WO2020103779A1 - 用于子阵波束成形系统的功放电路和子阵波束成形系统 - Google Patents

用于子阵波束成形系统的功放电路和子阵波束成形系统

Info

Publication number
WO2020103779A1
WO2020103779A1 PCT/CN2019/119109 CN2019119109W WO2020103779A1 WO 2020103779 A1 WO2020103779 A1 WO 2020103779A1 CN 2019119109 W CN2019119109 W CN 2019119109W WO 2020103779 A1 WO2020103779 A1 WO 2020103779A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
sub
power amplifier
signal
envelope
Prior art date
Application number
PCT/CN2019/119109
Other languages
English (en)
French (fr)
Inventor
成千福
蔡华
王光健
黄晶晶
梁栋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19888060.1A priority Critical patent/EP3869704A4/en
Publication of WO2020103779A1 publication Critical patent/WO2020103779A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • H03F1/0227Continuous control by using a signal derived from the input signal using supply converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/68Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/102A non-specified detector of a signal envelope being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to communication technology, and in particular to a power amplifier circuit and a sub-array beamforming system for a sub-array beamforming system.
  • each sub-array antenna in order to meet the requirements of the system's effective omnidirectional radiated power (Effective Isotropic Radiated Power, referred to as: EIRP), usually each sub-array antenna is equipped with a power amplifier, so there are many power amplifiers in the entire system, In order to ensure the reliability and heat dissipation efficiency of the system, a high-efficiency power amplifier is essential.
  • Class AB power amplifiers are used in traditional sub-array beamforming systems. In order to ensure the high linearity requirements of the system, the power amplifiers must work in the deep power back-off zone, but the class AB power amplifiers have very low efficiency in the power back-off zone.
  • the present application provides a power amplifier circuit and a sub-array beamforming system for a sub-array beamforming system to improve the power amplifier efficiency of the sub-array beamforming system.
  • the present application provides a power amplifier circuit for a sub-array beamforming system.
  • the sub-array beamforming system includes a plurality of transmission channels.
  • the transmission channels include a signal pre-processing module, a first digital-to-analog converter, and a radio frequency connected in sequence.
  • the sub-array module includes at least one antenna array module;
  • the power amplifier circuit includes a plurality of power amplifier sub-circuits, the power amplifier sub-circuit includes an envelope signal generating circuit, a power modulation module and a power amplifier unit connected in sequence, the power amplifier unit includes at least One power amplifier; multiple power amplifier sub-circuits correspond to multiple transmission channels one by one; for each transmission channel, the input end of the envelope signal generating circuit in the corresponding power amplifier sub-circuit is connected to the connection point in the transmission channel, the connection point is set at The output end of the signal preprocessing module, the output end of the first digital-to-analog converter, or the output end of the radio frequency link, corresponding to at least one power amplifier in the power amplifier sub-circuit, are respectively provided at the input ends of each antenna array module in the transmission channel;
  • the signal pre-processing module on the transmitting channel pre-processes the pre-coded baseband signal and transmits it to the connected first digital-to-analog converter and the envelope
  • the radio frequency link upconverts, amplifies and filters the analog signal to generate a radio frequency modulation signal and transmits it to at least one antenna array module.
  • the envelope signal generation circuit generates an envelope signal according to the preprocessed baseband signal and transmits it to the connected power modulation module.
  • the power modulation module generates an output voltage that dynamically changes with the envelope signal under the control of the envelope signal, and transmits the output voltage To at least one connected power amplifier, the power amplifier amplifies the RF modulated signal under the modulation of the output voltage, and the antenna array module implements analog beamforming and signal transmission.
  • the sub-array beamforming system includes multiple parallel transmission channels.
  • Each transmission channel includes a sub-array module, and each sub-array module includes a multi-channel antenna array module.
  • One transmission channel corresponds to a power amplifier sub-circuit.
  • the transmission channel An antenna array module in the neutron array module corresponds to a power amplifier, and the power amplifier units corresponding to the sub-array modules of different transmission channels use different power modulation modules and different envelope signal generation circuits to achieve separate power amplifier units for each transmission channel Envelope signal generation, and the power amplifiers corresponding to all antenna array modules in the sub-array module of the same transmission channel use the same power modulation module and the same envelope signal generation circuit.
  • each transmission channel The envelope signal is processed differently to make the envelope tracking power amplifier work in different states to achieve different effects, which improves the power amplifier efficiency of the sub-array beamforming system, and throughout the design process, there is no need to change the hardware structure of the system. Achieve maximum compatibility with existing technology.
  • the envelope signal generating circuit includes an envelope shaping module and a second digital-to-analog converter connected in sequence, the input end of the envelope shaping module is connected to the output end of the signal preprocessing module, and the second digital The output terminal of the analog converter is connected to the input terminal of the power modulation module.
  • the envelope signal generation circuit includes an envelope detection module, the input terminal of the envelope detection module is connected to the output terminal of the first digital-to-analog converter or the output terminal of the radio frequency link, and the envelope detection module Is connected to the input of the power modulation module.
  • the envelope signal generating circuit further includes an envelope shaping module and a second digital-to-analog converter connected in sequence
  • the power amplifier sub-circuit further includes a first switch and a second switch, and the input of the envelope shaping module
  • the first terminal is connected to the output terminal of the signal pre-processing module.
  • the first switch is connected between the output terminal of the second digital-to-analog converter, the output terminal of the envelope detection module and the input terminal of the power modulation module.
  • the output terminal of the analog-to-digital converter is switched between the output terminal of the envelope detection module; a second switch is connected between the output terminal of the first digital-to-analog converter, the output terminal of the radio frequency link and the input terminal of the envelope detection module, The second switch switches between the output of the first digital-to-analog converter and the output of the radio frequency link.
  • the present application provides a sub-array beamforming system, including: multiple transmit channels and multiple power amplifier sub-circuits, the multiple power amplifier sub-circuits correspond to the multiple transmit channels in one-to-one correspondence;
  • the transmit channels include sequentially connected signal pre-processing Module, first digital-to-analog converter, radio frequency link and sub-array module, the sub-array module includes at least one antenna array module;
  • the power amplifier sub-circuit includes an envelope signal generation circuit, a power modulation module and a power amplifier unit connected in sequence, the power amplifier unit includes At least one power amplifier; for each transmission channel, the input end of the envelope signal generating circuit in the corresponding power amplifier sub-circuit is connected to the connection point in the transmission channel, the connection point is set at the output end of the signal pre-processing module, the first digital-to-analog conversion
  • the output end of the transmitter or the output end of the radio frequency link corresponds to at least one power amplifier in the power amplifier sub-circuit is respectively provided at the input end of each antenna array module
  • the first digital-to-analog converter converts the pre-processed baseband signal to an analog signal and transmits it To the connected radio frequency link, the radio frequency link upconverts, amplifies and filters the analog signal to generate a radio frequency modulation signal and transmits it to at least one antenna array module.
  • the envelope signal generation circuit generates an envelope based on the preprocessed baseband signal
  • the power modulation module After the signal is transmitted to the connected power modulation module, the power modulation module generates an output voltage that dynamically changes with the envelope signal under the control of the envelope signal, and transmits the output voltage to the connected at least one power amplifier. Under modulation, the RF modulated signal is amplified, and the antenna array module implements analog beamforming and signal transmission.
  • the sub-array beamforming system may adopt a sub-array module of a phase-shift sub-array structure, a fixed sub-array structure or a phase-shift fixed sub-array structure.
  • Each transmission channel includes a sub-array module, and each sub-array module contains multiple Antenna array module, one transmission channel corresponds to one power amplifier sub-circuit, one antenna array module in the sub-array module of the transmission channel corresponds to one power amplifier, and the power amplifier units corresponding to the sub-array modules of different transmission channels use different power modulation modules and different Envelope signal generation circuit to realize the individual envelope signal generation of the power amplifier unit of each transmission channel, and the power amplifiers corresponding to all antenna array modules in the sub-array module of the same transmission channel use the same power modulation module and the same package
  • the envelope signal generation circuit can process the envelope signals of each transmission channel differently according to different actual needs, so that the envelope tracking power amplifier works in different states, achieves different effects, and improves the power amplifier of the sub-array beamforming
  • the envelope signal generating circuit includes an envelope shaping module and a second digital-to-analog converter connected in sequence, the input end of the envelope shaping module is connected to the output end of the signal preprocessing module, and the second digital The output terminal of the analog converter is connected to the input terminal of the power modulation module.
  • the envelope signal generation circuit includes an envelope detection module, the input terminal of the envelope detection module is connected to the output terminal of the first digital-to-analog converter or the output terminal of the radio frequency link, and the envelope detection module Is connected to the input of the power modulation module.
  • the envelope signal generating circuit further includes an envelope shaping module and a second digital-to-analog converter connected in sequence
  • the power amplifier sub-circuit further includes a first switch and a second switch, and the input of the envelope shaping module
  • the first terminal is connected to the output terminal of the signal pre-processing module.
  • the first switch is connected between the output terminal of the second digital-to-analog converter, the output terminal of the envelope detection module and the input terminal of the power modulation module.
  • the output terminal of the analog-to-digital converter is switched between the output terminal of the envelope detection module; a second switch is connected between the output terminal of the first digital-to-analog converter, the output terminal of the radio frequency link and the input terminal of the envelope detection module, The second switch switches between the output of the first digital-to-analog converter and the output of the radio frequency link.
  • the sub-array module further includes at least one phase shifter, and an output end of the phase shifter is connected to a power amplifier in the corresponding power amplifier sub-circuit.
  • the sub-array module further includes a phase shifter, and an output end of the phase shifter is connected to at least one power amplifier in the corresponding power amplifier sub-circuit.
  • the method further includes a baseband precoding module, and the output end of the baseband precoding module is connected to the input end of the signal preprocessing module on each transmission channel.
  • Embodiment 1 is a schematic structural diagram of Embodiment 1 of a power amplifier circuit used in a sub-array beamforming system of the present application;
  • Embodiment 2 is a schematic structural diagram of Embodiment 2 of a power amplifier circuit used in a sub-array beamforming system of the present application;
  • Embodiment 3 is a schematic structural diagram of Embodiment 3 of a power amplifier circuit used in a sub-array beamforming system of the present application;
  • Embodiment 4 is a schematic structural diagram of Embodiment 4 of a power amplifier circuit used in a sub-array beamforming system of the present application;
  • Embodiment 1 of a sub-array beamforming system of the present application
  • Embodiment 6 is a schematic structural diagram of Embodiment 2 of a sub-array beamforming system of the present application.
  • FIG. 1 is a schematic structural diagram of Embodiment 1 of a power amplifier circuit for a sub-array beamforming system of the present application.
  • the sub-array beamforming system includes multiple transmission channels (11, ..., and 1n), and the power amplifier circuit includes Multiple power amplifier sub-circuits (21, ... and 2n), each transmission channel corresponds to a power amplifier sub-circuit (ie, transmission channel 11 corresponds to power amplifier sub-circuit 21, ..., transmission channel 1n corresponds to power amplifier sub-circuit 2n),
  • the power amplifier sub-circuit is used to perform power amplification processing on the corresponding transmission channel.
  • the transmission channel 11 includes a signal pre-processing module 31, a first digital-to-analog converter (DAC) 41, a radio frequency link 51, and a sub-array module connected in sequence, the sub-array module includes at least one antenna Array modules (611, ... and 61m).
  • the power amplifier sub-circuit 21 includes an envelope signal generation circuit 71, a power modulation module 81, and a power amplifier unit connected in sequence, and the power amplifier unit includes at least one power amplifier (911, ..., and 91m).
  • Each antenna array module corresponds to a power amplifier (that is, antenna array module 611 corresponds to power amplifier 911, ..., antenna array module 61m corresponds to power amplifier 91m).
  • the input terminal of the envelope signal generating circuit 71 is connected to the output terminal of the signal preprocessing module 31, the power amplifier 911 is disposed at the input terminal of the antenna array module 611, ..., and the power amplifier 91m is disposed at the input terminal of the antenna array module 61m.
  • the input terminal of the envelope signal generating circuit 71 may also be connected to the output terminal of the first digital-to-analog converter 41 or the output terminal of the radio frequency link 51.
  • the signal pre-processing module 31 on the transmission channel 11 pre-processes the pre-encoded baseband signal, which may use Crest (Factor Reduction) (CFR), Digital Pre-Distortion (DPD), Algorithms such as time alignment are implemented, and the signal pre-processing module 31 transmits the pre-processed baseband signal to the connected first DAC 41 and the envelope signal generating circuit 71 on the corresponding power amplifier sub-circuit 21.
  • the first DAC 41 converts the pre-processed baseband signal into an analog signal and transmits it to the connected radio frequency link 51.
  • the radio frequency link 51 upconverts, amplifies and filters the analog signal to generate a radio frequency modulated signal and transmits it to the antenna array module 611, ..., and 61m.
  • the envelope signal generation circuit 71 can realize the generation of an envelope signal common to all antenna array modules (611, ..., and 61m) in the sub-array module on the transmission channel 11, and the envelope signal generation circuit 71 is based on the pre-processed baseband signal
  • the envelope signal is generated and transmitted to the connected power modulation module 81.
  • the power modulation module 81 realizes the envelope follow of the power supply voltage of the power amplifier unit, generates an output voltage that dynamically follows the envelope signal under the control of the envelope signal, and transmits the dynamically changed output voltage to the connected power amplifier 911, ...
  • the power amplifier 911 amplifies the RF modulation signal delivered to the connected antenna array module 611 under the modulation of the dynamically changing output voltage (ie, the drain (or collector) voltage), ..., the power amplifier 91m is dynamically changing Under the modulation of the output voltage (that is, the drain (or collector) voltage), the RF modulation signal delivered to the connected antenna array module 61m is amplified.
  • the antenna array modules 611, ... and 61m realize analog beamforming and signal transmission. Compared with the power amplifier technology based on constant voltage power supply, all power amplifiers work in envelope tracking mode, so the average efficiency of the system power amplifier is greatly improved.
  • the structure of the other transmission channels is similar to the structure of the transmission channel 11 and will not be repeated here.
  • the envelope signal generating circuits corresponding to different transmission channels in this application can select different envelope shaping algorithms according to the requirements of the system, and then each transmission channel can use different envelope signals to control the power modulation module to generate dynamic changes following the envelope signal
  • the output voltage of the power amplifier realizes different power amplification on different transmission channels, so as to achieve the optimization of performance.
  • the sub-array beamforming system includes multiple parallel transmission channels.
  • Each transmission channel includes a sub-array module, and each sub-array module includes a multi-channel antenna array module.
  • One transmission channel corresponds to a power amplifier sub-circuit.
  • the transmission channel An antenna array module in the neutron array module corresponds to a power amplifier, and the power amplifier units corresponding to the sub-array modules of different transmission channels use different power modulation modules and different envelope signal generation circuits to achieve separate power amplifier units for each transmission channel Envelope signal generation, and the power amplifiers corresponding to all antenna array modules in the sub-array module of the same transmission channel use the same power modulation module and the same envelope signal generation circuit.
  • each transmission channel The envelope signal is processed differently to make the envelope tracking power amplifier work in different states to achieve different effects, which improves the power amplifier efficiency of the sub-array beamforming system, and throughout the design process, there is no need to change the hardware structure of the system. Achieve maximum compatibility with existing technology.
  • FIG. 2 is a schematic structural diagram of Embodiment 2 of a power amplifier circuit for a sub-array beamforming system of the present application.
  • the envelope signal generating circuit includes an envelope shaping module 711 and a second DAC 712 connected in sequence.
  • the input terminal of the shaping module 711 is connected to the output terminal of the signal preprocessing module 31, and the output terminal of the second DAC 712 is connected to the input terminal of the power modulation module 81.
  • the envelope shaping module 711 can realize the generation of the common envelope signal of the sub-array module on each transmission channel in the digital domain, and the envelope signal generation circuits corresponding to different transmission channels can select different envelope shaping according to the requirements of the system Algorithm to achieve performance optimization, the second DAC 712 converts the digital envelope signal to an analog envelope signal.
  • the signal pre-processing module 31 usually uses CFR, DPD and other algorithms to pre-process the baseband signal, and then combines the envelope shaping algorithm in the envelope shaping module 711 to realize the generation of the digital envelope signal, which is then converted by the second DAC 712 into Analog envelope signal.
  • This application can achieve the time alignment of the envelope signal and the RF signal on the transmission channel by using a time alignment algorithm in the baseband, thereby eliminating the delay line and analog envelope detection in the digital domain, and reducing the envelope on the other hand
  • the design requirements of the network modulator require most of the envelope signal processing to be transferred to the digital baseband for greater flexibility.
  • FIG. 3 is a schematic structural diagram of Embodiment 3 of a power amplifier circuit for a sub-array beamforming system of the present application.
  • the envelope signal generation circuit includes an envelope detection module 713, and the input end of the envelope detection module 713 may be connected To the output end of the first DAC 41, optionally, the input end of the envelope detection module 713 can also be connected to the output end of the radio frequency link 51, and the output end of the envelope detection module 713 is connected to the input end of the power modulation module 81 .
  • an envelope detection module 713 can be provided at different positions of the transmission channel.
  • the envelope detection module 713 directly generates an analog envelope signal, which is easy to implement and does not require
  • the additional baseband algorithm and DAC can be directly used by the power modulation module.
  • the envelope signal generating circuit is a combination of the envelope signal generating circuits shown in FIGS. 2 and 3.
  • the power amplifier sub-circuit 21 also includes a first switch 101 and a second switch 111, the input terminal of the envelope shaping module 711 and the output of the signal pre-processing module 31
  • the first switch 101 is connected between the output of the second DAC 712, the output of the envelope detection module 713, and the input of the power modulation module 81.
  • the first switch 101 is connected to the output of the second DAC 712 and the packet
  • the output terminal of the envelope detection module 713 is switched between; the output terminal of the first DAC 41, the output terminal of the radio frequency link 51 and the input terminal of the envelope detection module 713 are connected with a second switch 111, the second switch 111
  • the output of a DAC 41 and the output of the radio frequency link 51 are switched.
  • the output of the second DAC 712 and the input of the power modulation module 81 are connected through the first switch 101. If it is to be generated as shown in FIG.
  • the analog envelope signal is connected to the output terminal of the envelope detection module 713 and the input terminal of the power modulation module 81 through the first switch 101, and between the output terminal of the first DAC 41 and the output terminal of the radio frequency link 51 through the second switch 111 Switch between.
  • the first switch 101 and the second switch 111 can realize the switching of the envelope signal in the digital domain and the analog domain, and can also realize envelope detection at different positions on the transmission channel, which is convenient and flexible.
  • the present application provides a sub-array beamforming system.
  • the structure of the system may be as shown in FIG. 1, which includes a power amplifier circuit.
  • the power amplifier circuit may adopt any one shown in FIG. 1 to FIG. 4.
  • the sub-array module in the sub-array beamforming system can be used in a fixed sub-array structure, a phase-shift sub-array structure, or a phase-shift fixed sub-array structure.
  • the technical solution of the sub-array beamforming system shown in FIG. 1 will be described in detail below by taking the transmission channel 11 and the power amplifier sub-circuit 21 as examples.
  • FIG. 5 is a schematic structural diagram of Embodiment 1 of a sub-array beamforming system of the present application.
  • the baseband precoding module 131 of the system the output end of the baseband precoding module 131 and the transmission channels 11, ..., and 1n
  • the input terminal of the signal pre-processing module is connected, which realizes digital precoding processing of the information stream.
  • the sub-array module of the transmission channel 11 further includes at least one phase shifter 1211, ..., and 121m.
  • the output terminal of the phase shifter 1211 is connected to the power amplifier 911, and the output terminal of the phase shifter 121m is connected to the power amplifier 91m.
  • the sub-array beamforming system uses a sub-array module with a phase-shift sub-array structure, each transmission channel contains a sub-array module, each sub-array module contains a multi-channel antenna array module, and one transmission channel corresponds to a power amplifier sub-circuit ,
  • An antenna array module in the sub-array module in the transmission channel corresponds to a power amplifier, and the power amplifier units corresponding to the sub-array modules in different transmission channels use different power modulation modules and different envelope signal generation circuits to achieve the
  • the power amplifier unit generates a separate envelope signal, and the power amplifiers corresponding to all the antenna array modules in the sub-array module of the same transmission channel use the same power modulation module and the same envelope signal generation circuit.
  • the envelope signals of each transmission channel are processed differently, so that the envelope tracking power amplifier works in different states to achieve different effects, and the power amplifier efficiency of the sub-array beamforming system is improved, and there is no need to change the system during the entire design process.
  • the sub-array module of the transmission channel 11 further includes a phase shifter 121, and an output end of the phase shifter 121 is connected to a power amplifier 911 , ... and 91m.
  • the sub-array beamforming system uses a sub-array module with a fixed phase-shift sub-array structure.
  • Each transmission channel contains a sub-array module, and each sub-array module contains a multi-channel antenna array module, and one transmission channel corresponds to a power amplifier Circuit, one antenna array module in the sub-array module in the transmission channel corresponds to one power amplifier, and the power amplifier units corresponding to the sub-array modules in different transmission channels use different power modulation modules and different envelope signal generation circuits to realize each transmission channel
  • the power amplifier unit generates a separate envelope signal, and the power amplifiers corresponding to all antenna array modules in the sub-array module of the same transmission channel use the same power modulation module and the same envelope signal generation circuit.
  • the envelope signals of each transmission channel are processed differently, so that the envelope tracking power amplifier works in different states to achieve different effects, and the power amplifier efficiency of the sub-array beamforming system is improved, and the system does not need to be changed during the entire design process.
  • the hardware structure realizes the greatest degree of compatibility with existing technologies.
  • the power amplifier circuit in the sub-array beamforming system shown in FIG. 1, FIG. 5 and FIG. 6 may adopt the structure of the power amplifier circuit shown in any of FIG. 1 to FIG. 4, and this application does not make specifics limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

本申请提供一种用于子阵波束成形系统的功放电路和子阵波束成形系统。本申请子阵波束成形系统包括多个发射通道,发射通道包括依次连接的信号预处理模块、第一数模转换器、射频链路及子阵模块,子阵模块包括至少一个天线阵列模块;功放电路包括多个功放子电路,功放子电路包括依次连接的包络信号生成电路、电源调制模块及功放单元,功放单元包括至少一个功率放大器;多个功放子电路与多个发射通道一一对应;针对各个发射通道,对应功放子电路中的包络信号生成电路的输入端连接至发射通道中的连接点,对应功放子电路中的至少一个功率放大器分别设置于发射通道中的各天线阵列模块的输入端。本申请提高了子阵波束成形系统的功放效率。

Description

用于子阵波束成形系统的功放电路和子阵波束成形系统
本申请要求于2018年11月23日提交国家知识产权局、申请号为201811408462.1、申请名称为“用于子阵波束成形系统的功放电路和子阵波束成形系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤其涉及一种用于子阵波束成形系统的功放电路和子阵波束成形系统。
背景技术
为了满足第五代新无线电(5-Generation New Radio,简称:5G NR)数据速率和通信容量高速增长的需求,越来越多的研究表明子阵波束成形系统由于具有出色的性能、低功耗和低硬件复杂度等优点而被考虑用于克服5G NR中自由损耗大的问题。
在子阵波束成形系统中,为了满足系统有效全向辐射功率(Effective Isotropic Radiated Power,简称:EIRP)的要求,通常每一个子阵列天线配置一个功率放大器,因此在整个系统中包含很多功率放大器,而为了保证系统的可靠性和散热效率,高效率功放是必不可少的。传统的子阵波束成形系统中采用AB类功放,为了保证系统的高线性度要求,功放必须在深功率回退区工作,但是AB类功放在功率回退区内效率非常低。
发明内容
本申请提供一种用于子阵波束成形系统的功放电路和子阵波束成形系统,以提高子阵波束成形系统的功放效率。
第一方面,本申请提供一种用于子阵波束成形系统的功放电路,子阵波束成形系统包括多个发射通道,发射通道包括依次连接的信号预处理模块、第一数模转换器、射频链路及子阵模块,子阵模块包括至少一个天线阵列模块;功放电路包括多个功放子电路,功放子电路包括依次连接的包络信号生成电路、电源调制模块及功放单元,功放单元包括至少一个功率放大器;多个功放子电路与多个发射通道一一对应;针对各个发射通道,对应功放子电路中的包络信号生成电路的输入端连接至发射通道中的连接点,连接点设置于信号预处理模块的输出端、第一数模转换器的输出端或者射频链路的输出端,对应功放子电路中的至少一个功率放大器分别设置于发射通道中的各天线阵列模块的输入端;其中,发射通道上的信号预处理模块对预编码后的基带信号进行预处理后传输至连接的第一数模转换器和对应功放子电路上的包络信号生成电路,第一数模转换器将预处理后的基带信号转换为模拟信号后传输至连接的射频链路,射频链路对模拟信号进行上变频、信号放大及滤波处理后生成射频调制信号并传输至至少一个天线阵列模块,包络信号生成电路根据预处理后的基带信号生成包络信号后传输至连接的电源调制模块,电源调制模块在包络信号的 控制下生成跟随包络信号动态变化的输出电压,并将输出电压传输至连接的至少一个功率放大器,功率放大器在输出电压的调制下对射频调制信号进行功率放大,天线阵列模块实现模拟波束成形、信号发射。
本申请中,子阵波束成形系统包括多个并列的发射通道,每一个发射通道包含一个子阵模块,每个子阵模块内包含多路天线阵列模块,一个发射通道对应一个功放子电路,发射通道中子阵模块内一个天线阵列模块对应一个功率放大器,不同发射通道的子阵模块对应的功放单元采用不同的电源调制模块和不同的包络信号生成电路,以实现每个发射通道的功放单元单独包络信号生成,而同一个发射通道的子阵模块内的所有天线阵列模块对应的功率放大器采用相同的电源调制模块和相同的包络信号生成电路,可以根据不同的实际需求,对各发射通道的包络信号进行不同的处理,使包络跟踪功放工作在不同的状态,达到不同的效果,提高了子阵波束成形系统的功放效率,而且整个设计过程中,不需要改动系统的硬件结构,实现最大程度的现有技术兼容。
在一种可能的实现方式中,包络信号生成电路包括依次连接的包络成形模块和第二数模转换器,包络成形模块的输入端与信号预处理模块的输出端连接,第二数模转换器的输出端与电源调制模块的输入端连接。
在一种可能的实现方式中,包络信号生成电路包括包络检波模块,包络检波模块的输入端连接至第一数模转换器的输出端或者射频链路的输出端,包络检波模块的输出端与电源调制模块的输入端连接。
在一种可能的实现方式中,包络信号生成电路还包括依次连接的包络成形模块和第二数模转换器,功放子电路还包括第一开关和第二开关,包络成形模块的输入端与信号预处理模块的输出端连接,第二数模转换器的输出端、包络检波模块的输出端及电源调制模块的输入端之间连接有第一开关,第一开关在第二数模转换器的输出端和包络检波模块的输出端之间切换;第一数模转换器的输出端、射频链路的输出端及包络检波模块的输入端之间连接有第二开关,第二开关在第一数模转换器的输出端和射频链路的输出端之间切换。
第二方面,本申请提供一种子阵波束成形系统,包括:多个发射通道和多个功放子电路,多个功放子电路与多个发射通道一一对应;发射通道包括依次连接的信号预处理模块、第一数模转换器、射频链路及子阵模块,子阵模块包括至少一个天线阵列模块;功放子电路包括依次连接的包络信号生成电路、电源调制模块及功放单元,功放单元包括至少一个功率放大器;针对各个发射通道,对应功放子电路中的包络信号生成电路的输入端连接至发射通道中的连接点,连接点设置于信号预处理模块的输出端、第一数模转换器的输出端或者射频链路的输出端,对应功放子电路中的至少一个功率放大器分别设置于发射通道中的各天线阵列模块的输入端;其中,发射通道上的信号预处理模块对预编码后的基带信号进行预处理后传输至连接的第一数模转换器和对应功放子电路上的包络信号生成电路,第一数模转换器将预处理后的基带信号转换为模拟信号后传输至连接的射频链路,射频链路对模拟信号进行上变频、信号放大及滤波处理后生成射频调制信号传输至至少一个天线阵列模块,包络信号生成电路根据预处理后的基带信号生成包络信号后传输至连接的电源调制模块,电源调制模块在包络信号的控制下生成跟随包络信号动态变化的输出电压,并将输出电压传输至连接的至少一个功率放大器,功率放大器在输出电压的调制下对射频调制信号进行功率放大,天线阵列模块实现模拟波束成形、信号发射。
本申请中,子阵波束成形系统可以采用相移子阵结构、固定子阵结构或者相移固定子阵结构的子阵模块,每一个发射通道包含一个子阵模块,每个子阵模块内包含多路天线阵列模块,一个发射通道对应一个功放子电路,发射通道中子阵模块内一个天线阵列模块对应一个功率放大器,不同发射通道的子阵模块对应的功放单元采用不同的电源调制模块和不同的包络信号生成电路,以实现每个发射通道的功放单元单独包络信号生成,而同一个发射通道的子阵模块内的所有天线阵列模块对应的功率放大器采用相同的电源调制模块和相同的包络信号生成电路,可以根据不同的实际需求,对各发射通道的包络信号进行不同的处理,使包络跟踪功放工作在不同的状态,达到不同的效果,提高了子阵波束成形系统的功放效率,而且整个设计过程中,不需要改动系统的硬件结构,实现最大程度的现有技术兼容。
在一种可能的实现方式中,包络信号生成电路包括依次连接的包络成形模块和第二数模转换器,包络成形模块的输入端与信号预处理模块的输出端连接,第二数模转换器的输出端与电源调制模块的输入端连接。
在一种可能的实现方式中,包络信号生成电路包括包络检波模块,包络检波模块的输入端连接至第一数模转换器的输出端或者射频链路的输出端,包络检波模块的输出端与电源调制模块的输入端连接。
在一种可能的实现方式中,包络信号生成电路还包括依次连接的包络成形模块和第二数模转换器,功放子电路还包括第一开关和第二开关,包络成形模块的输入端与信号预处理模块的输出端连接,第二数模转换器的输出端、包络检波模块的输出端及电源调制模块的输入端之间连接有第一开关,第一开关在第二数模转换器的输出端和包络检波模块的输出端之间切换;第一数模转换器的输出端、射频链路的输出端及包络检波模块的输入端之间连接有第二开关,第二开关在第一数模转换器的输出端和射频链路的输出端之间切换。
在一种可能的实现方式中,子阵模块还包括至少一个移相器,一个移相器的输出端连接对应功放子电路中的一个功率放大器。
在一种可能的实现方式中,子阵模块还包括一个移相器,移相器的输出端连接对应功放子电路中的至少一个功率放大器。
在一种可能的实现方式中,还包括:基带预编码模块,基带预编码模块的输出端与各个发射通道上的信号预处理模块的输入端连接。
附图说明
图1为本申请用于子阵波束成形系统的功放电路实施例一的结构示意图;
图2为本申请用于子阵波束成形系统的功放电路实施例二的结构示意图;
图3为本申请用于子阵波束成形系统的功放电路实施例三的结构示意图;
图4为本申请用于子阵波束成形系统的功放电路实施例四的结构示意图;
图5为本申请子阵波束成形系统实施例一的结构示意图;
图6为本申请子阵波束成形系统实施例二的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申 请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1为本申请用于子阵波束成形系统的功放电路实施例一的结构示意图,如图1所示,子阵波束成形系统包括多个发射通道(11、……和1n),功放电路包括多个功放子电路(21、……和2n),每个发射通道对应设置一条功放子电路(即发射通道11和功放子电路21对应,……,发射通道1n和功放子电路2n对应),功放子电路用于对与其对应的发射通道进行功率放大处理。
示例性的,发射通道11包括依次连接的信号预处理模块31、第一数模转换器(Digital Analog Converter,简称:DAC)41、射频链路51及子阵模块,子阵模块包括至少一个天线阵列模块(611、……和61m)。功放子电路21包括依次连接的包络信号生成电路71、电源调制模块81及功放单元,功放单元包括至少一个功率放大器(911、……和91m)。每个天线阵列模块对应设置一个功率放大器(即天线阵列模块611和功率放大器911对应,……,天线阵列模块61m和功率放大器91m对应)。包络信号生成电路71的输入端连接至信号预处理模块31的输出端,功率放大器911设置于天线阵列模块611的输入端,……,功率放大器91m设置于天线阵列模块61m的输入端。可选的,包络信号生成电路71的输入端还可以连接至第一数模转换器41的输出端或者射频链路51的输出端。发射通道11上的信号预处理模块31对预编码后的基带信号进行预处理,其可以采用削峰(Crest Factor Reduction,简称:CFR),数字预失真(Digital pre-Distortion,简称:DPD)、时间对齐等算法实现,信号预处理模块31将预处理后的基带信号传输至连接的第一DAC 41和对应功放子电路21上的包络信号生成电路71。第一DAC 41将预处理后的基带信号转换为模拟信号后传输至连接的射频链路51。射频链路51对模拟信号进行上变频、信号放大及滤波处理后生成射频调制信号传输至天线阵列模块611、……和61m。包络信号生成电路71可以实现发射通道11上子阵模块中的所有天线阵列模块(611、……和61m)共用的包络信号的产生,包络信号生成电路71根据预处理后的基带信号生成包络信号后传输至连接的电源调制模块81。电源调制模块81实现功放单元的供电电压的包络跟随,在包络信号的控制下生成跟随包络信号动态变化的输出电压,并将动态变化的输出电压传输至连接的功率放大器911、……和91m,即其漏极(或集电极)作为漏极(或集电极)电压。功率放大器911在动态变化的输出电压(即漏极(或集电极)电压)的调制下对输送给连接的天线阵列模块611的射频调制信号进行放大处理,……,功率放大器91m在动态变化的输出电压(即漏极(或集电极)电压)的调制下对输送给连接的天线阵列模块61m的射频调制信号进行放大处理。天线阵列模块611、……和61m实现模拟波束成形、信号发射。本申请相较于基于恒定电压供电的功放技术,所有功率放大器都工作在包络跟踪模式下,因此极大提升了系统功放的平均效率。
其他发射通道的结构与发射通道11的结构类似,此处不再赘述。本申请中不同发射通道对应的包络信号生成电路可以根据系统的要求选择不同的包络成形算法,继而各发射通道可以采用不全相同的包络信号来控制电源调制模块生成跟随包络信号动态变化的输出电压,实现不同发射通道上的不同功率放大,从而达到性能的最优化。
本申请中,子阵波束成形系统包括多个并列的发射通道,每一个发射通道包含一个子 阵模块,每个子阵模块内包含多路天线阵列模块,一个发射通道对应一个功放子电路,发射通道中子阵模块内一个天线阵列模块对应一个功率放大器,不同发射通道的子阵模块对应的功放单元采用不同的电源调制模块和不同的包络信号生成电路,以实现每个发射通道的功放单元单独包络信号生成,而同一个发射通道的子阵模块内的所有天线阵列模块对应的功率放大器采用相同的电源调制模块和相同的包络信号生成电路,可以根据不同的实际需求,对各发射通道的包络信号进行不同的处理,使包络跟踪功放工作在不同的状态,达到不同的效果,提高了子阵波束成形系统的功放效率,而且整个设计过程中,不需要改动系统的硬件结构,实现最大程度的现有技术兼容。
以下以功放子电路21为例,对图1所示用于子阵波束成形系统的功放电路的技术方案进行详细说明。
图2为本申请用于子阵波束成形系统的功放电路实施例二的结构示意图,如图2所示,包络信号生成电路包括依次连接的包络成形模块711和第二DAC 712,包络成形模块711的输入端与信号预处理模块31的输出端连接,第二DAC 712的输出端与电源调制模块81的输入端连接。
本申请中,包络成形模块711可以在数字域内实现每一个发射通道上子阵模块共用包络信号的产生,不同发射通道对应的包络信号生成电路可以根据系统的要求选择不同的包络成形算法,从而达到性能的最优化,第二DAC 712将数字包络信号转换为模拟包络信号。信号预处理模块31通常采用CFR,DPD等算法对基带信号进行预处理,然后再结合包络成形模块711中的包络成形算法,实现数字包络信号的产生,然后由第二DAC 712转换成模拟包络信号。本申请可以通过在基带采用时间对齐算法,实现包络信号和发射通道上的射频信号的时间对齐,从而在数字域,一方面省去了延迟线和模拟包络检波,另一方面降低了包络调制器的设计要求,将大部分包络信号处理转移到数字基带中,具有更大的灵活性。
图3为本申请用于子阵波束成形系统的功放电路实施例三的结构示意图,如图3所示,包络信号生成电路包括包络检波模块713,包络检波模块713的输入端可以连接至第一DAC 41的输出端,可选的,包络检波模块713的输入端还可以连接至射频链路51的输出端,包络检波模块713的输出端与电源调制模块81的输入端连接。
本申请中,由于在发射通道上的任何位置都有包络信号,因此可以在发射通道的不同位置设置包络检波模块713,包络检波模块713直接产生模拟包络信号,其容易实现,无需额外的基带算法和DAC,可以直接供电源调制模块使用。
图4为本申请用于子阵波束成形系统的功放电路实施例四的结构示意图,如图4所示,包络信号生成电路是图2和图3所示包络信号生成电路的结合,其包括包络成形模块711、第二DAC 712和包络检波模块713,功放子电路21还包括第一开关101和第二开关111,包络成形模块711的输入端与信号预处理模块31的输出端连接,第二DAC 712的输出端、包络检波模块713的输出端及电源调制模块81的输入端之间连接有第一开关101,第一开关101在第二DAC 712的输出端和包络检波模块713的输出端之间切换;第一DAC 41的输出端、射频链路51的输出端及包络检波模块713的输入端之间连接有第二开关111,第二开关111在第一DAC 41的输出端和射频链路51的输出端之间切换。
本申请中,如果要如图2所示的产生数字包络信号,则通过第一开关101连通第二 DAC 712的输出端和电源调制模块81的输入端,如果要如图3所示的产生模拟包络信号,则通过第一开关101连通包络检波模块713的输出端和电源调制模块81的输入端,通过第二开关111在第一DAC 41的输出端和射频链路51的输出端之间切换。借由第一开关101和第二开关111可以实现数字域和模拟域包络信号的切换,还可以实现发射通道上不同位置的包络检波,方便且灵活。
在一种可能的实现方式中,本申请提供一种子阵波束成形系统,该系统的结构可以如图1所示,其包括功放电路,该功放电路可以采用图1-图4任一所示的功放电路结构。子阵波束成形系统中的子阵模块可以采用于固定子阵结构、相移子阵结构或相移固定子阵结构等。以下以发射通道11和功放子电路21为例,对图1所示子阵波束成形系统的技术方案进行详细说明。
图5为本申请子阵波束成形系统实施例一的结构示意图,如图5所示,该系统基带预编码模块131,该基带预编码模块131的输出端与发射通道11、……和1n上的信号预处理模块的输入端连接,其实现对信息流进行数字预编码处理。发射通道11的子阵模块还包括至少一个移相器1211、……和121m,移相器1211的输出端连接功率放大器911,……,移相器121m的输出端连接功率放大器91m。
本申请中,子阵波束成形系统采用相移子阵结构的子阵模块,每一个发射通道包含一个子阵模块,每个子阵模块内包含多路天线阵列模块,一个发射通道对应一个功放子电路,发射通道中子阵模块内一个天线阵列模块对应一个功率放大器,不同发射通道的子阵模块对应的功放单元采用不同的电源调制模块和不同的包络信号生成电路,以实现每个发射通道的功放单元单独包络信号生成,而同一个发射通道的子阵模块内的所有天线阵列模块对应的功率放大器采用相同的电源调制模块和相同的包络信号生成电路,可以根据不同的实际需求,对各发射通道的包络信号进行不同的处理,使包络跟踪功放工作在不同的状态,达到不同的效果,提高了子阵波束成形系统的功放效率,而且整个设计过程中,不需要改动系统的硬件结构,实现最大程度的现有技术兼容。
图6为本申请子阵波束成形系统实施例二的结构示意图,如图6所示,发射通道11的子阵模块还包括一个移相器121,该移相器121的输出端连接功率放大器911,……和91m。
本申请中,子阵波束成形系统采用相移固定子阵结构的子阵模块,每一个发射通道包含一个子阵模块,每个子阵模块内包含多路天线阵列模块,一个发射通道对应一个功放子电路,发射通道中子阵模块内一个天线阵列模块对应一个功率放大器,不同发射通道的子阵模块对应的功放单元采用不同的电源调制模块和不同的包络信号生成电路,以实现每个发射通道的功放单元单独包络信号生成,而同一个发射通道的子阵模块内的所有天线阵列模块对应的功率放大器采用相同的电源调制模块和相同的包络信号生成电路,可以根据不同的实际需求,对各发射通道的包络信号进行不同的处理,使包络跟踪功放工作在不同的状态,达到不同的效果,提高了子阵波束成形系统的功放效率,而且整个设计过程中,不需要改动系统的硬件结构,实现最大程度的现有技术兼容。
需要说明的是,图1、图5和图6所示的子阵波束成形系统中的功放电路可以采用图1-图4中任一所示的功放电路的结构,本申请对此不做具体限定。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管 参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (11)

  1. 一种用于子阵波束成形系统的功放电路,其特征在于,所述子阵波束成形系统包括多个发射通道,所述发射通道包括依次连接的信号预处理模块、第一数模转换器、射频链路及子阵模块,所述子阵模块包括至少一个天线阵列模块;
    所述功放电路包括多个功放子电路,所述功放子电路包括依次连接的包络信号生成电路、电源调制模块及功放单元,所述功放单元包括至少一个功率放大器;
    所述多个功放子电路与所述多个发射通道一一对应;针对各个所述发射通道,对应功放子电路中的所述包络信号生成电路的输入端连接至所述发射通道中的连接点,所述连接点设置于所述信号预处理模块的输出端、所述第一数模转换器的输出端或者所述射频链路的输出端,对应功放子电路中的所述至少一个功率放大器分别设置于所述发射通道中的各天线阵列模块的输入端;其中,
    发射通道上的信号预处理模块对预编码后的基带信号进行预处理后传输至连接的第一数模转换器和对应功放子电路上的包络信号生成电路,所述第一数模转换器将预处理后的基带信号转换为模拟信号后传输至连接的射频链路,所述射频链路对所述模拟信号进行上变频、信号放大及滤波处理后生成射频调制信号传输至所述至少一个天线阵列模块,所述包络信号生成电路根据预处理后的基带信号生成包络信号后传输至连接的电源调制模块,所述电源调制模块在所述包络信号的控制下生成跟随所述包络信号动态变化的输出电压,并将所述输出电压传输至连接的至少一个功率放大器,所述功率放大器在所述输出电压的调制下对所述射频调制信号进行功率放大,所述天线阵列模块实现模拟波束成形、信号发射。
  2. 根据权利要求1所述的功放电路,其特征在于,所述包络信号生成电路包括依次连接的包络成形模块和第二数模转换器,所述包络成形模块的输入端与所述信号预处理模块的输出端连接,所述第二数模转换器的输出端与所述电源调制模块的输入端连接。
  3. 根据权利要求1所述的功放电路,其特征在于,所述包络信号生成电路包括包络检波模块,所述包络检波模块的输入端连接至所述第一数模转换器的输出端或者所述射频链路的输出端,所述包络检波模块的输出端与所述电源调制模块的输入端连接。
  4. 根据权利要求3所述的功放电路,其特征在于,所述包络信号生成电路还包括依次连接的包络成形模块和第二数模转换器,所述功放子电路还包括第一开关和第二开关,所述包络成形模块的输入端与所述信号预处理模块的输出端连接,所述第二数模转换器的输出端、所述包络检波模块的输出端及所述电源调制模块的输入端之间连接有所述第一开关,所述第一开关在所述第二数模转换器的输出端和所述包络检波模块的输出端之间切换;所述第一数模转换器的输出端、所述射频链路的输出端及所述包络检波模块的输入端之间连接有所述第二开关,所述第二开关在所述第一数模转换器的输出端和所述射频链路的输出端之间切换。
  5. 一种子阵波束成形系统,其特征在于,包括:多个发射通道和多个功放子电路,所述多个功放子电路与所述多个发射通道一一对应;所述发射通道包括依次连接的信号预处理模块、第一数模转换器、射频链路及子阵模块,所述子阵模块包括至少一个天线阵列 模块;所述功放子电路包括依次连接的包络信号生成电路、电源调制模块及功放单元,所述功放单元包括至少一个功率放大器;
    针对各个所述发射通道,对应功放子电路中的所述包络信号生成电路的输入端连接至所述发射通道中的连接点,所述连接点设置于所述信号预处理模块的输出端、所述第一数模转换器的输出端或者所述射频链路的输出端,对应功放子电路中的所述至少一个功率放大器分别设置于所述发射通道中的各天线阵列模块的输入端;其中,
    发射通道上的信号预处理模块对预编码后的基带信号进行预处理后传输至连接的第一数模转换器和对应功放子电路上的包络信号生成电路,所述第一数模转换器将预处理后的基带信号转换为模拟信号后传输至连接的射频链路,所述射频链路对所述模拟信号进行上变频、信号放大及滤波处理后生成射频调制信号传输至所述至少一个天线阵列模块,所述包络信号生成电路根据预处理后的基带信号生成包络信号后传输至连接的电源调制模块,所述电源调制模块在所述包络信号的控制下生成跟随所述包络信号动态变化的输出电压,并将所述输出电压传输至连接的至少一个功率放大器,所述功率放大器在所述输出电压的调制下对所述射频调制信号进行功率放大,所述天线阵列模块实现模拟波束成形、信号发射。
  6. 根据权利要求5所述的系统,其特征在于,所述包络信号生成电路包括依次连接的包络成形模块和第二数模转换器,所述包络成形模块的输入端与所述信号预处理模块的输出端连接,所述第二数模转换器的输出端与所述电源调制模块的输入端连接。
  7. 根据权利要求5所述的系统,其特征在于,所述包络信号生成电路包括包络检波模块,所述包络检波模块的输入端连接至所述第一数模转换器的输出端或者所述射频链路的输出端,所述包络检波模块的输出端与所述电源调制模块的输入端连接。
  8. 根据权利要求7所述的系统,其特征在于,所述包络信号生成电路还包括依次连接的包络成形模块和第二数模转换器,所述功放子电路还包括第一开关和第二开关,所述包络成形模块的输入端与所述信号预处理模块的输出端连接,所述第二数模转换器的输出端、所述包络检波模块的输出端及所述电源调制模块的输入端之间连接有所述第一开关,所述第一开关在所述第二数模转换器的输出端和所述包络检波模块的输出端之间切换;所述第一数模转换器的输出端、所述射频链路的输出端及所述包络检波模块的输入端之间连接有所述第二开关,所述第二开关在所述第一数模转换器的输出端和所述射频链路的输出端之间切换。
  9. 根据权利要求5-8中任一项所述的系统,其特征在于,所述子阵模块还包括至少一个移相器,一个所述移相器的输出端连接对应功放子电路中的一个所述功率放大器。
  10. 根据权利要求5-8中任一项所述的系统,其特征在于,所述子阵模块还包括一个移相器,所述移相器的输出端连接对应功放子电路中的所述至少一个功率放大器。
  11. 根据权利要求5-10中任一项所述的系统,其特征在于,还包括:基带预编码模块,所述基带预编码模块的输出端与各个所述发射通道上的信号预处理模块的输入端连接。
PCT/CN2019/119109 2018-11-23 2019-11-18 用于子阵波束成形系统的功放电路和子阵波束成形系统 WO2020103779A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19888060.1A EP3869704A4 (en) 2018-11-23 2019-11-18 POWER GAIN CIRCUIT FOR A LOWER ARRAY BEAM SHAPING SYSTEM AND LOWER ARRAY BEAM SHAPING SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811408462.1A CN111224700B (zh) 2018-11-23 2018-11-23 用于子阵波束成形系统的功放电路和子阵波束成形系统
CN201811408462.1 2018-11-23

Publications (1)

Publication Number Publication Date
WO2020103779A1 true WO2020103779A1 (zh) 2020-05-28

Family

ID=70773677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119109 WO2020103779A1 (zh) 2018-11-23 2019-11-18 用于子阵波束成形系统的功放电路和子阵波束成形系统

Country Status (3)

Country Link
EP (1) EP3869704A4 (zh)
CN (1) CN111224700B (zh)
WO (1) WO2020103779A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114844577A (zh) * 2022-05-05 2022-08-02 西安亨孚防务科技有限责任公司 一种宽频带多样式的信号模拟器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114726392A (zh) * 2021-01-04 2022-07-08 中国移动通信有限公司研究院 一种射频电路、电子设备及基站
CN115051538B (zh) * 2022-05-13 2024-04-26 中国电子科技集团公司第二十九研究所 一种分布式大功率固态发射系统
CN116112042B (zh) * 2023-02-08 2024-05-14 上海坤锐电子科技有限公司 解调电路、电子标签和电子标签系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247153A (zh) * 2008-03-13 2008-08-20 中兴通讯股份有限公司 一种提升功放效率的方法及其数字预失真宽带发信机
CN103166666A (zh) * 2011-12-16 2013-06-19 美国博通公司 具有 im2 抑制的无线电收发器
CN103907283A (zh) * 2011-06-24 2014-07-02 努吉拉有限公司 用于mimo的包络跟踪系统
WO2015168403A1 (en) * 2014-05-01 2015-11-05 Paragon Communications, Ltd. Method and apparatus for multiple-output partial envelope tracking
WO2017107063A1 (zh) * 2015-12-22 2017-06-29 华为技术有限公司 通信装置及无线通信设备
CN107241114A (zh) * 2016-03-23 2017-10-10 安华高科技通用Ip(新加坡)公司 无线通信装置
WO2017193199A1 (en) * 2016-05-11 2017-11-16 Huawei Technologies Canada Co., Ltd. Antenna sub-array beam modulation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356146B1 (en) * 1999-07-13 2002-03-12 Pmc-Sierra, Inc. Amplifier measurement and modeling processes for use in generating predistortion parameters
EP1197107A1 (en) * 1999-07-21 2002-04-17 Celletra Ltd. Scalable cellular communications system
US8265572B2 (en) * 2009-12-21 2012-09-11 Ubidyne, Inc. Multiple envelope tracking system for an active antenna array
US10027354B2 (en) * 2015-03-25 2018-07-17 Intel IP Corporation Phased array weighting for power efficiency improvement with high peak-to-average power ratio signals
KR102280480B1 (ko) * 2017-03-08 2021-07-22 삼성전자 주식회사 빔포밍을 지원하는 전자 장치 및 동작 방법
CN107566306B (zh) * 2017-08-29 2020-01-24 清华大学 面向波束成形系统的数字预失真结构及其控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247153A (zh) * 2008-03-13 2008-08-20 中兴通讯股份有限公司 一种提升功放效率的方法及其数字预失真宽带发信机
CN103907283A (zh) * 2011-06-24 2014-07-02 努吉拉有限公司 用于mimo的包络跟踪系统
CN103166666A (zh) * 2011-12-16 2013-06-19 美国博通公司 具有 im2 抑制的无线电收发器
WO2015168403A1 (en) * 2014-05-01 2015-11-05 Paragon Communications, Ltd. Method and apparatus for multiple-output partial envelope tracking
WO2017107063A1 (zh) * 2015-12-22 2017-06-29 华为技术有限公司 通信装置及无线通信设备
CN107241114A (zh) * 2016-03-23 2017-10-10 安华高科技通用Ip(新加坡)公司 无线通信装置
WO2017193199A1 (en) * 2016-05-11 2017-11-16 Huawei Technologies Canada Co., Ltd. Antenna sub-array beam modulation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3869704A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114844577A (zh) * 2022-05-05 2022-08-02 西安亨孚防务科技有限责任公司 一种宽频带多样式的信号模拟器
CN114844577B (zh) * 2022-05-05 2023-12-22 西安亨孚防务科技有限责任公司 一种宽频带多样式的信号模拟器

Also Published As

Publication number Publication date
CN111224700B (zh) 2022-04-12
EP3869704A1 (en) 2021-08-25
EP3869704A4 (en) 2021-12-08
CN111224700A (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
WO2020103779A1 (zh) 用于子阵波束成形系统的功放电路和子阵波束成形系统
US9768732B2 (en) Asymmetric multilevel backoff amplifier with radio-frequency splitter
US10432145B2 (en) Envelope tracking circuit
US5574967A (en) Waste energy control and management in power amplifiers
KR102197460B1 (ko) 극 위상 배열 송신기 및 이동 단말기
US8659353B2 (en) Asymmetric multilevel outphasing architecture for RF amplifiers
JP2019062580A (ja) Rf増幅器アーキテクチャおよび関連技術
US8971398B2 (en) System and method for generating a radio frequency pulse-width modulated signal
US20210399697A1 (en) Power amplification apparatus, beamforming system, transmitter, and base station
GB2210747A (en) Linear amplification of signals
KR101763970B1 (ko) 무선 통신을 위한 고효율의 원격으로 구성 가능한 원격 무선 헤드 유닛 시스템
US20210099134A1 (en) Multi-level envelope tracking systems with separate dc and ac paths
TW202116024A (zh) 使用混合波束成形並對數位預失真執行碼分回授的傳送器
WO2018188501A1 (zh) 一种数模转换器
CN108322413A (zh) 一种用于5g毫米波有源相控天线阵列的空口数字预失真实现方法及其数字预失真系统
US20220045649A1 (en) Signal processing method, apparatus, and system
US11901923B2 (en) Signal transmitter
EP2413520A1 (en) A method for transmission and amplification of signals, a transmitting device and a receiving device therefor
US7463905B1 (en) Cellular telephony mast cable reduction
Gäde et al. A novel single-RF outphasing MIMO architecture
Niknejad et al. Digital mm-wave silicon transmitters
EP4311106A1 (en) Digital power amplifier and communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019888060

Country of ref document: EP

Effective date: 20210520