprenden al menos una sustitución de aminoácido en cualquiera de las posiciones E415, E416 y/o E417 de la secuencia aminoacídica de la ADN polimerasa natural, preferiblemente en las posiciones E416 y E417, más preferiblemente en las tres posiciones E415, E416 y E417, aún más preferiblemente por el aminoácido lisina (K). Los inventores han demostrado además que cuando estas variantes que comprenden sustituciones en E416 y E417 o en E415, E416 y E417 además comprenden una sustitución de aminoácido en E218, o en E218 y en V267, las variantes resultantes rinden aún mejores resultados en la amplificación de cantidades limitantes de ADN a temperatura igual o mayor de 40°C (Figs. 6 y 7). Concretamente, los inventores han obtenido nueve mutantes de la ADN polimerasa del bacteriófago ph¡29 que fueron más termoestables en extractos que la ADN polimerasa natural o wild type. Dichas ADN polimerasas mutantes se purificaron y todas ellas fueron más termoactivas que la ADN polimerasa natural. Por otra parte, y como ya se ha mencionado, las propiedades intrínsecas de la ADN polimerasa de ph¡29: alta procesividad, desplazamiento de cadena y elevada fidelidad, se mantuvieron en las ADN polimerasas mutantes a elevadas temperaturas, preferiblemente a 40-42°C. Estas ADN polimerasas mutantes permiten, por tanto, obtener amplificación de ADN a temperaturas más altas (preferiblemente a 40-42°C) que las empleadas en la actualidad (30°C).
Así, en un primer aspecto, la presente invención se refiere a una variante de la ADN polimerasa del bacteriófago ph¡29 que comprende una secuencia de aminoácidos que tiene una identidad de secuencia de al menos un 80%, preferiblemente de al menos un 85%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98% ó 99%, con la SEQ ID NO: 1 y comprende al menos una sustitución de aminoácido en la región (es decir, en cualquier aminoácido de la región) que consiste en las posiciones 415 a 417, correspondiente a las posiciones 1 a 572 de la SEQ ID NO: 1 , donde la variante de ADN polimerasa tiene una termoactividad aumentada en comparación con la ADN polimerasa de SEQ ID NO: 1. De ahora en adelante, a esta variante se hará referencia también como "variante de la invención" o "variante de ADN polimerasa de la invención".
El término "variante", como se usa aquí, se refiere a una enzima ADN polimerasa que procede de la ADN polimerasa del bacteriófago ph¡29 (SEQ ID NO: 1) mediante una o más sustituciones de uno o más aminoácidos en los punto(s) o posiciones descritas en la presente invención dentro de su secuencia de aminoácidos y, por tanto, tiene una secuencia diferente a la de la enzima natural o wild type. Como se usa aquí, la expresión "variante de la ADN polimerasa del bacteriófago ph¡29" significa un polipéptido que tiene actividad ADN polimerasa producido por síntesis química o recombinantemente por un organismo que expresa una secuencia de nucleótidos que codifica la ADN polimerasa nativa modificada en el sentido descrito en la presente invención. Dicha secuencia de nucleótidos modificada se obtiene mediante intervención humana mediante modificación de la secuencia de nucleótidos que codifica la ADN polimerasa nativa. El término "modificación" significa en el presente documento cualquier modificación química de la secuencia de aminoácidos o de ácido nucleico de la ADN polimerasa nativa.
La "ADN polimerasa del bacteriófago ph¡29" o "ADN polimerasa del tipo ph¡29" es la enzima producto de la expresión génica del gen viral 2, implicada en la iniciación de la replicación y elongación del ADN del bacteriófago ph¡29. Es una enzima monomérica de 66 KDa que contiene los subdominios TPR1 y TPR2 en su dominio de polimerización, el último de los cuales proporciona a la polimerasa la capacidad de acoplar la polimerización procesiva al desplazamiento de cadena. Para la iniciación, esta polimerasa se une a una proteína denominada "terminal" (TP), reconoce el extremo del ADN de ph¡29 y cataliza la formación de un complejo covalente TP-dAMP. Tras la polimerización de 10 nucleótidos, se disocia el heterodímero ADN polimerasa/TP y se lleva a cabo la elongación de la cadena naciente de ADN. La secuencia aminoacídica de esta ADN polimerasa del bacteriófago ph¡29 es la SEQ ID NO: 1.
El término "identidad", como se usa aquí, en el contexto de describir dos o más secuencias polipeptídicas, hace referencia a un porcentaje especificado de coincidencias de residuos de aminoácidos en las posiciones desde una alineación de dos secuencias de aminoácidos. Los procedimientos de alineación de secuencias para comparar son bien conocidos en la técnica. El grado de identidad se puede determinar mediante el método de Clustal (Higgins, 1989, CABIOS 5: 151-153), el método de Wilbur-Lipman (Wilbur y Lipman, 1983, Proceedings of the National Academy of Science USA 80: 726-730), el programa GAG, incluyendo GAP (Devereux et al. 1984, Nucleic Acids Research 12: 287 Genetics Computer Group University of Wisconsin, Madison, 25 (Wl)); BLAST o BLASTN, EMBOSS Needle y FASTA (Altschul et al. 1999, J. Mol. Biol. 215: 403-410). Además, se puede usar el algoritmo de Smith Waterman con el fin de determinar el grado de identidad entre dos secuencias.
La variante de ADN polimerasa de la invención puede exhibir cambios limitados en su secuencia de aminoácidos. Estos cambios permiten el mantenimiento de la función de la variante de ADN polimerasa y el mantenimiento de la propiedad de termoactividad aumentada en comparación con la ADN polimerasa de SEQ ID NO: 1. Estos cambios pueden ser sustituciones, deleciones o adiciones. Las sustituciones son por aminoácidos conservados, que son aminoácidos con cadenas laterales y propiedades similares con respecto a, por ejemplo, propiedades hidrofóbicas o aromáticas. Estas sustituciones incluyen, pero no se limitan a, sustituciones entre Glu y Asp, Lys y Arg, Asn y Gln, Ser y Thr, y/o entre los aminoácidos incluidos en la lista siguiente: Ala, Leu, Val e lie. Los cambios no conducen a modificaciones relevantes en las características o propiedades esenciales de la variante de la invención. La variante de la invención presenta una termoactividad aumentada en comparación con la ADN polimerasa wild type o natural, de SEQ ID NO: 1. Se entiende por "termoactividad" la actividad de replicación, amplificación o elongación mostrada por una ADN polimerasa cuando se encuentra sometida a una temperatura elevada, por ejemplo, a una temperatura superior a 30°C, preferiblemente entre 35-45°C, más preferiblemente entre 39-43°C, aún más preferiblemente entre 40-42°C, particularmente a 40°C.
La termoactividad de la variante de la presente invención puede determinarse mediante distintos tipos de ensayos conocidos por los expertos en la materia. Así, puede estimarse, por ejemplo, pero sin limitarse, analizando la cantidad del producto (ADN) obtenido durante la síntesis de ADN. La cantidad de producto obtenido en estas reacciones constituye una medida de la actividad o estabilidad de la variante de ADN polimerasa a la temperatura a la que se ha llevado a cabo la reacción de amplificación. El análisis de este producto en geles de agarosa permite hacer una valoración cualitativa de la eficiencia de la reacción.
Una variante de ADN polimerasa presenta "termoactividad aumentada" o incrementada en comparación con la ADN polimerasa de SEQ ID NO: 1 , cuando presenta un incremento o aumento significativo (aplicando criterios estadísticos) en su termoactividad con respecto a la termoactividad de la ADN polimerasa del bacteriófago ph¡29 de SEQ ID NO: 1 empleada para la comparación.
Los aminoácidos individuales en una secuencia aminoacídica se representan aquí como XN, donde X es el aminoácido en la secuencia (designado mediante el código de una letra universalmente aceptado en la nomenclatura de aminoácidos), y N es la posición en la secuencia. Las sustituciones de aminoácidos se representan aquí como ΧΪ ΝΧ2, donde X! es el aminoácido en la secuencia de la enzima no mutada, X2 es el aminoácido nuevo en la secuencia de la enzima mutada (variante) y N es la posición en la secuencia de aminoácidos en relación a las posiciones de la SEQ ID NO: 1.
La sustitución de aminoácido en las posiciones 415, 416 y/o 417, correspondiente a las posiciones 1 a 572 de la SEQ ID NO: 1 , es por aminoácidos que tienen las mismas propiedades, sobre, por ejemplo, las propiedades hidrofóbicas o aromáticas, que el aminoácido K. Por tanto, dichas sustituciones permiten que las variantes de la invención mantengan la misma función que las variantes preferidas donde la sustitución es por K, incluyendo la termoactividad aumentada en comparación con la ADN polimerasa de SEQ ID NO: 1. Así, dichas sustituciones de aminoácido en la presente invención en las posiciones 415, 416 y/o 417 de la SEQ ID NO: 1 son preferiblemente sustituciones por aminoácidos cargados positivamente, más preferiblemente por el aminoácido lisina (K). Sin embargo, la K en las posiciones descritas puede ser sustituida en las variantes de la invención por otros aminoácidos conservativos con carga positiva. Se entiende por "sustitución conservativa", en el contexto de la presente invención, aquella que mantiene las características de polaridad y carga del aminoácido K. Por ejemplo, lisina y arginina son aminoácidos cuyas cadenas laterales están cargadas positivamente a pH neutro, por lo que los cambios de lisina por arginina son conservativos. Los cambios de lisina por histidina son igualmente conservativos.
En una realización preferida de la variante de la invención, ésta comprende una sustitución de aminoácido seleccionada entre: E415K, E416K y E417K. En una realización más preferida, la variante de la invención comprende las dos sustituciones de aminoácidos E416K y E417K. En una realización aún más preferida, la variante de la invención comprende las tres sustituciones de aminoácidos E415K, E416K y E417K.
En una realización más preferida, la variante de la invención además comprende una sustitución de aminoácido en la posición 218 correspondiente a las posiciones 1 a 572 de la SEQ ID NO: 1 , donde más preferiblemente dicha sustitución es E218M. Aún más preferiblemente, la variante de la invención comprende esta sustitución en la posición 218 cuando además comprende: i) las dos sustituciones de aminoácidos E416K y E417K, o ii) las tres sustituciones de aminoácidos E415K, E416K y E417K.
En otra realización más preferida, la variante de la invención además comprende una sustitución de aminoácido en la posición 267 correspondiente a las posiciones 1 a 572 de la SEQ ID NO: 1 , donde más preferiblemente dicha sustitución es V267L. Aún más preferiblemente, la variante de la invención comprende esta sustitución en la posición 267 cuando además comprende:
- la sustitución de aminoácido en la posición 218, preferiblemente E218M, y más preferiblemente: - i) las dos sustituciones de aminoácidos E416K y E417K, o ii) las tres sustituciones de aminoácidos E415K, E416K y E417K.
Las sustituciones de aminoácido aquí descritas introducidas en la secuencia polipeptídica wild type de la ADN polimerasa del bacteriófago ph¡29 pueden obtenerse mediante técnicas de ingeniería genética o ADN recombinante, como por ejemplo, mutando la secuencia codificante de la ADN polimerasa mediante mutagénesis dirigida o bien pueden obtenerse a partir de la síntesis química de la secuencia de nucleótidos que codifique para la secuencia de la variante de la invención portadora de dichas sustituciones aminoacídicas.
Así, la variante de ADN polimerasa de la invención puede sintetizarse, por ejemplo, pero sin limitaciones, in vitro. Por ejemplo, por medio de la síntesis de péptidos en fase sólida o abordajes de ADN recombinante. La variante de la invención puede producirse de forma recombinante, incluida su producción como péptido maduro o como una preproteína que incluye un péptido señal.
En una realización aún más preferida, la variante de la invención comprende, preferiblemente consiste en, una secuencia de aminoácidos seleccionada de entre: SEQ I D NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ I D NO: 5, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 1 1 ó SEQ ID NO: 12.
La SEQ ID NO: 2 corresponde a la SEQ ID NO: 1 de la ADN polimerasa del bacteriófago ph¡29 donde el E de la posición 415 ha sido sustituido por K, siendo así un muíante simple (E415K).
La SEQ ID NO: 3 corresponde a la SEQ ID NO: 1 de la ADN polimerasa del bacteriófago ph¡29 donde el E de la posición 416 ha sido sustituido por K, siendo así un muíante simple (E416K).
La SEQ ID NO: 4 corresponde a la SEQ ID NO: 1 de la ADN polimerasa del bacíeriófago ph¡29 donde el E de la posición 417 ha sido susíiíuido por K, siendo así un muíaníe simple (E417K). La SEQ ID NO: 5 corresponde a la SEQ ID NO: 1 de la ADN polimerasa del bacteriófago ph¡29 donde el E de las posiciones 416 y 417 ha sido sustituido por K, siendo así un muíante doble (E416K/E417K). La SEQ ID NO: 6 corresponde a la SEQ ID NO: 1 de la ADN polimerasa del bacteriófago ph¡29 donde el E de las posiciones 415, 416 y 417 ha sido sustituido por K, siendo así un muíante triple (E415K/E416K/E417K).
La SEQ ID NO: 9 corresponde a la SEQ ID NO: 1 de la ADN polimerasa del bacíeriófago ph¡29 donde el E de las posiciones 416 y 417 ha sido susíiíuido por K y el E de la posición 218 ha sido susíiíuido por M, siendo así un muíaníe íriple (E218M/E416K/E417K).
La SEQ ID NO: 10 corresponde a la SEQ ID NO: 1 de la ADN polimerasa del bacíeriófago ph¡29 donde el E de las posiciones 416 y 417 ha sido susíiíuido por K, el E de la posición 218 ha sido susíiíuido por M y la V de la posición 267 ha sido susíiíuida por L, siendo así un muíaníe cuádruple (E218M/V267L/E416K/E417K).
La SEQ ID NO: 11 corresponde a la SEQ ID NO: 1 de la ADN polimerasa del bacíeriófago ph¡29 donde el E de las posiciones 415, 416 y 417 ha sido susíiíuido por K y el E de la posición 218 ha sido susíiíuido por M, siendo así un muíaníe cuádruple (E218M/E415K/E416K/E417K).
La SEQ ID NO: 12 corresponde a la SEQ ID NO: 1 de la ADN polimerasa del bacíeriófago ph¡29 donde el E de las posiciones 415, 416 y 417 ha sido susíiíuido por K, el E de la posición 218 ha sido susíiíuido por M y la V de la posición 267 ha sido susíiíuida por L, siendo así un muíaníe quíníuple (E218M/V267L/E415K/E416K/E417K). Como muesíran los ejemplos de la preseníe invención, la varianíe que comprende, preferiblemeníe que consisíe en, la SEQ ID NO: 6 (íriple muíaníe) es una de las más íermoacíivas de eníre íodas las varianíes aquí descriías. Por ello, en una realización aún más preferida, la varianíe de la invención comprende, preferiblemeníe consisíe en, la SEQ ID NO: 6. Los ejemplos mostrados más adelante también demuestran que la variante que comprende, preferiblemente que consiste en, la SEQ ID NO: 12 (quíntuple muíante, E218M/V267L/E415K/E416K/E417K) es la más termoactiva de entre todas las variantes aquí descritas, pudiendo amplificar cantidades limitantes de ADN (del orden de picogramos) a temperaturas tan elevadas como por ejemplo pero sin limitarnos 43°C, con una eficiencia de amplificación superior a la del resto de variantes. Por ello, en una realización aún más preferida, la variante de la invención comprende, preferiblemente consiste en, la SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 1 1 ó SEQ ID NO: 12; aún más preferiblemente comprende, preferiblemente consiste en, la SEQ ID NO: 1 1 ó SEQ I D NO: 12. En la realización más preferida de la presente invención, la variante comprende, preferiblemente consiste en, la SEQ ID NO: 12.
Otro aspecto de la invención se refiere a una secuencia de nucleotidos aislada que codifica la variante de la invención, de ahora en adelante "secuencia de nucleotidos de la invención".
Debido a la degeneración del código genético, varias secuencias de nucleotidos pueden codificar la misma secuencia de aminoácidos. De acuerdo con la presente invención, una "molécula de ácido nucleico aislada", "secuencia de nucleotidos", "secuencia de ácido nucleico" o "polinucleótido" es una molécula de ácido nucleico (polinucleótido) que se ha eliminado de su medio natural (es decir, que se ha sometido a manipulación humana) y puede incluir ADN, ARN o derivados de ADN o ARN, incluyendo ADNc. La secuencia de nucleotidos de la presente invención puede estar o no química o bioquímicamente modificada, y se puede obtener artificialmente por medio de clonación y procedimientos de selección o mediante secuenciación.
La secuencia de ácido nucleico de la invención puede codificar el polipéptido maduro o una preproteína que consiste en un péptido señal unido a la enzima madura que tendrá que procesarse después.
La secuencia de nucleotidos de la presente invención también puede comprender otros elementos, tales como intrones, secuencias no codificantes en los extremos 3' y/o 5', sitios de unión al ribosoma, etc. Esta secuencia de nucleotidos también puede incluir secuencias codificantes para aminoácidos adicionales que son útiles para la purificación o estabilidad del péptido codificado.
La secuencia de ácido nucleico de la invención se puede incluir en una construcción genética, preferiblemente en un vector de expresión. Dicha construcción genética puede comprender además una o más secuencias reguladoras de la expresión génica, tales como promotores, terminadores, etc.
Por tanto, en otro aspecto, la invención proporciona una construcción genética o génica que comprende la secuencia de nucleótidos de la invención, en lo sucesivo "construcción génica de la invención".
En una forma de realización preferida, dicha construcción génica es un vector de expresión.
La expresión "construcción génica", "construcción genética" o "construcción de ácido nucleico" como se usa aquí hace referencia a una unidad funcional necesaria para la transferencia o la expresión de un gen de interés, en el presente documento, la secuencia de nucleótidos de la invención como se ha descrito, y secuencias reguladoras, incluyendo, por ejemplo, un promotor, operativamente unidas a la secuencia que codifica la proteína. Se refiere a una molécula de ácido nucleico, mono o bicatenaria, que se encuentra aislada de un gen natural o que se modifica para que contenga segmentos de ácidos nucleicos de un modo que, de otro modo, no existirían en la naturaleza. La expresión "construcción de ácido nucleico" es sinónima a la expresión "cásete de expresión", cuando la construcción de ácido nucleico contiene las secuencias control requeridas para la expresión de la secuencia codificante.
La expresión "vector de expresión", también conocida como "construcción de expresión" o "plásmido", hace referencia a una molécula de ADN, lineal o circular, que comprende la secuencia de ácido nucleico de la invención operativamente unida a segmentos adicionales que proporcionan la transcripción del péptido codificado. Generalmente, un plásmido se usa para introducir un gen específico en una célula diana. Una vez que el vector de expresión está en el interior de la célula, la proteína que está codificada por el gen es producida mediante los complejos ribosómicos de la maquinaria de transcripción y traducción celular. Con frecuencia el plásmido se somete a ingeniería para que contenga secuencias reguladoras que actúan como regiones potenciadoras y promotoras y que conducen a una transcripción eficiente del gen portado en el vector de expresión. El objetivo de un vector de expresión bien diseñado es la producción de grandes cantidades de ARN mensajero estable y, por tanto, de proteínas. Los vectores de expresión son herramientas básicas de biotecnología y de la producción de proteínas, tales como enzimas. El vector de expresión de la invención se introduce en una célula huésped de modo que el vector se mantiene como integrante cromosómico o como vector autoreplicante extracromosómico.
El término "expresión" se refiere al proceso por el cual se sintetiza un polipéptido a partir de un polinucleótido. El término incluye la transcripción del polinucleótido en un ARN mensajero (ARNm) y la traducción de dicho ARNm en una proteína o un polipéptido. Ejemplos de vectores de expresión son fagos, cósmidos, fagémidos, cromosomas artificiales de levaduras (YAC), cromosomas artificiales bacterianos (BAC), cromosomas artificiales humanos (HAC) o vectores virales, tales como adenovirus, retrovirus o lentivirus. Los vectores de expresión adecuados para la inserción del polinucleótido de la invención son, preferiblemente, plásmidos utilizados para la expresión de proteínas en procariotas tales, a título ilustrativo, como pUC18, pUC19, Bluescript y sus derivados, mp18, mp19, pBR322, pMB9, Co1 E1 , pCR1 , RP4, los plásmidos pET, fagos y vectores "lanzadera", tales como pSA3 y pAT28; vectores de expresión en levaduras tales como el plásmido de 2 mieras de Saccharomyces cerevisiae, plásmidos de integración, vectores YEP, plásmidos centrómeros y similares; vectores de expresión en células de insectos tales como los vectores de la serie pAC y de la pVL; vectores de expresión en células de plantas tales como piBi, pEarleyGate, PAVA, pCAMBIA, PGSA, PGWB, PMDC, PMY, serie de poros y similares, y otros plásmidos de expresión de proteínas utilizados en células eucariotas, incluyendo baculovirus adecuados para la transfección de células.
La preparación de la variante de la invención se puede realizar por cualquier medio conocido en la técnica, tales como modificación de una secuencia de ADN que codifica la ADN polimerasa de SEQ ID NO: 1 , transformación de la secuencia de ADN modificada en una célula huésped adecuada y la expresión de la secuencia de ADN modificada para formar la variante enzimática.
Así, otro aspecto de la invención se refiere a una célula hospedadora que comprende la construcción génica de la invención, de ahora en adelante "célula hospedadora de la invención".
El término "célula hospedadora" o "célula huésped", tal y como se utiliza en la presente descripción, se refiere a cualquier organismo procariota o eucariota que es recipiente de un vector de expresión, de clonación o de cualquier otra molécula de ADN. El término incluye, por tanto, cualquier célula cultivable que puede ser modificada mediante la introducción de ADN no contenido de manera natural en la misma. Preferiblemente, una célula hospedadora es aquélla en la que el polinucleótido de la invención puede ser expresado, dando lugar a un polipéptido estable, modificado post-traduccionalmente y localizado en el compartimento subcelular apropiado. La elección de una célula hospedadora adecuada puede también estar influida por la elección de la señal de detección. Por ejemplo, el uso de construcciones con genes reporteros (por ejemplo, lacZ, luciferasa, timidina quinasa o la proteína verde fluorescente "GFP") puede proporcionar una señal seleccionare mediante la activación o inhibición de la transcripción del gen de interés en respuesta a una proteína reguladora de la transcripción. De cara a conseguir una selección o "screening" óptimo, el fenotipo de la célula hospedadora deberá ser considerado.
Otro aspecto de la invención se refiere al uso de la célula hospedadora de la invención para la obtención de la variante de la invención.
La célula hospedadora de la invención puede ser cultivada para tal fin. Un cultivo de células hospedadoras se refiere al proceso de mantener y crecer las células hospedadoras. Los cultivos celulares necesitan condiciones contraladas de temperatura, pH, porcentajes de gases (oxígeno y dióxido de carbono), así como la presencia de los nutrientes adecuados para permitir la viabilidad y la división celular. Los cultivos celulares pueden desarrollarse en sustratos sólidos como el agar, o en medio líquido, lo que permite cultivar grandes cantidades de células en suspensión. Una vez cultivada la célula de la invención y expresada la variante de la invención, ésta se puede purificar. El término "purificar" tal y como se emplea en la descripción, se refiere al aislamiento de la variante de la invención y a su concentración, del resto de polipéptidos presentes en el medio de cultivo de la célula hospedadora de la invención. El aislamiento de la variante puede llevarse a cabo mediante técnicas de solubilidad diferencial, cromatografía, electroforesis o isoelectroenfoque. Las técnicas de cromatografía pueden estar basadas en el peso molecular, la carga iónica (basada en el estado de ionización de los aminoácidos en las condiciones de trabajo), la afinidad de la proteína por determinadas matrices o columnas cromatográficas, o mediante etiquetas de purificación, y puede realizarse en columna, en papel o en placa. El aislamiento de la proteína puede realizarse, por ejemplo, mediante precipitación con sulfato amónico, cromatografía líquida rápida (FPLC, del inglés "Fast Protein Liquid Cromatography") o cromatografía líquida de alta eficacia (HPLC, del inglés "High Performance Liquid Chromatography"), empleando sistemas automatizados que reducen notablemente el tiempo de purificación e incrementan el rendimiento de la purificación.
Otro aspecto de la invención se refiere al uso de la variante de la invención para la amplificación, replicación o secuenciación de un ADN molde.
En una realización preferida, la variante de la invención es la variante que comprende, preferiblemente consiste en, la SEQ ID NO: 2. En otra realización preferida, la variante de la invención es la variante que comprende, preferiblemente consiste en, la SEQ ID NO: 3. En otra realización preferida, la variante de la invención es la variante que comprende, preferiblemente consiste en, la SEQ ID NO: 4. En otra realización preferida, la variante de la invención es la variante que comprende, preferiblemente consiste en, la SEQ ID NO: 5. En otra realización preferida, la variante de la invención es la variante que comprende, preferiblemente consiste en, la SEQ ID NO: 6. En otra realización preferida, la variante de la invención es la variante que comprende, preferiblemente consiste en, la SEQ ID NO: 9. En otra realización preferida, la variante de la invención es la variante que comprende, preferiblemente consiste en, la SEQ ID NO: 10. En otra realización preferida, la variante de la invención es la variante que comprende, preferiblemente consiste en, la SEQ ID NO: 1 1. En otra realización preferida, la variante de la invención es la variante que comprende, preferiblemente consiste en, la SEQ ID NO: 12. El término "amplificación", tal y como se utiliza en la presente descripción, se refiere al aumento del número de copias de un ADN molde.
El término "replicación", tal y como se utiliza en la presente descripción, se refiere a la síntesis de un ADN complementario a partir de un ADN molde.
El término "secuenciación", tal y como se utiliza en la presente descripción, se refiere a la determinación del orden de los nucleótidos de un ADN molde. Son conocidos en el estado de la técnica un amplio número de métodos que permiten la amplificación de ADN. Algunos métodos requieren un proceso de ciclado térmico como, por ejemplo, pero sin limitarse, la reacción en cadena de la polimerasa (PCR). Otros métodos no requieren un proceso de ciclado térmico, sino que se realizan a una temperatura esencialmente constante como, por ejemplo, pero sin limitarse, la amplificación por círculo rodante (RCA), la amplificación de desplazamiento múltiple (MDA), la amplificación por desplazamiento de cadena (SDA) o la amplificación mediante lazo (LAMP). La amplificación de un ADN molde mediante la variante de ADN polimerasa de la presente invención puede tener lugar mediante un proceso de ciclado térmico o, preferiblemente, a una temperatura esencialmente constante (proceso o condiciones isotérmicas).
Por "condiciones isotérmicas" se entiende "temperatura esencialmente constante". Preferiblemente, la amplificación de un ADN molde con la variante de ADN polimerasa de la presente invención tiene lugar a una temperatura esencialmente constante.
Así, en una realización preferida, la amplificación a la que se refiere la presente invención es una amplificación isotérmica por desplazamiento múltiple (MDA), círculo rodante (RCA), amplificación por desplazamiento de cadena (SDA) o amplificación mediante lazo (LAMPA). Más preferiblemente, la amplificación es MDA.
En una realización más preferida, la amplificación a la que se refiere la presente invención se realiza a una temperatura constante de más de 30°C, preferiblemente entre 35-45°C, más preferiblemente entre 39-43°C, aún más preferiblemente entre 40- 42°C. Más preferiblemente la temperatura es de 40°C. En otra realización preferida, el ADN molde es plasmídico o genómico.
Otro aspecto de la invención se refiere a un método para la amplificación, replicación o secuenciación de un ADN molde que comprende: a. poner en contacto un ADN molde con una mezcla de reacción que comprende:
- la variante de la invención,
- al menos un oligonucleótido,
- un tampón,
- cloruro magnésico, y
- dNTPs, b. incubar el ADN molde con la mezcla de reacción bajo condiciones que permitan la amplificación del ADN. De ahora en adelante, se hará referencia a este método como "método de la invención".
En una realización preferida del método de la invención, la variante de la invención es la variante que comprende, preferiblemente consiste en, la SEQ ID NO: 2. En otra realización preferida del método de la invención, la variante de la invención es la variante que comprende, preferiblemente consiste en, la SEQ ID NO: 3. En otra realización preferida del método de la invención, la variante de la invención es la variante que comprende, preferiblemente consiste en, la SEQ ID NO: 4. En otra realización preferida del método de la invención, la variante de la invención es la variante que comprende, preferiblemente consiste en, la SEQ ID NO: 5. En otra realización preferida del método de la invención, la variante de la invención es la variante que comprende, preferiblemente consiste en, la SEQ ID NO: 6. En otra realización preferida, la variante de la invención es la variante que comprende, preferiblemente consiste en, la SEQ ID NO: 9. En otra realización preferida, la variante de la invención es la variante que comprende, preferiblemente consiste en, la SEQ ID NO: 10. En otra realización preferida, la variante de la invención es la variante que comprende, preferiblemente consiste en, la SEQ ID NO: 1 1. En otra realización preferida, la variante de la invención es la variante que comprende, preferiblemente consiste en, la SEQ ID NO: 12. Por "poner en contacto" se entiende que el ADN molde y la mezcla de reacción se incuban en condiciones de extensión del cebador u oligonucleótido. La expresión "condiciones de extensión del cebador" hace referencia a las condiciones en que puede tener lugar la síntesis dependiente de ADN molde iniciada en un cebador.
La expresión "condiciones que permitan la amplificación del ADN o la síntesis de ADN complementario" se refiere a las condiciones en las que puede tener lugar la incorporación de los nucleótidos a un ADN naciente mediante complementariedad de bases con el ácido nucleico molde.
Generalmente las condiciones en las que tiene lugar la síntesis de ADN incluyen: (a) poner en contacto el ácido nucleico molde con la variante de ADN polimerasa de la invención en una mezcla que además comprende un cebador, un catión bivalente, por ejemplo, Mg2+, y nucleótidos, y (b) someter dicha mezcla a una temperatura suficiente para que la variante de ADN polimerasa inicie la incorporación de los nucleótidos al cebador mediante complementariedad de bases con el ácido nucleico molde, y de lugar a una población de moléculas de ADN complementario de diferente tamaño. La separación de dicha población de moléculas de ADN complementario permite determinar la secuencia de nucleótidos del ácido nucleico molde.
En otra realización preferida del método de la invención, la variante de ADN polimerasa de la invención está a una concentración de entre 2 ng/μΙ y 10 ng/μΙ. En una realización más preferida, la variante de ADN polimerasa de la invención está a una concentración de entre 3 ng/μΙ y 7 ng/μΙ. En una realización aún más preferida, la variante de ADN polimerasa de la invención está a una concentración de aproximadamente 3,2 ng/μΙ.
En otra realización preferida del método de la invención, el cloruro magnésico está a una concentración de entre 2 mM y 20 mM. En una realización más preferida, el cloruro magnésico está a una concentración de entre 5 mM y 15 mM. En una realización aún más preferida, el cloruro magnésico está aproximadamente a 10 mM.
En otra realización preferida del método de la invención, la incubación del paso (b) tiene lugar a una temperatura constante de más de 30°C, preferiblemente entre 35- 45°C, más preferiblemente entre 39-43°C, aún más preferiblemente entre 40-42°C. En una realización más preferida, la temperatura es de 40°C.
El término "ADN molde", tal y como se utiliza en la presente descripción, se refiere a una molécula de ADN que puede servir como sustrato para la síntesis de una cadena de ADN complementaria; es decir, se refiere a una molécula de ADN que va a ser replicada, amplificada o secuenciada. En una realización preferida, el ADN molde es ADN plasmídico. En otra realización preferida, el ADN molde es ADN genómico. En una realización más preferida del método de la invención, la amplificación es una amplificación isotérmica por desplazamiento múltiple (MDA), círculo rodante (RCA), amplificación por desplazamiento de cadena (SDA) o amplificación mediante lazo (LAMPA). Aún más preferiblemente, la amplificación es MDA.
El término "cebador" u "oligonucleótido" se refiere a un oligonucleótido de ADN o ARN complementario a la secuencia de un ácido nucleico molde determinado, que actúa como punto de inicio para la adición de nucleótidos en el proceso de copia de la cadena complementaria a la secuencia de dicho ácido nucleico molde, por ejemplo, pero sin limitarnos en una PCR. El término "cebador" se refiere por tanto a un oligonucleótido capaz de actuar como punto de inicio de la síntesis de ADN cuando se encuentra en condiciones de extensión del cebador. Preferiblemente, el cebador es un oligonucleótido de ADN.
Los cebadores pueden prepararse mediante cualquier método adecuado, incluyendo, por ejemplo, pero sin limitarse, la síntesis química directa. Los cebadores pueden diseñarse para hibridar con secuencias específicas de deoxinucleótidos en el ADN molde (cebadores específicos) o pueden ser sintetizados al azar (cebadores arbitrarios).
El término "cebador específico", tal y como se utiliza en la presente descripción, se refiere a un cebador cuya secuencia es complementaria a una secuencia específica de deoxinucleótidos en el ADN molde que se quiere amplificar. Por "complementaria" se entiende que el cebador puede hibridar con una región del ADN molde de forma que puede actuar como punto de inicio de la síntesis de ADN cuando se encuentra en condiciones de extensión del cebador. Preferentemente, esa región tiene una complementariedad del 100% con una región del ADN molde. Esto es, cada nucleótido en la región de complementariedad con el cebador puede formar enlaces de hidrógeno con un nucleótido presente en el molde de hebra sencilla. Sin embargo, los expertos en la materia reconocerán que cebadores que posean una región con complementariedad menor al 100% respecto al ADN molde funcionarán para llevar a cabo el método de replicación, amplificación o secuenciación de la presente invención.
El término "cebador arbitrario" se refiere a un cebador cuya secuencia es sintetizada al azar y que se usa para iniciar la síntesis del ADN en posiciones aleatorias del ADN molde. Por lo general, en el método de replicación, amplificación o secuenciación de la presente invención se emplea una población de cebadores arbitrarios. El término "cebadores arbitrarios" se refiere a un conjunto de cebadores con una secuencia aleatoria y que se usan para iniciar la síntesis del ADN en posiciones aleatorias del ADN molde. En otra realización preferida del método de la invención, el cebador u oligonucleótido es arbitrario. Preferiblemente, el oligonucleótido arbitrario está protegido frente a la acción de exonucleasas 3'- 5'. En una realización más preferida, el oligonucleótido empleado en el método de la presente invención es un hexámero (oligonucleótido de 6 nucleótidos), octámero (oligonucleótido de 8 nucleótidos) o decámero (oligonucleótido de 10 nucleótidos).
En otra realización preferida del método de la invención, el oligonucleótido está a una concentración de entre 2 μΜ y 100 μΜ. En una realización más preferida, el oligonucleótido está a una concentración de entre 20 μΜ y 80 μΜ. En una realización aún más preferida, el oligonucleótido está a una concentración de entre 40 y 60 μΜ. En una realización aún más preferida, el oligonucleótido está a una concentración de aproximadamente 25 μΜ.
El término "dNTPs" se refiere a desoxinucleósidos trifosfato, como, por ejemplo, pero sin limitarse, dATP, dCTP, dITP, dUTP, dGTP, dTTP, o derivados de los mismos. Preferiblemente, los desoxinucleósidos trifosfato son dATP, dTTP, dGTP y dCTP. Aún más preferiblemente, estos cuatro dNTPs están en condiciones equimolares.
En otra realización preferida de este aspecto de la invención, los dNTPs están a una concentración de entre 100 μΜ y 800 μΜ. En una realización más preferida, los dNTPs están a una concentración de entre 200 μΜ y 600 μΜ. En una realización aún más preferida, los dNTPs están a una concentración de aproximadamente 500 μΜ.
En algunas realizaciones preferidas del método de replicación, amplificación o secuenciación de la invención, al menos un dNTP o un oligonucleótido está marcado mediante técnicas bien conocidas en el estado de la técnica. Etiquetas detectables incluyen, por ejemplo, isótopos radiactivos, etiquetas fluorescentes, etiquetas quimioluminiscentes, etiquetas bioluminiscentes o etiquetas enzimáticas. En otra realización preferida del método de la invención, el tampón es Tris-clorhídrico, Tris-acético o HEPES.
En otra realización preferida del método de la invención, el tampón está a un pH de entre 7,0 y 8,5. En una realización más preferida, el tampón está a un pH de entre 7,2 y 8. En una realización aún más preferida, el tampón está a un pH de aproximadamente 7,5. En otra realización, el tampón está a una concentración de entre 25 mM y 50 mM. En una realización más preferida, el tampón está a una concentración de entre 30 mM y 45 mM. En una realización aún más preferida, el tampón está a una concentración de aproximadamente 40 mM.
Otro aspecto de la invención se refiere a un kit para la amplificación de un ADN molde que comprende la variante de la invención, de ahora en adelante "kit de la invención".
En una realización preferida del kit de la invención, dicho kit además comprende al menos un oligonucleótido, preferiblemente arbitrario, un tampón, dNTPs y cloruro magnésico.
En una realización más preferida, el oligonucleótido comprendido en el kit de la invención es un hexámero, octámero o decámero.
En otra realización preferida, el tampón comprendido en el kit de la invención es Tris- clorhídrico, Tris-acético o HEPES.
En general, el kit de la invención comprende todos aquellos reactivos necesarios para llevar a cabo el método de la invención descrito anteriormente. El kit además puede incluir, sin ningún tipo de limitación, tampones, enzimas, como por ejemplo, aunque sin limitarnos, polimerasas, cofactores para obtener una actividad óptima de éstas, agentes para prevenir la contaminación, etc. Por otro lado el kit puede incluir todos los soportes y recipientes necesarios para su puesta en marcha y optimización. El kit puede contener además otras moléculas, genes, proteínas o sondas de interés, que sirvan como controles positivos y negativos. Preferiblemente, el kit comprende además las instrucciones para llevar a cabo el método de la invención.
Otro aspecto de la invención se refiere al uso del kit de la invención para la amplificación, replicación o secuenciación de un ADN molde.
En una realización preferida de este aspecto de la invención, la amplificación es una amplificación isotérmica por desplazamiento múltiple (MDA), círculo rodante (RCA), amplificación por desplazamiento de cadena (SDA) o amplificación mediante lazo (LAMPA). Más preferiblemente, la amplificación es MDA.
En una realización más preferida, la amplificación se realiza a una temperatura constante de más de 30°C, preferiblemente entre 35-45°C, más preferiblemente entre 39-43°C, aún más preferiblemente entre 40-42°C. Aún más preferiblemente la temperatura es de 40°C.
En otra realización preferida, el ADN molde es plasmídico o genómico.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y figuras se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención.
BREVE DESCRIPCIÓN DE LAS FIGURAS
FIG. 1. Termoactividad de las ADN polimerasas mutantes E415K, E416K, E417K, E416K/E417K y E415K/E416K/E417K. Amplificación del plásmido pJLPM. El plásmido pJLPM, 100 pg (A) ó 1 ng (B), se incubó en tampón A (40 mM Tris-HCI, pH 7.5, 50 mM KCI, 10 mM MgCI2, 45 mM (NH4)2S04, 0.025% Tween20), 25 μΜ decámeros random, 500 μΜ dNTPs y 40 ng de ADN polimerasa de ph¡29 wild-type (wt), E415K, E416K, E417K, E416K/E417K ó E415K/E416K/E417K, en 12.5 μΙ durante 6 horas a las temperaturas indicadas. 1.5 μΙ del producto amplificado se digirió con EcoRI-HF y se sometió a eletroforesis en gel de agarosa 0.7% en 1xTBE (100 mM Tris, 100 mM H3B03, 2 mM EDTA, pH 8), llevando como marcador (M) un digerido del ADN de ph¡29 con Hindlll.
FIG. 2. Termoactividad de las ADN polimerasas mutantes E415K, E416K, E417K, E416K/E417K y E415K/E416K/E417K. Amplificación del plásmido plJ702 con 70% de GC. El plásmido plJ702, con un alto contenido en G.C (70%), 100 pg (A) ó 1 ng (B), se incubó en las mismas condiciones descritas en la Figura 1. 1.5 μΙ del producto amplificado se dirigió con BamHI-HF.
FIG. 3. Cinética de amplificación del plásmido pJLPM a 30 °C con la ADN polimerasa wild-type y las mutantes E416K/E417K y E415K/E416K/E417K. El plásmido pJLPM (100 pg) se incubó en tampón A, 25 μΜ hexámeros random, 500 μΜ dNTPs y 40 ng de ADN polimerasa de ph¡29 wild-type (wt), E416K/E417K ó E415K/E416K/E417K en 12.5 μΙ a 30°C en los tiempos indicados. 1.5 μΙ del producto amplificado se digirió con EcoRI-HF y se sometió a electroforesis en gel de agarosa 0.7% en 1xTBE llevando como marcador (M) un digerido del ADN de ph¡29 con Hindlll.
FIG. 4. Cinética de amplificación del plásmido plJ702 con la ADN polimerasa wild-type a 30 °C y las mutantes E416K/E417K y E415K/E416K/E417K a 40 °C. El plásmido plJ702, 10 pg (A) ó 100 pg (B), se incubó en tampón A, 500 μΜ dNTPs, con 40 ng de las ADN polimerasas y 25 μΜ hexámeros random, a 30 °C para la ADN polimerasa de ph¡29 wild-type (wt), y 25 μΜ decámeros random, a 40 °C para las ADN polimerasas E416K/E417K y E415K/E416K/E417K, en 12.5 μΙ durante los tiempos indicados. 1.5 μΙ del producto amplificado se digirió con BamHI-HF. FIG. 5. Actividad de exonucleolisis/polimerización con las ADN polimerasas mutantes E416K/E417K y E415K/E416K/E417K. La mezcla de reacción contenía, en un volumen final de 12.5 μΙ, 50 mM Tris-HCI, pH 7.5, 10 mM MgCI2, 1 mM dithiothreitol, 4% (v/v) glicerol, 0.1 mg/ml seroalbúmina bovina, 1.2 nM del sustrato sp1/sp1 c+18 marcado radiactivamente en el extremo 5' del oligonucleótido sp1 , 20 ng de la ADN polimerasa de ph¡29 wild-type (wt) o mutantes E416K E417K ó E415K E416K/E417K, en presencia de las concentraciones especificadas de los cuatro dNTPs (según se indica). Tras la incubación durante 5 minutos a 30 °C, la reacción se detuvo añadiendo EDTA a concentración final 10 mM. Las muestras se analizaron en geles del 20% poliacrilamida-8M urea y posterior autorradiografía. Las actividades de polimerización y exonucleasa se determinaron por aumento o disminución, respectivamente, de la longitud inicial del sustrato marcado.
FIG. 6. Termoactividad de las ADN polimerasas mutantes E416K/E417K, E415K/E416K/E417K, E218M/E416K/E417K, E218M V267L/E416K/E417K, E218M/E415K/E416K/E417K, E218M V267L/E415K/E416K/E417K. Amplificación del plásmido plJ702. El plásmido plJ702 (10 pg) se incubó en tampón A (40 mM Tris- HCI pH 7.5, 50 mM KCI, 10 mM MgCI2, 45 mM (NH4)S04, 0,025% Tween20), 40 ng de las ADN polimerasas mutantes indicadas, 25 μΜ decámeros random, 500 μΜ dNTPs en 12,5 μΙ durante 6 horas a las temperaturas indicadas. 1 ,5 μΙ del producto amplificado se digirió con BamHI-HF.
FIG. 7. Termoactividad de las ADN polimerasas mutantes E416K/E417K, E415K/E416K/E417K, E218M/E416K/E417K, E218M V267L/E416K/E417K, E218M/E415K/E416K/E417K, E218M V267L/E415K/E416K/E417K. Amplificación del plásmido plJ702. El plásmido plJ702 (1 ng) se incubó en tampón A (40 mM Tris- HCI pH 7.5, 50 mM KCI, 10 mM MgCI2, 45 mM (NH4)S04, 0.025% Tween20), 40 ng de las ADN polimerasas mutantes indicadas, 25 μΜ dodecámeros random, 500 μΜ dNTPs en 12,5 μΙ durante 6 horas a las temperaturas indicadas. 1 ,5 μΙ del producto amplificado se digirió con BamHI-HF. FIG. 8. Actividad de exonucleolisis/polimerización con las ADN polimerasas mutantes E218M/E416K/E417K y E218M V267L/E416K/E417K. El ensayo Exo/Pol se realizó en una mezcla de reacción que contenía, en un volumen final de 12,5 μΙ, 50 mM Tris-HCI pH 7.5, 10 mM MgCI2, 1 mM DTT, 4% (v/v) glicerol, 0,1 mg/ml BSA, 1 ,2 nM del sustrato sp1 marcado radiactivamente en 5' hibridado a sp1 c+18, 20 ng de la ADN polimerasa wt y los mutantes E218M/E416K/E417K y E218M/V267L/E416K/E417K, en presencia de las concentraciones especificadas de los 4 dNTPs (según se indica). Tras la incubación durante 6 minutos a 30°C, la reacción se detuvo añadiendo 10 mM EDTA. Las muestras se analizaron en geles del 20% poliacrilamida-8 M urea y posterior autorradiografía. Las actividades de polimerización y exonucleasa se determinaron por aumento o disminución respectivamente, de la longitud inicial del sustrato marcado.
FIG. 9. Actividad de exonucleolisis/polimerización con las ADN polimerasas mutantes E218M/E415K/E416K/E417K y E218M V267L/E415K/E416K/E417K. El ensayo Exo/Pol se realizó en una mezcla de reacción que contenía, en un volumen final de 12,5 μΙ, 50 mM Tris-HCI pH 7.5, 10 mM MgCI2, 1 mM DTT, 4% (v/v) glicerol, 0, 1 mg/ml BSA, 1 ,2 nM del sustrato sp1 marcado radiactivamente en 5' hibridado a sp1c+18, 20 ng de la ADN polimerasa wt y los mutantes E218M/E415K/E416K/E417K y E218M/V267L/E415K/E416K/E417K, en presencia de las concentraciones especificadas de los 4 dNTPs (según se indica). Tras la incubación durante 6 minutos a 30°C, la reacción se detuvo añadiendo 10 mM EDTA. Las muestras se analizaron en geles del 20% poliacrilamida-8 M urea y posterior autorradiografía. Las actividades de polimerización y exonucleasa se determinaron por aumento o disminución respectivamente, de la longitud inicial del sustrato marcado.
EJEMPLOS
A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores, que ponen de manifiesto la efectividad de las variantes de la ADN polimerasa del bacteriófago ph¡29 descritas en la presente invención en la amplificación de ADN en condiciones de elevada temperatura y contenido limitante de ADN. EJEMPLO 1. ENSAYOS DE AMPLIFICACIÓN DE ADN PLASMÍDICO CON ADN POLIMERASAS DE TIPO ph¡29 MUTANTES.
Los residuos Glu415, Glu416 y Glu417 del subdominio TPR2 de la ADN polimerasa de ph¡29 están moderadamente conservados en las ADN polimerasas que tienen como iniciador de la replicación una proteína terminal. El desplazamiento de cadena que tiene lugar en la replicación del ADN de ph¡29 podría ser llevado a cabo por la repulsión electrostática entre el esqueleto polifosfato de la cadena desplazada de ADN y dichos residuos electronegativos. Para comprobar esta hipótesis se realizó un cambio de los tres residuos, Glu415, Glu416 y Glu417, a lisina con objeto de sustituir las cargas negativas por cargas positivas. El resultado obtenido indicó que el triple muíante E415K/E416K/E417K (SEQ ID NO: 6) no afecta al desplazamiento de cadena realizado por la ADN polimerasa de ph¡29. Sin embargo, dicho triple muíante era más termoesíable y más íermoacíivo que la ADN polimerasa wild-type. Para deíerminar qué aminoácido(s) eran responsables de dicha acíividad, se consíruyeron los muíaníes simples, E415K (SEQ ID NO: 2), E416K (SEQ I D NO: 3) y E417K (SEQ ID NO: 4), así como los dobles E415K/E416K (SEQ ID NO: 7), E415K/E417K (SEQ ID NO: 8) y E416K/E417K (SEQ ID NO: 5).
Se esíudió la íermoesíabilidad de las 7 ADN polimerasas muíaníes, incluyendo el íriple muíaníe E415K/E416K/E417K (SEQ ID NO: 6). Las ADN polimerasas muíaníes E415K, E416K, E417K, E416K/E417K y E415K/E416K/E417K fueron más íermoesíables que la ADN polimerasa wild-type. Se procedió a purificar dichas ADN polimerasas para su ensayo en Rolling Circle Amplification o círculo rodaníe (RCA).
La Figura 1 muesíra la acíividad de las 5 ADN polimerasas muíaníes a íemperaíuras crecieníes comparada con la de la ADN polimerasa wild-type. Puede verse que las 5 ADN polimerasas muíaníes son más íermoacíivas que la ADN polimerasa wild-type, siendo la acíividad de E415K = E416K < E417K < E416K/E417K < E415K/E416K/E417K, cuando se usan 100 pg (A) o 1 ng (B) de plásmido pJLPM. La Figura 2 muesíra la amplificación del plásmido plJ702, con un alio coníenido en GC (70%). Puede verse que íodas las ADN polimerasas muíaníes amplifican dicho plásmido, íanío 100 pg (A) como 1 ng (B), a íemperaíuras en las que la ADN polimerasa wild-type no da lugar a amplificación. Teniendo en cuenía que las ADN polimerasas muíaníes E416K/E417K y E415K/E416K/E417K son más íermoacíivas que las ADN polimerasas muíaníes E415K, E416K ó E417K, los experimeníos posíeriores se realizaron con las ADN polimerasas con la muíación doble y íriple. La Figura 3 muesíra que, uíilizando 100 pg de plásmido pJLPM, se observa amplificación con las ADN polimerasas mutantes E416K/E417K y E415K/E416K/E417K después de 2 h de incubación a 30°C mientras que con la ADN polimerasa wild-type se requieren 3 h para obtener la misma amplificación. La Figura 4 muestra la amplificación de 10 pg (A) o 100 pg (B) del plásmido plJ702 con la ADN polimerasa wild-type a 30°C y con las ADN polimerasas mutantes E416K/E417K y E415K/E416K/E417K a 40°C en función del tiempo de incubación. Puede verse que la velocidad de amplificación de ambas proteínas mutantes es mayor que la de la polimerasa wild-type, siendo la del triple muíante superior a la del doble muíante.
La Figura 5 muesíra un ensayo de equilibrio eníre las acíividades de exonucleolisis y polimerización uíilizando como susíraío una molécula íipo iniciador/molde. Puede verse que ambas ADN polimerasas muíaníes, E416K/E417K y E415K/E416K/E417K, íienen acíividad exonucleasa similar a la de la polimerasa wild-type, así como similar acíividad de polimerización.
Además de las muíaciones indicadas aníeriormeníe, se ensayaron dos susíiíuciones adicionales de aminoácido en la secuencia de la ADN polimerasa de ph¡29, a saber E218M y V267L, y se íesíó la íermoacíividad de las varianíes resulíaníes que incluían combinaciones de íodas las muíaciones.
Así, las Figuras 6 y 7 muesíran la amplificación del plásmido plJ702, 10pg y 1 ng, respecíivameníe, a íemperaíuras crecieníes. Puede verse que, mieníras que las varianíes E416K/E417K y E415K/E416K/E417K amplificaban a elevadas íemperaíuras, las varianíes E218M/E416K/E417K, E218M/V267L/E416K/E417K, E218M/E415K/E416K/E417K y E218M/V267L/E415K/E416K/E417K fueron capaces de amplificar a íodas las íemperaíuras ensayadas, las cuales iban hasía los 43°C para el caso de 10pg y hasía 44,8°C para el caso de 1 ng. Esío implica que esías varianíes que comprenden adicionalmeníe las muíaciones E218M o E218M y V267L presenían una mayor íermoacíividad, porque maníienen su capacidad de amplificación de ácidos nucleicos a íemperaíuras superiores incluso a las de E416K/E417K y E415K/E416K/E417K. La Figura 8 muesíra un ensayo de equilibrio eníre las acíividades de exonucleolisis y polimerización de las variantes E218M/E416K/E417K y E218M/V267L/E416K/E417K utilizando como sustrato una molécula tipo iniciador/molde. El mismo ensayo se representa en la Figura 9 para las variantes E218M/E415K/E416K/E417K y E218M/V267L/E415K/E416K/E417K. Puede verse que todas estas ADN polimerasas mutantes tienen actividad exonucleasa similar a la de la polimerasa wild-type, así como similar actividad de polimerización.
EJEMPLO 2. ENSAYOS DE FIDELIDAD DE LAS ADN POLIMERASAS MUTANTES E416K/E417K, E415K/E416K/E417K, E218M/E416K/E417K, E218M V267L/E416K/E417K, E218M/E415K/E416K/E417K Y
E218M V267L/E415K/E416K/E417K.
Para determinar la fidelidad de las ADN polimerasas mutantes se amplificaron 100 pg (a 41 ,3 °C para las E416K/E417K y E415K/E416K/E417K y a 42,5°C para las E218M/E416K/E417K, E218M/V267L/E416K/E417K, E218M/E415K/E416K/E417K y E218M/V267L/E415K/E416K/E417K) y 1 ng (a 41 ,8 °C) del plásmido pUC19 que contiene el gen lacZa, llevando como control la ADN polimerasa wild-type (a 30 °C). Los ADNs amplificados (1 ,8 μg) se digieren con las nucleasas de restricción EcoRI-HF y Dpnl durante 3 h a 37 °C. Los productos digeridos se purifican con un kit de Qiagen y 400 ng del plásmido pUC19 linearizado se circulariza con ADN ligasa de T4 en un volumen final de 200 μΙ. Para analizar las mutaciones en el gen lacZa se transforman 24 ng del ADN ligado en la estirpe de Escherichia coli XL-1 para determinar las colonias blancas y azules. Las colonias blancas indican los mutantes en el gen lacZa. La tasa de error se calculó usando la ecuación: TE= (f-f0)/pb x d, siendo f la frecuencia de las mutaciones determinada dividiendo el número total de colonias blancas por el número total de colonias. F0 representa la frecuencia control en el ADN plasmídico purificado de bacterias, digerido y tratado en las mismas condiciones. Para calcular las duplicaciones del molde (d) se usó la ecuación d= (ng de producto/ng de input).
Como puede verse en la Tabla I, la tasa de error (fidelidad) de los mutantes E416K/E417K, y E415K/E416K/E417K está en el orden de magnitud de la fidelidad de la ADN polimerasa wild-type (wt), entre 1 ,5 x 10"7 y 6,5 x 10"7. Es decir, ambas proteínas mutantes tienen una fidelidad similar a la de la ADN polimerasa wild-type. Tabla I. Determinación de la tasa de error de las ADN polimerasas mutantes E416K/E417K y E415K/E416K/E417K respecto a la wild-type.
Figure imgf000030_0001
La Tabla II muestra la tasa de error (fidelidad) de los mutantes E218M/E416K/E417K, E218M/V267L/E416K/E417K, E218M/E415K/E416K/E417K y
E218M/V267L/E415K/E416K/E417K, la cual está en el orden de magnitud de la fidelidad de la ADN polimerasa wild-type (wt). Es decir, estas proteínas mutantes tienen una fidelidad similar a la de la ADN polimerasa wild-type.
Tabla II. Determinación de la tasa de error de las ADN polimerasas mutantes E218M/E416K/E417K, E218M/V267L/E416K/E417K, E218M/E415K/E416K/E417K y E218M/V267L/E415K/E416K/E417K a 42,5°C respecto de la wild-type a 30°C.
Tasa de
Phi29 ADNP Input (ng) Colonias f (%) d
Error
WT 0,1 13639 1 ,04 15,75 3,93 x 10"6
E218M/
0,1 1 1507 0,90 14,36 1 ,84 x 10"6 E416K/E417K
E218M/V267L/
0,1 1 1210 0,97 14,08 2,02 x 10"6 E416K/E417K
E218M/
0,1 7647 1 ,06 14,32 2,16 x 10"6 E415K/E416K/E417K E218M/V267L/
0,1 8737 1,10 14,19 2,26x10"65K/E416K/E417K

Claims

REIVINDICACIONES
1. Una variante de la ADN polimerasa del bacteriófago ph¡29 que comprende una secuencia de aminoácidos que tiene una identidad de secuencia de al menos un 80% con la SEQ ID NO: 1 y comprende al menos una sustitución de aminoácido en la región que consiste en las posiciones 415 a 417, correspondiente a las posiciones 1 a 572 de la SEQ ID NO: 1 , donde la variante de ADN polimerasa tiene una termoactividad aumentada en comparación con la ADN polimerasa de SEQ ID NO: 1.
2. La variante según la reivindicación 1 , que comprende una sustitución de aminoácido seleccionada entre: E415K, E416K y E417K.
3. La variante según cualquiera de las reivindicaciones 1 ó 2, que comprende las sustituciones de aminoácidos E416K y E417K.
4. La variante según cualquiera de las reivindicaciones 1 a 3, que comprende las sustituciones de aminoácidos E415K, E416K y E417K.
5. La variante según cualquiera de las reivindicaciones 3 ó 4, que además comprende una sustitución de aminoácido en la posición 218 correspondiente a las posiciones 1 a 572 de la SEQ ID NO: 1.
6. La variante según la reivindicación 5, que comprende la sustitución de aminoácido E218M.
7. La variante según cualquiera de las reivindicaciones 5 ó 6, que además comprende una sustitución de aminoácido en la posición 267 correspondiente a las posiciones 1 a 572 de la SEQ ID NO: 1.
8. La variante según la reivindicación 7, que comprende la sustitución de aminoácido V267L.
9. La variante según cualquiera de las reivindicaciones 1 a 8, que comprende una secuencia de aminoácidos seleccionada de entre: SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 1 1 ó SEQ ID NO: 12.
10. La variante según la reivindicación 9, que comprende la SEQ ID NO: 6 ó la SEQ ID NO: 12.
1 1. Secuencia de nucleótidos que codifica la variante según cualquiera de las reivindicaciones 1 a 10.
12. Construcción génica que comprende la secuencia de nucleótidos según la reivindicación 11.
13. Construcción génica según la reivindicación 12, que es un vector de expresión.
14. Célula hospedadora que comprende la construcción génica según cualquiera de las reivindicaciones 12 ó 13.
15. Uso de la célula hospedadora según la reivindicación 14 para la obtención de la variante según cualquiera de las reivindicaciones 1 a 10.
16. Uso de la variante según cualquiera de las reivindicaciones 1 a 10 para la amplificación de un ADN molde.
17. Uso según la reivindicación 16, donde la amplificación es una amplificación isotérmica por desplazamiento múltiple (MDA), círculo rodante (RCA), amplificación por desplazamiento de cadena (SDA) o amplificación mediante lazo (LAMPA).
18. Uso según cualquiera de las reivindicaciones 16 ó 17, donde la amplificación se realiza a una temperatura constante de más de 30°C, preferiblemente entre 35-45°C, más preferiblemente entre 39-43°C, aún más preferiblemente entre 40-42°C.
19. Uso según la reivindicación 18, donde la temperatura es de 40°C.
20. Uso según cualquiera de las reivindicaciones 16 a 19, donde el ADN molde es plasmídico o genómico.
Método para la amplificación de un ADN molde que comprende a. poner en contacto un ADN molde con una mezcla de reacción que comprende:
- la variante según cualquiera de las reivindicaciones 1 a 10,
- al menos un oligonucleótido,
- un tampón,
- cloruro magnésico, y
- dNTPs, y b. incubar el ADN molde con la mezcla de reacción bajo condiciones que permitan la amplificación del ADN.
22. Método según la reivindicación 21 , donde la incubación del paso (b) tiene lugar a una temperatura constante de más de 30°C, preferiblemente entre 35-45°C, más preferiblemente entre 39-43°C, aún más preferiblemente entre 40-42°C.
23. Método según la reivindicación 22, donde la temperatura es de 40°C.
24. Método según cualquiera de las reivindicaciones 21 a 23, donde el ADN molde es plasmídico o genómico.
25. Método según cualquiera de las reivindicaciones 21 a 24, donde la amplificación es una amplificación isotérmica por desplazamiento múltiple (MDA), círculo rodante (RCA), amplificación por desplazamiento de cadena (SDA) o amplificación mediante lazo (LAMPA).
26. Método según cualquiera de las reivindicaciones 21 a 25, donde el oligonucleótido es un hexámero, octámero o decámero.
27. Método según cualquiera de las reivindicaciones 21 a 26, donde el tampón es Tris-clorhídrico, Tris-acético o HEPES.
28. Kit para la amplificación de un ADN molde que comprende la variante de acuerdo con cualquiera de las reivindicaciones 1 a 10.
29. Kit según la reivindicación 28, que además comprende al menos un oligonucleótido, un tampón, dNTPs y cloruro magnésico.
30. Kit según la reivindicación 29, donde el oligonucleótido es un hexámero, octámero o decámero.
31. Kit según cualquiera de las reivindicaciones 29 ó 30, donde el tampón es Tris- clorhídrico, Tris-acético o HEPES.
32. Uso del kit según cualquiera de las reivindicaciones 28 a 31 para la amplificación de un ADN molde.
33. Uso según la reivindicación 32, donde la amplificación es una amplificación isotérmica por desplazamiento múltiple (MDA), círculo rodante (RCA), amplificación por desplazamiento de cadena (SDA) o amplificación mediante lazo (LAMPA).
34. Uso según cualquiera de las reivindicaciones 32 ó 33, donde la amplificación se realiza a una temperatura constante de más de 30°C, preferiblemente entre 35-45°C, más preferiblemente entre 39-43°C, aún más preferiblemente entre 40-42°C.
35. Uso según la reivindicación 34, donde la temperatura es de 40°C.
36. Uso según cualquiera de las reivindicaciones 32 a 35, donde el ADN molde es plasmídico o genómico.
PCT/ES2016/070928 2015-12-24 2016-12-22 VARIANTES DE LA ADN POLIMERASA DEL BACTERIÓFAGO phi29 CON TERMOACTIVIDAD MEJORADA WO2017109262A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201531910 2015-12-24
ESP201531910 2015-12-24

Publications (1)

Publication Number Publication Date
WO2017109262A1 true WO2017109262A1 (es) 2017-06-29

Family

ID=57995229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070928 WO2017109262A1 (es) 2015-12-24 2016-12-22 VARIANTES DE LA ADN POLIMERASA DEL BACTERIÓFAGO phi29 CON TERMOACTIVIDAD MEJORADA

Country Status (1)

Country Link
WO (1) WO2017109262A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10934533B1 (en) 2018-10-10 2021-03-02 New England Biolabs, Inc. Variant DNA polymerases having improved properties and method for improved isothermal amplification of a target DNA

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040971A2 (en) * 2009-09-30 2011-04-07 Pacific Biosciences Of California, Inc. Generation of modified polymerases for improved accuracy in single molecule sequencing
US20110189659A1 (en) * 2008-03-31 2011-08-04 Pacific Biosciences Of California, Inc. Generation of modified polymerases for improved accuracy in single molecule sequencing
US20120034602A1 (en) 2008-03-31 2012-02-09 Pacific Biosciences Of California, Inc. Recombinant Polymerases For Improved Single Molecule Sequencing
US20140322759A1 (en) 2013-04-25 2014-10-30 Remigijus Skirgaila Phi29 dna polymerase mutants having increased thermostability and processivity
US20150218535A1 (en) * 2012-02-01 2015-08-06 Pacific Biosciences Of California Recombinant Polymerases With Increased Phototolerance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110189659A1 (en) * 2008-03-31 2011-08-04 Pacific Biosciences Of California, Inc. Generation of modified polymerases for improved accuracy in single molecule sequencing
US20120034602A1 (en) 2008-03-31 2012-02-09 Pacific Biosciences Of California, Inc. Recombinant Polymerases For Improved Single Molecule Sequencing
WO2011040971A2 (en) * 2009-09-30 2011-04-07 Pacific Biosciences Of California, Inc. Generation of modified polymerases for improved accuracy in single molecule sequencing
US20150218535A1 (en) * 2012-02-01 2015-08-06 Pacific Biosciences Of California Recombinant Polymerases With Increased Phototolerance
US20140322759A1 (en) 2013-04-25 2014-10-30 Remigijus Skirgaila Phi29 dna polymerase mutants having increased thermostability and processivity
EP2813576A2 (en) * 2013-04-25 2014-12-17 Thermo Fisher Scientific Baltics UAB Phi29 DNA polymerase mutants having increased thermostability and processivity comprising M8R, V51A, M97T, L123S, G197D, K209E, E221K, E239G, Q497P, K512E, E515A, and F526L

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ALTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1999, pages 403 - 410
BLANCO ET AL., J BIOL CHEM., vol. 264, 1989, pages 8935 - 8940
DATABASE Geneseq [online] 10 October 2013 (2013-10-10), "Bacteriophage phi29 mutant recombinant DNA polymerase #259.", XP002769458, retrieved from EBI accession no. GSP:BAS55900 Database accession no. BAS55900 *
DATABASE Geneseq [online] 24 September 2015 (2015-09-24), "Bacteriophage phi29 mutant recombinant DNA polymerase #259.", XP002769457, retrieved from EBI accession no. GSP:BCD26378 Database accession no. BCD26378 *
DEVEREUX ET AL., NUCLEIC ACIDS RESEARCH, vol. 12, 1984, pages 287
ESTEBAN ET AL., J BIOL CHEM., vol. 268, 1993, pages 2719 - 2726
HIGGINS, CABIOS, vol. 5, 1989, pages 151 - 153
WILBUR; LIPMAN, PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCE USA, vol. 80, 1983, pages 726 - 730

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10934533B1 (en) 2018-10-10 2021-03-02 New England Biolabs, Inc. Variant DNA polymerases having improved properties and method for improved isothermal amplification of a target DNA
US11371028B2 (en) 2018-10-10 2022-06-28 New England Biolabs, Inc. Variant DNA polymerases having improved properties and method for improved isothermal amplification of a target DNA

Similar Documents

Publication Publication Date Title
EP3150722B1 (en) Production of closed linear dna
EP2601312B1 (en) Production of closed linear dna using a palindromic sequence
KR20210031699A (ko) Rna로부터의 핵산 증폭반응에 적합한 dna 폴리머라아제 돌연변이체
JP2020036614A (ja) 核酸増幅法
US11603521B2 (en) Amino acid dehydrogenase mutant and use thereof
ES2955921T3 (es) ADN polimerasas independientes de cebador y su uso para la síntesis de ADN
AU2005232644A1 (en) Compositions and methods for reverse transcription
JP7014256B2 (ja) 核酸増幅試薬
WO2017109262A1 (es) VARIANTES DE LA ADN POLIMERASA DEL BACTERIÓFAGO phi29 CON TERMOACTIVIDAD MEJORADA
EP1514938A1 (en) Heat-resistant DNA ligase
KR101303990B1 (ko) 써모코커스 파시피쿠스 균주 유래의 dna 중합효소 유전자 변이체들 및 이의 이용
KR100777230B1 (ko) 써모코커스 유래 돌연변이 dna 중합효소들 및 그의유전자들
ES2525135B1 (es) Retrotranscriptasas del vih tipo 1 grupo o, activas a temperaturas elevadas
US20240150735A1 (en) Polymerases for isothermal nucleic acid amplification
EP1934336B1 (en) Thermostablization of dna polymerase by protein folding pathway from a hyperthermophile archaeon, pyrococcus furiosus
EP4234690A1 (en) Recombinant kod polymerase
KR100689795B1 (ko) 복합체 형성 방법
KR20230111399A (ko) 신규 CRISPR/Cas12a 시스템 및 그 용도
WO2024059719A2 (en) Compositions for preventing repetitive addition of switching oligonucleotides and nonspecific primer extension during cdna synthesis and methods of use thereof
Suzuki et al. Important sequence for overexpression of NADH oxidase gene from Thermus thermophilus HB8 in Escherichia coli
CA3155624A1 (en) Dna polymerase and dna polymerase derived 3&#39;-5&#39;exonuclease
JPWO2020234200A5 (es)
Nayak et al. PRODUCTION OF TAQPOLYMERASE FROM E. COLI: A TREMENDOUS APPROACH OF CLONING AND EXPRESSION OF TAQPOLYMERASE-I GENE IN E. COLI
Sharma et al. Research Article MsDpo4—a DinB Homolog from Mycobacterium smegmatis—Is an Error-Prone DNA Polymerase That Can Promote G: T and T: G Mismatches

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16834277

Country of ref document: EP

Kind code of ref document: A1