WO2017107525A1 - 一种数据接收方法、装置及存储介质 - Google Patents

一种数据接收方法、装置及存储介质 Download PDF

Info

Publication number
WO2017107525A1
WO2017107525A1 PCT/CN2016/096708 CN2016096708W WO2017107525A1 WO 2017107525 A1 WO2017107525 A1 WO 2017107525A1 CN 2016096708 W CN2016096708 W CN 2016096708W WO 2017107525 A1 WO2017107525 A1 WO 2017107525A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
subcarrier
subcarrier signal
channel
calculation
Prior art date
Application number
PCT/CN2016/096708
Other languages
English (en)
French (fr)
Inventor
张小磊
Original Assignee
深圳市中兴微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中兴微电子技术有限公司 filed Critical 深圳市中兴微电子技术有限公司
Publication of WO2017107525A1 publication Critical patent/WO2017107525A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling

Definitions

  • the present invention relates to the field of mobile communications technologies, and in particular, to a data receiving method, apparatus, and storage medium.
  • Carrier aggregation technology is a key technology of the Enhanced Long Term Evolution-Advanced (LTE-A) system. It can well aggregate multiple carriers into a wider spectrum, and can also implement some discontinuous spectrum. Fragments are aggregated together; one of the most straightforward ways to meet the single-user peak rate and system capacity increase is to increase the system transmission bandwidth; for peak rate requirements, there can be 2 to 5 subcarriers to achieve a maximum transmission bandwidth of 100M. .
  • LTE-A Enhanced Long Term Evolution-Advanced
  • Three application scenarios of carrier aggregation are defined in the 3rd Generation Partnership Project (3GPP) protocol version 10. As shown in Figure 1, it includes: continuous carrier aggregation in a frequency band and discontinuous carrier aggregation in a frequency band. And the non-contiguous carrier aggregation between the bands; for the above three different application scenarios, the implementation scheme of the carrier aggregation and reception includes the following two types: one is for the application scenario of continuous carrier aggregation in the frequency band, and the traditional single receiving link is used for receiving Carrier aggregation data, the difference between this implementation and the non-carrier aggregation application scenario is that the maximum bandwidth of the baseband filter is twice the original; the other is the application of non-contiguous carrier aggregation and inter-band discontinuous carrier aggregation in the frequency band.
  • the scenario uses multiple receiving links to demodulate and filter data carried on multiple non-contiguous carriers.
  • FIG. 2 Schematic diagram of the structure of the multi-channel carrier aggregation data receiving system, as shown in FIG. 2, multiple subcarriers pass their respective RF antennas, Low Noise Amplifier (LNA), Phase-Locked Loop (PLL), The mixer (MIXER), filter (FILTER) and other devices are sent to the baseband module.
  • LNA Low Noise Amplifier
  • PLL Phase-Locked Loop
  • MIXER The mixer
  • FILTER filter
  • Blocker In a multi-channel carrier aggregation data receiving system, Blocker is a redundant channel with significant signal energy. As shown in Figure 3, the frequency of the Blocker is close to the actual required channel frequency. Therefore, the filter cannot be directly used in the channel. Filter out it; Blocker is the main reason for adopting multi-channel receive link in the scenario of in-band non-continuous carrier aggregation; when the power of Blocker is large, the data in Blocker enters the channel along with the actual required channel, which will lead to useful signal. It is interfered with, reducing the signal quality of the actual required channel.
  • embodiments of the present invention are directed to a data receiving method and apparatus, which can quickly detect a Blocker between non-contiguous carriers, improve signal quality, and reduce system power consumption.
  • An embodiment of the present invention provides a data receiving method, which includes: separately acquiring accumulated data of each subcarrier signal after fast Fourier Transformation (FFT) calculation; and acquiring data of a blocked channel between adjacent subcarrier signals. Comparing the data of the blocked channel with the size of the accumulated data calculated by the FFT of the corresponding subcarrier signal to obtain a comparison result; determining a data receiving manner of each subcarrier according to the comparison result.
  • FFT fast Fourier Transformation
  • the obtaining the accumulated data after the FFT operation of each subcarrier signal comprises: receiving a subcarrier signal, performing FFT calculation on the subcarrier signal, obtaining a calculation result; storing the calculation result; storing The data between the start address of the calculation result and the end address storing the calculation result is accumulated, and the accumulated data after the FFT operation of the subcarrier signal is obtained.
  • the acquiring data of the blocked channel between adjacent subcarrier signals includes: ending a calculation result of storing the first subcarrier signal and starting a calculation result of storing the second subcarrier signal And accumulating data between the addresses to obtain data of the blocked channel between the first subcarrier signal and the second subcarrier signal; wherein the first subcarrier signal and the second sub The carrier signal is two adjacent subcarrier signals.
  • the determining, according to the comparison result, the data receiving manner of each subcarrier includes: when the comparison result is that there is no blocking channel between two adjacent channels, receiving a neighboring subcarrier by using a single channel Data; when the comparison result is that there is a blocked channel between two adjacent channels, the two channels are respectively used to receive data of adjacent subcarriers.
  • the method before acquiring the accumulated data of each subcarrier signal after the FFT calculation, the method further includes: configuring the channel for receiving the subcarrier signal to be in the single channel receiving mode.
  • the embodiment of the present invention further provides a data receiving device, where the device includes: a first acquiring module, a second acquiring module module, a comparing module, and a determining module;
  • the first acquiring module is configured to separately acquire accumulated data of each subcarrier signal after fast Fourier transform FFT calculation
  • the second acquiring module is configured to acquire data of a blocked channel between adjacent subcarrier signals
  • the comparing module is configured to compare the data of the blocked channel with the accumulated data of the corresponding subcarrier signal after the FFT calculation to obtain a comparison result;
  • the determining module is configured to determine a data receiving manner of each subcarrier according to the comparison result.
  • the first acquiring module is configured to receive a subcarrier signal, perform FFT calculation on the subcarrier signal, and obtain a calculation result; store the calculation result; and store a start of the calculation result
  • the data between the address and the end address storing the calculation result is accumulated, and the accumulated data after the FFT operation of the subcarrier signal is obtained.
  • the second acquiring module is configured to accumulate data between an end address storing a calculation result of the first subcarrier signal and a start address storing a calculation result of the second subcarrier signal, Obtaining data of the blocked channel between the first subcarrier signal and the second subcarrier signal; wherein the first subcarrier signal and the second subcarrier signal are adjacent two sub-carriers Carrier signal.
  • the determining module is configured to receive data of adjacent subcarriers by using a single channel when the comparison result is that there is no blocking channel between adjacent two channels; When there is a blocking channel between two adjacent channels, two channels are used to receive data of adjacent subcarriers respectively.
  • the apparatus further includes: a configuration module configured to configure a channel for receiving the subcarrier signal to be in a single channel receiving mode.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores a computer program, and the computer program is used to execute the data receiving method of the embodiment of the present invention.
  • the data receiving method, device and storage medium provided by the embodiments of the present invention respectively acquire accumulated data of each subcarrier signal after FFT calculation; acquire data of a blocked channel between adjacent subcarrier signals; and compare the blocked channel Comparing the data with the size of the accumulated data of the corresponding subcarrier signal after FFT calculation, obtaining a comparison result according to the comparison result; determining the data receiving manner of each subcarrier according to the comparison result; thus, the detection result between the subcarrier channels can be intelligently Switching between single channel and multiple channels to receive subcarrier data improves signal quality and reduces system power consumption.
  • FIG. 1 is a schematic diagram of an application scenario of an aggregate carrier in the prior art
  • FIG. 2 is a schematic structural diagram of a structure of a multi-channel carrier aggregation data receiving system in the prior art
  • FIG. 3 is a schematic diagram of a blocked channel in a carrier aggregation data receiving system of the prior art
  • FIG. 4 is a schematic flowchart of a basic processing procedure of a data receiving method according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of detailed processing of a data receiving method according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a carrier aggregation system according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of detailed processing of a data receiving method according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic flowchart of detailed processing of a data receiving method according to Embodiment 3 of the present invention.
  • FIG. 9 is a schematic structural diagram of a structure of a data receiving apparatus according to an embodiment of the present invention.
  • a basic processing flow of a data receiving method according to an embodiment of the present invention, as shown in FIG. 4, includes the following steps:
  • Step 101 Acquire accumulated data of each subcarrier signal after fast Fourier transform FFT calculation
  • the first acquiring module of the data receiving device receives the subcarrier information, performs FFT calculation on the subcarrier signal, obtains a calculation result, and stores the calculation result in a random access memory (RAM).
  • RAM random access memory
  • Step 102 Acquire data of a blocked channel between adjacent subcarrier signals.
  • the second obtaining module in the data receiving device accumulates data between the end address of the calculation result of the first subcarrier signal stored in the RAM and the start address of the calculation result of storing the second subcarrier signal, to obtain the first Data of a blocked channel between a subcarrier signal and a second subcarrier signal;
  • the first subcarrier signal and the second subcarrier signal are two adjacent subcarrier signals.
  • Step 103 Compare the data of the blocked channel with the size of the accumulated data of the corresponding subcarrier signal after the FFT calculation to obtain a comparison result, and determine a data receiving manner of each subcarrier according to the comparison result;
  • the comparing module in the data sending device compares the data of the blocked channel with the accumulated data of the corresponding subcarrier signal after the FFT calculation to obtain a comparison result
  • the data of the blocked channel between the first subcarrier and the second subcarrier is at least MdB smaller than the accumulated data of the first subcarrier signal after the FFT calculation, and the blocking between the first subcarrier and the second subcarrier
  • the comparison result is that there is no Blocker
  • the data of the first subcarrier and the data of the second subcarrier are received by using a single channel.
  • the data of the blocked channel between the first subcarrier and the second subcarrier is at least MdB smaller than the accumulated data of the first subcarrier signal after the FFT calculation, and the blocked channel between the first subcarrier and the second subcarrier The data is larger than the accumulated data of the second subcarrier signal after the FFT calculation; or the data of the blocked channel between the first subcarrier and the second subcarrier is at least MdB smaller than the accumulated data of the second subcarrier signal after the FFT calculation.
  • the comparison result is that there is a Blocker; at this time, the data of the first subcarrier and the data of the second subcarrier are separately received by using two channels; wherein the value of M can be flexibly set according to the energy of the actually received subcarrier signal.
  • the embodiment of the present invention further includes:
  • Step 100 Configure a channel for receiving a subcarrier signal to be in a single channel receiving mode.
  • the configuration module in the data receiving device configures the channel receiving the subcarrier signal to be in the single channel receiving mode.
  • a detailed processing flow of the data receiving method in the first embodiment of the present invention, as shown in FIG. 5, includes the following steps:
  • Step 201 performing channel configuration.
  • the structure of the carrier aggregation system is as shown in FIG. 6.
  • the carrier aggregation system first determines the number of points of the FFT operation according to the bandwidth, and after receiving the receiving command of the baseband chip, configures a low noise amplifier (LNA1).
  • LNA1 low noise amplifier
  • To the gain interval of the single channel reception, ensure that the possible Blocker will not saturate the LNA1; then turn on the LNA1 pre-switch, configure LO1 as F1 0 (f1 + f4) /2, open Mixer1 and filter Filter1, Mixer1 and Filter1 are configured for single-channel operation.
  • the PGA1 gain is configured into a single-channel linear gain interval to enable ADC1. At this point, the receiver begins to use a single channel to receive the input signal.
  • Step 202 Perform an FFT operation on the subcarrier signal.
  • the FFT module performs FFT calculation on the subcarrier signal after the analog-to-digital converter (ADC) to obtain a calculation result, and stores the calculation result in the RAM; after the calculation ends, the interrupt is passed.
  • ADC analog-to-digital converter
  • the MCU adopts an algorithm to obtain the start address address1 and the end address address2 of the FFT result of the subcarrier 1 in the RAM, and the start address of the FFT result of the subcarrier 2 in the RAM. Address3 and the end address address4; the MCU reads data from address1, reads the end of address2, accumulates all the data read to obtain the result data1, that is, the accumulated data after the subcarrier signal 1 is calculated by FFT;
  • the data is read from address3, and the end of address4 is read, and all the data read is accumulated to obtain the result data2, that is, the accumulated data after the subcarrier signal 2 is calculated by FFT;
  • the data is read from the address 2, the end of the address 3 is read, and all the data read are accumulated to obtain the result data3, that is, the data of the blocked channel between the subcarrier signal 1 and the subcarrier signal 2.
  • Step 203 comparing the size of data3 and data1 with the size of data3 and data2, and determining the data receiving mode of the subcarrier according to the comparison result;
  • the value of M can be flexibly set according to the actually received subcarrier signal energy.
  • the FFT, MCU and other modules in the carrier aggregation system shown in FIG. 6 can be multiplexed into the remaining mode functions; for example, the FFT can be multiplexed into the DC components of the uplink and downlink channels (DC).
  • the detection, IQ mismatch adjustment and other functional modes, MCU can be used as the control core of the chip; therefore, the complexity of the carrier aggregation system is reduced, and the chip area of the carrier aggregation system is reduced.
  • the detailed processing flow of the data receiving method in the second embodiment of the present invention includes the following steps:
  • Step 301 performing channel configuration.
  • the carrier aggregation system first determines the number of points of the FFT operation according to the bandwidth, and after receiving the receiving command of the baseband chip, configures the receiving channel to be in the single channel receiving mode.
  • Step 302 performing an FFT operation on the subcarrier signal
  • the FFT module performs FFT calculation on the subcarrier signal after the ADC, obtains a calculation result, and stores the calculation result in the RAM; after the calculation ends, the MCU is notified by the interrupt, and the MCU adopts an algorithm to acquire the subcarrier 1
  • the FFT result is the start address address1 and the end address address2 in the RAM
  • the FFT result of the subcarrier 2 is the start address address3 and the end address address4 in the RAM
  • the FFT result of the subcarrier 3 is the start address address5 in the RAM and End address address6;
  • the MCU reads data from address1, reads the end of address2, and accumulates all the data read to obtain the result data1, that is, the accumulated data after the subcarrier signal 1 is calculated by FFT;
  • the data is accumulated to obtain the result data2, that is, the accumulated data after the subcarrier signal 2 is calculated by the FFT;
  • the data is read from address5, the end of address6 is read, and all the data read is accumulated to obtain the result data3, that is, the accumulated data after the subcarrier signal 3 is calculated by FFT;
  • the data is read from the address 4, the end of the address 5 is read, and all the data read is accumulated to obtain the result data5, that is, the data of the blocked channel between the subcarrier signal 2 and the subcarrier signal 3.
  • Step 303 comparing the size of data4 and data1 and the size of data4 and data2, and the size of data5 and data2 and the size of data5 and data3;
  • the dual channel is used to receive the subcarrier data, that is, one channel receives the data of the subcarrier 1 and the other channel receives the data of the subcarrier 2 and the subcarrier 3;
  • Data5 is only at least MdB smaller than one of data1 and data2. It is determined that there is a Blocker between subcarrier 2 and subcarrier 3. When data4 is at least MdB smaller than data2 and data3, it is determined that there is no Blocker between subcarrier 1 and subcarrier 2. Therefore, the dual channel is used to receive the subcarrier data, that is, one channel receives the data of the subcarrier 3, and the other channel receives the data of the subcarrier 1 and the subcarrier 2;
  • Data5 is only at least MdB smaller than one of data1 and data2. It is determined that there is a Blocker between subcarrier 2 and subcarrier 3. When data4 is at least MdB smaller than one of data2 and data3, subcarrier 1 and subcarrier 2 are determined. There is a Blocker; therefore, three channels are used to receive subcarrier data, that is, three channels independently receive data of each subcarrier, one channel receives subcarrier 3 data, one channel receives subcarrier 1, and one channel receives subcarrier 2 data;
  • the value of M can be flexibly set according to the actually received subcarrier signal energy.
  • the detailed processing flow of the data receiving method in the third embodiment of the present invention includes the following steps:
  • Step 401 performing channel configuration.
  • the carrier aggregation system first determines the number of points of the FFT operation according to the bandwidth, and after receiving the receiving command of the baseband chip, configures the receiving channel to be in the single channel receiving mode.
  • Step 402 performing FFT on the subcarrier signal
  • the FFT module performs FFT calculation on the subcarrier signal after the ADC, obtains a calculation result, and stores the calculation result in the RAM; after the calculation ends, the MCU is notified by the interrupt, and the MCU adopts an algorithm to acquire the subcarrier 1
  • the FFT result is the start address address1 and the end address address2 in the RAM
  • the FFT result of the subcarrier 2 is the start address address3 and the end address address4 in the RAM
  • the FFT result of the subcarrier 3 is the start address address5 in the RAM and End address address6, and the FFT result of subcarrier 4 in the RAM start address address7 and end address address8;
  • the MCU reads data from address1, reads the end of address2, and accumulates all the data read to obtain the result data1, that is, the accumulated data after the subcarrier signal 1 is calculated by FFT;
  • the data is read from address3, and the end of address4 is read, and all the data read is accumulated to obtain the result data2, that is, the accumulated data after the subcarrier signal 2 is calculated by FFT;
  • the data is read from address5, the end of address6 is read, and all the data read is accumulated to obtain the result data3, that is, the accumulated data after the subcarrier signal 3 is calculated by FFT;
  • the data is read from address7, the end of address8 is read, and all the data read is accumulated to obtain the result data4, that is, the accumulated data after the subcarrier signal 4 is calculated by FFT;
  • Read data from address4 read the end of address5, and accumulate all the data read to obtain the result data6, that is, the data of the blocked channel between the subcarrier signal 2 and the subcarrier signal 3.
  • the data is read from address6, the end of address7 is read, and all the data read is accumulated to obtain the result data7, that is, the data of the blocked channel between the subcarrier signal 3 and the subcarrier signal 4.
  • Step 403 comparing the size of data5 and data1 and the size of data5 and data2, the size of data6 and data2, and the size of data6 and data3, and the size of data7 and data3 and the size of data7 and data4;
  • data5 is at least MdB smaller than data1
  • data5 is at least MdB smaller than data2
  • data6 is at least MdB smaller than data2
  • data6 is at least MdB smaller than data3
  • data7 is at least MdB smaller than data3, and data7 is at least smaller than data4.
  • MdB it is determined that there is no Blocker between subcarrier 1 and subcarrier 2, there is no Blocker between subcarrier 2 and subcarrier 3, and there is no Blocker between subcarrier 3 and subcarrier 4; therefore, a single channel receiving subcarrier is adopted. 1.
  • Data5 is only at least MdB smaller than one of data1 and data2, and it is determined that there is a Blocker between subcarrier 1 and subcarrier 2; when data6 is at least MdB smaller than data2, and data6 is at least MdB smaller than data3, subcarrier 2 and subcarrier are determined. There is no Blocker between 3; in data7 When the data is at least MdB smaller than the data3, and the data7 is at least MdB smaller than the data4, it is determined that there is no Blocker between the subcarrier 3 and the subcarrier 4; therefore, the dual channel is used to receive the subcarrier data, that is, one channel receives the data of the subcarrier 1, Another channel receives data of subcarrier 2, subcarrier 3, and subcarrier 4;
  • Data6 is only at least MdB smaller than one of data2 and data3, and it is determined that there is a Blocker between subcarrier 2 and subcarrier 3.
  • data2 is at least MdB smaller than data1
  • data5 is at least MdB smaller than data1
  • subcarrier 1 and subcarrier are determined.
  • data7 is at least MdB smaller than data3, and data7 is at least MdB smaller than data4
  • dual channel receiving subcarrier data is used, namely: One channel receives data of subcarrier 1 and subcarrier 2, and the other channel receives data of subcarrier 3 and subcarrier 4;
  • Data7 is only at least MdB smaller than one of data3 and data4, and it is determined that there is a Blocker between subcarrier 3 and subcarrier 4; when data6 is at least MdB smaller than data2, and data6 is at least MdB smaller than data3, subcarrier 2 and subcarrier are determined. There is no Blocker between 3; when data5 is at least MdB smaller than data1, and data5 is at least MdB smaller than data2, it is determined that there is no Blocker between subcarrier 1 and subcarrier 2; therefore, dual channel receiving subcarrier data is used, namely: One channel receives data of subcarrier 4, and the other channel receives data of subcarrier 1, subcarrier 2, and subcarrier 3.
  • Data5 is only at least MdB smaller than one of data1 and data2, and it is determined that there is a Blocker between subcarrier 1 and subcarrier 2; when data6 is at least MdB smaller than one of data2 and data3, subcarrier 2 and subcarrier 3 are determined. There is a Blocker between data; when data7 is at least MdB smaller than data3, and data7 is at least MdB smaller than data4, it is determined that there is no Blocker between subcarrier 3 and subcarrier 4; therefore, three channels are used to receive subcarrier data, that is, one channel. Receiving data of subcarrier 1, one channel receives data of subcarrier 2, and the other channel receives data of subcarrier 3 and subcarrier 4.
  • Data5 is only at least MdB smaller than one of data1 and data2, and it is determined that there is a Blocker between subcarrier 1 and subcarrier 2; when data7 is at least MdB smaller than one of data3 and data4, subcarrier 3 and subcarrier 4 are determined. There is a Blocker between data; when data6 is at least MdB smaller than data2, and data6 is at least MdB smaller than data3, it is determined that there is no Blocker between subcarrier 2 and subcarrier 3; therefore, three channels are used to receive subcarrier data, that is, one channel. Receiving data of subcarrier 1, one channel receives data of subcarrier 4, and the other channel receives data of subcarrier 2 and subcarrier 3.
  • Data6 is only at least MdB smaller than one of data2 and data3, and it is determined that there is a Blocker between subcarrier 2 and subcarrier 3.
  • data7 is only at least MdB smaller than one of data3 and data4, subcarrier 3 and subcarrier 4 are determined.
  • Data5 is only at least MdB smaller than one of data1 and data2, and it is determined that there is a Blocker between subcarrier 1 and subcarrier 2; when data6 is at least MdB smaller than one of data2 and data3, subcarrier 2 and subcarrier 3 are determined. There is a Blocker between them; when data7 is only at least MdB smaller than one of data3 and data4, it is determined that there is also a Blocker between subcarrier 3 and subcarrier 4; therefore, four channels are used to independently receive data of each subcarrier, namely: The channel receives the data of the subcarrier 1, one channel receives the subcarrier 2, one channel receives the data of the subcarrier 3, and one channel receives the data of the subcarrier 4;
  • the value of M can be flexibly set according to the actually received subcarrier signal energy.
  • data of five carriers can be received by using one channel, two channels, three channels, four channels, five channels, or more channels according to different detection results of the block.
  • the subcarrier data can be received by switching between multiple channels or single channels intelligently according to the detection result between the subcarrier signals, and when the single channel receiving subcarrier data is used, other Channels and related modules are turned off to reduce system power consumption.
  • an embodiment of the present invention provides a data receiving apparatus.
  • the composition of the apparatus includes: a first acquiring module 10, a second acquiring module module 20, a comparing module 30, and Determining module 40; wherein
  • the first obtaining module 10 is configured to separately acquire accumulated data of each subcarrier signal after fast Fourier transform FFT calculation;
  • the second obtaining module 20 is configured to acquire data of a blocked channel between adjacent subcarrier signals
  • the comparing module 30 is configured to compare the data of the blocked channel with the accumulated data of the corresponding subcarrier signal after the FFT calculation to obtain a comparison result;
  • the determining module 40 is configured to determine a data receiving manner of each subcarrier according to the comparison result.
  • the first acquiring module 10 is configured to receive a subcarrier signal, perform FFT calculation on the subcarrier signal, obtain a calculation result, store the calculation result, and store the calculation result.
  • the data between the start address and the end address storing the calculation result is accumulated, and the accumulated data after the FFT operation of the subcarrier signal is obtained.
  • the second acquiring module 20 is configured to accumulate data between an end address storing a calculation result of the first subcarrier signal and a start address storing a calculation result of the second subcarrier signal. Obtaining data of the blocked channel between the first subcarrier signal and the second subcarrier signal;
  • the first subcarrier signal and the second subcarrier signal are two adjacent subcarrier signals.
  • the determining module 30 is specifically configured to When there is no blocking channel between two adjacent channels, the data of the adjacent subcarriers is received by using a single channel; when the comparison result is that there is a blocking channel between the adjacent two channels, the two channels are respectively used to receive adjacent channels. Subcarrier data.
  • the device further includes: a configuration module 50 configured to configure the channel for receiving the subcarrier signal to be in the single channel receiving mode.
  • the first obtaining module 10, the second obtaining module 20, the comparing module 30, the determining module 40, and the configuration module 50 in the data receiving apparatus proposed in the embodiment of the present invention may be implemented by a processor, and may also be implemented by a specific The logic circuit is implemented; wherein the processor may be a processor on a multi-carrier aggregation system, and in practical applications, the processor may be a central processing unit (CPU), a microprocessor (MPU), or a digital signal processor (DSP). Or field programmable gate array (FPGA), etc.
  • CPU central processing unit
  • MPU microprocessor
  • DSP digital signal processor
  • FPGA field programmable gate array
  • the above data receiving method is implemented in the form of a software function module and sold or used as a stand-alone product, it may also be stored in a computer readable storage medium.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • program codes such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores a computer program, and the computer program is used to execute the data receiving method in the embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种数据接收方法,包括:分别获取各子载波信号经过快速傅氏变换FFT计算后的累加数据;获取相邻子载波信号之间的阻塞信道的数据;比较所述阻塞信道的数据与相应的子载波信号经FFT计算后的累加数据的大小,得到比较结果;根据所述比较结果确定各子载波的数据接收方式;本发明实施例还公开了一种数据接收装置及存储介质。

Description

一种数据接收方法、装置及存储介质 技术领域
本发明涉及移动通信技术领域,尤其涉及一种数据接收方法、装置及存储介质。
背景技术
载波聚合技术是增强的长期演进(Long Term Evolution-Advanced,LTE-A)系统的关键技术,它可以很好地将多个载波聚合成一个更宽的频谱,同时也可以把一些不连续的频谱碎片聚合到一起;为了满足单用户峰值速率和系统容量提升的需求,一种最直接的办法就是增加系统传输带宽;针对峰值速率的要求,可以有2至5个子载波,实现最大100M的传输带宽。
在第三代合作伙伴计划(The 3rd Generation Partnership Project,3GPP)协议版本10中定义了三种载波聚合的应用场景,如图1所示,包括:频段内连续载波聚合、频段内非连续载波聚合和频段间非连续载波聚合;针对以上三种不同的应用场景,载波聚合接收的实现方案包括如下两种:一种是对于频段内连续载波聚合的应用场景,采用传统的单条接收链路来接收载波聚合的数据,该实现方案与非载波聚合应用场景的区别是其基带滤波器的最大带宽是原来的两倍;另一种是对于频段内非连续载波聚合和频段间非连续载波聚合的应用场景,采用多条接收链路对承载在多个非连续载波上的数据进行解调和滤波。
多通道载波聚合数据接收系统的组成结构示意图,如图2所示,多个子载波通过各自的射频天线、低噪声放大器(Low Noise Amplifier,LNA)、锁相环(Phase-Locked Loop,PLL)、混频器(MIXER)、滤波器(FILTER)等器件后送入基带模块。在多通道载波聚合数据接收系统中,载波数量的 增加将直接引起通道数的增加,导致系统功耗大幅度增加。
在多通道载波聚合数据接收系统中,阻塞(Blocker)是一个具有明显信号能量的多余信道,如图3示,Blocker的频率接近实际所需的信道频率,因此,无法在信道内直接采用滤波器将其滤除;Blocker是带内非连续载波聚合的场景下采用多通道接收链路的主要原因;当Blocker的功率较大时,Blocker内的数据随实际所需信道一同进入信道将导致有用信号被干扰,降低实际所需信道的信号质量。
发明内容
有鉴于此,本发明实施例期望提供一种数据接收方法及装置,能够快速检测非连续载波之间的Blocker,提高信号质量,降低系统功耗。
本发明实施例的技术方案是这样实现的:
本发明实施例提供一种数据接收方法,包括:分别获取各子载波信号经过快速傅氏变换(Fast Fourier Transformation,FFT)计算后的累加数据;获取相邻子载波信号之间的阻塞信道的数据;比较所述阻塞信道的数据与相应的子载波信号经FFT计算后的累加数据的大小,得到比较结果;根据所述比较结果确定各子载波的数据接收方式。
在一实施例中,所述获取各子载波信号经过FFT运算后的累加数据,包括:接收子载波信号,对所述子载波信号进行FFT计算,得到计算结果;存储所述计算结果;将存储所述计算结果的起始地址与存储所述计算结果的结束地址之间的数据进行累加,得到子载波信号经过FFT运算后的累加数据。
在一实施例中,所述获取相邻子载波信号之间的阻塞信道的数据,包括:将存储第一子载波信号的计算结果的结束地址与存储第二子载波信号的计算结果的起始地址之间的数据进行累加,得到第一子载波信号与第二子载波信号之间的阻塞信道的数据;其中,所述第一子载波信号与第二子 载波信号为相邻的两个子载波信号。
上述方案中,所述根据所述比较结果确定各子载波的数据接收方式,包括:在所述比较结果为相邻两个通道之间均不存在阻塞信道时,采用单通道接收相邻子载波的数据;在所述比较结果为相邻两个通道之间存在阻塞信道时,采用两个通道分别接收相邻子载波的数据。
在一实施例中,获取各子载波信号经过FFT计算后的累加数据之前,所述方法还包括:配置接收子载波信号的通道处于单通道接收模式。
本发明实施例还提供一种数据接收装置,所述装置包括:第一获取模块、第二获取模块模块、比较模块和确定模块;其中,
所述第一获取模块,配置为分别获取各子载波信号经过快速傅氏变换FFT计算后的累加数据;
所述第二获取模块,配置为获取相邻子载波信号之间的阻塞信道的数据;
所述比较模块,配置为比较所述阻塞信道的数据与相应的子载波信号经FFT计算后的累加数据的大小,得到比较结果;
所述确定模块,配置为根据所述比较结果确定各子载波的数据接收方式。
在一实施例中,所述第一获取模块,具体配置为接收子载波信号,对所述子载波信号进行FFT计算,得到计算结果;存储所述计算结果;将存储所述计算结果的起始地址与存储所述计算结果的结束地址之间的数据进行累加,得到子载波信号经过FFT运算后的累加数据。
在一实施例中,所述第二获取模块,具体配置为将存储第一子载波信号的计算结果的结束地址与存储第二子载波信号的计算结果的起始地址之间的数据进行累加,得到第一子载波信号与第二子载波信号之间的阻塞信道的数据;其中,所述第一子载波信号与第二子载波信号为相邻的两个子 载波信号。
在一实施例中,所述确定模块,具体配置为在所述比较结果为相邻两个通道之间均不存在阻塞信道时,采用单通道接收相邻子载波的数据;在所述比较结果为相邻两个通道之间存在阻塞信道时,采用两个通道分别接收相邻子载波的数据。
在一实施例中,所述装置还包括:配置模块,配置为配置接收子载波信号的通道处于单通道接收模式。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质存储有计算机程序,该计算机程序用于执行本发明实施例的上述数据接收方法。
本发明实施例所提供的数据接收方法、装置及存储介质,分别获取各子载波信号经过FFT计算后的累加数据;获取相邻子载波信号之间的阻塞信道的数据;比较所述阻塞信道的数据与相应的子载波信号经FFT计算后的累加数据的大小,得到比较结果;根据所述比较结果确定各子载波的数据接收方式;如此,根据子载波信道之间的检测结果能够智能的在单通道和多通道之间进行切换来接收子载波的数据,提高了信号质量,降低了系统功耗。
附图说明
图1为现有技术聚合载波的应用场景示意图;
图2为现有技术多通道载波聚合数据接收系统的组成结构示意图;
图3为现有技术载波聚合数据接收系统中的阻塞信道示意图;
图4为本发明实施例一种数据接收方法的基本处理流程示意图;
图5为本发明实施例一数据接收方法的详细处理流程示意图;
图6为本发明实施例载波聚合系统的结构示意图;
图7为本发明实施例二数据接收方法的详细处理流程示意图;
图8为本发明实施例三数据接收方法的详细处理流程示意图;
图9为本发明实施例数据接收装置的组成结构示意图。
具体实施方式
本发明实施例一种数据接收方法的基本处理流程,如图4所示,包括以下步骤:
步骤101,分别获取各子载波信号经过快速傅氏变换FFT计算后的累加数据;
具体地,数据接收装置的第一获取模块接收子载波信息,对所述子载波信号进行FFT计算,得到计算结果,并将所述计算结果存储至随机存取存储器(Random Access Memory,RAM),每个子载波信号经过FFT计算得到的计算结果存储至RAM后,均会有一个起始地址和结束地址;将所述起始地址和所述结束地址之间的数据进行累加,得到该子载波信号经过FFT运算后的累加数据。
步骤102,获取相邻子载波信号之间的阻塞信道的数据;
具体地,数据接收装置中的第二获取模块将RAM中存储第一子载波信号的计算结果的结束地址与存储第二子载波信号的计算结果的起始地址之间的数据进行累加,得到第一子载波信号与第二子载波信号之间的阻塞信道的数据;
其中,所述第一子载波信号与第二子载波信号为相邻的两个子载波信号。
步骤103,比较所述阻塞信道的数据与相应的子载波信号经FFT计算后的累加数据的大小,得到比较结果;根据所述比较结果确定各子载波的数据接收方式;
具体地,数据发送装置中的比较模块比较所述阻塞信道的数据与相应的子载波信号经FFT计算后的累加数据的大小,得到比较结果;
这里,在第一子载波与第二子载波之间的阻塞信道的数据比第一子载波信号经过FFT计算后的累加数据至少小MdB,且第一子载波与第二子载波之间的阻塞信道的数据比第二子载波信号经过FFT计算后的累加数据至少小MdB时,确定第一子载波与第二子载波之间不存在阻塞信道,即所述比较结果为不存在Blocker;此时,采用单通道接收第一子载波的数据和第二子载波的数据。
在第一子载波与第二子载波之间的阻塞信道的数据比第一子载波信号经过FFT计算后的累加数据至少小MdB,且第一子载波与第二子载波之间的阻塞信道的数据比第二子载波信号经过FFT计算后的累加数据大;或者在第一子载波与第二子载波之间的阻塞信道的数据比第二子载波信号经过FFT计算后的累加数据至少小MdB,且第一子载波与第二子载波之间的阻塞信道的数据比第一子载波信号经过FFT计算后的累加数据大时,确定第一子载波与第二子载波之间存在阻塞信道,即所述比较结果为存在Blocker;此时,采用双通道分别接收第一子载波的数据和第二子载波的数据;其中,M的值可根据实际接收到的子载波信号能量进行灵活设置。
在执行步骤101之前,本发明实施例还包括:
步骤100,配置接收子载波信号的通道处于单通道接收模式;
具体地,数据接收装置中的配置模块配置接收子载波信号的通道处于单通道接收模式。
实施例一
对于双载波的载波聚合系统,本发明实施例一数据接收方法的详细处理流程,如图5所示,包括以下步骤:
步骤201,进行通道配置;
具体地,载波聚合系统的结构示意图,如图6所示,所述载波聚合系统首先根据带宽确定FFT运算的点数,接收到基带芯片的接收命令之后, 配置低噪声放大器(Low Noise Amplifier,LNA1)到单通道接收的增益区间,保证可能存在的Blocker不会将LNA1撑饱和;再打开LNA1的前置开关,将LO1配置为F10=(f1+f4)/2,打开Mixer1和滤波器Filter1,并将Mixer1和Filter1配置为单通道工作模式,将PGA1增益配置到单通道线性增益区间,使能ADC1,此时,接收机开始使用单通道接收输入信号。
步骤202,对子载波信号进行FFT运算;
具体地,FFT模块对经过模数转换器(Analog-to-Digital Converter,ADC)后的子载波信号进行FFT计算,得到计算结果,并将所述计算结果存储至RAM;计算结束后,通过中断来通知微控制单元(Microcontroller Unit,MCU),MCU采用算法实现获取子载波1的FFT结果在RAM中的起始地址address1和结束地址address2,以及子载波2的FFT结果在RAM中的起始地址address3和结束地址address4;MCU从address1开始读取数据,读到address2结束,将所读取的所有数据累加得到结果data1,即子载波信号1经过FFT计算后的累加数据;
同理,从address3开始读取数据,读到address4结束,将所读取的所有数据累加得到结果data2,即子载波信号2经过FFT计算后的累加数据;
从address2开始读取数据,读到address3结束,将所读取的所有数据累加得到结果data3,即子载波信号1与子载波信号2之间的阻塞信道的数据。
步骤203,比较data3与data1的大小和data3与data2的大小,根据比较结果确定子载波的数据接收方式;
具体地,在data3比data1至少小MdB,且在data3比data2也至少小MdB时,确定子载波1和子载波2之间不存在Blocker,采用单通道接收子载波1的数据和子载波2的数据;采用单通道接收子载波1的数据和子载波2的数据时,能够降低45%左右的系统功耗;
在data3比data1至少小MdB,且在data3比data2大时,或data3比data2至少小MdB,且在data3比data1大时,确定子载波1和子载波2之间存在Blocker,采用两个通道分别接收子载波1的数据和子载波2的数据;
其中,M的值可根据实际接收到的子载波信号能量进行灵活设置。
需要说明的是,本发明实施例如图6所示的载波聚合系统中的FFT、MCU等模块均可以复用到其余模式功能下;如:FFT可以复用到上行、下行通路的直流分量(DC)检测,IQ失配调节等功能模式,MCU可用做芯片的控制核心;因此,降低了载波聚合系统的复杂度,减少了载波聚合系统的芯片面积。
实施例二
对于三载波的载波聚合系统,本发明实施例二数据接收方法的详细处理流程,如图7所示,包括以下步骤:
步骤301,进行通道配置;
具体地,载波聚合系统首先根据带宽确定FFT运算的点数,接收到基带芯片的接收命令之后,配置接收通道处于单通道接收模式。
步骤302,对子载波信号进行FFT运算;
具体地,FFT模块对经过ADC后的子载波信号进行FFT计算,得到计算结果,并将所述计算结果存储至RAM;计算结束后,通过中断来通知MCU,MCU采用算法实现获取子载波1的FFT结果在RAM中的起始地址address1和结束地址address2,子载波2的FFT结果在RAM中的起始地址address3和结束地址address4,以及子载波3的FFT结果在RAM中的起始地址address5和结束地址address6;
MCU从address1开始读取数据,读到address2结束,将所读取的所有数据累加得到结果data1,即子载波信号1经过FFT计算后的累加数据;
同理,从address3开始读取数据,读到address4结束,将所读取的所 有数据累加得到结果data2,即子载波信号2经过FFT计算后的累加数据;
同理,从address5开始读取数据,读到address6结束,将所读取的所有数据累加得到结果data3,即子载波信号3经过FFT计算后的累加数据;
从address2开始读取数据,读到address3结束,将所读取的所有数据累加得到结果data4,即子载波信号1与子载波信号2之间的阻塞信道的数据;
从address4开始读取数据,读到address5结束,将所读取的所有数据累加得到结果data5,即子载波信号2与子载波信号3之间的阻塞信道的数据。
步骤303,比较data4与data1的大小和data4与data2的大小,以及data5与data2的大小和data5与data3的大小;
具体地,在data4比data1至少小MdB,且data4比data2至少小MdB,且data5比data2至少小MdB,且data5比data3至少小MdB时,确定子载波1和子载波2之间不存在Blocker,子载波2和子载波3之间也不存在Blocker;因此,采用单通道接收子载波1、子载波2和子载波3的数据;
在data4只比data1和data2中的一个数据至少小MdB,确定子载波1和子载波2之间存在Blocker,data5比data2和data3均至少小MdB时,确定子载波2和子载波3之间不存在Blocker;因此,采用双通道接收子载波数据,即:一个通道接收子载波1的数据,另一个通道接收子载波2和子载波3的数据;
在data5只比data1和data2中的一个数据至少小MdB,确定子载波2和子载波3之间存在Blocker,data4比data2和data3均至少小MdB时,确定子载波1和子载波2之间不存在Blocker;因此,采用双通道接收子载波数据,即:一个通道接收子载波3的数据,另一个通道接收子载波1和子载波2的数据;
在data5只比data1和data2中的一个数据至少小MdB,确定子载波2和子载波3之间存在Blocker,data4只比data2和data3中的一个数据至少小MdB时,确定子载波1和子载波2之间存在Blocker;因此,采用三通道接收子载波数据,即:采用三通道独立接收每个子载波的数据,一个通道接收子载波3的数据,一个通道接收子载波1,一个通道接收子载波2的数据;
其中,M的值可根据实际接收到的子载波信号能量进行灵活设置。
实施例三
对于四载波的载波聚合系统,本发明实施例三数据接收方法的详细处理流程,如图8所示,包括以下步骤:
步骤401,进行通道配置;
具体地,载波聚合系统首先根据带宽确定FFT运算的点数,接收到基带芯片的接收命令之后,配置接收通道处于单通道接收模式。
步骤402,对子载波信号进行FFT;
具体地,FFT模块对经过ADC后的子载波信号进行FFT计算,得到计算结果,并将所述计算结果存储至RAM;计算结束后,通过中断来通知MCU,MCU采用算法实现获取子载波1的FFT结果在RAM中的起始地址address1和结束地址address2,子载波2的FFT结果在RAM中的起始地址address3和结束地址address4,以及子载波3的FFT结果在RAM中的起始地址address5和结束地址address6,以及子载波4的FFT结果在RAM中的起始地址address7和结束地址address8;
MCU从address1开始读取数据,读到address2结束,将所读取的所有数据累加得到结果data1,即子载波信号1经过FFT计算后的累加数据;
同理,从address3开始读取数据,读到address4结束,将所读取的所有数据累加得到结果data2,即子载波信号2经过FFT计算后的累加数据;
同理,从address5开始读取数据,读到address6结束,将所读取的所有数据累加得到结果data3,即子载波信号3经过FFT计算后的累加数据;
同理,从address7开始读取数据,读到address8结束,将所读取的所有数据累加得到结果data4,即子载波信号4经过FFT计算后的累加数据;
从address2开始读取数据,读到address3结束,将所读取的所有数据累加得到结果data5,即子载波信号1与子载波信号2之间的阻塞信道的数据;
从address4开始读取数据,读到address5结束,将所读取的所有数据累加得到结果data6,即子载波信号2与子载波信号3之间的阻塞信道的数据;
从address6开始读取数据,读到address7结束,将所读取的所有数据累加得到结果data7,即子载波信号3与子载波信号4之间的阻塞信道的数据。
步骤403,比较data5与data1的大小和data5与data2的大小,data6与data2的大小和data6与data3的大小,以及data7与data3的大小和data7与data4的大小;
具体地,在data5比data1至少小MdB,且data5比data2至少小MdB,且data6比data2至少小MdB,且data6比data3至少小MdB时,且data7比data3至少小MdB,且data7比data4至少小MdB时,确定子载波1和子载波2之间不存在Blocker,子载波2和子载波3之间也不存在Blocker,子载波3和子载波4之间也不存在Blocker;因此,采用单通道接收子载波1、子载波2、子载波3和子载波4的数据;
在data5只比data1和data2中的一个数据至少小MdB,确定子载波1和子载波2之间存在Blocker;在data6比data2至少小MdB,且data6比data3至少小MdB时,确定子载波2和子载波3之间不存在Blocker;在data7 比data3至少小MdB,且data7比data4至少小MdB时,确定子载波3和子载波4之间也不存在Blocker;因此,采用双通道接收子载波数据,即:一个通道接收子载波1的数据,另一个通道接收子载波2、子载波3和子载波4的数据;
在data6只比data2和data3中的一个数据至少小MdB,确定子载波2和子载波3之间存在Blocker;在data2比data1至少小MdB,且data5比data1至少小MdB时,确定子载波1和子载波2之间不存在Blocker;在data7比data3至少小MdB,且data7比data4至少小MdB时,确定子载波3和子载波4之间也不存在Blocker;因此,采用双通道接收子载波数据,即:一个通道接收子载波1和子载波2的数据,另一个通道接收子载波3和子载波4的数据;
在data7只比data3和data4中的一个数据至少小MdB,确定子载波3和子载波4之间存在Blocker;在data6比data2至少小MdB,且data6比data3至少小MdB时,确定子载波2和子载波3之间不存在Blocker;在data5比data1至少小MdB,且data5比data2至少小MdB时,确定子载波1和子载波2之间也不存在Blocker;因此,采用双通道接收子载波数据,即:一个通道接收子载波4的数据,另一个通道接收子载波1、子载波2和子载波3的数据;
在data5只比data1和data2中的一个数据至少小MdB,确定子载波1和子载波2之间存在Blocker;在data6只比data2和data3中的一个数据至少小MdB时,确定子载波2和子载波3之间存在Blocker;在data7比data3至少小MdB,且data7比data4至少小MdB时,确定子载波3和子载波4之间也不存在Blocker;因此,采用三通道接收子载波数据,即:一个通道接收子载波1的数据,一个通道接收子载波2的数据,另一个通道接收子载波3和子载波4的数据;
在data5只比data1和data2中的一个数据至少小MdB,确定子载波1和子载波2之间存在Blocker;在data7只比data3和data4中的一个数据至少小MdB时,确定子载波3和子载波4之间存在Blocker;在data6比data2至少小MdB,且data6比data3至少小MdB时,确定子载波2和子载波3之间也不存在Blocker;因此,采用三通道接收子载波数据,即:一个通道接收子载波1的数据,一个通道接收子载波4的数据,另一个通道接收子载波2和子载波3的数据;
在data6只比data2和data3中的一个数据至少小MdB,确定子载波2和子载波3之间存在Blocker;在data7只比data3和data4中的一个数据至少小MdB时,确定子载波3和子载波4之间存在Blocker;在data5比data1至少小MdB,且data5比data2至少小MdB时,确定子载波1和子载波2之间也不存在Blocker;因此,采用三通道接收子载波数据,即:一个通道接收子载波1和子载波2的数据,一个通道接收子载波3的数据,另一个通道接收子载波4的数据;
在data5只比data1和data2中的一个数据至少小MdB,确定子载波1和子载波2之间存在Blocker;在data6只比data2和data3中的一个数据至少小MdB时,确定子载波2和子载波3之间存在Blocker;在data7只比data3和data4中的一个数据至少小MdB时,确定子载波3和子载波4之间也存在Blocker;因此,采用四通道独立接收每个子载波的数据,即:一个通道接收子载波1的数据,一个通道接收子载波2,一个通道接收子载波3的数据,一个通道接收子载波4的数据;
其中,M的值可根据实际接收到的子载波信号能量进行灵活设置。
综合上述实施例可获知,对于五载波以上的载波聚合系统,可根据Block的检测结果不同,采用单通道、双通道、三通道、四通道、五通道或更多通道接收五个载波的数据。
采用本发明的数据接收方法,能够根据各子载波信号之间的检测结果智能的在多通道或单通道之间进行切换来接收子载波数据,在采用单通道接收子载波数据时,可将其他通道及相关模块关掉,以实现降低系统功耗的效果。
为实现上述数据接收方法,本发明实施例提供一种数据接收装置,所述装置的组成结构,如图9所示,包括:第一获取模块10、第二获取模块模块20、比较模块30和确定模块40;其中,
所述第一获取模块10,配置为分别获取各子载波信号经过快速傅氏变换FFT计算后的累加数据;
所述第二获取模块20,配置为获取相邻子载波信号之间的阻塞信道的数据;
所述比较模块30,配置为比较所述阻塞信道的数据与相应的子载波信号经FFT计算后的累加数据的大小,得到比较结果;
所述确定模块40,配置为根据所述比较结果确定各子载波的数据接收方式。
本发明实施例中,所述第一获取模块10,具体配置为接收子载波信号,对所述子载波信号进行FFT计算,得到计算结果;存储所述计算结果;将存储所述计算结果的起始地址与存储所述计算结果的结束地址之间的数据进行累加,得到子载波信号经过FFT运算后的累加数据。
本发明实施例中,所述第二获取模块20,具体配置为将存储第一子载波信号的计算结果的结束地址与存储第二子载波信号的计算结果的起始地址之间的数据进行累加,得到第一子载波信号与第二子载波信号之间的阻塞信道的数据;其中,
所述第一子载波信号与第二子载波信号为相邻的两个子载波信号。
本发明实施例中,所述确定模块30,具体配置为在所述比较结果为相 邻两个通道之间均不存在阻塞信道时,采用单通道接收相邻子载波的数据;在所述比较结果为相邻两个通道之间存在阻塞信道时,采用两个通道分别接收相邻子载波的数据。
本发明实施例中,所述装置还包括:配置模块50,配置为配置接收子载波信号的通道处于单通道接收模式。
本发明实施例中提出的数据接收装置中的第一获取模块10、第二获取模块20、比较模块30、确定模块40、和配置模块50都可以通过处理器来实现,当然也可通过具体的逻辑电路实现;其中所述处理器可以是多载波聚合系统上的处理器,在实际应用中,处理器可以为中央处理器(CPU)、微处理器(MPU)、数字信号处理器(DSP)或现场可编程门阵列(FPGA)等。
本发明实施例中,如果以软件功能模块的形式实现上述数据接收方法,并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本发明实施例不限制于任何特定的硬件和软件结合。
相应地,本发明实施例还提供一种计算机存储介质,该计算机存储介质中存储有计算机程序,该计算机程序用于执行本发明实施例的上述数据接收方法。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。

Claims (11)

  1. 一种数据接收方法,所述方法包括:
    分别获取各子载波信号经过快速傅氏变换FFT计算后的累加数据;
    获取相邻子载波信号之间的阻塞信道的数据;
    比较所述阻塞信道的数据与相应的子载波信号经FFT计算后的累加数据的大小,得到比较结果;
    根据所述比较结果确定各子载波的数据接收方式。
  2. 根据权利要求1所述的方法,其中,所述获取各子载波信号经过FFT运算后的累加数据,包括:
    接收子载波信号,对所述子载波信号进行FFT计算,得到计算结果;
    存储所述计算结果;
    将存储所述计算结果的起始地址与存储所述计算结果的结束地址之间的数据进行累加,得到子载波信号经过FFT运算后的累加数据。
  3. 根据权利要求2所述的方法,其中,所述获取相邻子载波信号之间的阻塞信道的数据,包括:
    将存储第一子载波信号的计算结果的结束地址与存储第二子载波信号的计算结果的起始地址之间的数据进行累加,得到第一子载波信号与第二子载波信号之间的阻塞信道的数据;其中,
    所述第一子载波信号与第二子载波信号为相邻的两个子载波信号。
  4. 根据权利要求1所述的方法,其中,所述根据所述比较结果确定各子载波的数据接收方式,包括:
    在所述比较结果为相邻两个通道之间均不存在阻塞信道时,采用单通道接收相邻子载波的数据;
    在所述比较结果为相邻两个通道之间存在阻塞信道时,采用两个通道 分别接收相邻子载波的数据。
  5. 根据权利要求1至4任一项所述的方法,其中,获取各子载波信号经过FFT计算后的累加数据之前,所述方法还包括:
    配置接收子载波信号的通道处于单通道接收模式。
  6. 一种数据接收装置,所述装置包括:第一获取模块、第二获取模块模块、比较模块和确定模块;其中,
    所述第一获取模块,配置为分别获取各子载波信号经过快速傅氏变换FFT计算后的累加数据;
    所述第二获取模块,配置为获取相邻子载波信号之间的阻塞信道的数据;
    所述比较模块,配置为比较所述阻塞信道的数据与相应的子载波信号经FFT计算后的累加数据的大小,得到比较结果;
    所述确定模块,配置为根据所述比较结果确定各子载波的数据接收方式。
  7. 根据权利要求6所述的装置,其中,所述第一获取模块,配置为接收子载波信号,对所述子载波信号进行FFT计算,得到计算结果;存储所述计算结果;将存储所述计算结果的起始地址与存储所述计算结果的结束地址之间的数据进行累加,得到子载波信号经过FFT运算后的累加数据。
  8. 根据权利要求7所述的装置,其中,所述第二获取模块,配置为将存储第一子载波信号的计算结果的结束地址与存储第二子载波信号的计算结果的起始地址之间的数据进行累加,得到第一子载波信号与第二子载波信号之间的阻塞信道的数据;其中,
    所述第一子载波信号与第二子载波信号为相邻的两个子载波信号。
  9. 根据权利要求6所述的装置,其中,所述确定模块,配置为在所述比较结果为相邻两个通道之间均不存在阻塞信道时,采用单通道接收相邻 子载波的数据;在所述比较结果为相邻两个通道之间存在阻塞信道时,采用两个通道分别接收相邻子载波的数据。
  10. 根据权利要求6至9任一项所述的装置,其中,所述装置还包括:配置模块,配置为配置接收子载波信号的通道处于单通道接收模式。
  11. 本发明实施例还提供了一种计算机存储介质,所述计算机存储介质存储有计算机程序,该计算机程序用于执行本发明实施例的上述数据接收方法。
PCT/CN2016/096708 2015-12-25 2016-08-25 一种数据接收方法、装置及存储介质 WO2017107525A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510990743.2A CN106921475B (zh) 2015-12-25 2015-12-25 一种数据接收方法及装置
CN201510990743.2 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017107525A1 true WO2017107525A1 (zh) 2017-06-29

Family

ID=59088931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096708 WO2017107525A1 (zh) 2015-12-25 2016-08-25 一种数据接收方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN106921475B (zh)
WO (1) WO2017107525A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108063641A (zh) * 2017-11-22 2018-05-22 西南电子技术研究所(中国电子科技集团公司第十研究所) 单通道多信号检测方法
CN116796685A (zh) * 2023-08-07 2023-09-22 深圳云豹智能有限公司 数据拼接模块及数据传递方法、介质、电子设备、芯片

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101488939A (zh) * 2009-02-27 2009-07-22 华为技术有限公司 宽带无线通信系统中实现符号同步的方法、装置及接收机
WO2013172585A1 (ko) * 2012-05-16 2013-11-21 엘지전자 주식회사 감소된 전송 리소스 블록과 전력으로 상향링크 신호를 송신하는 무신 기기 및 기지국
CN103595684A (zh) * 2013-11-26 2014-02-19 中国电子科技集团公司第四十一研究所 一种不连续载波聚合LTE-Advanced信号分析方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100547989C (zh) * 2003-06-11 2009-10-07 Nxp股份有限公司 用于多载波通信系统的接收机
KR100715913B1 (ko) * 2004-10-12 2007-05-08 삼성전자주식회사 직교주파수분할다중접속 방식의 이동통신시스템에서레인징 신호 검색 장치 및 방법
EP1941547B1 (fr) * 2005-10-26 2009-09-30 France Telecom Procédé de transmission d'un signal multiporteuse conçu pour limiter l'interférence, signal, dispositif d'émission, procédé et dispositif de réception, et programmes d'ordinateur correspondants
US20140376667A1 (en) * 2013-06-24 2014-12-25 Jianqiang Zeng Frequency-Domain Carrier Blanking For Multi-Carrier Systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101488939A (zh) * 2009-02-27 2009-07-22 华为技术有限公司 宽带无线通信系统中实现符号同步的方法、装置及接收机
WO2013172585A1 (ko) * 2012-05-16 2013-11-21 엘지전자 주식회사 감소된 전송 리소스 블록과 전력으로 상향링크 신호를 송신하는 무신 기기 및 기지국
CN103595684A (zh) * 2013-11-26 2014-02-19 中国电子科技集团公司第四十一研究所 一种不连续载波聚合LTE-Advanced信号分析方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108063641A (zh) * 2017-11-22 2018-05-22 西南电子技术研究所(中国电子科技集团公司第十研究所) 单通道多信号检测方法
CN108063641B (zh) * 2017-11-22 2020-08-25 西南电子技术研究所(中国电子科技集团公司第十研究所) 单通道多信号检测方法
CN116796685A (zh) * 2023-08-07 2023-09-22 深圳云豹智能有限公司 数据拼接模块及数据传递方法、介质、电子设备、芯片
CN116796685B (zh) * 2023-08-07 2024-02-09 深圳云豹智能有限公司 数据拼接模块及数据传递方法、介质、电子设备、芯片

Also Published As

Publication number Publication date
CN106921475A (zh) 2017-07-04
CN106921475B (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
JP5666572B2 (ja) 無線通信ネットワークにおける移動体端末と基地局との間のデータ送信のスケジューリング
JP6657172B2 (ja) 無認可無線周波数スペクトル帯域の帯域幅をスケーリングするための技術
JP6584522B2 (ja) 動作帯域幅拡張のための波形設計のシステムおよび方法
RU2740705C1 (ru) Управление сигналом активации
Li et al. A resource block based filtered OFDM scheme and performance comparison
US8134998B2 (en) Radio communication base station apparatus and radio communication method
US10404314B2 (en) Method for transmitting and receiving signal by aggregating three downlink carriers and two uplink carriers
JP6050511B2 (ja) イントラバンド非連続的なアップリンクキャリアアグリゲーションにおける基準感度低下を防止するために減少された個数の送信リソースブロックでアップリンク信号を送信する方法及び端末
Bala et al. Shaping spectral leakage: A novel low-complexity transceiver architecture for cognitive radio
KR20220141922A (ko) 유연한 자원 활용을 위한 방법
US20140192848A1 (en) Sending information at a band edge within an orthogonal frequency-division multiplexing (ofdm) symbol
CN102075951B (zh) 一种调整频域资源分布位置的方法及装置
CN105814936A (zh) 已去激活辅分量载波测量的方法及其使用相同方法的通信设备
US9450800B2 (en) Wireless transmitter, wireless receiver, wireless transmission method, and wireless reception method
US11956741B2 (en) Simultaneous transmission in multiple frequency segments
JP7379650B2 (ja) 起動信号に関連する誤検出の回避
WO2010121417A1 (zh) 一种载波汇聚的方法和装置
WO2020221711A1 (en) Selective ssb reception for user equipment (ue) receiver tuning
WO2017107525A1 (zh) 一种数据接收方法、装置及存储介质
US20170288927A1 (en) Signal processing circuits
US9363117B2 (en) Method, baseband signal generator and computer program for providing a baseband signal
US20140192745A1 (en) Method and device for spectrum aggregation
JP2019530258A (ja) 送信装置、受信装置及び通信方法
WO2012149729A1 (zh) 一种上行非连续资源块的分配方法及装置
Suarez et al. LTE transceiver performance analysis in Uplink under various environmental conditions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16877337

Country of ref document: EP

Kind code of ref document: A1