WO2017104671A1 - Method for producing aqueous synthetic resin emulsion, method for producing reemulsifiable synthetic resin powder, method for producing polymer cement mortar, aqueous synthetic resin emulsion, and reemulsifiable synthetic resin powder - Google Patents

Method for producing aqueous synthetic resin emulsion, method for producing reemulsifiable synthetic resin powder, method for producing polymer cement mortar, aqueous synthetic resin emulsion, and reemulsifiable synthetic resin powder Download PDF

Info

Publication number
WO2017104671A1
WO2017104671A1 PCT/JP2016/087093 JP2016087093W WO2017104671A1 WO 2017104671 A1 WO2017104671 A1 WO 2017104671A1 JP 2016087093 W JP2016087093 W JP 2016087093W WO 2017104671 A1 WO2017104671 A1 WO 2017104671A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthetic resin
emulsion
polymerization
aqueous
producing
Prior art date
Application number
PCT/JP2016/087093
Other languages
French (fr)
Japanese (ja)
Inventor
直一 村瀬
一雄 相場
勝巳 枝沢
Original Assignee
ジャパンコーティングレジン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジャパンコーティングレジン株式会社 filed Critical ジャパンコーティングレジン株式会社
Priority to JP2017501044A priority Critical patent/JP6861147B2/en
Publication of WO2017104671A1 publication Critical patent/WO2017104671A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/30Emulsion polymerisation with the aid of emulsifying agents non-ionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene

Definitions

  • the present invention relates to a method for producing an aqueous synthetic resin emulsion, a method for producing a re-emulsifiable synthetic resin powder, a method for producing a polymer cement mortar, an aqueous synthetic resin emulsion and a re-emulsifiable synthetic resin powder.
  • Aqueous synthetic resin emulsion suitable for production of emulsifiable synthetic resin powder and suitable for mixing with cement to form polymer cement, re-emulsifiable synthetic resin powder obtained by pulverizing the same, production method thereof, and polymer The present invention relates to a method for producing cement mortar.
  • a general re-emulsifiable synthetic resin powder obtained by spray-drying an emulsion containing water is easier to handle and transport than an emulsion containing water, with no risk of freezing. It is used in various applications. For example, it is effectively used as mortar or concrete by mixing with cement to form polymer cement.
  • re-emulsifiable synthetic resin powder is a powder, it can be premixed, and can be pre-mixed with cement etc. at an optimal mixing ratio in advance, and immediately without mixing with cement at the construction site. Widely used because it can be used.
  • a polyvinyl alcohol resin [I] having a specific structure includes at least one monomer (A) of an acrylic monomer and a styrene monomer and a specific functional group-containing monomer (B).
  • A monomer
  • B styrene monomer
  • Patent Document 2 discloses a re-emulsifiable synthetic resin powder for polymer cement containing a re-emulsifiable synthetic resin powder (A) containing a synthetic resin having a specific glass transition temperature and inorganic fine particles (B) containing silicon.
  • a composition and a polymer cement mortar using the composition are disclosed, and the anti-blocking property of the re-emulsifiable synthetic resin powder and the strength, elongation, and fluidity after cement mixing are excellent in a good balance.
  • a composition and a polymer cement mortar using the composition are disclosed, and the anti-blocking property of the re-emulsifiable synthetic resin powder and the strength, elongation, and fluidity after cement mixing are excellent in a good balance.
  • Patent Document 1 and Patent Document 2 since the initial polymerization in which a part of the monomer component is previously polymerized is performed in the emulsion polymerization step, the average particle diameter of the resin particles becomes relatively small. There was a tendency for the viscosity of the resulting aqueous synthetic resin emulsion to increase. If the aqueous synthetic resin emulsion has a high viscosity, spray clogging tends to cause clogging of the spray, and uniform spray spraying is difficult, which makes stable production difficult.
  • re-emulsifiable synthetic resin powder obtained by pulverizing a high-viscosity aqueous synthetic resin emulsion tends to increase in viscosity even when re-dispersed in water.
  • the resulting polymer cement mortar has a high slurry viscosity, resulting in problems such as poor coating properties and poor coating appearance.
  • the performance bending strength, compressive strength, adhesion strength, etc.
  • the present invention has been made in view of the above circumstances, and since it has a high solid content concentration and a low viscosity, an aqueous synthetic resin emulsion capable of obtaining an emulsion powder excellent in workability after re-emulsification with high production efficiency. It is an object of the present invention to provide a method for producing a re-emulsifiable synthetic resin powder and a method for producing a polymer cement mortar.
  • the present inventors have used a large amount of hydrophobic monomer in a method for producing an aqueous synthetic resin emulsion in which a polymerization component is emulsion-polymerized in the presence of a polyvinyl alcohol-based resin.
  • a polymerization component is emulsion-polymerized in the presence of a polyvinyl alcohol-based resin.
  • an aqueous synthetic resin emulsion having a high solid content concentration and a low viscosity can be obtained.
  • the inventors have found that a re-emulsifiable synthetic resin powder can be efficiently produced, and completed the present invention.
  • emulsion polymerization it is preferable to perform initial polymerization in which a part of a polymerization component is preliminarily performed from the viewpoint of promoting reaction while growing particles and easily controlling reaction heat.
  • the initial polymerization is not carried out and the whole amount of the components is continuously added.
  • a fine “seed particle” is formed by polymerizing a part of the polymerization component, and the resin particle grows based on this, so that the particle diameter of the obtained resin particle is
  • the polymerization component is continuously added without performing the initial polymerization as described above, while the viscosity of the emulsion is increased relatively.
  • the gist of the present invention is a method for producing an aqueous synthetic resin emulsion in which a polymerization component is emulsion-polymerized in the presence of a polyvinyl alcohol-based resin, and the hydrophobic monomer has a solubility in water at 20 ° C. of 0.1% or less.
  • aqueous synthetic resin emulsion wherein the emulsion polymerization is carried out while continuously adding the entire amount of the polymerization component to an aqueous medium. is there.
  • the present invention also provides a method for producing a re-emulsifiable synthetic resin powder obtained by drying the aqueous synthetic resin emulsion, a method for producing a polymer cement mortar characterized by using these, and further an aqueous synthetic resin emulsion, It also relates to emulsifying synthetic resin powder.
  • an aqueous synthetic resin emulsion having a high solid content concentration and a low viscosity can be obtained.
  • the resin powder can be produced, and the resulting re-emulsifiable synthetic resin powder and the aqueous synthetic resin emulsion obtained by re-emulsifying the resin powder have good fluidity and workability when used as a cement mortar admixture.
  • a cement mortar application it is very useful as a modifying agent for repair mortars, base preparation coating materials, self-leveling materials, tile bonding mortars, and gypsum-based materials.
  • the method for producing an aqueous synthetic resin emulsion of the present invention comprises emulsion polymerization of a polymerization component (hereinafter, the polymerization component used in the present invention is referred to as “polymerization component [I]”) in the presence of a polyvinyl alcohol-based resin. Yes, the emulsion polymerization is carried out while continuously adding the entire amount of the polymerization component [I] to the aqueous medium.
  • a polymerization component hereinafter, the polymerization component used in the present invention is referred to as “polymerization component [I]
  • the emulsion polymerization is carried out while continuously adding the entire amount of the polymerization component [I] to the aqueous medium.
  • the polymerization component [I] for example, at least one monomer component of an acrylic monomer, a styrene monomer, and a vinyl ester monomer is preferably contained as a main component.
  • the main component means to occupy 50% by weight or more of the whole, and includes the case where the whole consists of only the main component.
  • acrylic monomer examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) ) Acrylate, cyclohexyl (meth) acrylate, lauryl (meth) acrylate, octyl (meth) acrylate, stearyl (meth) acrylate and other aliphatic (meth) acrylates, and phenoxy (meth) acrylate and other aromatic (meth) Acrylate, trifluoroethyl (meth) acrylate, and the like.
  • (meth) acrylate having an alkyl group having 1 to 18 carbon atoms, particularly 1 to 10 carbon atoms is preferable. Or 2 or more types can be used.
  • (meth) acrylate means acrylate or methacrylate.
  • styrene monomer examples include styrene and ⁇ -methylstyrene. These may be used alone or in combination of two or more.
  • vinyl ester monomers examples include linear or branched vinyl esters of monocarboxylic acids having 2 to 12 carbon atoms. Specific examples include vinyl formate, vinyl acetate, and vinyl propionate. , Vinyl valerate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl versatate, vinyl 2-ethylhexanoate and the like. These may be used alone or in combination of two or more.
  • a functional group-containing monomer such as a glycidyl group-containing monomer, an allyl group-containing monomer, a hydrolyzable silyl group-containing monomer, an acetoacetyl group-containing monomer, or two vinyl groups in the molecular structure.
  • a functional group-containing monomer such as a glycidyl group-containing monomer, an allyl group-containing monomer, a hydrolyzable silyl group-containing monomer, an acetoacetyl group-containing monomer, or two vinyl groups in the molecular structure.
  • glycidyl group-containing monomer examples include glycidyl (meth) acrylate, glycidyl (meth) allyl ether, 3,4-epoxycyclohexyl (meth) acrylate, and the like.
  • glycidyl (meth) acrylate is particularly preferable from the viewpoints of little variation in physical properties and improvement of the adhesive strength when wet.
  • allyl group-containing monomer examples include monomers having two or more allyl groups such as triallyloxyethylene, diallyl maleate, triallyl cyanurate, triallyl isocyanurate, tetraallyloxyethane, allyl glycidyl ether, and allyl acetate. Etc. Of these, allyl glycidyl ether is preferred from the viewpoint of adhesive strength when wet.
  • hydrolyzable silyl group-containing monomer examples include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, vinylmethyldimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, and ⁇ -methacryloxy.
  • examples thereof include propylmethyldimethoxysilane, ⁇ -acryloxypropyltrimethoxysilane, ⁇ -acryloxypropylmethyldimethoxysilane, ⁇ -methacryloxypropyltriethoxysilane, and ⁇ -methacryloxypropylmethyldiethoxysilane.
  • vinyltrimethoxysilane is preferable from the viewpoint of improving water resistance and improving the adhesive strength to the base or the old mortar surface.
  • acetoacetyl group-containing monomer examples include acetoacetate vinyl ester, acetoacetate allyl ester, diacetoacetate allyl ester, acetoacetoxyethyl (meth) acrylate, acetoacetoxyethyl crotonate, acetoacetoxypropyl (meth) acrylate, acetoacetoxy Examples thereof include propyl crotonate and 2-cyanoacetoacetoxyethyl (meth) acrylate. Of these, acetoacetoxyethyl (meth) acrylate is preferred from the viewpoints of particularly little variation in physical properties and, in addition, improvement in water resistance and improvement in adhesion strength to the base and old mortar surface.
  • Examples of the monomer having two or more vinyl groups in the molecular structure include divinylbenzene, diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, ethylene glycol di (meth) acrylate, 1,2-propylene glycol di ( (Meth) acrylate, 1,3-propylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, tri Examples include methylolpropane tri (meth) acrylate and allyl (meth) acrylate.
  • hydroxyl group-containing monomer examples include (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate.
  • 2-hydroxyethyl methacrylate is preferred from the viewpoint of protective colloidal action during emulsion polymerization and improved miscibility with cement mortar blends.
  • the polymerization component [I] is a hydrophobic monomer having a solubility in water at 20 ° C. of 0.1% or less (hereinafter simply referred to as “hydrophobic monomer”). )) As an essential component, and its content must be 30% by weight or more, preferably 40% by weight, based on the entire polymerization component [I]. Above, more preferably 50% by weight or more, particularly preferably 70% by weight or more. The upper limit is usually 100% by weight or less. If the content of the hydrophobic monomer is too small, the water-resistant compressive strength and water-resistant bending strength of the mortar are undesirably lowered.
  • hydrophobic monomer having a solubility in water of 20 ° C. of 0.1% or less include the following.
  • Acrylic monomers for example, n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, lauryl (meth) acrylate, Alkyl groups such as octyl (meth) acrylate and stearyl (meth) acrylate having 4 or more carbon atoms, preferably 6 to 18 (meth) acrylates, especially aliphatic (meth) acrylates, aromatics such as phenoxy acrylate (Meth) acrylate, trifluoroethyl methacrylate and the like can be mentioned.
  • Styrene monomers for example, styrene, ⁇ -methylstyrene and the
  • hydrophobic monomers aliphatic (meth) acrylate monomers and styrene monomers having an alkyl group having 4 or more carbon atoms are preferably used, and styrene, n-butyl (meth) acrylate, 2-ethylhexyl are particularly preferable. It is preferable to use (meth) acrylate.
  • the hydrophobic monomers can be used alone or in combination of two or more.
  • styrene is contained as the hydrophobic monomer, and the content ratio of styrene with respect to the whole hydrophobic monomer is preferably 80% by weight or less, particularly preferably 70% by weight or less, more preferably 60% by weight. It is as follows.
  • the lower limit of the styrene content is particularly preferably 30% by weight or more, and more preferably 40% by weight or more.
  • the styrene content is more than 80% by weight, there may be a problem that the weather resistance is deteriorated such as polymer deterioration or discoloration due to ultraviolet rays.
  • the styrene content ratio is 30% by weight, it is preferable from the viewpoint of superior water resistance.
  • the polyvinyl alcohol resin used in the present invention (hereinafter sometimes referred to as “PVA resin”) is used for the purpose of imparting dispersion stability of the pre-emulsion during polymerization and to the resulting aqueous synthetic resin emulsion.
  • PVA resin polyvinyl alcohol resin used in the present invention
  • the re-emulsifiable synthetic resin powder obtained by spray-drying the emulsion is used for the purpose of facilitating re-dispersion in water.
  • the average saponification degree of the PVA-based resin is preferably 70 mol% or more, particularly preferably 80 mol% or more, and further preferably 85 mol% or more.
  • the upper limit of the average saponification degree is preferably 99.9 mol%, particularly preferably 99.5 mol%, further preferably 99.0 mol%. If the average degree of saponification is too low, it is difficult for the polymerization to proceed stably, and even if the polymerization is completed, the storage stability of the emulsion tends to be lowered. If it is too high, the re-emulsifiable synthetic resin powder is re-emulsified. Tend to be difficult.
  • the average saponification degree can be obtained according to the saponification degree calculation method described in JIS K 6726.
  • the average degree of polymerization of the PVA resin is preferably 50 or more, particularly preferably 100 or more, and further preferably 200 or more.
  • the upper limit of the average degree of polymerization is preferably 3,000, particularly preferably 2,000, and more preferably 1,000. If the average degree of polymerization is too low, the protective colloid ability at the time of emulsion polymerization is insufficient and the polymerization tends not to proceed stably, and if it is too high, the reaction system becomes unstable due to thickening at the time of polymerization and dispersion. There is a tendency for stability to decrease.
  • the average degree of polymerization can be determined according to the method for calculating the average degree of polymerization described in JIS K 6726.
  • PVA or a modified PVA resin modified with various modified species can be used as the PVA resin, and the amount of modification is usually 20 mol% or less, preferably 15 mol% or less, more preferably. Is 10 mol% or less. In addition, as a lower limit, it is 0.01 mol%.
  • modified PVA resin examples include an anion modified PVA resin modified with an anionic group such as a carboxyl group, a sulfonic acid group, and a phosphoric acid group, and a cation modified with a cationic group such as a quaternary ammonium group.
  • Modified PVA resin, modified PVA resin modified with various functional groups such as acetoacetyl group, diacetone acrylamide group, mercapto group, silanol group, etc., and PVA system having 1,2-diol bond in the side chain Examples thereof include resins.
  • the use amount of the PVA-based resin is preferably 20 parts by weight or less, particularly preferably 10 parts by weight or less, and still more preferably 7 parts by weight with respect to 100 parts by weight of the polymerization component [I] described above. It is as follows.
  • the upper limit of the amount of PVA resin used is preferably 0.01 parts by weight, particularly preferably 0.1 parts by weight, and more preferably 0.5 parts by weight. If the amount of the PVA resin used is too small, the emulsifying power becomes insufficient during emulsion polymerization, the dispersion stability of the polymerization component tends to decrease, and the polymerization stability tends to decrease. The viscosity of the synthetic resin emulsion tends to increase and the stability tends to decrease.
  • the PVA resin is usually made into an aqueous solution using an aqueous medium, and this is used in the process of emulsion polymerization.
  • an aqueous medium include water or an alcoholic solvent mainly composed of water, preferably water.
  • the content ratio (solid content) of the PVA resin in the aqueous solution is preferably 5 to 30% by weight from the viewpoint of ease of handling.
  • aqueous medium examples include water and alcoholic solvents mainly composed of water, preferably water.
  • a pre-emulsion is prepared by previously emulsifying and dispersing the total amount of the polymerization component [I] in an aqueous medium in the presence of a PVA-based resin, and the total amount of the pre-emulsion is continuously contained in the aqueous medium. It is preferable to carry out emulsion polymerization while adding.
  • a method for preparing such a pre-emulsion for example, a method of dropping the polymerization component [I] while stirring an aqueous solution of a PVA resin can be mentioned.
  • a stirring device at that time a known dispersing machine such as a stirring mixer with a stirring blade, a static mixer, a bipro mixer, or a homogenizer can be used. Among these, stirring mixing with a stirring blade is preferable.
  • the emulsion polymerization while continuously adding the whole amount means that the emulsion polymerization is carried out while continuously adding the whole amount without performing the initial polymerization. This means an emulsification method different from the method of emulsion polymerization by dropping the remaining components after polymerization.
  • Examples of the continuous addition method include a method in which the polymerization component [I] is dropped into an aqueous medium using a dropping funnel or a rotary pump.
  • the dropping speed may be adjusted under conditions generally considered as continuous dropping, and may be appropriately adjusted in consideration of the reactivity of the polymerization component used, the amount of polymerization initiator used, the reaction temperature, etc.
  • the dropping interval is usually within 10 seconds, preferably within 5 seconds, and the amount of one dropping is usually 2% by weight or less, preferably 1% by weight or less of the total monomer amount.
  • the dropping interval and the amount of one dropping may be uniform or non-uniform.
  • Emulsion polymerization conditions can be appropriately selected according to the type of polymerization component, polymerization scale, etc., but the temperature conditions during the reaction are usually usually 40 ° C. or higher, particularly preferably 60 ° C. or higher. .
  • the upper limit of the temperature condition during the reaction is usually 90 ° C, particularly preferably 80 ° C.
  • stirrer at that time can be the same as that used for the preparation of the pre-emulsion, and stirring mixing with a stirring blade is particularly preferable.
  • a polymerization initiator is preferably used, and a polymerization regulator, an auxiliary emulsifier, a plasticizer, and the like can be used as necessary.
  • the polymerization initiator is not particularly limited as long as it can be used for ordinary emulsion polymerization.
  • examples thereof include inorganic peroxides such as potassium persulfate, sodium persulfate, and ammonium persulfate; organic peroxides, azo-based initiators, Examples thereof include peroxides such as hydrogen oxide and butyl peroxide; and redox polymerization initiators obtained by combining these with reducing agents such as acidic sodium sulfite and L-ascorbic acid. Two or more of these may be used in combination. In the present invention, among these, it is preferable to use an inorganic peroxide from the viewpoint of easy polymerization without adversely affecting the film physical properties and strength enhancement, and ammonium persulfate and potassium persulfate are particularly preferable.
  • a method of adding a polymerization initiator it is possible to use a method of adding in a lump at an initial stage or a method of adding in a divided manner with the progress of polymerization, etc.
  • the method of adding to a reaction can, the method of dripping continuously with a polymerization component, etc. can be used.
  • the amount of the polymerization initiator used varies depending on the type of polymerization component used and the polymerization conditions, but is usually 0.01 parts by weight or more, preferably 0.5 parts by weight or more, based on 100 parts by weight of the polymerization component [I] It is. Moreover, the upper limit of the usage-amount is 5 weight part normally, Preferably it is 3 weight part.
  • the polymerization regulator can be appropriately selected from known ones.
  • Examples of such a polymerization regulator include a chain transfer agent and a buffer.
  • chain transfer agent examples include alcohols such as methanol, ethanol, propanol and butanol; aldehydes such as acetaldehyde, propionaldehyde, n-butyraldehyde, furfural and benzaldehyde; and dodecyl mercaptan, lauryl mercaptan, normal mercaptan, thiol And mercaptans such as glycolic acid, octyl thioglycolate, and thioglycerol. These may be used alone or in combination of two or more.
  • alcohols such as methanol, ethanol, propanol and butanol
  • aldehydes such as acetaldehyde, propionaldehyde, n-butyraldehyde, furfural and benzaldehyde
  • dodecyl mercaptan lauryl mercaptan, normal mercaptan, thiol And mer
  • buffer examples include sodium acetate, ammonium acetate, dibasic sodium phosphate, and sodium citrate. These may be used alone or in combination of two or more.
  • the auxiliary emulsifier is not particularly limited as long as it can be usually used for emulsion polymerization.
  • anionic, cationic, and nonionic surfactants for example, anionic, cationic, and nonionic surfactants, water-soluble polymers having protective colloid ability other than PVA-based resins, And water-soluble oligomers.
  • the surfactant examples include anionic surfactants such as sodium lauryl sulfate and sodium dodecylbenzenesulfonate, and nonionic surfactants such as those having a pluronic structure and those having a polyoxyethylene structure. Agents.
  • the reactive surfactant which has a radically polymerizable unsaturated bond in a structure can also be used as a surfactant. These may be used alone or in combination of two or more.
  • the use of the above-mentioned surfactant has the effect of making the emulsion polymerization proceed smoothly, making it easy to control (effect as an emulsifier), and suppressing the generation of coarse particles and block-like substances generated during the polymerization.
  • these surfactants are used as emulsifiers, the graft rate tends to decrease.
  • the usage-amount is an auxiliary
  • water-soluble polymers having protective colloid ability other than PVA-based resins include hydroxyethyl cellulose, polyvinyl pyrrolidone, methyl cellulose and the like. These may be used alone or in combination of two or more. These are effective in that the viscosity is changed by changing the stability of the emulsion and the particle size of the emulsion. However, since the water resistance of the film may be lowered depending on the amount used, it is desirable to use a small amount when used.
  • the water-soluble oligomer for example, a polymer having a hydrophilic group such as a sulfonic acid group, a carboxyl group, a hydroxyl group, and an alkylene glycol group is preferable, and a polymer or copolymer having a degree of polymerization of about 10 to 500 is particularly preferable. It is given to.
  • Specific examples of the water-soluble oligomer include amide copolymers such as 2-methacrylamide-2-methylpropanesulfonic acid copolymer, sodium methacrylate-4-styrenesulfonate copolymer, styrene / maleic acid copolymer, and the like.
  • Examples include polymers, melamine sulfonic acid formaldehyde condensates, poly (meth) acrylates, and the like. Furthermore, specific examples include a monomer having a sulfonic acid group, a carboxyl group, a hydroxyl group, an alkylene glycol group or the like, a water-soluble oligomer obtained by copolymerizing a radical polymerizable reactive emulsifier in advance alone or with another monomer, and the like. It is done. These may be used alone or in combination of two or more.
  • an adipate plasticizer As the plasticizer, an adipate plasticizer, a phthalic acid plasticizer, a phosphoric acid plasticizer, or the like can be used.
  • the aqueous synthetic resin emulsion is produced by the production method of the present invention, that is, the method of emulsion polymerization in the presence of the PVA resin while continuously adding the entire amount of the polymerization component [I] to the aqueous medium. be able to.
  • the resulting aqueous synthetic resin emulsion is one in which synthetic resin particles are dispersed and stabilized in an aqueous medium by a PVA resin.
  • the aqueous synthetic resin emulsion obtained by emulsion polymerization is typically milky white, and the average particle size of the synthetic resin particles in the aqueous synthetic resin emulsion is 0.2 ⁇ m or more.
  • the thickness is preferably 0.3 ⁇ m or more.
  • the upper limit of the average particle diameter is preferably 2 ⁇ m, and particularly preferably 1.5 ⁇ m. If the average particle size of the synthetic resin particles is too large, the polymerization stability tends to decrease, and if it is too small, the viscosity of the aqueous synthetic resin emulsion tends to be too high.
  • the average particle diameter can be measured by a conventional method, for example, a laser analysis / scattering particle size distribution analyzer “LA-950S2” (manufactured by Horiba, Ltd.).
  • the glass transition temperature (Tg) of the synthetic resin particles in the aqueous synthetic resin emulsion obtained by the production method of the present invention is preferably ⁇ 40 ° C. or higher, particularly preferably ⁇ 30 ° C. or higher, and further preferably. Is ⁇ 20 ° C. or higher.
  • the upper limit of the glass transition temperature (Tg) is preferably 30 ° C, particularly preferably 20 ° C, and further preferably 10 ° C. If the glass transition temperature is too high, the effect of the resin as an adhesive cannot be exhibited sufficiently at low temperatures, and if it is too low, the compressive strength and the bending strength tend to decrease.
  • the glass transition temperature is calculated from the Fox equation represented by the following Equation 1.
  • the glass transition temperature at the time of setting it as the homopolymer of the monomer which comprises a synthetic resin is normally measured with a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the viscosity at 23 ° C. of the aqueous synthetic resin emulsion obtained by the production method of the present invention is preferably 100 mPa ⁇ s or more, particularly preferably 300 mPa ⁇ s or more, and further preferably 500 mPa ⁇ s or more.
  • the upper limit of the viscosity is preferably 5,000 mPa ⁇ s, particularly preferably 3,000 mPa ⁇ s, and further preferably 2,000 mPa ⁇ s. If the viscosity is too high or too low, the aqueous synthetic resin emulsion tends to be difficult to powder. The viscosity is measured with a B-type viscometer.
  • the solid content concentration of the aqueous synthetic resin emulsion obtained by the production method of the present invention is preferably 30% by weight or more, particularly preferably 35% by weight or more, and further preferably 40% by weight or more.
  • the upper limit of the solid content concentration is preferably 60% by weight, particularly preferably 55% by weight, and further preferably 50% by weight. If the solid content concentration is too low, the production efficiency when pulverizing the aqueous synthetic resin emulsion is lowered, and if it is too high, the aqueous synthetic resin emulsion tends to be difficult to pulverize.
  • additives may be further added to the aqueous synthetic resin emulsion after emulsion polymerization as necessary.
  • additives include organic pigments, inorganic pigments, water-soluble additives, pH adjusters, preservatives, and antioxidants.
  • the aqueous synthetic resin emulsion obtained by the production method of the present invention is used as it is, it is preferably adjusted to a solid content concentration of usually 40 to 60% by weight.
  • the re-emulsifiable synthetic resin powder has a function of emulsifying again by mixing with water, and can be effectively used for, for example, polymer cement.
  • Examples of the method for drying the aqueous synthetic resin emulsion include spray drying, freeze drying, and hot air drying after coagulation. Among these, spray drying is preferable from the viewpoint of production cost, energy saving, and continuous productivity.
  • the spraying method can be implemented by a disk type, nozzle type, or the like.
  • the heat source for spray drying include hot air and heated steam.
  • the conditions for spray drying can be appropriately selected according to the size and type of the spray dryer, the nonvolatile content of the synthetic resin emulsion, the viscosity, the flow rate, and the like.
  • the temperature for spray drying is usually preferably 80 ° C. or higher, more preferably 120 ° C. or higher. Further, the upper limit of the spray drying temperature is preferably 180 ° C, more preferably 160 ° C. If the drying temperature is too low, it takes time to dry and the productive efficiency tends to decrease. If it is too high, the resin itself tends to be altered by heat.
  • an aqueous synthetic resin emulsion is continuously supplied from a nozzle of a spray dryer, and the mist is dried with warm air to be powdered.
  • a water-soluble additive can be blended.
  • a water-soluble additive is mix
  • the blending amount is 2 to 50 parts by weight with respect to 100 parts by weight of the nonvolatile content of the aqueous synthetic resin emulsion before drying. If the amount is too small, there is a tendency that the re-emulsification property to water cannot be sufficiently improved. If the amount is too large, the water re-emulsification property to water is greatly improved, but the water resistance of the film is lowered and expected. There is a tendency that the physical properties to be exhibited cannot be exhibited.
  • water-soluble additive examples include PVA resins, hydroxyethyl celluloses, methyl celluloses, polyvinyl pyrrolidone, starches, dextrins, water-soluble alkyd resins, water-soluble amino resins, water-soluble acrylic resins, and water-soluble polycarboxylic acids.
  • water-soluble resins such as acid resins and water-soluble polyamide resins. These may be used alone or in combination of two or more. Among these, PVA-based resins are preferable.
  • the same PVA-based resins as those described above can be used, and a portion of unmodified PVA or a completely saponified product, a portion of various modified PVA or a completely saponified product, and a combination thereof. good.
  • PVA-based resins PVA having an average saponification degree of 85 mol% or more is preferable, and PVA having 87 mol% or more is particularly preferable. Moreover, as an upper limit of an average saponification degree, it is preferable that it is 99.5 mol%, and it is more preferable that it is 95 mol%. When the average saponification degree is too small, the water resistance of the resulting polymer cement mortar tends to be remarkably lowered, and when it is too large, the re-emulsification property to water tends to be lowered.
  • the average degree of polymerization is preferably 50 or more, more preferably 200 or more, and further preferably 300 or more. Further, the upper limit of the average degree of polymerization is preferably 3,000, more preferably 2,000, and still more preferably 600. If the average degree of polymerization is too small, the water resistance tends to decrease, and if it is too large, the re-emulsification property tends to decrease.
  • the re-emulsifiable synthetic resin powder of the present invention may further contain an anti-sticking agent, a water reducing agent, a dispersing agent, a mortar fluidization accelerator, a water repellent, an antioxidant, a rust inhibitor and the like.
  • the anti-sticking agent can be contained in the aqueous synthetic resin emulsion, mixed in the resin emulsion powder after spray drying, or sprayed from a nozzle different from the aqueous synthetic resin emulsion at the time of spray drying. .
  • the re-emulsifiable synthetic resin powder can be re-emulsified by adding the aqueous medium to obtain an aqueous synthetic resin emulsion.
  • the aqueous synthetic resin emulsion obtained by this re-emulsification can exhibit the same effects as the aqueous synthetic resin emulsion prior to the re-emulsifiable synthetic resin powder.
  • the re-emulsifiable synthetic resin powder thus obtained can be used as a polymer cement composition by blending with cement, and can be used as mortar or concrete by further blending water, sand or gravel.
  • water is added to the polymer cement composition, the re-emulsifiable synthetic resin powder is re-emulsified to regenerate the aqueous synthetic resin emulsion.
  • cement examples include ordinary Portland cement, alumina cement, early-strength Portland cement, ultra-early strong Portland cement, medium heat Portland cement, low heat Portland cement, sulfate-resistant Portland cement, blast furnace cement, fly ash cement, silica cement, and the like.
  • Portland cement is preferable from the viewpoint of workability.
  • the blending amount of the cement is preferably 3 parts by weight or more, more preferably 30 parts by weight or more with respect to 100 parts by weight of the re-emulsifiable synthetic resin powder.
  • the upper limit of the cement content is preferably 500 parts by weight, and more preferably 350 parts by weight.
  • the amount of water used as mortar or concrete is preferably 50% by weight or less, more preferably 30% by weight or less, based on the total amount of the polymer cement composition.
  • the amount of sand and gravel when used as mortar or concrete is preferably 30% by weight or more, more preferably 50% by weight or more based on the total amount of the polymer cement composition.
  • the upper limit of the amount of the above sand / gravel is preferably 300 parts by weight, and more preferably 150 parts by weight.
  • the polymer cement composition may include a cement water reducing agent or fluidizing agent (for example, lignin-based, naphthalene-based, melamine-based, carboxylic acid-based, etc.), shrinkage reducing agent (for example, glycol ether-based).
  • a cement water reducing agent or fluidizing agent for example, lignin-based, naphthalene-based, melamine-based, carboxylic acid-based, etc.
  • shrinkage reducing agent for example, glycol ether-based
  • anti-chilling agents eg, calcium chloride, etc.
  • waterproofing agents eg, stearic acid, etc.
  • rust inhibitors eg, phosphates, etc.
  • viscosity modifiers eg, methylcellulose, hydroxyethylcellulose, Polyvinyl alcohol, etc.
  • dispersants eg, polycarboxylic acid-based, inorganic phosphorus-based, etc.
  • antifoaming agents eg, silicon-based, mineral oil-based, etc.
  • preservatives, reinforcing agents eg, steel fibers, glass fibers, synthetic materials
  • Fiber, carbon fiber, etc. can be used alone or in combination of two or more.
  • the polymer cement mortar is usually used by adjusting the flow value to 170 ⁇ 5 mm in the test of JIS R 5201 according to the procedure of JIS A 6203.
  • the re-emulsifiable synthetic resin powder obtained by the production method of the present invention can be adjusted to a desired flow value by blending a small amount of water compared to the re-emulsifiable synthetic resin powder obtained by the conventional production method.
  • the re-emulsifiable synthetic resin powder obtained by the production method of the present invention is excellent in coatability because it can be adjusted to a desired flow value without adding an additive such as a water reducing agent. You can say that. In general, a large amount of water to be blended is not preferable because the curing rate is lowered or the strength of the resulting cured product is lowered.
  • the polymer cement composition thus obtained exhibits good fluidity and workability when mixed with cement mortar, and is excellent in adhesion to the old mortar surface and the resin coating surface. In addition, there is little variation in physical properties, and in addition, there are excellent effects such as improvement in adhesive strength.
  • These polymer cement compositions are used as cement mortar admixtures, such as repair mortars, base preparation coating materials, self-leveling materials, tile adhesive mortars, mortar sealers / primers, mortar curing agents, and gypsum-based materials. It is useful as an agent, and further useful for civil engineering and building materials, glass fiber sizing agents, flame retardants, and the like.
  • Example 1 [Preparation of pre-emulsion] A pre-emulsion was prepared in the same manner as in Example 1. [Production of aqueous synthetic resin emulsion] 52 parts of water and 1 part of sodium acetate were added to a separable flask equipped with a paddle type stirring blade, a reflux condenser, a dropping funnel and a thermometer, and the temperature in the flask was raised to 80 ° C. while stirring at 150 rpm.
  • Example 2 [Preparation of pre-emulsion] A pre-emulsion was prepared in the same manner as in Example 1. [Production of aqueous synthetic resin emulsion] 52 parts of water and 1 part of sodium acetate were added to a separable flask equipped with a paddle type stirring blade, a reflux condenser, a dropping funnel and a thermometer, and the temperature in the flask was raised to 80 ° C. while stirring at 150 rpm.
  • Example 3 [Preparation of pre-emulsion] A pre-emulsion was prepared in the same manner as in Example 1. [Production of aqueous synthetic resin emulsion] 52 parts of water and 1 part of sodium acetate were added to a separable flask equipped with a paddle type stirring blade, a reflux condenser, a dropping funnel and a thermometer, and the temperature in the flask was raised to 80 ° C. while stirring at 150 rpm.
  • Example 4 [Preparation of pre-emulsion] A pre-emulsion was prepared in the same manner as in Example 1. [Production of aqueous synthetic resin emulsion] 52 parts of water and 1 part of sodium acetate were added to a separable flask equipped with a paddle type stirring blade, a reflux condenser, a dropping funnel and a thermometer, and the temperature in the flask was raised to 80 ° C. while stirring at 150 rpm.
  • Example 1 Using the re-emulsifiable synthetic resin powder obtained in Example 1 and Comparative Example 1, the re-emulsification property and the fluidity of the polymer cement mortar were evaluated by the following methods.
  • the viscosity of the re-emulsified emulsion solution is 3,000 mPa.s. s or more and 5,000 mPa.s. Less than s x: The viscosity of the re-emulsified emulsion solution is 5,000 mPa.s. s or more
  • the synthetic resin emulsion of Example 1 obtained by the production method of the present invention has a low viscosity, and the emulsifiable synthetic resin powder obtained by drying the emulsion has excellent re-emulsification properties. It turns out that the fluidity
  • the synthetic resin emulsion of Comparative Example 1 obtained by a production method different from the production method of the present invention and the monomer polymerization method has a high viscosity
  • the re-emulsifiable synthetic resin powder obtained by drying the emulsion is The viscosity after emulsification was also high and inferior in re-emulsification.
  • the polymer cement mortar using the re-emulsifiable synthetic resin powder obtained by drying the synthetic resin emulsion obtained by the production method of Comparative Example 1 The amount of water equal to 1 cannot be adjusted to the specified flow value in JIS A 6203, and more water must be added to adjust the flow value to the specified flow value.
  • an aqueous synthetic resin emulsion having a high solid content and a low viscosity can be obtained. Therefore, an emulsion powder having excellent workability after re-emulsification can be obtained with high production efficiency.
  • the re-emulsifiable synthetic resin powder obtained by the production method of the re-emulsifiable synthetic resin powder of the present invention and the aqueous synthetic resin emulsion obtained by re-emulsifying this are good when used as a cement mortar admixture. It exhibits excellent fluidity and workability and is very useful as a modifier for cement mortar applications, such as for repair mortars, undercoating materials, self-leveling materials, tile adhesive mortars, and gypsum-based materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Provided is a method for producing an aqueous synthetic resin emulsion having a high solids fraction concentration and low viscosity with which it is possible to obtain a reemulsifiable synthetic resin powder having excellent workability after reemulsification. A method for producing an aqueous synthetic resin emulsion for emulsion polymerizing a polymerization component [1] in the presence of a polyvinyl alcohol resin, wherein the method for producing an aqueous synthetic resin emulsion contains a hydrophobic monomer having a solubility in 20°C water of 0.1% or less in a quantity of 30 wt% or more relative to the entire polymerization component [1] and conducts emulsion polymerization while continuously adding the total amount of polymerization component [1] in an aqueous medium.

Description

水性合成樹脂エマルジョンの製造方法、再乳化性合成樹脂粉末の製造方法、ポリマーセメントモルタルの製造方法、水性合成樹脂エマルジョン及び再乳化性合成樹脂粉末Method for producing aqueous synthetic resin emulsion, method for producing re-emulsifiable synthetic resin powder, method for producing polymer cement mortar, aqueous synthetic resin emulsion and re-emulsifiable synthetic resin powder
 本発明は、水性合成樹脂エマルジョンの製造方法、再乳化性合成樹脂粉末の製造方法、ポリマーセメントモルタルの製造方法、水性合成樹脂エマルジョン及び再乳化性合成樹脂粉末に関するものであり、更に詳しくは、再乳化性合成樹脂粉末の製造に好適であり、かつセメントと混和してポリマーセメントとするのに好適な水性合成樹脂エマルジョン、それを粉末化した再乳化性合成樹脂粉末及びそれらの製造方法、並びにポリマーセメントモルタルの製造方法に関するものである。 The present invention relates to a method for producing an aqueous synthetic resin emulsion, a method for producing a re-emulsifiable synthetic resin powder, a method for producing a polymer cement mortar, an aqueous synthetic resin emulsion and a re-emulsifiable synthetic resin powder. Aqueous synthetic resin emulsion suitable for production of emulsifiable synthetic resin powder and suitable for mixing with cement to form polymer cement, re-emulsifiable synthetic resin powder obtained by pulverizing the same, production method thereof, and polymer The present invention relates to a method for producing cement mortar.
 従来より、水を含んだエマルジョンを噴霧乾燥させて得られる一般的な再乳化性合成樹脂粉末は、水を含んでいるエマルジョンに比べて、凍結するおそれもなく取扱いや輸送が容易であることから、様々な用途で用いられており、例えば、セメントと混和してポリマーセメントとすることで、モルタルやコンクリートとして有効に使用されている。特に、再乳化性合成樹脂粉末は、粉末であるためプレミックスが可能であり、あらかじめ最適な混合比でセメント等と混合した商品とすることができ、施工現場でセメントと混和することなくすぐに使用できるため、広く用いられている。 Conventionally, a general re-emulsifiable synthetic resin powder obtained by spray-drying an emulsion containing water is easier to handle and transport than an emulsion containing water, with no risk of freezing. It is used in various applications. For example, it is effectively used as mortar or concrete by mixing with cement to form polymer cement. In particular, since re-emulsifiable synthetic resin powder is a powder, it can be premixed, and can be pre-mixed with cement etc. at an optimal mixing ratio in advance, and immediately without mixing with cement at the construction site. Widely used because it can be used.
 例えば、下記特許文献1には、特定構造を有するポリビニルアルコール系樹脂[I]により、アクリル系モノマー及びスチレン系モノマーの少なくとも1種のモノマー(A)と特定の官能基含有モノマー(B)とを共重合成分とする合成樹脂が分散安定化されてなる、セメントモルタル混和剤用水性合成樹脂エマルジョン、およびこのエマルジョンを乾燥してなるセメントモルタル混和剤用再乳化性水性合成樹脂エマルジョン粉末が開示されており、これらをセメントモルタル混和剤として使用した場合に、良好な流動性、作業性を示し、物性ばらつきが少なく、加えて接着強さなどが向上することが記載されている。
 また、下記特許文献2には、特定のガラス転移温度の合成樹脂を含む再乳化性合成樹脂粉末(A)と珪素を含有する無機微粒子(B)を含有するポリマーセメント用再乳化性合成樹脂粉末組成物、およびこの組成物を用いてなるポリマーセメントモルタルが開示されており、再乳化性合成樹脂粉末の耐ブロッキング性と、セメント混和後の強度・伸度・流動性とにバランスよく優れることが記載されている。
For example, in the following Patent Document 1, a polyvinyl alcohol resin [I] having a specific structure includes at least one monomer (A) of an acrylic monomer and a styrene monomer and a specific functional group-containing monomer (B). Disclosed are an aqueous synthetic resin emulsion for cement mortar admixture, in which a synthetic resin as a copolymer component is dispersed and stabilized, and a re-emulsifiable aqueous synthetic resin emulsion powder for cement mortar admixture obtained by drying the emulsion. In addition, it is described that when these are used as a cement mortar admixture, good fluidity and workability are exhibited, there is little variation in physical properties, and adhesion strength is improved.
Patent Document 2 listed below discloses a re-emulsifiable synthetic resin powder for polymer cement containing a re-emulsifiable synthetic resin powder (A) containing a synthetic resin having a specific glass transition temperature and inorganic fine particles (B) containing silicon. A composition and a polymer cement mortar using the composition are disclosed, and the anti-blocking property of the re-emulsifiable synthetic resin powder and the strength, elongation, and fluidity after cement mixing are excellent in a good balance. Are listed.
特開2009-35470号公報JP 2009-35470 A 特開2014-15386号公報JP 2014-15386 A
 しかしながら、特許文献1や特許文献2においては、乳化重合工程において、モノマー成分の一部を予め重合させる初期重合を行っているため、樹脂粒子の平均粒子径が比較的小さいものとなり、その結果、得られる水性合成樹脂エマルジョンの粘度が高くなる傾向があった。水性合成樹脂エマルジョンの粘度が高いと、噴霧乾燥による粉末化において、スプレーの目詰まりなどが起きやすく均一なスプレー噴霧ができないため、安定した生産が難しいという問題があった。一方、スプレー噴霧に好適なように水で希釈して粘度を下げるとスプレー噴霧された液滴の固形分濃度が下がるため、乾燥温度を上げるなどエネルギー効率が悪くなるという問題があった。 However, in Patent Document 1 and Patent Document 2, since the initial polymerization in which a part of the monomer component is previously polymerized is performed in the emulsion polymerization step, the average particle diameter of the resin particles becomes relatively small. There was a tendency for the viscosity of the resulting aqueous synthetic resin emulsion to increase. If the aqueous synthetic resin emulsion has a high viscosity, spray clogging tends to cause clogging of the spray, and uniform spray spraying is difficult, which makes stable production difficult. On the other hand, when the viscosity is lowered by diluting with water so as to be suitable for spraying, the solid content concentration of the sprayed droplets is lowered, so that there is a problem that energy efficiency is deteriorated such as raising the drying temperature.
 また、粘度の高い水性合成樹脂エマルジョンを粉末化して得られた再乳化性合成樹脂粉末は、水へ再分散させた際にも粘度が高くなる傾向にあり、ポリマーセメントに用いた場合に、得られるポリマーセメントモルタルのスラリー粘度が高くなり、塗工性が低下したり塗工外観が劣るなどの問題があった。なお、作業性を重視して、加水してモルタルの流動性を調整することも可能であるが、この場合、ポリマーセメントモルタルの性能(曲げ強度・圧縮強度・密着強度など)が不足する懸念があった。 In addition, re-emulsifiable synthetic resin powder obtained by pulverizing a high-viscosity aqueous synthetic resin emulsion tends to increase in viscosity even when re-dispersed in water. The resulting polymer cement mortar has a high slurry viscosity, resulting in problems such as poor coating properties and poor coating appearance. Although it is possible to adjust the fluidity of the mortar by adding water with emphasis on workability, there is a concern that the performance (bending strength, compressive strength, adhesion strength, etc.) of the polymer cement mortar will be insufficient. there were.
 本発明は、上記の事情に鑑みてなされたものであり、高固形分濃度かつ低粘度であるため、再乳化後の作業性に優れるエマルジョン粉末を生産効率がよく得ることができる水性合成樹脂エマルジョンの製造方法、及び再乳化性合成樹脂粉末の製造方法、並びにポリマーセメントモルタルの製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and since it has a high solid content concentration and a low viscosity, an aqueous synthetic resin emulsion capable of obtaining an emulsion powder excellent in workability after re-emulsification with high production efficiency. It is an object of the present invention to provide a method for producing a re-emulsifiable synthetic resin powder and a method for producing a polymer cement mortar.
 しかるに、本発明者がかかる事情に鑑み鋭意研究を重ねた結果、重合成分をポリビニルアルコール系樹脂の存在下で乳化重合する水性合成樹脂エマルジョンの製造方法において、多量の疎水性モノマーを用い、更に、初期重合を行なわず、水性媒体中に重合成分の全量を連続して添加しながら乳化重合することにより、固形分濃度が高く、かつ粘度が低い水性合成樹脂エマルジョンが得られ、これを用いることにより再乳化性合成樹脂粉末を効率よく製造できることを見出し、本発明を完成させた。 However, as a result of repeated earnest studies in view of such circumstances, the present inventors have used a large amount of hydrophobic monomer in a method for producing an aqueous synthetic resin emulsion in which a polymerization component is emulsion-polymerized in the presence of a polyvinyl alcohol-based resin. By carrying out emulsion polymerization while continuously adding the entire amount of the polymerization components to the aqueous medium without performing initial polymerization, an aqueous synthetic resin emulsion having a high solid content concentration and a low viscosity can be obtained. The inventors have found that a re-emulsifiable synthetic resin powder can be efficiently produced, and completed the present invention.
 一般的に、乳化重合においては、粒子を成長させながら反応を進め、反応熱を制御し易くする点からは、重合成分の一部を予め重合させる初期重合を行うことが好ましいものの、本発明においては、あえて初期重合を行わず、成分の全量を連続して添加するものである。
 初期重合を行なった場合では、重合成分の一部を重合することにより微細な「種粒子」が形成され、これをもとに樹脂粒子が成長していくため、得られる樹脂粒子の粒子径が比較的小さくなり、エマルジョンの粘度が上昇してしまうのに対して、本発明においては、上記の通り初期重合を行わず重合成分が連続して添加されることにより、生成する種粒子に比べて十分に大きい重合成分を含有する液滴(重合成分をプレ乳化してなるプレエマルジョンであることが好ましい)そのものが重合反応して樹脂粒子となるため、得られる樹脂粒子は比較的粒子径の大きなものとなり、エマルジョンの粘度が低くできるものと推察するものである。
In general, in emulsion polymerization, it is preferable to perform initial polymerization in which a part of a polymerization component is preliminarily performed from the viewpoint of promoting reaction while growing particles and easily controlling reaction heat. In this method, the initial polymerization is not carried out and the whole amount of the components is continuously added.
In the case of initial polymerization, a fine “seed particle” is formed by polymerizing a part of the polymerization component, and the resin particle grows based on this, so that the particle diameter of the obtained resin particle is In contrast with the seed particles produced in the present invention, the polymerization component is continuously added without performing the initial polymerization as described above, while the viscosity of the emulsion is increased relatively. Since droplets containing a sufficiently large polymerization component (preferably a pre-emulsion formed by pre-emulsifying the polymerization component) itself undergo a polymerization reaction to form resin particles, the resulting resin particles have a relatively large particle size. It is assumed that the viscosity of the emulsion can be lowered.
 すなわち、本発明の要旨は、重合成分をポリビニルアルコール系樹脂の存在下で乳化重合する水性合成樹脂エマルジョンの製造方法であって、20℃の水に対する溶解度が0.1%以下である疎水性モノマーを前記重合成分全体に対して30重量%以上含有し、水性媒体中に、前記重合成分の全量を連続して添加しながら乳化重合することを特徴とする水性合成樹脂エマルジョンの製造方法に関するものである。 That is, the gist of the present invention is a method for producing an aqueous synthetic resin emulsion in which a polymerization component is emulsion-polymerized in the presence of a polyvinyl alcohol-based resin, and the hydrophobic monomer has a solubility in water at 20 ° C. of 0.1% or less. In an aqueous synthetic resin emulsion, wherein the emulsion polymerization is carried out while continuously adding the entire amount of the polymerization component to an aqueous medium. is there.
 また、本発明は、上記水性合成樹脂エマルジョンを乾燥してなる再乳化性合成樹脂粉末の製造方法、及びこれらを用いることを特徴とするポリマーセメントモルタルの製造方法、更には水性合成樹脂エマルジョン、再乳化性合成樹脂粉末にも関するものである。 The present invention also provides a method for producing a re-emulsifiable synthetic resin powder obtained by drying the aqueous synthetic resin emulsion, a method for producing a polymer cement mortar characterized by using these, and further an aqueous synthetic resin emulsion, It also relates to emulsifying synthetic resin powder.
 本発明の水性合成樹脂エマルジョンの製造方法によれば、高固形分濃度かつ低粘度の水性合成樹脂エマルジョンを得ることができ、これを乾燥することにより、エネルギー的にも生産効率よく再乳化性合成樹脂粉末を製造することができ、得られた再乳化性合成樹脂粉末およびこれを再乳化して得られる水性合成樹脂エマルジョンは、セメントモルタル混和剤として使用した際に、良好な流動性、作業性を示し、セメントモルタル用途として、補修モルタル用、下地調整塗材用、セルフレベリング材、タイル接着モルタル、及び石膏系材料などの改質剤として非常に有用である。 According to the method for producing an aqueous synthetic resin emulsion of the present invention, an aqueous synthetic resin emulsion having a high solid content concentration and a low viscosity can be obtained. The resin powder can be produced, and the resulting re-emulsifiable synthetic resin powder and the aqueous synthetic resin emulsion obtained by re-emulsifying the resin powder have good fluidity and workability when used as a cement mortar admixture. As a cement mortar application, it is very useful as a modifying agent for repair mortars, base preparation coating materials, self-leveling materials, tile bonding mortars, and gypsum-based materials.
 以下、本発明の構成につき詳細に説明するが、これらは望ましい実施態様の一例を示すものであり、本発明はこれらの内容に特定されるものではない。 Hereinafter, the configuration of the present invention will be described in detail, but these show examples of desirable embodiments, and the present invention is not limited to these contents.
〔水性合成樹脂エマルジョンの製造方法〕
 本発明の水性合成樹脂エマルジョンの製造方法は、重合成分(以下、この発明で用いられる重合成分を「重合成分[I]」と称する。)をポリビニルアルコール系樹脂の存在下で乳化重合するものであり、水性媒体中に、重合成分[I]の全量を連続して添加しながら乳化重合することを特徴とするものである。
[Method for producing aqueous synthetic resin emulsion]
The method for producing an aqueous synthetic resin emulsion of the present invention comprises emulsion polymerization of a polymerization component (hereinafter, the polymerization component used in the present invention is referred to as “polymerization component [I]”) in the presence of a polyvinyl alcohol-based resin. Yes, the emulsion polymerization is carried out while continuously adding the entire amount of the polymerization component [I] to the aqueous medium.
 重合成分[I]としては、例えば、アクリル系モノマー、スチレン系モノマー、ビニルエステル系モノマーの少なくとも1種のモノマー成分を主成分として含有することが好ましい。本発明において、主成分とするとは全体の50重量%以上を占めることを意味し、全体が主成分のみからなる場合も含む意味である。 As the polymerization component [I], for example, at least one monomer component of an acrylic monomer, a styrene monomer, and a vinyl ester monomer is preferably contained as a main component. In the present invention, the main component means to occupy 50% by weight or more of the whole, and includes the case where the whole consists of only the main component.
 上記アクリル系モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、オクチル(メタ)アクリレート、ステアリル(メタ)アクリレート等の脂肪族系(メタ)アクリレートや、フェノキシ(メタ)アクリレート等の芳香族系(メタ)アクリレート、(メタ)アクリル酸トリフルオロエチル等が挙げられ、中でもアルキル基の炭素数が1~18、特には1~10の脂肪族系(メタ)アクリレートが好適であり、また、これらは1種または2種以上を用いることができる。
 なお、本発明において、(メタ)アクリレートとはアクリレートあるいはメタクリレートを意味するものである。
Examples of the acrylic monomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) ) Acrylate, cyclohexyl (meth) acrylate, lauryl (meth) acrylate, octyl (meth) acrylate, stearyl (meth) acrylate and other aliphatic (meth) acrylates, and phenoxy (meth) acrylate and other aromatic (meth) Acrylate, trifluoroethyl (meth) acrylate, and the like. Among them, an aliphatic (meth) acrylate having an alkyl group having 1 to 18 carbon atoms, particularly 1 to 10 carbon atoms is preferable. Or 2 or more types can be used.
In the present invention, (meth) acrylate means acrylate or methacrylate.
 上記スチレン系モノマーとしては、例えば、スチレン、α-メチルスチレン等が挙げられる。これらは単独で、もしくは2種以上併せて用いることができる。 Examples of the styrene monomer include styrene and α-methylstyrene. These may be used alone or in combination of two or more.
 上記ビニルエステル系モノマーとしては、例えば、直鎖状のまたは枝分かれした炭素原子数2~12のモノカルボン酸のビニルエステルが挙げられ、具体的には、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、バーサチック酸ビニル、2-エチルヘキサン酸ビニル等が挙げられる。これらは単独で、もしくは2種以上併せて用いることができる。 Examples of the vinyl ester monomers include linear or branched vinyl esters of monocarboxylic acids having 2 to 12 carbon atoms. Specific examples include vinyl formate, vinyl acetate, and vinyl propionate. , Vinyl valerate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl versatate, vinyl 2-ethylhexanoate and the like. These may be used alone or in combination of two or more.
 また、官能基含有モノマー等を含有していてもよく、例えば、グリシジル基含有モノマー、アリル基含有モノマー、加水分解性シリル基含有モノマー、アセトアセチル基含有モノマー、分子構造中にビニル基を2個以上有するモノマー、ヒドロキシル基含有モノマー等が挙げられる。 Further, it may contain a functional group-containing monomer, such as a glycidyl group-containing monomer, an allyl group-containing monomer, a hydrolyzable silyl group-containing monomer, an acetoacetyl group-containing monomer, or two vinyl groups in the molecular structure. The monomer which has the above, a hydroxyl-group containing monomer, etc. are mentioned.
 上記グリシジル基含有モノマーとしては、例えば、グリシジル(メタ)アクリレート、グリシジル(メタ)アリルエーテル、3,4-エポキシシクロヘキシル(メタ)アクリレート等が挙げられる。このうち、特に物性ばらつきの少なく、加えて湿潤時の接着強度が向上する等の観点から、グリシジル(メタ)アクリレートが好ましい。 Examples of the glycidyl group-containing monomer include glycidyl (meth) acrylate, glycidyl (meth) allyl ether, 3,4-epoxycyclohexyl (meth) acrylate, and the like. Among these, glycidyl (meth) acrylate is particularly preferable from the viewpoints of little variation in physical properties and improvement of the adhesive strength when wet.
 上記アリル基含有モノマーとしては、例えば、トリアリルオキシエチレン、マレイン酸ジアリル、トリアリルシアヌレート、トリアリルイソシアヌレート、テトラアリルオキシエタン等のアリル基を2個以上有するモノマー、アリルグリシジルエーテル、酢酸アリル等があげられる。このうち、湿潤時の接着強度の観点から、アリルグリシジルエーテルが好ましい。 Examples of the allyl group-containing monomer include monomers having two or more allyl groups such as triallyloxyethylene, diallyl maleate, triallyl cyanurate, triallyl isocyanurate, tetraallyloxyethane, allyl glycidyl ether, and allyl acetate. Etc. Of these, allyl glycidyl ether is preferred from the viewpoint of adhesive strength when wet.
 上記加水分解性シリル基含有モノマーとしては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、ビニルメチルジメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、γ-アクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン等が挙げられる。このうち、耐水性の向上や、下地や旧モルタル面への接着強度が向上する等の観点から、ビニルトリメトキシシランが好ましい。 Examples of the hydrolyzable silyl group-containing monomer include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, vinylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, and γ-methacryloxy. Examples thereof include propylmethyldimethoxysilane, γ-acryloxypropyltrimethoxysilane, γ-acryloxypropylmethyldimethoxysilane, γ-methacryloxypropyltriethoxysilane, and γ-methacryloxypropylmethyldiethoxysilane. Among these, vinyltrimethoxysilane is preferable from the viewpoint of improving water resistance and improving the adhesive strength to the base or the old mortar surface.
 上記アセトアセチル基含有モノマーとしては、例えば、アセト酢酸ビニルエステル、アセト酢酸アリルエステル、ジアセト酢酸アリルエステル、アセトアセトキシエチル(メタ)アクリレート、アセトアセトキシエチルクロトナート、アセトアセトキシプロピル(メタ)アクリレート、アセトアセトキシプロピルクロトナート、2-シアノアセトアセトキシエチル(メタ)アクリレート等が挙げられる。このうち、特に物性ばらつきの少なく、加えて耐水性の向上や、下地や旧モルタル面への接着強度が向上する等の観点から、アセトアセトキシエチル(メタ)アクリレートが好ましい。 Examples of the acetoacetyl group-containing monomer include acetoacetate vinyl ester, acetoacetate allyl ester, diacetoacetate allyl ester, acetoacetoxyethyl (meth) acrylate, acetoacetoxyethyl crotonate, acetoacetoxypropyl (meth) acrylate, acetoacetoxy Examples thereof include propyl crotonate and 2-cyanoacetoacetoxyethyl (meth) acrylate. Of these, acetoacetoxyethyl (meth) acrylate is preferred from the viewpoints of particularly little variation in physical properties and, in addition, improvement in water resistance and improvement in adhesion strength to the base and old mortar surface.
 上記分子構造中にビニル基を2個以上有するモノマーとしては、例えば、ジビニルベンゼン、ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート、エチレングリコールジ(メタ)アクリレート、1,2-プロピレングリコールジ(メタ)アクリレート、1,3-プロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、アリル(メタ)アクリレート等が挙げられる。 Examples of the monomer having two or more vinyl groups in the molecular structure include divinylbenzene, diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, ethylene glycol di (meth) acrylate, 1,2-propylene glycol di ( (Meth) acrylate, 1,3-propylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, tri Examples include methylolpropane tri (meth) acrylate and allyl (meth) acrylate.
 上記ヒドロキシル基含有モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の(メタ)アクリレート等が挙げられる。このうち、乳化重合時における保護コロイド的作用およびセメントモルタル配合物等との混和性改良の観点から、2-ヒドロキシエチルメタクリレートが好ましい。 Examples of the hydroxyl group-containing monomer include (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. Of these, 2-hydroxyethyl methacrylate is preferred from the viewpoint of protective colloidal action during emulsion polymerization and improved miscibility with cement mortar blends.
 本発明においては、耐水圧縮強度や耐水折り曲げ強度を向上させる観点から、重合成分[I]として、20℃の水に対する溶解度が0.1%以下である疎水性モノマー(以下、単に「疎水性モノマー」と記載することがある。)を必須成分として含有するものであり、その含有量が、重合成分[I]全体に対して30重量%以上であることが必要であり、好ましくは40重量%以上、更に好ましくは50重量%以上、特に好ましくは70重量%以上である。なお、上限は、通常、100重量%以下である。疎水性モノマーの含有量が少なすぎるとモルタルの耐水圧縮強度や耐水折り曲げ強度が低下し好ましくない。 In the present invention, from the viewpoint of improving the water-resistant compressive strength and water-resistant bending strength, the polymerization component [I] is a hydrophobic monomer having a solubility in water at 20 ° C. of 0.1% or less (hereinafter simply referred to as “hydrophobic monomer”). )) As an essential component, and its content must be 30% by weight or more, preferably 40% by weight, based on the entire polymerization component [I]. Above, more preferably 50% by weight or more, particularly preferably 70% by weight or more. The upper limit is usually 100% by weight or less. If the content of the hydrophobic monomer is too small, the water-resistant compressive strength and water-resistant bending strength of the mortar are undesirably lowered.
 上記20℃の水に対する溶解度が0.1%以下である疎水性モノマーとして具体的には以下のものがあげられる。
 アクリル系モノマー;例えば、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、オクチル(メタ)アクリレート、ステアリル(メタ)アクリレートなどのアルキル基の炭素数が4以上、好ましくは6~18の(メタ)アクリレート、特に脂肪族系(メタ)アクリレートや、フェノキシアクリレート等の芳香族系(メタ)アクリレート、メタクリル酸トリフルオロエチルなどが挙げられる。
 スチレン系モノマー;例えば、スチレン、α-メチルスチレンなどが挙げられる。
 ビニル系モノマー;例えば、ラウリル酸ビニル、ステアリン酸ビニル、バーサチック酸ビニルなどが挙げられる。
Specific examples of the hydrophobic monomer having a solubility in water of 20 ° C. of 0.1% or less include the following.
Acrylic monomers; for example, n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, lauryl (meth) acrylate, Alkyl groups such as octyl (meth) acrylate and stearyl (meth) acrylate having 4 or more carbon atoms, preferably 6 to 18 (meth) acrylates, especially aliphatic (meth) acrylates, aromatics such as phenoxy acrylate (Meth) acrylate, trifluoroethyl methacrylate and the like can be mentioned.
Styrene monomers; for example, styrene, α-methylstyrene and the like.
Vinyl monomers; for example, vinyl laurate, vinyl stearate, vinyl versatate and the like.
 上記疎水性モノマーの中でも、アルキル基の炭素数が4以上の脂肪族系(メタ)アクリレート系モノマー、スチレン系モノマーを用いることが好ましく、特にはスチレン、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレートを用いることが好ましい。
 上記疎水性モノマーは、1種または2種以上併用して用いることができる。
Among the hydrophobic monomers, aliphatic (meth) acrylate monomers and styrene monomers having an alkyl group having 4 or more carbon atoms are preferably used, and styrene, n-butyl (meth) acrylate, 2-ethylhexyl are particularly preferable. It is preferable to use (meth) acrylate.
The hydrophobic monomers can be used alone or in combination of two or more.
 本発明においては、特に、疎水性モノマーとしてスチレンを含有し、疎水性モノマー全体に対するスチレンの含有割合が80重量%以下であることが好ましく、特に好ましくは70重量%以下、更に好ましくは60重量%以下である。一方、スチレン含有量の下限は、30重量%以上が特に好ましく、40重量%以上が更に好ましい。
 スチレン含有割合が80重量%より多いと、紫外線によるポリマーの劣化や変色など、耐候性が低下するという問題点を生じる場合がある。一方、スチレン含有割合が、30重量%であると、耐水性により優れる点で好ましい。
In the present invention, in particular, styrene is contained as the hydrophobic monomer, and the content ratio of styrene with respect to the whole hydrophobic monomer is preferably 80% by weight or less, particularly preferably 70% by weight or less, more preferably 60% by weight. It is as follows. On the other hand, the lower limit of the styrene content is particularly preferably 30% by weight or more, and more preferably 40% by weight or more.
When the styrene content is more than 80% by weight, there may be a problem that the weather resistance is deteriorated such as polymer deterioration or discoloration due to ultraviolet rays. On the other hand, when the styrene content ratio is 30% by weight, it is preferable from the viewpoint of superior water resistance.
 本発明で用いられるポリビニルアルコール系樹脂(以下、「PVA系樹脂」と記載することがある。)は、重合中のプレエマルジョンの分散安定性を付与する目的、および、得られる水性合成樹脂エマルジョンに安定性を付与すると共に、該エマルジョンを噴霧乾燥されて得られる再乳化性合成樹脂粉末を水に再分散し易くする目的で用いるものである。 The polyvinyl alcohol resin used in the present invention (hereinafter sometimes referred to as “PVA resin”) is used for the purpose of imparting dispersion stability of the pre-emulsion during polymerization and to the resulting aqueous synthetic resin emulsion. In addition to imparting stability, the re-emulsifiable synthetic resin powder obtained by spray-drying the emulsion is used for the purpose of facilitating re-dispersion in water.
 PVA系樹脂の平均ケン化度としては、70モル%以上であることが好ましく、特に好ましくは80モル%以上、更に好ましくは85モル%以上である。一方、平均ケン化度の上限は、99.9モル%が好ましく、99.5モル%が特に好ましく、99.0モル%が更に好ましい。
 かかる平均ケン化度が低すぎると安定的に重合が進行しにくく、重合が完結したとしてもエマルジョンの保存安定性が低下してしまう傾向があり、高すぎると再乳化性合成樹脂粉末が再乳化し難くなる傾向がある。
The average saponification degree of the PVA-based resin is preferably 70 mol% or more, particularly preferably 80 mol% or more, and further preferably 85 mol% or more. On the other hand, the upper limit of the average saponification degree is preferably 99.9 mol%, particularly preferably 99.5 mol%, further preferably 99.0 mol%.
If the average degree of saponification is too low, it is difficult for the polymerization to proceed stably, and even if the polymerization is completed, the storage stability of the emulsion tends to be lowered. If it is too high, the re-emulsifiable synthetic resin powder is re-emulsified. Tend to be difficult.
 なお、平均ケン化度は、JIS K 6726に記載のケン化度の算出方法にしたがって求めることができる。 The average saponification degree can be obtained according to the saponification degree calculation method described in JIS K 6726.
 また、PVA系樹脂の平均重合度としては、50以上であることが好ましく、特に好ましくは100以上であり、更に好ましくは200以上である。一方、平均重合度の上限は、3,000が好ましく、2,000が特に好ましく、1,000が更に好ましい。
 かかる平均重合度が低すぎると、乳化重合時の保護コロイド能力が不充分となり重合が安定的に進行しにくい傾向があり、高すぎると、重合時に増粘して反応系が不安定になり分散安定性が低下する傾向がある。
In addition, the average degree of polymerization of the PVA resin is preferably 50 or more, particularly preferably 100 or more, and further preferably 200 or more. On the other hand, the upper limit of the average degree of polymerization is preferably 3,000, particularly preferably 2,000, and more preferably 1,000.
If the average degree of polymerization is too low, the protective colloid ability at the time of emulsion polymerization is insufficient and the polymerization tends not to proceed stably, and if it is too high, the reaction system becomes unstable due to thickening at the time of polymerization and dispersion. There is a tendency for stability to decrease.
 なお、平均重合度は、JIS K 6726に記載の平均重合度の算出方法にしたがって求めることができる。 The average degree of polymerization can be determined according to the method for calculating the average degree of polymerization described in JIS K 6726.
 本発明において、PVA系樹脂として、PVA、または、各種変性種によって変性された変性PVA系樹脂を用いることができ、その変性量は、通常20モル%以下、好ましくは15モル%以下、更に好ましくは10モル%以下である。なお、下限値としては0.01モル%である。 In the present invention, PVA or a modified PVA resin modified with various modified species can be used as the PVA resin, and the amount of modification is usually 20 mol% or less, preferably 15 mol% or less, more preferably. Is 10 mol% or less. In addition, as a lower limit, it is 0.01 mol%.
 変性PVA系樹脂としては、例えば、カルボキシル基、スルホン酸基、リン酸基をはじめとするアニオン性基で変性されたアニオン変性PVA系樹脂、四級アンモニウム基等のカチオン性基で変性されたカチオン変性PVA系樹脂、アセトアセチル基、ジアセトンアクリルアミド基、メルカプト基、シラノール基をはじめとする各種官能基等により変性された変性PVA系樹脂や、側鎖に1,2-ジオール結合を有するPVA系樹脂等を挙げることができる。 Examples of the modified PVA resin include an anion modified PVA resin modified with an anionic group such as a carboxyl group, a sulfonic acid group, and a phosphoric acid group, and a cation modified with a cationic group such as a quaternary ammonium group. Modified PVA resin, modified PVA resin modified with various functional groups such as acetoacetyl group, diacetone acrylamide group, mercapto group, silanol group, etc., and PVA system having 1,2-diol bond in the side chain Examples thereof include resins.
 本発明において、PVA系樹脂の使用量は、前述の重合成分[I]100重量部に対して、20重量部以下であることが好ましく、特に好ましくは10重量部以下、更に好ましくは7重量部以下である。一方、PVA系樹脂使用量の上限は、0.01重量部が好ましく、0.1重量部が特に好ましく、0.5重量部が更に好ましい。
 かかるPVA系樹脂の使用量が少なすぎると、乳化重合の際の乳化力不足となって、重合成分の分散安定性が低下し、重合安定性が低下する傾向があり、使用量が多すぎると、合成樹脂エマルジョンの粘度が高まり安定性が低下する傾向がある。
In the present invention, the use amount of the PVA-based resin is preferably 20 parts by weight or less, particularly preferably 10 parts by weight or less, and still more preferably 7 parts by weight with respect to 100 parts by weight of the polymerization component [I] described above. It is as follows. On the other hand, the upper limit of the amount of PVA resin used is preferably 0.01 parts by weight, particularly preferably 0.1 parts by weight, and more preferably 0.5 parts by weight.
If the amount of the PVA resin used is too small, the emulsifying power becomes insufficient during emulsion polymerization, the dispersion stability of the polymerization component tends to decrease, and the polymerization stability tends to decrease. The viscosity of the synthetic resin emulsion tends to increase and the stability tends to decrease.
 また、本発明においては、PVA系樹脂は、通常、水性媒体を用いて水溶液とし、これが乳化重合の過程において使用される。かかる水性媒体としては、例えば水、または水を主体とするアルコール性溶媒があげられ、好ましくは水である。 In the present invention, the PVA resin is usually made into an aqueous solution using an aqueous medium, and this is used in the process of emulsion polymerization. Examples of such an aqueous medium include water or an alcoholic solvent mainly composed of water, preferably water.
 上記水溶液におけるPVA系樹脂の含有割合(固形分)については、取り扱いの容易性の観点からは、5~30重量%であることが好ましい。 The content ratio (solid content) of the PVA resin in the aqueous solution is preferably 5 to 30% by weight from the viewpoint of ease of handling.
 乳化重合の方法としては、PVA系樹脂の存在下で、水性媒体中に、重合成分[I]の全量を連続して添加しながら乳化重合することが必要であり、例えば、反応缶に、水性媒体、PVA系樹脂を仕込み、昇温し、そこに重合成分[I]を全量、連続して滴下し、重合することができる。
 上記水性媒体としては、例えば、水、または水を主体とするアルコール性溶媒があげられ、好ましくは水である。
As a method of emulsion polymerization, it is necessary to perform emulsion polymerization while continuously adding the entire amount of the polymerization component [I] to an aqueous medium in the presence of a PVA-based resin. A medium and a PVA-based resin are charged, the temperature is raised, and the entire amount of the polymerization component [I] is continuously added dropwise to allow polymerization.
Examples of the aqueous medium include water and alcoholic solvents mainly composed of water, preferably water.
 また、本発明においては、予め重合成分[I]の全量を、PVA系樹脂の存在下、水性媒体中に乳化分散させてプレエマルジョンを調製し、該プレエマルジョンの全量を水性媒体中に連続して添加しながら乳化重合することが好ましい。 In the present invention, a pre-emulsion is prepared by previously emulsifying and dispersing the total amount of the polymerization component [I] in an aqueous medium in the presence of a PVA-based resin, and the total amount of the pre-emulsion is continuously contained in the aqueous medium. It is preferable to carry out emulsion polymerization while adding.
 かかるプレエマルジョンの調整方法としては、例えば、PVA系樹脂の水溶液を攪拌しながら重合成分[I]を滴下する方法が挙げられる。その際の攪拌装置としては、攪拌翼による攪拌混合や、ステティックミキサー、バイプロミキサー、ホモジナイザーなどの公知の分散機を用いることができるが、これらの中でも攪拌翼による攪拌混合が好適である。 As a method for preparing such a pre-emulsion, for example, a method of dropping the polymerization component [I] while stirring an aqueous solution of a PVA resin can be mentioned. As a stirring device at that time, a known dispersing machine such as a stirring mixer with a stirring blade, a static mixer, a bipro mixer, or a homogenizer can be used. Among these, stirring mixing with a stirring blade is preferable.
 本発明においては、水性媒体中に、重合成分[I](又は上記プレエマルジョン)の全量を連続して添加しながら乳化重合することが必要である。
 ここで、全量を連続して添加しながら乳化重合するということは、初期重合を行うことなく、全量を連続して添加しながら乳化重合することをいい、従前の方法である、所定量を初期重合した後、残り成分を滴下などにより乳化重合する方法とは異なる乳化方法のことを意味するものである。
In the present invention, it is necessary to carry out emulsion polymerization while continuously adding the entire amount of the polymerization component [I] (or the pre-emulsion) to an aqueous medium.
Here, the emulsion polymerization while continuously adding the whole amount means that the emulsion polymerization is carried out while continuously adding the whole amount without performing the initial polymerization. This means an emulsification method different from the method of emulsion polymerization by dropping the remaining components after polymerization.
 上記連続した添加方法としては、例えば、滴下漏斗やロータリーポンプを用いて重合成分[I]を水性媒体中に滴下する方法があげられる。 Examples of the continuous addition method include a method in which the polymerization component [I] is dropped into an aqueous medium using a dropping funnel or a rotary pump.
 かかる滴下速度については、一般的に連続滴下とみなされる条件で滴下すればよく、用いる重合成分の反応性や下記重合開始剤の使用量、反応温度などを考慮し適宜調整すればよいが、具体的には、例えば、滴下間隔を、通常10秒以内、好ましくは5秒以内とし、一回の滴下量が、通常全モノマー量の2重量%以下、好ましくは1重量%以下であればよい。
 なお、上記滴下間隔、および一回の滴下量は、均一であってもよいし、不均一であってもよい。
The dropping speed may be adjusted under conditions generally considered as continuous dropping, and may be appropriately adjusted in consideration of the reactivity of the polymerization component used, the amount of polymerization initiator used, the reaction temperature, etc. Specifically, for example, the dropping interval is usually within 10 seconds, preferably within 5 seconds, and the amount of one dropping is usually 2% by weight or less, preferably 1% by weight or less of the total monomer amount.
The dropping interval and the amount of one dropping may be uniform or non-uniform.
 また、重合成分[I]を全量滴下した後、一定時間の熟成期間を設けることも好ましい。 It is also preferable to provide a certain aging period after the entire amount of the polymerization component [I] is dropped.
 乳化重合条件としては、重合成分の種類、重合スケール等に応じて適宜選択することができるが、反応時の温度条件としては、通常、通常40℃以上であり、特に好ましくは60℃以上である。反応時の温度条件の上限は、通常90℃であり、特に好ましくは80℃である。 Emulsion polymerization conditions can be appropriately selected according to the type of polymerization component, polymerization scale, etc., but the temperature conditions during the reaction are usually usually 40 ° C. or higher, particularly preferably 60 ° C. or higher. . The upper limit of the temperature condition during the reaction is usually 90 ° C, particularly preferably 80 ° C.
 また、乳化重合時には、撹拌することが好ましく、その際の攪拌装置としては、上記、プレエマルジョンの調整に用いられるものと同様のものを用いることができ、なかでも攪拌翼による攪拌混合が好ましい。 Further, it is preferable to stir at the time of emulsion polymerization, and the stirrer at that time can be the same as that used for the preparation of the pre-emulsion, and stirring mixing with a stirring blade is particularly preferable.
 また、通常、乳化重合においては、重合開始剤を用いることが好ましく、その他必要に応じて、重合調整剤、補助乳化剤、可塑剤等を用いることができる。 Usually, in emulsion polymerization, a polymerization initiator is preferably used, and a polymerization regulator, an auxiliary emulsifier, a plasticizer, and the like can be used as necessary.
 上記重合開始剤としては、通常の乳化重合に使用できるものであればよく、例えば、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の無機過酸化物;有機過酸化物、アゾ系開始剤、過酸化水素、ブチルパーオキサイド等の過酸化物;およびこれらと酸性亜硫酸ナトリウムやL-アスコルビン酸等の還元剤とを組み合わせたレドックス重合開始剤等が挙げられる。これらは、2種以上を併用してもよい。
 本発明においては、これらの中でも、皮膜物性や強度増強に悪影響を与えず重合が容易な点で、無機過酸化物を用いることが好ましく、特には過硫酸アンモニウムや過硫酸カリウムが好ましい。
The polymerization initiator is not particularly limited as long as it can be used for ordinary emulsion polymerization. Examples thereof include inorganic peroxides such as potassium persulfate, sodium persulfate, and ammonium persulfate; organic peroxides, azo-based initiators, Examples thereof include peroxides such as hydrogen oxide and butyl peroxide; and redox polymerization initiators obtained by combining these with reducing agents such as acidic sodium sulfite and L-ascorbic acid. Two or more of these may be used in combination.
In the present invention, among these, it is preferable to use an inorganic peroxide from the viewpoint of easy polymerization without adversely affecting the film physical properties and strength enhancement, and ammonium persulfate and potassium persulfate are particularly preferable.
 重合開始剤の添加方法としては、初期に一括添加する方法や重合の経過に伴って分割して添加する方法等を用いることができ、分割して添加する方法等においては、複数回に分けて反応缶に添加する方法や、重合成分とともに連続して滴下する方法等を用いることができる。 As a method of adding a polymerization initiator, it is possible to use a method of adding in a lump at an initial stage or a method of adding in a divided manner with the progress of polymerization, etc. The method of adding to a reaction can, the method of dripping continuously with a polymerization component, etc. can be used.
 かかる重合開始剤の使用量は、用いる重合成分の種類や重合条件などによって異なるが、通常、重合成分[I]100重量部に対して0.01重量部以上、好ましくは0.5重量部以上である。また、使用量の上限は、通常、5重量部であり、好ましくは3重量部である。 The amount of the polymerization initiator used varies depending on the type of polymerization component used and the polymerization conditions, but is usually 0.01 parts by weight or more, preferably 0.5 parts by weight or more, based on 100 parts by weight of the polymerization component [I] It is. Moreover, the upper limit of the usage-amount is 5 weight part normally, Preferably it is 3 weight part.
 上記重合調整剤としては、公知のものの中から適宜選択することができる。このような重合調整剤としては、例えば、連鎖移動剤、バッファーなどが挙げられる。 The polymerization regulator can be appropriately selected from known ones. Examples of such a polymerization regulator include a chain transfer agent and a buffer.
 上記連鎖移動剤としては、例えば、メタノール、エタノール、プロパノール、ブタノール等のアルコール;アセトアルデヒド、プロピオンアルデヒド、n-ブチルアルデヒド、フルフラール、ベンズアルデヒド等のアルデヒド類;および、ドデシルメルカプタン、ラウリルメルカプタン、ノルマルメルカプタン、チオグリコール酸、チオグリコール酸オクチル、チオグリセロール等のメルカプタン類などが挙げられる。これらは、単独で用いてもよいし2種以上を併用してもよい。 Examples of the chain transfer agent include alcohols such as methanol, ethanol, propanol and butanol; aldehydes such as acetaldehyde, propionaldehyde, n-butyraldehyde, furfural and benzaldehyde; and dodecyl mercaptan, lauryl mercaptan, normal mercaptan, thiol And mercaptans such as glycolic acid, octyl thioglycolate, and thioglycerol. These may be used alone or in combination of two or more.
 上記バッファーとしては、例えば、酢酸ソーダ、酢酸アンモニウム、第二リン酸ソーダ、クエン酸ソーダなどが挙げられる。これらは、単独で用いてもよいし2種以上を併用してもよい。 Examples of the buffer include sodium acetate, ammonium acetate, dibasic sodium phosphate, and sodium citrate. These may be used alone or in combination of two or more.
 補助乳化剤としては、通常乳化重合に用いることができるものであればよく、例えば、アニオン性、カチオン性、およびノニオン性の界面活性剤、PVA系樹脂以外の保護コロイド能を有する水溶性高分子、および水溶性オリゴマー等があげられる。 The auxiliary emulsifier is not particularly limited as long as it can be usually used for emulsion polymerization. For example, anionic, cationic, and nonionic surfactants, water-soluble polymers having protective colloid ability other than PVA-based resins, And water-soluble oligomers.
 上記界面活性剤としては、例えば、ラウリル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウムのようなアニオン性界面活性剤、および、プルロニック型構造を有するものやポリオキシエチレン型構造を有するもの等のノニオン性界面活性剤が挙げられる。また、界面活性剤として、構造中にラジカル重合性不飽和結合を有する反応性界面活性剤を使用することもできる。これらは単独で、もしくは2種以上併せて用いることができる。 Examples of the surfactant include anionic surfactants such as sodium lauryl sulfate and sodium dodecylbenzenesulfonate, and nonionic surfactants such as those having a pluronic structure and those having a polyoxyethylene structure. Agents. Moreover, the reactive surfactant which has a radically polymerizable unsaturated bond in a structure can also be used as a surfactant. These may be used alone or in combination of two or more.
 上記界面活性剤の使用は、乳化重合をスムーズに進行させ、コントロールし易くしたり(乳化剤としての効果)、重合中に発生する粗粒子やブロック状物の発生を抑制する効果がある。ただし、これら界面活性剤を乳化剤として多く使用すると、グラフト率が低下する傾向がある。このため、界面活性剤を使用する場合には、その使用量はPVA系樹脂に対して補助的な量であること、すなわち、できる限り少なくすることが好ましい。 The use of the above-mentioned surfactant has the effect of making the emulsion polymerization proceed smoothly, making it easy to control (effect as an emulsifier), and suppressing the generation of coarse particles and block-like substances generated during the polymerization. However, if many of these surfactants are used as emulsifiers, the graft rate tends to decrease. For this reason, when using surfactant, it is preferable that the usage-amount is an auxiliary | assistant amount with respect to PVA-type resin, ie, reduce as much as possible.
 PVA系樹脂以外の保護コロイド能を有する水溶性高分子としては、例えば、ヒドロキシエチルセルロース、ポリビニルピロリドン、メチルセルロース等が挙げられる。これらは単独で、もしくは2種以上併せて用いられる。これらは、エマルジョンの安定性やエマルジョンの粒子径を変えて粘性を変化させる点で効果がある。ただし、その使用量によっては皮膜の耐水性を低下させることがあるため、使用する場合には少量で使用することが望ましい。 Examples of water-soluble polymers having protective colloid ability other than PVA-based resins include hydroxyethyl cellulose, polyvinyl pyrrolidone, methyl cellulose and the like. These may be used alone or in combination of two or more. These are effective in that the viscosity is changed by changing the stability of the emulsion and the particle size of the emulsion. However, since the water resistance of the film may be lowered depending on the amount used, it is desirable to use a small amount when used.
 水溶性オリゴマーとしては、例えば、スルホン酸基、カルボキシル基、水酸基、アルキレングリコール基等の親水性基を有する重合体が好ましく、中でも10~500程度の重合度を有する重合体または共重合体が好適にあげられる。水溶性オリゴマーの具体例としては、例えば、2-メタクリルアミド-2-メチルプロパンスルホン酸共重合体等のアミド系共重合体、メタクリル酸ナトリウム-4-スチレンスルホネート共重合体、スチレン/マレイン酸共重合体、メラミンスルホン酸ホルムアルデヒド縮合物、ポリ(メタ)アクリル酸塩等が挙げられる。さらに、具体例としては、スルホン酸基、カルボキシル基、水酸基、アルキレングリコール基等を有するモノマーやラジカル重合性の反応性乳化剤を予め単独または他のモノマーと共重合してなる水溶性オリゴマー等も挙げられる。これらは単独で、もしくは2種以上併せて用いられる。 As the water-soluble oligomer, for example, a polymer having a hydrophilic group such as a sulfonic acid group, a carboxyl group, a hydroxyl group, and an alkylene glycol group is preferable, and a polymer or copolymer having a degree of polymerization of about 10 to 500 is particularly preferable. It is given to. Specific examples of the water-soluble oligomer include amide copolymers such as 2-methacrylamide-2-methylpropanesulfonic acid copolymer, sodium methacrylate-4-styrenesulfonate copolymer, styrene / maleic acid copolymer, and the like. Examples include polymers, melamine sulfonic acid formaldehyde condensates, poly (meth) acrylates, and the like. Furthermore, specific examples include a monomer having a sulfonic acid group, a carboxyl group, a hydroxyl group, an alkylene glycol group or the like, a water-soluble oligomer obtained by copolymerizing a radical polymerizable reactive emulsifier in advance alone or with another monomer, and the like. It is done. These may be used alone or in combination of two or more.
 上記可塑剤としては、アジペート系可塑剤、フタル酸系可塑剤、リン酸系可塑剤等が使用できる。 As the plasticizer, an adipate plasticizer, a phthalic acid plasticizer, a phosphoric acid plasticizer, or the like can be used.
 かくして、本発明の製造方法、即ち、PVA系樹脂の存在下で、水性媒体中に、重合成分[I]の全量を連続して添加しながら乳化重合する方法により、水性合成樹脂エマルジョンを製造することができる。
 得られる水性合成樹脂エマルジョンは、PVA系樹脂により合成樹脂粒子が水性媒体中に分散安定化されてなるものである。
Thus, the aqueous synthetic resin emulsion is produced by the production method of the present invention, that is, the method of emulsion polymerization in the presence of the PVA resin while continuously adding the entire amount of the polymerization component [I] to the aqueous medium. be able to.
The resulting aqueous synthetic resin emulsion is one in which synthetic resin particles are dispersed and stabilized in an aqueous medium by a PVA resin.
 本発明において、乳化重合より得られる水性合成樹脂エマルジョンは、典型的には、均一な乳白色であって、水性合成樹脂エマルジョン中の合成樹脂粒子の平均粒子径は、0.2μm以上であることが好ましく、特に好ましくは0.3μm以上である。また、平均粒子径の上限は2μmであることが好ましく、1.5μmであることが特に好ましい。かかる合成樹脂粒子の平均粒子径が大きすぎると重合安定性が低下する傾向があり、小さすぎると水性合成樹脂エマルジョンの粘度が高くなりすぎる傾向がある。 In the present invention, the aqueous synthetic resin emulsion obtained by emulsion polymerization is typically milky white, and the average particle size of the synthetic resin particles in the aqueous synthetic resin emulsion is 0.2 μm or more. The thickness is preferably 0.3 μm or more. Further, the upper limit of the average particle diameter is preferably 2 μm, and particularly preferably 1.5 μm. If the average particle size of the synthetic resin particles is too large, the polymerization stability tends to decrease, and if it is too small, the viscosity of the aqueous synthetic resin emulsion tends to be too high.
 なお、平均粒子径は、慣用の方法、例えばレーザー解析/散乱式粒度分布測定装置「LA-950S2」(株式会社堀場製作所製)により測定することができる。 The average particle diameter can be measured by a conventional method, for example, a laser analysis / scattering particle size distribution analyzer “LA-950S2” (manufactured by Horiba, Ltd.).
 また、本発明の製造方法により得られる水性合成樹脂エマルジョン中の合成樹脂粒子のガラス転移温度(Tg)は、-40℃以上であることが好ましく、特に好ましくは-30℃以上であり、更に好ましくは-20℃以上である。また、ガラス転移温度の(Tg)の上限は、30℃であることが好ましく、20℃であることが特に好ましく、10℃であることが更に好ましい。かかるガラス転移温度が高すぎると、低温時において、樹脂の接着剤としての効果が十分に発揮できない傾向があり、低すぎると、圧縮強度や折り曲げ強度が低下する傾向がある。
 ガラス転移温度は下記の数式1で示されるFoxの式より算出されるものである。
In addition, the glass transition temperature (Tg) of the synthetic resin particles in the aqueous synthetic resin emulsion obtained by the production method of the present invention is preferably −40 ° C. or higher, particularly preferably −30 ° C. or higher, and further preferably. Is −20 ° C. or higher. The upper limit of the glass transition temperature (Tg) is preferably 30 ° C, particularly preferably 20 ° C, and further preferably 10 ° C. If the glass transition temperature is too high, the effect of the resin as an adhesive cannot be exhibited sufficiently at low temperatures, and if it is too low, the compressive strength and the bending strength tend to decrease.
The glass transition temperature is calculated from the Fox equation represented by the following Equation 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、合成樹脂を構成するモノマーのホモポリマーとした際のガラス転移温度は、通常、示差走査熱量計(DSC)により測定されるものである。 In addition, the glass transition temperature at the time of setting it as the homopolymer of the monomer which comprises a synthetic resin is normally measured with a differential scanning calorimeter (DSC).
 本発明の製造方法により得られる水性合成樹脂エマルジョンの23℃での粘度は、100mPa・s以上であることが好ましく、特に好ましくは300mPa・s以上、更に好ましくは500mPa・sで以上ある。一方、粘度の上限は5,000mPa・sが好ましく、3,000mPa・sが特に好ましく、2,000mPaが更に好ましい。かかる粘度が高すぎても低すぎても水性合成樹脂エマルジョンを粉末化し難くなる傾向がある。
 なお、粘度の測定法はB型粘度計による。
The viscosity at 23 ° C. of the aqueous synthetic resin emulsion obtained by the production method of the present invention is preferably 100 mPa · s or more, particularly preferably 300 mPa · s or more, and further preferably 500 mPa · s or more. On the other hand, the upper limit of the viscosity is preferably 5,000 mPa · s, particularly preferably 3,000 mPa · s, and further preferably 2,000 mPa · s. If the viscosity is too high or too low, the aqueous synthetic resin emulsion tends to be difficult to powder.
The viscosity is measured with a B-type viscometer.
 また、本発明の製造方法により得られる水性合成樹脂エマルジョンの固形分濃度は、30重量%以上であることが好ましく、特に好ましくは35重量%以上、更に好ましくは40重量%以上である。一方、固形分濃度の上限は、60重量%が好ましく、55重量%が特に好ましく、50重量%が更に好ましい。かかる固形分濃度が低すぎると、水性合成樹脂エマルジョンを粉末化する際の製造効率が低下し、高すぎると水性合成樹脂エマルジョンを粉末化し難くなる傾向がある。 The solid content concentration of the aqueous synthetic resin emulsion obtained by the production method of the present invention is preferably 30% by weight or more, particularly preferably 35% by weight or more, and further preferably 40% by weight or more. On the other hand, the upper limit of the solid content concentration is preferably 60% by weight, particularly preferably 55% by weight, and further preferably 50% by weight. If the solid content concentration is too low, the production efficiency when pulverizing the aqueous synthetic resin emulsion is lowered, and if it is too high, the aqueous synthetic resin emulsion tends to be difficult to pulverize.
 本発明においては、乳化重合後の水性合成樹脂エマルジョンは、必要に応じて各種添加剤をさらに加えてもよい。このような添加剤としては、例えば、有機顔料、無機顔料、水溶性添加剤、pH調整剤、防腐剤、酸化防止剤等が挙げられる。 In the present invention, various additives may be further added to the aqueous synthetic resin emulsion after emulsion polymerization as necessary. Examples of such additives include organic pigments, inorganic pigments, water-soluble additives, pH adjusters, preservatives, and antioxidants.
 このようにして、本発明の製造方法によりで得られた水性合成樹脂エマルジョンは、そのまま使用する際には、固形分濃度として通常40~60重量%に調整することが好ましい。 Thus, when the aqueous synthetic resin emulsion obtained by the production method of the present invention is used as it is, it is preferably adjusted to a solid content concentration of usually 40 to 60% by weight.
〔再乳化性合成樹脂粉末の製造方法〕
 上記の製造方法で得られた水性合成樹脂エマルジョンを乾燥することにより、本発明に係る再乳化性合成樹脂粉末が得られる。再乳化性合成樹脂粉末は、水と混合することにより再び乳化する機能を有し、例えばポリマーセメント用として有効に使用することができる。
[Method for producing re-emulsifiable synthetic resin powder]
By drying the aqueous synthetic resin emulsion obtained by the above production method, the re-emulsifiable synthetic resin powder according to the present invention is obtained. The re-emulsifiable synthetic resin powder has a function of emulsifying again by mixing with water, and can be effectively used for, for example, polymer cement.
 水性合成樹脂エマルジョンの乾燥方法は、例えば、噴霧乾燥、凍結乾燥、凝析後の温風乾燥等があげられる。これらの中でも、生産コスト、省エネルギーの観点や連続生産性の観点から噴霧乾燥することが好ましい。 Examples of the method for drying the aqueous synthetic resin emulsion include spray drying, freeze drying, and hot air drying after coagulation. Among these, spray drying is preferable from the viewpoint of production cost, energy saving, and continuous productivity.
 噴霧乾燥の場合、その噴霧形式は、例えばディスク式、ノズル式等の形式により実施することができる。噴霧乾燥の熱源としては、例えば、熱風、加熱水蒸気等があげられる。噴霧乾燥の条件としては、噴霧乾燥機の大きさ、種類、合成樹脂エマルジョンの不揮発分、粘度、流量等に応じて適宜選択することができる。噴霧乾燥の温度は、通常は、80℃以上が好ましく、より好ましくは120℃以上である。また、噴霧乾燥温度の上限は、180℃が好ましく、160℃がより好ましい。
 乾燥温度が低すぎると乾燥に時間を要し、生産的効率が低下する傾向があり、高すぎると熱による樹脂自体の変質が起こり易くなる傾向がある。
In the case of spray drying, the spraying method can be implemented by a disk type, nozzle type, or the like. Examples of the heat source for spray drying include hot air and heated steam. The conditions for spray drying can be appropriately selected according to the size and type of the spray dryer, the nonvolatile content of the synthetic resin emulsion, the viscosity, the flow rate, and the like. The temperature for spray drying is usually preferably 80 ° C. or higher, more preferably 120 ° C. or higher. Further, the upper limit of the spray drying temperature is preferably 180 ° C, more preferably 160 ° C.
If the drying temperature is too low, it takes time to dry and the productive efficiency tends to decrease. If it is too high, the resin itself tends to be altered by heat.
 具体的には、例えば、水性合成樹脂エマルジョンを噴霧乾燥機のノズルより連続的に供給し、霧状にしたものを温風により乾燥させて粉末化させる。場合により、調整した噴霧液を噴霧に際して予め加温してノズルより連続的に供給し、霧状にしたものを温風により乾燥させて粉末化させることも可能である。加温することで乾燥スピードが速くなり、かつ噴霧液の粘度低下に伴い噴霧液の高不揮発分化が可能で、生産コストの低減にも寄与する。 Specifically, for example, an aqueous synthetic resin emulsion is continuously supplied from a nozzle of a spray dryer, and the mist is dried with warm air to be powdered. In some cases, it is also possible to preheat the adjusted spray liquid before spraying, continuously supply it from the nozzle, and dry the atomized liquid with warm air to form a powder. Heating increases the drying speed and enables highly non-volatile differentiation of the spray liquid as the viscosity of the spray liquid decreases, contributing to a reduction in production costs.
 また、再乳化性合成樹脂粉末の水への再乳化性をより向上させるために、水溶性添加剤を配合することができる。通常、水溶性添加剤は、乾燥前の水性合成樹脂エマルジョンに配合する。この配合量は、乾燥前の水性合成樹脂エマルジョンの不揮発分100重量部に対して、2~50重量部である。配合量が少なすぎると、水への再乳化性の向上が充分に図れない傾向があり、多すぎると、水への再乳化性の向上には大いに役立つが皮膜の耐水性が低下し、期待する物性が発揮できなくなる傾向がある。 Further, in order to further improve the re-emulsification property of the re-emulsifiable synthetic resin powder in water, a water-soluble additive can be blended. Usually, a water-soluble additive is mix | blended with the aqueous synthetic resin emulsion before drying. The blending amount is 2 to 50 parts by weight with respect to 100 parts by weight of the nonvolatile content of the aqueous synthetic resin emulsion before drying. If the amount is too small, there is a tendency that the re-emulsification property to water cannot be sufficiently improved. If the amount is too large, the water re-emulsification property to water is greatly improved, but the water resistance of the film is lowered and expected. There is a tendency that the physical properties to be exhibited cannot be exhibited.
 上記水溶性添加剤としては、例えば、PVA系樹脂類、ヒドロキシエチルセルロース類、メチルセルロース類、ポリビニルピロリドン、でんぷん類、デキストリン類、水溶性アルキッド樹脂、水溶性アミノ樹脂、水溶性アクリル樹脂、水溶性ポリカルボン酸樹脂、水溶性ポリアミド樹脂等の水溶性樹脂があげられる。これらは単独でもしくは2種以上併せて用いることができる。これらの中でも、PVA系樹脂類が好ましい。PVA系樹脂類としては、上記PVA系樹脂と同様のものを用いることができ、未変性PVAの部分又は完全ケン化品や各種変性PVAの部分又は完全ケン化品、及びこれらを併用しても良い。 Examples of the water-soluble additive include PVA resins, hydroxyethyl celluloses, methyl celluloses, polyvinyl pyrrolidone, starches, dextrins, water-soluble alkyd resins, water-soluble amino resins, water-soluble acrylic resins, and water-soluble polycarboxylic acids. Examples thereof include water-soluble resins such as acid resins and water-soluble polyamide resins. These may be used alone or in combination of two or more. Among these, PVA-based resins are preferable. As the PVA-based resins, the same PVA-based resins as those described above can be used, and a portion of unmodified PVA or a completely saponified product, a portion of various modified PVA or a completely saponified product, and a combination thereof. good.
 上記PVA系樹脂類としては、平均ケン化度85モル%以上のPVAが好ましく、特に好ましくは87モル%以上のPVAである。また、平均ケン化度の上限値としては、99.5モル%であることが好ましく、95モル%であることがより好ましい。平均ケン化度が小さすぎると、得られるポリマーセメントモルタルの耐水性が著しく低下する傾向があり、大きすぎると、水への再乳化性が低下する傾向がある。 As the PVA-based resins, PVA having an average saponification degree of 85 mol% or more is preferable, and PVA having 87 mol% or more is particularly preferable. Moreover, as an upper limit of an average saponification degree, it is preferable that it is 99.5 mol%, and it is more preferable that it is 95 mol%. When the average saponification degree is too small, the water resistance of the resulting polymer cement mortar tends to be remarkably lowered, and when it is too large, the re-emulsification property to water tends to be lowered.
 また、この平均重合度は、50以上であることが好ましく、200以上であることがより好ましく、300以上であることが更に好ましい。また、平均重合度の上限は、3,000であることが好ましく、2,000であることがより好ましく、600であることが更に好ましい。平均重合度が小さすぎると、耐水性が低下する傾向があり、大きすぎると、再乳化性が低下する傾向がある。 The average degree of polymerization is preferably 50 or more, more preferably 200 or more, and further preferably 300 or more. Further, the upper limit of the average degree of polymerization is preferably 3,000, more preferably 2,000, and still more preferably 600. If the average degree of polymerization is too small, the water resistance tends to decrease, and if it is too large, the re-emulsification property tends to decrease.
 かくして、本発明の再乳化性合成樹脂粉末が得られる。 Thus, the re-emulsifiable synthetic resin powder of the present invention is obtained.
 本発明の再乳化性合成樹脂粉末には、さらに、膠着防止剤、減水剤、分散剤、モルタル流動化促進剤、撥水剤、酸化防止剤、防錆剤等を含有させてもよい。
 なお、膠着防止剤は、水性合成樹脂エマルジョンに混合したり、噴霧乾燥後の樹脂エマルジョン粉末に混合したり、噴霧乾燥時に水性合成樹脂エマルジョンと別のノズルから噴霧するなどして含有させることができる。
The re-emulsifiable synthetic resin powder of the present invention may further contain an anti-sticking agent, a water reducing agent, a dispersing agent, a mortar fluidization accelerator, a water repellent, an antioxidant, a rust inhibitor and the like.
The anti-sticking agent can be contained in the aqueous synthetic resin emulsion, mixed in the resin emulsion powder after spray drying, or sprayed from a nozzle different from the aqueous synthetic resin emulsion at the time of spray drying. .
[再乳化して得られる水性合成樹脂エマルジョン]
 前記の再乳化性合成樹脂粉末は、前記水性媒体を加えることにより再乳化させることができ、水性合成樹脂エマルジョンを得ることができる。この再乳化して得られる水性合成樹脂エマルジョンは、再乳化性合成樹脂粉末とする前の水性合成樹脂エマルジョンと同様の効果を発揮することができる。
[Aqueous synthetic resin emulsion obtained by re-emulsification]
The re-emulsifiable synthetic resin powder can be re-emulsified by adding the aqueous medium to obtain an aqueous synthetic resin emulsion. The aqueous synthetic resin emulsion obtained by this re-emulsification can exhibit the same effects as the aqueous synthetic resin emulsion prior to the re-emulsifiable synthetic resin powder.
 〔ポリマーセメント組成物・ポリマーセメントモルタル〕
 かくして得られる再乳化性合成樹脂粉末は、セメントと配合してポリマーセメント組成物として使用することができ、更に水や砂・砂利を配合することにより、モルタルやコンクリートとして使用することができる。なお、このポリマーセメント組成物に水が配合されると、再乳化性合成樹脂粉末は再乳化されて水性合成樹脂エマルジョンが再生することとなる。
[Polymer cement composition / Polymer cement mortar]
The re-emulsifiable synthetic resin powder thus obtained can be used as a polymer cement composition by blending with cement, and can be used as mortar or concrete by further blending water, sand or gravel. When water is added to the polymer cement composition, the re-emulsifiable synthetic resin powder is re-emulsified to regenerate the aqueous synthetic resin emulsion.
 上記セメントとしては、例えば、普通ポルトランドセメント、アルミナセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、耐硫酸塩ポルトランドセメント、高炉セメント、フライアッシュセメント、シリカセメント等があげられ、中でもポルトランドセメントが作業性の点から好適である。 Examples of the cement include ordinary Portland cement, alumina cement, early-strength Portland cement, ultra-early strong Portland cement, medium heat Portland cement, low heat Portland cement, sulfate-resistant Portland cement, blast furnace cement, fly ash cement, silica cement, and the like. Among them, Portland cement is preferable from the viewpoint of workability.
 上記セメントの配合量は、再乳化性合成樹脂粉末100重量部に対して3重量部以上であることが好ましく、更には30重量部以上であることが好ましい。また、上記セメント配合量の上限は、500重量部であることが好ましく、350重量部であることが更に好ましい。 The blending amount of the cement is preferably 3 parts by weight or more, more preferably 30 parts by weight or more with respect to 100 parts by weight of the re-emulsifiable synthetic resin powder. Moreover, the upper limit of the cement content is preferably 500 parts by weight, and more preferably 350 parts by weight.
 モルタルやコンクリートとして使用する際の水の配合量は、ポリマーセメント組成物全量に対して50重量%以下であることが好ましく、更には30重量%以下であることが好ましい。 The amount of water used as mortar or concrete is preferably 50% by weight or less, more preferably 30% by weight or less, based on the total amount of the polymer cement composition.
 また、モルタルやコンクリートとして使用する際の砂・砂利の配合量としては、ポリマーセメント組成物全量に対して30重量%以上であることが好ましく、更には50重量%以上であることが好ましい。上記砂・砂利の配合量の上限は、300重量部であることが好ましく、150重量部であることが更に好ましい。 Further, the amount of sand and gravel when used as mortar or concrete is preferably 30% by weight or more, more preferably 50% by weight or more based on the total amount of the polymer cement composition. The upper limit of the amount of the above sand / gravel is preferably 300 parts by weight, and more preferably 150 parts by weight.
 なお、上記ポリマーセメント組成物には、必要に応じて、セメントの減水剤あるいは流動化剤(例えば、リグニン系、ナフタレン系、メラミン系、カルボン酸系等)、収縮低減剤(例えば、グリコールエーテル系、ポリエーテル系等)、耐寒剤(例えば、塩化カルシウム等)、防水剤(例えば、ステアリン酸等)、防錆剤(例えば、リン酸塩等)、粘度調整剤(例えば、メチルセルロース、ヒドロキシエチルセルロース、ポリビニルアルコール等)、分散剤(例えば、ポリカルボン酸系、無機リン系等)、消泡剤(例えば、シリコン系、鉱油系等)、防腐剤、補強剤(例えば、鋼繊維、ガラス繊維、合成繊維、炭素繊維等)等を、単独でもしくは2種以上併用することができる。 The polymer cement composition may include a cement water reducing agent or fluidizing agent (for example, lignin-based, naphthalene-based, melamine-based, carboxylic acid-based, etc.), shrinkage reducing agent (for example, glycol ether-based). , Polyether, etc.), anti-chilling agents (eg, calcium chloride, etc.), waterproofing agents (eg, stearic acid, etc.), rust inhibitors (eg, phosphates, etc.), viscosity modifiers (eg, methylcellulose, hydroxyethylcellulose, Polyvinyl alcohol, etc.), dispersants (eg, polycarboxylic acid-based, inorganic phosphorus-based, etc.), antifoaming agents (eg, silicon-based, mineral oil-based, etc.), preservatives, reinforcing agents (eg, steel fibers, glass fibers, synthetic materials) Fiber, carbon fiber, etc.) can be used alone or in combination of two or more.
 ポリマーセメント組成物を用いて、ポリマーセメントモルタルを調製する場合には、一般のモルタルと同様、必須成分、および任意成分を加え、これに適当量の水を加えた上で、混練機等を用いて混練することにより調製することができる。 When preparing a polymer cement mortar using a polymer cement composition, as in general mortar, add essential and optional components, add an appropriate amount of water, and then use a kneader or the like. And kneading.
 ポリマーセメントモルタルは、通常、JIS A 6203の手順に従い、JIS R 5201の試験においてフロー値が170±5mmとなるよう調整して用いられるものである。
 本発明の製造方法により得られた再乳化性合成樹脂粉末を用いると、従来の製造方法により得られる再乳化性合成樹脂粉末に比べて少量の水を配合することで所望のフロー値に調製でき、更に減水剤等の添加剤を添加しなくとも所望のフロー値に調整することが可能であるため、本発明の製造方法により得られた再乳化性合成樹脂粉末は塗工性にも優れるものであるといえる。なお、一般的に、配合する水の量が多いと、硬化速度が低下したり、得られる硬化物の強度が低下するため好ましくない。
The polymer cement mortar is usually used by adjusting the flow value to 170 ± 5 mm in the test of JIS R 5201 according to the procedure of JIS A 6203.
When the re-emulsifiable synthetic resin powder obtained by the production method of the present invention is used, it can be adjusted to a desired flow value by blending a small amount of water compared to the re-emulsifiable synthetic resin powder obtained by the conventional production method. Furthermore, the re-emulsifiable synthetic resin powder obtained by the production method of the present invention is excellent in coatability because it can be adjusted to a desired flow value without adding an additive such as a water reducing agent. You can say that. In general, a large amount of water to be blended is not preferable because the curing rate is lowered or the strength of the resulting cured product is lowered.
 このようにして得られたポリマーセメント組成物は、セメントモルタルに混和した際に、良好な流動性、作業性を示し、旧モルタル面や樹脂塗面等に対する密着性に優れる。また、物性ばらつきが少なく、加えて接着強度が向上する等の優れた効果を奏する。そして、これらポリマーセメント組成物は、セメントモルタル混和剤として、補修モルタル用、下地調整塗材用、セルフレベリング材、タイル接着モルタル、モルタルシーラー・プライマー、モルタル養生剤、及び石膏系材料等の改質剤として有用であり、さらに、土木・建材用原料、ガラス繊維収束剤、難燃剤用等にも有用である。 The polymer cement composition thus obtained exhibits good fluidity and workability when mixed with cement mortar, and is excellent in adhesion to the old mortar surface and the resin coating surface. In addition, there is little variation in physical properties, and in addition, there are excellent effects such as improvement in adhesive strength. These polymer cement compositions are used as cement mortar admixtures, such as repair mortars, base preparation coating materials, self-leveling materials, tile adhesive mortars, mortar sealers / primers, mortar curing agents, and gypsum-based materials. It is useful as an agent, and further useful for civil engineering and building materials, glass fiber sizing agents, flame retardants, and the like.
 以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。なお、例中「部」、「%」とあるのは、重量基準を意味する。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded. In the examples, “parts” and “%” mean weight basis.
 <実験例1>
〔プレエマルジョンの調製〕
 フラスコにポリビニルアルコール(日本合成化学工業(株)製、ゴーセノールGL-03)を5部、水49部を添加して80℃で1時間、十分に溶解した後、室温に冷却し、ついでスチレン46部、ブチルアクリレート54部を添加し、タービン翼で30分撹拌し続けて乳化させ、プレエマルジョンを調製した。
<Experimental example 1>
[Preparation of pre-emulsion]
To the flask, 5 parts of polyvinyl alcohol (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., Gohsenol GL-03) and 49 parts of water were added and dissolved sufficiently at 80 ° C. for 1 hour, cooled to room temperature, and then styrene 46 And 54 parts of butyl acrylate were added, and stirring was continued for 30 minutes with a turbine blade to emulsify to prepare a pre-emulsion.
〔水性合成樹脂エマルジョンの製造〕
 パドル型撹拌翼、還流冷却器、滴下漏斗、温度計を備えたセパラブルフラスコに水52部、酢酸ナトリウム1部を加え、150rpmで撹拌しながらフラスコ内の温度を80℃に昇温した。次に、過硫酸アンモニウム10%水溶液3部をフラスコに添加し、続いて、上記で調製したプレエマルジョン154部と過硫酸アンモニウム10%水溶液4.6部を滴下漏斗より5時間掛けて滴下して重合反応を行った。引き続き80℃で2時間熟成を行い、その間に過硫酸アンモニウム10%水溶液3.5部を3回に分割して添加し反応を完結させ、室温に冷却し、不揮発分48.7%、粘度2,940mPa.s(ブルックフィールド型粘度計BM12rpm、23℃)の水性合成樹脂エマルジョンを得た。
[Production of aqueous synthetic resin emulsion]
52 parts of water and 1 part of sodium acetate were added to a separable flask equipped with a paddle type stirring blade, a reflux condenser, a dropping funnel and a thermometer, and the temperature in the flask was raised to 80 ° C. while stirring at 150 rpm. Next, 3 parts of 10% aqueous solution of ammonium persulfate was added to the flask, and then 154 parts of the pre-emulsion prepared above and 4.6 parts of 10% aqueous solution of ammonium persulfate were dropped from the dropping funnel over 5 hours, followed by polymerization reaction. Went. Subsequently, aging was carried out at 80 ° C. for 2 hours, during which time 3.5 parts of 10% aqueous solution of ammonium persulfate was added in three portions to complete the reaction, cooled to room temperature, non-volatile content 48.7%, viscosity 2 940 mPa.s. s (Brookfield viscometer BM 12 rpm, 23 ° C.) aqueous synthetic resin emulsion was obtained.
〔再乳化性合成樹脂粉末の製造〕
 得られた水性合成樹脂エマルジョン100重量部にポリビニルアルコール(日本合成化学工業(株)製、ゴーセノールGL-05)の20%水溶液を20部添加した後、抗粘結剤(商品名INCOMP SE-SUPER、Paltentaler Minerals GmbH&Co KG)14部の存在下において、140℃の気流雰囲気下でスプレー噴霧しながら乾燥させ、樹脂粉末(再乳化性合成樹脂粉末)を得た。
[Production of re-emulsifiable synthetic resin powder]
After adding 20 parts of 20% aqueous solution of polyvinyl alcohol (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., GOHSENOL GL-05) to 100 parts by weight of the obtained aqueous synthetic resin emulsion, an anti-caking agent (trade name INCOMP SE-SUPER) was added. In the presence of 14 parts of Palentaler Minerals GmbH & Co KG), it was dried while spraying in an air current atmosphere at 140 ° C. to obtain a resin powder (re-emulsifiable synthetic resin powder).
<比較例1>
〔プレエマルジョンの調製〕
 実施例1と同様にして、プレエマルジョンを調製した。
〔水性合成樹脂エマルジョンの製造〕
 パドル型撹拌翼、還流冷却器、滴下漏斗、温度計を備えたセパラブルフラスコに水52部、酢酸ナトリウム1部を加え、150rpmで撹拌しながらフラスコ内の温度を80℃に昇温した。次に、過硫酸アンモニウム10%水溶液3部をフラスコに添加し、さらに、上記で調製したプレエマルジョン15.4部(重合モノマー全量の10%)を一括して添加して、60分間初期重合を行った後、続いてプレエマルジョン138.6部と過硫酸アンモニウム10%水溶液4.6部を滴下漏斗より5時間掛けて滴下して重合反応を行った。引き続き80℃で2時間熟成を行い、その間に過硫酸アンモニウム10%水溶液3.5部を3回に分割して添加し反応を完結させ、室温に冷却し、不揮発分48.6%、粘度6,390mPa.s(ブルックフィールド型粘度計BM12rpm、23℃)の水性合成樹脂エマルジョンを得た。
〔再乳化性合成樹脂粉末の製造〕
 得られた水性合成樹脂エマルジョンを用いて、実施例1と同様にして、樹脂粉末(再乳化性合成樹脂粉末)を得た。
<Comparative Example 1>
[Preparation of pre-emulsion]
A pre-emulsion was prepared in the same manner as in Example 1.
[Production of aqueous synthetic resin emulsion]
52 parts of water and 1 part of sodium acetate were added to a separable flask equipped with a paddle type stirring blade, a reflux condenser, a dropping funnel and a thermometer, and the temperature in the flask was raised to 80 ° C. while stirring at 150 rpm. Next, 3 parts of a 10% aqueous solution of ammonium persulfate is added to the flask, and 15.4 parts of the pre-emulsion prepared above (10% of the total amount of polymerization monomers) are added all at once, and initial polymerization is performed for 60 minutes. Then, 138.6 parts of pre-emulsion and 4.6 parts of 10% aqueous solution of ammonium persulfate were dropped from the dropping funnel over 5 hours to carry out a polymerization reaction. Subsequently, aging was carried out at 80 ° C. for 2 hours, during which time 3.5 parts of 10% aqueous solution of ammonium persulfate was added in three portions to complete the reaction, cooled to room temperature, non-volatile content 48.6%, viscosity 6, 390 mPa.s. s (Brookfield viscometer BM 12 rpm, 23 ° C.) aqueous synthetic resin emulsion was obtained.
[Production of re-emulsifiable synthetic resin powder]
Using the obtained aqueous synthetic resin emulsion, a resin powder (re-emulsifiable synthetic resin powder) was obtained in the same manner as in Example 1.
<比較例2>
〔プレエマルジョンの調製〕
 実施例1と同様にして、プレエマルジョンを調製した。
〔水性合成樹脂エマルジョンの製造〕
 パドル型撹拌翼、還流冷却器、滴下漏斗、温度計を備えたセパラブルフラスコに水52部、酢酸ナトリウム1部を加え、150rpmで撹拌しながらフラスコ内の温度を80℃に昇温した。次に、過硫酸アンモニウム10%水溶液3部をフラスコに添加し、さらに、上記で調製したプレエマルジョン3.1部(重合モノマー全量の2%)を一括して添加して、60分間初期重合を行った後、続いてプレエマルジョン150.9部と過硫酸アンモニウム10%水溶液4.6部を滴下漏斗より5時間掛けて滴下して重合反応を行った。引き続き80℃で2時間熟成を行い、その間に過硫酸アンモニウム10%水溶液3.5部を3回に分割して添加し反応を完結させ、室温に冷却し、不揮発分49.1%、粘度34,600mPa.s(ブルックフィールド型粘度計BM12rpm、23℃)の水性合成樹脂エマルジョンを得た。
〔再乳化性合成樹脂粉末の製造〕
 得られた水性合成樹脂エマルジョンを用いて、実施例1と同様にして再乳化性合成樹脂粉末を製造しようとしたが、粘度が高く、スプレー噴霧が不可能だった。
<Comparative Example 2>
[Preparation of pre-emulsion]
A pre-emulsion was prepared in the same manner as in Example 1.
[Production of aqueous synthetic resin emulsion]
52 parts of water and 1 part of sodium acetate were added to a separable flask equipped with a paddle type stirring blade, a reflux condenser, a dropping funnel and a thermometer, and the temperature in the flask was raised to 80 ° C. while stirring at 150 rpm. Next, 3 parts of a 10% ammonium persulfate aqueous solution was added to the flask, and 3.1 parts of the pre-emulsion prepared above (2% of the total amount of the polymerization monomer) was added all at once, and initial polymerization was performed for 60 minutes. Subsequently, 150.9 parts of pre-emulsion and 4.6 parts of 10% aqueous solution of ammonium persulfate were dropped from the dropping funnel over 5 hours to carry out the polymerization reaction. Subsequently, aging was carried out at 80 ° C. for 2 hours, during which time 3.5 parts of 10% aqueous solution of ammonium persulfate was added in three portions to complete the reaction, cooled to room temperature, non-volatile content 49.1%, viscosity 34, 600 mPa.s. s (Brookfield viscometer BM 12 rpm, 23 ° C.) aqueous synthetic resin emulsion was obtained.
[Production of re-emulsifiable synthetic resin powder]
Using the obtained aqueous synthetic resin emulsion, an attempt was made to produce a re-emulsifiable synthetic resin powder in the same manner as in Example 1, but the viscosity was high and spray spraying was impossible.
<比較例3>
〔プレエマルジョンの調製〕
 実施例1と同様にして、プレエマルジョンを調製した。
〔水性合成樹脂エマルジョンの製造〕
 パドル型撹拌翼、還流冷却器、滴下漏斗、温度計を備えたセパラブルフラスコに水52部、酢酸ナトリウム1部を加え、150rpmで撹拌しながらフラスコ内の温度を80℃に昇温した。次に、過硫酸アンモニウム10%水溶液3部をフラスコに添加し、さらに上記で調製したプレエマルジョン7.7部(重合モノマー全量の5%)を一括して添加して、30分間初期重合を行った後、続いてプレエマルジョン146.3と過硫酸アンモニウム10%水溶液4.6部を滴下漏斗より5時間掛けて滴下して重合反応を行った。引き続き80℃で2時間熟成を行い、その間に過硫酸アンモニウム10%水溶液3.5部を3回に分割して添加し反応を完結させ、室温に冷却し、不揮発分49.1%、粘度26,200mPa.s(ブルックフィールド型粘度計BM12rpm、23℃)の水性合成樹脂エマルジョンを得た。
〔再乳化性合成樹脂粉末の製造〕
 得られた水性合成樹脂エマルジョンを用いて、実施例1と同様にして再乳化性合成樹脂粉末を製造しようとしたが、粘度が高く、スプレー噴霧が不可能だった。
<Comparative Example 3>
[Preparation of pre-emulsion]
A pre-emulsion was prepared in the same manner as in Example 1.
[Production of aqueous synthetic resin emulsion]
52 parts of water and 1 part of sodium acetate were added to a separable flask equipped with a paddle type stirring blade, a reflux condenser, a dropping funnel and a thermometer, and the temperature in the flask was raised to 80 ° C. while stirring at 150 rpm. Next, 3 parts of a 10% aqueous solution of ammonium persulfate was added to the flask, and 7.7 parts of the pre-emulsion prepared above (5% of the total amount of the polymerization monomer) was added all at once, and initial polymerization was performed for 30 minutes. Thereafter, pre-emulsion 146.3 and 4.6 parts of 10% aqueous solution of ammonium persulfate were dropped from the dropping funnel over 5 hours to carry out a polymerization reaction. Subsequently, aging was performed at 80 ° C. for 2 hours, during which time 3.5 parts of 10% aqueous solution of ammonium persulfate was added in three portions to complete the reaction, cooled to room temperature, non-volatile content 49.1%, viscosity 26, 200 mPa.s. s (Brookfield viscometer BM 12 rpm, 23 ° C.) aqueous synthetic resin emulsion was obtained.
[Production of re-emulsifiable synthetic resin powder]
Using the obtained aqueous synthetic resin emulsion, an attempt was made to produce a re-emulsifiable synthetic resin powder in the same manner as in Example 1, but the viscosity was high and spray spraying was impossible.
<比較例4>
〔プレエマルジョンの調製〕
 実施例1と同様にして、プレエマルジョンを調製した。
〔水性合成樹脂エマルジョンの製造〕
 パドル型撹拌翼、還流冷却器、滴下漏斗、温度計を備えたセパラブルフラスコに水52部、酢酸ナトリウム1部を加え、150rpmで撹拌しながらフラスコ内の温度を80℃に昇温した。次に、過硫酸アンモニウム10%水溶液3部をフラスコに添加し、さらに、上記で調製したプレエマルジョン15.4部(重合モノマー全量の10%)を一括して添加して、10分間初期重合を行った後、続いてプレエマルジョン138.6部と過硫酸アンモニウム10%水溶液4.6部を滴下漏斗より5時間掛けて滴下したが、途中で反応が不安定となり、良好な重合反応が行えず、水性合成樹脂エマルジョンを得ることができなかった。
<Comparative Example 4>
[Preparation of pre-emulsion]
A pre-emulsion was prepared in the same manner as in Example 1.
[Production of aqueous synthetic resin emulsion]
52 parts of water and 1 part of sodium acetate were added to a separable flask equipped with a paddle type stirring blade, a reflux condenser, a dropping funnel and a thermometer, and the temperature in the flask was raised to 80 ° C. while stirring at 150 rpm. Next, 3 parts of a 10% aqueous solution of ammonium persulfate was added to the flask, and 15.4 parts of the pre-emulsion prepared above (10% of the total amount of polymerization monomers) were added all at once, and initial polymerization was performed for 10 minutes. After that, 138.6 parts of pre-emulsion and 4.6 parts of 10% aqueous solution of ammonium persulfate were added dropwise from the dropping funnel over 5 hours. However, the reaction became unstable in the middle, and a good polymerization reaction could not be performed. A synthetic resin emulsion could not be obtained.
 上記実施例1および比較例1で得られた再乳化性合成樹脂粉末を用いて、以下の方法により再乳化性、ポリマーセメントモルタルの流動性を評価した。 Using the re-emulsifiable synthetic resin powder obtained in Example 1 and Comparative Example 1, the re-emulsification property and the fluidity of the polymer cement mortar were evaluated by the following methods.
<樹脂粉末の再乳化性>
 脱イオン水100部に、攪拌しながら再乳化性水性合成樹脂エマルジョン粉末100部を添加し、その後1000回転で10分間撹拌して再乳化した。この再乳化液のブルックフィールド型粘度計BM12rpm、23℃における粘度を測定した。評価基準は以下のとおりである。結果を表2に示す。
 (評価基準)
  ○・・・再乳化したエマルジョン溶液の粘度が3,000mPa.s未満
  △・・・再乳化したエマルジョン溶液の粘度が3,000mPa.s以上、5,000mPa.s未満
  ×・・・再乳化したエマルジョン溶液の粘度が5,000mPa.s以上
<Re-emulsification of resin powder>
To 100 parts of deionized water, 100 parts of a re-emulsifiable aqueous synthetic resin emulsion powder was added with stirring, and then re-emulsified by stirring for 10 minutes at 1000 rpm. The viscosity of this re-emulsified liquid at Brookfield viscometer BM 12 rpm, 23 ° C. was measured. The evaluation criteria are as follows. The results are shown in Table 2.
(Evaluation criteria)
A: The viscosity of the re-emulsified emulsion solution is 3,000 mPa.s. Less than s Δ: The viscosity of the re-emulsified emulsion solution is 3,000 mPa.s. s or more and 5,000 mPa.s. Less than s x: The viscosity of the re-emulsified emulsion solution is 5,000 mPa.s. s or more
 <ポリマーセメントモルタルの流動性>
 JIS A6203に準拠して、下記表1のように再乳化性合成樹脂粉末と各種成分を配合し、ポリマーセメントモルタルが規定のフロー値:170±5mmに適合するまで加水してポリマーセメントモルタルを作製した。
 各加水量におけるポリマーセメントモルタルのフロー値を表1に示す。
<Flowability of polymer cement mortar>
In accordance with JIS A6203, re-emulsifiable synthetic resin powder and various components are blended as shown in Table 1 below, and water is added until the polymer cement mortar conforms to the specified flow value: 170 ± 5 mm to produce a polymer cement mortar. did.
Table 1 shows the flow value of the polymer cement mortar at each amount of water added.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 JIS A6203規定のフロー値を満たすまで加水したポリマーセメントモルタルについて、水/セメント(%)を求め、下記の基準で評価した。結果を表2に示す。
 (評価基準)
  ○・・・水/セメントが80%未満
  ×・・・水/セメントが80%以上
Water / cement (%) was determined for the polymer cement mortar that had been watered until the flow value specified in JIS A6203 was satisfied, and was evaluated according to the following criteria. The results are shown in Table 2.
(Evaluation criteria)
○ ・ ・ ・ Water / cement is less than 80% × ・ ・ ・ Water / cement is 80% or more
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2に示すように、本発明の製造方法で得られたに実施例1の合成樹脂エマルジョンは粘度が低く、これを乾燥して得られた乳化性合成樹脂粉末は、再乳化性に優れ、これを用いてなるセメントモルタルの流動性が良好であることがわかる。 As shown in Table 2, the synthetic resin emulsion of Example 1 obtained by the production method of the present invention has a low viscosity, and the emulsifiable synthetic resin powder obtained by drying the emulsion has excellent re-emulsification properties. It turns out that the fluidity | liquidity of the cement mortar which uses this is favorable.
 一方、本発明の製造方法とモノマーの重合方法が異なる製造方法で得られた比較例1の合成樹脂エマルジョンは、粘度が高く、これを乾燥して得られた再乳化性合成樹脂粉末は、再乳化後の粘度も高く再乳化性に劣るものであった。
 また、表1及び表2の結果からわかるように、比較例1の製造方法で得られた合成樹脂エマルジョンを乾燥して得られた再乳化性合成樹脂粉末を用いたポリマーセメントモルタルは、実施例1と同量の加水量ではJIS A 6203に規定のフロー値に適合させることができず、規定のフロー値に適合するよう調整するためにはより多くの水を加える必要があるものであり、実施例1の製造方法で得られた合成樹脂エマルジョンを乾燥して得られた再乳化性合成樹脂粉末と比べて流動性に劣るものであることがわかる。ポリマーセメントモルタルの加水量が多いと、ポリマーセメントの硬化速度が低下し、また得られる硬化物の強度が低下するため、実用性に劣るものであった。
On the other hand, the synthetic resin emulsion of Comparative Example 1 obtained by a production method different from the production method of the present invention and the monomer polymerization method has a high viscosity, and the re-emulsifiable synthetic resin powder obtained by drying the emulsion is The viscosity after emulsification was also high and inferior in re-emulsification.
Moreover, as can be seen from the results of Tables 1 and 2, the polymer cement mortar using the re-emulsifiable synthetic resin powder obtained by drying the synthetic resin emulsion obtained by the production method of Comparative Example 1 The amount of water equal to 1 cannot be adjusted to the specified flow value in JIS A 6203, and more water must be added to adjust the flow value to the specified flow value. It turns out that it is inferior to fluidity | liquidity compared with the re-emulsifiable synthetic resin powder obtained by drying the synthetic resin emulsion obtained by the manufacturing method of Example 1. If the amount of water in the polymer cement mortar is large, the curing rate of the polymer cement is lowered and the strength of the resulting cured product is lowered, so that the practicality is inferior.
 また、比較例2、3の製造方法で得られた合成樹脂エマルジョンは粘度が高いため再乳化性合成樹脂粉末を得ることができず、比較例4の製造方法においては、重合安定性が悪く、合成樹脂エマルジョンを得ることができなかった。 In addition, since the synthetic resin emulsions obtained by the production methods of Comparative Examples 2 and 3 have a high viscosity, re-emulsifiable synthetic resin powders cannot be obtained. In the production method of Comparative Example 4, the polymerization stability is poor, A synthetic resin emulsion could not be obtained.
 本発明の水性合成樹脂エマルジョンの製造方法によれば、高固形分濃度かつ低粘度の水性合成樹脂エマルジョンを得ることができ、そのため、再乳化後の作業性に優れるエマルジョン粉末を生産効率よく得ることができ、本発明の再乳化性合成樹脂粉末の製造方法により得られる再乳化性合成樹脂粉末およびこれを再乳化して得られる水性合成樹脂エマルジョンは、セメントモルタル混和剤として使用した際に、良好な流動性、作業性を示し、セメントモルタル用途として、補修モルタル用、下地調整塗材用、セルフレベリング材、タイル接着モルタル、及び石膏系材料などの改質剤として非常に有用である。 According to the method for producing an aqueous synthetic resin emulsion of the present invention, an aqueous synthetic resin emulsion having a high solid content and a low viscosity can be obtained. Therefore, an emulsion powder having excellent workability after re-emulsification can be obtained with high production efficiency. The re-emulsifiable synthetic resin powder obtained by the production method of the re-emulsifiable synthetic resin powder of the present invention and the aqueous synthetic resin emulsion obtained by re-emulsifying this are good when used as a cement mortar admixture. It exhibits excellent fluidity and workability and is very useful as a modifier for cement mortar applications, such as for repair mortars, undercoating materials, self-leveling materials, tile adhesive mortars, and gypsum-based materials.

Claims (8)

  1.  重合成分をポリビニルアルコール系樹脂の存在下で乳化重合する水性合成樹脂エマルジョンの製造方法であって、
     20℃の水に対する溶解度が0.1%以下である疎水性モノマーを前記重合成分全体に対して30重量%以上含有し、
     水性媒体中に、前記重合成分の全量を連続して添加しながら乳化重合することを特徴とする水性合成樹脂エマルジョンの製造方法。
    A method for producing an aqueous synthetic resin emulsion in which a polymerization component is emulsion-polymerized in the presence of a polyvinyl alcohol resin,
    A hydrophobic monomer having a solubility in water at 20 ° C. of 0.1% or less is 30% by weight or more based on the whole polymerization component,
    A method for producing an aqueous synthetic resin emulsion, wherein emulsion polymerization is carried out while continuously adding the total amount of the polymerization components to an aqueous medium.
  2.  20℃の水に対する溶解度が0.1%以下である前記疎水性モノマーとしてスチレンを含有し、
     このスチレンの含有割合が、前記重合成分中の20℃の水に対する溶解度が0.1%以下である前記疎水性モノマー全体に対して80重量%以下であることを特徴とする請求項1記載の水性合成樹脂エマルジョンの製造方法。
    Containing styrene as the hydrophobic monomer having a solubility in water of 20 ° C. of 0.1% or less,
    The content of this styrene is 80% by weight or less based on the whole hydrophobic monomer having a solubility in water at 20 ° C. in the polymerization component of 0.1% or less. A method for producing an aqueous synthetic resin emulsion.
  3.  前記重合成分の全量を、前記ポリビニルアルコール系樹脂の存在下、前記水性媒体中に乳化分散させてプレエマルジョンを調製し、該プレエマルジョンの全量を前記水性媒体中に連続して添加しながら乳化重合することを特徴とする請求項1又は2記載の水性合成樹脂エマルジョンの製造方法。 In the presence of the polyvinyl alcohol resin, the entire amount of the polymerization component is emulsified and dispersed in the aqueous medium to prepare a pre-emulsion, and the total amount of the pre-emulsion is continuously added to the aqueous medium while performing emulsion polymerization. A method for producing an aqueous synthetic resin emulsion according to claim 1 or 2.
  4.  前記水性合成樹脂エマルジョンの粘度が100~5000mPa・s、かつ、固形分濃度が30~60%であることを特徴とする請求項1~3のいずれかに記載の水性合成樹脂エマルジョンの製造方法。 The method for producing an aqueous synthetic resin emulsion according to any one of claims 1 to 3, wherein the viscosity of the aqueous synthetic resin emulsion is 100 to 5000 mPa · s and the solid content concentration is 30 to 60%.
  5.  請求項1~4のいずれかに記載の製造方法で得られた水性合成樹脂エマルジョンを乾燥することを特徴とする再乳化性合成樹脂粉末の製造方法。 A method for producing a re-emulsifiable synthetic resin powder, comprising drying the aqueous synthetic resin emulsion obtained by the production method according to any one of claims 1 to 4.
  6.  請求項5記載の製造方法で得られた再乳化性合成樹脂粉末を用いることを特徴とするポリマーセメントモルタルの製造方法。 A method for producing a polymer cement mortar, wherein the re-emulsifiable synthetic resin powder obtained by the production method according to claim 5 is used.
  7.  20℃の水に対する溶解度が0.1%以下である疎水性モノマーが30重量%以上含有された重合成分を重合してなる水性合成樹脂エマルジョンであり、
     該疎水性モノマーとしてスチレン含有され、
     該スチレンの含有割合が、該疎水性モノマー全体に対して80重量%以下であり、
     粘度が100~5,000mPa・s、かつ、固形分濃度が30~60%であることを特徴とする水性合成樹脂エマルジョン。
    An aqueous synthetic resin emulsion obtained by polymerizing a polymerization component containing 30% by weight or more of a hydrophobic monomer having a solubility in water at 20 ° C. of 0.1% or less,
    Styrene-containing as the hydrophobic monomer,
    The content of the styrene is 80% by weight or less based on the entire hydrophobic monomer,
    An aqueous synthetic resin emulsion characterized by a viscosity of 100 to 5,000 mPa · s and a solid content concentration of 30 to 60%.
  8.  請求項7記載の水性合成樹脂エマルジョンから得られたことを特徴とする再乳化性合成樹脂粉末。 A re-emulsifiable synthetic resin powder obtained from the aqueous synthetic resin emulsion according to claim 7.
PCT/JP2016/087093 2015-12-18 2016-12-13 Method for producing aqueous synthetic resin emulsion, method for producing reemulsifiable synthetic resin powder, method for producing polymer cement mortar, aqueous synthetic resin emulsion, and reemulsifiable synthetic resin powder WO2017104671A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017501044A JP6861147B2 (en) 2015-12-18 2016-12-13 A method for producing an aqueous synthetic resin emulsion, a method for producing a re-emulsifying synthetic resin powder, a method for producing a polymer cement mortar, an aqueous synthetic resin emulsion and a re-emulsifying synthetic resin powder.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015247078 2015-12-18
JP2015-247078 2015-12-18

Publications (1)

Publication Number Publication Date
WO2017104671A1 true WO2017104671A1 (en) 2017-06-22

Family

ID=59056636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087093 WO2017104671A1 (en) 2015-12-18 2016-12-13 Method for producing aqueous synthetic resin emulsion, method for producing reemulsifiable synthetic resin powder, method for producing polymer cement mortar, aqueous synthetic resin emulsion, and reemulsifiable synthetic resin powder

Country Status (3)

Country Link
JP (1) JP6861147B2 (en)
TW (1) TWI810149B (en)
WO (1) WO2017104671A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109912234A (en) * 2019-03-01 2019-06-21 江西赣丰玻纤网有限公司 A kind of high-performance glass coating and preparation method thereof
CN114057439A (en) * 2021-12-15 2022-02-18 山东银王建筑工程有限公司 Elastic mortar for building exterior wall and preparation process thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04185607A (en) * 1990-11-21 1992-07-02 Hoechst Gosei Kk Redispersible acrylic resin powder prepared from emulsion containing protective clloid and production of the powder
JPH05330887A (en) * 1992-05-29 1993-12-14 Kanebo Nsc Ltd Method for water-curing cement mixed with polymer emulsion by using modified polyvinyl alcohol
JPH06128443A (en) * 1992-10-21 1994-05-10 Kuraray Co Ltd Aqueous emulsion
JP2001163901A (en) * 1999-12-06 2001-06-19 Unitika Chem Co Ltd Method for emulsion polymerizing vinyl compound
WO2007060960A1 (en) * 2005-11-24 2007-05-31 Nichigo-Mowinyl Co., Ltd. Re-emulsifiable resin powder, aqueous emulsion and adhesive composition using same
JP2007254712A (en) * 2006-02-22 2007-10-04 Nippon Synthetic Chem Ind Co Ltd:The Aqueous emulsion and use of the same
JP2008208192A (en) * 2007-02-26 2008-09-11 Nichigo-Mowinyl Co Ltd Aqueous emulsion, method for producing aqueous emulsion and re-emulsifiable resin powder
WO2009011334A1 (en) * 2007-07-18 2009-01-22 Nichigo-Mowinyl Co., Ltd. Aqueous synthetic resin emulsion, re-emulsifiable emulion powder, and adhesive composition containing the same
JP2016160140A (en) * 2015-03-02 2016-09-05 Dic株式会社 Method for finishing surface of cement composition, and cement structure for water use section

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7981958B1 (en) * 2002-09-17 2011-07-19 Kuraray Co., Ltd. Synthetic resin emulsion powder

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04185607A (en) * 1990-11-21 1992-07-02 Hoechst Gosei Kk Redispersible acrylic resin powder prepared from emulsion containing protective clloid and production of the powder
JPH05330887A (en) * 1992-05-29 1993-12-14 Kanebo Nsc Ltd Method for water-curing cement mixed with polymer emulsion by using modified polyvinyl alcohol
JPH06128443A (en) * 1992-10-21 1994-05-10 Kuraray Co Ltd Aqueous emulsion
JP2001163901A (en) * 1999-12-06 2001-06-19 Unitika Chem Co Ltd Method for emulsion polymerizing vinyl compound
WO2007060960A1 (en) * 2005-11-24 2007-05-31 Nichigo-Mowinyl Co., Ltd. Re-emulsifiable resin powder, aqueous emulsion and adhesive composition using same
JP2007254712A (en) * 2006-02-22 2007-10-04 Nippon Synthetic Chem Ind Co Ltd:The Aqueous emulsion and use of the same
JP2008208192A (en) * 2007-02-26 2008-09-11 Nichigo-Mowinyl Co Ltd Aqueous emulsion, method for producing aqueous emulsion and re-emulsifiable resin powder
WO2009011334A1 (en) * 2007-07-18 2009-01-22 Nichigo-Mowinyl Co., Ltd. Aqueous synthetic resin emulsion, re-emulsifiable emulion powder, and adhesive composition containing the same
JP2016160140A (en) * 2015-03-02 2016-09-05 Dic株式会社 Method for finishing surface of cement composition, and cement structure for water use section

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109912234A (en) * 2019-03-01 2019-06-21 江西赣丰玻纤网有限公司 A kind of high-performance glass coating and preparation method thereof
CN109912234B (en) * 2019-03-01 2021-09-28 江西赣丰玻纤网有限公司 Glass fiber coating and preparation method thereof
CN114057439A (en) * 2021-12-15 2022-02-18 山东银王建筑工程有限公司 Elastic mortar for building exterior wall and preparation process thereof

Also Published As

Publication number Publication date
JPWO2017104671A1 (en) 2018-10-04
JP6861147B2 (en) 2021-04-21
TWI810149B (en) 2023-08-01
TW201734057A (en) 2017-10-01

Similar Documents

Publication Publication Date Title
EP2166028B1 (en) Aqueous synthetic-resin emulsion for cement mortar admixture, re-emulsifiable powder for cement mortar admixture from aqueous synthetic-resin emulsion, and cement mortar admixture comprising the same
JP4398789B2 (en) Redispersible acrylic synthetic resin emulsion powder composition and method for producing the same
RU2411266C2 (en) Re-emulsifiable powdered resin, aqueous emulsion and adhesive composition based on said emulsion
JP2010510342A (en) Method for producing dispersion and use thereof
JP2006057019A (en) Aqueous acrylic copolymer emulsion, redispersible acrylic copolymer emulsion powder and method for producing the same
JP4963877B2 (en) Redispersible powder of synthetic resin emulsion composition
JP2000053711A (en) Re-dispersible emulsion powder and its production
JP2008038144A (en) Reemulsifiable resin powder, aqueous emulsion and finish coating material for building produced by using the same
WO2013187443A1 (en) Re-emulsifiable synthetic resin powder composition for polymer cement and polymer cement mortar formed using same
JP6861147B2 (en) A method for producing an aqueous synthetic resin emulsion, a method for producing a re-emulsifying synthetic resin powder, a method for producing a polymer cement mortar, an aqueous synthetic resin emulsion and a re-emulsifying synthetic resin powder.
JP4979494B2 (en) Re-emulsifiable resin powder composition for hydraulic material, aqueous emulsion for hydraulic material, and building finish coating material using them
JP5370801B2 (en) Aqueous synthetic resin emulsion for cement mortar admixture, re-emulsifiable aqueous synthetic resin emulsion powder for cement mortar admixture, and cement mortar admixture using the same
JP5489091B2 (en) Re-emulsifiable resin powder composition, aqueous emulsion obtained by re-emulsifying the same, and building finish coating material using the same
JP5398115B2 (en) Re-emulsifiable resin powder, aqueous emulsion, and adhesive composition using the same
WO2006132210A1 (en) Synthetic resin emulsion composition
JP5892835B2 (en) Re-emulsifiable synthetic resin powder composition for polymer cement, and polymer cement mortar using the same
JP4071182B2 (en) Admixture or joint material for synthetic resin powder and hydraulic material
JP2017119737A (en) Method for producing synthetic resin emulsion, polymer cement composition using synthetic resin emulsion obtained by production method, and coated film waterproof material obtained by using the polymer cement composition
JP5557222B2 (en) Cation polymer-containing aqueous emulsion, cationic polymer-containing aqueous emulsion powder, and cement mortar admixture using the same
JP4997489B2 (en) Cement mortar admixture
JP2014015386A (en) Re-emulsifiable synthetic resin powder for polymer cement and polymer cement mortar using the same
JP4738726B2 (en) Synthetic resin emulsion powder and use thereof
JP4071181B2 (en) Synthetic resin emulsion powder
JP2014015385A (en) Re-emulsifiable synthetic resin powder for polymer cement and polymer cement mortar formed using the same
KR102026807B1 (en) Organic-inorgainc hybride micelle particle and methode for manufacturing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017501044

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875648

Country of ref document: EP

Kind code of ref document: A1