WO2017107664A1 - 一种有价金属的综合回收处理装置及处理方法 - Google Patents
一种有价金属的综合回收处理装置及处理方法 Download PDFInfo
- Publication number
- WO2017107664A1 WO2017107664A1 PCT/CN2016/103865 CN2016103865W WO2017107664A1 WO 2017107664 A1 WO2017107664 A1 WO 2017107664A1 CN 2016103865 W CN2016103865 W CN 2016103865W WO 2017107664 A1 WO2017107664 A1 WO 2017107664A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lead
- molten pool
- zinc
- slag
- layer
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/001—Dry processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B13/00—Obtaining lead
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B13/00—Obtaining lead
- C22B13/02—Obtaining lead by dry processes
- C22B13/025—Recovery from waste materials
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B19/00—Obtaining zinc or zinc oxide
- C22B19/30—Obtaining zinc or zinc oxide from metallic residues or scraps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B17/00—Furnaces of a kind not covered by any preceding group
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the invention belongs to the field of valuable metal smelting, and in particular relates to a comprehensive recycling processing device and a processing method for valuable metals.
- the existing pyrometallurgical zinc smelting process has a closed blast furnace, an electric furnace and a vertical tank process, but the electric furnace and the vertical tank have high production cost, high energy consumption and low efficiency, and are listed as a backward process that is explicitly eliminated by the state, and as a smelting lead at the same time.
- Zinc process - closed blast furnace process ISP
- ISP Zinc process - closed blast furnace process
- SO 2 escape during the sintering process causes pollution, and a large amount of coke is consumed during the reduction process, and the energy consumption is high, coupled with complex facilities and investment
- Higher shortcomings have entered the phase-out period. Therefore, it is imperative to develop a new lead-zinc smelting process.
- the secondary resources and raw ore resources containing zinc and lead oxides usually contain valuable metals such as Fe, Cu, Cd, Sb, Bi, and Sn, and even precious metals such as In, Au, and Ag, which are used to smelt lead and zinc.
- valuable metals such as Fe, Cu, Cd, Sb, Bi, and Sn
- precious metals such as In, Au, and Ag
- the present invention aims to provide a comprehensive recycling processing device and a processing method for valuable metals, so as to effectively treat Fe, Cu, Cd, Sb, Bi, and the like while smelting lead or zinc oxide materials. Problems with metals such as Sn, In, Au, and Ag.
- a comprehensive recovery processing device for valuable metals including a molten pool 1, a reaction tower 2 and a flue 3;
- the molten pool 1 is disposed at a lower portion of the reaction tower 2, and a nozzle 4 is disposed at a top end of the reaction tower 2;
- the molten pool 1 is provided with a space for accommodating the crude lead alloy layer 11, the molten iron layer 12 and the slag layer 13, and the molten pool 1 is further provided with a circulation space 14 connecting the reaction tower 2 and the flue 3, and the circulation
- the space 14 is located above the slag layer 13 , and the wall of the molten pool 1 corresponding to the slag layer 13 is provided with a side blowing arrangement;
- a first retaining wall 5 is disposed on the left side of the molten pool 1, and a left side of the first retaining wall 5 and a side wall of the molten pool 1 form a lead-filling space for containing lead liquid, and the first retaining wall 5 blocks the space.
- the material sprayed from the nozzle 4 prevents the material from falling into the lead-filling space, and the lower portion of the first retaining wall 5 penetrates into the thick lead alloy layer 11, and the first retaining wall 5 completely blocks the molten iron layer 12 And the slag layer 13 to prevent it from flowing into the lead-filling space, the lead-free space corresponding to the side wall of the molten pool 1 is provided with a lead liquid discharge port 8;
- a second retaining wall 9 is disposed on the right side of the molten pool 1 , a bottom end of the second retaining wall 9 is closely connected to the bottom wall of the molten pool 1 , and a top end of the second retaining wall 9 is located in the molten iron layer 12 .
- a right side of the second retaining wall 9 and a side of the molten pool 1 form a molten iron space, and a side of the molten pool 1 corresponding to the molten iron space is provided with a taphole 10,
- the slag opening 6 is provided on the side wall of the molten pool 1 corresponding to the slag layer 13.
- the molten pool 1 is convex to the left.
- the arrangement of the first retaining wall 5 and the second retaining wall 9 ensures that the lead liquid of the molten lead alloy layer 11 can only be compressed into the lead space, so that the lead liquid can be smoothly discharged, and at the same time, the iron space is also improved.
- the thickness of the medium iron layer makes it easy to discharge.
- the arrangement of the second retaining wall 9 delays the overall speed of the melt moving to the right in the molten pool 1 to a certain extent, facilitating the clarification stratification of the slag layer and the molten metal, and also spraying the side blowing nozzle 7
- the reducing agent is more sufficient for the reduction of the metal oxide in the slag layer 13, thereby lowering the content of the metal oxide entering the slag and improving the recovery rate of the metal.
- the top of the lead space is in communication with the flow space 14.
- the bottom end of the molten pool 1 is provided with an venting opening 15.
- the side blowing arrangement comprises a plurality of side blowing nozzles 7, each of the side blowing nozzles 7 along The molten pool 1 is disposed laterally.
- the lower portion of the second retaining wall 9 is inserted into the bottom of the molten pool 1.
- the location of the tap opening 6 corresponds to the lower portion of the slag layer 13.
- the location of the taphole 10 corresponds to a lower portion of the molten iron layer 12.
- the comprehensive recycling processing device and processing method of the valuable metal according to the present invention has the following advantages:
- the comprehensive recovery processing device for valuable metals increases the recovery rate of valuable metals (since the reduction is sufficient, the amount of metal entering the slag is small); and the arrangement of the first retaining wall and the second retaining wall can The metal that has been reduced is smoothly discharged.
- Another object of the present invention is to provide a method for comprehensive recovery of valuable metals, comprising the following steps:
- the dried ore powder is injected into the comprehensive recovery processing device of the valuable metal through the nozzle 4 disposed at the top of the reaction tower 2 together with the carbonaceous fuel, oxygen and flux;
- the metal oxide is dispersed in a high-temperature hot, CO-reducing gas-removing reaction column 2 with a large specific surface area, and is rapidly completed by heat transfer, mass transfer, and gas-solid and gas-liquid reactions. Reduction and melting of oxides such as zinc and lead in the powder; the reduced Zn and Cd are rapidly vaporized and enter the flue 3 through the circulation space 14, and the reduced Pb, Fe, Cu, Sb, Sn, In, Bi have a small amount of volatilization into the flue 3;
- the metal oxide in the reaction tower 2 that is not completely reduced falls in the molten pool 1, and the molten pool 1 is provided with a side blowing arrangement, and the coal powder is respectively injected into the melt through the side blowing and Oxygen, providing heat to the molten pool 1 and achieving convection of the melt, while maintaining the molten pool 1 in a strong reducing environment, so that the oxides of Zn, Pb, Fe, Cu, Sb, Bi, Sn, In, Cd are thoroughly at 1350
- the reduction is completed in the high temperature molten pool 1 of -1650 ° C, wherein most of the reduced Zn and Cd are rapidly vaporized away from the melt into the flue 3, and the reduced Pb, Fe, Cu, Sb, Sn, In Bi, except for a small amount of volatilization into the flue 3, the other flows through the slag layer 13 and enters the lower part of the molten pool 1; since the amount of Fe and Pb is relatively large relative to other metals, and the Fe
- the molten pool 1 forms a three-layer structure of the slag layer 13, the molten iron layer 12, and the crude lead alloy layer 11 from top to bottom, and at the same time, Cu, Zn, Sb, Valuable metals such as Bi, Sn, and Cd, and noble metals such as In, Au, and Ag are easily dissolved in high-temperature lead water, and lead droplets are reduced and precipitated in the precipitation.
- a small amount of Cu, Sb, Bi, Sn, In, Au, Ag and other metals present in the molten pool 1 and a small amount of unvaporized Zn and Cd are formed to form a thick lead alloy layer 11;
- the lead liquid discharge port 8 is discharged to obtain crude lead;
- S5 Refining of crude lead and crude zinc:
- the crude lead contains a small amount of Zn, Cu, Sb, Bi, Sn, In, Au, Ag, Cd, which is separated by conventional pyrometallurgical or electrolytic refining, Pb is purified and Zn is separated.
- the crude zinc contains a small amount of Pb, Fe, Cu, Sb, Sn, Cd, In, Bi, and the subsequent use of the difference in the boiling point of the metal, the rectification process can be employed Or other conventional methods to purify Zn and separate Pb, Fe, Cu, Sb, Sn, Cd, In, Bi.
- the temperature in the reaction column 2 is preferably 1200 °C.
- the material in step S1 is selected from the group consisting of secondary resources, raw ore resources or smelting raw materials.
- the secondary resources are:
- the steel plant contains zinc soot, such as blast furnace gas ash/mud, converter soot, electric furnace soot;
- Zinc oxide powder enriched by a device such as a smelting furnace, a rotary kiln or a rotary hearth furnace;
- wastes and dusts containing zinc or lead oxides such as waste circuit board fire smelting fumes.
- Raw ore resources are:
- lead oxide ore such as leucite, molybdenum ore.
- Smelting raw materials are:
- the comprehensive recovery method of valuable metals according to the present invention has the following advantages:
- the comprehensive recovery method of valuable metals solves the problem of environmental pollution of zinc-containing lead solid waste, and realizes raw materials Comprehensive recycling of a variety of valuable metals; at the same time, the method eliminates the raw material sintering process, the process is short, the whole process is closed, energy saving and environmental protection.
- FIG. 1 is a schematic structural diagram of an embodiment of an embodiment of the present invention.
- FIG. 2 is another schematic structural diagram of an embodiment according to an embodiment of the present invention.
- 1-melt pool 1-melt pool; 2-reaction tower; 3-flue; 4-nozzle; 5-first retaining wall; 6-slag outlet; 7-side blow nozzle; 8- lead liquid discharge port; Retaining wall, 10-iron outlet, 11-crude lead alloy layer, 12-iron layer, 13-slag layer, 14-flow space, 15-air outlet.
- first”, “second”, and the like are used for the purpose of description only, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
- features defining “first”, “second”, etc. may include one or more of the features, either explicitly or implicitly.
- "a plurality” means two or more unless otherwise stated.
- connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
- Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
- the specific meaning of the above terms in the present invention can be understood by a person of ordinary skill in the art.
- a comprehensive recovery processing device for valuable metals comprising a molten pool 1, a reaction tower 2 and a flue 3;
- the molten pool 1 is disposed in the lower part of the reaction tower 2, and the nozzle 2 is provided at the top end of the reaction tower 2;
- the molten pool 1 is provided with a space for accommodating the crude lead alloy layer 11, the molten iron layer 12 and the slag layer 13.
- the molten pool 1 is further provided with a circulation space 14 connecting the reaction tower 2 and the flue 3, and the circulation space 14 is located at the slag layer 13.
- the side of the molten pool 1 corresponding to the slag layer 13 is provided with a side blowing arrangement;
- the first retaining wall 5 is disposed on the left side of the molten pool 1, and the left side of the first retaining wall 5 and the side wall of the molten pool 1 form a lead-filling space for containing lead liquid, and the first retaining wall 5 blocks the material sprayed from the nozzle 4 to avoid materials. Falling into the lead space, the first retaining wall 5 completely blocks the molten iron layer 12 and the slag layer 13. The lower portion of the first retaining wall 5 penetrates into the thick lead alloy layer 11, and the lead liquid on the side wall of the molten pool 1 corresponding to the lead space is provided.
- the discharge port 8, in this embodiment, the reaction tower 2 is located on the right side of the first retaining wall 5 to prevent the material sprayed from the nozzle 4 from falling into the lead space;
- the second retaining wall 9 is disposed on the right side of the molten pool 1, the bottom end of the second retaining wall 9 is closely connected with the bottom wall of the molten pool 1, the top of the second retaining wall 9 is located in the molten iron layer 12, and the second retaining wall 9 is melted to the right.
- the side wall of the pool 1 forms a steel-filled space for the molten iron.
- the side wall of the molten pool 1 corresponding to the molten iron space is provided with a taphole 10, and the side wall of the molten pool 1 corresponding to the slag layer 13 is provided with a tapping opening 6.
- the content of lead is much lower than the amount of iron and slag, and the first retaining wall 5 can block the slag and molten iron, so that the first retaining wall 5 and the side wall of the corresponding molten pool 1 form only one lead water.
- the small space makes the liquid level of lead water greatly improved, and even when the lead layer is very thin, the lead water can be smoothly discharged.
- the second wall 9 can block the lead liquid, and at the same time, a precipitation environment of molten iron-like slag similar to the blast furnace molten pool is formed between the second wall 9 and the adjacent side wall of the molten pool 1, and the slag layer and the molten iron layer are lifted.
- the thickness of the second wall 9 can be used to appropriately reduce the flow rate of the melt in the molten pool 1 to the slag side, so that the metal oxide of the molten pool 1 is sufficiently immersed in a strong reducing environment. Reducing and layering clarification to improve metal recovery.
- the bottom end of the molten pool 1 is provided with an air venting opening 15 .
- the left side and the right bottom end of the molten pool 1 are respectively provided with an venting opening 15 and the venting opening 15 is located in the second block.
- the venting port 15 When the venting port 15 is normally produced, it is closed. When impurities appear to penetrate into the bottom of the lead space, the lead liquid discharge port or impurities may not be infiltrated into the bottom of the galvanic space, and the venting port 15 may be used to discharge the impurities. Go out; in case of failure or routine maintenance, for example, when the refractory brick at the bottom of the molten pool needs to be replaced, the venting opening can be opened to drain the melt in the molten pool.
- the molten pool 1 is convex to the left.
- the top end of the lead space is in communication with the flow space 14.
- the top end of the first retaining wall 5 is lower than but close to the top of the molten pool 1 to ensure that the material sprayed from the nozzle 4 of the reaction tower cannot fall completely between the first retaining wall 5 and the side wall of the molten pool 1. Space.
- the side blowing arrangement comprises a plurality of side blowing nozzles 7, each side blowing nozzle 7 being arranged transversely along the molten pool 1.
- the lower portion of the second retaining wall 9 is inserted into the bottom of the molten pool 1.
- the position of the tap opening 6 corresponds to the lower portion of the slag layer 13.
- the location of the taphole 10 corresponds to the lower portion of the molten iron layer 12.
- the embodiment of the invention further provides a method for comprehensively recovering valuable metals, comprising the following steps:
- the dried ore powder is injected into the comprehensive recovery processing device of the valuable metal through the nozzle 4 disposed at the top of the reaction tower 2 together with the carbonaceous fuel, oxygen and flux;
- the metal oxide is dispersed in a high-temperature hot, CO-reducing gas-removing reaction column 2 with a large specific surface area, and is rapidly completed by heat transfer, mass transfer, and gas-solid and gas-liquid reactions. Reduction and melting of oxides such as zinc and lead in the powder; the reduced Zn and Cd are rapidly vaporized and enter the flue 3 through the circulation space 14, and the reduced Pb, Fe, Cu, Sb, Sn, In, Bi have a small amount of volatilization into the flue 3;
- the metal oxide in the reaction tower 2 that is not completely reduced falls in the molten pool 1, and the molten pool 1 is provided with a side blowing arrangement, and the coal powder is respectively injected into the melt through the side blowing and Oxygen, providing heat to the molten pool 1 and achieving convection of the melt, while maintaining the molten pool 1 in a strong reducing environment, so that the oxides of Zn, Pb, Fe, Cu, Sb, Bi, Sn, In, Cd are thoroughly at 1350
- the reduction is completed in the high temperature molten pool 1 of -1650 ° C, wherein most of the reduced Zn and Cd are rapidly vaporized away from the melt into the flue 3, and the reduced Pb, Fe, Cu, Sb, Sn, In Bi, except for a small amount of volatilization into the flue 3, the other flows through the slag layer 13 and enters the lower part of the molten pool 1; since the amount of Fe and Pb is relatively large relative to other metals, and the Fe
- the molten pool 1 forms a three-layer structure of the slag layer 13, the molten iron layer 12, and the crude lead alloy layer 11 from top to bottom, and at the same time, Cu, Zn, Sb, Valuable metals such as Bi, Sn, and Cd, and noble metals such as In, Au, and Ag are easily dissolved in high-temperature lead water, and lead droplets are reduced and precipitated in the precipitation.
- a small amount of Cu, Sb, Bi, Sn, In, Au, Ag and other metals present in the molten pool 1 and a small amount of unvaporized Zn and Cd are formed to form a thick lead alloy layer 11;
- the lead liquid discharge port 8 is discharged to obtain crude lead;
- S5 Refining of crude lead and crude zinc:
- the crude lead contains a small amount of Zn, Cu, Sb, Bi, Sn, In, Au, Ag, Cd, and is subjected to copper refining and then electrolytic refining to purify Pb and separate Zn and Cu.
- Sb, Bi, Sn, In, Au, Ag, Cd crude zinc contains a small amount of Pb, Fe, Cu, Sb, Sn, Cd, In, Bi, and subsequent use of the difference in boiling point of the metal, can be purified by distillation process Zn and separate Pb, Fe, Cu, Sb, Sn, Cd, In, Bi.
- reaction column 2 The main chemical reactions occurring in reaction column 2 are:
- the temperature in the reaction column 2 is preferably 1150 ° C, 1200 ° C or 1250 ° C.
- the temperature in the molten pool 1 is preferably 1450 ° C, 1500 ° C, 1550 ° C or 1600 ° C.
- the carbonaceous fuel in step S2 is one or more of pulverized coal, fuel oil, natural gas, coke, and charcoal.
- the solvent in the step S2 is one or more of CaO, limestone or dolomite, so that the SiO 2 contained in the raw material can be slag-forming with the flux.
- the raw material in step S1 is selected from the group consisting of secondary resources, raw ore resources or smelting raw materials.
- the secondary resources can be:
- the steel plant contains zinc soot, such as blast furnace gas ash/mud, converter soot, electric furnace soot;
- Zinc oxide powder enriched by a device such as a smelting furnace, a rotary kiln or a rotary hearth furnace;
- wastes and dusts containing zinc or lead oxides such as waste circuit board fire smelting fumes.
- Raw ore resources are:
- lead oxide ore such as leucite, molybdenum ore.
- the smelting raw material is a mixture of one or more of secondary resources and/or raw ore resources.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- General Engineering & Computer Science (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
一种有价金属的综合回收处理装置及处理方法。该有价金属的综合回收处理装置包括熔池(1)、反应塔(2)及烟道(3),并且在熔池(1)中设置了第一挡墙(5)和第二挡墙(9)。采用该装置的有价金属的综合回收方法实现了锌铅冶炼的节能降耗、资源高效回收及解决了含铅或锌固废环境污染等问题。
Description
本发明属于有价金属冶炼领域,尤其是涉及一种有价金属的综合回收处理装置及处理方法。
中国的锌产量居世界第一,2014年生产锌金属含量达561万吨,其中绝大部分采用湿法工艺,但湿法炼锌工艺投资大、设备维护麻烦、生产成本高,浸出渣还要采用烟化炉、回转窑、转底炉、顶吹炉等火法工艺处理,致使湿法炼锌又必须辅助火法冶金工序,流程长、设备复杂、投资大、污染排放点多、能耗大幅提高。目前现存的火法炼锌工艺有密闭鼓风炉、电炉、竖罐工艺,但电炉、竖罐生产成本高、能耗大、效率低,被国家列为明令淘汰的落后工艺,而作为同时可熔炼铅锌的工艺——密闭鼓风炉工艺(ISP),存在落后的烧结工序,烧结过程中SO2逸散造成污染,且还原过程中会消耗大量焦炭,能耗较高,再加上配套设施复杂、投资高等缺点,已进入淘汰期。因此,研发新的铅锌熔炼工艺势在必行。
在国内黑色和有色冶金领域,存在多种含铅锌氧化物的固体废物如高炉烟尘、电炉烟尘、转炉烟尘、有色(铅矿石、锌矿石、铅锌矿石、铅锌铜矿石、铅锌硫矿石、铅锌铜硫矿石、铅锡矿石、铅锑矿石、锌铜矿石)火法冶炼烟尘、冶炼渣、湿法浸出渣、硫化铅或硫化锌烧结矿或焙砂等二次资源,另外,在自然界还存在一定储量的锌铅氧化矿类的矿物资源。上述含锌铅氧化物的二次资源和原矿资源中,通常还含有Fe、Cu、Cd、Sb、Bi、Sn等有价金属,甚至还含In、Au、Ag等贵金属,在冶炼铅锌的同时,如何综合回收处理上述金属,目前世界范围内还没有合适的方法。
因而,为实现锌铅冶炼的节能降耗、资源高效回收及解决含铅锌固废环境污染等问题,研究开发新的含铅锌铁等多金属氧化物类物料的综合回收处理冶炼工艺势在必行。
对于多金属(二种及以上)的熔池熔炼,如果两种金属不互溶且体积比达到8:1以上,那么,含量低的金属即使被还原出来,但因常规熔池结构的限制,很难被顺畅的排出,从而使这种混合熔炼不能进行。例如:当铁铅比例达到10:1时,铅很难被放出。
发明内容
有鉴于此,本发明旨在提出一种有价金属的综合回收处理装置及处理方法,以解决在冶炼铅或锌氧化物类物料的同时,有效回收处理Fe、Cu、Cd、Sb、Bi、Sn、In、Au及Ag等金属的问题。
为达到上述目的,本发明的技术方案是这样实现的:
一种有价金属的综合回收处理装置,包括熔池1、反应塔2及烟道3;
所述熔池1设置在所述反应塔2的下部,所述反应塔2顶端设有喷嘴4;
所述熔池1内设有容纳粗铅合金层11、铁水层12及渣层13的空间,所述熔池1内还设有连通反应塔2与烟道3的流通空间14,所述流通空间14位于所述渣层13上方,所述渣层13对应的所述熔池1壁上设有侧吹布置;
所述熔池1左侧设有第一挡墙5,所述第一挡墙5左侧与所述熔池1侧壁形成盛装铅液的盛铅空间,所述第一挡墙5挡住所述喷嘴4喷出的物料以避免物料落入所述盛铅空间,所述第一挡墙5下部深入所述粗铅合金层11中,所述第一挡墙5完全挡住所述铁水层12及渣层13以避免其流入所述盛铅空间,所述盛铅空间对应的熔池1侧壁上设有铅液排放口8;
所述熔池1右侧设有第二挡墙9,所述第二挡墙9底端与所述熔池1底壁紧密相连,所述第二挡墙9顶端位于所述铁水层12中,所述第二挡墙9右侧与所述熔池1侧壁形成盛铁水的盛铁空间,所述盛铁空间对应的所述熔池1侧壁上设有出铁口10,与所述渣层13对应的熔池1侧壁上设有出渣口6。优选的,所述熔池1向左凸。
第一挡墙5和第二挡墙9的设置,保证了熔池粗铅合金层11的铅液只能被压缩进入盛铅空间,使铅液能顺利排出,同时,也提高了盛铁空间中铁水层的厚度,使其便于排放。此外,第二挡墙9的设置,在一定程度上延缓了熔池1内熔体向右移动的整体速度,便于渣层和金属熔体的澄清分层,同时也使侧吹喷管7喷入的还原剂对渣层13中金属氧化物的还原更充分,使进入渣中的金属氧化物含量降低,提高了金属的回收率。
根据本发明的一个实施例,所述盛铅空间顶端与所述流通空间14连通。
根据本发明的一个实施例,所述熔池1底端设有排空口15。
根据本发明的一个实施例,所述侧吹布置包括多个侧吹喷管7,各所述侧吹喷管7沿所
述熔池1横向设置。
根据本发明的一个实施例,所述第二挡墙9下部插入所述熔池1底部。
根据本发明的一个实施例,所述出渣口6所在位置与所述渣层13下部对应。
根据本发明的一个实施例,所述出铁口10所在位置与所述铁水层12的下部对应。
相对于现有技术,本发明所述的有价金属的综合回收处理装置及处理方法具有以下优势:
本发明所述的有价金属的综合回收处理装置提高了有价的金属的回收率(由于还原充分,进入渣里的金属量少);而且第一挡墙及第二挡墙的设置,能够使被还原出来的金属被顺畅的排出。
本发明的另一目的在于提出一种有价金属的综合回收方法,包括如下步骤:
S1:以锌铅氧化物为主要成分的物料需要进行混合、破碎和干燥处理,得到干燥的矿粉;
S2:干燥的矿粉与含碳燃料、氧气及熔剂一起,经设置在所述反应塔2顶部的喷嘴4喷入所述的有价金属的综合回收处理装置中;所述反应塔2内的温度为1100-1350℃,金属氧化物以极大的比表面积状态弥撒于高温炽热、充满CO还原气分的反应塔2中,通过传热、传质和气-固、气-液反应,迅速完成粉料中锌铅等氧化物的还原和熔化;被还原出来的Zn和Cd迅速气化通过流通空间14进入烟道3,被还原出来的Pb、Fe、Cu、Sb、Sn、In、Bi有少量挥发进入烟道3;
S3:所述反应塔2内未被完全还原的金属氧化物降落在所述熔池1中,所述熔池1中设有侧吹布置,通过侧吹向熔体中分别喷吹煤粉和氧气,为熔池1提供热量并实现熔体的对流,同时使熔池1保持强还原环境,使Zn、Pb、Fe、Cu、Sb、Bi、Sn、In、Cd的氧化物彻底的在1350-1650℃高温熔池1中完成还原,这其中,还原出来的Zn和Cd绝大部分会迅速气化离开熔体进入烟道3,而还原出来的Pb、Fe、Cu、Sb、Sn、In、Bi在除了有少量挥发进入烟道3外,其余都流经渣层13后进入熔池1下部;由于Fe和Pb的量相对于其他金属较大,且Fe和Pb熔体完全不互溶,金属层分为铁水层和粗铅合金层,由于密度的原因,熔池1从上到下形成渣层13、铁水层12、粗铅合金层11三层结构,同时,Cu、Zn、Sb、Bi、Sn、Cd等有价金属和In、Au、Ag等贵金属易溶解于高温的铅水中,在还原析出的铅滴进行聚集并在向下流动过程中,不断捕集熔池1内存在的少量的Cu、Sb、Bi、Sn、In、Au、Ag等金属及少量未蒸发的Zn、Cd,形成粗铅合金层11;铅水经铅液排放口8排出后得到粗铅;
S4:冷凝收锌:烟道3中的金属蒸汽经引风机引入冷凝系统得到粗锌;
S5:粗铅及粗锌的精炼:粗铅中含少量Zn、Cu、Sb、Bi、Sn、In、Au、Ag、Cd,采用常规的火法精炼或电解精炼进行分离,提纯Pb并分离Zn、Cu、Sb、Bi、Sn、In、Au、Ag、Cd;粗锌中含少量Pb、Fe、Cu、Sb、Sn、Cd、In、Bi,后续利用金属沸点的差异,可采用精馏工艺或其他常规方法来提纯Zn并分离Pb、Fe、Cu、Sb、Sn、Cd、In、Bi。
根据本发明的一个实施例,所述反应塔2内的温度优选为1200℃。
根据本发明的一个实施例,步骤S1中物料选自:二次资源、原矿资源或冶炼原料。
其中,二次资源为:
①钢铁厂含锌烟尘,如高炉瓦斯灰/泥、转炉烟尘、电炉烟尘;
②有色(如铅矿石、锌矿石、铅锌矿石、铅锌铜矿石、铅锌硫矿石、铅锌铜硫矿石、铅锡矿石、铅锑矿石、锌铜矿石、废杂铜)火法冶炼烟尘、冶炼渣、浮渣、熔析渣、湿法浸出渣、铁矾渣等;
③铅锌硫化矿类烧结或焙烧产物;
④被烟化炉、回转窑、转底炉等装置富集后的氧化锌粉;
⑤热镀锌过程产生的热镀锌渣、锌灰;
⑥含Pb-Zn的工业废料和废水处理过程产出的沉淀物;
⑦其他含锌或铅氧化物的废渣和粉尘(如废弃电路板火法冶炼烟尘)。
原矿资源为:
①氧化锌矿物,如水锌矿、菱锌矿、铁菱锌矿、异极矿、硅锌矿、红锌矿;
②氧化铅矿,如白铅矿、钼铅矿。
冶炼原料为:
二次资源和/或原矿资源中的一种或者多种的混合物。
相对于现有技术,本发明所述的有价金属的综合回收方法具有以下优势:
本发明所述的有价金属的综合回收方法解决了含锌铅固废环境污染问题,实现了原料中
多种有价金属的综合回收利用;同时,该方法取消了原料烧结工序,工艺流程短、全过程密闭,节能环保。
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例所述的实施例的一种结构示意图;
图2为本发明实施例所述的实施例的另一种结构示意图。
附图标记说明:
1-熔池;2-反应塔;3-烟道;4-喷嘴;5-第一挡墙;6-出渣口;7-侧吹喷管;8-铅液排放口;9-第二挡墙,10-出铁口,11-粗铅合金层,12-铁水层,13-渣层,14-流通空间,15-排空口。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以通过具体情况理解上述术语在本发明中的具体含义。
下面将参考附图并结合实施例来详细说明本发明。
一种有价金属的综合回收处理装置,如图1所示,包括熔池1、反应塔2及烟道3;
熔池1设置在反应塔2的下部,反应塔2顶端设有喷嘴4;
熔池1内设有容纳粗铅合金层11、铁水层12及渣层13的空间,熔池1内还设有连通反应塔2与烟道3的流通空间14,流通空间14位于渣层13上方,渣层13对应的熔池1壁上设有侧吹布置;
熔池1左侧设有第一挡墙5,第一挡墙5左侧与熔池1侧壁形成盛装铅液的盛铅空间,第一挡墙5挡住喷嘴4喷出的物料以避免物料落入盛铅空间,第一挡墙5完全挡住铁水层12及渣层13,第一挡墙5下部深入粗铅合金层11中,盛铅空间对应的熔池1侧壁上设有铅液排放口8,本实施例中,反应塔2位于第一挡墙5的右侧以避免喷嘴4喷出的物料落入盛铅空间;
熔池1右侧设有第二挡墙9,第二挡墙9底端与熔池1底壁紧密相连,第二挡墙9顶端位于铁水层12中,第二挡墙9右侧与熔池1侧壁形成盛铁水的盛铁空间,盛铁空间对应的熔池1侧壁上设有出铁口10,与渣层13对应的熔池1侧壁上设有出渣口6。
在部分冶炼的原料中,铅的含量远低于铁和渣的量,第一挡墙5可挡住渣和铁水,使第一挡墙5和对应熔池1侧壁形成一个只盛有铅水的小空间,使铅水的液面大大提升,即使在铅层很薄的情况下,也能使铅水得以顺利排出。第二档墙9能够挡住铅液,同时在该第二档墙9和相邻的熔池1侧壁间形成一个类似高炉熔池的只有铁水的渣的沉淀环境,并提升渣层和铁水层的厚度方便排出;另一方面,第二档墙9的应用可适当的降低熔池1中熔体向出渣侧流动的速度,使熔池1的金属氧化物在强还原环境中充分的被还原并分层澄清,提高金属的回收率。
根据本发明的一个实施例,熔池1底端设有排空口15,本实施例中熔池1左侧及右侧底端分别设有排空口15,排空口15位于第二挡墙9的两侧,如图2所示。排空口15正常生产时处入关闭状态,当出现杂质渗入盛铅空间底部无法用铅液排放口或杂质渗入盛铁空间底部无法用出铁口排放时,可以打开排空口15把杂质排放出去;在故障情况下或例行检修时,例如需要更换熔池底部耐火砖时,可以打开排空口,排尽熔池内的熔体。
根据本发明的一个实施例,熔池1向左凸。
根据本发明的一个实施例,盛铅空间顶端与流通空间14连通。图1所示本实施例中第一挡墙5顶端低于但靠近熔池1顶部,以保证反应塔喷嘴4喷出的物料完全无法落入第一挡墙5和熔池1侧壁之间的空间。
根据本发明的一个实施例,侧吹布置包括多个侧吹喷管7,各侧吹喷管7沿熔池1横向设置。
根据本发明的一个实施例,第二挡墙9下部插入熔池1底部。
根据本发明的一个实施例,出渣口6所在位置与渣层13下部对应。
根据本发明的一个实施例,出铁口10所在位置与铁水层12的下部对应。
本发明实施例还提供一种有价金属的综合回收方法,包括如下步骤:
S1:以锌铅氧化物为主要成分的物料需要进行混合、破碎和干燥处理,得到干燥的矿粉;
S2:干燥的矿粉与含碳燃料、氧气及熔剂一起,经设置在所述反应塔2顶部的喷嘴4喷入所述的有价金属的综合回收处理装置中;所述反应塔2内的温度为1100-1350℃,金属氧化物以极大的比表面积状态弥撒于高温炽热、充满CO还原气分的反应塔2中,通过传热、传质和气-固、气-液反应,迅速完成粉料中锌铅等氧化物的还原和熔化;被还原出来的Zn和Cd迅速气化通过流通空间14进入烟道3,被还原出来的Pb、Fe、Cu、Sb、Sn、In、Bi有少量挥发进入烟道3;
S3:所述反应塔2内未被完全还原的金属氧化物降落在所述熔池1中,所述熔池1中设有侧吹布置,通过侧吹向熔体中分别喷吹煤粉和氧气,为熔池1提供热量并实现熔体的对流,同时使熔池1保持强还原环境,使Zn、Pb、Fe、Cu、Sb、Bi、Sn、In、Cd的氧化物彻底的在1350-1650℃高温熔池1中完成还原,这其中,还原出来的Zn和Cd绝大部分会迅速气化离开熔体进入烟道3,而还原出来的Pb、Fe、Cu、Sb、Sn、In、Bi在除了有少量挥发进入烟道3外,其余都流经渣层13后进入熔池1下部;由于Fe和Pb的量相对于其他金属较大,且Fe和Pb熔体完全不互溶,金属层分为铁水层和粗铅合金层,由于密度的原因,熔池1从上到下形成渣层13、铁水层12、粗铅合金层11三层结构,同时,Cu、Zn、Sb、Bi、Sn、Cd等有价金属和In、Au、Ag等贵金属易溶解于高温的铅水中,在还原析出的铅滴进行聚集并在向下流动过程中,不断捕集熔池1内存在的少量的Cu、Sb、Bi、Sn、In、Au、Ag等金属及少量未蒸发的Zn、Cd,形成粗铅合金层11;铅水经铅液排放口8排出后得到粗铅;
S4:冷凝收锌:烟道3中的金属蒸汽经引风机引入冷凝系统得到粗锌;
S5:粗铅及粗锌的精炼:粗铅中含少量Zn、Cu、Sb、Bi、Sn、In、Au、Ag、Cd,进行脱铜精炼后再进行电解精炼以提纯Pb并分离Zn、Cu、Sb、Bi、Sn、In、Au、Ag、Cd;粗锌中含少量Pb、Fe、Cu、Sb、Sn、Cd、In、Bi,后续利用金属沸点的差异,可采用精馏工艺来提纯Zn并分离Pb、Fe、Cu、Sb、Sn、Cd、In、Bi。
在反应塔2内发生的主要化学反应有:
2C+O2=2CO
ZnO+CO=Zn(g)+CO2
PbO+CO=Pb+CO2
CdO+CO=Cd(g)+CO2
CuO+CO=Cu+CO2
Sb2O3+3CO=2Sb+3CO2
Bi2O3+3CO=2Bi+3CO2
SnO2+2CO=Sn+2CO2
In2O3+3CO=2In+3CO2
3Fe2O3+CO=2Fe3O4+CO2
Fe3O4+CO=3FeO+CO2
FeO+CO=Fe+CO2
在熔池1中发生的主要化学反应如下:
C+O2=CO2
C+CO2=2CO
(PbO)渣+C=Pb(l)+CO
(ZnO)渣+C=Zn(g)+CO
(ZnO)渣+Fe(l)=Zn(g)+(FeO)渣
(PbO)渣+Fe(l)=Pb(g)+(FeO)渣
(FeO)渣+C=Fe(l)+CO
(CdO)渣+C=Cd(g)+CO
(CuO)渣+C=Cu(l)+CO
(Sb2O3)渣+3C=2Sb(l)+3CO
(SnO2)渣+2C=Sn(l)+2CO
(Bi2O3)渣+3C=2Bi(l)+3CO
(In2O3)渣+3C=2In(l)+3CO
根据本发明的一个实施例,反应塔2内的温度为优选为1150℃、1200℃或1250℃。
根据本发明的一个实施例,熔池1内的温度优选为1450℃、1500℃、1550℃或1600℃。
根据本发明的一个实施例,步骤S2中的含碳燃料为煤粉、燃油、天然气、焦炭、木炭中的一种或多种。
根据本发明的一个实施例,步骤S2中溶剂为CaO、石灰石或白云石中的一种或多种,以便原料中含有的SiO2可以和熔剂造渣。
根据本发明的具体实施例,步骤S1中原料选自:二次资源、原矿资源或冶炼原料。
其中,二次资源可以为:
①钢铁厂含锌烟尘,如高炉瓦斯灰/泥、转炉烟尘、电炉烟尘;
②有色(如铅矿石、锌矿石、铅锌矿石、铅锌铜矿石、铅锌硫矿石、铅锌铜硫矿石、铅锡矿石、铅锑矿石、锌铜矿石、废杂铜)火法冶炼烟尘、冶炼渣、浮渣、熔析渣、湿法浸出渣、铁矾渣等;
③铅锌硫化矿类烧结或焙烧产物;
④被烟化炉、回转窑、转底炉等装置富集后的氧化锌粉;
⑤热镀锌过程产生的热镀锌渣、锌灰;
⑥含Pb-Zn的工业废料和废水处理过程产出的沉淀物;
⑦其他含锌或铅氧化物的废渣和粉尘(如废弃电路板火法冶炼烟尘)。
原矿资源为:
①氧化锌矿物,如水锌矿、菱锌矿、铁菱锌矿、异极矿、硅锌矿、红锌矿;
②氧化铅矿,如白铅矿、钼铅矿。
冶炼原料为:二次资源和/或原矿资源中的一种或者多种的混合物。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (10)
- 一种有价金属的综合回收处理装置,其特征在于:包括熔池(1)、反应塔(2)及烟道(3);所述熔池(1)设置在所述反应塔(2)的下部,所述反应塔(2)顶端设有喷嘴(4);所述熔池(1)内设有容纳粗铅合金层(11)、铁水层(12)及渣层(13)的空间,所述熔池(1)内还设有连通反应塔(2)与烟道(3)的流通空间(14),所述流通空间(14)位于所述渣层(13)上方,所述渣层(13)对应的所述熔池(1)壁上设有侧吹布置;所述熔池(1)左侧设有第一挡墙(5),所述第一挡墙(5)左侧与所述熔池(1)侧壁形成盛装铅液的盛铅空间,所述第一挡墙(5)挡住所述喷嘴(4)喷出的物料以避免物料落入所述盛铅空间,所述第一挡墙(5)下部深入所述粗铅合金层(11)中,所述第一挡墙(5)完全挡住所述铁水层(12)及渣层(13)以避免其流入所述盛铅空间,所述盛铅空间对应的熔池(1)侧壁上设有铅液排放口(8);所述熔池(1)右侧设有第二挡墙(9),所述第二挡墙(9)底端与所述熔池(1)底壁紧密相连,所述第二挡墙(9)顶端位于所述铁水层(12)中,所述第二挡墙(9)右侧与所述熔池(1)侧壁形成盛铁水的盛铁空间,所述盛铁空间对应的所述熔池(1)侧壁上设有出铁口(10),与所述渣层(13)对应的熔池(1)侧壁上设有出渣口(6)。
- 根据权利要求1所述的有价金属的综合回收处理装置,其特征在于:所述盛铅空间顶端与所述流通空间(14)连通。
- 根据权利要求1或2所述的有价金属的综合回收处理装置,其特征在于:所述熔池(1)底端设有排空口(15)。
- 根据权利要求1-3任一项所述的有价金属的综合回收处理装置,其特征在于:所述侧吹布置包括多个侧吹喷管(7),各所述侧吹喷管(7)沿所述熔池(1)横向设置。
- 根据权利要求1所述的有价金属的综合回收处理装置,其特征在于:所述第二挡墙(9)下部插入所述熔池(1)底部。
- 根据权利要求1所述的有价金属的综合回收处理装置,其特征在于:所述出渣口(6)所在位置与所述渣层(13)下部对应。
- 根据权利要求1所述的有价金属的综合回收处理装置,其特征在于:所述出铁口(10)所在位置与所述铁水层(12)的下部对应。
- 一种利用权利要求1-7之一的所述处理装置进行有价金属的综合回收方法,其特征在于:包括如下过程:S1:原料准备:以锌铅氧化物为主要成分的物料需要进行混合、破碎和干燥处理,得到干燥的矿粉;S2:反应塔空间冶炼:干燥的矿粉和含碳燃料、氧气及熔剂一起,经设置在所述反应塔(2)顶部的喷嘴(4)喷入如权利要求1-7任一项所述的处理装置中;所述反应塔(2)内的温度为1100-1350℃,在高温和充满还原气氛的环境下,迅速完成粉料中锌铅等氧化物的还原和熔化;被还原出来的Zn和Cd迅速气化通过流通空间(14)进入烟道(3),被还原出来的Pb、Fe、Cu、Sb、Sn、In、Bi有少量挥发进入烟道(3);S3:熔池熔炼:所述反应塔(2)内未被完全还原的金属氧化物降落在所述熔池(1)中,所述熔池(1)中设有侧吹布置,通过侧吹向熔体(1)中喷吹煤粉和氧气,为熔池(1)提供热量并实现熔体的对流,同时使熔池(1)保持强还原环境,使Zn、Pb、Fe、Cu、Sb、Bi、Sn、In、Cd的氧化物彻底的在1350-1650℃高温熔池(1)中完成还原,这其中,还原出来的Zn和Cd绝大部分会迅速气化离开熔体进入烟道(3),而还原出来的Pb、Fe、Cu、Sb、Sn、In、Bi在除了有少量挥发进入烟道(3)外,其余都流经渣层(13)后进入熔池(1)下部;熔池(1)从上到下形成渣层(13)、铁水层(12)、粗铅合金层(11)三层结构,还原析出的铅滴进行聚集并在向下流动过程中,不断捕集熔池(1)内的易溶于高温铅液的Cu、Sb、Bi、Sn、In、Au、Ag等金属及少量未蒸发的Zn、Cd,形成粗铅合金层(11);铅水经铅液排放口(8)排出后得到粗铅;S4:冷凝收锌:烟道(3)中的金属蒸汽经引风机引入冷凝系统得到粗锌;S5:粗铅及粗锌的精炼:粗铅中含少量Zn、Cu、Sb、Bi、Sn、In、Au、Ag、Cd,采用常规的火法精炼或电解精炼进行分离,提纯Pb并分离Zn、Cu、Sb、Bi、Sn、In、Au、Ag、Cd;粗锌中含少量Pb、Fe、Cu、Sb、Sn、Cd、In、Bi,后续利用金属沸点的差异,可采用精馏工艺或其他常规方法来提纯Zn并分离Pb、Fe、Cu、Sb、Sn、Cd、In、Bi。
- 根据权利要求8所述的有价金属的综合回收方法,其特征在于:所述反应塔(2)内 的温度优选为1200℃。所述原料破碎后的平均粒径优选为小于1mm。所述含碳燃料优选为:煤粉、天然气、燃油、焦丁、木炭粉中至少一种。
- 根据权利要求8所述的有价金属的综合回收方法,其特征在于:所S1步骤所述原料为下述物料中的一种或多种的混合物:钢铁厂含锌烟尘,有色火法冶炼烟尘、冶炼渣、浮渣、熔析渣、湿法浸出渣、铁矾渣等,铅锌硫化矿类烧结或焙烧产物,氧化锌粉;热镀锌渣、锌灰;含Pb-Zn的工业废料和废水处理过程产出的沉淀物;其他含锌或铅氧化物的废渣和粉尘;氧化锌矿物,氧化铅矿物。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201511000573.5A CN106065433B (zh) | 2015-12-25 | 2015-12-25 | 一种有价金属的综合回收处理装置及处理方法 |
CN201511000573.5 | 2015-12-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017107664A1 true WO2017107664A1 (zh) | 2017-06-29 |
Family
ID=57419544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/103865 WO2017107664A1 (zh) | 2015-12-25 | 2016-10-29 | 一种有价金属的综合回收处理装置及处理方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106065433B (zh) |
WO (1) | WO2017107664A1 (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107937730A (zh) * | 2017-12-29 | 2018-04-20 | 永仁共创锌业有限公司 | 工业含锌废料综合处理系统 |
CN109371256A (zh) * | 2018-11-29 | 2019-02-22 | 大余明发矿业有限公司 | 一种铅回收设备及其铅回收工艺 |
CN109487086A (zh) * | 2019-01-04 | 2019-03-19 | 江苏新春兴再生资源有限责任公司 | 有色金属熔炼和/或选矿尾渣资源化利用回收装置及方法 |
CN110129583A (zh) * | 2019-05-31 | 2019-08-16 | 中国恩菲工程技术有限公司 | 火法炼锌系统 |
CN110157917A (zh) * | 2019-06-27 | 2019-08-23 | 上海环境工程设计研究院有限公司 | 金属固废与有机废液协同连续冶炼装置 |
CN110172593A (zh) * | 2019-06-13 | 2019-08-27 | 云南锡业股份有限公司铜业分公司 | 一种节能环保的锡冶炼系统及冶炼工艺 |
CN113247945A (zh) * | 2021-05-20 | 2021-08-13 | 山西于斯为盛环保科技有限公司 | 一种治理冶金含锌灰过程中锌蒸气合成氧化锌的装置和方法 |
DE212020000694U1 (de) | 2020-09-17 | 2022-03-11 | Nanjing Yanchang Reaction Technology Research Institute Co. Ltd | Mikrogrenzflächenherstellungssystem für p-Methylphenol |
CN115433834A (zh) * | 2022-08-01 | 2022-12-06 | 长沙有色冶金设计研究院有限公司 | 一种高铁锌渣的处理方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107673399A (zh) * | 2017-11-13 | 2018-02-09 | 山东星苑锌业科技有限公司 | 一种有效降低重金属含量的氧化锌生产工艺 |
CN109022818B (zh) * | 2018-08-22 | 2020-11-06 | 东北大学 | 减少有色冶炼烟气中三氧化硫浓度并回收有价成分的方法 |
CN110983061B (zh) * | 2019-11-29 | 2021-04-27 | 中南大学 | 一种铅锌冶炼渣与铁矾渣协同资源化处理的方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE448309B (sv) * | 1985-09-16 | 1987-02-09 | Boliden Ab | Forfarande for upparbetning av komplexa icke-jernmetall innehallande smeltmaterial |
JPH06248366A (ja) * | 1993-02-24 | 1994-09-06 | Sumitomo Metal Mining Co Ltd | 亜鉛・鉛用還元炉及びその操業方法 |
CN201648490U (zh) * | 2010-02-25 | 2010-11-24 | 北京矿冶研究总院 | 一种含铅物料的熔炼装置 |
CN104451155A (zh) * | 2014-11-21 | 2015-03-25 | 邱江波 | 含有有机物的废旧金属的处理方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201186946Y (zh) * | 2008-04-24 | 2009-01-28 | 云南冶金集团总公司 | 铅的闪速熔炼装置 |
JP2011241423A (ja) * | 2010-05-17 | 2011-12-01 | Sumitomo Metal Mining Co Ltd | 銅製錬炉の操業方法 |
CN203049009U (zh) * | 2013-02-06 | 2013-07-10 | 长沙有色冶金设计研究院有限公司 | 铅闪速熔炼炉 |
CN104928492A (zh) * | 2015-06-15 | 2015-09-23 | 中国瑞林工程技术有限公司 | 闪速侧吹熔炼装置和闪速侧吹熔炼方法 |
CN205313643U (zh) * | 2015-12-25 | 2016-06-15 | 天津闪速炼铁技术有限公司 | 一种有价金属的综合回收处理装置 |
-
2015
- 2015-12-25 CN CN201511000573.5A patent/CN106065433B/zh active Active
-
2016
- 2016-10-29 WO PCT/CN2016/103865 patent/WO2017107664A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE448309B (sv) * | 1985-09-16 | 1987-02-09 | Boliden Ab | Forfarande for upparbetning av komplexa icke-jernmetall innehallande smeltmaterial |
JPH06248366A (ja) * | 1993-02-24 | 1994-09-06 | Sumitomo Metal Mining Co Ltd | 亜鉛・鉛用還元炉及びその操業方法 |
CN201648490U (zh) * | 2010-02-25 | 2010-11-24 | 北京矿冶研究总院 | 一种含铅物料的熔炼装置 |
CN104451155A (zh) * | 2014-11-21 | 2015-03-25 | 邱江波 | 含有有机物的废旧金属的处理方法 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107937730B (zh) * | 2017-12-29 | 2023-06-09 | 永仁共创锌业有限公司 | 工业含锌废料综合处理系统 |
CN107937730A (zh) * | 2017-12-29 | 2018-04-20 | 永仁共创锌业有限公司 | 工业含锌废料综合处理系统 |
CN109371256A (zh) * | 2018-11-29 | 2019-02-22 | 大余明发矿业有限公司 | 一种铅回收设备及其铅回收工艺 |
CN109371256B (zh) * | 2018-11-29 | 2023-09-22 | 大余明发矿业有限公司 | 一种铅回收设备及其铅回收工艺 |
CN109487086A (zh) * | 2019-01-04 | 2019-03-19 | 江苏新春兴再生资源有限责任公司 | 有色金属熔炼和/或选矿尾渣资源化利用回收装置及方法 |
CN110129583A (zh) * | 2019-05-31 | 2019-08-16 | 中国恩菲工程技术有限公司 | 火法炼锌系统 |
CN110129583B (zh) * | 2019-05-31 | 2024-02-27 | 中国恩菲工程技术有限公司 | 火法炼锌系统 |
CN110172593A (zh) * | 2019-06-13 | 2019-08-27 | 云南锡业股份有限公司铜业分公司 | 一种节能环保的锡冶炼系统及冶炼工艺 |
CN110157917A (zh) * | 2019-06-27 | 2019-08-23 | 上海环境工程设计研究院有限公司 | 金属固废与有机废液协同连续冶炼装置 |
DE212020000694U1 (de) | 2020-09-17 | 2022-03-11 | Nanjing Yanchang Reaction Technology Research Institute Co. Ltd | Mikrogrenzflächenherstellungssystem für p-Methylphenol |
CN113247945A (zh) * | 2021-05-20 | 2021-08-13 | 山西于斯为盛环保科技有限公司 | 一种治理冶金含锌灰过程中锌蒸气合成氧化锌的装置和方法 |
CN115433834A (zh) * | 2022-08-01 | 2022-12-06 | 长沙有色冶金设计研究院有限公司 | 一种高铁锌渣的处理方法 |
CN115433834B (zh) * | 2022-08-01 | 2024-01-30 | 长沙有色冶金设计研究院有限公司 | 一种高铁锌渣的处理方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106065433B (zh) | 2017-08-25 |
CN106065433A (zh) | 2016-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017107664A1 (zh) | 一种有价金属的综合回收处理装置及处理方法 | |
CN103382527B (zh) | 硫化锌精矿及含铅锌物料的闪速熔炼方法及设备 | |
CN101514399B (zh) | 资源综合利用平衡炼铅工艺和设备 | |
CN102321806B (zh) | 一种富氧侧吹炉处理锌浸出渣的冶炼方法 | |
CN101078052B (zh) | 从钢铁厂固废物中综合回收铁和有色金属的方法 | |
CN102634653B (zh) | 一种侧吹化料的生产方法 | |
CN103388081A (zh) | 硫化锌精矿及含铅锌物料的熔池熔炼方法及设备 | |
CN103924101A (zh) | 富氧侧吹挥发熔池熔炼生产粗三氧化二锑的方法及装置 | |
CN103498058A (zh) | 一种从冰铜中脱除铅、锌、砷、锑、铋、锡的工艺及装置 | |
CN111411234A (zh) | 射流熔炼电热还原炉和冶炼含锌物料的方法 | |
CN103421958B (zh) | 底吹炉富氧熔炼处理锌浸出渣的方法 | |
CN101899580B (zh) | 锌精矿冶炼设备 | |
CN111457735A (zh) | 一体化火法冶炼炉和处理锌浸出渣的方法 | |
CN103320614A (zh) | 一种铅冰铜火法处理工艺 | |
CN111440957A (zh) | 处理锌精矿和锌渣的系统及方法 | |
CN111411230A (zh) | 悬浮熔炼电热还原炉和冶炼锌精矿的方法 | |
CN113817924B (zh) | 一种铜浮渣熔炼生产粗铜的方法及其熔炼装置 | |
CN205556750U (zh) | 一种同时产出金属铅、锌的直接冶炼系统 | |
CN201793692U (zh) | 锌精矿冶炼设备 | |
CN116179860A (zh) | 铅锌烟尘与城市矿产协同回收有价金属方法及装备 | |
CN105463198B (zh) | 一种综合回收烟气中有价金属的除尘装置及方法 | |
CN105734301A (zh) | 一种铅冶炼方法 | |
CN113073205B (zh) | 炼锌设备和炼锌工艺 | |
CN205313643U (zh) | 一种有价金属的综合回收处理装置 | |
CN101914690B (zh) | 锌精矿冶炼工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16877475 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/11/2018) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16877475 Country of ref document: EP Kind code of ref document: A1 |