WO2017107063A1 - 通信装置及无线通信设备 - Google Patents

通信装置及无线通信设备 Download PDF

Info

Publication number
WO2017107063A1
WO2017107063A1 PCT/CN2015/098307 CN2015098307W WO2017107063A1 WO 2017107063 A1 WO2017107063 A1 WO 2017107063A1 CN 2015098307 W CN2015098307 W CN 2015098307W WO 2017107063 A1 WO2017107063 A1 WO 2017107063A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
vibrators
antenna array
communication
communication device
Prior art date
Application number
PCT/CN2015/098307
Other languages
English (en)
French (fr)
Inventor
袁鹏
张华锋
罗跃华
贾士鹃
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020187020196A priority Critical patent/KR102046451B1/ko
Priority to CA3009538A priority patent/CA3009538C/en
Priority to EP15911062.6A priority patent/EP3382801A4/en
Priority to JP2018532555A priority patent/JP2018538759A/ja
Priority to PCT/CN2015/098307 priority patent/WO2017107063A1/zh
Priority to CN201580078821.XA priority patent/CN107431278A/zh
Publication of WO2017107063A1 publication Critical patent/WO2017107063A1/zh
Priority to US16/015,564 priority patent/US10637587B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/22Antenna units of the array energised non-uniformly in amplitude or phase, e.g. tapered array or binomial array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a communication device and a wireless communication device.
  • the radio beam formed by the antenna array will have a grating lobe, and As the distance between the sub-antenna arrays increases, the grating lobes are closer and closer to the main lobe, making the grating lobes difficult to control, which affects the orthogonality of the radio beams; here, the orthogonality of the radio beams refers to two The radio beams in the direction do not interfere with each other.
  • a radio beam is also energetic in other directions, wherein the occurrence of the grating lobes is the worst, that is, the energy in the other direction is as large as the required direction.
  • the B beam pointing coincides with the grating lobe of the A beam, and the B beam is completely interfered.
  • the orthogonality between the A beam and the B beam can be considered to be poor.
  • Embodiments of the present invention provide a communication device and a wireless communication device, which can improve orthogonality of a radio beam.
  • an embodiment of the present invention provides a communication device, including: M sub-communication links, each sub-communication link includes:
  • each sub-antenna array comprising N vibrators for radiating or receiving radio beams in space;
  • N analog phase shifters each analog phase shifter communicating with any one of the N vibrators;
  • N analog phase shifters for controlling the direction of the N vibrators or receiving radio beams in the space;
  • X transceiver units in communication with N analog phase shifters, for converting a digital data stream into a signal of a radio beam or converting a signal of a radio beam into a digital data stream;
  • L digital phase shifters in communication with X transceiver units, for forming a digital data stream or receiving a digital data stream, and decomposing the received digital data stream into a plurality of digital data streams;
  • the M sub-antenna arrays in the M sub-communication links are divided into at least two rows, and the adjacent two sub-antenna arrays are alternately arranged, and N, M, X, and L are positive integers, and L ⁇ M, X ⁇ N.
  • the M sub-antenna array is divided into two upper and lower rows, and the adjacent two sub-antenna arrays include: a first sub-antenna array and a second sub-antenna array; if the first sub-antenna array is located in the upper row, The second antenna array is located in the next row, and the second sub-antenna array is located at the lower right of the first sub-antenna array; if the first sub-antenna array is located in the next row and the second antenna array is located in the upper row, the second sub-antenna array is in the first row The upper right side of the sub-antenna array.
  • the distance between the sub-antenna arrays can be reduced while increasing the vibrator, which alleviates the contradiction that the number of vibrators is large and the distance between the sub-antenna arrays is small.
  • the spacing between two adjacent ones of the N oscillators of the same sub-antenna array is d i
  • each sub-communication link further includes: N power control units, each The power control unit is connected between any one of the N analog phase shifters and one of the N vibrators in communication with any one of the analog phase shifters; N power control units are used to send to The signals of the radio beams of the N vibrators or the signals of the radio beams received from the N vibrators are weighted by a fixed amplitude. Therefore, when the distance between the sub-antenna arrays is greater than 0.5 ⁇ , the grating lobes generated when the antenna array is deflected are controlled within a certain range (ie, no grating lobes are generated), thereby improving the orthogonality of the radio beams. Sex.
  • the Jth analog phase shifter in the N analog phase shifters of each sub-communication link injects phase (J-1)* ⁇ , J is a positive integer, and J ⁇ N.
  • J is a positive integer
  • J ⁇ N the direction of the radio beam in the space formed by the communication device can be controlled.
  • the L digital phase shifters of the first sub-communication link of the M sub-communication links are injected with phase (I-1)* ⁇ , I is a positive integer, and I ⁇ M. Thereby, the direction of the radio beam in the space formed by the communication device can be controlled.
  • an embodiment of the present invention provides a communication device, where the communication device includes M sub-communication links, and each sub-communication link includes:
  • each sub-antenna array comprising N vibrators for radiating or receiving radio beams in space;
  • N analog phase shifters each analog phase shifter communicating with any one of the N vibrators;
  • N analog phase shifters for controlling the direction of the N vibrators or receiving radio beams in the space;
  • X transceiver units in communication with N analog phase shifters, for converting a digital data stream into a signal of a radio beam or converting a signal of a radio beam into a digital data stream;
  • L digital phase shifters in communication with X transceiver units, for forming a digital data stream or receiving a digital data stream, and decomposing the received digital data stream into a plurality of digital data streams;
  • the M sub-antenna arrays of the M sub-communication links are arranged in a straight line, and the adjacent two sub-antenna arrays share n vibrators, N is an even number, M, X, L, and n are positive integers, and L ⁇ M , X ⁇ N, 1 ⁇ n ⁇ N/2.
  • two adjacent sub-antenna arrays include: a first sub-antenna array and a second sub-antenna array; if the first sub-antenna array is a prior sub-antenna array and the second sub-antenna array is a subsequent sub-antenna array, the first n vibrators and the first sub-antenna array of the second sub-antenna array The last n vibrators are the same; if the first sub-antenna array is the subsequent sub-antenna array and the second sub-antenna array is the prior sub-antenna array, the last n vibrators and the first sub-antenna of the second sub-antenna array The first n vibrators of the array are identical. Thereby, the distance between the sub-antenna arrays can be reduced while increasing the vibrator, which alleviates the contradiction that the number of vibrators is large and the distance between the sub-antenna arrays is small.
  • the spacing between two adjacent ones of the N oscillators of the same sub-antenna array is d i
  • each sub-communication link further includes: N power control units, each of which is connected to any one of the N analog phase shifters and one of the N analog oscillators.
  • the analog phase shifter communicates between one of the vibrators; the N power control units are configured to perform a fixed-amplitude weighting process on the signals of the radio beams transmitted to the N vibrators or the signals of the radio beams received from the N vibrators. Therefore, when the distance between the sub-antenna arrays is greater than 0.5 ⁇ , the grating lobes generated when the antenna array is deflected are controlled within a certain range (ie, no grating lobes are generated), thereby improving the orthogonality of the radio beams. Sex.
  • the Jth analog phase shifter in the N analog phase shifters of each sub-communication link injects phase (J-1)* ⁇ , J is a positive integer, and J ⁇ N.
  • J is a positive integer
  • J ⁇ N the direction of the radio beam in the space formed by the communication device can be controlled.
  • the L digital phase shifters of the first sub-communication link of the M sub-communication links are injected with phase (I-1)* ⁇ , I is a positive integer, and I ⁇ M. Thereby, the direction of the radio beam in the space formed by the communication device can be controlled.
  • the communication device further includes n*M radio combiners and n*M video splitters, and the adjacent two sub-antenna arrays belong to the first sub-communication link and the second sub-communication, respectively. link;
  • Each RF combiner is connected to any one of the n vibrators and is also connected to any one of the vibrators
  • An analog phase shifter that communicates in the first sub-communication link and an analog phase shifter in which any one of the vibrators communicates in the second sub-communication link is used to shift from two analogs
  • the signals of the radio beams received by the phaser are combined and sent to any one of the vibrators;
  • Each of the RF combiners is connected to any one of the n vibrators, and is also connected to one of the analog phase shifters in which the one of the vibrators communicates in the first sub-communication link and any one of the vibrators in the second sub-communication Between one analog phase shifter that is in communication with the link, the signal for the radio beam received from any one of the vibrators is split and sent to two analog phase shifters.
  • an embodiment of the present invention further provides a wireless communication device, including the communication device described in the above aspect.
  • an embodiment of the present invention further provides a wireless communication device, the wireless communication device comprising the communication device as described in another aspect above.
  • the communication device includes M sub-communication links, and the M sub-communication links include M sub-antenna arrays, wherein the M sub-antenna array is divided into at least two rows, and adjacent two The sub-antenna arrays are staggered; or, the M sub-antenna arrays are arranged in a straight line, and the adjacent two sub-antenna arrays share n vibrators; thereby shortening the distance between the sub-antenna arrays, which can increase the radio beam
  • the distance between the main lobe and the grating lobe can alleviate the contradiction between the increase in the number of vibrators and the difficulty in controlling the grating lobe, thereby improving the orthogonality of the radio beam.
  • FIG. 1 is a schematic diagram of a driving manner of an antenna array provided by the present invention
  • FIG. 2 is a schematic diagram of another driving manner of the antenna array provided by the present invention.
  • FIG. 3 is a second schematic diagram of another driving manner of the antenna array provided by the present invention.
  • FIG. 4 is a third schematic diagram of another driving manner of the antenna array provided by the present invention.
  • FIG. 5 is a schematic diagram of a communication device according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of spacing between adjacent sub-antenna arrays provided by the present invention.
  • FIG. 7 is a second schematic diagram of a communication device according to Embodiment 1 of the present invention.
  • FIG. 8 is a schematic diagram showing the arrangement of adjacent sub-antenna arrays provided by the present invention.
  • FIG. 9 is a schematic diagram of a radio beam formed by a communication device provided by the present invention.
  • FIG. 10 is a second schematic diagram of a radio beam formed by a communication device provided by the present invention.
  • FIG. 11 is a schematic diagram of a communication device according to Embodiment 2 of the present invention.
  • FIG. 12 is a second schematic diagram of a communication device according to Embodiment 2 of the present invention.
  • FIG. 13 is a schematic diagram showing the connection relationship between the RF combiner and the RF splitter provided by the present invention.
  • the present invention adopts a method of increasing the size of an antenna array in a communication device (i.e., increasing the number of vibrators in a sub-antenna array).
  • a method of increasing the size of an antenna array in a communication device i.e., increasing the number of vibrators in a sub-antenna array.
  • the antenna array includes a line array and an area array, and the antenna array is described as a line array in this specification.
  • FIG. 1 is a schematic diagram of a driving manner of an antenna array provided by the present invention, and the driving method of FIG. 1 is also referred to as an all-digital driving method.
  • FIG. 1 is a schematic diagram of a driving manner of an antenna array provided by the present invention, and the driving method of FIG. 1 is also referred to as an all-digital driving method.
  • a Base Band Unit (BBU) and a Remote RF Unit (RRU) are two units in a wireless communication device, and the wireless communication device herein may be various types of base stations. It can also be a mobile terminal; wherein the BBU is configured to perform Digital Beam-Forming (DBF) on the input data streams (eg, S 1 and S 2 ) to control the space corresponding to the input data stream.
  • DBF Digital Beam-Forming
  • the direction of the radio beam, where the data stream can be received from the core network.
  • the digital beamforming of the incoming data stream can be accomplished by a digital amplitude phase weighter.
  • ⁇ 1 and ⁇ 2 are the angles between the data streams S 1 and S 2 and the normal of the antenna array, respectively;
  • the RRU includes a power amplifier (PA) for receiving from the digital amplitude phase weighter. The signal is power amplified and output to the antenna array.
  • PA power amplifier
  • a 1 and A 2 are respectively two vibrators, and multiple vibrators can form one sub-antenna array, and multiple sub-antenna arrays can form one antenna array; in addition, U 1 and U 2 respectively represents two users; U beam transmitted to a space S 1 through the BBU and RRU in the form of the input data stream S 1 and the digital beamforming power amplification in the radio beam, beam 2 is sent to the U S 2 is a radio beam in a space formed by the BBU and the RRU after digital beamforming and power amplification of the input data stream S 2 .
  • the BBU includes a digital amplitude and phase weighting device for performing digital beam on the input data streams (eg, S 1 and S 2 ).
  • the RRU includes an analog phase shifter for performing analog beam-forming (ABF) on the digital beam-formed data stream.
  • ABSF analog beam-forming
  • SAA 1 and SAA 2 are respectively used to represent two sub-antenna arrays, wherein each sub-antenna array includes four vibrators: A 1 , A 2 , A 3 and A 4 , that is, compared to FIG. 1 .
  • the number of mesons is increased, but when the number of input data streams is constant, the BBU outputs only two signals, that is, the BBU calculation amount is constant, but only the corresponding number of analog channels is added to the RRU (for example, increasing the number of power amplifiers, that is, by driving the antenna array, can increase the amount of operation of the BBU when the number of vibrators is increased, so that a relatively high benefit can be obtained at a relatively small cost.
  • the antenna array is driven by the driving method shown in FIG.
  • each SAA includes N vibrators (that is, the entire antenna array is composed of N*M vibrators), and each N vibrators are composed of one transceiver unit (Tranciever, When driving TRX), the antenna driving method of Fig. 2 can also be seen in Fig. 3.
  • the dot indicates the vibrator in Fig. 2
  • the prototype + arrow symbol above TRX indicates the analog phase shifter, participating in ABF
  • TRX The prototype + arrow symbol below indicates the digital phase shifter, and the L*M digital phase shifters form the digital phase shifter to participate in the DBF.
  • FIG. 3 is only described as an example. In practical applications, every N vibrations
  • the sub-units can also be driven by X transceiver units, wherein X ⁇ N, the principle of driving N vibrators by X transceiver units and driving N vibrators by one transceiver unit is the same, and will not be described here; Different number of vibrators can also be included, which is not limited in this application.
  • the spacing between any adjacent vibrators in the antenna array may be the same or different.
  • the center spacing between the SAAs is Nd, and in general, the value of N is greater than 1, that is, Nd> 0.5 ⁇ .
  • the research shows that when the spacing of SAA is greater than 0.5 ⁇ , when the antenna array is deflected, the radio beam formed by the antenna array will have grating lobes, and as the SAA spacing increases, the grating lobes are closer and closer to the main lobe. Therefore, the grating lobes are difficult to control, which affects the orthogonality of the radio beam and loses the significance of increasing the size of the antenna array.
  • the object of the present invention is to solve the problem of affecting the orthogonality of a radio beam due to the deflection of the antenna array to generate a grating lobe when the spacing of the SAA is greater than 0.5 ⁇ .
  • each SAA internal phase is assigned a sequence of ⁇ , and the phase assignment of the initial oscillator (leftmost) of each SAA is 0; each phase before TRX is assigned a sequence of ⁇ , and the phase of the starting TRX (leftmost) is assigned a value of 0. See Figure 4 for details.
  • the input and antenna array normals are shown in Figure 4.
  • the resulting radio beam of the antenna array is expressed as Equation 1.
  • K represents the number of radio beams (also called wave number), which can be solved by 2 ⁇ / ⁇ ;
  • AF SAA represents the sub-array factor, that is, the radio beam formed by the sub-antenna array composed of every N vibrators in FIG. It can be seen from the above formula that the value of AF SAA is related to variables such as K, d, ⁇ , N, and ⁇ . For different data streams in different directions, the above variables of M sub-antenna arrays are the same, and M sub-antenna arrays are formed.
  • AF ALL represents the full array factor, that is, every N vibrators in Figure 4 are used as one large vibrator, that is, the entire antenna array includes radio beams formed by M large vibrators.
  • AF ALL The values are related to variables such as K, d, ⁇ , N, M, and ⁇ . ⁇ is different for different data streams in different directions, so the entire antenna array can form different radio beams.
  • the problem of the above-mentioned antenna array deflection generating grating lobes is explained as follows: According to the principle of antenna array scanning, usually when AF ALL has a maximum value, that is, where the signal strength is the strongest, When ⁇ is 0, AF ALL has the maximum value. According to the above formula, ⁇ can be made zero by adjusting ⁇ , but ⁇ has multiple solutions between (0, ⁇ ), so the antenna array generates a grating lobes when the ⁇ deflection radio beam direction is arranged.
  • the sub-antenna array can be shortened by staggering the adjacent two sub-antenna arrays.
  • the distance of the control grating is further away from the main lobe; in addition, the amplitude of the radio beam on the vibrator in the sub-array antenna can be fixedly weighted to control the position of the AF SAA in the AF ALL .
  • the gain of the graph is low to control the amplitude of the grating lobes of the resulting radio beam within a certain range.
  • the present invention will improve the orthogonality of the radio beams by the solutions of Embodiment 1 and Embodiment 2.
  • FIG. 5 is a schematic diagram of a communication apparatus according to Embodiment 1 of the present invention.
  • the communication apparatus may include M sub-communication links, and each sub-communication link may include: 1 sub-antenna array, and N analog phase shifts.
  • X transceiver units and L digital phase shifters wherein N, M, X, L are positive integers, and L ⁇ M, X ⁇ N.
  • X is 1.
  • FIG. 5 illustrates that N is 4 and X is 1.
  • one sub-antenna array includes four vibrators for radiating or receiving radio beams in space; each of the four analog phase shifters is in communication with any one of the four vibrators; The four analog phase shifters are used to control the direction of the four vibrators radiating or receiving the radio beams in the space; one transceiver unit is in communication with the four analog phase shifters, and specifically, the one transceiver unit can pass one
  • the analog data stream interface communicates with four analog phase shifters; the one transceiver unit is configured to convert the digital data stream into a signal of the radio beam or convert the signal of the radio beam into a digital data stream;
  • L digital phase shifters Communicating with a transceiver unit for forming a digital data stream or receiving a digital data stream and decomposing the received digital data stream into a plurality of digital data streams.
  • the M sub-antenna arrays include: SAA 1 , SAA 2 , ..., SAA M , and SAA 2 , SAA 4 , ..., SAA M are arranged in the previous row, SAA 1 , SAA 3 , ..., SAA M-1 Arranged in the next row, SAA 2 is located at the upper right of SAA 1 , SAA 3 is located at the lower right of SAA 2 , ... until SAA M is located at the upper right of SAA M-1 .
  • the M sub-antenna array in the M sub-communication links in FIG. 5 is divided into two upper and lower rows, and in practical applications, the M sub-antenna array in the M sub-communication links is divided into three or more rows.
  • the arrangement of the M sub-antenna arrays refer to the arrangement of the two rows of sub-antenna arrays in FIG. 5, which is not described in detail in the present invention.
  • d and D can be seen in FIG. 6.
  • two adjacent sub-antenna arrays include: a first sub-antenna array and a second sub-antenna array.
  • D is the N/2th vibrator and the (N/2)+1 center positions in the first sub-antenna array and the N/2th vibrator and the (N/2) in the second sub-antenna ) the distance between the center positions of +1; and when N is an odd number, D is the (N+1)/2+1 vibrators in the first sub-antenna array and the (N+1)th in the second sub-antenna ) The distance between/2+1 vibrators.
  • each sub-communication link in FIG. 5 may further include: four power control units, and a communication device after adding four power control units in each sub-communication link may be referred to FIG. 7, and in FIG. 7, each The power control unit is connected between any one of the four analog phase shifters and one of the four vibrators that communicate with the one of the analog phase shifters; the four power control units are used for The signal of the radio beam transmitted to the four vibrators or the signal of the radio beam received from the four vibrators is subjected to a fixed-amplitude weighting process.
  • the power control unit in FIG. 7 may include a power splitter, a power amplifier, a power attenuator, and the like.
  • the power control unit when used to amplitude-weight the signals of the radio beams on the four vibrators according to the coefficients of 0.812, 1, 1, and 0.812, it is referred to as the signal of the radio beams on the four vibrators.
  • 30dB Chebyshev amplitude weighting After amplitude-weighting the signals of the radio beams on different vibrators according to different coefficients, it is possible to control the positional pattern gain of the AF SAA in the AF ALL to generate the grating lobe, so as to be the grating lobe of the finally formed radio beam. The amplitude is controlled within a certain range.
  • the radio beam signals on the four vibrators may also be amplitude weighted according to other amplitude weighting methods, such as Kaiser amplitude weighting, Gausswin amplitude weighting, and the like.
  • N in FIG. 5 or FIG. 7 is 4, and in practical applications, N may be other numbers, for example, N may be 5, 6, 7, 8, etc. Not limited.
  • the distance D between SAA 1 and SAA 2 is SAA.
  • the first radio communication apparatus beam is S 1 in the data stream corresponding signal processing (comprising: a digital beamforming, analog beamforming, and 30dB cut snow Swift weight ratio), the sub-boosted by the M (N small vibrators consisting of) a radio beam formed in the far field, that is, a horizontal pattern of the full array factor of the data stream S 1 , and the second radio beam is a communication device performing the above-described corresponding signal processing on the data stream S 2 Then, the radio beam formed in the far field by the M large vibrators (composed of N small vibrators), that is, the horizontal pattern of the full array factor of the data stream S 2 , the third radio beam is in the pair data stream S 1 or After the data stream S 2 performs the above-mentioned corresponding signal processing, the radio beam formed by the M groups of N vibrators in the far field, that is, the horizontal pattern of the sub-array factor of the data stream S 1 or the data stream S 2 .
  • the M large vibrators that is, the horizontal pattern of the full array
  • the peak (main direction) of the first radio beam corresponds to the valley of the second radio beam (zero trap position), or the peak of the second radio beam corresponds to the trough of the first radio beam, that is, between the radio beams Can cause interference.
  • the antenna array is taken as an example of the line array in this description, the direction of the finally formed radio beam in the vertical direction is omnidirectional.
  • the antenna array is designed as an area array in actual design, the vertical direction can be adjusted and designed according to actual requirements.
  • the resulting radio beam of the antenna array is the product of the full array factor and the subarray factor, for the data streams S 1 and S 2 , the two radio beams finally formed by the antenna array can be seen in FIG. 10 , in FIG. 10 , the fourth radio beam pattern is processed after the signal corresponding to the final form of the data stream S 1 by the communication device, and the fifth radio beam is carried out after said corresponding signal processing data stream S 2 by the communication device, the final forming The direction of the map.
  • the M sub-antenna arrays in the M sub-communication links are divided into at least two rows, and the adjacent two sub-antenna arrays are staggered, thereby being able to reduce the vibrator while increasing
  • the distance between the sub-antenna arrays which to some extent alleviates the contradiction between the large number of vibrators and the distance between the sub-antenna arrays, such as when the spacing of adjacent sub-antenna arrays is Nd/2, in each sub-antenna array
  • the number of vibrators is increased by m
  • the distance between the sub-antenna arrays is only increased by md/2; in addition, the fixed amplitude weighting of the radio beam signals on the vibrators of each sub-antenna array can be performed between the sub-antenna arrays.
  • the grating lobes generated when the antenna array is deflected are controlled within a certain range (ie, no grating lobes are generated), whereby the orthogonality of the radio beam can be improved.
  • FIG. 11 is a schematic diagram of a communication device according to Embodiment 2 of the present invention.
  • the communication device may include M sub-communication links, and each sub-communication link may include: 1 sub-antenna array, and N analog phase shifts.
  • X transceiver units and L digital phase shifters wherein M, X, L are positive integers, N is even, and L ⁇ M, X ⁇ N.
  • X is 1.
  • N It is explained that 4 and X are 1.
  • one sub-antenna array includes four vibrators for radiating or receiving radio beams in space; each of the four analog phase shifters is in communication with any one of four vibrators; The four analog phase shifters are used to control the direction of the four vibrators radiating or receiving the radio beams in the space; one transceiver unit is in communication with the four analog phase shifters, and specifically, the one transceiver unit can pass one
  • the analog data stream interface communicates with four analog phase shifters; the one transceiver unit is configured to convert the digital data stream into a signal of the radio beam or convert the signal of the radio beam into a digital data stream;
  • L digital phase shifters Communicating with a transceiver unit for forming a digital data stream or receiving a digital data stream and decomposing the received digital data stream into a plurality of digital data streams.
  • M sub antenna array comprises: SAA 1, SAA 2, ... , SAA M, and SAA 1, SAA 2, ..., SAA M linearly arranged, after the first two transducers and SAA 1 of the SAA 2 of 2
  • the vibrators are the same, the first two vibrators of SAA 3 are the same as the last two vibrators of SAA 2 , ... until the first two vibrators of SAA M-1 are identical to the last two vibrators of SAA M.
  • the communication device in FIG. 11 includes four vibrators, and two adjacent sub-antenna arrays share two vibrators.
  • the communication device in FIG. 11 may further include other numbers.
  • each of the n vibrators shared by the two adjacent sub-antenna arrays is included in the first sub-communication link to which the first sub-antenna array belongs, and also in the second sub-antenna array.
  • the associated second sub-communication link that is, it can communicate with one analog phase shifter in the first sub-communication link, or can communicate with an analog phase shifter in the second sub-communication link.
  • each sub-communication link in FIG. 11 may further include: four power control units, and a communication device after adding four power control units in each sub-communication link may be referred to FIG. 12, and in FIG.
  • the power control unit is connected between any of the four analog phase shifters and one of the four oscillators in communication with any one of the analog phase shifters; the four power control units are used for The signal of the radio beam transmitted to the four vibrators or the signal of the radio beam received from the four vibrators is subjected to a fixed-amplitude weighting process.
  • the power control unit in FIG. 12 may include a power splitter, a power amplifier, a power attenuator, and the like.
  • the power control unit when used to amplitude-weight the signals on the four vibrators according to the coefficients of 0.812, 1, 1, and 0.812, it is said that the signals on the four vibrators are weighted according to the 30 dB Chebyshev amplitude. .
  • the AF SAA After amplitude-weighting the radio beam signals on different vibrators according to different coefficients, it is possible to control the AF SAA 's position pattern gain at the AF ALL generating grating lobe to be low, so as to increase the amplitude of the grating lobe of the finally formed radio beam. Control is within a certain range.
  • the signals on the four vibrators may also be amplitude weighted according to other amplitude weighting methods, such as Kaiser amplitude weighting, Gausswin amplitude weighting, and the like.
  • the communication device shown in FIG. 11 or FIG. 12 may further include n*M RF combiners and n*M video splitters, and the adjacent two sub-antenna arrays belong to the first sub-communication respectively.
  • the connection relationship of each of the n*M RF combiners is specifically: each of the RF combiner and any one of the n vibrators Connected to one analog phase shifter that is in communication with the one of the vibrators in the first sub-communication link and one of the analog phase shifters that communicates with the one of the vibrators in the second sub-communication link
  • the connection relationship of each of the n*M video splitters is specifically: Each of the RF combiners is connected to any one of the n vibrators, and is also connected to one of the analog phase shifters in which the one of the vibrators communicates in the first sub-communication link and the second one
  • one of the vibrators in FIG. 13 may be adjacent.
  • the first analog phase shifter is an analog phase shifter in which the one vibrator communicates in the first communication sub-link
  • the second analog phase shifter is the An analog phase shifter in which one vibrator communicates in a second sub-communication link.
  • the M sub-antenna arrays in the M sub-communication links are arranged in a straight line, and the adjacent two sub-antenna arrays share n vibrators, thereby reducing the vibrator while increasing
  • the distance between the sub-antenna arrays which to some extent alleviates the contradiction between the large number of vibrators and the distance between the sub-antenna arrays, such as when the spacing of adjacent sub-antenna arrays is Nd/2, in each sub-antenna array
  • the number of vibrators is increased by m, the distance between the sub-antenna arrays is only increased by md/2; in addition, the fixed amplitude weighting of the radio beam signals on the vibrators of each sub-antenna array can be performed between the sub-antenna arrays.
  • the grating lobes generated when the antenna array is deflected are controlled within a certain range (ie, no grating lobes are generated), whereby the orthogonality of the radio beam can be improved.
  • the present invention further provides a wireless communication device including a communication device provided by Embodiment 1 of the present invention.
  • the wireless communication device can receive a radio beam from a UE according to the communication device provided in Embodiment 1, or send the signal to a user.
  • the present invention also provides a wireless communication device including the communication device provided by the second embodiment of the present invention.
  • the wireless communication device can receive a radio beam from the user terminal based on the communication device provided in the second embodiment, or Use The user sends a radio beam.
  • the steps of a method or algorithm described in connection with the embodiments disclosed herein can be implemented in hardware, a software module executed by a processor, or a combination of both.
  • the software module can be placed in random access memory (RAM), memory, read only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or technical field. Any other form of storage medium known.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明实施例涉及一种通信装置及无线通信设备,通信装置包括M个子通信链路,M个子通信链路包括M个子天线阵列,其中,M子天线阵列分为至少两行,且相邻的两个子天线阵列交错排布;或者,M个子天线阵列呈直线排布,且相邻的两个子天线阵列共用n个振子;由此可以缩短子天线阵列之间的距离,这可以增大无线电波束的主瓣与栅瓣之间的距离,从而可以缓和振子数目的增加与栅瓣难以控制之间的矛盾,进而可以提高无线电波束的正交性。

Description

通信装置及无线通信设备 技术领域
本发明涉及移动通信领域,尤其涉及一种通信装置及无线通信设备。
背景技术
随着无线通信技术的发展,无线通信设备的通信装置得到越来越多的关注和研究,而在无线通信设备的通信装置中,天线阵列形成的无线电波束之间相互干扰的问题是主要解决的问题。
现有技术中,一般通过增加天线阵列中子天线阵列(Sub Antenna Array,SAA)的振子的方式,来获得更高的天线增益和更多的正交无线电波束,从而降低无线电波束之间的相互干扰。然而,经研究表明,只有当子天线阵列间的间距不大于0.5λ,其中,λ为无线电波束的长度,天线阵列偏转时,天线阵列形成的无线电波束才没有栅瓣出现;然而随着子天线阵列中振子数目的增加,子天线阵列间的间距也会增大,当子天线阵列间的间距大于0.5λ时,天线阵列在偏转时,天线阵列形成的无线电波束就会有栅瓣出现,且随着子天线阵列间距离的增大,栅瓣离主瓣越来越近,从而使得栅瓣难以控制,这影响了无线电波束的正交性;此处,无线电波束的正交是指两个方向的无线电波束相互不干扰,一般来说除了要求方向上以外,一个无线电波束在其他方向也是有能量的,其中出现栅瓣的情况最恶劣,即其他方向能量和要求方向一样大。比如B波束指向正好和A波束的栅瓣指向重合了,那B波束完全被干扰了,这时就可以认为A波束和B波束的正交性差。
因此,如何缓和振子数目与栅瓣难以控制之间的矛盾,从而提高无线电波束的正交性就成为要解决的问题。
发明内容
本发明实施例提供了一种通信装置及无线通信设备,可以提高无线电波束的正交性。
一方面,本发明实施例提供了一种通信装置,该通信装置包括:包括M个子通信链路,每个子通信链路包括:
1个子天线阵列,每个子天线阵列包括N个振子,用于辐射或者接收空间中的无线电波束;
N个模拟移相器,每个模拟移相器与N个振子中的任一个振子相通信;N个模拟移相器用于控制N个振子辐射或者接收空间中的无线电波束的方向;
X个收发单元,与N个模拟移相器相通信,用于将数字数据流转化为无线电波束的信号或者将无线电波束的信号转化为数字数据流;和,
L个数字移相器,与X个收发单元相通信,用于形成数字数据流或者接收数字数据流,并将接收的数字数据流分解成多个数字数据流;
其中,M个子通信链路中的M子天线阵列分为至少两行,且相邻的两个子天线阵列交错排布,N,M,X,L均为正整数,且L≤M,X≤N。
在一个可能的设计中,M子天线阵列分为上下两行,且相邻的两个子天线阵列包括:第一子天线阵列和第二子天线阵列;若第一子天线阵列位于上一行,第二天线阵列位于下一行,则第二子天线阵列在第一子天线阵列的右下方;若第一子天线阵列位于下一行,第二天线阵列位于上一行,则第二子天线阵列在第一子天线阵列的右上方。由此,可以在增加振子的同时减小子天线阵列之间的距离,这在一定程度上缓解了振子数量多和子天线阵列间的距离要小的矛盾。
在一个可能的设计中,同一个子天线阵列的N个振子中相邻两个振子之间的间距为di,且相邻的子天线阵列的间距为D,其中,
Figure PCTCN2015098307-appb-000001
i=1,2,…,N-1。
在一个可能的设计中,每个子通信链路还包括:N个功率控制单元,每个 功率控制单元连接在N个模拟移相器中的任一个模拟移相器与N个振子中与任一个模拟移相器相通信的1个振子之间;N个功率控制单元用于对发送至N个振子的无线电波束的信号或者从N个振子接收到的无线电波束的信号进行固定幅度的加权处理。由此,可以将在子天线阵列之间的距离大于0.5λ时,天线阵列偏转时产生的栅瓣控制在一定范围之内(即不产生栅瓣),由此,可以提高无线电波束的正交性。
在一个可能的设计中,每个子通信链路的N个模拟移相器中的第J个模拟移相器注入相位(J-1)*δ,J为正整数,且J≤N。由此可以实现对通过该通信装置形成的空间中的无线电波束的方向进行控制。
在一个可能的设计中,M个子通信链路中第I个子通信链路的L个数字移相器均注入相位(I-1)*Δ,I为正整数,且I≤M。由此可以实现对通过该通信装置形成的空间中的无线电波束的方向进行控制。
另一方面,本发明实施例提供了一种通信装置,该通信装置包括M个子通信链路,每个子通信链路包括:
1个子天线阵列,每个子天线阵列包括N个振子,用于辐射或者接收空间中的无线电波束;
N个模拟移相器,每个模拟移相器与N个振子中的任一个振子相通信;N个模拟移相器用于控制N个振子辐射或者接收空间中的无线电波束的方向;
X个收发单元,与N个模拟移相器相通信,用于将数字数据流转化为无线电波束的信号或者将无线电波束的信号转化为数字数据流;和,
L个数字移相器,与X个收发单元相通信,用于形成数字数据流或者接收数字数据流,并将接收的数字数据流分解成多个数字数据流;
其中,M个子通信链路中M个子天线阵列呈直线排布,且相邻的两个子天线阵列共用n个振子,N为偶数,M,X,L,n均为正整数,且L≤M,X≤N,1≤n≤N/2。
在一个可能的设计中,相邻的两个子天线阵列包括:第一子天线阵列和 第二子天线阵列;若第一子天线阵列为在先的子天线阵列,第二子天线阵列为在后的子天线阵列,则第二子天线阵列的前n个振子与第一子天线阵列的后n个振子相同;若第一子天线阵列为在后的子天线阵列,第二子天线阵列为在先的子天线阵列,则第二子天线阵列的后n个振子与第一子天线阵列的前n个振子相同。由此,可以在增加振子的同时减小子天线阵列之间的距离,这在一定程度上缓解了振子数量多和子天线阵列间的距离要小的矛盾。
在一个可能的设计中,同一个子天线阵列的N个振子中相邻两个振子之间的间距为di,且相邻的子天线阵列的间距为D,其中,
Figure PCTCN2015098307-appb-000002
i=1,2,…,N-1。
在一个可能的设计中,每个子通信链路还包括:N个功率控制单元,每个功率控制单元连接在N个模拟移相器中的任一个模拟移相器与N个振子中与任一个模拟移相器相通信的1个振子之间;N个功率控制单元用于对发送至N个振子的无线电波束的信号或者从N个振子接收到的无线电波束的信号进行固定幅度的加权处理。由此,可以将在子天线阵列之间的距离大于0.5λ时,天线阵列偏转时产生的栅瓣控制在一定范围之内(即不产生栅瓣),由此,可以提高无线电波束的正交性。
在一个可能的设计中,每个子通信链路的N个模拟移相器中的第J个模拟移相器注入相位(J-1)*δ,J为正整数,且J≤N。由此可以实现对通过该通信装置形成的空间中的无线电波束的方向进行控制。
在一个可能的设计中,M个子通信链路中第I个子通信链路的L个数字移相器均注入相位(I-1)*Δ,I为正整数,且I≤M。由此可以实现对通过该通信装置形成的空间中的无线电波束的方向进行控制。
在一个可能的设计中,该通信装置还包括n*M个射频合路器和n*M个视频分路器,相邻的两个子天线阵列分别属于第一子通信链路和第二子通信链路;
每个射频合路器与n个振子中的任一个振子相连接,还连接于任一个振 子在第一子通信链路中相通信的1个模拟移相器与任一个振子在第二子通信链路中相通信的1个模拟移相器之间,用于对从两个模拟移相器接收的无线电波束的信号进行合并后发送至任一个振子;
每个射频合路器与n个振子中的任一个振子相连接,还连接于任一个振子在第一子通信链路中相通信的1个模拟移相器与任一个振子在第二子通信链路中相通信的1个模拟移相器之间,用于对从任一个振子接收的无线电波束的信号进行分路后分别发送至两个模拟移相器。
再一方面,本发明实施例还提供了一种无线通信设备,该无线通信设备包括如上一方面所述的通信装置。
又一方面,本发明实施例还提供了一种无线通信设备,该无线通信设备包括如上另一方面所述的通信装置。
本发明实施例提供的通信装置及无线通信设备,通信装置包括M个子通信链路,M个子通信链路包括M个子天线阵列,其中,M子天线阵列分为至少两行,且相邻的两个子天线阵列交错排布;或者,M子天线阵列呈直线排布,且相邻的两个子天线阵列共用n个振子;由此可以缩短子天线阵列之间的距离,这可以增大无线电波束的主瓣与栅瓣之间的距离,从而可以缓和振子数目的增加与栅瓣难以控制之间的矛盾,进而可以提高无线电波束的正交性。
附图说明
图1为本发明提供的天线阵列的一种驱动方式示意图;
图2为本发明提供的天线阵列的另一种驱动方式示意图之一;
图3为本发明提供的天线阵列的另一种驱动方式示意图之二;
图4为本发明提供的天线阵列的另一种驱动方式示意图之三;
图5为本发明实施例一提供的通信装置的示意图之一;
图6为本发明提供的相邻子天线阵列间的间距示意图;
图7为本发明实施例一提供的通信装置的示意图之二;
图8为本发明提供的相邻子天线阵列的排布方式示意图;
图9为本发明提供的通信装置形成的无线电波束示意图之一;
图10为本发明提供的通信装置形成的无线电波束示意图之二;
图11为本发明实施例二提供的通信装置的示意图之一;
图12为本发明实施例二提供的通信装置的示意图之二;
图13为本发明提供的射频合路器以及射频分路器的连接关系示意图。
具体实施方式
下面结合附图,对本发明的实施例进行描述。
为了解决无线电波束之间相互干扰的问题,本发明采用增大通信装置中天线阵列尺寸(即增加子天线阵列中振子的数目)的方法,然而天线阵列尺寸增大后,如何驱动这些天线阵列就成为要解决的问题,此处,天线阵列包括线阵和面阵,在此说明书中以天线阵列为线阵进行说明。图1为本发明提供的天线阵列的一种驱动方式示意图,图1的驱动方式也称基于全数字的驱动方式。图1中,基带处理单元(Base Band Unit,BBU)和拉远射频单元(Remote RF Unit,RRU)为无线通信设备中的两个单元,此处的无线通信设备可以是各种类型的基站,也可以是移动终端;其中,BBU用于对输入的数据流(如,S1和S2)进行数字波束赋型(Digital Beam-Forming,DBF),以控制输入的数据流对应的空间中的无线电波束的方向,此处的数据流可以是从核心网接收的。在一种实现方式中,上述对输入的数据流进行数字波束赋型可以通过数字幅相加权器来实现。
图1中,θ1和θ2分别为数据流S1和S2与天线阵列的法线的夹角;RRU包括功率放大器(Power Amplifier,PA),用于对从数字幅相加权器接收的信号进行功率放大后输出至天线阵列,A1和A2分别为两个振子,多个振子可以组成一个子天线阵列,而多个子天线阵列可以组成一个天线阵列;此外,U1和U2分别表示两个用户;而发送至U1的波束S1是通过BBU和RRU在对输入 的数据流S1进行数字波束赋型以及功率放大后形成的空间中的无线电波束,发送至U2的波束S2是通过BBU和RRU在对输入的数据流S2进行数字波束赋型以及功率放大后形成的空间中的无线电波束。
需要说明的是,作为示例,图1中只给出了驱动两个振子的方式,随着振子数目的增加,如增加至n个时,BBU的计算量就会由原来的两次运算,变为n次运算,也即随着振子数目的线性增加,BBU的运算量几何增加,其代价是比较大的,而实际应用中是希望能减少BBU的功耗。所以目前业界比较关注混合波束赋型(Hybrid Beam-Forming,HBF)。
图2为本发明提供的天线阵列的另一种驱动方式示意图之一,图2中,BBU包括数字幅相加权器,用于对输入的数据流(如,S1和S2)进行数字波束赋型,RRU包括模拟移相器,用于对经数字波束赋型后的数据流进行模拟波束赋型(Analog Beam-Forming,ABF),当然,在进行模拟波束赋型之前,先可以将数字数据流转化为模拟信号。图2中,SAA1和SAA2分别用于表示两个子天线阵列,其中,每个子天线阵列包括4个振子:A1、A2、A3和A4,也即相比于图1,图2中振子的数目增加了,但当输入的数据流的个数不变时,BBU只输出两路信号,即BBU运算量是不变的,而只是在RRU中增加了相应的模拟通道数量(如,增加功率放大器的数量),也即通过该天线阵列的驱动方式可以在振子的数目增加时不影响BBU的运算量,从而可以以比较小的代价获得比较高的收益。在此说明书中以采用图2所示的驱动方式驱动天线阵列。
需要说明的是,当图2中的天线阵列包括M个SAA,每个SAA包括N个振子(即整个天线阵列由N*M个振子组成),且每N个振子由一个收发单元(Tranciever,TRX)驱动时,则图2的天线驱动方式也可以参见图3所示,图3中,圆点表示图2中的振子,TRX上方的原型+箭头符号表示模拟移相器,参与ABF;TRX下方的原型+箭头符号表示数字移相器,L*M个数字移相器构成数字福相加权器,参与DBF。
需要说明的是,图3只是作为例子进行说明,在实际应用中,每N个振 子也可以由X个收发单元驱动,其中,X≤N,通过X个收发单元驱动N个振子与通过1个收发单元驱动N个振子的原理相同,在此不复赘述;此外,每个SAA也可以包括不同的振子数目,本申请对此不作限定。
图3中,天线阵列内任意相邻振子间的间距可以相同,也可以不同,在此以天线阵列内任意相邻振子的间距相同,且将该相同的间距设为d=0.5λ来说明现有技术中存在的问题,可以理解的是,当天线阵列内任意相邻振子的间距不相同时,其存在的问题类似。如上,当天线阵列内任意相邻振子的间距相同,且为d=0.5λ时,则各个SAA之间的中心间距为Nd,而一般情况下,N的值是大于1的,也即Nd>0.5λ。而经研究表明,当SAA的间距大于0.5λ时,天线阵列偏转时,天线阵列形成的无线电波束就会有栅瓣出现,且随着SAA间距的增大,栅瓣离主瓣越来越近,从而使得栅瓣难以控制,这影响了无线电波束的正交性,失去了增大天线阵列尺寸的意义。
因此,本发明的目的就是为了解决在SAA的间距大于0.5λ时,由于天线阵列偏转产生栅瓣而影响无线电波束的正交性的问题。
在以实施例的方式介绍本发明的方案之前,首先对图3作出如下假设:每个SAA内部相位赋值为δ的等差序列,每个SAA的起始振子(最左边的)的相位赋值为0;每个TRX前的相位赋值为Δ的等差序列,起始TRX(最左边的)的相位赋值为0,具体可参见图4所示;之后,当图4中输入与天线阵列法线的夹角为θ的数据流后,天线阵列最终形成的无线电波束表示为公式1。
Figure PCTCN2015098307-appb-000003
ψ=kdsinθ+δ,Ψ=Nkd sinθ+Δ   (公式1)
上述公式1中,K表示无线电波束的个数(也称波数),可以通过2π/λ求解;AFSAA表示子阵列因子,也即图4中每N个振子组成的子天线阵列形成的无线电波束,从上述公式可以看出,AFSAA的值与K、d、θ、N和δ等变量相关,对不同方向的不同数据流,M个子天线阵列的上述变量均相同,M个子天线阵列形成的无线电波束相同;AFALL表示全阵列因子,即将图4中每N个振子作为一个大的振子,也即整个天线阵列包括M个大的振子形成的无线电波束,从上述公式可以看出,AFALL的值与K、d、θ、N、M和Δ等变量相关,对不同方向的不同数据流,Δ不相同,所以整个天线阵列可以形成不同的无线电波束。
结合图4和上述公式,对上文提出的天线阵列偏转产生栅瓣的问题作出如下解释:根据天线阵列扫描的原理,通常在AFALL具有最大值时,即为信号强度最强的地方,而Ψ为0时,AFALL具有最大值。根据上述公式,通过调整Δ就可以使Ψ为0,但是,θ在(0,π)之间会有多个解,因此天线阵列在配置Δ偏转无线电波束方向时,就会产生栅瓣。
以下对本发明的发明构思进行分析:
由于图4所示的天线阵列形成的无线电波束可表示为如下公式:AF=AFSAA·AFALL,也即天线阵列最终形成的无线电波束是全阵因子与子阵因子的乘积,因此,可以通过控制子阵因子,也即通过控制子天线阵列形成的无线电波束,来控制天线阵列最终形成的无线电波束,如,可以通过将相邻的两个子天线阵列交错排布,来缩短子天线阵列之间的距离,从而控制栅瓣的位置离主瓣较远;此外,还可以对子阵列天线中振子上的无线电波束的信号进行固定的幅度加权,来控制AFSAA在AFALL产生栅瓣的位置方向图增益较低,以便将最终形成的无线电波束的栅瓣的幅度控制在一定范围之内。
具体地,本发明将通过实施例一和实施例二的方案,来提高无线电波束的正交性。
图5为本发明实施例一提供的通信装置的示意图之一,图5中,该通信装置可以包括M个子通信链路,每个子通信链路可以包括:1个子天线阵列、N个模拟移相器、X个收发单元和L个数字移相器,其中,N,M,X,L均为正整数,且L≤M,X≤N。优选地,X为1。为方便说明,图5中以N为4,X为1进行说明。
图5中,1个子天线阵列包括4个振子,用于辐射或者接收空间中的无线电波束;4个模拟移相器中的每个模拟移相器与4个振子中的任一个振子相通信;该4个模拟移相器用于控制4个振子辐射或者接收空间中的无线电波束的方向;1个收发单元,与4个模拟移相器相通信,具体地,该1个收发单元可以通过1个模拟数据流接口与4个模拟移相器相通信;该1个收发单元用于将数字数据流转化为无线电波束的信号或者将无线电波束的信号转化为数字数据流;L个数字移相器,与1个收发单元相通信,用于形成数字数据流或者接收数字数据流,并将接收的数字数据流分解成多个数字数据流。
图5中,M个子天线阵列包括:SAA1,SAA2,…,SAAM,且SAA2,SAA4,…,SAAM排布在上一行,SAA1,SAA3,…,SAAM-1排布在下一行,且SAA2位于SAA1 的右上方,SAA3位于SAA2的右下方,…,直至SAAM位于SAAM-1的右上方。
需要说明的是,作为示例,图5中M个子通信链路中的M子天线阵列分为上下两行,而在实际应用中,M个子通信链路中的M子天线阵列分为三行以上,当分为三行及以上时,M子天线阵列的排布方式可参考图5中两行子天线阵列的排布方式,本发明对此不作赘述。
优选地,当图5中同一个子天线阵列的N个振子中相邻两个振子之间的间距表示为di,则相邻的子天线阵列的间距D可以满足如下条件:
Figure PCTCN2015098307-appb-000004
Figure PCTCN2015098307-appb-000005
i=1,2,…,N-1;可以理解的是,当图5中任意相邻振子之间的间距相同时,di可以表示为d,相应地,D可以满足如下条件:(Nd)/2≤D<Nd,优选地,D=(Nd)/2。在任意相邻振子之间的间距相同时,d以及D可参见图6所示,图6中,假设相邻的两个子天线阵列包括:第一子天线阵列和第二子天线阵列,则当N为偶数时,D为第一子天线阵列中第N/2个振子和第(N/2)+1个的中心位置与第二子天线中第N/2个振子和第(N/2)+1个的中心位置之间的距离;而当N为奇数时,D为第一子天线阵列中第(N+1)/2+1个振子与第二子天线中第(N+1)/2+1个振子之间的距离。
此外,图5中的每个子通信链路还可以包括:4个功率控制单元,在每个子通信链路中增加4个功率控制单元后的通信装置可参见图7所示,图7中,每个功率控制单元连接在4个模拟移相器中的任一个模拟移相器与4个振子中与该任一个模拟移相器相通信的1个振子之间;该4个功率控制单元用于对发送至4个振子的无线电波束的信号或者从4个振子接收到的无线电波束的信号进行固定幅度的加权处理。
图7中的功率控制单元可以包括:功率分配器、功率放大器以及功率衰减器等。在一个例子中,当功率控制单元用于对4个振子上的无线电波束的信号按照系数0.812,1,1和0.812进行幅度加权时,则称为对上述4个振子上的无线电波束的信号按照30dB切比雪夫幅度加权。通过对不同振子上的 无线电波束的信号按照不同的系数进行幅度加权处理之后,就可以控制AFSAA在AFALL产生栅瓣的位置方向图增益较低,以便将最终形成的无线电波束的栅瓣的幅度控制在一定范围之内。
在其它例子中,也可以对4个振子上的无线电波束信号按照其它的幅度加权方式进行幅度加权,如,凯撒(Kaiser)幅度加权,高斯(Gausswin)幅度加权等。
需要说明的是,作为示例,图5或者图7中的N为4,而在实际应用中,N也可以为其它数目,如,N可以为5,6,7,8等,本发明对此不作限定。其中,当N为偶数时,通信装置的排布方式可参考图5;而当N为奇数时,且以N为5为例来说,当任意相邻振子之间的间距相同(如,为d),且D=(Nd)/2=2.5d时,通信装置中相邻子天线阵列的排布方式可参见图8所示,图8中,SAA1与SAA2的间距D即为SAA1中第3个振子与SAA2中第3个振子之间的距离,即D=2.5d。
对图7所示的通信装置,假设M=4,N=8,当无线通信设备中输入分别在5度和-2.163度(因为等效口径约为8λ的最小主瓣间距为7.163)两个方向的数据流S1和S2时,且在每个SAA内部N个模拟移相器中的第J个模拟移相器注入相位(J-1)*δ,J为正整数,且J≤N;且在M个子通信链路中第I个子通信链路的L个数字移相器均注入相位(I-1)*Δ,I为正整数,且I≤M,也即对全阵列因子的表达式以及子阵因子的表达式赋值后,可以形成如图9所示的无线电波束。
图9中,第一无线电波束是通信装置在对数据流S1进行相应的信号处理(包括:数字波束赋型、模拟波束赋型以及30dB的切比雪夫特加权)后,通过M个大振子(N个小振子组成)在远场形成的无线电波束,也即是数据流S1的全阵列因子的水平方向图,第二无线电波束是通信装置在对数据流S2进行上述相应的信号处理后,通过M个大振子(N个小振子组成)在远场形成的无线电波束,也即是数据流S2的全阵列因子的水平方向图,第三无线电波束 是在对数据流S1或者数据流S2进行上述相应的信号处理后,通过M组N个振子在远场形成的无线电波束,也即是数据流S1或者数据流S2的子阵列因子的水平方向图。
图9中,第一无线电波束的波峰(主方向)对应第二无线电波束的波谷(零陷位置),或者,第二无线电波束的波峰对应第一无线电波束的波谷,也即无线电波束之间不会造成干扰。此外,因为此说明中以天线阵列为线阵为例,所以最终形成的无线电波束在垂直方向上的方向图为全向。当在实际设计时,将天线阵列设计为面阵时,垂直方向可以根据实际要求进行调节和设计。
由于天线阵列最终形成的无线电波束是全阵因子与子阵因子的乘积,因此,针对数据流S1和S2,天线阵列最终形成的两个无线电波束可参见图10所示,图10中,第四无线电波束是由通信装置对数据流S1进行上述相应的信号处理后最终形成的方向图,而第五无线电波束是由通信装置对数据流S2进行上述相应的信号处理后,最终形成的方向图。
本发明实施例一提供的通信装置,M个子通信链路中的M子天线阵列分为至少两行,且相邻的两个子天线阵列交错排布,由此,可以在增加振子的同时减小子天线阵列之间的距离,这在一定程度上缓解了振子数量多和子天线阵列间的距离要小的矛盾,如在相邻子天线阵列的间距为Nd/2时,当每个子天线阵列中振子的数目增加m个时,子天线阵列之间的距离仅增加md/2;此外,对每个子天线阵列的振子上的无线电波束信号进行固定的幅度加权,可以将在子天线阵列之间的距离大于0.5λ时,天线阵列偏转时产生的栅瓣控制在一定范围之内(即不产生栅瓣),由此,可以提高无线电波束的正交性。
图11为本发明实施例二提供的通信装置的示意图之一,图11中,该通信装置可以包括M个子通信链路,每个子通信链路可以包括:1个子天线阵列、N个模拟移相器、X个收发单元和L个数字移相器,其中,M,X,L均为正整数,N为偶数,且L≤M,X≤N。优选地,X为1。为方便说明,图11中以N 为4,X为1进行说明。
图11中,1个子天线阵列包括4个振子,用于辐射或者接收空间中的无线电波束;4个模拟移相器中的每个模拟移相器与4个振子中的任一个振子相通信;该4个模拟移相器用于控制4个振子辐射或者接收空间中的无线电波束的方向;1个收发单元,与4个模拟移相器相通信,具体地,该1个收发单元可以通过1个模拟数据流接口与4个模拟移相器相通信;该1个收发单元用于将数字数据流转化为无线电波束的信号或者将无线电波束的信号转化为数字数据流;L个数字移相器,与1个收发单元相通信,用于形成数字数据流或者接收数字数据流,并将接收的数字数据流分解成多个数字数据流。
图11中,M个子天线阵列包括:SAA1,SAA2,…,SAAM,且SAA1,SAA2,…,SAAM呈直线排布,SAA2的前2个振子与SAA1的后2个振子相同,SAA3的前2个振子与SAA2的后2个振子相同,…,直至SAAM-1的前2个振子与SAAM的后2个振子相同。
需要说明的是,作为示例,图11中的通信装置包括4个振子,且相邻的两个子天线阵列共用2个振子,而在实际应用中,图11中的通信装置还可以包括其它数目的振子,如,8、16或者其它偶数,而相邻的两个子天线阵列共用振子的数目n也不限于2,其只需要满足条件1≤n≤N/2即可,优选地,n=N/2。
可以理解的是,被相邻的两个子天线阵列共用的n个振子中每个振子,其既包含在第一子天线阵列所属的第一子通信链路中,也包含在第二子天线阵列所属的第二子通信链路中,也即其既可以与第一子通信链路中的一个模拟移相器相通信,也可以与第二子通信链路中的一个模拟移相器相通信。
优选地,当图11中同一个子天线阵列的N个振子中相邻两个振子之间的间距表示为di,则相邻的子天线阵列的间距D可以满足如下条件:
Figure PCTCN2015098307-appb-000006
Figure PCTCN2015098307-appb-000007
i=1,2,…,N-1;可以理解的是,当任意相邻振子之间的间距相同 时,di可以表示为d,相应地,D可以满足如下条件:(Nd)/2≤D<Nd,优选地,D=(Nd)/2。
此外,图11中的每个子通信链路还可以包括:4个功率控制单元,在每个子通信链路中增加4个功率控制单元后的通信装置可参见图12所示,图12中,每个功率控制单元连接在4个模拟移相器中的任一个模拟移相器与4个振子中与任一个模拟移相器相通信的1个振子之间;该4个功率控制单元用于对发送至4个振子的无线电波束的信号或者从4个振子接收到的无线电波束的信号进行固定幅度的加权处理。
图12中的功率控制单元可以包括:功率分配器、功率放大器以及功率衰减器等。在一个例子中,当功率控制单元用于对4个振子上的信号按照系数0.812,1,1和0.812进行幅度加权时,则称为对上述4个振子上的信号按照30dB切比雪夫幅度加权。通过对不同振子上的无线电波束信号按照不同的系数进行幅度加权处理之后,就可以控制AFSAA在AFALL产生栅瓣的位置方向图增益较低,以便将最终形成的无线电波束的栅瓣的幅度控制在一定范围之内。
在其它例子中,也可以对4个振子上的信号按照其它的幅度加权方式进行幅度加权,如,凯撒(Kaiser)幅度加权,高斯(Gausswin)幅度加权等。
需要说明的是,图11或者图12所示的通信装置还可以包括n*M个射频合路器和n*M个视频分路器,在相邻的两个子天线阵列分别属于第一子通信链路和第二子通信链路时,n*M个射频合路器中的每个射频合路器的连接关系具体为:每个所述射频合路器与n个振子中的任一个振子相连接,还连接于该任一个振子在第一子通信链路中相通信的1个模拟移相器与该任一个振子在第二子通信链路中相通信的1个模拟移相器之间,用于对从两个模拟移相器接收的无线电波束的信号进行合并后发送至上述任一个振子;n*M个视频分路器中的每个射频分路器的连接关系具体为:每个射频合路器与n个振子中的任一个振子相连接,还连接于该任一个振子在第一子通信链路中相通信的1个模拟移相器与该任一个振子在第二子通信链路中相通信的1个模拟移相器 之间,用于对从该1个振子接收的无线电波束的信号进行分路后分别发送至两个模拟移相器。
以1个射频合路器以及1个射频分路器在图11或者图12中的通信装置的连接关系为例来说,如图13所示,图13中的1个振子可以为相邻的两个子天线阵列共用的n个振子中任1个振子,第一模拟移相器为该1个振子在第一通信子链路中相通信的模拟移相器,第二模拟移相器为该1个振子在第二子通信链路中相通信的模拟移相器。
对图12所示的通信装置,假设M=4,N=8,且在每个SAA内部N个模拟移相器中的第J个模拟移相器注入相位(J-1)*δ,J为正整数,且J≤N;且在M个子通信链路中第I个子通信链路的L个数字移相器均注入相位(I-1)*Δ,I为正整数,且I≤M,也即对全阵列因子的表达式以及子阵因子的表达式赋值后,也可以形成如图9所示的无线电波束;且其最终形成的两个无线电波束也可参见图10所示。
本发明实施例二提供的通信装置,M个子通信链路中的M个子天线阵列呈直线排布,且相邻的两个子天线阵列共用n个振子,由此,可以在增加振子的同时减小子天线阵列之间的距离,这在一定程度上缓解了振子数量多和子天线阵列间的距离要小的矛盾,如在相邻子天线阵列的间距为Nd/2时,当每个子天线阵列中振子的数目增加m个时,子天线阵列之间的距离仅增加md/2;此外,对每个子天线阵列的振子上的无线电波束信号进行固定的幅度加权,可以将在子天线阵列之间的距离大于0.5λ时,天线阵列偏转时产生的栅瓣控制在一定范围之内(即不产生栅瓣),由此,可以提高无线电波束的正交性。
最后,本发明还提供了一种包括本发明实施一提供的通信装置的无线通信设备,具体地,该无线通信设备可以基于实施例一提供的通信装置从用户端接收无线电波束,或者向用户发送无线电波束;此外,本发明还提供了一种包括本发明实施二提供的通信装置的无线通信设备,同样地,该无线通信设备可以基于实施例二提供的通信装置从用户端接收无线电波束,或者向用 户发送无线电波束。
专业人员应该还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种通信装置,其特征在于,所述通信装置包括M个子通信链路,每个所述子通信链路包括:
    1个子天线阵列,每个所述子天线阵列包括N个振子,用于辐射或者接收空间中的无线电波束;
    N个模拟移相器,每个所述模拟移相器与所述N个振子中的任一个振子相通信;所述N个模拟移相器用于控制所述N个振子辐射或者接收空间中的无线电波束的方向;
    X个收发单元,与所述N个模拟移相器相通信,用于将数字数据流转化为所述无线电波束的信号或者将所述无线电波束的信号转化为数字数据流;和,
    L个数字移相器,与所述X个收发单元相通信,用于形成所述数字数据流或者接收所述数字数据流,并将接收的所述数字数据流分解成多个数字数据流;
    其中,所述M个子通信链路中的M子天线阵列分为至少两行,且相邻的两个子天线阵列交错排布,N,M,X,L均为正整数,且L≤M,X≤N。
  2. 根据权利要求1所述的通信装置,其特征在于,所述M子天线阵列分为上下两行,且所述相邻的两个子天线阵列包括:第一子天线阵列和第二子天线阵列;
    若所述第一子天线阵列位于上一行,所述第二天线阵列位于下一行,则所述第二子天线阵列在所述第一子天线阵列的右下方;
    若所述第一子天线阵列位于下一行,所述第二天线阵列位于上一行,则所述第二子天线阵列在所述第一子天线阵列的右上方。
  3. 根据权利要求1或2所述的通信装置,其特征在于,同一个子天线阵列的N个振子中相邻两个振子之间的间距为di,且所述相邻的子天线阵列的间距为D,其中,
    Figure PCTCN2015098307-appb-100001
    i=1,2,…,N-1。
  4. 根据权利要求1-3任一项所述的通信装置,其特征在于,所述每个子通信链路还包括:N个功率控制单元,每个所述功率控制单元连接在所述N个模拟移相器中的任一个模拟移相器与所述N个振子中与所述任一个模拟移相器相通信的1个振子之间;所述N个功率控制单元用于对发送至所述N个振子的无线电波束的信号或者从所述N个振子接收到的无线电波束的信号进行固定幅度的加权处理。
  5. 根据权利要求1-4任一项所述的通信装置,其特征在于,每个所述子通信链路的所述N个模拟移相器中的第J个模拟移相器注入相位(J-1)*δ,J为正整数,且J≤N。
  6. 根据权利要求1-5任一项所述的通信装置,其特征在于,所述M个子通信链路中第I个子通信链路的L个数字移相器均注入相位(I-1)*Δ,I为正整数,且I≤M。
  7. 一种通信装置,其特征在于,所述通信装置包括M个子通信链路,每个所述子通信链路包括:
    1个子天线阵列,每个所述子天线阵列包括N个振子,用于辐射或者接收空间中的无线电波束;
    N个模拟移相器,每个所述模拟移相器与所述N个振子中的任一个振子相通信;所述N个模拟移相器用于控制所述N个振子辐射或者接收空间中的无线电波束的方向;
    X个收发单元,与所述N个模拟移相器相通信,用于将数字数据流转化为所述无线电波束的信号或者将所述无线电波束的信号转化为数字数据流;和,
    L个数字移相器,与所述X个收发单元相通信,用于形成所述数字数据流或者接收所述数字数据流,并将接收的所述数字数据流分解成多个数字数据流;
    其中,所述M个子通信链路中M个子天线阵列呈直线排布,且相邻的两个子天线阵列共用n个振子,N为偶数,M,X,L,n均为正整数,且L≤M,X ≤N,1≤n≤N/2。
  8. 根据权利要求7所述的通信装置,其特征在于,所述相邻的两个子天线阵列包括:第一子天线阵列和第二子天线阵列;
    若所述第一子天线阵列为在先的子天线阵列,所述第二子天线阵列为在后的子天线阵列,则所述第二子天线阵列的前n个振子与所述第一子天线阵列的后n个振子相同;
    若所述第一子天线阵列为在后的子天线阵列,所述第二子天线阵列为在先的子天线阵列,则所述第二子天线阵列的后n个振子与所述第一子天线阵列的前n个振子相同。
  9. 根据权利要求7或8所述的通信装置,其特征在于,同一个子天线阵列的N个振子中相邻两个振子之间的间距为di,且所述相邻的子天线阵列的间距为D,其中,
    Figure PCTCN2015098307-appb-100002
    i=1,2,…,N-1。
  10. 根据权利要求7-9任一项所述的通信装置,其特征在于,所述每个子通信链路还包括:N个功率控制单元,每个所述功率控制单元连接在所述N个模拟移相器中的任一个模拟移相器与所述N个振子中与所述任一个模拟移相器相通信的1个振子之间;所述N个功率控制单元用于对发送至所述N个振子的无线电波束的信号或者从所述N个振子接收到的无线电波束的信号进行固定幅度的加权处理。
  11. 根据权利要求7-10任一项所述的通信装置,其特征在于,每个所述子通信链路的所述N个模拟移相器中的第J个模拟移相器注入相位(J-1)*δ,J为正整数,且J≤N。
  12. 根据权利要求7-11任一项所述的通信装置,其特征在于,所述M个子通信链路中第I个子通信链路的L个数字移相器均注入相位(I-1)*Δ,I为正整数,且I≤M。
  13. 根据权利要求7-12任一项所述的通信装置,其特征在于,所述通信装置还包括n*M个射频合路器和n*M个视频分路器,所述相邻的两个子天线 阵列分别属于第一子通信链路和第二子通信链路;
    每个所述射频合路器与所述n个振子中的任一个振子相连接,还连接于所述任一个振子在所述第一子通信链路中相通信的1个模拟移相器与所述任一个振子在所述第二子通信链路中相通信的1个模拟移相器之间,用于对从所述两个模拟移相器接收的无线电波束的信号进行合并后发送至所述任一个振子;
    每个所述射频合路器与所述n个振子中的任一个振子相连接,还连接于所述任一个振子在所述第一子通信链路中相通信的1个模拟移相器与所述任一个振子在所述第二子通信链路中相通信的1个模拟移相器之间,用于对从所述任一个振子接收的无线电波束的信号进行分路后分别发送至所述两个模拟移相器。
  14. 一种包括如权利要求1-6任一项所述的通信装置的无线通信设备。
  15. 一种包括如权利要求7-13任一项所述的通信装置的无线通信设备。
PCT/CN2015/098307 2015-12-22 2015-12-22 通信装置及无线通信设备 WO2017107063A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020187020196A KR102046451B1 (ko) 2015-12-22 2015-12-22 통신 장치 및 무선 통신 장치
CA3009538A CA3009538C (en) 2015-12-22 2015-12-22 Communications apparatus and wireless communications devicetechnical field
EP15911062.6A EP3382801A4 (en) 2015-12-22 2015-12-22 Communication apparatus and wireless communication device
JP2018532555A JP2018538759A (ja) 2015-12-22 2015-12-22 通信装置及び無線通信機器
PCT/CN2015/098307 WO2017107063A1 (zh) 2015-12-22 2015-12-22 通信装置及无线通信设备
CN201580078821.XA CN107431278A (zh) 2015-12-22 2015-12-22 通信装置及无线通信设备
US16/015,564 US10637587B2 (en) 2015-12-22 2018-06-22 Communications apparatus and wireless communications device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/098307 WO2017107063A1 (zh) 2015-12-22 2015-12-22 通信装置及无线通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/015,564 Continuation US10637587B2 (en) 2015-12-22 2018-06-22 Communications apparatus and wireless communications device

Publications (1)

Publication Number Publication Date
WO2017107063A1 true WO2017107063A1 (zh) 2017-06-29

Family

ID=59088865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098307 WO2017107063A1 (zh) 2015-12-22 2015-12-22 通信装置及无线通信设备

Country Status (7)

Country Link
US (1) US10637587B2 (zh)
EP (1) EP3382801A4 (zh)
JP (1) JP2018538759A (zh)
KR (1) KR102046451B1 (zh)
CN (1) CN107431278A (zh)
CA (1) CA3009538C (zh)
WO (1) WO2017107063A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020103779A1 (zh) * 2018-11-23 2020-05-28 华为技术有限公司 用于子阵波束成形系统的功放电路和子阵波束成形系统
WO2022133824A1 (zh) * 2020-12-23 2022-06-30 华为技术有限公司 用于无线通信的方法和装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3010228C (en) * 2015-12-31 2023-10-31 Huawei Technologies Co., Ltd. Beamforming method, receiver, transmitter, and system
JP6978688B2 (ja) * 2018-03-29 2021-12-08 日本電信電話株式会社 無線通信装置及び無線通信方法
US11677146B2 (en) * 2018-12-21 2023-06-13 Navid Gougol Programmable analog beamformer
CN113906632B (zh) * 2019-06-03 2023-11-17 华为技术有限公司 一种天线及基站
CN115566441A (zh) * 2021-07-02 2023-01-03 中兴通讯股份有限公司 天线装置及基站天线
KR102661028B1 (ko) * 2021-07-23 2024-04-26 한국과학기술원 안테나 서브 어레이들을 포함하는 다중입력 다중출력 레이다 장치 및 이의 동작 방법
KR102672770B1 (ko) * 2021-10-01 2024-06-07 한국과학기술원 안테나 서브 어레이들을 포함하는 다중입력 다중출력 레이다 장치 및 이의 동작 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651480A (zh) * 2008-08-14 2010-02-17 华为技术有限公司 有源天线、基站、刷新幅度和相位的方法及信号处理方法
CN102122975A (zh) * 2010-01-07 2011-07-13 中国移动通信集团公司 一种信号处理装置和信号处理方法
CN102565776A (zh) * 2010-12-08 2012-07-11 中国科学院电子学研究所 一种星载sar相控阵天线阵面布局方法
CN102694275A (zh) * 2012-05-24 2012-09-26 华为技术有限公司 天线阵列和天线
CN103985970A (zh) * 2014-04-28 2014-08-13 零八一电子集团有限公司 抑制大间距相控阵天线栅瓣的布阵方法
CN104269649A (zh) * 2014-09-19 2015-01-07 广东博纬通信科技有限公司 一种超宽频带多频段阵列天线

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3839945C2 (de) * 1988-11-26 1997-04-10 Daimler Benz Aerospace Ag Phasengesteuerte Gruppenantenne
JP3348863B2 (ja) * 1997-06-02 2002-11-20 株式会社エヌ・ティ・ティ・ドコモ アダプティブアレイアンテナ
US20020137547A1 (en) * 2001-02-07 2002-09-26 Judson Bruce A. Antenna array and method therefor
CN1507673A (zh) * 2001-04-16 2004-06-23 �����ɷ� 双频带双极化天线阵列
DE60205711T2 (de) * 2001-12-18 2006-05-18 Hitachi, Ltd. Monopuls Radar mit Einstellung der Strahlaufweitung
US6864837B2 (en) * 2003-07-18 2005-03-08 Ems Technologies, Inc. Vertical electrical downtilt antenna
US6992622B1 (en) * 2004-10-15 2006-01-31 Interdigital Technology Corporation Wireless communication method and antenna system for determining direction of arrival information to form a three-dimensional beam used by a transceiver
US7081851B1 (en) 2005-02-10 2006-07-25 Raytheon Company Overlapping subarray architecture
US8095185B2 (en) * 2006-06-09 2012-01-10 Telefonaktiebolaget L M Ericsson (Publ) Estimation of angular parameters of a signal at an antenna array
WO2009013527A1 (en) * 2007-07-20 2009-01-29 Astrium Limited System for simplification of reconfigurable beam-forming network processing within a phased array antenna for a telecommunications satellite
JP4722144B2 (ja) * 2008-01-10 2011-07-13 三菱電機株式会社 レーダ装置
EP2345176A1 (en) * 2008-10-09 2011-07-20 Telefonaktiebolaget L M Ericsson (PUBL) Antenna arrangement for multi-stream communication in a mimo channel
JP2010200166A (ja) * 2009-02-26 2010-09-09 Toshiba Corp アレイアンテナ
US20120196545A1 (en) * 2011-01-28 2012-08-02 Georg Schmidt Antenna array and method for synthesizing antenna patterns
US8929473B2 (en) 2011-07-28 2015-01-06 Samsung Electronics Co., Ltd. Combining baseband processing and radio frequency beam steering in wireless communication systems
US10228443B2 (en) * 2012-12-02 2019-03-12 Khalifa University of Science and Technology Method and system for measuring direction of arrival of wireless signal using circular array displacement
US10484104B2 (en) * 2013-08-20 2019-11-19 Spirent Communications, Inc. Method for over-the-air measurement signal generation
KR101801589B1 (ko) * 2013-11-08 2017-11-27 엘지전자 주식회사 위상 천이 오차의 사전보상
DE102014200692A1 (de) * 2014-01-16 2015-07-16 Robert Bosch Gmbh Verfahren, antennenanordnung, radarsystem und fahrzeug
EP2911316A1 (en) * 2014-02-21 2015-08-26 Airrays GmbH Antenna system and a method for controlling said antenna system
JP2015226291A (ja) * 2014-05-29 2015-12-14 トヨタ自動車株式会社 電子走査方式の車両用アンテナ装置
US20150355313A1 (en) * 2014-06-06 2015-12-10 Toyota Motor Engineering & Manufacturing North America, Inc. Hybrid Data Adaptive and Decision Adaptive Antenna Array for Automotive Radar
WO2016037334A1 (en) * 2014-09-11 2016-03-17 Telefonaktiebolaget L M Ericsson (Publ) Group based downlink transmission
US10020574B2 (en) * 2014-09-24 2018-07-10 Telefonaktiebolaget Lm Ericsson (Publ) Antenna arrangement for non-linear distortion mitigation
US10374686B2 (en) * 2015-03-24 2019-08-06 Lg Electronics Inc. Method of determining doppler frequency transmission beam in wireless communication system and apparatus therefor
US10256875B2 (en) * 2015-04-10 2019-04-09 Qualcomm Incorporated Techniques for improving power consumption in communication devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651480A (zh) * 2008-08-14 2010-02-17 华为技术有限公司 有源天线、基站、刷新幅度和相位的方法及信号处理方法
CN102122975A (zh) * 2010-01-07 2011-07-13 中国移动通信集团公司 一种信号处理装置和信号处理方法
CN102565776A (zh) * 2010-12-08 2012-07-11 中国科学院电子学研究所 一种星载sar相控阵天线阵面布局方法
CN102694275A (zh) * 2012-05-24 2012-09-26 华为技术有限公司 天线阵列和天线
CN103985970A (zh) * 2014-04-28 2014-08-13 零八一电子集团有限公司 抑制大间距相控阵天线栅瓣的布阵方法
CN104269649A (zh) * 2014-09-19 2015-01-07 广东博纬通信科技有限公司 一种超宽频带多频段阵列天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3382801A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020103779A1 (zh) * 2018-11-23 2020-05-28 华为技术有限公司 用于子阵波束成形系统的功放电路和子阵波束成形系统
WO2022133824A1 (zh) * 2020-12-23 2022-06-30 华为技术有限公司 用于无线通信的方法和装置

Also Published As

Publication number Publication date
US10637587B2 (en) 2020-04-28
KR102046451B1 (ko) 2019-11-19
KR20180093058A (ko) 2018-08-20
CA3009538C (en) 2020-06-02
CA3009538A1 (en) 2017-06-29
JP2018538759A (ja) 2018-12-27
EP3382801A4 (en) 2018-11-07
EP3382801A1 (en) 2018-10-03
US20180302175A1 (en) 2018-10-18
CN107431278A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
WO2017107063A1 (zh) 通信装置及无线通信设备
US10181657B2 (en) Antenna array, antenna apparatus, and base station
CN107196684B (zh) 一种天线系统、信号处理系统以及信号处理方法
CN110098856B (zh) 一种天线装置及相关设备
US11309953B2 (en) Beamforming architecture for multi-beam multiple-input-multiple-output (MIMO)
WO2019201063A1 (zh) 一种天线系统、馈电网络重构方法及装置
JP5833673B2 (ja) アンテナパターンを合成するアンテナアレイ及び方法
EP3255730B1 (en) Array antenna arrangement
Black Holographic beam forming and MIMO
CN110212312B (zh) 一种天线装置及相关设备
US11082120B2 (en) Dual-polarization beamforming
US10950936B2 (en) Signal distribution network
WO2013178166A1 (zh) 通信设备、波束形成的方法及装置
CN100369493C (zh) 一种阵列天线收发权值线性转换方法
WO2020133219A1 (zh) 一种波束赋形的方法及波束赋形装置
US20230198144A1 (en) Terahertz wideband antenna and method of designing the same
CN117276856A (zh) 天线装置
Ma et al. Irregular Subarray with Gathered Elements for Sidelobe Suppression
JP2017069656A (ja) アンテナ装置、およびその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911062

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018532555

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3009538

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015911062

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015911062

Country of ref document: EP

Effective date: 20180625

ENP Entry into the national phase

Ref document number: 20187020196

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187020196

Country of ref document: KR