WO2017107591A1 - 一种相变波转子自复叠制冷系统及其工作方法 - Google Patents

一种相变波转子自复叠制冷系统及其工作方法 Download PDF

Info

Publication number
WO2017107591A1
WO2017107591A1 PCT/CN2016/099196 CN2016099196W WO2017107591A1 WO 2017107591 A1 WO2017107591 A1 WO 2017107591A1 CN 2016099196 W CN2016099196 W CN 2016099196W WO 2017107591 A1 WO2017107591 A1 WO 2017107591A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
steam
low
temperature
wave rotor
Prior art date
Application number
PCT/CN2016/099196
Other languages
English (en)
French (fr)
Inventor
代玉强
胡大鹏
陶盛洋
赵顶
朱彻
邹久朋
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to JP2018509966A priority Critical patent/JP6585830B2/ja
Priority to KR1020177031112A priority patent/KR101980332B1/ko
Publication of WO2017107591A1 publication Critical patent/WO2017107591A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration

Definitions

  • the present invention relates to a phase change wave rotor self-cascading refrigeration system and a working method thereof, and belongs to the field of mechanical refrigeration technology.
  • a phase-change wave rotor booster based on unsteady boosting characteristics is used, which is more efficient than the boosting efficiency of the conventional stable boosting process.
  • This technology eliminates the need for components such as pistons or blades, and can efficiently perform direct energy exchange between high and low pressure fluids only by the generated motion shock, effectively reducing compressor pressure ratio, and improving system refrigeration.
  • the superposition mechanism of the core device proposed by CN103206801A and CN103 206800A overlaps with the self-cascading refrigeration system, and constitutes the main idea of the present invention.
  • the present invention provides a phase change wave rotor self-cascading refrigeration system and a working method thereof, the purpose of which is to introduce a phase change wave rotor pressurization in a self-cascading refrigeration cycle device. , Using the characteristics of the phase change wave rotor booster, the purpose of low temperature rise and pre-charge is achieved.
  • a phase change wave rotor self-cascading refrigeration system which comprises a self-cascading refrigeration device and a supercharging device, and the self-cascading refrigeration device comprises a condenser and a high temperature throttle valve.
  • the supercharging device is composed of a phase change wave rotor supercharger and a steam compressor, and the intermediate pressure steam outlet of the phase change wave rotor supercharger is connected to the inlet of the steam compressor, and the outlet and condensation of the steam compressor
  • the inlet of the condenser is connected, and the outlet of the condenser is divided into two ways: one is connected to the hot end inlet of the self-stacking subcooler, the hot end outlet of the self-integrating subcooler is connected to the inlet of the low temperature throttle valve, and the outlet of the low temperature throttle valve is The cold end inlet of the evaporator is connected, the cold end outlet of the evaporator is connected to the low pressure steam
  • a method for operating a phase change wave rotor self-cascading refrigeration system employs the following steps:
  • the high-pressure steam that drives the steam inlet of the phase-change wave rotor supercharger undergoes an isentropic expansion process and the low-pressure saturated steam that is introduced into the low-pressure steam inlet of the phase-change wave rotor supercharger is subjected to iso-isan compression and isobaric mixing.
  • the medium-pressure steam is then discharged through the pressurized steam outlet, and is compressed into a high-temperature and high-pressure superheated steam by the steam compressor.
  • the condenser After passing through the condenser, it is divided into a low-temperature refrigerant and a high-temperature refrigerant in the form of a high-pressure saturated liquid;
  • the self-stacking subcooler discharges non-condensable gas and cools it into a supercooled liquid. It is cooled down to a set temperature by a low temperature throttle valve, enters the evaporator in the form of a low temperature and low pressure gas-liquid mixture, and the constant pressure endothermic is converted into a low pressure saturated steam.
  • the refrigeration cycle is completed, and then used as the low-pressure steam of the phase-change wave rotor supercharger; after the high-temperature refrigerant is cooled and depressurized by the high-temperature throttle valve, it is introduced into the self-cascading subcooler to absorb heat, and the high-temperature and high-pressure steam is used as the phase change wave.
  • the rotor booster drives the steam.
  • phase change wave rotor supercharger The driving steam of the phase change wave rotor supercharger is provided by the residual heat of the self-cascade system to achieve the purpose of energy saving and environmental protection; [0011] 2.
  • the unsteady boosting characteristic of the phase change wave rotor supercharger can effectively reduce the pressure ratio of the steam compressor and realize the low temperature rise and pre-charge effect.
  • phase change wave rotor supercharger In addition to the supercharging characteristics, the phase change wave rotor supercharger also has excellent liquid handling performance, and has the advantages of small structural size, low rotation speed, and easy bursting equipment.
  • 1 is a diagram of a phase change wave rotor self-cascading refrigeration system.
  • FIG. 2 is a P-A diagram of a phase change wave rotor self-cascading refrigeration system.
  • phase change wave rotor booster 1, steam compressor, 3, condenser, 4, high temperature throttle valve, 5, non-condensable pump, 6, self-cascading subcooler, 7 , low temperature throttle valve, 8, evaporator; H P , drive steam inlet, L P , low pressure steam inlet, M P , pressurized steam outlet.
  • a phase change wave rotor self-cascading refrigeration system utilizing a mixed refrigerant utilizing a mixed refrigerant.
  • FIG. 1 illustrates a phase change wave rotor self-cascading refrigeration system with a mixed refrigerant.
  • the phase change wave rotor self-cascading refrigeration system with mixed refrigerant in the figure includes a self-cascading refrigeration device and a supercharging device.
  • the self-cascading refrigeration device comprises a condenser 3, a high temperature throttle valve 4, a non-condensable gas pump 5, a low temperature throttle valve 7, an evaporator 8 and a self-cascading subcooler 6, and a high temperature refrigeration using a self-cascading subcooler 6.
  • the agent exchanges heat with the low-temperature refrigerant and discharges the non-condensable gas at the same time.
  • the supercharging device is composed of a phase change wave rotor supercharger 1 and a steam compressor 2.
  • the intermediate pressure steam outlet Mp of the phase change wave rotor supercharger 1 is connected to the inlet of the steam compressor 2, the outlet of the steam compressor 2 is connected to the inlet of the condenser 3, and the outlet of the condenser 3 is divided into two paths, one road and self-recovery
  • the hot end inlet of the cascade cooler 6 is connected, the hot end outlet of the cascade subcooler 6 is connected to the inlet of the low temperature throttle valve 7, and the outlet of the low temperature throttle valve 7 is connected to the cold end inlet of the evaporator 8 , the evaporator
  • the cold end outlet of 8 is connected to the low pressure steam inlet Lp of the phase change wave rotor booster 1; the other is connected to the inlet of the high temperature throttle valve 4, the outlet of the high temperature throttle valve 4 and the cold of the self-stacking subcooler 6.
  • the end inlet connection, the cold end outlet of the self-cascading subcooler 6 is connected to the driving steam inlet Hp of the phase change wave rotor supercharger 1; the non-condensable gas outlet of the self-stacking subcooler 6 is connected to the non-condensable gas pump 5; Evaporation
  • the hot end inlet and outlet of the vessel 8 are connected to the coolant line.
  • the condenser 3 After equal pressure mixing into medium pressure steam, and then discharged through the pressurized steam outlet Mp, and into the steam compressor 2 compressed into high temperature and high pressure superheated steam, after the condenser 3 is divided into low temperature refrigerant and high temperature refrigerant in the form of high pressure saturated liquid Two-way; the low-temperature refrigerant is discharged from the self-resetting supercooler 6 to the non-condensable gas and is cooled to a supercooled liquid, and is cooled down to a set temperature by the low-temperature throttle valve 7, and enters the evaporator 8 in the form of a low-temperature low-pressure gas-liquid mixture.
  • the constant pressure endotherm is converted into a low pressure saturated steam to complete the refrigeration cycle, and then used as the low pressure steam of the phase change wave rotor supercharger 1; the high temperature refrigerant is cooled and depressurized by the high temperature throttle valve 4, and then passed into the self-cascading subcooler. 6 endothermic, in the form of high temperature and high pressure steam as the driving steam of the phase change wave rotor supercharger 1.
  • the high pressure superheated steam at point Fa in the phase change wave rotor supercharger 1 entropy expands to Fa' and the low pressure saturated steam at point A passes low in the phase change wave rotor supercharger 1 Isotically compressed to A' at equal pressure mixing to B
  • the superheated steam at B is compressed by steam compressor 2 to high temperature and high pressure superheated steam at C, and is cooled by condenser 3 to a high pressure saturated liquid at D
  • the high-pressure saturated liquid is divided into two parts: low-temperature refrigerant and high-temperature refrigerant: the low-temperature refrigerant passes through the self-resetting supercooler 6 to reduce the temperature to reach the G point high-pressure supercooled liquid and discharges the non-condensable gas through the non-condensable gas pump 5, after the low temperature section
  • the flow valve 7 is cooled, and the pressure is reduced to the low pressure supersaturated vapor at the H.
  • the heat is exchanged by the evaporator 8 to reach the low pressure saturated vapor at the A to complete the refrigeration cycle, and then the low pressure steam inlet of the phase change wave rotor supercharger 1 is introduced.
  • Lp The high-temperature refrigerant is cooled by the high-temperature throttle valve 4, and is depressurized to the high-pressure supersaturated vapor at the E.
  • the heat transfer is increased by the self-resetting supercooler 6 to reach the high pressure superheat and steam state of the Fa point and the phase change wave is introduced.
  • Rotor booster 1 Motive steam inlet Hp.
  • the high pressure supersaturated vapor at point Fb is entropy expanded in the phase change wave rotor supercharger 1 to Fb' and the low pressure saturated steam at point A undergoes sub-isentropic compression in the phase change wave rotor supercharger 1 Mix equal pressure to A at A', B
  • the superheated steam is compressed by the steam compressor 2 to the high temperature and high pressure superheated steam at C, and is cooled by the equal pressure of the condenser 3 to the high pressure saturated liquid at D, and the high pressure saturated liquid at the D is divided into a low temperature refrigerant and a high temperature refrigerant.
  • the refrigerant passes through the self-cascading subcooler 6 to reduce the temperature to reach the G point high pressure supercooled liquid and discharges the non-condensable gas through the non-condensable gas pump 5, and is cooled by the low temperature throttle valve 7 to reduce the temperature to the low pressure supersaturated vapor at the H point.
  • the driving steam of the phase change wave rotor supercharger is provided by the waste heat of the self-cascading system to achieve the purpose of energy saving and environmental protection; the unsteady boosting characteristic of the phase change wave rotor supercharger can effectively reduce the pressure of the steam compressor Compared with the low temperature rise and pre-pressurization effect.
  • the phase-change wave rotor booster also has excellent liquid handling performance, and has the advantages of small structural size, low speed, and easy bursting equipment.
  • the use of self-cascading subcoolers greatly simplifies the structure of the self-cascading system and reduces costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Supercharger (AREA)

Abstract

一种相变波转子自复叠制冷系统,制冷剂经相变波转子增压器(1)预增压后,经蒸汽压缩机(2)及冷凝器(3),分为低温与高温制冷剂两路:低温制冷剂经自复叠过冷器(6)降温后,经低温节流阀(7)和蒸发器(8)完成制冷过程,然后进入相变波转子增压器(1)低压蒸汽入口;高温制冷剂经高温节流阀(4)和自复叠过冷器(6)后,进入相变波转子增压器(1)驱动蒸汽入口。

Description

一种相变波转子自复叠制冷系统及其工作方法 技术领域
[0001] 本发明涉及一种相变波转子自复叠制冷系统及其工作方法, 属于机械制冷技术 领域。
背景技术
[0002] 随着国民经济的高速发展, 更低温度的需求越来越高。 目前在制取较低温度的 场合, 单级蒸汽压缩式制冷循环已经无法满足要求, 复叠式制冷循环已被广泛 应用。 然而经典的复叠制冷系统随着复叠级数的增加, 又会使系统结构复杂、 成本增加。 相比于传统复叠制冷系统, 自复叠系统作为一种特殊的复叠系统, 具有结构简单、 可靠性高、 成本低等优点。 但是自复叠系统的高温制冷剂与低 温制冷剂在压缩前的简单混合, 无法达到充分的低温增压效果, 从而导致单级 压缩机压比过大、 排气温度过高、 制冷性能降低等问题。
[0003] 采用基于非定常增压特性的相变波转子增压器, 其效率高于传统稳定增压过程 的增压效率。 该技术无需活塞或叶片等部件, 仅通过产生的运动激波就可高效 完成高、 低压流体间的直接能量交换, 有效降低压缩机压比, 提高系统制冷性 育^ 如果将发明专利 CN102606547A、 CN102606548A、 CN103206801A及 CN103 206800A所提出的核心设备的增压机制与自复叠制冷系统进行复迭, 就构成本项 发明的主要思想。
技术问题
[0004] 自复叠系统的高温制冷剂与低温制冷剂在压缩前的简单混合, 无法达到充分的 低温增压效果, 从而导致单级压缩机压比过大、 排气温度过高、 制冷性能降低 等问题。
问题的解决方案
技术解决方案
[0005] 为了克服现有技术中存在的问题, 本发明提供一种相变波转子自复叠制冷系统 及其工作方法, 其目的在于在自复叠制冷循环装置中引入相变波转子增压器, 利用相变波转子增压器的特性, 完成低温升、 预增压的目的。
[0006] 本发明采用的技术方案是: 一种相变波转子自复叠制冷系统, 它包括自复叠制 冷装置和增压装置, 所述自复叠制冷装置包含冷凝器、 高温节流阀、 不凝气泵 、 低温节流阀、 蒸发器, 它还包括一个自复叠过冷器, 所述自复叠过冷器将高 温制冷剂与低温制冷剂进行热量交换, 并同吋排出不凝气, 所述增压装置由相 变波转子增压器和蒸汽压缩机构成, 所述相变波转子增压器的中压蒸汽出口与 蒸汽压缩机的入口连接, 蒸汽压缩机的出口与冷凝器入口连接, 冷凝器出口分 成两路: 一路与自复叠过冷器的热端入口相连, 自复叠过冷器的热端出口与低 温节流阀入口连接, 低温节流阀的出口与蒸发器的冷端入口连接, 蒸发器的冷 端出口与相变波转子增压器的低压蒸汽入口连接; 另一路与高温节流阀的入口 连接, 高温节流阀的出口与自复叠过冷器的冷端入口连接, 自复叠过冷器的冷 端出口与相变波转子增压器的驱动蒸汽入口连接; 自复叠过冷器的不凝气出口 与不凝气泵连接; 蒸发器的热端入口与出口同被冷却介质管路连接。
[0007] 一种相变波转子自复叠制冷系统的工作方法采用下列步骤:
[0008] 通入相变波转子增压器驱动蒸汽入口的高压蒸汽经过等熵膨胀过程与通入相变 波转子增压器低压蒸汽入口的低压饱和蒸汽经过低于等熵压缩后等压混合成中 压蒸汽, 然后经由增压蒸汽出口排出, 并进入蒸汽压缩机压缩成高温高压过热 蒸汽, 经冷凝器后以高压饱和液体形式分为低温制冷剂与高温制冷剂两路; 低 温制冷剂经自复叠过冷器排出不凝气并降温为过冷液体, 通过低温节流阀降温 降压至设定温度, 以低温低压气液混合物形式进入蒸发器, 定压吸热转换为低 压饱和蒸汽完成制冷循环, 然后作为相变波转子增压器的低压蒸汽; 高温制冷 剂经高温节流阀降温降压后, 通入自复叠过冷器吸热, 以高温高压蒸汽形式作 为相变波转子增压器的驱动蒸汽。
发明的有益效果
有益效果
[0009] 本发明的有益效果是:
[0010] 1、 相变波转子增压器的驱动蒸汽由自复叠系统余热提供, 达到节能、 环保的 目的; [0011] 2、 相变波转子增压器的非定常增压特性, 可有效降低蒸汽压缩机的压比, 实 现低温升、 预增压效果。
[0012] 3、 相变波转子增压器除具有增压特性外, 还具备优秀的带液操作性能, 另外 拥有结构尺寸小、 转速低、 易于幵发设备等优势。
[0013] 4、 自复叠过冷器的使用, 可以大大简化自复叠系统的结构, 降低成本。
对附图的简要说明
附图说明
[0014] 图 1是一种相变波转子自复叠制冷系统图。
[0015] 图 2是相变波转子自复叠制冷系统的 P- A图。
[0016] 图中: 1、 相变波转子增压器, 2、 蒸汽压缩机, 3、 冷凝器, 4、 高温节流阀, 5、 不凝气泵, 6、 自复叠过冷器, 7、 低温节流阀, 8、 蒸发器; H P、 驱动蒸汽 入口, L P、 低压蒸汽入口, M P、 增压蒸汽出口。
实施该发明的最佳实施例
本发明的最佳实施方式
[0017] 下面结合实施例和附图对本发明进一步详细说明。
[0018] 利用混合冷剂的相变波转子自复叠制冷系统。
[0019] 图 1示出了一种混合制冷剂的相变波转子自复叠制冷系统。 图中混合制冷剂的 相变波转子自复叠制冷系统包括自复叠制冷装置和增压装置。 自复叠制冷装置 包含冷凝器 3、 高温节流阀 4、 不凝气泵 5、 低温节流阀 7、 蒸发器 8和自复叠过冷 器 6, 采用自复叠过冷器 6将高温制冷剂与低温制冷剂进行热量交换, 并同吋排 出不凝气。 所述增压装置由相变波转子增压器 1和蒸汽压缩机 2构成。 所述相变 波转子增压器 1的中压蒸汽出口 Mp与蒸汽压缩机 2的入口连接, 蒸汽压缩机 2的出 口与冷凝器 3入口连接, 冷凝器 3出口分成两路, 一路与自复叠过冷器 6的热端入 口相连, 自复叠过冷器 6的热端出口与低温节流阀 7入口连接, 低温节流阀 7的出 口与蒸发器 8的冷端入口连接, 蒸发器 8的冷端出口与相变波转子增压器 1的低压 蒸汽入口 Lp连接; 另一路与高温节流阀 4的入口连接, 高温节流阀 4的出口与自 复叠过冷器 6的冷端入口连接, 自复叠过冷器 6的冷端出口与相变波转子增压器 1 的驱动蒸汽入口 Hp连接; 自复叠过冷器 6的不凝气出口与不凝气泵 5连接; 蒸发 器 8的热端入口与出口同被冷却介质管路连接。
[0020] 通入相变波转子增压器 1驱动蒸汽入口 Hp的高压蒸汽经过等熵膨胀过程与通入 相变波转子增压器 1低压蒸汽入口 Lp的低压饱和蒸汽经过低于等熵压缩后等压混 合成中压蒸汽, 然后经由增压蒸汽出口 Mp排出, 并进入蒸汽压缩机 2压缩成高温 高压过热蒸汽, 经冷凝器 3后以高压饱和液体形式分为低温制冷剂与高温制冷剂 两路; 低温制冷剂经自复叠过冷器 6排出不凝气并降温为过冷液体, 通过低温节 流阀 7降温降压至设定温度, 以低温低压气液混合物形式进入蒸发器 8, 定压吸 热转换为低压饱和蒸汽完成制冷循环, 然后作为相变波转子增压器 1的低压蒸汽 ; 高温制冷剂经高温节流阀 4降温降压后, 通入自复叠过冷器 6吸热, 以高温高 压蒸汽形式作为相变波转子增压器 1的驱动蒸汽。
[0021] 图 2是混合制冷剂的相变波转子自复叠制冷系统的 P- h
图, 从图中可以看出点 Fa处高压过热蒸气在相变波转子增压器 1中等熵膨胀至 Fa' 处与点 A处的低压饱和蒸汽在相变波转子增压器 1中经过低于等熵压缩至 A'处等 压混合至 B处, B处的过热蒸汽经蒸汽压缩机 2压缩至 C处高温高压过热蒸汽, 通 过冷凝器 3等压降温至 D处高压饱和液体, D处高压饱和液被分成低温制冷剂和高 温制冷剂两路: 低温制冷剂经过自复叠过冷器 6换热降温达到 G点高压过冷液并 通过不凝气泵 5排出不凝气, 经过低温节流阀 7等焓降温、 降压至 H处低压过饱和 蒸气, 通过蒸发器 8换热、 升温达到 A处低压饱和蒸气完成制冷循环, 然后通入 相变波转子增压器 1的低压蒸汽入口 Lp; 高温制冷剂经过高温节流阀 4等焓降温 、 降压至 E处高压过饱和蒸气, 经自复叠过冷器 6换热升温达到 Fa点高压过热和 蒸汽状态并通入相变波转子增压器 1驱动蒸汽入口 Hp。
本发明的实施方式
[0022] 采用单一制冷剂的多级蒸汽压缩制冷系统
[0023] 原则流程和设备布置方式不变, 将混合制冷剂换成单一制冷剂, 可实现利用单 一制冷剂的多级蒸汽压缩制冷系统。
[0024] 点 Fb处高压过饱和蒸气在相变波转子增压器 1中等熵膨胀至 Fb'处与点 A处的低 压饱和蒸汽在相变波转子增压器 1中经过低于等熵压缩至 A'处等压混合至 B处, B 处的过热蒸汽经蒸汽压缩机 2压缩至 C处高温高压过热蒸汽, 通过冷凝器 3等压降 温至 D处高压饱和液体, D处高压饱和液被分成低温制冷剂和高温制冷剂两路: 低温制冷剂经过自复叠过冷器 6换热降温达到 G点高压过冷液并通过不凝气泵 5排 出不凝气, 经过低温节流阀 7等焓降温、 降压至 H处低压过饱和蒸气, 通过蒸发 器 8换热、 升温达到 A处低压饱和蒸气完成制冷循环, 然后通入相变波转子增压 器 1的低压蒸汽入口 Lp; 高温制冷剂经过高温节流阀 4等焓降温、 降压至 E处高压 过饱和蒸气, 经自复叠过冷器 6换热升温达到 Fb点高压过饱和蒸汽状态并通入相 变波转子增压器 1驱动蒸汽入口 Hp。
工业实用性
[0025] 相变波转子增压器的驱动蒸汽由自复叠系统余热提供, 达到节能、 环保的目的 ; 相变波转子增压器的非定常增压特性, 可有效降低蒸汽压缩机的压比, 实现 低温升、 预增压效果。 相变波转子增压器除具有增压特性外, 还具备优秀的带 液操作性能, 另外拥有结构尺寸小、 转速低、 易于幵发设备等优势。 自复叠过 冷器的使用, 可以大大简化自复叠系统的结构, 降低成本。
序列表自由内容
[0026] 无。

Claims

权利要求书
[权利要求 1] 一种相变波转子自复叠制冷系统, 它包括自复叠制冷装置和增压装置
, 所述自复叠制冷装置包含冷凝器 (3) 、 高温节流阀 (4) 、 不凝气 泵 (5) 、 低温节流阀 (7) 、 蒸发器 (8) , 其特征是: 它还包括一 个自复叠过冷器 (6) , 所述自复叠过冷器 (6) 将高温制冷剂与低温 制冷剂进行热量交换, 并同吋排出不凝气, 所述增压装置由相变波转 子增压器 (1) 和蒸汽压缩机 (2) 构成, 所述相变波转子增压器 (1 ) 的中压蒸汽出口 (Mp) 与蒸汽压缩机 (2) 的入口连接, 蒸汽压缩 机 (2) 的出口与冷凝器 (3) 入口连接, 冷凝器 (3) 出口分成两路 : 一路与自复叠过冷器 (6) 的热端入口相连, 自复叠过冷器 (6) 的 热端出口与低温节流阀 (7) 入口连接, 低温节流阀 (7) 的出口与蒸 发器 (8) 的冷端入口连接, 蒸发器 (8) 的冷端出口与相变波转子增 压器 (1) 的低压蒸汽入口 (Lp) 连接; 另一路与高温节流阀 (4) 的入口连接, 高温节流阀 (4) 的出口与自复叠过冷器 (6) 的冷端入 口连接, 自复叠过冷器 (6) 的冷端出口与相变波转子增压器 (1) 的 驱动蒸汽入口 (Hp) 连接; 自复叠过冷器 (6) 的不凝气出口与不凝 气泵 (5) 连接; 蒸发器 (8) 的热端入口与出口同被冷却介质管路连 接。
[权利要求 2] 根据权利要求 1所述的一种相变波转子自复叠制冷系统的工作方法, 其特征是: 所述工作方法采用下列步骤:
通入相变波转子增压器 (1) 驱动蒸汽入口 (Hp) 的高压蒸汽经过等 熵膨胀过程与通入相变波转子增压器 (1) 低压蒸汽入口 (Lp) 的低 压饱和蒸汽经过低于等熵压缩后等压混合成中压蒸汽, 然后经由增压 蒸汽出口 (Mp) 排出, 并进入蒸汽压缩机 (2) 压缩成高温高压过热 蒸汽, 经冷凝器 (3) 后以高压饱和液体形式分为低温制冷剂与高温 制冷剂两路; 低温制冷剂经自复叠过冷器 (6) 排出不凝气并降温为 过冷液体, 通过低温节流阀 (7) 降温降压至设定温度, 以低温低压 气液混合物形式进入蒸发器 (8) , 定压吸热转换为低压饱和蒸汽完 成制冷循环, 然后作为相变波转子增压器 (1) 的低压蒸汽; 高温制 冷剂经高温节流阀 (4) 降温降压后, 通入自复叠过冷器 (6) 吸热, 以高温高压蒸汽形式作为相变波转子增压器 (1) 的驱动蒸汽。
PCT/CN2016/099196 2015-12-24 2016-09-18 一种相变波转子自复叠制冷系统及其工作方法 WO2017107591A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018509966A JP6585830B2 (ja) 2015-12-24 2016-09-18 ウェーブロータ式自動カスケード冷凍システム及びその動作方法
KR1020177031112A KR101980332B1 (ko) 2015-12-24 2016-09-18 상변화 웨이브 로터를 사용한 오토-케스케이드 냉동 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510984077.1A CN105509359B (zh) 2015-12-24 2015-12-24 一种相变波转子自复叠制冷系统及其工作方法
CN2015109840771 2015-12-24

Publications (1)

Publication Number Publication Date
WO2017107591A1 true WO2017107591A1 (zh) 2017-06-29

Family

ID=55717529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099196 WO2017107591A1 (zh) 2015-12-24 2016-09-18 一种相变波转子自复叠制冷系统及其工作方法

Country Status (4)

Country Link
JP (1) JP6585830B2 (zh)
KR (1) KR101980332B1 (zh)
CN (1) CN105509359B (zh)
WO (1) WO2017107591A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107726657A (zh) * 2017-10-26 2018-02-23 焦景田 一种复叠式风冷热泵冷热水机组
CN115468327A (zh) * 2022-09-20 2022-12-13 河南科技大学 一种带分级分凝器的自复叠制冷系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105509359B (zh) * 2015-12-24 2017-12-26 大连理工大学 一种相变波转子自复叠制冷系统及其工作方法
EP3642541A4 (en) * 2017-06-21 2021-03-24 Honeywell International Inc. COOLING SYSTEM AND METHOD

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101603745A (zh) * 2009-07-07 2009-12-16 河南科技大学 一种增压吸收型自复叠吸收制冷循环系统
CN201555392U (zh) * 2009-10-23 2010-08-18 南通康鑫药业有限公司 一种复叠式制冷系统
CN203298518U (zh) * 2013-04-18 2013-11-20 南京瑞柯徕姆环保科技有限公司 一种复叠式冷力循环制冷装置
CN203731731U (zh) * 2014-03-02 2014-07-23 上海海洋大学 一种船用节能自复叠制冷装置
CN105135676A (zh) * 2015-10-10 2015-12-09 浙江万宝新能源科技有限公司 复叠式蓄热型空气源热泵热水器
CN105180492A (zh) * 2015-09-04 2015-12-23 大连理工大学 一种气波增压辅助双级蒸汽压缩制冷系统及其工作方法
CN105509359A (zh) * 2015-12-24 2016-04-20 大连理工大学 一种相变波转子自复叠制冷系统及其工作方法
CN205261966U (zh) * 2015-12-24 2016-05-25 大连理工大学 一种相变波转子自复叠制冷系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033173U (ja) * 1983-08-11 1985-03-06 三洋電機株式会社 二段圧縮冷凍装置
AU2003295527A1 (en) * 2002-11-11 2004-06-03 Vortex Aircon Refrigeration system with bypass subcooling and component size de-optimization
US7938627B2 (en) * 2004-11-12 2011-05-10 Board Of Trustees Of Michigan State University Woven turbomachine impeller
JP2007071421A (ja) * 2005-09-05 2007-03-22 Hitachi Ltd 空気調和機
JP2010230256A (ja) * 2009-03-27 2010-10-14 Fujitsu General Ltd 冷媒間熱交換器
CN102606547A (zh) * 2012-03-23 2012-07-25 大连理工大学 轴流式射流气波增压器
JP2013245850A (ja) * 2012-05-24 2013-12-09 Hitachi Appliances Inc 空気調和機
CN103206801B (zh) * 2013-03-11 2014-11-12 大连理工大学 轴流式自增压气波制冷装置及其制冷方法
KR102242777B1 (ko) * 2014-03-20 2021-04-20 엘지전자 주식회사 공기조화기
CN104399267B (zh) * 2014-12-01 2016-04-13 大连理工大学 一种闪蒸气波蒸汽再压缩连续蒸发系统
CN105180495B (zh) * 2015-10-13 2017-12-26 大连理工大学 一种波转子复迭制冷系统及其工作方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101603745A (zh) * 2009-07-07 2009-12-16 河南科技大学 一种增压吸收型自复叠吸收制冷循环系统
CN201555392U (zh) * 2009-10-23 2010-08-18 南通康鑫药业有限公司 一种复叠式制冷系统
CN203298518U (zh) * 2013-04-18 2013-11-20 南京瑞柯徕姆环保科技有限公司 一种复叠式冷力循环制冷装置
CN203731731U (zh) * 2014-03-02 2014-07-23 上海海洋大学 一种船用节能自复叠制冷装置
CN105180492A (zh) * 2015-09-04 2015-12-23 大连理工大学 一种气波增压辅助双级蒸汽压缩制冷系统及其工作方法
CN105135676A (zh) * 2015-10-10 2015-12-09 浙江万宝新能源科技有限公司 复叠式蓄热型空气源热泵热水器
CN105509359A (zh) * 2015-12-24 2016-04-20 大连理工大学 一种相变波转子自复叠制冷系统及其工作方法
CN205261966U (zh) * 2015-12-24 2016-05-25 大连理工大学 一种相变波转子自复叠制冷系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107726657A (zh) * 2017-10-26 2018-02-23 焦景田 一种复叠式风冷热泵冷热水机组
CN115468327A (zh) * 2022-09-20 2022-12-13 河南科技大学 一种带分级分凝器的自复叠制冷系统
CN115468327B (zh) * 2022-09-20 2023-09-15 河南科技大学 一种带分级分凝器的自复叠制冷系统

Also Published As

Publication number Publication date
JP6585830B2 (ja) 2019-10-02
KR101980332B1 (ko) 2019-05-20
KR20180002632A (ko) 2018-01-08
CN105509359B (zh) 2017-12-26
CN105509359A (zh) 2016-04-20
JP2018514747A (ja) 2018-06-07

Similar Documents

Publication Publication Date Title
CN110345690B (zh) 用于双温电冰箱的双喷射器增效制冷循环系统及工作方法
CN103954061B (zh) 一种喷射器过冷增效的单级蒸气压缩式循环系统
CN106766352A (zh) 热/功联合驱动的蒸汽喷射式制冷装置及其制冷方法
CN103743150B (zh) 吸收压缩式自复叠制冷系统及使用方法
CN104019579B (zh) 利用余热驱动引射器的混合工质低温制冷循环系统
CN102650478B (zh) 利用低品位热的跨临界/吸收复合制冷装置
WO2017107591A1 (zh) 一种相变波转子自复叠制冷系统及其工作方法
CN110486968B (zh) 一种基于co2工质的冷电联供系统
CN105180492B (zh) 一种气波增压辅助双级蒸汽压缩制冷系统及其工作方法
CN110986414B (zh) 一种采用喷射器增效的多温区和大温跨热泵循环系统
CN210089175U (zh) 喷射式跨临界二氧化碳双级压缩制冷系统
CN110736262A (zh) 一种引射增压双级过冷跨临界co2双温系统及应用
CN103527268A (zh) 双级全流螺杆膨胀机有机朗肯循环系统
CN105423613A (zh) 一种机械增压式太阳能喷射制冷系统及方法
CN211316632U (zh) 一种引射器增压过冷膨胀机耦合跨临界co2系统
CN211316633U (zh) 引射器增压双过冷器串联膨胀机耦合跨临界co2双温区系统
CN210861850U (zh) 双级节流非共沸工质机械过冷co2跨临界制冷循环系统
CN210089181U (zh) 吸收式跨临界二氧化碳双级压缩制冷系统
CN105546870A (zh) 超重力热驱动制冷装置及方法
CN205261966U (zh) 一种相变波转子自复叠制冷系统
CN213238005U (zh) 一种补气增焓冷媒系统及冷水机组
CN210861778U (zh) 一种非共沸工质增压机械过冷co2跨临界循环制冷系统
CN111141051B (zh) 一种吸收压缩引射复合梯级过冷跨临界co2冷热联供系统
CN209925039U (zh) 一种二氧化碳跨临界循环冷电联产系统
CN211060434U (zh) 一种引射增压双级过冷跨临界co2双温系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877402

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177031112

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018509966

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16877402

Country of ref document: EP

Kind code of ref document: A1