WO2017109244A1 - Sensor electroquímico y procedimiento de recubrimiento, procedimiento de fabricación y usos correspondientes - Google Patents

Sensor electroquímico y procedimiento de recubrimiento, procedimiento de fabricación y usos correspondientes Download PDF

Info

Publication number
WO2017109244A1
WO2017109244A1 PCT/ES2016/070832 ES2016070832W WO2017109244A1 WO 2017109244 A1 WO2017109244 A1 WO 2017109244A1 ES 2016070832 W ES2016070832 W ES 2016070832W WO 2017109244 A1 WO2017109244 A1 WO 2017109244A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
detection
organic polymer
carbon
sensor
Prior art date
Application number
PCT/ES2016/070832
Other languages
English (en)
French (fr)
Inventor
Elaine Armelin Diggroc
Georgina FABREGAT JOVÉ
Jordi Llorca Pique
Carlos ALEMÁN LLANSÓ
Original Assignee
Universitat Politècnica De Catalunya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politècnica De Catalunya filed Critical Universitat Politècnica De Catalunya
Priority to RU2018126488A priority Critical patent/RU2018126488A/ru
Priority to AU2016378671A priority patent/AU2016378671A1/en
Priority to MX2018007699A priority patent/MX2018007699A/es
Priority to CA3009433A priority patent/CA3009433A1/en
Priority to KR1020187021121A priority patent/KR20180098331A/ko
Priority to JP2018552916A priority patent/JP2019501397A/ja
Priority to BR112018012810-4A priority patent/BR112018012810A2/pt
Priority to CN201680082176.3A priority patent/CN108700541A/zh
Priority to US16/065,080 priority patent/US11067528B2/en
Priority to EP16877827.2A priority patent/EP3396367A4/en
Publication of WO2017109244A1 publication Critical patent/WO2017109244A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • B05D3/141Plasma treatment
    • B05D3/145After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/04Homopolymers or copolymers of ethene
    • C09D123/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/10Homopolymers or copolymers of propene
    • C09D123/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D139/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Coating compositions based on derivatives of such polymers
    • C09D139/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/126Composition of the body, e.g. the composition of its sensitive layer comprising organic polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5308Immunoassay; Biospecific binding assay; Materials therefor for analytes not provided for elsewhere, e.g. nucleic acids, uric acid, worms, mites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/62Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving urea
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/66Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/82Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving vitamins or their receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/94Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving narcotics or drugs or pharmaceuticals, neurotransmitters or associated receptors
    • G01N33/9406Neurotransmitters
    • G01N33/9413Dopamine
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes

Definitions

  • the invention relates to an electrochemical sensor for the detection of various organic substances, such as dopamine, glucose, uric acid and / or ascorbic acid, in various body fluids, such as in blood and / or urine.
  • various organic substances such as dopamine, glucose, uric acid and / or ascorbic acid
  • the invention also relates to a method of coating an electrochemical sensor according to the invention, a method of manufacturing an electrochemical sensor according to the invention and various uses thereof.
  • Dopamine a member of the catecholamine family, acts as an important neurotransmitter in the central nervous system of mammals by modulating vital functions, such as voluntary movement. It is related to cognitive and motor functions.
  • the neurons (dopaminergic) of DA release in the central nervous system are dysfunctional or dying, causing a lack of dopamine in the target territories, which results in impaired motor functions.
  • the object of the invention is to overcome these drawbacks. This purpose is achieved by a method of coating an electrochemical sensor characterized in that it comprises the steps of:
  • the plasma is an atmospheric plasma, a vacuum plasma or a crown plasma of energy comprised between 0.1 mJ / cm 2 and 100 J / cm 2 in an atmosphere with oxygen or nitrogen or other inert gas.
  • the organic polymer is a non-electrochemically active polymer, and is preferably a polymer of the group consisting of polyethylene, poly (tetramethylene) succinate), polypropylene, polyvinylpyrrolidone, ethylene polyoxide, poly (4-vinylphenol), polycaprolactone, polyamide PA 66, polystyrene, polyacrylic acid and cellulose.
  • the organic polymer can advantageously be an electrochemically active polymer (ie, a polymer with conjugated bonds or a conductive polymer), and is preferably a polymer of the group consisting of poly (3,4-ethylenedioxythiophene) and poly (A / - cyanoethylpyrrole).
  • electrochemically active polymer ie, a polymer with conjugated bonds or a conductive polymer
  • the plasma application time is greater than 1 s (and advantageously it is greater than 15 s) and / or it is less than 120 s.
  • the carbon-rich substrate is a material of the group consisting of graphite, vitreous carbon, nanostructured carbons (preferably graphene or carbon nanotubes) and fulerenes.
  • a subject of the invention is also a method of manufacturing an electrochemical sensor comprising a carbon-rich substrate, with a carbon content greater than or equal to 50% by weight with respect to the total weight of the substrate, characterized in that it includes a treatment step plasma surface of said substrate.
  • a subject of the invention is also a method of manufacturing an electrochemical sensor, comprising a carbon-rich substrate, with a carbon content greater than or equal to 50% by weight with respect to the total weight of the substrate, characterized in that it comprises a step of coating according to the invention.
  • Another object of the invention is an electrochemical sensor characterized in that it comprises a carbon-rich substrate, with a carbon content greater than or equal to 50% by weight with respect to the total weight of the substrate, and a modified organic polymeric coating, where the polymeric coating Modified is obtainable by a method according to the invention.
  • the invention also aims at various uses:
  • the sensor is for the detection of dopamine, glucose, uric acid and / or ascorbic acid.
  • a sensor according to the invention for the detection of dopamine, glucose, uric acid and / or ascorbic acid.
  • Fig. 1 Control voltamograms of 100 ⁇ DA, 100 ⁇ UA and 100 ⁇ AA in a 0.1 M phosphate buffer solution (PBS) recorded using untreated substrates (electrodes): vitreous carbon (GCE) bare GCE, and GCE coated with poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (A / -cyanoethylpyrrole) (PNCPy).
  • PBS phosphate buffer solution
  • Fig. 2 Control voltamograms of 100 ⁇ DA, 100 ⁇ UA and 100 ⁇ AA in a 0.1 M phosphate buffer solution (PBS) recorded using plasma-air treated substrates (electrodes): bare GCE, and coated GCE with poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (A / -cyanoethylpyrrol) (PNCPy).
  • PBS phosphate buffer solution
  • Fig. 4 determination of the limit of detection of DA of the GCE coated with PEDOT and PNCPy with a plasma-air treatment.
  • Fig. 5 variation of the intensity of anodic peak (/ p ) in the ECGs coated with PEDOT with cold plasma treatment with respect to the plasma application time (t cp ).
  • Fig. 6 control voltamogram of 1 mM DA in 0.1 M PBS in the GCE coated with low density polyethylene (LDPE), without and with plasma-air treatment. The first and third cycle for the electrode treated with plasma-air is shown.
  • Fig. 7 Control voltamograms of 100, 10 and 1 ⁇ DA in GCE coated with LPDE treated with plasma-air. Right: Complete voltamograms; Left: extension of the area associated with the oxidation of DA. In all cases: scanning speed: 100 mV / s; final and initial potentials: -0.40; Reverse potential: +0.80 V.
  • Fig. 8 micrograph obtained by scanning electron microscopy (SEM) of GCE coated with PEDOT not treated with plasma.
  • Fig. 9 SEM micrograph of GCE coated with plasma treated PEDOT.
  • Fig. 10 cyclic voltammetry of dopamine 10 ⁇ in urine chemical simulation using a GPE coated with plasma-air treated LDPE.
  • Fig. 1 extension of the cyclic voltammeters in the oxidation zone of 10 ⁇ dopamine in urine chemical simulation using a GPE coated with plasma-air treated LDPE.
  • Fig. 13 intensity of the dopamine oxidation peak against oxidation cycles and reduction in urine chemical simulation using a GPE coated with plasma-air treated LDPE.
  • Fig. 14 expansion of cyclic voltammeters in the oxidation zone of DA 10 ⁇ in 0.1 M PBS (phosphate buffered saline, pH 7.2) using a GPE coated with plasma-air treated LDPE.
  • PBS phosphate buffered saline, pH 7.2
  • Fig. 15 intensity of the oxidation peak of the DA against oxidation and reduction cycles in 0.1 M PBS (phosphate buffered saline, pH 7.2) using a GCE coated with plasma-air treated LDPE.
  • Fig. 16 absolute and peak intensity of the DA using GCE coated with conventional polymer and treated with plasma-air.
  • Fig. 18 DA oxidation potential using conventional polymer coated GCE and plasma-air treated.
  • Fig. 19 cyclic voltammetry of oxidation of DA 10 ⁇ in 0.1 M PBS (phosphate buffered saline, pH 7.2) using a GCE coated with isotactic polypropylene treated with and without plasma-air.
  • the results will be purchased with GCE treated with and without plasma-air.
  • Fig. 20 cyclic voltammetry of oxidation of DA 10 ⁇ in 0.1 M PBS (phosphate buffered saline, pH 7.2) using a GCE coated with polyvinylpyrrolidone (approximate average molecular weight: 40,000) treated with and without plasma-air.
  • PBS phosphate buffered saline, pH 7.2
  • polyvinylpyrrolidone approximately average molecular weight: 40,000
  • Fig. 21 cyclic voltammetry of oxidation of DA 10 ⁇ in 0.1 M PBS (phosphate buffered saline, pH 7.2) using a GCE coated with poly (ethylene oxide) (approximate average molecular weight: 600,000) treated with y without plasma-air. The results will be purchased with GCE treated with and without plasma-air.
  • Fig. 22 cyclic voltammetry of oxidation of DA 10 ⁇ in 0.1 M PBS (phosphate buffered saline, pH 7.2) using a GCE coated with poly (4-vinylphenol) (approximate average molecular weight: 25,000) treated with y without plasma-air. The results will be purchased with GCE treated with and without plasma-air.
  • Fig. 23 cyclic voltammetry of oxidation of DA 10 ⁇ in 0.1 M PBS (phosphate buffered saline, pH 7.2) using a GCE coated with polycaprolactone (approximate average molecular weight: 7,000) treated with and without plasma-air.
  • PBS phosphate buffered saline, pH 7.2
  • polycaprolactone approximately average molecular weight: 7,000
  • Fig. 24 cyclic voltammetry of oxidation of DA 10 ⁇ in 0.1 M PBS (phosphate buffered saline, pH 7.2) using a GCE coated with nylon 66 (polyamide PA 66) treated with and without plasma-air.
  • the results will be purchased with GCE treated with and without plasma-air.
  • Fig. 25 cyclic voltammetry of oxidation of DA 10 ⁇ in 0.1 M PBS (phosphate buffered saline, pH 7.2) using a GCE coated with polystyrene (from the manufacturer Polymer Additives) treated with and without plasma-air.
  • the results will be purchased with GCE treated with and without plasma-air.
  • Fig. 26 cyclic voltammetry of oxidation of DA 10 ⁇ in 0.1 M PBS (phosphate buffered saline, pH 7.2) using a GCE coated with polyacrylic acid (25% by weight in water, approximate average molecular weight: 240,000) treated with and without plasma-air.
  • PBS phosphate buffered saline
  • polyacrylic acid 25% by weight in water, approximate average molecular weight: 240,000
  • Fig. 27 cyclic voltammetry of oxidation of DA 10 ⁇ in 0.1 M PBS (phosphate buffered saline, pH 7.2) using a GCE coated with poly (butylene succinate) (marketed under the trade name Bionolle®) treated with and without plasma-air.
  • PBS phosphate buffered saline, pH 7.2
  • GCE coated with poly (butylene succinate) marketed under the trade name Bionolle®
  • Fig. 28 cyclic voltammetry of oxidation of 10 ⁇ DA in 0.1 M PBS (phosphate buffered saline, pH 7.2) using a GPE coated with cold plasma treated LDPE in an oxidizing and reducing atmosphere.
  • Fig. 29 Current-time density graph for chronoamperometric detection of 1 mM glucose using a plasma-air-treated PEDOT coated GCE on which the glucose oxidase enzyme has been immobilized. The injection of glucose into the detection cell starts in 300 s and is performed every 100 s.
  • Fig. 30 Current-time density graph for chronoamperometric detection of 1 mM glucose, 1 mM UA, 1 mM AA and 1 mM DA using a plasma-air-treated PEDOT-coated GCE on which the glucose oxidase enzyme has been immobilized .
  • the injection of glucose and the different interferents into the detection cell starts in 500 s and takes place every 100 s.
  • Fig. 31 determination of the glucose detection limit of the ECG coated with PEDOT and a plasma-air treatment.
  • the glucose oxidase enzyme was immobilized on the electrode surface.
  • One of the surprising results of the present invention is the application of a cold plasma (plasma in which ions and electrons are not in thermal equilibrium) as a very simple and effective technique for the preparation of electrochemical sensors of DA (dopamine).
  • a cold plasma plasma in which ions and electrons are not in thermal equilibrium
  • DA dopamine
  • PNMP behavior improves when the film is coated with Gold nanoparticles (AuNPs), which demonstrates the electrocatalytic activity promoted by the latter.
  • AuNPs Gold nanoparticles
  • Both PEDOT and PNCPy films generated by anodic polymerization on a CGE electrode were modified by applying the cold plasma surface treatment (corona plasma in an ambient atmosphere at approximately 0.5 J / cm "2 for 2 minutes ).
  • DA, UA and AA were carried out by cyclic voltammetry (CV) using a glass cell containing 10 mL of PBS (saline phosphate buffer solution) 0.1 M at room temperature .
  • Figs. 1 to 5 show the voltammetric response of the CPGs coated with PNCPy and PEDOT not treated and treated with plasma. Voltamograms recorded using bare ECGs have been included for comparison. Although the plasma treatment causes a significant reduction of the anodic peak intensity at 0.70V for all systems, it should be noted that this effect is relatively reduced for the anodic intensities associated with the oxidation of the three analytes.
  • both electrodes with PEDOT and with PNCP and plasma treated are capable of selectively detecting oxidation of DA, UA, and AA, while untreated PNCPy is not able to selectively discriminate between them.
  • untreated PNCPy is not able to selectively discriminate between them.
  • the bare ECG it is not able to selectively detect the presence of AA in the mixture, regardless of plasma treatment.
  • Figs. 1 and 2 show control voltamograms of 100 ⁇ DA, 100 ⁇ UA and 100 ⁇ AA in 0.1 M PBS at bare GCE, and of the GCE coated with PEDOT and PNMPy. Arrows indicate oxidation processes. Scanning speed: 100 mV / s. Initial and final potentials: -0.40 V; reverse potential: +0.80 V.
  • Fig. 4 " 1 The determination of the DA detection limit (in the absence of UA and AA) of the GCE coated with PEDOT and PNCPy with a cold plasma treatment by CV using a scan speed of 50 mV-s is shown in Fig. 4 " 1.
  • the results were derived from the standard addition of 10 ⁇ of DA in 10 mL of 0.1 M PBS (ie, a linear range of 0.5 to 100 ⁇ DA).
  • Anodic peak intensity (/ p ) increases with the concentration of DA for the two electrodes
  • the detection limit which was determined using a calibration curve for the concentration of DA between 0.5 and 5 ⁇ (box) was between 140 and 750 nM for PEDOT and PNCPy, respectively These values are markedly lower than those obtained for untreated samples, and show an improvement not only in resolution (especially for PNCPy).
  • PEDOT and PNCPy films were prepared by chronoamperometry (AC) under a constant potential of 1.40 V using a two-compartment cell and three electrodes in a nitrogen atmosphere (99.995% purity) at 25 e C.
  • a vitreous carbon electrode (GCE) naked with a diameter of 2 mm was used as working electrode, whereas a sheet of steel AISI 316 with an area of 1 cm 2 was used as the counterelectrode.
  • the surface of the vitreous carbon electrode was polished with alumina powder and cleaned by ultrasonication before polymer deposition.
  • the reference electrode was an Ag
  • AgCI electrode containing a saturated aqueous solution of KCI ⁇ 0.222 V vs.
  • PEDOT and PNCPy films were obtained using 10 mM of a solution of monomer in acetonitrile with 0.1 M of LiCI0 4 and a polymerization period between 6 and 10 s, respectively.
  • the ECGs coated with PEDOT and PNCPy were prepared with a corona discharge in an ambient atmosphere using a BD-20AC from the Electro-Technic Products company.
  • the BD-20AC operates at a very high frequency in the MHz range, generating an electric field created around the electrode that is used for the treatment of the polymer surface.
  • the unit consists of a power control unit and a separate high voltage handle. What sets it apart from other models is that it generates an adjustable high voltage output between 10,000 and 45,000 volts at a high frequency 4.5 MHz.
  • the treatment of the polymers was carried out using a flat tip needle electrode (in English, spring tip wire electrode) and a voltage of 45,000 volts at a high frequency of 4.5 MHz in all cases. After plasma treatment, the coated GCE electrodes were used for DA detection experiments over a period of 24 hours.
  • CV cyclic voltammetry
  • low density polyethylene The low density polyethylene (LDPE) was deposited on the GCE by dissolving (34.4 mg LDPE dissolved in 10 ml of dichlorobenzene at 95 C and stirring for 4 hours).
  • LDPE-coated ECG without cold plasma treatment the cyclic voltamogram recorded in a 0.1 M PBS solution with 1 mM DA does not provide for any oxidation peak (Fig. 6), indicating that, as expected , LDPE cannot detect said neurotransmitter.
  • LDPE coated electrodes treated with a simple plasma-air for 1 minute are capable of detecting DA concentrations similar to those estimated for the synapse during several cycles
  • FIGs. 8 and 9 SEM micrographs of GCE coated with untreated and plasma-treated PEDOT are shown, respectively.
  • the relatively compact morphology of the untreated samples (Fig. 8) containing C, S, O and Cl (chlorine is due to the perchlorate dopant) is transformed into a very porous network of active species composed solely of C and O (Fig. 10). Therefore, the electrochemical activity of GCE coated with plasma-treated polymers should probably be essentially attributed to the incorporation of active species on the surface, which are possibly responsible for the detection of oxidized and reduced analytes. Similar characteristics have been observed in the GPE coated with LDPE.
  • the pH of the simile is 6.2, and the chemical composition is indicated below:
  • Fig. 1 An extension of the cyclic voltammeters in the oxidation zone of dopamine 10 ⁇ in urine chemical simulation using a GPE coated with plasma-air treated LDPE is shown in Fig. 1.
  • Fig. 10 shows the cyclic voltammeters in the full scan.
  • the oxidation potential of the Dopamine is between 0.230-0.237V, while the oxidation peak of urea and other components is 0.418-0.425V.
  • Fig. 12 shows the intensity of the oxidation peak of urea and other compounds against oxidation and reduction cycles in chemical urine simulation using a GPE coated with plasma-air treated LDPE.
  • the oxidation potential of urea and other compounds is between 0.418 and 0.425 V.
  • the total cycles applied to the system are 10.
  • the loss of intensity after 10 oxidation / reduction cycles is approximately 18%.
  • Fig. 13 shows the intensity of the dopamine oxidation peak against oxidation and reduction cycles in urine chemical simulation using a GPE coated with plasma-air treated LDPE.
  • the oxidation potential of dopamine is between 0.230 and 0.237V.
  • the total cycles applied to the system are 10. In this case there is no loss of intensity but an increase of 25% after applying 10 oxidation / reduction cycles.
  • FIG. 14 shows an extension of cyclic voltammeters in the oxidation zone of 10 ⁇ dopamine in 0.1 M PBS (phosphate buffered saline, pH 7.2) using a GCE coated with plasma-air treated LDPE.
  • the inserted box shows the cyclic voltammetries in the full scan.
  • the oxidation potential of dopamine is between 0.171 and 0.174V.
  • Fig. 15 shows the intensity of the dopamine oxidation peak against oxidation and reduction cycles in 0.1 M PBS (phosphate buffered saline, pH 7.2) using a GPE coated with plasma-air treated LDPE.
  • the oxidation potential of dopamine is between 0.171 and 0.174V.
  • the total cycles applied to the system are 10.
  • the loss of intensity after 10 oxidation / reduction cycles is approximately 17%. 3 - Alternative substrates with polyethylene
  • ITO substrates indium and tin oxide, in English indium tin oxide
  • AISI 316 stainless steel have been tested, in both cases coated with low density polyethylene. In both cases, the substrates are negatively affected with plasma application and favorable results are not obtained. 4 - Alternative polymers
  • Figs. 16 to 27 show the results obtained. As can be seen, the application of plasma-air in other conventional polymers produces effects similar to those obtained with LDPE.
  • the monitoring of glucose levels in the human body is essential for the diagnosis and treatment of diabetes, which has become a public health problem worldwide.
  • the monitoring of glucose metabolism through the detection of changes in the concentration of this analyte can improve the treatment of brain diseases, such as tumors and brain injuries.
  • Glucose detection is also very important in the food processing, fermentation and bio-fuel cells industry.
  • Another surprising result of the present invention is the preparation of electrochemical glucose sensors by applying the cold plasma surface treatment (corona plasma in ambient atmosphere at approximately 0.5 J / cm "2 for 2 minutes) at polymer films deposited on a CGE.
  • PNMPy improves when the film is coated with gold nanoparticles (AuNPs), which demonstrates the electrocatalytic activity promoted by the latter.
  • AuNPs gold nanoparticles

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Diabetes (AREA)
  • Plasma & Fusion (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Laminated Bodies (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

Sensor electroquímico y procedimiento de recubrimiento, procedimiento de fabricación y usos correspondientes. Procedimiento de recubrimiento de un sensor electroquímico que comprende las etapas de: - recubrir un sustrato rico en carbono, con un contenido en carbono superior o igual al 0% en peso respecto del peso total del sustrato, con un polímero orgánico, - aplicar a dicho recubrimiento un tratamiento con plasma frío. Este procedimiento permite fabricar sensores electroquímicos con un sustrato rico en carbono, con un contenido en carbono superior o igual al 50% en peso respecto del peso total del sustrato, y un recubrimiento polimérico orgánico modificado. Estos nuevos sensores son aptos para la detección de dopamina, glucosa, ácido úrico y ácido ascórbico, entre otros.

Description

SENSOR ELECTROQUÍMICO Y PROCEDIMIENTO DE RECUBRIMIENTO, PROCEDIMIENTO DE FABRICACIÓN Y USOS CORRESPONDIENTES
DESCRIPCIÓN
Campo de la invención
La invención se refiere a un sensor electroquímico para la detección de diversas sustancias orgánicas, como por ejemplo dopamina, glucosa, ácido úrico y/o ácido ascórbico, en diversos fluidos corporales, como por ejemplo en sangre y/o en orina.
La invención también se refiere a un procedimiento de recubrimiento de un sensor electroquímico de acuerdo con la invención, a un procedimiento de fabricación de un sensor electroquímico de acuerdo con la invención y a diversos usos de los mismos.
Estado de la técnica
La dopamina (DA), un miembro de la familia de las catecolaminas, actúa como un importante neurotransmisor en el sistema nervioso central de los mamíferos modulando las funciones vitales, tales como el movimiento voluntario. Está relacionado con las funciones cognitivas y motoras. En los pacientes con la enfermedad de Parkinson, las neuronas (dopaminérgicas) de liberación de DA en el sistema nervioso central son disfuncionales o moribundas, provocando una falta de dopamina en los territorios diana, que deriva en funciones motoras alteradas.
Entre los métodos potenciales desarrollados en las pasadas décadas para la detección de DA, las técnicas electroquímicas han predominado gracias a sus importantes ventajas, tales como una respuesta rápida, un bajo coste y una elevada sensibilidad. Sin embargo, hay algunas limitaciones para medir la DA en condiciones fisiológicas mediante métodos electroquímicos convencionales. Las principales están relacionadas con la selectividad hacia otras especies que coexisten en el organismo, tales como ácido ascórbico (AA) y ácido úrico (UA), que se oxidan casi al mismo potencial. Asimismo, la detección de niveles muy bajos de DA (10 nM - 10 μΜ) representa un reto para la sensibilidad. En publicaciones recientes, se ha informado de la existencia de diversas estrategias que utilizan, entre otros, nanocompuestos, grafeno, polímeros conductores (PC), nanopartículas catalíticas, o nanotubos de carbono, para solventar dichos problemas. No obstante, el desarrollo de estos sensores electroquímicos hacen necesario un gran número de etapas de fabricación, puesto que la aplicación de los compuestos mencionados anteriormente normalmente requiere funcionalización, incorporación de nano-objetos, procesamiento de la nanocomposición, procesos sintéticos multi-etapa, etc.
Existe, por lo tanto, la necesidad de desarrollar nuevos sensores electroquímicos para la detección de diversas sustancias orgánicas, especialmente dopamina, glucosa, ácido úrico y/o ácido ascórbico, en diversos fluidos corporales, como por ejemplo en sangre y/o en orina.
Exposición de la invención
La invención tiene por objeto superar estos inconvenientes. Esta finalidad se consigue mediante un procedimiento de recubrimiento de un sensor electroquímico caracterizado por que comprende las etapas de:
- recubrir un sustrato rico en carbono, con un contenido en carbono superior o igual al 50% en peso respecto del peso total del sustrato, con un polímero orgánico,
- aplicar a dicho recubrimiento un tratamiento con plasma frío.
Preferentemente el plasma es un plasma atmosférico, un plasma en vacío o un plasma de corona de energía comprendida entre 0,1 mJ/cm2 y 100 J/cm2 en una atmósfera con oxígeno o nitrógeno u otro gas inerte.
Ventajosamente el polímero orgánico es un polímero no activo electroquímicamente, y preferentemente es un polímero del grupo formado por polietileno, poli(tetrametilen- succinato), polipropileno, polivinilpirrolidona, polióxido de etileno, poli(4-vinilfenol), policaprolactona, poliamida PA 66, poliestireno, ácido poliacrílico y la celulosa.
Alternativamente, el polímero orgánico puede ser ventajosamente un polímero electroquímicamente activo (es decir, un polímero con enlaces conjugados o un polímero conductor), y preferentemente es un polímero del grupo formado por poli(3,4- etilendioxitiofeno) y poli(A/-cianoetilpirrol).
Preferentemente el tiempo de aplicación del plasma es mayor de 1 s (y ventajosamente es mayor de 15 s) y/o es menor de 120 s.
Ventajosamente el sustrato rico en carbono es de un material del grupo formado por grafito, carbono vitreo, carbonos nanoestructurados (preferentemente grafeno o nanotubos de carbono) y fulerenos.
La invención también tiene por objeto un procedimiento de fabricación de un sensor electroquímico que comprende un sustrato rico en carbono, con un contenido en carbono superior o igual al 50% en peso respecto del peso total del sustrato, caracterizado por que incluye una etapa de tratamiento superficial por plasma de dicho sustrato.
La invención tiene asimismo por objeto un procedimiento de fabricación de un sensor electroquímico, que comprende un sustrato rico en carbono, con un contenido en carbono superior o igual al 50% en peso respecto del peso total del sustrato, caracterizado por que comprende una etapa de recubrimiento de acuerdo con la invención.
Otro objeto de la invención es un sensor electroquímico caracterizado por que comprende un sustrato rico en carbono, con un contenido en carbono superior o igual al 50% en peso respecto del peso total del sustrato, y un recubrimiento polimérico orgánico modificado, donde el recubrimiento polimérico modificado es obtenible mediante un procedimiento de acuerdo con la invención. La invención también tiene por objeto diversos usos:
- el uso de un procedimiento de acuerdo con la invención para la fabricación de un sensor electroquímico. Preferentemente el sensor es para la detección de dopamina, glucosa, ácido úrico y/o ácido ascórbico.
- el uso de un sensor de acuerdo con la invención para la detección de dopamina, glucosa, ácido úrico y/o ácido ascórbico.
Breve descripción de los dibujos
Otras ventajas y características de la invención se aprecian a partir de la siguiente descripción, en la que, sin ningún carácter limitativo, se relatan unos modos preferentes de realización de la invención, haciendo mención de los dibujos que se acompañan. Las figuras muestran:
Fig. 1 , Voltamogramas de control de 100 μΜ DA, 100 μΜ UA y 100 μΜ AA en una solución de tampón fosfato (PBS) 0,1 M registrados utilizando substratos (electrodos) no tratados: carbono vitreo (GCE) GCE desnudo, y GCE recubierto con poli(3,4- etilendioxitiofeno) (PEDOT) y poli(A/-cianoetilpirrol) (PNCPy).
Fig. 2, Voltamogramas de control de 100 μΜ DA, 100 μΜ UA y 100 μΜ AA en una solution de tampón fosfato (PBS) 0,1 M registrados utilizando substratos (electrodos) tratados con plasma-aire: GCE desnudo, y GCE recubierto con poli(3,4- etilendioxitiofeno) (PEDOT) y poli(A/-cianoetilpirrol) (PNCPy).
Fig. 3, Voltamogramas de control de 100 μΜ DA en 0,1 M PBS recogidos en GCE recubierto con PEDOT tratado con plasma frío preparado utilizando diferentes tiempos de aplicación de plasma-aire (fcp).
Fig. 4, determinación del límite de detección de DA de los GCE recubiertos con PEDOT y PNCPy con un tratamiento con plasma-aire. Fig. 5, variación de la intensidad de pico anódico (/p) en los GCE recubiertos con PEDOT con tratamiento con plasma frío con respecto al tiempo de aplicación de plasma (tcp) .
Fig. 6, voltamograma de control de 1 mM DA en 0,1 M PBS en el GCE recubierto con polietileno de baja densidad (LDPE), sin y con tratamiento con plasma-aire. Se muestra el primer y tercer ciclo pata el electrodo tratado con plasma-aire. Fig. 7, Voltamogramas de control de 100, 10 y 1 μΜ DA en GCE recubiertos con LPDE tratados con plasma-aire. Derecha: Voltamogramas completos; Izquierda: ampliación de la zona asociada con la oxidación de DA. En todos los casos: velocidad de exploración: 100 mV/s; potenciales finales e iniciales: -0,40; potencial inverso: +0,80 V. Fig. 8, micrografía obtenida por microscopía electrónica de barrido (SEM) de GCE recubierto con PEDOT no tratado con plasma.
Fig. 9, micrografía SEM de GCE recubierto con PEDOT tratado con plasma. Fig. 10, voltamperometrías cíclicas de la dopamina 10μΜ en símil químico de orina empleando un GCE recubierto con LDPE tratado con plasma-aire.
Fig. 1 1 , ampliación de las voltamperometrías cíclicas en la zona de oxidación de la dopamina 10μΜ en símil químico de orina empleando un GCE recubierto con LDPE tratado con plasma-aire.
Fig. 12, intensidad del pico de oxidación de la urea frente a ciclos de oxidación y reducción en símil químico de orina empleando un GCE recubierto con LDPE tratado con plasma-aire.
Fig. 13, intensidad del pico de oxidación de la dopamina frente a ciclos de oxidación y reducción en símil químico de orina empleando un GCE recubierto con LDPE tratado con plasma-aire. Fig. 14, ampliación de las voltamperometrías cíclicas en la zona de oxidación de DA 10μΜ en PBS 0,1 M (buffer fosfato salino, pH 7,2) empleando un GCE recubierto con LDPE tratado con plasma-aire.
Fig. 15, intensidad del pico de oxidación de la DA frente a ciclos de oxidación y reducción en PBS 0,1 M (buffer fosfato salino, pH 7,2) empleando un GCE recubierto con LDPE tratado con plasma-aire. Fig. 16, intensidad absoluta y del pico de la DA empleando GCE recubierto con polímero convencional y tratado con plasma-aire.
Fig. 17, intensidad del pico de la oxidación de la DA empleando GCE recubierto con polímero convencional y tratado con plasma-aire.
Fig. 18, potencial de oxidación de la DA empleando GCE recubierto con polímero convencional y tratado con plasma-aire.
Fig. 19, voltamperometría cíclica de la oxidación de DA 10μΜ en PBS 0.1 M (buffer fosfato salino, pH 7,2) empleando un GCE recubierto con polipropileno isotáctico tratado con y sin plasma-aire. Los resultados se compraran con GCE tratado con y sin plasma-aire.
Fig. 20, voltamperometría cíclica de la oxidación de DA 10μΜ en PBS 0,1 M (buffer fosfato salino, pH 7,2) empleando un GCE recubierto con polivinilpirrolidona (peso molecular medio aproximado: 40.000) tratado con y sin plasma-aire. Los resultados se compraran con GCE tratado con y sin plasma-aire.
Fig. 21 , voltamperometría cíclica de la oxidación de DA 10μΜ en PBS 0,1 M (buffer fosfato salino, pH 7,2) empleando un GCE recubierto con poli(óxido de etileno) (peso molecular medio aproximado: 600.000) tratado con y sin plasma-aire. Los resultados se compraran con GCE tratado con y sin plasma-aire. Fig. 22, voltamperometría cíclica de la oxidación de DA 10μΜ en PBS 0,1 M (buffer fosfato salino, pH 7,2) empleando un GCE recubierto con poli(4-vinilfenol) (peso molecular medio aproximado: 25.000) tratado con y sin plasma-aire. Los resultados se compraran con GCE tratado con y sin plasma-aire.
Fig. 23, voltamperometría cíclica de la oxidación de DA 10μΜ en PBS 0,1 M (buffer fosfato salino, pH 7,2) empleando un GCE recubierto con policaprolactona (peso molecular medio aproximado: 7.000) tratado con y sin plasma-aire. Los resultados se compraran con GCE tratado con y sin plasma-aire.
Fig. 24, voltamperometría cíclica de la oxidación de DA 10μΜ en PBS 0,1 M (buffer fosfato salino, pH 7,2) empleando un GCE recubierto con nailon 66 (poliamida PA 66) tratado con y sin plasma-aire. Los resultados se compraran con GCE tratado con y sin plasma-aire.
Fig. 25, voltamperometría cíclica de la oxidación de DA 10μΜ en PBS 0,1 M (buffer fosfato salino, pH 7,2) empleando un GCE recubierto con poliestireno (del fabricante Polymer Additives) tratado con y sin plasma-aire. Los resultados se compraran con GCE tratado con y sin plasma-aire.
Fig. 26, voltamperometría cíclica de la oxidación de DA 10μΜ en PBS 0,1 M (buffer fosfato salino, pH 7,2) empleando un GCE recubierto con ácido poliacrílico (25% en peso en agua, peso molecular medio aproximado: 240.000) tratado con y sin plasma- aire. Los resultados se compraran con GCE tratado con y sin plasma-aire.
Fig. 27, voltamperometría cíclica de la oxidación de DA 10μΜ en PBS 0,1 M (buffer fosfato salino, pH 7,2) empleando un GCE recubierto con poli(butilen succinato) (comercializado bajo el nombre comercial Bionolle®) tratado con y sin plasma-aire. Los resultados se compraran con GCE tratado con y sin plasma-aire.
Fig. 28, voltamperometría cíclica de la oxidación de DA 10μΜ en PBS 0, 1 M (buffer fosfato salino, pH 7,2) empleando un GCE recubierto con LDPE tratado con plasma frío en atmósfera oxidante y reductora. Fig. 29, Gráfico densidad de corriente-tiempo para la detección cronoamperométrica glucosa 1 mM empleando un GCE recubierto con PEDOT tratado con plasma-aire sobre el que se ha inmovilizado la enzima glucosa oxidasa. La inyección de glucosa en la celda de detección se inicia en 300 s y realiza cada 100 s.
Fig. 30, Gráfico densidad de corriente-tiempo para la detección cronoamperométrica glucosa 1 mM, UA 1 mM, AA 1 mM y DA 1 mM empleando un GCE recubierto con PEDOT tratado con plasma-aire sobre el que se ha inmovilizado la enzima glucosa oxidasa. La inyección de la glucosa y los distintos interferentes en la celda de detección se inicia en 500 s y realiza cada 100 s.
Fig. 31 , determinación del límite de detección de glucosa del GCE recubierto con PEDOT y un tratamiento con plasma-aire. La enzima glucosa oxidasa se inmovilizó en la superficie del electrodo.
Descripción detallada de unas formas de realización de la invención Primera parte
Uno de los resultados sorprendentes de la presente invención es la aplicación de un plasma frío (plasma en el que los iones y electrones no están en equilibrio térmico) como técnica muy simple y eficaz para la preparación de sensores electroquímicos de DA (dopamina). Inicialmente, los experimentos se realizaron empleando dos polímeros conductores específicamente PEDOT y PNCPy, que se depositaron sobre los electrodos de GCE desnudos mediante cronoamperometría. La respuesta de los dos PC con respecto a DA resultó ser totalmente diferente. La detección selectiva y simultánea de DA, UA (ácido úrico) y AA (ácido ascórbico) utilizando PNCPy es difícil porque los picos de oxidación de cada una de estas sustancias orgánicas son débiles y están parcialmente solapados entre sí mientras que, por contra, los picos de oxidación están bien resueltos cuando se emplean electrodos recubiertos con PEDOT. El comportamiento de PNMPy mejora cuando la película está recubierta con nanopartículas de oro (AuNPs), lo cual demuestra la actividad electrocatalítica promovida por estas últimas. En contraposición, las propiedades de los electrodos PEDOT para la detección selectiva de DA permanecen prácticamente inalteradas tras la incorporación de AuNPs.
Se modificaron tanto las películas de PEDOT como las de PNCPy generadas por polimerización anódica sobre un electrodo de CGE mediante la aplicación del tratamiento de superficie de plasma frío (plasma de corona en atmósfera ambiental a aproximadamente 0,5 J/cm"2 durante 2 minutos).
Los ensayos de detección de DA, UA y AA (100 μΜ cada) se llevaron a cabo mediante voltametría cíclica (CV) utilizando una celda de vidrio que contenía 10 mL de PBS (solución tampón de fosfato salino) 0,1 M a temperatura ambiente. Las Figs. 1 a 5 muestran la respuesta voltamétrica de los GCE recubiertos con PNCPy y PEDOT no tratados y tratados con plasma. Los voltamogramas registrados utilizando GCE desnudos se han incluido a título comparativo. A pesar de que el tratamiento con plasma provoca una importante reducción de la intensidad pico anódico a 0,70V para todos los sistemas, cabe destacar que este efecto es relativamente reducido para las intensidades anódicas asociadas a la oxidación de los tres analitos. Además, tal como puede observarse, tanto los electrodos con PEDOT como con PNCPy tratados con plasma son capaces de detectar selectivamente la oxidación de DA, UA, y AA, mientras que el PNCPy no tratado no es capaz de discriminar selectivamente entre ellos. En lo que respecta al GCE desnudo, no es capaz de detectar selectivamente la presencia de AA en la mezcla, independientemente del tratamiento con plasma. En el caso de electrodos tratados con plasma, se han identificado picos pequeños o incluso imperceptibles en algunos voltamogramas (marcados con flechas en la figura 1 . Estos picos, que se desplazan con respecto a los picos de oxidación identificados, se han asociado con procesos de oxidación de AA (PNCPy, PEDOT y GCE desnudo) o UA (solo PNCPy) mediante especies reactivas no predominantes creadas durante el tratamiento con plasma frío.
En las Figs. 1 y 2 se muestran voltamogramas de control de 100 μΜ DA, 100 μΜ UA y 100 μΜ AA en 0,1 M PBS a GCE desnudo, y del GCE recubierto con PEDOT y PNMPy. Las flechas indican procesos de oxidación. Velocidad de exploración: 100 mV/s. Potenciales iniciales y finales: -0,40 V; potencial inverso: +0,80 V.
Una cuestión importante es la influencia que tiene el tiempo en que se aplica la potencia de plasma (tcp) en la detección eficaz de DA. Con este fin, los GCE recubiertos con PEDOT se trataron considerando diferentes valores fcp (es decir, de 15 a 120 s). La Fig. 3 compara los voltamogramas de 100 μΜ DA en 0,1 M PBS con estos electrodos tratados. Tal como se puede observar, la influencia de tcp en el potencial de pico de oxidación es nulo (E=0,176 V en todos los casos). De manera similar, la influencia de fcp en la intensidad de pico anódico (ip ) es muy reducida. Esto se ve reflejado en la Fig. 5 que representa la media del /Pi teniendo en cuenta cuatro muestras distintas, con respecto a fcp. Por lo tanto, /p aumenta de 1 ,50 a 1 ,63 μΑ cuando fcp aumenta de 15 a 120 s. Según estos resultados, tcp no es un factor decisivo para el proceso de detección una vez ha superado los 15 s.
En la Fig. 4 se muestra la determinación del límite de detección de DA (en ausencia de UA y AA) de los GCE recubiertos con PEDOT y PNCPy con un tratamiento con plasma frío mediante CV utilizando una velocidad de exploración de 50 mV-s"1. Los resultados se derivaron de la adición estándar de 10 μΐ de DA en 10 mL de 0,1 M PBS (es decir, un intervalo lineal de 0,5 a 100 μΜ DA). La intensidad de pico anódico (/p) aumenta con la concentración de DA para los dos electrodos. El límite de detección, que se determinó utilizando una curva de calibración para la concentración de DA comprendida entre 0,5 y 5 μΜ (recuadro) estuvo comprendido entre 140 y 750 nM para PEDOT y PNCPy, respectivamente. Estos valores son notablemente inferiores a los obtenidos para las muestras no tratadas, y evidencian una mejora no únicamente de la resolución (especialmente para PNCPy).
Métodos experimentales: Materiales. 3,4-etilendioxitiofeno (EDOT), N-(2-cianoetil)pirrol (NCPy), acetonitrilo, perclorato de litio anhidro (LiCI04), hidrocloruro de DA (3-hidrocloruro de hidroxitiramina), AA (L-configuración, cristalino), UA (cristalino) de grado de calidad analítica. Todos los productos químicos, que fueron adquiridos a la compañía Sigma Aldrich (España), se utilizaron sin purificación adicional. La solución amortiguadora de fosfato (PBS) 0,1 M con pH= 7,4 se preparó como disolución electrolítica mezclando cuatro soluciones madre de NaCI, KCI, NaHP04 y KH2P04. Se utilizó nitrógeno de alta pureza para la desaireación de las disoluciones acuosas preparadas.
Síntesis de polímeros conductores. Se prepararon películas de PEDOT y PNCPy mediante cronoamperometría (CA) bajo un potencial constante de 1 ,40 V utilizando una celda de dos compartimentos y tres electrodos en atmósfera de nitrógeno (99,995% de pureza) a 25 eC. Un electrodo de carbón vitreo (GCE) desnudo con un diámetro de 2 mm se utilizó como electrodo de trabajo, mientras que una lámina de acero AISI 316 con un área de 1 cm2 se utilizó como contraelectrodo. La superficie del electrodo de carbón vitreo se pulió con polvo de alúmina y se limpió mediante ultrasonicación antes de la deposición del polímero. El electrodo de referencia fue un electrodo Ag|AgCI que contenía una solución acuosa saturada de KCI { = 0,222 V vs. electrodo de hidrógeno estándar a 25eC), que se conectó con el compartimiento de trabajo a través de un puente salino que contenía la solución electrolítica. Todos los experimentos electroquímicos se realizaron en un potenciostato-galvanostato AUTOLAB PGSTAT302N (Ecochimie, Holanda) equipado con el módulo ECD para medir densidades de corriente muy bajas (100 μΑ-100 pA), que se conectó con un ordenador controlado por medio del software NOVA 1 .6.
Se obtuvieron películas de PEDOT y PNCPy utilizando 10 mM de una solución de monómero en acetonitrilo con 0,1 M de LiCI04 y un periodo de polimerización comprendido entre 6 y 10 s, respectivamente.
Tratamiento con plasma frío. Los GCE recubiertos con PEDOT y PNCPy se prepararon con una descarga corona en una atmósfera ambiental utilizando un BD- 20AC de la compañía Electro-Technic Products. El BD-20AC funciona a una frecuencia muy elevada en el rango de MHz, generando un campo eléctrico creado alrededor del electrodo que se utiliza para el tratamiento de la superficie de polímeros. La unidad consiste en una unidad de control de potencia y un mango de alta tensión separado. Lo que lo diferencia de otros modelos es que genera una salida de alta tensión ajustable comprendida entre 10.000 y 45.000 voltios a una elevada frecuencia de 4,5 MHz. El tratamiento de los polímeros se llevó a cabo utilizando un electrodo de aguja de punta plana (en inglés, spring tip wire electrode) y una tensión de 45.000 voltios a una elevada frecuencia de 4,5 MHz en todos los casos. Tras el tratamiento con plasma, los electrodos GCE recubiertos se utilizaron para los experimentos de detección de DA en un periodo de 24 horas.
Mediciones electroquímicas para la detección de DA. La detección electromecánica se llevó a cabo mediante voltametría cíclica (CV) utilizando el equipo Autolab PGSTAT302N descrito anteriormente. Todos los experimentos electroquímicos se llevaron a cabo en una celda de vidrio que contenía 10 mL de 0,1 M PBS (pH=7,4) a temperatura ambiente y equipada con Ag|AgCI saturados como electrodo de referencia y un cable de platino (Pt) como contraelectrodo. Los voltamogramas se registraron en el intervalo potencial comprendido entre -0,40 y 0,80 V a una velocidad de exploración de 50 mV-s"1 a menos que otra velocidad de exploración sea explícitamente especificada. Todos los electrodos estuvieron en contacto con la solución electrolítica durante 5 minutos antes de las mediciones de CV.
Segunda parte Como prueba de concepto, se fabricaron y comprobaron unos sensores de GCE recubiertos con un polímero muy económico y electroquímicamente inerte: polietileno de baja densidad. El polietileno de baja densidad (LDPE) se depositó sobre el GCE mediante disolución (34,4 mg de LDPE disueltos en 10 mL de diclorobenceno a 95eC por agitación durante 4 horas). Para el GCE recubierto con LDPE sin tratamiento con plasma frío, el voltamograma cíclico registrado en una disolución de 0,1 M PBS con 1 mM de DA no prevé ningún pico de oxidación (Fig. 6), que indique que, tal como se esperaba, LDPE no puede detectar dicho neurotransmisor. En contraposición, el voltamograma registrado que utiliza un electrodo fabricado de manera idéntica, pero que aplica un tratamiento con plasma frío durante 1 minuto, muestra un marcado potencial a 0,20 V que corresponde a la oxidación de DA (Fig. 6). Considerando que la concentración de DA estimada en la sinapsis es de 1 ,6 mM, este resultado corrobora que se pueden fabricar detectores eficientes combinando una matriz orgánica con un simple tratamiento plasma-aire. Además, este detector es muy estable, puesto que solo disminuye ~2μΑ (Fig. 6) tras tres ciclos de reducción de oxidación consecutivos (es decir, ciclos de detección).
En la Fig. 6 se muestra el voltamograma de control de 1 mM DA en 0,1 M PBS en el GCE recubierto con LDPE. Los voltamogramas registrados utilizando electrodos no tratados (línea continua) y electrodos tratados con plasma frío (guión-punto: primer ciclo de detección; guión-guión-punto: tercer ciclo de detección (.Velocidad de exploración: 100 mV/s. Potenciales iniciales y finales: -0.40 V; potencial inverso: +0.80 V. Tal como se puede observar, los electrodos recubiertos con LDPE tratados con un simple plasma-aire durante 1 minuto son capaces de detectar concentraciones de DA similares a las estimadas para la sinapsis durante varios ciclos.
Se llevaron a cabo ensayos adicionales con GCE recubiertos con LDPE tratados con plasma frío utilizando 100, 10 y 1 μΜ concentraciones de DA. Los resultados, que se muestran en la Fig. 7 indican que la oxidación de las moléculas de DA se detectó como un pico de oxidación claro para la solución de 100 μΜ (ip = 0,033 μΑ y E=0,007 μΑ y E=0,164 V). Desafortunadamente, a pesar de que la detección del neurotransmisor fue casi imperceptible en la solución de 1 μΜ, los resultados mostrados en la Fig. 7 son muy esperanzadores dada la simplicidad del electrodo. Por lo tanto, debería recalcarse que el límite para la detección electromecánica de DA en películas de 3 capas sofisticadas realizadas a partir de PEDOT (capa externas e internas) y poli(N-metilpirrol) (capa intermedia para crear un efecto dieléctrico) recubierto con AuNPs en la capa externa fue de 2 μΜ, mientras que el límite en un GCE recubierto con un CP especialmente diseñado para detectar DA, poli(hidroximetil- 3,4-etilendioxitiofeno) fue ligeramente superior.
Se examinó la superficie de los GCE recubiertos con PEDOT tratados y no tratados con plasma utilizando un microscopio electrónico de barrido (SEM) y espectroscopia de rayos X por dispersión de energía (EDX). En las Figs. 8 y 9 se muestran micrografías SEM de GCE recubierto con PEDOT no tratado y tratado con plasma, respectivamente. La morfología relativamente compacta de las muestras no tratadas (Fig. 8) que contiene C, S, O y Cl (el cloro es debido al dopante de perclorato) se transforma en una red muy porosa de especies activas compuesta únicamente por C y O (Fig. 10). Por lo tanto, la actividad electroquímica de los GCE recubiertos con polímeros tratados con plasma probablemente debería atribuirse esencialmente a la incorporación de especies activas en la superficie, que son posiblemente las responsables de la detección de analitos oxidados y reducidos. Se han observado características similares en los GCE recubiertos con LDPE.
Tercera parte
1 - GCE-LDPE con plasma: Estabilidad y detección 10μΜ DA en símil químico de orina
El pH del símil es de 6,2, y la composición química se indica a continuación:
Componente mM
Urea 200
Acido úrico 1
Na3C6H507 5
NaCI 54
KCI 30
NH4CI 15
CaCI2 3
MgS04 2
NaHC03 2
Na2C204 0.1
Na2S04 9
KH2P04 3.6
Na2HP04 0.4
FeS04 0.005
Acido láctico 1
En la Fig. 1 1 se muestra una ampliación de las voltamperometrías cíclicas en la zona de oxidación de la dopamina 10μΜ en símil químico de orina empleando un GCE recubierto con LDPE tratado con plasma-aire. La Fig. 10 muestra las voltamperometrias cíclicas en el barrido completo. El potencial de oxidación de la dopamina se encuentra entre 0.230-0.237V, mientras que el pico de oxidación de la urea y otros componentes se encuentra en 0.418-0.425V.
La Fig. 12 muestra la intensidad del pico de oxidación de la urea y otros compuestos frente a ciclos de oxidación y reducción en símil químico de orina empleando un GCE recubierto con LDPE tratado con plasma-aire. El potencial de oxidación de la urea y otros compuestos se encuentra entre 0.418 y 0.425 V. El total de ciclos aplicados al sistema son 10. La pérdida de intensidad después de 10 ciclos de oxidación /reducción es aproximadamente del 18%.
La Fig. 13 muestra la intensidad del pico de oxidación de la dopamina frente a ciclos de oxidación y reducción en símil químico de orina empleando un GCE recubierto con LDPE tratado con plasma-aire. El potencial de oxidación de la dopamina se encuentra entre 0.230 y 0.237V. El total de ciclos aplicados al sistema son 10. En este caso no hay pérdida de intensidad pero si un incremento del 25 % después de aplicar 10 ciclos de oxidación /reducción.
2 - GCE-LDPE con plasma: Estabilidad y detección 10μΜ DA en PBS La Fig. 14 muestra una ampliación de las voltamperometrías cíclicas en la zona de oxidación de la dopamina 10μΜ en PBS 0.1 M (buffer fosfato salino, pH 7.2) empleando un GCE recubierto con LDPE tratado con plasma-aire. El recuadro insertado muestra las voltamperometrías cíclicas en el barrido completo. El potencial de oxidación de la dopamina se encuentra entre 0.171 y 0.174V.
La Fig. 15 muestra la intensidad del pico de oxidación de la dopamina frente a ciclos de oxidación y reducción en PBS 0.1 M (buffer fosfato salino, pH 7.2) empleando un GCE recubierto con LDPE tratado con plasma-aire. El potencial de oxidación de la dopamina se encuentra entre 0.171 y 0.174V. El total de ciclos aplicados al sistema son 10. La pérdida de intensidad después de 10 ciclos de oxidación /reducción es aproximadamente del 17%. 3 - Sustratos alternativos con polietileno
Se han probado sustratos de base inorgánica, es decir, no ricos en carbono (es decir, con menos de un 50% en peso de carbono respecto del peso total del sustrato). Concretamente se han probado sustratos de ITO (óxido de indio y estaño, en inglés indium tin oxide) y de acero inoxidable AISI 316, en ambos casos recubiertos con polietileno de baja densidad. En ambos casos, los sustratos quedan afectados negativamente con la aplicación del plasma y no se obtienen resultados favorables. 4 - Polímeros alternativos
Se han ensayado otros polímeros convencionales, aplicados sobre un GCE, sin tratar con plasma y tratados con plasma en las mismas condiciones que LDPE, para la detección de 10μΜ DA en PBS. En la siguiente tabla se muestran los polímeros ensayados, indicándose el disolvente y cantidad de polímero utilizado en la preparación del film.
Figure imgf000018_0001
Poli(4-vinilfenol) metanol, 4mL 1 1 .8
OH
Policaprolactona cloroformo, 10ml_ 46.5
Figure imgf000019_0001
Nailon 66 ácido hidroclórico , 10mL 43.5
Poliestireno cloroformo, 10 ml_ 33.5
¡
H
Acido oliacrílico agua 25 wt%
Figure imgf000019_0002
Poli(butilen succinato) Cloroformo/diclorometano 47.6
(50/50), 10mL
En la siguiente tabla se muestran las intensidades, labs (absoluta, sin línea base) y Ipeak (con línea base), y el potencial de oxidación obtenido en la detección de dopamina 10μΜ en PBS 0.1 M para GCE recubierto con polímero convencional y tratado con plasma frío (atmósfera oxidante). PLASMA Dopamina 10μΜ
Ipeak (μΑ) labs (μΑ) Eox (V)
GCE - plasma 1 .44E-01 3.12E-01 0.174
Poli(butilen succinato) - plasma 5.57E-02 2.49E-01 0.203
Polipropileno - plasma 1 .14E-01 3.32E-01 0.174
Polivinilpirrolidona - plasma 1 .14E-01 3.15E-01 0.174
Poli(óxido de etileno) - plasma 1 .04E-01 2.17E-01 0.174
Poli(4-vinilfenol) - plasma 1 .55E-01 3.81 E-01 0.179
Policaprolactona - plasma 1 .91 E-01 3.88E-01 0.171
Nailon 66 - plasma 9.81 E-02 1 .96E-01 0.179
Poliestireno - plasma 1 .21 E-01 3.05E-01 0.184
Acido poliacrílico - plasma 2.99E-02 1 .89E-01 0.208
En las Figs. 16 a 27 se muestran los resultados obtenidos. Como puede verse, la aplicación de plasma-aire en otros polímeros convencionales produce efectos similares a los obtenidos con LDPE.
5 - Atmósfera no oxidante
Se han realizado ensayos con atmósferas no oxidantes, concretamente con atmósfera de N2, con GCE recubierto de LDPE, obtenido de acuerdo con las condiciones anteriores.
Los resultados obtenidos se muestran en las Figs. 29 y en la tabla siguiente:
Figure imgf000020_0001
Como puede verse, la utilización de atmósfera no oxidante en la aplicación del plasma frío produce efectos similares a los descritos con atmósfera oxidante. Cuarta parte
La monitorización de los niveles de glucosa en el cuerpo humano es fundamental para el diagnóstico y el tratamiento de la diabetes, que se ha convertido en un problema de salud pública a nivel mundial. Además, la monitorización del metabolismo de la glucosa a través de la detección de cambios en la concentración de este analito puede mejorar el tratamiento de enfermedades cerebrales, como por ejemplo los tumores y los traumatismos cerebrales. La detección de glucosa también es muy importante en la industria del procesado de comida, la fermentación y las células de bio-combustible.
Otro de los resultados sorprendentes de la presente invención es la la preparación de sensores electroquímicos de glucosa mediante la aplicación del tratamiento de superficie de plasma frío (plasma de corona en atmósfera ambiental a aproximadamente 0,5 J/cm"2 durante 2 minutos) a películas de polímero depositadas sobre un CGE.
La detección selectiva y simultánea de DA, UA (ácido úrico) y AA (ácido ascórbico) utilizando PNCPy es difícil porque los picos de oxidación de cada una de estas sustancias orgánicas son débiles y están parcialmente solapados entre sí mientras que, por contra, los picos de oxidación están bien resueltos cuando se emplean electrodos recubiertos con PEDOT. El comportamiento de PNMPy mejora cuando la película está recubierta con nanopartículas de oro (AuNPs), lo cual demuestra la actividad electrocatalítica promovida por estas últimas. En contraposición, las propiedades de los electrodos PEDOT para la detección selectiva de DA permanecen prácticamente inalteradas tras la incorporación de AuNPs.
Se modificaron tanto las películas de PEDOT como las de PNCPy generadas por polimerización anódica sobre un electrodo de CGE mediante la aplicación del tratamiento de superficie de plasma frío (plasma de corona en atmósfera ambiental a aproximadamente 0,5 J/cm"2 durante 2 minutos). Los ensayos de detección de glucosa en ausencia y presencia de interefentes (DA, UA y AA 1 mM) se llevaron a cabo mediante cronopotenciometria a temperatura ambiente. Las Figs. 29 a 30 muestran la respuesta cronopotenciométrica de los GCE recubiertos con PEDOT tratados con plasma. Tal como puede observarse, los electrodos tratados con plasma son capaces de detectar selectivamente la oxidación de la glucosa. En la Fig. 31 se muestra la determinación del límite de detección de glucosa del GCE recubierto con PEDOT y con un tratamiento con plasma frío mediante cronopotenciometria. Los resultados se derivaron de la inyección estándar y sucesiva de glucosa. El límite de detección, que se determinó utilizando la recta de calibración para obtenida para una concentración máxima de glucosa 14 mM fue de 1 mM. En conclusión, se han descrito unos procedimientos muy simples para la detección electroquímica de, por ejemplo, DA o glucosa. Dichos procedimientos han dado como resultado sensores con resolución y sensibilidad similares a los conseguidos mediante modificaciones químicas sofisticadas, tales como, por ejemplo, la incorporación de AuNPs a recubrimientos de CP, la preparación de compuestos multicapa de CP o la funcionalización de monómeros. Además, se ha constatado que estos nuevos procedimientos tenían éxito cuando se aplicaba no únicamente a los CP, sino también a las capas de otros polímeros no activos electroquímicamente, como por ejemplo el LDPE. Esto abre las puertas a una vía rápida, fácil y simple de fabricar detectores, por ejemplo de DA, de glucosa, etc., sensibles que puedan ser implantados como tests de diagnóstico muy económicos.

Claims

REIVINDICACIONES
1 - Procedimiento de recubrimiento de un sensor electroquímico caracterizado porque comprende las etapas de:
- recubrir un sustrato rico en carbono, con un contenido en carbono superior o igual al 50% en peso respecto del peso total del sustrato, con un polímero orgánico,
- aplicar a dicho recubrimiento un tratamiento con plasma frío.
2 - Procedimiento según la reivindicación 1 , caracterizado por que dicho plasma es un plasma atmosférico.
3 - Procedimiento según la reivindicación 1 , caracterizado por que dicho plasma es un plasma en vacío.
4 - Procedimiento según la reivindicación 1 , caracterizado por que dicho plasma es un plasma de corona de energía comprendida entre 0,1 mJ/cm2 y 100 J/cm2 en una atmósfera con oxígeno o nitrógeno u otro gas inerte.
5 - Procedimiento según cualquiera de las reivindicaciones 1 a 4, caracterizado por que el polímero orgánico es un polímero no activo electroquímicamente.
6 - Procedimiento según cualquiera de las reivindicaciones 1 a 4, caracterizado por que el polímero orgánico es polietileno.
7 - Procedimiento según cualquiera de las reivindicaciones 1 a 4, caracterizado por que el polímero orgánico es poli(tetrametilen-succinato). 8 - Procedimiento según cualquiera de las reivindicaciones 1 a 4, caracterizado por que el polímero orgánico es polipropileno. 9 - Procedimiento según cualquiera de las reivindicaciones 1 a 4, caracterizado por que el polímero orgánico es polivinilpirrolidona.
10 - Procedimiento según cualquiera de las reivindicaciones 1 a 4, caracterizado por que el polímero orgánico es polióxido de etileno.
1 1 - Procedimiento según cualquiera de las reivindicaciones 1 a 4, caracterizado por que el polímero orgánico es poli(4-vinilfenol). 12 - Procedimiento según cualquiera de las reivindicaciones 1 a 4, caracterizado por que el polímero orgánico es policaprolactona.
13 - Procedimiento según cualquiera de las reivindicaciones 1 a 4, caracterizado por que el polímero orgánico es la poliamida PA 66.
14 - Procedimiento según cualquiera de las reivindicaciones 1 a 4, caracterizado por que el polímero orgánico es poliestireno.
15 - Procedimiento según cualquiera de las reivindicaciones 1 a 4, caracterizado por que el polímero orgánico es ácido poliacrílico.
16 - Procedimiento según cualquiera de las reivindicaciones 1 a 4, caracterizado por que el polímero orgánico es celulosa. 17 - Procedimiento según cualquiera de las reivindicaciones 1 a 4, caracterizado por que el polímero orgánico es un polímero electroquímicamente activo.
18 - Procedimiento según cualquiera de las reivindicaciones 1 a 4, caracterizado por que el polímero orgánico es poli(3,4-etilendioxitiofeno).
19 - Procedimiento según cualquiera de las reivindicaciones 1 a 4, caracterizado por que el polímero orgánico es poli(A/-cianoetilpirrol). 20 - Procedimiento según cualquiera de las reivindicaciones 1 a 19, caracterizado por que el tiempo de aplicación del plasma es mayor de 1 s, preferentemente mayor de 15 s. 21 - Procedimiento según cualquiera de las reivindicaciones 1 a 20, caracterizado por que el tiempo de aplicación del plasma es menor de 120 s.
22 - Procedimiento según cualquiera de las reivindicaciones 1 a 21 , caracterizado por que el sustrato rico en carbono es de un material del grupo formado por grafito, carbono vitreo, carbonos nanoestructurados, dichos carbonos nano estructurados siendo preferentemente grafeno o nanotubos de carbono, y fulerenos.
23 - Procedimiento de fabricación de un sensor electroquímico que comprende un sustrato rico en carbono, con un contenido en carbono superior o igual al 50% en peso respecto del peso total del sustrato, caracterizado por que incluye una etapa de tratamiento superficial por plasma de dicho sustrato.
24 - Procedimiento según la reivindicación 23, caracterizado por que dicho plasma es un plasma atmosférico.
25 - Procedimiento según la reivindicación 23, caracterizado por que dicho plasma es un plasma en vacío.
26 - Procedimiento según la reivindicación 23, caracterizado por que dicho plasma es un plasma de corona de energía comprendida entre 0,1 mJ/cm2 y 100 J/cm2 en una atmósfera con oxígeno o nitrógeno u otro gas inerte.
27 - Procedimiento según cualquiera de las reivindicaciones 23 a 26, caracterizado por que el tiempo de aplicación del plasma es mayor de 1 s, preferentemente mayor de 15 s.
28 - Procedimiento según cualquiera de las reivindicaciones 23 a 27, caracterizado por que el tiempo de aplicación del plasma es menor de 120 s. 29 - Procedimiento según cualquiera de las reivindicaciones 23 a 28, caracterizado por que el sustrato rico en carbono es de un material del grupo formado por grafito, carbono vitreo, carbonos nanoestructurados, dichos carbonos nano estructurados siendo preferentemente grafeno o nanotubos de carbono, y fulerenos.
30 - Procedimiento de fabricación de un sensor electroquímico, que comprende un sustrato rico en carbono, con un contenido en carbono superior o igual al 50% en peso respecto del peso total del sustrato, caracterizado por que comprende una etapa de recubrimiento según cualquiera de las reivindicaciones 1 a 22.
31 - Sensor electroquímico caracterizado por que comprende un sustrato rico en carbono, con un contenido en carbono superior o igual al 50% en peso respecto del peso total del sustrato, y un recubrimiento polimérico orgánico modificado, donde dicho recubrimiento polimérico modificado es obtenible mediante un procedimiento según cualquiera de las reivindicaciones 1 a 22.
32 - Uso de un procedimiento según cualquiera de las reivindicaciones 1 a 22, para la fabricación de un sensor electroquímico.
33 - Uso según la reivindicación 32, caracterizado por que dicho sensor es para la detección de dopamina.
34 - Uso según la reivindicación 32, caracterizado por que dicho sensor es para la detección de glucosa.
35 - Uso según la reivindicación 32, caracterizado por que dicho sensor es para la detección de ácido úrico. 36 - Uso según la reivindicación 32, caracterizado por que dicho sensor es para la detección de ácido ascórbico.
37 - Uso de un sensor según la reivindicación 31 para la detección de dopamina. 38 - Uso de un sensor según la reivindicación 31 para la detección de glucosa.
39 - Uso de un sensor según reivindicación 31 para la detección de ácido úrico.
40 - Uso de un sensor según la reivindicación 31 para la detección de ácido ascórbico.
41 - Uso de un sensor obtenido según cualquiera de las reivindicaciones 23 a 29 para la detección de dopamina.
42 - Uso de un sensor obtenido según cualquiera de las reivindicaciones 23 a 29 para la detección de glucosa.
43 - Uso de un sensor obtenido según cualquiera de las reivindicaciones 23 a 29 para la detección de ácido úrico.
44 - Uso de un sensor obtenido según cualquiera de las reivindicaciones 23 a 29 para la detección de ácido ascórbico.
PCT/ES2016/070832 2015-12-22 2016-11-22 Sensor electroquímico y procedimiento de recubrimiento, procedimiento de fabricación y usos correspondientes WO2017109244A1 (es)

Priority Applications (10)

Application Number Priority Date Filing Date Title
RU2018126488A RU2018126488A (ru) 2015-12-22 2016-11-22 Электрохимический датчик и способ нанесения покрытия, способ изготовления и соответствующие применения
AU2016378671A AU2016378671A1 (en) 2015-12-22 2016-11-22 Electro-chemical sensor and coating method, production method and corresponding uses
MX2018007699A MX2018007699A (es) 2015-12-22 2016-11-22 Sensor electroquimico y procedimiento de recubrimiento, procedimiento de fabricacion y usos correspondientes.
CA3009433A CA3009433A1 (en) 2015-12-22 2016-11-22 Electrochemical sensor and coating method, production method and corresponding uses
KR1020187021121A KR20180098331A (ko) 2015-12-22 2016-11-22 전기화학적 센서, 코팅 방법, 제조 방법 및 용도
JP2018552916A JP2019501397A (ja) 2015-12-22 2016-11-22 電気化学センサ並びにコーティング方法、生産方法、及び対応する使用
BR112018012810-4A BR112018012810A2 (pt) 2015-12-22 2016-11-22 sensor eletroquímico e método de revestimento, método de produção e usos correspondentes
CN201680082176.3A CN108700541A (zh) 2015-12-22 2016-11-22 电化学传感器和涂覆方法、制造方法以及相应的用途
US16/065,080 US11067528B2 (en) 2015-12-22 2016-11-22 Electro-chemical sensor and coating method, production method and corresponding uses
EP16877827.2A EP3396367A4 (en) 2015-12-22 2016-11-22 ELECTROCHEMICAL SENSOR AND COATING METHOD, MANUFACTURING METHOD AND CORRESPONDING USES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201531868A ES2560577B2 (es) 2015-12-22 2015-12-22 Sensor electroquímico y procedimiento de recubrimiento, procedimiento de fabricación y usos correspondientes
ESP201531868 2015-12-22

Publications (1)

Publication Number Publication Date
WO2017109244A1 true WO2017109244A1 (es) 2017-06-29

Family

ID=55306492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070832 WO2017109244A1 (es) 2015-12-22 2016-11-22 Sensor electroquímico y procedimiento de recubrimiento, procedimiento de fabricación y usos correspondientes

Country Status (13)

Country Link
US (1) US11067528B2 (es)
EP (1) EP3396367A4 (es)
JP (1) JP2019501397A (es)
KR (1) KR20180098331A (es)
CN (1) CN108700541A (es)
AU (1) AU2016378671A1 (es)
BR (1) BR112018012810A2 (es)
CA (1) CA3009433A1 (es)
ES (1) ES2560577B2 (es)
MA (1) MA45299A (es)
MX (1) MX2018007699A (es)
RU (1) RU2018126488A (es)
WO (1) WO2017109244A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107941875A (zh) * 2017-11-25 2018-04-20 于世金 一种尿液中的尿酸的电化学的检测方法及检测电极材料

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110192868B (zh) * 2019-05-24 2021-01-08 厦门大学 基于石墨烯复合材料的柔性钙钾离子检测传感器及其制备方法
CN111781258A (zh) * 2020-02-27 2020-10-16 中国地质大学(北京) 一种可快速检测水环境中抗生素的传感器及检测方法
CN114216943B (zh) * 2021-11-26 2023-11-03 青岛科技大学 一种抗污染电化学免疫传感器及其制备方法与应用
CN115290719A (zh) * 2022-08-26 2022-11-04 江苏鱼跃凯立特生物科技有限公司 一种用于尿酸检测的电化学试纸及其制备方法与应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2590219B1 (fr) 1985-11-20 1991-02-01 Bendix France Dispositif de freinage electrique pour vehicule
US6103033A (en) 1998-03-04 2000-08-15 Therasense, Inc. Process for producing an electrochemical biosensor
US6338790B1 (en) 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
KR100340174B1 (ko) * 1999-04-06 2002-06-12 이동준 전기화학적 바이오센서 테스트 스트립, 그 제조방법 및 전기화학적 바이오센서
JP2001159618A (ja) * 1999-12-03 2001-06-12 Matsushita Electric Ind Co Ltd バイオセンサ
US6863800B2 (en) 2002-02-01 2005-03-08 Abbott Laboratories Electrochemical biosensor strip for analysis of liquid samples
US7276283B2 (en) * 2004-03-24 2007-10-02 Wisconsin Alumni Research Foundation Plasma-enhanced functionalization of carbon-containing substrates
US20080164142A1 (en) 2006-10-27 2008-07-10 Manuel Alvarez-Icaza Surface treatment of carbon composite material to improve electrochemical properties
KR20140066377A (ko) * 2012-11-23 2014-06-02 삼성전자주식회사 바이오 센서
CN103487484B (zh) 2013-10-10 2015-05-27 佳木斯大学 一种超敏感石墨烯电极的制备方法
ES2663899B2 (es) 2016-10-17 2018-09-11 Universidade Da Coruña Sistema para asistir a caminar

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
E. LUAIS ET AL.: "Preparation and modification of carbon nanotubes electrodes by cold plasmas processes toward the preparation of amperometric biosensors", ELECTROCHIMICA ACTA, vol. 55, no. 27, 30 November 2010 (2010-11-30), pages 7916 - 7922, XP027428402 *
G. FABREGAT ET AL.: "A rational design for the selective detection of dopamine using conducting polymers", PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 16, no. 17, 7 May 2014 (2014-05-07), pages 7850 - 7861, XP055394010 *
H. MORTENSEN ET AL.: "Modification of glassy carbon surfaces by atmospheric pressure cold plasma torch", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 45, no. 10B, 24 October 2006 (2006-10-24), pages 8506 - 8511, XP055394021 *
J. ZHAO ET AL.: "Carbon nanotube nanoweb-bioelectrode for highly selective dopamine sensing", APPLIED MATERIALS & INTERFACES, vol. 4, no. 1, 25 January 2012 (2012-01-25), pages 44 - 48, XP055393993 *
Q. LIU ET AL.: "Electrochemical detection of dopamine in the presence of ascorbic acid using PVP/graphene modified electrodes", TALANTA, vol. 97, 15 August 2012 (2012-08-15), pages 557 - 562, XP028450153 *
Y. WU ET AL.: "A dopamine sensor based on a methoxypolyethylene glycol polymer covalently modified glassy carbon electrode", ANALYST, vol. 138, no. 4, 2013, pages 1204 - 1211, XP055394028 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107941875A (zh) * 2017-11-25 2018-04-20 于世金 一种尿液中的尿酸的电化学的检测方法及检测电极材料

Also Published As

Publication number Publication date
RU2018126488A3 (es) 2020-03-04
ES2560577A1 (es) 2016-02-19
MX2018007699A (es) 2018-11-09
MA45299A (fr) 2018-10-31
EP3396367A4 (en) 2020-01-15
EP3396367A1 (en) 2018-10-31
CA3009433A1 (en) 2017-06-29
CN108700541A (zh) 2018-10-23
AU2016378671A1 (en) 2018-08-09
ES2560577B2 (es) 2017-01-17
KR20180098331A (ko) 2018-09-03
US20190004001A1 (en) 2019-01-03
JP2019501397A (ja) 2019-01-17
RU2018126488A (ru) 2020-01-23
US11067528B2 (en) 2021-07-20
BR112018012810A2 (pt) 2018-12-04

Similar Documents

Publication Publication Date Title
WO2017109244A1 (es) Sensor electroquímico y procedimiento de recubrimiento, procedimiento de fabricación y usos correspondientes
Khodagholy et al. Organic electrochemical transistor incorporating an ionogel as a solid state electrolyte for lactate sensing
Xu et al. A PEDOT: PSS conductive hydrogel incorporated with Prussian blue nanoparticles for wearable and noninvasive monitoring of glucose
Atta et al. Simultaneous determination of catecholamines, uric acid and ascorbic acid at physiological levels using poly (N-methylpyrrole)/Pd-nanoclusters sensor
Suzuki et al. Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection
Xu et al. A wearable sensor based on multifunctional conductive hydrogel for simultaneous accurate pH and tyrosine monitoring in sweat
Atta et al. A novel sensor of cysteine self-assembled monolayers over gold nanoparticles for the selective determination of epinephrine in presence of sodium dodecyl sulfate
US9632058B2 (en) Non-invasive glucose sensor
Thandavan et al. A novel nano-interfaced superoxide biosensor
Ergün et al. Simultaneous electrochemical determination of ascorbic acid and uric acid using poly (glyoxal-bis (2-hydroxyanil)) modified glassy carbon electrode
Njagi et al. A sensitive electrochemical sensor based on chitosan and electropolymerized Meldola blue for monitoring NO in brain slices
Siqueira Jr et al. Carbon nanotubes in nanostructured films: Potential application as amperometric and potentiometric field‐effect (bio‐) chemical sensors
Shankar et al. Detection of epinephrine in presence of serotonin and ascorbic acid by TTAB modified carbon paste electrode: a voltammetric study
Chen et al. Sensitive detection of dopamine using a platinum microelectrode modified by reduced graphene oxide and gold nanoparticles
Arkusz et al. Influence of thermal modification and morphology of TiO2 nanotubes on their electrochemical properties for biosensors applications
Yu et al. [C3 (OH) 2mim][BF4]-Au/Pt biosensor for glutamate sensing in vivo integrated with on-line microdialysis system
Lu et al. Polymeric nanocomposite electrode for enhanced electrochemical detection of α-lipoic acid: Application in neuroinflammation prevention and clinical analysis
Arkusz et al. The effect of phosphates and fluorides, included in TiO2 nanotube layers on the performance of hydrogen peroxide detection
Saunier et al. Microelectrodes from PEDOT-carbon nanofiber composite for high performance neural recording, stimulation and neurochemical sensing
Liu et al. A salivary glucose biosensor based on immobilization of glucose oxidase in Nafion-carbon nanotubes nanocomposites modified on screen printed electrode
Tang et al. Nitric oxide releasing polyvinyl alcohol and sodium alginate hydrogels as antibacterial and conductive strain sensors
Kablan et al. Investigation of electrochemical behaviour of cefuroxime axetil using hanging mercury drop electrode and graphene oxide modified glassy carbon electrode
Pashai et al. Highly sensitive amperometric sensor based on gold nanoparticles polyaniline electrochemically reduced graphene oxide nanocomposite for detection of nitric oxide
Luo et al. Electrochemical behavior of ascorbic acid and rutin on poly (L-arginine)-graphene oxide modified electrode
Tseng et al. Additive Blending Effects on PEDOT: PSS Composite Films for Wearable Organic Electrochemical Transistors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877827

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3009433

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/007699

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2018552916

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018012810

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20187021121

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187021121

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2018126488

Country of ref document: RU

Ref document number: 2016877827

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016378671

Country of ref document: AU

Date of ref document: 20161122

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016877827

Country of ref document: EP

Effective date: 20180723

ENP Entry into the national phase

Ref document number: 112018012810

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180621