WO2017108225A1 - Brennstoffzellenvorrichtung - Google Patents

Brennstoffzellenvorrichtung Download PDF

Info

Publication number
WO2017108225A1
WO2017108225A1 PCT/EP2016/074668 EP2016074668W WO2017108225A1 WO 2017108225 A1 WO2017108225 A1 WO 2017108225A1 EP 2016074668 W EP2016074668 W EP 2016074668W WO 2017108225 A1 WO2017108225 A1 WO 2017108225A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
fuel cell
cell device
gas
gas space
Prior art date
Application number
PCT/EP2016/074668
Other languages
English (en)
French (fr)
Inventor
Christopher Fischer
Andreas Haeffelin
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP16781785.7A priority Critical patent/EP3394921A1/de
Publication of WO2017108225A1 publication Critical patent/WO2017108225A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0236Glass; Ceramics; Cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • a fuel cell device comprising a fuel cell unit, which defines at least one gas space, which is provided in at least one operating state for receiving at least one reactant, and which has at least a first metallic plate-like element and at least one second metallic plate-like element, which together Gas space, at least in essence, has been proposed.
  • the invention is based on a fuel cell device having a fuel cell unit which defines at least one gas space, which is provided in at least one operating state for receiving at least one reactant, and which has at least one first plate-like element and at least one second plate-like element together define the gas space at least substantially. It is proposed that the plate-like elements are formed at least substantially of a ceramic material.
  • a "fuel cell device” is to be understood as meaning, in particular, a device which is intended to provide at least one chemical reaction energy of at least one, in particular continuous, reaction energy. to supply, fuel gas, in particular hydrogen and / or carbon monoxide, and at least one oxidizing agent, in particular oxygen, in particular into electrical and / or thermal energy to convert.
  • the at least one fuel cell device is preferably designed as a solid oxide fuel cell (SOFC).
  • a fuel cell unit is to be understood as meaning, in particular, a unit which, in particular, at least partially forms an outer shell of the fuel cell device.
  • the fuel cell unit may in particular comprise passive elements, in particular for gas guidance and / or conduction and / or for mounting the fuel cell device.
  • a "reactant” is to be understood as meaning, in particular, a chemical substance and / or a chemical substance mixture which and / or which in particular for use in a chemical reaction, in particular for use in a synthesis process, in particular within a fuel cell device
  • the at least one reactant is preferably a fuel gas or oxygen or a gas mixture containing fuel gas or an oxygen-containing gas mixture, in particular the at least one reactant is supplied to the at least one gas space in particular continuously during operation of the fuel cell device.
  • a "gas space” is to be understood in particular as a spatial area which is delimited at least partially and preferably at least substantially on all sides, in particular apart from supply lines and / or leads, from an inner surface of the fuel cell unit which is opposite, and at least partially invisible, from a visible outer surface.
  • the fuel cell unit is intended to "at least substantially define” at least one gas space, it is to be understood that an imagined closed envelope area surrounding at least one gas space is at least 80%, preferably at least 85%, advantageously advantageous. At least 90% and particularly advantageously at least 95% of an outer shell formed by the at least one fuel cell unit is covered.
  • the plate-like elements are at least essentially formed by a ceramic material
  • a ceramic material is to be understood as meaning, in particular, an inorganic, nonmetallic material.
  • the at least one ceramic material may be at least partially crystalline.
  • nonmetallic is to be understood in particular as meaning that the at least one ceramic material is at least largely free of metallic properties based in particular on metallic bonds, but may include metal compounds such as, for example, metal oxides and / or silicates
  • the first plate-like element and the second plate-like element are formed from an at least substantially identical ceramic material
  • the ceramic material of the first plate-like element in its material composition is at least largely and vo
  • it corresponds exactly to the ceramic material of the second plate-like element.
  • the first plate-like elements and the second plate-like elements have an at least substantially identical thermal expansion coefficient.
  • the coefficient of thermal expansion in particular a coefficient of linear expansion and / or a coefficient of expansion of the first plate-like element, in particular at least one production material of the first plate-like element, deviates by less than 15%, in particular by less than 10%, preferably by less than 5% and particularly preferably less than 1% of a thermal expansion coefficient, in particular a coefficient of linear expansion and / or a coefficient of spatial expansion th, of the second plate-like element, in particular at least one production material of the second plate-like element from.
  • a "plate-like element” is to be understood in particular as a spatial element which, when viewed in a plane, has a non-circular cross-sectional area perpendicular to the plane and has a material thickness that is at least substantially constant, perpendicular to the plane, which is less than 50 %, preferably less than 25% and particularly preferably less than 10% of a surface extent of the spatial element parallel to the plane, in particular a smallest
  • the plate-like elements may be connected to each other in particular by means of a sintered connection.
  • a generic fuel cell device having improved properties in terms of long-term stability and / or manufacturing cost can be provided.
  • thermo-mechanical stresses and / or degradation can be at least largely avoided by the formation of the plate-like elements made of a ceramic material and thus a lifetime of the fuel cell device can be advantageously increased.
  • advantageously simple and / or cost-effective production methods can be used for the plate-like configuration of the first plate-like element and the second plate-like element.
  • the first plate-like element has at least one at least substantially porous region.
  • the porous region is openly porous.
  • a "porous region” is to be understood as meaning, in particular, a region which has cavities which, in particular, are fluidically interconnected with each other and / or with an environment.
  • the first plate-like element has at least one substantially gas-tight region which surrounds the porous plate
  • one piece should be understood in particular at least materially connected connected, for example, by a welding process, a gluing process, a Anspritzrind and / or another, the skilled person appear useful process, and / or advantageously formed in one piece, such as by a Manufacture from a single casting and / or by a production in a one- or multi-component injection molding process and advantageously from a single blank This makes it possible to achieve an advantageously simple and / or reliable sealing.
  • the fuel cell unit has at least one functional layer which is arranged at least on the porous region.
  • a "functional layer” is to be understood as meaning, in particular, a layer which has, in particular, at least one anode and at least one cathode and at least one electrolyte arranged between the at least one anode and the at least one cathode.
  • the at least one functional layer is preferably arranged completely on an inner side of the first plate-like element,
  • the at least one functional layer has a layer thickness of not more than 50 ⁇ m, advantageously of not more than 25 ⁇ m and particularly advantageous of a maximum of 15 ⁇ , whereby an advantageous structure of a fuel cell device can be achieved.
  • the functional layer can advantageously be applied simply and / or reliably by a plate-like configuration of the first plate-like element.
  • the second plate-like element is at least substantially gas-tight. In this way, an advantageously simple and / or reliable sealing of the gas space can be achieved.
  • Edge region is at least partially stepped.
  • the second plate-like element is formed in a border region to the step-shaped formation of the first plate-like member corresponding step-shaped. In this way, an advantageous stable and / or gas-tight connection between the plate-like elements can be achieved.
  • a plate-like member for a fuel cell device is proposed.
  • the plate-like element is at least substantially formed by a ceramic material. In this way, an advantageously particularly mechanically stable and / or inexpensive plate-like element can be provided.
  • a fuel cell stack with at least two fuel cell devices according to the invention is proposed.
  • the fuel cell devices are electrically and / or fluidly interconnected.
  • a fuel cell stack with an advantageously high energy yield can be realized in a simple manner.
  • Gas space defined which is provided in at least one operating state for receiving at least one reactant, and which has at least a first plate-like element and at least a second plate-like element, which together at least substantially define the gas space, the plate-like elements at least substantially be formed of a ceramic material.
  • manufacturing costs can advantageously be low.
  • a ceramic injection molding process or a pressing process are used for the plate-like configuration of the first plate-like element and the second plate-like element.
  • the fuel cell device according to the invention should not be limited to the application and embodiment described above.
  • the fuel cell device according to the invention may have a different number from a number of individual elements, components and units mentioned herein for fulfilling a mode of operation described herein.
  • FIG. 1 is a partial sectional view of a fuel cell apparatus having a fuel cell unit, which includes a first ceramic plate-like member and a second ceramic plate-like member;
  • FIG. 1 a partial sectional view of a fuel cell stack with five fuel cell devices according to Figure 1
  • FIG. 1 a partial sectional view of an alternative fuel cell device with a fuel cell unit, which has a first ceramic plate-like element and a second ceramic plate-like element and
  • FIG. 1 shows a partial sectional view of a fuel cell device 10a.
  • the fuel cell device 10a has a fuel cell unit 12a, which defines a gas space 14a.
  • the gas space 14a is provided to receive at least one reactant, in particular hydrogen, in at least one operating state.
  • the fuel cell unit 12a has a first plate-like member 16a and a second plate-like member 18a, which together define the gas space 14a.
  • the plate-like elements 16a, 18a are at least substantially of a ceramic one
  • the first plate-like member 16a has a porous portion 20a.
  • the porous region 20a is formed by a porous forsterite material.
  • the first plate-like element 16a has a substantially gas-tight region 22a, which completely surrounds the porous region 20a in the circumferential direction.
  • the gas-tight region 22a is formed, in particular, by a dense forsterite material.
  • the fuel cell unit 12a further includes a functional layer 24a disposed on the porous portion 20a of the first plate-like member 16a.
  • the functional layer 24a not shown in detail here, has an anode, a cathode and an electrolyte arranged between the anode and the cathode.
  • the functional layer 24a is arranged with the cathode side on the porous region 20a.
  • the functional layer 24a is peripherally surrounded by a frame 32a, which is formed in particular by a gas-tight ceramic material.
  • a second reactant, in particular oxygen or air, is supplied to the functional layer 24a in an operating state via the porous region 20a of the first plate-like element 16a.
  • the second plate-like element 18a is at least substantially gas-tight.
  • the second plate-like element 18a is in particular completely formed by a dense forsterite material.
  • the first plate-like element 16a and the second plate-like element 18a are in particular connected to one another by means of a sintered connection.
  • FIG. 2 shows a partial sectional view of a fuel cell stack 30a.
  • the fuel cell stack 30a here comprises by way of example five identically formed Fuel cell devices 10a.
  • the fuel cell devices 10a are interconnected electrically and fluidically.
  • the plate-like elements 16a, 18a have recesses 34a in edge regions, which are connected inside the fuel cell stack 30a to fuel gas channels 36a or cathode gas channels 38a.
  • FIG. 3 shows a partial sectional view of an alternative fuel cell device 10b.
  • the fuel cell device 10b has a fuel cell unit 12b, which defines a gas space 14b.
  • the gas space 14b is provided to receive at least one reactant, in particular hydrogen, in at least one operating state.
  • the fuel cell unit 12b has a first plate-like member 16b and a second plate-like member 18b, which together define the gas space 14b.
  • the plate-like elements 16b, 18b are at least substantially formed by a ceramic material.
  • the first plate-like member 16b has a porous portion 20b.
  • the porous region 20b is formed by a porous forsterite material.
  • the first plate-like element 16b is completely porous.
  • the fuel cell unit 12b further includes a functional layer 24b disposed on the porous portion 20b of the first plate-like member 16b.
  • the functional layer 24b not shown here in detail, has an anode, a cathode and an electrolyte arranged between the anode and the cathode.
  • the functional layer 24b is connected to the cathode denseite on the porous portion 20b.
  • the functional layer 24b is circumferentially surrounded by a frame 32b, which is in particular formed by a gas-tight ceramic material.
  • a second reactant in particular oxygen or air, is supplied to the functional layer 24b in an operating state via the porous region 20b of the first plate-like element 16b.
  • the second plate-like element 18b is at least substantially gas-tight.
  • the second plate-like element 18b is in particular completely formed by a dense forsterite material.
  • the first plate-like element 16b is step-shaped in an edge region 26b.
  • the second plate-like member 18b is formed in a peripheral portion 28b corresponding to the step-shaped formation of the first plate-like member 16b corresponding step-shaped.
  • the first plate-like member 16b is fully integrated with the second plate-like member 18b, so that the first plate-like member 16b is completely enclosed in the circumferential direction by the gas-tight material of the second plate-like member 18b.
  • the first plate-like element 16b and the second plate-like element 18b are connected to one another in particular by means of a sintered connection.
  • FIG. 4 shows a partial sectional view of a fuel cell stack 30b.
  • the fuel cell stack 30b here includes, by way of example, five identically designed fuel cell devices 10b.
  • the fuel cell devices 10b are interconnected electrically and fluidically.
  • the plate-like elements 16b, 18b have recesses 34b in edge regions, which are connected within the fuel cell stack 30b to fuel gas channels 36b or cathode gas channels 38b.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

Die Erfindung geht aus von einer Brennstoffzellenvorrichtung, mit einer Brennstoffzelleneinheit (12a; 12b), welche zumindest einen Gasraum (14a; 14b) definiert, welcher in zumindest einem Betriebszustand zu einer Aufnahme zumindest eines Reaktanten vorgesehen ist, und welche zumindest ein erstes plattenartiges Element (16a; 16b) und zumindest ein zweites plattenartiges Element (18a; 18b) aufweist, welche gemeinsam den Gasraum (14a; 14b) zumindest im Wesentlichen definieren. Es wird vorgeschlagen, dass die plattenartigen Elemente (16a, 18a; 16b,18b) zumindest im Wesentlichen von einem keramischen Material gebildet sind.

Description

Beschreibung
Brennstoffzellenvorrichtung
Stand der Technik
Es ist bereits eine Brennstoffzellenvorrichtung, mit einer Brennstoffzelleneinheit, welche zumindest einen Gasraum definiert, welcher in zumindest einem Betriebszustand zu einer Aufnahme zumindest eines Reaktanten vorgesehen ist, und welche zumindest ein erstes metallisches plattenartiges Element und zumindest ein zweites metallisches plattenartiges Element aufweist, welche gemeinsam den Gasraum zumindest im Wesentlichen definieren, vorgeschlagen worden.
Offenbarung der Erfindung
Die Erfindung geht aus von einer Brennstoffzellenvorrichtung, mit einer Brennstoffzelleneinheit, welche zumindest einen Gasraum definiert, welcher in zumin- dest einem Betriebszustand zu einer Aufnahme zumindest eines Reaktanten vorgesehen ist, und welche zumindest ein erstes plattenartiges Element und zumindest ein zweites plattenartiges Element aufweist, welche gemeinsam den Gasraum zumindest im Wesentlichen definieren. Es wird vorgeschlagen, dass die plattenartigen Elemente zumindest im Wesentlichen von einem keramischen Material gebildet sind.
Unter einer„Brennstoffzellenvorrichtung" soll in diesem Zusammenhang insbesondere eine Vorrichtung verstanden werden, welche dazu vorgesehen ist, zu- mindest eine chemische Reaktionsenergie zumindest eines, insbesondere konti- nuierlich zugeführten, Brenngases, insbesondere Wasserstoff und/oder Kohlen- stoffmonoxid, und zumindest eines Oxidationsmittels, insbesondere Sauerstoff, insbesondere in elektrische und/oder thermische Energie, umzuwandeln. Die zumindest eine Brennstoffzellenvorrichtung ist vorzugsweise als Festoxid- Brennstoffzelle (SOFC) ausgebildet. Unter„vorgesehen" soll insbesondere speziell programmiert, ausgelegt und/oder ausgestattet verstanden werden. Darunter, dass ein Objekt zu einer bestimmten Funktion vorgesehen ist, soll insbesondere verstanden werden, dass das Objekt diese bestimmte Funktion in zumindest einem Anwendungs- und/oder Betriebszustand erfüllt und/oder ausführt. Unter einer„Brennstoffzelleneinheit" soll in diesem Zusammenhang insbesondere eine Einheit verstanden werden, welche insbesondere zumindest teilweise eine äußere Hülle der Brennstoffzellenvorrichtung ausbildet. Ferner kann die Brennstoffzelleneinheit insbesondere passive Elemente, insbesondere zu einer Gasführung und/oder -leitung und/oder zu einer Montage der Brennstoffzellenvorrichtung, umfassen. Unter einem„Reaktanten" soll in diesem Zusammenhang insbesondere ein chemischer Stoff und/oder ein chemisches Stoffgemisch verstanden werden, welcher und/oder welches insbesondere zu einer Verwendung bei einer chemischen Reaktion, insbesondere zu einer Verwendung in einem Synthese- prozess, insbesondere innerhalb Brennstoffzellenvorrichtung, vorgesehen ist. Vorzugsweise handelt es sich bei dem zumindest einen Reaktanten um ein Brenngas oder um Sauerstoff oder um ein brenngashaltiges Gasgemisch oder um ein sauerstoffhaltiges Gasgemisch. Insbesondere wird der zumindest eine Reaktant während eines Betriebs der Brennstoffzellenvorrichtung insbesondere kontinuierlich dem zumindest einen Gasraum zugeführt.
Unter einem„Gasraum" soll insbesondere ein räumlicher Bereich verstanden werden, der zumindest teilweise und vorzugsweise zumindest im Wesentlichen allseitig, insbesondere abgesehen von Zuleitungen und/oder Ableitungen, von einer sichtbaren Außenfläche gegenüberliegenden, insbesondere zumindest teilweise nicht sichtbarer, Innenfläche der Brennstoffzelleneinheit begrenzt ist. Darunter, dass die Brennstoffzelleneinheit den zumindest einen Gasraum„zumindest im Wesentlichen definieren" soll insbesondere verstanden werden, dass eine gedachte, den zumindest einen Gasraum umgebende, geschlossene Hüllfläche zu zumindest 80 %, vorzugsweise zu zumindest 85 %, vorteilhaft zu zu- mindest 90 % und besonders vorteilhaft zu zumindest 95 % von einer durch die zumindest eine Brennstoffzelleneinheit gebildeten äußeren Hülle bedeckt ist.
Darunter, dass„die plattenartigen Elemente zumindest im Wesentlichen von ei- nem keramischen Material gebildet sind", soll insbesondere verstanden werden, dass die plattenartigen Elemente mit einem Massenanteil von zumindest 75 %, vorteilhaft von zumindest 85 % und vorzugsweise von zumindest 95 % aus dem Material besteht. Unter einem„keramischen Material" soll in diesem Zusammenhang insbesondere ein anorganisches, nichtmetallisches Material verstanden werden. Insbesondere kann das zumindest eine keramische Material zumindest teilweise kristallin sein. Unter„nichtmetallisch" soll in diesem Zusammenhang insbesondere verstanden werden, dass das zumindest eine keramische Material zumindest weitestgehend frei von insbesondere auf metallischen Bindungen beruhenden, metallischen Eigenschaften ist, jedoch Metallverbindungen, wie bei- spielsweise Metalloxide und/oder -Silikate, umfassen kann. Das keramische Material kann insbesondere zumindest im Wesentlichen von einer Forsteritkeramik gebildet sein. Insbesondere sind das erste plattenartige Element und das zweite plattenartige Element aus einem zumindest weitgehend identischen keramischen Material ausgebildet. Darunter, dass die zumindest eine Abdeckhaube und das zumindest eine Zuströmelement zumindest im Wesentlichen aus einem„zumindest weitgehend identischen" keramischen Material ausgebildet sind, soll in diesem Zusammenhang insbesondere verstanden werden, dass das keramische Material des ersten plattenartigen Elements in seiner stofflichen Zusammensetzung zumindest weitgehend und vorzugsweise exakt dem keramischen Material des zweiten plattenartigen Elements entspricht. Insbesondere weisen das erste plattenartige Elemente und das zweite plattenartige Elemente einen zumindest im Wesentlichen identischen Wärmeausdehnungskoeffizienten auf. Insbesondere weicht der Wärmeausdehnungskoeffizient, insbesondere ein Längenausdehnungskoeffizienten und/oder ein Raumausdehnungskoeffizienten, des ersten plattenartigen Elements, insbesondere zumindest eines Herstellungsmaterials des ersten plattenartigen Elements, um weniger als 15 %, insbesondere um weniger als 10 %, vorzugsweise um weniger als 5 % und besonders bevorzugt um weniger als 1 % von einem Wärmeausdehnungskoeffizient, insbesondere einem Längenausdehnungskoeffizienten und/oder einem Raumausdehnungskoeffizien- ten, des zweiten plattenartigen Elements, insbesondere zumindest eines Herstellungsmaterials des zweiten plattenartigen Elements, ab.
Unter einem„plattenartigen Element" soll insbesondere ein räumliches Element verstanden werden, welcher in einer Abwicklung in einer Ebene betrachtet, in einem Querschnitt senkrecht zur Ebene eine unrunde Querschnittsfläche aufweist und senkrecht zur Ebene eine insbesondere zumindest im Wesentlichen gleichbleibende Materialstärke aufweist, die weniger als 50 %, vorzugsweise weniger als 25 % und besonders bevorzugt weniger als 10 % einer Flächenerstre- ckung des räumlichen Elements parallel zur Ebene, insbesondere einer kleinsten
Flächenerstreckung des Elements parallel zur Ebene beträgt. Die plattenartigen Elemente können insbesondere mittels einer Sinterverbindung miteinander verbunden sein. Durch eine derartige Ausgestaltung kann eine gattungsgemäße Brennstoffzellenvorrichtung mit verbesserten Eigenschaften hinsichtlich einer Langzeitstabilität und/oder hinsichtlich von Herstellungskosten bereitgestellt werden. Insbesondere können durch die Ausbildung der plattenartigen Elemente aus einem keramischen Material thermo-mechanischen Spannungen und/oder eine Degradation zumindest weitgehend vermieden und somit eine Lebensdauer der Brennstoffzellenvorrichtung vorteilhaft erhöht werden. Ferner können zur plattenartigen Ausgestaltung des ersten plattenartigen Elements und des zweiten plattenartigen Elements vorteilhaft einfache und/oder kostengünstige Herstellungsverfahren zum Einsatz kommen.
Ferner wird vorgeschlagen, dass das erste plattenartige Element zumindest einen zumindest im Wesentlichen porösen Bereich aufweist. Insbesondere ist der poröse Bereich offen porös ausgebildet. Unter einem„porösen Bereich" soll in diesem Zusammenhang insbesondere ein Bereich verstanden werden, welcher Hohlräume aufweist, die insbesondere fluidtechnisch untereinander und/oder mit einer Umgebung in Verbindung stehen. Insbesondere ist der poröse Bereich zur Zuführung zumindest eines zweiten, insbesondere gasförmigen Reaktanten, vorzugsweise Sauerstoff oder Luft, vorgesehen. Hierdurch kann der Brennstoffzellenvorrichtung auf vorteilhaft einfache Weise zumindest ein zweiter Reaktant zu- geführt werden. Durch die plattenartige Ausgestaltung des ersten plattenartigen Elements kann vorteilhaft einfach und/oder zuverlässig eine Funktionsschicht auf den porösen Bereich aufgebracht werden.
Des Weiteren wird vorgeschlagen, dass das erste plattenartige Element zumin- dest einen im Wesentlichen gasdichten Bereich aufweist, welcher den porösen
Bereich in Umfangsrichtung zumindest im Wesentlichen vollständig umschließt. Insbesondere ist der gasdichte Bereich einstückig mit dem porösen Bereich des ersten plattenartigen Elements ausgebildet. Unter„einstückig" soll insbesondere zumindest stoffschlüssig verbunden verstanden werden, beispielsweise durch einen Schweißprozess, einen Klebeprozess, einen Anspritzprozess und/oder einen anderen, dem Fachmann als sinnvoll erscheinenden Prozess, und/oder vorteilhaft in einem Stück geformt verstanden werden, wie beispielsweise durch eine Herstellung aus einem Guss und/oder durch eine Herstellung in einem Ein- oder Mehrkomponentenspritzverfahren und vorteilhaft aus einem einzelnen Roh- ling. Hierdurch kann eine vorteilhaft einfache und/oder zuverlässige Abdichtung erreicht werden.
Zudem wird vorgeschlagen, dass die Brennstoffzelleneinheit zumindest eine Funktionsschicht aufweist, welche zumindest auf dem porösen Bereich angeord- net ist. Unter einer„Funktionsschicht" soll in diesen Zusammenhang insbesondere eine Schicht verstanden werden, welche insbesondere zumindest eine Anode und zumindest eine Kathode sowie zumindest ein zwischen der zumindest einen Anode und der zumindest eine Kathode angeordnetes Elektrolyt aufweist. Insbesondere kann die zumindest eine Funktionsschicht auf einer Innenseite und/oder einer Außenseite des ersten plattenartigen Elements angeordnet sein. Vorzugsweise ist die zumindest eine Funktionsschicht vollständig auf einer Innenseite der des ersten plattenartigen Elements angeordnet. Insbesondere weist die zumindest eine Funktionsschicht eine Schichtdicke von maximal 50 μηι, vorteilhaft von maximal 25 μηι und besonders vorteilhaft von maximal 15 μηι auf. Hierdurch kann ein vorteilhafter Aufbau einer Brennstoffzellenvorrichtung erreicht werden.
Insbesondere kann durch eine plattenartige Ausgestaltung des ersten plattenartigen Elements die Funktionsschicht vorteilhaft einfach und/oder zuverlässig aufgebracht werden. Ferner wird vorgeschlagen, dass das zweite plattenartige Element zumindest im Wesentlichen gasdicht ausgebildet ist. Hierdurch kann eine vorteilhaft einfache und/oder zuverlässige Abdichtung des Gasraums erreicht werden. Des Weiteren wird vorgeschlagen, dass das erste plattenartige Element in einem
Randbereich zumindest teilweise stufenförmig ausgebildet ist. Vorzugsweise ist das zweite plattenartige Element in einem Randbereich zu der stufenförmigen Ausbildung des ersten plattenartigen Elements korrespondierend stufenförmig ausgebildet. Hierdurch kann eine vorteilhafte stabile und/oder gasdichte Verbin- dung zwischen den plattenartigen Elementen erreicht werden.
Ferner wird ein platten artiges Element für eine Brennstoffzellenvorrichtung vorgeschlagen. Insbesondere ist das plattenartige Element zumindest im Wesentlichen von einem keramischen Material gebildet. Hierdurch kann ein vorteilhaft insbesondere mechanisch stabiles und/oder kostengünstiges plattenartiges Element bereitgestellt werden.
Zudem wird ein Brennstoffzellenstack mit zumindest zwei erfindungsgemäßen Brennstoffzellenvorrichtungen vorgeschlagen. Insbesondere sind die Brennstoff- Zellenvorrichtungen elektrisch und/oder fluidtechnisch verschaltet. Hierdurch kann auf einfache Weise ein Brennstoffzellenstack mit einer vorteilhaft hohen Energieausbeute realisiert werden.
Des Weiteren wird ein Verfahren zur Herstellung einer Brennstoffzellenvorrich- tung, mit einer Brennstoffzelleneinheit vorgeschlagen, welche zumindest einen
Gasraum definiert, welcher in zumindest einem Betriebszustand zu einer Aufnahme zumindest eines Reaktanten vorgesehen ist, und welche zumindest ein erstes plattenartiges Element und zumindest ein zweites plattenartiges Element aufweist, welche gemeinsam den Gasraum zumindest im Wesentlichen definie- ren, wobei die plattenartigen Elemente zumindest im Wesentlichen aus einem keramischen Material gebildet werden. Hierdurch können Herstellungskosten vorteilhaft gering ausfallen. Insbesondere können zur plattenartigen Ausgestaltung des ersten plattenartigen Elements und des zweiten plattenartigen Elements vorteilhaft einfache und/oder kostengünstige Herstellungsverfahren, beispiels- weise ein Keramikspritzgussverfahren oder ein Pressverfahren, zum Einsatz kommen.
Die erfindungsgemäße Brennstoffzellenvorrichtung soll hierbei nicht auf die oben beschriebene Anwendung und Ausführungsform beschränkt sein. Insbesondere kann die erfindungsgemäße Brennstoffzellenvorrichtung zu einer Erfüllung einer hierin beschriebenen Funktionsweise eine von einer hierin genannten Anzahl von einzelnen Elementen, Bauteilen und Einheiten abweichende Anzahl aufweisen.
Zeichnung
Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In der Zeichnung sind zwei Ausführungsbeispiele der Erfindung dargestellt. Die Zeich- nung, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in
Kombination. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen.
Es zeigen: eine Teilschnittdarstellung einer Brennstoffzellenvorrichtung mit einer Brennstoffzelleneinheit, welche ein erstes keramisches plattenartiges Element und ein zweites keramisches plattenartiges Element aufweist,
eine Teilschnittdarstellung eines Brennstoffzellenstacks mit fünf Brennstoffzellenvorrichtungen gemäß Figur 1, eine Teilschnittdarstellung einer alternativen Brennstoffzellenvorrichtung mit einer Brennstoffzelleneinheit, welche ein erstes keramisches plattenartiges Element und ein zweites keramisches plattenartiges Element aufweist und
eine Teilschnittdarstellung eines Brennstoffzellenstacks mit fünf Brennstoffzellenvorrichtungen gemäß Figur 3. Beschreibung der Ausführungsbeispiele
Figur 1 zeigt eine Teilschnittdarstellung einer Brennstoffzellenvorrichtung 10a. Die Brennstoffzellenvorrichtung 10a weist eine Brennstoffzelleneinheit 12a auf, welche einen Gasraum 14a definiert. Der Gasraum 14a ist dazu vorgesehen, in zumindest einem Betriebszustand zu einer Aufnahme zumindest eines Reaktan- ten, insbesondere Wasserstoff, aufzunehmen. Die Brennstoffzelleneinheit 12a weist ein erstes plattenartiges Element 16a und ein zweites plattenartiges Element 18a auf, welche gemeinsam den Gasraum 14a definieren. Die plattenarti- gen Elemente 16a, 18a sind zumindest im Wesentlichen von einem keramischen
Material gebildet.
Das erste plattenartige Element 16a weist einen porösen Bereich 20a auf. Insbesondere ist der poröse Bereich 20a von einem porösen Forsteritmaterial gebildet. Ferner weist das erste plattenartige Element 16a einen im Wesentlichen gasdichten Bereich 22a auf, welcher den porösen Bereich 20a in Umfangsrichtung vollständig umschließt. Der gasdichte Bereich 22a ist insbesondere von einem dichten Forsteritmaterial gebildet. Die Brennstoffzelleneinheit 12a weist des Weiteren eine Funktionsschicht 24a auf, welche auf dem porösen Bereich 20a des ersten plattenartigen Elements 16a angeordnet ist. Die Funktionsschicht 24a weist, hier nicht im Detail dargestellt, eine Anode, eine Kathode und ein zwischen der Anode und der Kathode angeordnetes Elektrolyt auf. Die Funktionsschicht 24a ist mit der Kathodenseite auf dem porösen Bereich 20a angeordnet. Die Funktionsschicht 24a ist umlaufend von einem Rahmen 32a umgeben, welcher insbeson- dere von einem gasdichten keramischen Material gebildet ist. Ein zweiter Reak- tant, insbesondere Sauerstoff oder Luft, wird der Funktionsschicht 24a in einem Betriebszustand über den porösen Bereich 20a des ersten plattenartigen Elements 16a zugeführt. Das zweite plattenartige Element 18a ist zumindest im Wesentlichen gasdicht ausgebildet. Das zweite plattenartige Element 18a ist insbe- sondere vollständig von einem dichten Forsteritmaterial gebildet. Das erste plattenartige Element 16a und das zweite plattenartige Element 18a sind insbesondere mittels einer Sinterverbindung miteinander verbunden.
Figur 2 zeigt eine Teilschnittdarstellung eines Brennstoffzellenstacks 30a. Der Brennstoffzellenstack 30a umfasst hier beispielhaft fünf identisch ausgebildete Brennstoffzellenvorrichtungen 10a. Die Brennstoffzellenvorrichtungen 10a sind elektrisch und fluidtechnisch miteinander verschaltet. Die plattenartigen Elemente 16a, 18a weisen in Randbereichen Ausnehmungen 34a auf, welche innerhalb des Brennstoffzellenstacks 30a zu Brenngaskanälen 36a oder Kathodengaska- nälen 38a verbunden sind.
In den Figuren 3 und 4 ist ein weiteres Ausführungsbeispiel der Erfindung gezeigt. Die nachfolgenden Beschreibungen und die Zeichnungen beschränken sich im Wesentlichen auf die Unterschiede zwischen den Ausführungsbeispielen, wobei bezüglich gleich bezeichneter Bauteile, insbesondere in Bezug auf Bauteile mit gleichen Bezugszeichen, grundsätzlich auch auf die Zeichnungen und/oder die Beschreibung der anderen Ausführungsbeispiele, insbesondere der Figuren 1 und 2, verwiesen werden kann. Zur Unterscheidung der Ausführungsbeispiele ist der Buchstabe a den Bezugszeichen des Ausführungsbeispiels in den Figuren 1 und 2 nachgestellt. In den Ausführungsbeispielen der Figuren 3 und 4 ist der
Buchstabe a durch die Buchstaben b ersetzt.
Figur 3 zeigt eine Teilschnittdarstellung einer alternativen Brennstoffzellenvorrichtung 10b. Die Brennstoffzellenvorrichtung 10b weist eine Brennstoffzelleneinheit 12b auf, welche einen Gasraum 14b definiert. Der Gasraum 14b ist dazu vorgesehen, in zumindest einem Betriebszustand zu einer Aufnahme zumindest eines Reaktanten, insbesondere Wasserstoff, aufzunehmen. Die Brennstoffzelleneinheit 12b weist ein erstes plattenartiges Element 16b und ein zweites plattenartiges Element 18b auf, welche gemeinsam den Gasraum 14b definieren. Die plat- tenartigen Elemente 16b, 18b sind zumindest im Wesentlichen von einem keramischen Material gebildet.
Das erste plattenartige Element 16b weist einen porösen Bereich 20b auf. Insbesondere ist der poröse Bereich 20b von einem porösen Forsteritmaterial gebildet. Insbesondere ist das erste plattenartige Element 16b vollständig porös ausgebildet. Die Brennstoffzelleneinheit 12b weist des Weiteren eine Funktionsschicht 24b auf, welche auf dem porösen Bereich 20b des ersten plattenartigen Elements 16b angeordnet ist. Die Funktionsschicht 24b weist, hier nicht im Detail dargestellt, eine Anode, eine Kathode und ein zwischen der Anode und der Ka- thode angeordnetes Elektrolyt auf. Die Funktionsschicht 24b ist mit der Katho- denseite auf dem porösen Bereich 20b angeordnet. Die Funktionsschicht 24b ist umlaufend von einem Rahmen 32b umgeben, welcher insbesondere von einem gasdichten keramischen Material gebildet ist. Ein zweiter Reaktant, insbesondere Sauerstoff oder Luft, wird der Funktionsschicht 24b in einem Betriebszustand über den porösen Bereich 20b des ersten plattenartigen Elements 16b zugeführt. Das zweite plattenartige Element 18b ist zumindest im Wesentlichen gasdicht ausgebildet. Das zweite plattenartige Element 18b ist insbesondere vollständig von einem dichten Forsteritmaterial gebildet.
Das erste plattenartige Element 16b ist in einem Randbereich 26b stufenförmig ausgebildet. Das zweite plattenartige Element 18b ist in einem Randbereich 28b zu der stufenförmigen Ausbildung des ersten plattenartigen Elements 16b korrespondierend stufenförmig ausgebildet. Das erste plattenartige Element 16b ist vollständig in das zweite plattenartige Element 18b integriert, sodass das erste plattenartige Element 16b in Umfangsrichtung vollständig von dem gasdichten Material des zweiten plattenartigen Element 18b umschlossen ist. Das erste plattenartige Element 16b und das zweite plattenartige Element 18b sind insbesondere mittels einer Sinterverbindung miteinander verbunden.
Figur 4 zeigt eine Teilschnittdarstellung eines Brennstoffzellenstacks 30b. Der Brennstoffzellenstack 30b umfasst hier beispielhaft fünf identisch ausgebildete Brennstoffzellenvorrichtungen 10b. Die Brennstoffzellenvorrichtungen 10b sind elektrisch und fluidtechnisch miteinander verschaltet. Die plattenartigen Elemente 16b, 18b weisen in Randbereichen Ausnehmungen 34b auf, welche innerhalb des Brennstoffzellenstacks 30b zu Brenngaskanälen 36b oder Kathodengaska- nälen 38b verbunden sind.

Claims

Ansprüche
1. Brennstoffzellenvorrichtung, mit einer Brennstoffzelleneinheit (12a; 12b), welche zumindest einen Gasraum (14a; 14b) definiert, welcher in zumindest einem Betriebszustand zu einer Aufnahme zumindest eines Reaktan- ten vorgesehen ist, und welche zumindest ein erstes plattenartiges Element
(16a; 16b) und zumindest ein zweites plattenartiges Element (18a; 18b) aufweist, welche gemeinsam den Gasraum (14a; 14b) zumindest im Wesentlichen definieren, dadurch gekennzeichnet, dass die plattenartigen Elemente (16a, 18a; 16b ,18b) zumindest im Wesentlichen von einem ke- ramischen Material gebildet sind.
2. Brennstoffzellenvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das erste plattenartige Element (16a, 16b) zumindest einen zumindest im Wesentlichen porösen Bereich (20a; 20b) aufweist.
3. Brennstoffzellenvorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass das erste plattenartige Element (16a) zumindest einen im Wesentlichen gasdichten Bereich (22a) aufweist, welcher den porösen Bereich (20a) in Umfangsrichtung zumindest im Wesentlichen vollständig um- schließt.
4. Brennstoffzellenvorrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Brennstoffzelleneinheit (12a; 12b) zumindest eine Funktionsschicht (24a; 24b) aufweist, welche zumindest auf dem porösen Bereich (20a; 20b) angeordnet ist.
5. Brennstoffzellenvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das zweite plattenartige Element (18a; 18b) zumindest im Wesentlichen gasdicht ausgebildet ist. Brennstoffzellenvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das erste plattenartige Element (16b) in einem Randbereich (26b) zumindest teilweise stufenförmig ausgebildet ist.
Brennstoffzellenvorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass das zweite plattenartige Element (18b) in einem Randbereich (28b) zu der stufenförmigen Ausbildung des ersten plattenartigen Elements (16b) korrespondierend stufenförmig ausgebildet ist.
Plattenartiges Element für eine Brennstoffzellenvorrichtung (10a; 10b) nach einem der vorhergehenden Ansprüche
Brennstoffzellenstack mit zumindest zwei Brennstoffzellenvorrichtungen (10a; 10b) nach einem der Ansprüche 1 bis 8.
Verfahren zur Herstellung einer Brennstoffzellenvorrichtung (10a; 10b), insbesondere nach einem der Ansprüche 1 bis 8, mit einer Brennstoffzelleneinheit (12a; 12b), welche zumindest einen Gasraum (14a; 14b) definiert, welcher in zumindest einem Betriebszustand zu einer Aufnahme zumindest eines Reaktanten vorgesehen ist, und welche zumindest ein erstes plattenartiges Element (16a; 16b) und zumindest ein zweites plattenartiges Element (18a; 18b) aufweist, welche gemeinsam den Gasraum (14a; 14b) zumindest im Wesentlichen definieren, dadurch gekennzeichnet, dass die plattenartigen Elemente (16a; 18a; 16b, 18b) zumindest im Wesentlichen aus einem keramischen Material gebildet werden.
PCT/EP2016/074668 2015-12-21 2016-10-14 Brennstoffzellenvorrichtung WO2017108225A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16781785.7A EP3394921A1 (de) 2015-12-21 2016-10-14 Brennstoffzellenvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015226121.2 2015-12-21
DE102015226121.2A DE102015226121A1 (de) 2015-12-21 2015-12-21 Brennstoffzellenvorrichtung

Publications (1)

Publication Number Publication Date
WO2017108225A1 true WO2017108225A1 (de) 2017-06-29

Family

ID=57136885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/074668 WO2017108225A1 (de) 2015-12-21 2016-10-14 Brennstoffzellenvorrichtung

Country Status (3)

Country Link
EP (1) EP3394921A1 (de)
DE (1) DE102015226121A1 (de)
WO (1) WO2017108225A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012221419A1 (de) * 2012-11-23 2014-05-28 Robert Bosch Gmbh Tubulare Elektrolysezelle
US20140178795A1 (en) * 2012-12-24 2014-06-26 Samsung Electro-Mechanics Co., Ltd. Solid oxide fuel cell and method of manufacturing interconnector for solid oxide fuel cell
DE102014209758A1 (de) * 2014-05-22 2015-11-26 Robert Bosch Gmbh Brennstoffzellenvorrichtung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450336B1 (de) * 1990-03-13 1994-08-17 Mitsubishi Jukogyo Kabushiki Kaisha Energiegewinnungssystem mit flachen Brennstoffzellen aus festen Elektrolyten
JP2945157B2 (ja) * 1991-03-27 1999-09-06 日本碍子株式会社 固体電解質型燃料電池及びその製造方法
GB9403234D0 (en) * 1994-02-19 1994-04-13 Rolls Royce Plc A solid oxide fuel cell stack and a reactant distribution member therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012221419A1 (de) * 2012-11-23 2014-05-28 Robert Bosch Gmbh Tubulare Elektrolysezelle
US20140178795A1 (en) * 2012-12-24 2014-06-26 Samsung Electro-Mechanics Co., Ltd. Solid oxide fuel cell and method of manufacturing interconnector for solid oxide fuel cell
DE102014209758A1 (de) * 2014-05-22 2015-11-26 Robert Bosch Gmbh Brennstoffzellenvorrichtung

Also Published As

Publication number Publication date
EP3394921A1 (de) 2018-10-31
DE102015226121A1 (de) 2017-06-22

Similar Documents

Publication Publication Date Title
DE102013108413B4 (de) Verfahren zum Herstellen eines Brennstoffzellenstapels sowie Brennstoffzellenstapel und Brennstoffzelle/Elektrolyseur
EP4093901B1 (de) Vorrichtung und verfahren zur kohlenstoffdioxid- oder kohlenstoffmonoxid-elektrolyse
DE102005020332B4 (de) Verfahren zum Herstellen einer Versorgungsplatte für elektrochemische Systeme, Versorgungsplatte und deren Verwendung
WO2015172946A1 (de) Bipolarplatte und schichtstruktur auf der bipolarplatte
DE102017220595A1 (de) Kompressionsvorrichtung für einen Brennstoffzellenstapel
EP3652798B1 (de) Brennstoffzellenplatte, bipolarplatte und brennstoffzellenaufbau
EP1246283B1 (de) Elektrisch isolierende Abstandshalter/Dichtungsanordnung
WO2008138787A1 (de) Hochtemperatur-brennstoffzellenmodul und verfahren zur herstellung eines hochtemperatur-brennstoffzellenmoduls
WO2000008701A2 (de) Verfahren zur herstellung einer hochtemperatur-brennstoffzelle
DE10244884A1 (de) Brennstoffzellen-Stapelkörper
DE102010039557A1 (de) Metall-Luft-Zelle mit hoher Kapazität
EP3146586B1 (de) Brennstoffzellenvorrichtung
WO2017108225A1 (de) Brennstoffzellenvorrichtung
EP3542409B1 (de) Brennstoffzellenvorrichtung
WO2015176965A1 (de) Brennstoffzellenvorrichtung
WO2016016181A1 (de) Brennstoffzellenvorrichtung
DE102010015504A1 (de) Gasdiffusionsschicht für eine Brennstoffzelle, Brennstoffzelle und Verfahren zum Fertigen einer Gasdiffusionsschicht
EP1169635B1 (de) Elektrochemischer messfühler und verfahren zu dessen herstellung
DE10358457A1 (de) Distanzhalterelement für einen Brennstoffzellenstapel
DE102020114960A1 (de) Herstellungsverfahren für eine Brennstoffzelle
DE102011051440A1 (de) Verfahren zur Herstellung eines Interkonnektors für eine Hochtemperatur-Brennstoffzelle, Interkonnektor sowie Hochtemperatur-Brennstoffzelle
DE102017210575A1 (de) Brennstoffzellenvorrichtung
DE10350478A1 (de) Brennstoffzelleneinheit
DE102021129641A1 (de) Verfahren zur Herstellung eines Zellgehäuses für eine Batteriezelle und ein Zellgehäuse
WO2015082601A1 (de) Polarplatte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16781785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE