JP6861147B2 - A method for producing an aqueous synthetic resin emulsion, a method for producing a re-emulsifying synthetic resin powder, a method for producing a polymer cement mortar, an aqueous synthetic resin emulsion and a re-emulsifying synthetic resin powder. - Google Patents

A method for producing an aqueous synthetic resin emulsion, a method for producing a re-emulsifying synthetic resin powder, a method for producing a polymer cement mortar, an aqueous synthetic resin emulsion and a re-emulsifying synthetic resin powder. Download PDF

Info

Publication number
JP6861147B2
JP6861147B2 JP2017501044A JP2017501044A JP6861147B2 JP 6861147 B2 JP6861147 B2 JP 6861147B2 JP 2017501044 A JP2017501044 A JP 2017501044A JP 2017501044 A JP2017501044 A JP 2017501044A JP 6861147 B2 JP6861147 B2 JP 6861147B2
Authority
JP
Japan
Prior art keywords
synthetic resin
emulsion
emulsifying
polymerization
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017501044A
Other languages
Japanese (ja)
Other versions
JPWO2017104671A1 (en
Inventor
直一 村瀬
直一 村瀬
一雄 相場
一雄 相場
勝巳 枝沢
勝巳 枝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Coating Resin Co Ltd
Original Assignee
Japan Coating Resin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Coating Resin Co Ltd filed Critical Japan Coating Resin Co Ltd
Publication of JPWO2017104671A1 publication Critical patent/JPWO2017104671A1/en
Application granted granted Critical
Publication of JP6861147B2 publication Critical patent/JP6861147B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/30Emulsion polymerisation with the aid of emulsifying agents non-ionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene

Description

本発明は、水性合成樹脂エマルジョンの製造方法、再乳化性合成樹脂粉末の製造方法、ポリマーセメントモルタルの製造方法、水性合成樹脂エマルジョン及び再乳化性合成樹脂粉末に関するものであり、更に詳しくは、再乳化性合成樹脂粉末の製造に好適であり、かつセメントと混和してポリマーセメントとするのに好適な水性合成樹脂エマルジョン、それを粉末化した再乳化性合成樹脂粉末及びそれらの製造方法、並びにポリマーセメントモルタルの製造方法に関するものである。 The present invention relates to a method for producing an aqueous synthetic resin emulsion, a method for producing a re-emulsifying synthetic resin powder, a method for producing a polymer cement mortar, an aqueous synthetic resin emulsion and a re-emulsifying synthetic resin powder. Aqueous synthetic resin emulsion suitable for producing emulsifying synthetic resin powder and suitable for mixing with cement to obtain polymer cement, re-emulsifying synthetic resin powder obtained by powdering the emulsion, a method for producing them, and a polymer. It relates to a method for producing a cement mortar.

従来より、水を含んだエマルジョンを噴霧乾燥させて得られる一般的な再乳化性合成樹脂粉末は、水を含んでいるエマルジョンに比べて、凍結するおそれもなく取扱いや輸送が容易であることから、様々な用途で用いられており、例えば、セメントと混和してポリマーセメントとすることで、モルタルやコンクリートとして有効に使用されている。特に、再乳化性合成樹脂粉末は、粉末であるためプレミックスが可能であり、あらかじめ最適な混合比でセメント等と混合した商品とすることができ、施工現場でセメントと混和することなくすぐに使用できるため、広く用いられている。 Conventionally, a general re-emulsifying synthetic resin powder obtained by spray-drying an emulsion containing water is easier to handle and transport than an emulsion containing water without fear of freezing. , It is used for various purposes. For example, it is effectively used as mortar and concrete by mixing with cement to form polymer cement. In particular, since the re-emulsifying synthetic resin powder is a powder, it can be premixed and can be made into a product mixed with cement or the like in advance at an optimum mixing ratio, and can be immediately mixed with cement at the construction site. It is widely used because it can be used.

例えば、下記特許文献1には、特定構造を有するポリビニルアルコール系樹脂[I]により、アクリル系モノマー及びスチレン系モノマーの少なくとも1種のモノマー(A)と特定の官能基含有モノマー(B)とを共重合成分とする合成樹脂が分散安定化されてなる、セメントモルタル混和剤用水性合成樹脂エマルジョン、およびこのエマルジョンを乾燥してなるセメントモルタル混和剤用再乳化性水性合成樹脂エマルジョン粉末が開示されており、これらをセメントモルタル混和剤として使用した場合に、良好な流動性、作業性を示し、物性ばらつきが少なく、加えて接着強さなどが向上することが記載されている。
また、下記特許文献2には、特定のガラス転移温度の合成樹脂を含む再乳化性合成樹脂粉末(A)と珪素を含有する無機微粒子(B)を含有するポリマーセメント用再乳化性合成樹脂粉末組成物、およびこの組成物を用いてなるポリマーセメントモルタルが開示されており、再乳化性合成樹脂粉末の耐ブロッキング性と、セメント混和後の強度・伸度・流動性とにバランスよく優れることが記載されている。
For example, in Patent Document 1 below, at least one monomer (A) of an acrylic monomer and a styrene monomer and a specific functional group-containing monomer (B) are provided by a polyvinyl alcohol-based resin [I] having a specific structure. Disclosed are an aqueous synthetic resin emulsion for a cement mortar admixture in which a synthetic resin as a copolymerization component is dispersed and stabilized, and a re-emulsifying aqueous synthetic resin emulsion powder for a cement mortar admixture obtained by drying this emulsion. It is described that when these are used as a cement mortar admixture, they show good fluidity and workability, have little variation in physical properties, and improve adhesive strength and the like.
Further, in Patent Document 2 below, a re-emulsifying synthetic resin powder for polymer cement containing a re-emulsifying synthetic resin powder (A) containing a synthetic resin having a specific glass transition temperature and inorganic fine particles (B) containing silicon is described. The composition and the polymer cement mortar using this composition are disclosed, and the blocking resistance of the re-emulsifying synthetic resin powder and the strength, elongation, and fluidity after cement mixing are well-balanced and excellent. Are listed.

特開2009−35470号公報Japanese Unexamined Patent Publication No. 2009-35470 特開2014−15386号公報Japanese Unexamined Patent Publication No. 2014-15386

しかしながら、特許文献1や特許文献2においては、乳化重合工程において、モノマー成分の一部を予め重合させる初期重合を行っているため、樹脂粒子の平均粒子径が比較的小さいものとなり、その結果、得られる水性合成樹脂エマルジョンの粘度が高くなる傾向があった。水性合成樹脂エマルジョンの粘度が高いと、噴霧乾燥による粉末化において、スプレーの目詰まりなどが起きやすく均一なスプレー噴霧ができないため、安定した生産が難しいという問題があった。一方、スプレー噴霧に好適なように水で希釈して粘度を下げるとスプレー噴霧された液滴の固形分濃度が下がるため、乾燥温度を上げるなどエネルギー効率が悪くなるという問題があった。 However, in Patent Document 1 and Patent Document 2, since the initial polymerization in which a part of the monomer components is polymerized in advance is performed in the emulsion polymerization step, the average particle size of the resin particles becomes relatively small, and as a result, the average particle size is relatively small. The viscosity of the obtained aqueous synthetic resin emulsion tended to increase. If the viscosity of the aqueous synthetic resin emulsion is high, clogging of the spray is likely to occur in powdering by spray drying, and uniform spray spraying cannot be performed, which causes a problem that stable production is difficult. On the other hand, if the viscosity is lowered by diluting with water so as to be suitable for spray spraying, the solid content concentration of the spray-sprayed droplets is lowered, so that there is a problem that energy efficiency is deteriorated such as raising the drying temperature.

また、粘度の高い水性合成樹脂エマルジョンを粉末化して得られた再乳化性合成樹脂粉末は、水へ再分散させた際にも粘度が高くなる傾向にあり、ポリマーセメントに用いた場合に、得られるポリマーセメントモルタルのスラリー粘度が高くなり、塗工性が低下したり塗工外観が劣るなどの問題があった。なお、作業性を重視して、加水してモルタルの流動性を調整することも可能であるが、この場合、ポリマーセメントモルタルの性能(曲げ強度・圧縮強度・密着強度など)が不足する懸念があった。 In addition, the re-emulsifying synthetic resin powder obtained by powdering a highly viscous aqueous synthetic resin emulsion tends to have a high viscosity even when redispersed in water, and is obtained when used for polymer cement. There are problems that the slurry viscosity of the polymer cement mortar to be obtained is increased, the coatability is lowered, and the coating appearance is deteriorated. It is possible to adjust the fluidity of the mortar by adding water with an emphasis on workability, but in this case, there is a concern that the performance of the polymer cement mortar (bending strength, compressive strength, adhesion strength, etc.) will be insufficient. there were.

本発明は、上記の事情に鑑みてなされたものであり、高固形分濃度かつ低粘度であるため、再乳化後の作業性に優れるエマルジョン粉末を生産効率がよく得ることができる水性合成樹脂エマルジョンの製造方法、及び再乳化性合成樹脂粉末の製造方法、並びにポリマーセメントモルタルの製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and since it has a high solid content concentration and low viscosity, an aqueous synthetic resin emulsion capable of obtaining an emulsion powder having excellent workability after re-emulsification with good production efficiency can be obtained. It is an object of the present invention to provide a method for producing a reemulsifying synthetic resin powder, a method for producing a polymer cement mortar, and a method for producing a polymer cement mortar.

しかるに、本発明者がかかる事情に鑑み鋭意研究を重ねた結果、重合成分をポリビニルアルコール系樹脂の存在下で乳化重合する水性合成樹脂エマルジョンの製造方法において、多量の疎水性モノマーを用い、更に、初期重合を行なわず、水性媒体中に重合成分の全量を連続して添加しながら乳化重合することにより、固形分濃度が高く、かつ粘度が低い水性合成樹脂エマルジョンが得られ、これを用いることにより再乳化性合成樹脂粉末を効率よく製造できることを見出し、本発明を完成させた。 However, as a result of diligent research conducted by the present inventor in view of such circumstances, a large amount of hydrophobic monomer was used in the method for producing an aqueous synthetic resin emulsion in which the polymerization component was emulsion-polymerized in the presence of a polyvinyl alcohol-based resin. By emulsion polymerization while continuously adding the entire amount of the polymerization component to the aqueous medium without performing initial polymerization, an aqueous synthetic resin emulsion having a high solid content concentration and a low viscosity can be obtained, and by using this. We have found that a re-emulsifying synthetic resin powder can be efficiently produced, and completed the present invention.

一般的に、乳化重合においては、粒子を成長させながら反応を進め、反応熱を制御し易くする点からは、重合成分の一部を予め重合させる初期重合を行うことが好ましいものの、本発明においては、あえて初期重合を行わず、成分の全量を連続して添加するものである。
初期重合を行なった場合では、重合成分の一部を重合することにより微細な「種粒子」が形成され、これをもとに樹脂粒子が成長していくため、得られる樹脂粒子の粒子径が比較的小さくなり、エマルジョンの粘度が上昇してしまうのに対して、本発明においては、上記の通り初期重合を行わず重合成分が連続して添加されることにより、生成する種粒子に比べて十分に大きい重合成分を含有する液滴(重合成分をプレ乳化してなるプレエマルジョンであることが好ましい)そのものが重合反応して樹脂粒子となるため、得られる樹脂粒子は比較的粒子径の大きなものとなり、エマルジョンの粘度が低くできるものと推察するものである。
Generally, in emulsion polymerization, from the viewpoint of advancing the reaction while growing particles and facilitating control of the heat of reaction, it is preferable to carry out initial polymerization in which a part of the polymerization component is polymerized in advance, but in the present invention. Is intended to continuously add the entire amount of the components without intentionally performing initial polymerization.
In the case of initial polymerization, fine "seed particles" are formed by polymerizing a part of the polymerization component, and the resin particles grow based on this, so that the particle size of the obtained resin particles becomes large. In contrast to the fact that the emulsion becomes relatively small and the viscosity of the emulsion increases, in the present invention, as described above, the polymerization components are continuously added without performing the initial polymerization, as compared with the seed particles produced. Since the droplets containing a sufficiently large polymerization component (preferably a pre-emulsion obtained by pre-emulsifying the polymerization component) itself polymerize to form resin particles, the obtained resin particles have a relatively large particle size. It is presumed that the viscosity of the emulsion can be reduced.

すなわち、本発明の要旨は、重合成分をポリビニルアルコール系樹脂の存在下で乳化重合する水性合成樹脂エマルジョンの製造方法であって、20℃の水に対する溶解度が0.1%以下である疎水性モノマーを前記重合成分全体に対して30重量%以上含有し、水性媒体中に、前記重合成分の全量を連続して添加しながら乳化重合することを特徴とする水性合成樹脂エマルジョンの製造方法に関するものである。 That is, the gist of the present invention is a method for producing an aqueous synthetic resin emulsion in which a polymerization component is emulsion-polymerized in the presence of a polyvinyl alcohol-based resin, and a hydrophobic monomer having a solubility in water at 20 ° C. of 0.1% or less. The present invention relates to a method for producing an aqueous synthetic resin emulsion, which comprises 30% by weight or more based on the total amount of the polymerization component and is emulsion-polymerized while continuously adding the entire amount of the polymerization component to an aqueous medium. is there.

また、本発明は、上記水性合成樹脂エマルジョンを乾燥してなる再乳化性合成樹脂粉末の製造方法、及びこれらを用いることを特徴とするポリマーセメントモルタルの製造方法、更には水性合成樹脂エマルジョン、再乳化性合成樹脂粉末にも関するものである。 Further, the present invention comprises a method for producing a re-emulsifying synthetic resin powder obtained by drying the above-mentioned aqueous synthetic resin emulsion, a method for producing a polymer cement mortar using these, and further an aqueous synthetic resin emulsion and a re-emulsifying method. It also relates to emulsifying synthetic resin powder.

本発明の水性合成樹脂エマルジョンの製造方法によれば、高固形分濃度かつ低粘度の水性合成樹脂エマルジョンを得ることができ、これを乾燥することにより、エネルギー的にも生産効率よく再乳化性合成樹脂粉末を製造することができ、得られた再乳化性合成樹脂粉末およびこれを再乳化して得られる水性合成樹脂エマルジョンは、セメントモルタル混和剤として使用した際に、良好な流動性、作業性を示し、セメントモルタル用途として、補修モルタル用、下地調整塗材用、セルフレベリング材、タイル接着モルタル、及び石膏系材料などの改質剤として非常に有用である。 According to the method for producing an aqueous synthetic resin emulsion of the present invention, an aqueous synthetic resin emulsion having a high solid content concentration and a low viscosity can be obtained, and by drying the aqueous synthetic resin emulsion, re-emulsifying synthesis can be performed efficiently in terms of energy. A resin powder can be produced, and the obtained re-emulsifying synthetic resin powder and the aqueous synthetic resin emulsion obtained by re-emulsifying the resin powder have good fluidity and workability when used as a cement mortar admixture. As a cement mortar, it is very useful as a modifier for repair mortars, base adjustment coating materials, self-leveling materials, tile adhesive mortars, and plaster-based materials.

以下、本発明の構成につき詳細に説明するが、これらは望ましい実施態様の一例を示すものであり、本発明はこれらの内容に特定されるものではない。 Hereinafter, the configuration of the present invention will be described in detail, but these are examples of desirable embodiments, and the present invention is not specified in these contents.

〔水性合成樹脂エマルジョンの製造方法〕
本発明の水性合成樹脂エマルジョンの製造方法は、重合成分(以下、この発明で用いられる重合成分を「重合成分[I]」と称する。)をポリビニルアルコール系樹脂の存在下で乳化重合するものであり、水性媒体中に、重合成分[I]の全量を連続して添加しながら乳化重合することを特徴とするものである。
[Manufacturing method of aqueous synthetic resin emulsion]
The method for producing an aqueous synthetic resin emulsion of the present invention comprises emulsifying and polymerizing a polymerization component (hereinafter, the polymerization component used in the present invention is referred to as "polymerization component [I]") in the presence of a polyvinyl alcohol-based resin. It is characterized by emulsifying and polymerizing while continuously adding the entire amount of the polymerization component [I] to an aqueous medium.

重合成分[I]としては、例えば、アクリル系モノマー、スチレン系モノマー、ビニルエステル系モノマーの少なくとも1種のモノマー成分を主成分として含有することが好ましい。本発明において、主成分とするとは全体の50重量%以上を占めることを意味し、全体が主成分のみからなる場合も含む意味である。 As the polymerization component [I], for example, it is preferable to contain at least one monomer component of an acrylic monomer, a styrene monomer, and a vinyl ester monomer as a main component. In the present invention, the term "main component" means that it occupies 50% by weight or more of the whole, and includes the case where the whole is composed of only the main component.

上記アクリル系モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、オクチル(メタ)アクリレート、ステアリル(メタ)アクリレート等の脂肪族系(メタ)アクリレートや、フェノキシ(メタ)アクリレート等の芳香族系(メタ)アクリレート、(メタ)アクリル酸トリフルオロエチル等が挙げられ、中でもアルキル基の炭素数が1〜18、特には1〜10の脂肪族系(メタ)アクリレートが好適であり、また、これらは1種または2種以上を用いることができる。
なお、本発明において、(メタ)アクリレートとはアクリレートあるいはメタクリレートを意味するものである。
Examples of the acrylic monomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate, and 2-ethylhexyl (meth). ) Acrylate (meth) acrylate such as acrylate, cyclohexyl (meth) acrylate, lauryl (meth) acrylate, octyl (meth) acrylate, stearyl (meth) acrylate, and aromatic (meth) acrylate such as phenoxy (meth) acrylate. Examples thereof include acrylates and trifluoroethyl (meth) acrylate, and among them, aliphatic (meth) acrylates having an alkyl group having 1 to 18 carbon atoms, particularly 1 to 10 carbon atoms are preferable, and these are one kind. Alternatively, two or more types can be used.
In the present invention, the (meth) acrylate means acrylate or methacrylate.

上記スチレン系モノマーとしては、例えば、スチレン、α−メチルスチレン等が挙げられる。これらは単独で、もしくは2種以上併せて用いることができる。 Examples of the styrene-based monomer include styrene and α-methylstyrene. These can be used alone or in combination of two or more.

上記ビニルエステル系モノマーとしては、例えば、直鎖状のまたは枝分かれした炭素原子数2〜12のモノカルボン酸のビニルエステルが挙げられ、具体的には、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、バーサチック酸ビニル、2−エチルヘキサン酸ビニル等が挙げられる。これらは単独で、もしくは2種以上併せて用いることができる。 Examples of the vinyl ester-based monomer include linear or branched vinyl esters of monocarboxylic acids having 2 to 12 carbon atoms, and specific examples thereof include vinyl formate, vinyl acetate, and vinyl propionate. , Vinyl valerate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl versaticate, vinyl 2-ethylhexanoate and the like. These can be used alone or in combination of two or more.

また、官能基含有モノマー等を含有していてもよく、例えば、グリシジル基含有モノマー、アリル基含有モノマー、加水分解性シリル基含有モノマー、アセトアセチル基含有モノマー、分子構造中にビニル基を2個以上有するモノマー、ヒドロキシル基含有モノマー等が挙げられる。 Further, it may contain a functional group-containing monomer or the like, for example, a glycidyl group-containing monomer, an allyl group-containing monomer, a hydrolyzable silyl group-containing monomer, an acetoacetyl group-containing monomer, and two vinyl groups in the molecular structure. Examples thereof include the above-mentioned monomers and hydroxyl group-containing monomers.

上記グリシジル基含有モノマーとしては、例えば、グリシジル(メタ)アクリレート、グリシジル(メタ)アリルエーテル、3,4−エポキシシクロヘキシル(メタ)アクリレート等が挙げられる。このうち、特に物性ばらつきの少なく、加えて湿潤時の接着強度が向上する等の観点から、グリシジル(メタ)アクリレートが好ましい。 Examples of the glycidyl group-containing monomer include glycidyl (meth) acrylate, glycidyl (meth) allyl ether, and 3,4-epoxycyclohexyl (meth) acrylate. Of these, glycidyl (meth) acrylate is preferable from the viewpoint of less variation in physical properties and improvement in adhesive strength when wet.

上記アリル基含有モノマーとしては、例えば、トリアリルオキシエチレン、マレイン酸ジアリル、トリアリルシアヌレート、トリアリルイソシアヌレート、テトラアリルオキシエタン等のアリル基を2個以上有するモノマー、アリルグリシジルエーテル、酢酸アリル等があげられる。このうち、湿潤時の接着強度の観点から、アリルグリシジルエーテルが好ましい。 Examples of the allyl group-containing monomer include a monomer having two or more allyl groups such as triallyloxyethylene, diallyl maleate, triallyl cyanurate, triallyl isocyanurate, and tetraallyloxyethane, allyl glycidyl ether, and allyl acetate. And so on. Of these, allyl glycidyl ether is preferable from the viewpoint of adhesive strength when wet.

上記加水分解性シリル基含有モノマーとしては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、ビニルメチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−アクリロキシプロピルトリメトキシシラン、γ−アクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン、γ−メタクリロキシプロピルメチルジエトキシシラン等が挙げられる。このうち、耐水性の向上や、下地や旧モルタル面への接着強度が向上する等の観点から、ビニルトリメトキシシランが好ましい。 Examples of the hydrolyzable silyl group-containing monomer include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, vinylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, and γ-methacryloxy. Examples thereof include propylmethyldimethoxysilane, γ-acryloxypropyltrimethoxysilane, γ-acryloxypropylmethyldimethoxysilane, γ-methacryloxypropyltriethoxysilane, and γ-methacryloxypropylmethyldiethoxysilane. Of these, vinyltrimethoxysilane is preferable from the viewpoint of improving water resistance and improving the adhesive strength to the substrate and the old mortar surface.

上記アセトアセチル基含有モノマーとしては、例えば、アセト酢酸ビニルエステル、アセト酢酸アリルエステル、ジアセト酢酸アリルエステル、アセトアセトキシエチル(メタ)アクリレート、アセトアセトキシエチルクロトナート、アセトアセトキシプロピル(メタ)アクリレート、アセトアセトキシプロピルクロトナート、2−シアノアセトアセトキシエチル(メタ)アクリレート等が挙げられる。このうち、特に物性ばらつきの少なく、加えて耐水性の向上や、下地や旧モルタル面への接着強度が向上する等の観点から、アセトアセトキシエチル(メタ)アクリレートが好ましい。 Examples of the acetoacetyl group-containing monomer include acetoacetate vinyl ester, acetoacetate allyl ester, diacetacetate allyl ester, acetoacetoxyethyl (meth) acrylate, acetoacetoxyethyl crotonate, acetoacetoxypropyl (meth) acrylate, and acetoacetoxy. Examples thereof include propyl crotonate and 2-cyanoacetoacetoxyethyl (meth) acrylate. Of these, acetoacetoxyethyl (meth) acrylate is preferable from the viewpoints of less variation in physical properties, improvement in water resistance, and improvement in adhesive strength to the base material and the old mortar surface.

上記分子構造中にビニル基を2個以上有するモノマーとしては、例えば、ジビニルベンゼン、ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート、エチレングリコールジ(メタ)アクリレート、1,2−プロピレングリコールジ(メタ)アクリレート、1,3−プロピレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、アリル(メタ)アクリレート等が挙げられる。 Examples of the monomer having two or more vinyl groups in the molecular structure include divinylbenzene, diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, ethylene glycol di (meth) acrylate, and 1,2-propylene glycol di (). Meta) acrylate, 1,3-propylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, tri Examples thereof include methylol propantri (meth) acrylate and allyl (meth) acrylate.

上記ヒドロキシル基含有モノマーとしては、例えば、2−ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート等の(メタ)アクリレート等が挙げられる。このうち、乳化重合時における保護コロイド的作用およびセメントモルタル配合物等との混和性改良の観点から、2−ヒドロキシエチルメタクリレートが好ましい。 Examples of the hydroxyl group-containing monomer include (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. Of these, 2-hydroxyethyl methacrylate is preferable from the viewpoint of protective colloidal action during emulsion polymerization and improvement of miscibility with cement mortar formulations and the like.

本発明においては、耐水圧縮強度や耐水折り曲げ強度を向上させる観点から、重合成分[I]として、20℃の水に対する溶解度が0.1%以下である疎水性モノマー(以下、単に「疎水性モノマー」と記載することがある。)を必須成分として含有するものであり、その含有量が、重合成分[I]全体に対して30重量%以上であることが必要であり、好ましくは40重量%以上、更に好ましくは50重量%以上、特に好ましくは70重量%以上である。なお、上限は、通常、100重量%以下である。疎水性モノマーの含有量が少なすぎるとモルタルの耐水圧縮強度や耐水折り曲げ強度が低下し好ましくない。 In the present invention, from the viewpoint of improving the water-resistant compression strength and the water-resistant bending strength, as the polymerization component [I], a hydrophobic monomer having a solubility in water at 20 ° C. of 0.1% or less (hereinafter, simply "hydrophobic monomer"). ”) Is contained as an essential component, and the content thereof needs to be 30% by weight or more with respect to the entire polymerization component [I], preferably 40% by weight. As mentioned above, it is more preferably 50% by weight or more, and particularly preferably 70% by weight or more. The upper limit is usually 100% by weight or less. If the content of the hydrophobic monomer is too small, the water-resistant compression strength and the water-resistant bending strength of the mortar are lowered, which is not preferable.

上記20℃の水に対する溶解度が0.1%以下である疎水性モノマーとして具体的には以下のものがあげられる。
アクリル系モノマー;例えば、n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、オクチル(メタ)アクリレート、ステアリル(メタ)アクリレートなどのアルキル基の炭素数が4以上、好ましくは6〜18の(メタ)アクリレート、特に脂肪族系(メタ)アクリレートや、フェノキシアクリレート等の芳香族系(メタ)アクリレート、メタクリル酸トリフルオロエチルなどが挙げられる。
スチレン系モノマー;例えば、スチレン、α−メチルスチレンなどが挙げられる。
ビニル系モノマー;例えば、ラウリル酸ビニル、ステアリン酸ビニル、バーサチック酸ビニルなどが挙げられる。
Specific examples of the hydrophobic monomer having a solubility in water at 20 ° C. of 0.1% or less include the following.
Acrylic monomers; for example, n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, lauryl (meth) acrylate, Alkyl groups such as octyl (meth) acrylate and stearyl (meth) acrylate have 4 or more carbon atoms, preferably 6 to 18 (meth) acrylates, particularly aromatic (meth) acrylates such as aliphatic (meth) acrylates and phenoxy acrylates. Examples thereof include (meth) acrylate and trifluoroethyl methacrylate.
Styrene-based monomers; for example, styrene, α-methylstyrene and the like can be mentioned.
Vinyl-based monomers; for example, vinyl laurate, vinyl stearate, vinyl versaticate and the like can be mentioned.

上記疎水性モノマーの中でも、アルキル基の炭素数が4以上の脂肪族系(メタ)アクリレート系モノマー、スチレン系モノマーを用いることが好ましく、特にはスチレン、n−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレートを用いることが好ましい。
上記疎水性モノマーは、1種または2種以上併用して用いることができる。
Among the above hydrophobic monomers, it is preferable to use an aliphatic (meth) acrylate-based monomer or a styrene-based monomer having an alkyl group having 4 or more carbon atoms, and in particular, styrene, n-butyl (meth) acrylate, or 2-ethylhexyl. It is preferable to use (meth) acrylate.
The above hydrophobic monomers can be used alone or in combination of two or more.

本発明においては、特に、疎水性モノマーとしてスチレンを含有し、疎水性モノマー全体に対するスチレンの含有割合が80重量%以下であることが好ましく、特に好ましくは70重量%以下、更に好ましくは60重量%以下である。一方、スチレン含有量の下限は、30重量%以上が特に好ましく、40重量%以上が更に好ましい。
スチレン含有割合が80重量%より多いと、紫外線によるポリマーの劣化や変色など、耐候性が低下するという問題点を生じる場合がある。一方、スチレン含有割合が、30重量%であると、耐水性により優れる点で好ましい。
In the present invention, it is particularly preferable that styrene is contained as the hydrophobic monomer, and the content ratio of styrene to the whole hydrophobic monomer is 80% by weight or less, particularly preferably 70% by weight or less, still more preferably 60% by weight. It is as follows. On the other hand, the lower limit of the styrene content is particularly preferably 30% by weight or more, and even more preferably 40% by weight or more.
If the styrene content is more than 80% by weight, there may be a problem that the weather resistance is lowered, such as deterioration and discoloration of the polymer due to ultraviolet rays. On the other hand, when the styrene content ratio is 30% by weight, it is preferable in that it is more excellent in water resistance.

本発明で用いられるポリビニルアルコール系樹脂(以下、「PVA系樹脂」と記載することがある。)は、重合中のプレエマルジョンの分散安定性を付与する目的、および、得られる水性合成樹脂エマルジョンに安定性を付与すると共に、該エマルジョンを噴霧乾燥されて得られる再乳化性合成樹脂粉末を水に再分散し易くする目的で用いるものである。 The polyvinyl alcohol-based resin used in the present invention (hereinafter, may be referred to as “PVA-based resin”) is used for the purpose of imparting dispersion stability of the pre-emulsion during polymerization and for the obtained aqueous synthetic resin emulsion. It is used for the purpose of imparting stability and facilitating redispersion of the re-emulsifying synthetic resin powder obtained by spray-drying the emulsion in water.

PVA系樹脂の平均ケン化度としては、70モル%以上であることが好ましく、特に好ましくは80モル%以上、更に好ましくは85モル%以上である。一方、平均ケン化度の上限は、99.9モル%が好ましく、99.5モル%が特に好ましく、99.0モル%が更に好ましい。
かかる平均ケン化度が低すぎると安定的に重合が進行しにくく、重合が完結したとしてもエマルジョンの保存安定性が低下してしまう傾向があり、高すぎると再乳化性合成樹脂粉末が再乳化し難くなる傾向がある。
The average saponification degree of the PVA-based resin is preferably 70 mol% or more, particularly preferably 80 mol% or more, and further preferably 85 mol% or more. On the other hand, the upper limit of the average saponification degree is preferably 99.9 mol%, particularly preferably 99.5 mol%, and even more preferably 99.0 mol%.
If the average saponification degree is too low, the polymerization does not proceed stably, and even if the polymerization is completed, the storage stability of the emulsion tends to decrease. If it is too high, the re-emulsifying synthetic resin powder is re-emulsified. It tends to be difficult to do.

なお、平均ケン化度は、JIS K 6726に記載のケン化度の算出方法にしたがって求めることができる。 The average saponification degree can be obtained according to the method for calculating the saponification degree described in JIS K 6726.

また、PVA系樹脂の平均重合度としては、50以上であることが好ましく、特に好ましくは100以上であり、更に好ましくは200以上である。一方、平均重合度の上限は、3,000が好ましく、2,000が特に好ましく、1,000が更に好ましい。
かかる平均重合度が低すぎると、乳化重合時の保護コロイド能力が不充分となり重合が安定的に進行しにくい傾向があり、高すぎると、重合時に増粘して反応系が不安定になり分散安定性が低下する傾向がある。
The average degree of polymerization of the PVA-based resin is preferably 50 or more, particularly preferably 100 or more, and further preferably 200 or more. On the other hand, the upper limit of the average degree of polymerization is preferably 3,000, particularly preferably 2,000, and even more preferably 1,000.
If the average degree of polymerization is too low, the protective colloidal capacity during emulsion polymerization tends to be insufficient and the polymerization tends to be difficult to proceed stably. If it is too high, the viscosity increases during polymerization and the reaction system becomes unstable and dispersed. Stability tends to decrease.

なお、平均重合度は、JIS K 6726に記載の平均重合度の算出方法にしたがって求めることができる。 The average degree of polymerization can be determined according to the method for calculating the average degree of polymerization described in JIS K 6726.

本発明において、PVA系樹脂として、PVA、または、各種変性種によって変性された変性PVA系樹脂を用いることができ、その変性量は、通常20モル%以下、好ましくは15モル%以下、更に好ましくは10モル%以下である。なお、下限値としては0.01モル%である。 In the present invention, PVA or a modified PVA-based resin modified with various modified species can be used as the PVA-based resin, and the amount of modification thereof is usually 20 mol% or less, preferably 15 mol% or less, more preferably. Is less than 10 mol%. The lower limit is 0.01 mol%.

変性PVA系樹脂としては、例えば、カルボキシル基、スルホン酸基、リン酸基をはじめとするアニオン性基で変性されたアニオン変性PVA系樹脂、四級アンモニウム基等のカチオン性基で変性されたカチオン変性PVA系樹脂、アセトアセチル基、ジアセトンアクリルアミド基、メルカプト基、シラノール基をはじめとする各種官能基等により変性された変性PVA系樹脂や、側鎖に1,2−ジオール結合を有するPVA系樹脂等を挙げることができる。 Examples of the modified PVA-based resin include an anion-modified PVA-based resin modified with an anionic group such as a carboxyl group, a sulfonic acid group, and a phosphoric acid group, and a cation modified with a cationic group such as a quaternary ammonium group. Modified PVA-based resin modified with various functional groups such as modified PVA-based resin, acetoacetyl group, diacetoneacrylamide group, mercapto group, silanol group, etc., and PVA-based resin having 1,2-diol bond in the side chain. Resin and the like can be mentioned.

本発明において、PVA系樹脂の使用量は、前述の重合成分[I]100重量部に対して、20重量部以下であることが好ましく、特に好ましくは10重量部以下、更に好ましくは7重量部以下である。一方、PVA系樹脂使用量の上限は、0.01重量部が好ましく、0.1重量部が特に好ましく、0.5重量部が更に好ましい。
かかるPVA系樹脂の使用量が少なすぎると、乳化重合の際の乳化力不足となって、重合成分の分散安定性が低下し、重合安定性が低下する傾向があり、使用量が多すぎると、合成樹脂エマルジョンの粘度が高まり安定性が低下する傾向がある。
In the present invention, the amount of the PVA-based resin used is preferably 20 parts by weight or less, particularly preferably 10 parts by weight or less, still more preferably 7 parts by weight, based on 100 parts by weight of the above-mentioned polymerization component [I]. It is as follows. On the other hand, the upper limit of the amount of PVA-based resin used is preferably 0.01 parts by weight, particularly preferably 0.1 parts by weight, and even more preferably 0.5 parts by weight.
If the amount of the PVA-based resin used is too small, the emulsifying power at the time of emulsion polymerization becomes insufficient, the dispersion stability of the polymerization component tends to decrease, and the polymerization stability tends to decrease. , The viscosity of the synthetic resin emulsion tends to increase and the stability tends to decrease.

また、本発明においては、PVA系樹脂は、通常、水性媒体を用いて水溶液とし、これが乳化重合の過程において使用される。かかる水性媒体としては、例えば水、または水を主体とするアルコール性溶媒があげられ、好ましくは水である。 Further, in the present invention, the PVA-based resin is usually made into an aqueous solution using an aqueous medium, which is used in the process of emulsion polymerization. Examples of such an aqueous medium include water and an alcoholic solvent mainly composed of water, and water is preferable.

上記水溶液におけるPVA系樹脂の含有割合(固形分)については、取り扱いの容易性の観点からは、5〜30重量%であることが好ましい。 The content ratio (solid content) of the PVA-based resin in the aqueous solution is preferably 5 to 30% by weight from the viewpoint of ease of handling.

乳化重合の方法としては、PVA系樹脂の存在下で、水性媒体中に、重合成分[I]の全量を連続して添加しながら乳化重合することが必要であり、例えば、反応缶に、水性媒体、PVA系樹脂を仕込み、昇温し、そこに重合成分[I]を全量、連続して滴下し、重合することができる。
上記水性媒体としては、例えば、水、または水を主体とするアルコール性溶媒があげられ、好ましくは水である。
As a method of emulsion polymerization, it is necessary to carry out emulsion polymerization in the presence of a PVA-based resin while continuously adding the entire amount of the polymerization component [I] to an aqueous medium. A medium and a PVA-based resin are charged, the temperature is raised, and the entire amount of the polymerization component [I] is continuously added dropwise thereto for polymerization.
Examples of the aqueous medium include water and an alcoholic solvent mainly composed of water, and water is preferable.

また、本発明においては、予め重合成分[I]の全量を、PVA系樹脂の存在下、水性媒体中に乳化分散させてプレエマルジョンを調製し、該プレエマルジョンの全量を水性媒体中に連続して添加しながら乳化重合することが好ましい。 Further, in the present invention, a pre-emulsion is prepared by emulsifying and dispersing the entire amount of the polymerization component [I] in an aqueous medium in the presence of a PVA-based resin, and the entire amount of the pre-emulsion is continuously placed in the aqueous medium. It is preferable to carry out emulsion polymerization while adding the mixture.

かかるプレエマルジョンの調整方法としては、例えば、PVA系樹脂の水溶液を攪拌しながら重合成分[I]を滴下する方法が挙げられる。その際の攪拌装置としては、攪拌翼による攪拌混合や、ステティックミキサー、バイプロミキサー、ホモジナイザーなどの公知の分散機を用いることができるが、これらの中でも攪拌翼による攪拌混合が好適である。 Examples of the method for preparing such a pre-emulsion include a method in which the polymerization component [I] is dropped while stirring an aqueous solution of a PVA-based resin. As the stirring device at that time, stirring and mixing with a stirring blade or a known disperser such as a stetic mixer, a bipro mixer, or a homogenizer can be used, and among these, stirring and mixing with a stirring blade is preferable.

本発明においては、水性媒体中に、重合成分[I](又は上記プレエマルジョン)の全量を連続して添加しながら乳化重合することが必要である。
ここで、全量を連続して添加しながら乳化重合するということは、初期重合を行うことなく、全量を連続して添加しながら乳化重合することをいい、従前の方法である、所定量を初期重合した後、残り成分を滴下などにより乳化重合する方法とは異なる乳化方法のことを意味するものである。
In the present invention, it is necessary to carry out emulsion polymerization while continuously adding the entire amount of the polymerization component [I] (or the above-mentioned preemulsion) to the aqueous medium.
Here, emulsion polymerization while continuously adding the entire amount means emulsion polymerization while continuously adding the entire amount without performing initial polymerization, which is a conventional method, initializing a predetermined amount. It means an emulsification method different from the method of emulsion polymerization by dropping the remaining components after polymerization.

上記連続した添加方法としては、例えば、滴下漏斗やロータリーポンプを用いて重合成分[I]を水性媒体中に滴下する方法があげられる。 Examples of the continuous addition method include a method of dropping the polymerization component [I] into an aqueous medium using a dropping funnel or a rotary pump.

かかる滴下速度については、一般的に連続滴下とみなされる条件で滴下すればよく、用いる重合成分の反応性や下記重合開始剤の使用量、反応温度などを考慮し適宜調整すればよいが、具体的には、例えば、滴下間隔を、通常10秒以内、好ましくは5秒以内とし、一回の滴下量が、通常全モノマー量の2重量%以下、好ましくは1重量%以下であればよい。
なお、上記滴下間隔、および一回の滴下量は、均一であってもよいし、不均一であってもよい。
The dropping rate may be dropped under conditions generally regarded as continuous dropping, and may be appropriately adjusted in consideration of the reactivity of the polymerization component used, the amount of the following polymerization initiator used, the reaction temperature, and the like. Specifically, for example, the dropping interval may be usually within 10 seconds, preferably within 5 seconds, and the dropping amount at one time may be usually 2% by weight or less, preferably 1% by weight or less of the total amount of the monomers.
The dropping interval and the dropping amount at one time may be uniform or non-uniform.

また、重合成分[I]を全量滴下した後、一定時間の熟成期間を設けることも好ましい。 It is also preferable to provide a aging period for a certain period of time after dropping the entire amount of the polymerization component [I].

乳化重合条件としては、重合成分の種類、重合スケール等に応じて適宜選択することができるが、反応時の温度条件としては、通常、通常40℃以上であり、特に好ましくは60℃以上である。反応時の温度条件の上限は、通常90℃であり、特に好ましくは80℃である。 The emulsion polymerization conditions can be appropriately selected depending on the type of polymerization component, polymerization scale, etc., but the temperature conditions at the time of reaction are usually usually 40 ° C. or higher, particularly preferably 60 ° C. or higher. .. The upper limit of the temperature condition at the time of reaction is usually 90 ° C., particularly preferably 80 ° C.

また、乳化重合時には、撹拌することが好ましく、その際の攪拌装置としては、上記、プレエマルジョンの調整に用いられるものと同様のものを用いることができ、なかでも攪拌翼による攪拌混合が好ましい。 Further, it is preferable to stir at the time of emulsion polymerization, and as the stirring device at that time, the same one as that used for adjusting the pre-emulsion can be used, and among them, stirring and mixing with a stirring blade is preferable.

また、通常、乳化重合においては、重合開始剤を用いることが好ましく、その他必要に応じて、重合調整剤、補助乳化剤、可塑剤等を用いることができる。 In addition, usually, in emulsion polymerization, it is preferable to use a polymerization initiator, and if necessary, a polymerization modifier, an auxiliary emulsifier, a plasticizer, or the like can be used.

上記重合開始剤としては、通常の乳化重合に使用できるものであればよく、例えば、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の無機過酸化物;有機過酸化物、アゾ系開始剤、過酸化水素、ブチルパーオキサイド等の過酸化物;およびこれらと酸性亜硫酸ナトリウムやL−アスコルビン酸等の還元剤とを組み合わせたレドックス重合開始剤等が挙げられる。これらは、2種以上を併用してもよい。
本発明においては、これらの中でも、皮膜物性や強度増強に悪影響を与えず重合が容易な点で、無機過酸化物を用いることが好ましく、特には過硫酸アンモニウムや過硫酸カリウムが好ましい。
The polymerization initiator may be any one that can be used for ordinary emulsion polymerization, and for example, inorganic peroxides such as potassium persulfate, sodium persulfate, and ammonium persulfate; organic peroxides, azo-based initiators, and peroxides. Peroxides such as hydrogen peroxide and butyl peroxide; and redox polymerization initiators in which these are combined with reducing agents such as acidic sodium sulfite and L-ascorbic acid can be mentioned. These may be used in combination of two or more.
In the present invention, among these, inorganic peroxides are preferably used, and ammonium persulfate and potassium persulfate are particularly preferable, because they do not adversely affect the physical characteristics of the film and enhance the strength and are easy to polymerize.

重合開始剤の添加方法としては、初期に一括添加する方法や重合の経過に伴って分割して添加する方法等を用いることができ、分割して添加する方法等においては、複数回に分けて反応缶に添加する方法や、重合成分とともに連続して滴下する方法等を用いることができる。 As a method of adding the polymerization initiator, a method of adding the polymerization initiator in a batch at the initial stage, a method of adding the polymerization initiator in a divided manner with the progress of the polymerization, or the like can be used. A method of adding to the reaction can, a method of continuously dropping the polymer component together with the polymerized component, or the like can be used.

かかる重合開始剤の使用量は、用いる重合成分の種類や重合条件などによって異なるが、通常、重合成分[I]100重量部に対して0.01重量部以上、好ましくは0.5重量部以上である。また、使用量の上限は、通常、5重量部であり、好ましくは3重量部である。 The amount of the polymerization initiator used varies depending on the type of the polymerization component used, the polymerization conditions, and the like, but is usually 0.01 part by weight or more, preferably 0.5 part by weight or more with respect to 100 parts by weight of the polymerization component [I]. Is. The upper limit of the amount used is usually 5 parts by weight, preferably 3 parts by weight.

上記重合調整剤としては、公知のものの中から適宜選択することができる。このような重合調整剤としては、例えば、連鎖移動剤、バッファーなどが挙げられる。 The polymerization modifier can be appropriately selected from known ones. Examples of such a polymerization modifier include chain transfer agents and buffers.

上記連鎖移動剤としては、例えば、メタノール、エタノール、プロパノール、ブタノール等のアルコール;アセトアルデヒド、プロピオンアルデヒド、n−ブチルアルデヒド、フルフラール、ベンズアルデヒド等のアルデヒド類;および、ドデシルメルカプタン、ラウリルメルカプタン、ノルマルメルカプタン、チオグリコール酸、チオグリコール酸オクチル、チオグリセロール等のメルカプタン類などが挙げられる。これらは、単独で用いてもよいし2種以上を併用してもよい。 Examples of the chain transfer agent include alcohols such as methanol, ethanol, propanol and butanol; aldehydes such as acetaldehyde, propionaldehyde, n-butylaldehyde, furfural and benzaldehyde; and dodecyl mercaptan, lauryl mercaptan, normal mercaptan and thio. Examples thereof include mercaptans such as glycolic acid, octyl thioglycolate, and thioglycerol. These may be used alone or in combination of two or more.

上記バッファーとしては、例えば、酢酸ソーダ、酢酸アンモニウム、第二リン酸ソーダ、クエン酸ソーダなどが挙げられる。これらは、単独で用いてもよいし2種以上を併用してもよい。 Examples of the buffer include sodium acetate, ammonium acetate, disodium diphosphate, sodium citrate and the like. These may be used alone or in combination of two or more.

補助乳化剤としては、通常乳化重合に用いることができるものであればよく、例えば、アニオン性、カチオン性、およびノニオン性の界面活性剤、PVA系樹脂以外の保護コロイド能を有する水溶性高分子、および水溶性オリゴマー等があげられる。 The auxiliary emulsifier may be any one that can be usually used for emulsion polymerization, for example, anionic, cationic and nonionic surfactants, water-soluble polymers having protective colloidal ability other than PVA-based resins, and the like. And water-soluble oligomers and the like.

上記界面活性剤としては、例えば、ラウリル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウムのようなアニオン性界面活性剤、および、プルロニック型構造を有するものやポリオキシエチレン型構造を有するもの等のノニオン性界面活性剤が挙げられる。また、界面活性剤として、構造中にラジカル重合性不飽和結合を有する反応性界面活性剤を使用することもできる。これらは単独で、もしくは2種以上併せて用いることができる。 Examples of the surfactant include anionic surfactants such as sodium lauryl sulfate and sodium dodecylbenzenesulfonate, and nonionic surfactants such as those having a pluronic type structure and those having a polyoxyethylene type structure. Agents can be mentioned. Further, as the surfactant, a reactive surfactant having a radically polymerizable unsaturated bond in the structure can also be used. These can be used alone or in combination of two or more.

上記界面活性剤の使用は、乳化重合をスムーズに進行させ、コントロールし易くしたり(乳化剤としての効果)、重合中に発生する粗粒子やブロック状物の発生を抑制する効果がある。ただし、これら界面活性剤を乳化剤として多く使用すると、グラフト率が低下する傾向がある。このため、界面活性剤を使用する場合には、その使用量はPVA系樹脂に対して補助的な量であること、すなわち、できる限り少なくすることが好ましい。 The use of the above-mentioned surfactant has the effects of allowing the emulsion polymerization to proceed smoothly and making it easier to control (effect as an emulsifier), and suppressing the generation of coarse particles and block-like substances generated during the polymerization. However, if a large amount of these surfactants is used as an emulsifier, the graft ratio tends to decrease. Therefore, when a surfactant is used, it is preferable that the amount used is an auxiliary amount with respect to the PVA-based resin, that is, it is preferably as small as possible.

PVA系樹脂以外の保護コロイド能を有する水溶性高分子としては、例えば、ヒドロキシエチルセルロース、ポリビニルピロリドン、メチルセルロース等が挙げられる。これらは単独で、もしくは2種以上併せて用いられる。これらは、エマルジョンの安定性やエマルジョンの粒子径を変えて粘性を変化させる点で効果がある。ただし、その使用量によっては皮膜の耐水性を低下させることがあるため、使用する場合には少量で使用することが望ましい。 Examples of the water-soluble polymer having a protective colloidal ability other than the PVA-based resin include hydroxyethyl cellulose, polyvinylpyrrolidone, and methyl cellulose. These may be used alone or in combination of two or more. These are effective in changing the stability of the emulsion and changing the particle size of the emulsion to change the viscosity. However, it is desirable to use a small amount when using it because the water resistance of the film may be lowered depending on the amount used.

水溶性オリゴマーとしては、例えば、スルホン酸基、カルボキシル基、水酸基、アルキレングリコール基等の親水性基を有する重合体が好ましく、中でも10〜500程度の重合度を有する重合体または共重合体が好適にあげられる。水溶性オリゴマーの具体例としては、例えば、2−メタクリルアミド−2−メチルプロパンスルホン酸共重合体等のアミド系共重合体、メタクリル酸ナトリウム−4−スチレンスルホネート共重合体、スチレン/マレイン酸共重合体、メラミンスルホン酸ホルムアルデヒド縮合物、ポリ(メタ)アクリル酸塩等が挙げられる。さらに、具体例としては、スルホン酸基、カルボキシル基、水酸基、アルキレングリコール基等を有するモノマーやラジカル重合性の反応性乳化剤を予め単独または他のモノマーと共重合してなる水溶性オリゴマー等も挙げられる。これらは単独で、もしくは2種以上併せて用いられる。 As the water-soluble oligomer, for example, a polymer having a hydrophilic group such as a sulfonic acid group, a carboxyl group, a hydroxyl group, or an alkylene glycol group is preferable, and a polymer or a copolymer having a degree of polymerization of about 10 to 500 is particularly preferable. Can be given to. Specific examples of the water-soluble oligomer include amide-based copolymers such as 2-methacrylamide-2-methylpropanesulfonic acid copolymer, sodium methacrylate-4-styrenesulfonate copolymer, and styrene / maleic acid copolymers. Examples thereof include polymers, melamine sulfonic acid formaldehyde condensates, and poly (meth) acrylates. Further, specific examples include a monomer having a sulfonic acid group, a carboxyl group, a hydroxyl group, an alkylene glycol group and the like, a water-soluble oligomer obtained by copolymerizing a radically polymerizable reactive emulsifier alone or with another monomer in advance. Be done. These may be used alone or in combination of two or more.

上記可塑剤としては、アジペート系可塑剤、フタル酸系可塑剤、リン酸系可塑剤等が使用できる。 As the plasticizer, an adipate-based plasticizer, a phthalic acid-based plasticizer, a phosphoric acid-based plasticizer, and the like can be used.

かくして、本発明の製造方法、即ち、PVA系樹脂の存在下で、水性媒体中に、重合成分[I]の全量を連続して添加しながら乳化重合する方法により、水性合成樹脂エマルジョンを製造することができる。
得られる水性合成樹脂エマルジョンは、PVA系樹脂により合成樹脂粒子が水性媒体中に分散安定化されてなるものである。
Thus, an aqueous synthetic resin emulsion is produced by the production method of the present invention, that is, a method of emulsion polymerization while continuously adding the entire amount of the polymerization component [I] to an aqueous medium in the presence of a PVA-based resin. be able to.
The obtained aqueous synthetic resin emulsion is obtained by dispersing and stabilizing synthetic resin particles in an aqueous medium with a PVA-based resin.

本発明において、乳化重合より得られる水性合成樹脂エマルジョンは、典型的には、均一な乳白色であって、水性合成樹脂エマルジョン中の合成樹脂粒子の平均粒子径は、0.2μm以上であることが好ましく、特に好ましくは0.3μm以上である。また、平均粒子径の上限は2μmであることが好ましく、1.5μmであることが特に好ましい。かかる合成樹脂粒子の平均粒子径が大きすぎると重合安定性が低下する傾向があり、小さすぎると水性合成樹脂エマルジョンの粘度が高くなりすぎる傾向がある。 In the present invention, the aqueous synthetic resin emulsion obtained by emulsion polymerization is typically a uniform milky white color, and the average particle size of the synthetic resin particles in the aqueous synthetic resin emulsion is 0.2 μm or more. It is preferably, particularly preferably 0.3 μm or more. The upper limit of the average particle size is preferably 2 μm, and particularly preferably 1.5 μm. If the average particle size of the synthetic resin particles is too large, the polymerization stability tends to decrease, and if it is too small, the viscosity of the aqueous synthetic resin emulsion tends to be too high.

なお、平均粒子径は、慣用の方法、例えばレーザー解析/散乱式粒度分布測定装置「LA−950S2」(株式会社堀場製作所製)により測定することができる。 The average particle size can be measured by a conventional method, for example, a laser analysis / scattering type particle size distribution measuring device "LA-950S2" (manufactured by HORIBA, Ltd.).

また、本発明の製造方法により得られる水性合成樹脂エマルジョン中の合成樹脂粒子のガラス転移温度(Tg)は、−40℃以上であることが好ましく、特に好ましくは−30℃以上であり、更に好ましくは−20℃以上である。また、ガラス転移温度の(Tg)の上限は、30℃であることが好ましく、20℃であることが特に好ましく、10℃であることが更に好ましい。かかるガラス転移温度が高すぎると、低温時において、樹脂の接着剤としての効果が十分に発揮できない傾向があり、低すぎると、圧縮強度や折り曲げ強度が低下する傾向がある。
ガラス転移温度は下記の数式1で示されるFoxの式より算出されるものである。
The glass transition temperature (Tg) of the synthetic resin particles in the aqueous synthetic resin emulsion obtained by the production method of the present invention is preferably −40 ° C. or higher, particularly preferably −30 ° C. or higher, and even more preferably. Is -20 ° C or higher. The upper limit of the glass transition temperature (Tg) is preferably 30 ° C, particularly preferably 20 ° C, and even more preferably 10 ° C. If the glass transition temperature is too high, the effect of the resin as an adhesive tends not to be sufficiently exhibited at a low temperature, and if it is too low, the compression strength and the bending strength tend to decrease.
The glass transition temperature is calculated from the Fox formula shown by the following formula 1.

Figure 0006861147
Figure 0006861147

なお、合成樹脂を構成するモノマーのホモポリマーとした際のガラス転移温度は、通常、示差走査熱量計(DSC)により測定されるものである。 The glass transition temperature when the monomer constituting the synthetic resin is homopolymerized is usually measured by a differential scanning calorimeter (DSC).

本発明の製造方法により得られる水性合成樹脂エマルジョンの23℃での粘度は、100mPa・s以上であることが好ましく、特に好ましくは300mPa・s以上、更に好ましくは500mPa・sで以上ある。一方、粘度の上限は5,000mPa・sが好ましく、3,000mPa・sが特に好ましく、2,000mPaが更に好ましい。かかる粘度が高すぎても低すぎても水性合成樹脂エマルジョンを粉末化し難くなる傾向がある。
なお、粘度の測定法はB型粘度計による。
The viscosity of the aqueous synthetic resin emulsion obtained by the production method of the present invention at 23 ° C. is preferably 100 mPa · s or more, particularly preferably 300 mPa · s or more, and further preferably 500 mPa · s or more. On the other hand, the upper limit of the viscosity is preferably 5,000 mPa · s, particularly preferably 3,000 mPa · s, and even more preferably 2,000 mPa · s. If the viscosity is too high or too low, it tends to be difficult to powder the aqueous synthetic resin emulsion.
The viscosity is measured by a B-type viscometer.

また、本発明の製造方法により得られる水性合成樹脂エマルジョンの固形分濃度は、30重量%以上であることが好ましく、特に好ましくは35重量%以上、更に好ましくは40重量%以上である。一方、固形分濃度の上限は、60重量%が好ましく、55重量%が特に好ましく、50重量%が更に好ましい。かかる固形分濃度が低すぎると、水性合成樹脂エマルジョンを粉末化する際の製造効率が低下し、高すぎると水性合成樹脂エマルジョンを粉末化し難くなる傾向がある。 The solid content concentration of the aqueous synthetic resin emulsion obtained by the production method of the present invention is preferably 30% by weight or more, particularly preferably 35% by weight or more, and further preferably 40% by weight or more. On the other hand, the upper limit of the solid content concentration is preferably 60% by weight, particularly preferably 55% by weight, and even more preferably 50% by weight. If the solid content concentration is too low, the production efficiency when powdering the aqueous synthetic resin emulsion tends to decrease, and if it is too high, it tends to be difficult to powder the aqueous synthetic resin emulsion.

本発明においては、乳化重合後の水性合成樹脂エマルジョンは、必要に応じて各種添加剤をさらに加えてもよい。このような添加剤としては、例えば、有機顔料、無機顔料、水溶性添加剤、pH調整剤、防腐剤、酸化防止剤等が挙げられる。 In the present invention, various additives may be further added to the aqueous synthetic resin emulsion after emulsion polymerization, if necessary. Examples of such additives include organic pigments, inorganic pigments, water-soluble additives, pH adjusters, preservatives, antioxidants and the like.

このようにして、本発明の製造方法によりで得られた水性合成樹脂エマルジョンは、そのまま使用する際には、固形分濃度として通常40〜60重量%に調整することが好ましい。 In this way, when the aqueous synthetic resin emulsion obtained by the production method of the present invention is used as it is, it is preferable to adjust the solid content concentration to usually 40 to 60% by weight.

〔再乳化性合成樹脂粉末の製造方法〕
上記の製造方法で得られた水性合成樹脂エマルジョンを乾燥することにより、本発明に係る再乳化性合成樹脂粉末が得られる。再乳化性合成樹脂粉末は、水と混合することにより再び乳化する機能を有し、例えばポリマーセメント用として有効に使用することができる。
[Manufacturing method of re-emulsifying synthetic resin powder]
By drying the aqueous synthetic resin emulsion obtained by the above production method, the re-emulsifying synthetic resin powder according to the present invention can be obtained. The re-emulsifying synthetic resin powder has a function of re-emulsifying by mixing with water, and can be effectively used, for example, for polymer cement.

水性合成樹脂エマルジョンの乾燥方法は、例えば、噴霧乾燥、凍結乾燥、凝析後の温風乾燥等があげられる。これらの中でも、生産コスト、省エネルギーの観点や連続生産性の観点から噴霧乾燥することが好ましい。 Examples of the method for drying the aqueous synthetic resin emulsion include spray drying, freeze drying, and warm air drying after coagulation. Among these, spray drying is preferable from the viewpoint of production cost, energy saving and continuous productivity.

噴霧乾燥の場合、その噴霧形式は、例えばディスク式、ノズル式等の形式により実施することができる。噴霧乾燥の熱源としては、例えば、熱風、加熱水蒸気等があげられる。噴霧乾燥の条件としては、噴霧乾燥機の大きさ、種類、合成樹脂エマルジョンの不揮発分、粘度、流量等に応じて適宜選択することができる。噴霧乾燥の温度は、通常は、80℃以上が好ましく、より好ましくは120℃以上である。また、噴霧乾燥温度の上限は、180℃が好ましく、160℃がより好ましい。
乾燥温度が低すぎると乾燥に時間を要し、生産的効率が低下する傾向があり、高すぎると熱による樹脂自体の変質が起こり易くなる傾向がある。
In the case of spray drying, the spray type can be implemented by, for example, a disc type, a nozzle type, or the like. Examples of the heat source for spray drying include hot air and heated steam. The conditions for spray drying can be appropriately selected according to the size and type of the spray dryer, the non-volatile content of the synthetic resin emulsion, the viscosity, the flow rate, and the like. The temperature of spray drying is usually preferably 80 ° C. or higher, more preferably 120 ° C. or higher. The upper limit of the spray drying temperature is preferably 180 ° C., more preferably 160 ° C.
If the drying temperature is too low, it takes time to dry and the productive efficiency tends to decrease, and if it is too high, the resin itself tends to be deteriorated by heat.

具体的には、例えば、水性合成樹脂エマルジョンを噴霧乾燥機のノズルより連続的に供給し、霧状にしたものを温風により乾燥させて粉末化させる。場合により、調整した噴霧液を噴霧に際して予め加温してノズルより連続的に供給し、霧状にしたものを温風により乾燥させて粉末化させることも可能である。加温することで乾燥スピードが速くなり、かつ噴霧液の粘度低下に伴い噴霧液の高不揮発分化が可能で、生産コストの低減にも寄与する。 Specifically, for example, an aqueous synthetic resin emulsion is continuously supplied from a nozzle of a spray dryer, and the atomized product is dried with warm air to be powdered. In some cases, the prepared spray liquid may be preheated at the time of spraying and continuously supplied from the nozzle, and the atomized liquid may be dried by warm air to be powdered. By heating, the drying speed becomes faster, and as the viscosity of the spray liquid decreases, the spray liquid can be highly non-volatile differentiated, which also contributes to the reduction of production cost.

また、再乳化性合成樹脂粉末の水への再乳化性をより向上させるために、水溶性添加剤を配合することができる。通常、水溶性添加剤は、乾燥前の水性合成樹脂エマルジョンに配合する。この配合量は、乾燥前の水性合成樹脂エマルジョンの不揮発分100重量部に対して、2〜50重量部である。配合量が少なすぎると、水への再乳化性の向上が充分に図れない傾向があり、多すぎると、水への再乳化性の向上には大いに役立つが皮膜の耐水性が低下し、期待する物性が発揮できなくなる傾向がある。 Further, in order to further improve the re-emulsifying property of the re-emulsifying synthetic resin powder into water, a water-soluble additive can be added. Usually, the water-soluble additive is added to the aqueous synthetic resin emulsion before drying. This blending amount is 2 to 50 parts by weight with respect to 100 parts by weight of the non-volatile content of the aqueous synthetic resin emulsion before drying. If the blending amount is too small, the re-emulsifying property to water tends not to be sufficiently improved, and if it is too large, it is very useful for improving the re-emulsifying property to water, but the water resistance of the film is lowered, which is expected. There is a tendency that the physical characteristics of the product cannot be exhibited.

上記水溶性添加剤としては、例えば、PVA系樹脂類、ヒドロキシエチルセルロース類、メチルセルロース類、ポリビニルピロリドン、でんぷん類、デキストリン類、水溶性アルキッド樹脂、水溶性アミノ樹脂、水溶性アクリル樹脂、水溶性ポリカルボン酸樹脂、水溶性ポリアミド樹脂等の水溶性樹脂があげられる。これらは単独でもしくは2種以上併せて用いることができる。これらの中でも、PVA系樹脂類が好ましい。PVA系樹脂類としては、上記PVA系樹脂と同様のものを用いることができ、未変性PVAの部分又は完全ケン化品や各種変性PVAの部分又は完全ケン化品、及びこれらを併用しても良い。 Examples of the water-soluble additive include PVA-based resins, hydroxyethyl celluloses, methyl celluloses, polyvinylpyrrolidone, starches, dextrins, water-soluble alkyd resins, water-soluble amino resins, water-soluble acrylic resins, and water-soluble polycarboxylics. Examples thereof include water-soluble resins such as acid resins and water-soluble polyamide resins. These can be used alone or in combination of two or more. Among these, PVA-based resins are preferable. As the PVA-based resins, the same ones as those of the above-mentioned PVA-based resins can be used, and unmodified PVA portions or completely saponified products, various modified PVA portions or completely saponified products, and these can be used in combination. good.

上記PVA系樹脂類としては、平均ケン化度85モル%以上のPVAが好ましく、特に好ましくは87モル%以上のPVAである。また、平均ケン化度の上限値としては、99.5モル%であることが好ましく、95モル%であることがより好ましい。平均ケン化度が小さすぎると、得られるポリマーセメントモルタルの耐水性が著しく低下する傾向があり、大きすぎると、水への再乳化性が低下する傾向がある。 As the PVA-based resins, PVA having an average saponification degree of 85 mol% or more is preferable, and PVA having an average saponification degree of 87 mol% or more is particularly preferable. The upper limit of the average saponification degree is preferably 99.5 mol%, more preferably 95 mol%. If the average saponification degree is too small, the water resistance of the obtained polymer cement mortar tends to be significantly reduced, and if it is too large, the re-emulsification property into water tends to be reduced.

また、この平均重合度は、50以上であることが好ましく、200以上であることがより好ましく、300以上であることが更に好ましい。また、平均重合度の上限は、3,000であることが好ましく、2,000であることがより好ましく、600であることが更に好ましい。平均重合度が小さすぎると、耐水性が低下する傾向があり、大きすぎると、再乳化性が低下する傾向がある。 The average degree of polymerization is preferably 50 or more, more preferably 200 or more, and even more preferably 300 or more. The upper limit of the average degree of polymerization is preferably 3,000, more preferably 2,000, and even more preferably 600. If the average degree of polymerization is too small, the water resistance tends to decrease, and if it is too large, the re-emulsification property tends to decrease.

かくして、本発明の再乳化性合成樹脂粉末が得られる。 Thus, the re-emulsifying synthetic resin powder of the present invention is obtained.

本発明の再乳化性合成樹脂粉末には、さらに、膠着防止剤、減水剤、分散剤、モルタル流動化促進剤、撥水剤、酸化防止剤、防錆剤等を含有させてもよい。
なお、膠着防止剤は、水性合成樹脂エマルジョンに混合したり、噴霧乾燥後の樹脂エマルジョン粉末に混合したり、噴霧乾燥時に水性合成樹脂エマルジョンと別のノズルから噴霧するなどして含有させることができる。
The re-emulsifying synthetic resin powder of the present invention may further contain an anti-adhesion agent, a water reducing agent, a dispersant, a mortar fluidization accelerator, a water repellent agent, an antioxidant, a rust preventive agent and the like.
The anti-adhesion agent can be mixed with the aqueous synthetic resin emulsion, mixed with the resin emulsion powder after spray drying, or sprayed from a nozzle different from the aqueous synthetic resin emulsion at the time of spray drying. ..

[再乳化して得られる水性合成樹脂エマルジョン]
前記の再乳化性合成樹脂粉末は、前記水性媒体を加えることにより再乳化させることができ、水性合成樹脂エマルジョンを得ることができる。この再乳化して得られる水性合成樹脂エマルジョンは、再乳化性合成樹脂粉末とする前の水性合成樹脂エマルジョンと同様の効果を発揮することができる。
[Aqueous synthetic resin emulsion obtained by re-emulsification]
The re-emulsifying synthetic resin powder can be re-emulsified by adding the aqueous medium, and an aqueous synthetic resin emulsion can be obtained. The aqueous synthetic resin emulsion obtained by this re-emulsification can exhibit the same effect as the aqueous synthetic resin emulsion before the re-emulsifying synthetic resin powder.

〔ポリマーセメント組成物・ポリマーセメントモルタル〕
かくして得られる再乳化性合成樹脂粉末は、セメントと配合してポリマーセメント組成物として使用することができ、更に水や砂・砂利を配合することにより、モルタルやコンクリートとして使用することができる。なお、このポリマーセメント組成物に水が配合されると、再乳化性合成樹脂粉末は再乳化されて水性合成樹脂エマルジョンが再生することとなる。
[Polymer cement composition / Polymer cement mortar]
The re-emulsifying synthetic resin powder thus obtained can be used as a polymer cement composition by blending with cement, and can be used as mortar or concrete by further blending water, sand and gravel. When water is added to this polymer cement composition, the re-emulsifying synthetic resin powder is re-emulsified and the aqueous synthetic resin emulsion is regenerated.

上記セメントとしては、例えば、普通ポルトランドセメント、アルミナセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、耐硫酸塩ポルトランドセメント、高炉セメント、フライアッシュセメント、シリカセメント等があげられ、中でもポルトランドセメントが作業性の点から好適である。 Examples of the cement include ordinary Portland cement, alumina cement, early-strength Portland cement, ultra-early-strength Portland cement, moderate heat Portland cement, low heat Portland cement, sulfate-resistant Portland cement, blast furnace cement, fly ash cement, silica cement and the like. Among them, Portland cement is preferable from the viewpoint of workability.

上記セメントの配合量は、再乳化性合成樹脂粉末100重量部に対して3重量部以上であることが好ましく、更には30重量部以上であることが好ましい。また、上記セメント配合量の上限は、500重量部であることが好ましく、350重量部であることが更に好ましい。 The blending amount of the cement is preferably 3 parts by weight or more, and more preferably 30 parts by weight or more with respect to 100 parts by weight of the re-emulsifying synthetic resin powder. The upper limit of the cement blending amount is preferably 500 parts by weight, more preferably 350 parts by weight.

モルタルやコンクリートとして使用する際の水の配合量は、ポリマーセメント組成物全量に対して50重量%以下であることが好ましく、更には30重量%以下であることが好ましい。 The blending amount of water when used as a mortar or concrete is preferably 50% by weight or less, more preferably 30% by weight or less, based on the total amount of the polymer cement composition.

また、モルタルやコンクリートとして使用する際の砂・砂利の配合量としては、ポリマーセメント組成物全量に対して30重量%以上であることが好ましく、更には50重量%以上であることが好ましい。上記砂・砂利の配合量の上限は、300重量部であることが好ましく、150重量部であることが更に好ましい。 The amount of sand and gravel to be blended when used as mortar or concrete is preferably 30% by weight or more, more preferably 50% by weight or more, based on the total amount of the polymer cement composition. The upper limit of the blending amount of the sand and gravel is preferably 300 parts by weight, more preferably 150 parts by weight.

なお、上記ポリマーセメント組成物には、必要に応じて、セメントの減水剤あるいは流動化剤(例えば、リグニン系、ナフタレン系、メラミン系、カルボン酸系等)、収縮低減剤(例えば、グリコールエーテル系、ポリエーテル系等)、耐寒剤(例えば、塩化カルシウム等)、防水剤(例えば、ステアリン酸等)、防錆剤(例えば、リン酸塩等)、粘度調整剤(例えば、メチルセルロース、ヒドロキシエチルセルロース、ポリビニルアルコール等)、分散剤(例えば、ポリカルボン酸系、無機リン系等)、消泡剤(例えば、シリコン系、鉱油系等)、防腐剤、補強剤(例えば、鋼繊維、ガラス繊維、合成繊維、炭素繊維等)等を、単独でもしくは2種以上併用することができる。 The polymer cement composition may include, if necessary, a water reducing agent or fluidizing agent for cement (for example, lignin-based, naphthalene-based, melamine-based, carboxylic acid-based, etc.), and a shrinkage reducing agent (for example, glycol ether-based). , Polyether-based, etc.), cold resistant agents (eg, calcium chloride, etc.), waterproofing agents (eg, stearic acid, etc.), rust preventives (eg, phosphates, etc.), viscosity modifiers (eg, methylcellulose, hydroxyethylcellulose, etc.), Polyvinyl alcohol, etc.), dispersants (eg, polycarboxylic acid-based, inorganic phosphorus-based, etc.), defoamers (eg, silicon-based, mineral oil-based, etc.), preservatives, reinforcing agents (eg, steel fiber, glass fiber, synthetic) Fibers, carbon fibers, etc.) can be used alone or in combination of two or more.

ポリマーセメント組成物を用いて、ポリマーセメントモルタルを調製する場合には、一般のモルタルと同様、必須成分、および任意成分を加え、これに適当量の水を加えた上で、混練機等を用いて混練することにより調製することができる。 When preparing a polymer cement mortar using a polymer cement composition, the essential components and optional components are added as in the case of general mortar, an appropriate amount of water is added thereto, and then a kneader or the like is used. It can be prepared by kneading.

ポリマーセメントモルタルは、通常、JIS A 6203の手順に従い、JIS R 5201の試験においてフロー値が170±5mmとなるよう調整して用いられるものである。
本発明の製造方法により得られた再乳化性合成樹脂粉末を用いると、従来の製造方法により得られる再乳化性合成樹脂粉末に比べて少量の水を配合することで所望のフロー値に調製でき、更に減水剤等の添加剤を添加しなくとも所望のフロー値に調整することが可能であるため、本発明の製造方法により得られた再乳化性合成樹脂粉末は塗工性にも優れるものであるといえる。なお、一般的に、配合する水の量が多いと、硬化速度が低下したり、得られる硬化物の強度が低下するため好ましくない。
The polymer cement mortar is usually used by adjusting the flow value to 170 ± 5 mm in the test of JIS R 5201 according to the procedure of JIS A 6203.
When the re-emulsifying synthetic resin powder obtained by the production method of the present invention is used, it can be adjusted to a desired flow value by adding a small amount of water as compared with the re-emulsifying synthetic resin powder obtained by the conventional production method. Further, since it is possible to adjust the flow value to a desired value without adding an additive such as a water reducing agent, the re-emulsifying synthetic resin powder obtained by the production method of the present invention has excellent coatability. You can say that. In general, if the amount of water to be blended is large, the curing rate is lowered and the strength of the obtained cured product is lowered, which is not preferable.

このようにして得られたポリマーセメント組成物は、セメントモルタルに混和した際に、良好な流動性、作業性を示し、旧モルタル面や樹脂塗面等に対する密着性に優れる。また、物性ばらつきが少なく、加えて接着強度が向上する等の優れた効果を奏する。そして、これらポリマーセメント組成物は、セメントモルタル混和剤として、補修モルタル用、下地調整塗材用、セルフレベリング材、タイル接着モルタル、モルタルシーラー・プライマー、モルタル養生剤、及び石膏系材料等の改質剤として有用であり、さらに、土木・建材用原料、ガラス繊維収束剤、難燃剤用等にも有用である。 The polymer cement composition thus obtained exhibits good fluidity and workability when mixed with cement mortar, and has excellent adhesion to old mortar surfaces, resin-coated surfaces and the like. In addition, there is little variation in physical properties, and in addition, excellent effects such as improvement in adhesive strength are exhibited. Then, these polymer cement compositions are modified as cement mortar admixtures for repair mortar, base adjustment coating material, self-leveling material, tile adhesive mortar, mortar sealer primer, mortar curing agent, gypsum-based material and the like. It is useful as an agent, and is also useful as a raw material for civil engineering and building materials, a glass fiber converging agent, a flame retardant, and the like.

以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。なお、例中「部」、「%」とあるのは、重量基準を意味する。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples as long as the gist of the present invention is not exceeded. In the example, "part" and "%" mean the weight standard.

<実験例1>
〔プレエマルジョンの調製〕
フラスコにポリビニルアルコール(日本合成化学工業(株)製、ゴーセノールGL−03)を5部、水49部を添加して80℃で1時間、十分に溶解した後、室温に冷却し、ついでスチレン46部、ブチルアクリレート54部を添加し、タービン翼で30分撹拌し続けて乳化させ、プレエマルジョンを調製した。
<Experimental example 1>
[Preparation of pre-emulsion]
To a flask, add 5 parts of polyvinyl alcohol (Gosenol GL-03 manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) and 49 parts of water, dissolve sufficiently at 80 ° C. for 1 hour, cool to room temperature, and then styrene 46. 54 parts of butyl acrylate was added, and the mixture was continuously stirred with a turbine blade for 30 minutes for emulsification to prepare a pre-emulsion.

〔水性合成樹脂エマルジョンの製造〕
パドル型撹拌翼、還流冷却器、滴下漏斗、温度計を備えたセパラブルフラスコに水52部、酢酸ナトリウム1部を加え、150rpmで撹拌しながらフラスコ内の温度を80℃に昇温した。次に、過硫酸アンモニウム10%水溶液3部をフラスコに添加し、続いて、上記で調製したプレエマルジョン154部と過硫酸アンモニウム10%水溶液4.6部を滴下漏斗より5時間掛けて滴下して重合反応を行った。引き続き80℃で2時間熟成を行い、その間に過硫酸アンモニウム10%水溶液3.5部を3回に分割して添加し反応を完結させ、室温に冷却し、不揮発分48.7%、粘度2,940mPa.s(ブルックフィールド型粘度計BM12rpm、23℃)の水性合成樹脂エマルジョンを得た。
[Manufacturing of aqueous synthetic resin emulsion]
52 parts of water and 1 part of sodium acetate were added to a separable flask equipped with a paddle-type stirring blade, a reflux condenser, a dropping funnel, and a thermometer, and the temperature inside the flask was raised to 80 ° C. while stirring at 150 rpm. Next, 3 parts of a 10% ammonium persulfate aqueous solution was added to the flask, and then 154 parts of the pre-emulsion prepared above and 4.6 parts of the 10% ammonium persulfate aqueous solution were added dropwise from the dropping funnel over 5 hours to carry out the polymerization reaction. Was done. Subsequently, the mixture was aged at 80 ° C. for 2 hours, during which 3.5 parts of a 10% ammonium persulfate aqueous solution was added in 3 portions to complete the reaction, cooled to room temperature, and had a non-volatile content of 48.7% and a viscosity of 2, 940 mPa. An aqueous synthetic resin emulsion of s (Brookfield viscometer BM 12 rpm, 23 ° C.) was obtained.

〔再乳化性合成樹脂粉末の製造〕
得られた水性合成樹脂エマルジョン100重量部にポリビニルアルコール(日本合成化学工業(株)製、ゴーセノールGL−05)の20%水溶液を20部添加した後、抗粘結剤(商品名INCOMP SE−SUPER、Paltentaler Minerals GmbH&Co KG)14部の存在下において、140℃の気流雰囲気下でスプレー噴霧しながら乾燥させ、樹脂粉末(再乳化性合成樹脂粉末)を得た。
[Manufacturing of re-emulsifying synthetic resin powder]
After adding 20 parts of a 20% aqueous solution of polyvinyl alcohol (Gosenol GL-05, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) to 100 parts by weight of the obtained aqueous synthetic resin emulsion, an anti-binding agent (trade name INCOMP SE-SUPER) , Paltentaler Minerals GmbH & Co KG) In the presence of 14 parts, it was dried while spraying in an air flow atmosphere at 140 ° C. to obtain a resin powder (re-emulsifying synthetic resin powder).

<比較例1>
〔プレエマルジョンの調製〕
実施例1と同様にして、プレエマルジョンを調製した。
〔水性合成樹脂エマルジョンの製造〕
パドル型撹拌翼、還流冷却器、滴下漏斗、温度計を備えたセパラブルフラスコに水52部、酢酸ナトリウム1部を加え、150rpmで撹拌しながらフラスコ内の温度を80℃に昇温した。次に、過硫酸アンモニウム10%水溶液3部をフラスコに添加し、さらに、上記で調製したプレエマルジョン15.4部(重合モノマー全量の10%)を一括して添加して、60分間初期重合を行った後、続いてプレエマルジョン138.6部と過硫酸アンモニウム10%水溶液4.6部を滴下漏斗より5時間掛けて滴下して重合反応を行った。引き続き80℃で2時間熟成を行い、その間に過硫酸アンモニウム10%水溶液3.5部を3回に分割して添加し反応を完結させ、室温に冷却し、不揮発分48.6%、粘度6,390mPa.s(ブルックフィールド型粘度計BM12rpm、23℃)の水性合成樹脂エマルジョンを得た。
〔再乳化性合成樹脂粉末の製造〕
得られた水性合成樹脂エマルジョンを用いて、実施例1と同様にして、樹脂粉末(再乳化性合成樹脂粉末)を得た。
<Comparative example 1>
[Preparation of pre-emulsion]
A pre-emulsion was prepared in the same manner as in Example 1.
[Manufacturing of aqueous synthetic resin emulsion]
52 parts of water and 1 part of sodium acetate were added to a separable flask equipped with a paddle-type stirring blade, a reflux condenser, a dropping funnel, and a thermometer, and the temperature inside the flask was raised to 80 ° C. while stirring at 150 rpm. Next, 3 parts of a 10% ammonium persulfate aqueous solution was added to the flask, and 15.4 parts (10% of the total amount of the polymerization monomer) of the pre-emulsion prepared above was added all at once, and initial polymerization was carried out for 60 minutes. Then, 138.6 parts of the pre-emulsion and 4.6 parts of the 10% ammonium persulfate aqueous solution were added dropwise from the dropping funnel over 5 hours to carry out the polymerization reaction. The mixture was subsequently aged at 80 ° C. for 2 hours, during which 3.5 parts of a 10% ammonium persulfate aqueous solution was added in 3 portions to complete the reaction, cooled to room temperature, non-volatile content 48.6%, viscosity 6, 390 mPa. An aqueous synthetic resin emulsion of s (Brookfield viscometer BM 12 rpm, 23 ° C.) was obtained.
[Manufacturing of re-emulsifying synthetic resin powder]
Using the obtained aqueous synthetic resin emulsion, a resin powder (re-emulsifying synthetic resin powder) was obtained in the same manner as in Example 1.

<比較例2>
〔プレエマルジョンの調製〕
実施例1と同様にして、プレエマルジョンを調製した。
〔水性合成樹脂エマルジョンの製造〕
パドル型撹拌翼、還流冷却器、滴下漏斗、温度計を備えたセパラブルフラスコに水52部、酢酸ナトリウム1部を加え、150rpmで撹拌しながらフラスコ内の温度を80℃に昇温した。次に、過硫酸アンモニウム10%水溶液3部をフラスコに添加し、さらに、上記で調製したプレエマルジョン3.1部(重合モノマー全量の2%)を一括して添加して、60分間初期重合を行った後、続いてプレエマルジョン150.9部と過硫酸アンモニウム10%水溶液4.6部を滴下漏斗より5時間掛けて滴下して重合反応を行った。引き続き80℃で2時間熟成を行い、その間に過硫酸アンモニウム10%水溶液3.5部を3回に分割して添加し反応を完結させ、室温に冷却し、不揮発分49.1%、粘度34,600mPa.s(ブルックフィールド型粘度計BM12rpm、23℃)の水性合成樹脂エマルジョンを得た。
〔再乳化性合成樹脂粉末の製造〕
得られた水性合成樹脂エマルジョンを用いて、実施例1と同様にして再乳化性合成樹脂粉末を製造しようとしたが、粘度が高く、スプレー噴霧が不可能だった。
<Comparative example 2>
[Preparation of pre-emulsion]
A pre-emulsion was prepared in the same manner as in Example 1.
[Manufacturing of aqueous synthetic resin emulsion]
52 parts of water and 1 part of sodium acetate were added to a separable flask equipped with a paddle-type stirring blade, a reflux condenser, a dropping funnel, and a thermometer, and the temperature inside the flask was raised to 80 ° C. while stirring at 150 rpm. Next, 3 parts of a 10% ammonium persulfate aqueous solution was added to the flask, and 3.1 parts of the pre-emulsion prepared above (2% of the total amount of the polymerization monomer) was added all at once, and initial polymerization was carried out for 60 minutes. Then, 150.9 parts of the pre-emulsion and 4.6 parts of the 10% ammonium persulfate aqueous solution were added dropwise from the dropping funnel over 5 hours to carry out the polymerization reaction. The mixture was subsequently aged at 80 ° C. for 2 hours, during which 3.5 parts of a 10% ammonium persulfate aqueous solution was added in 3 portions to complete the reaction, cooled to room temperature, non-volatile content 49.1%, viscosity 34, 600 mPa. An aqueous synthetic resin emulsion of s (Brookfield viscometer BM 12 rpm, 23 ° C.) was obtained.
[Manufacturing of re-emulsifying synthetic resin powder]
Using the obtained aqueous synthetic resin emulsion, an attempt was made to produce a re-emulsifying synthetic resin powder in the same manner as in Example 1, but the viscosity was high and spray spraying was impossible.

<比較例3>
〔プレエマルジョンの調製〕
実施例1と同様にして、プレエマルジョンを調製した。
〔水性合成樹脂エマルジョンの製造〕
パドル型撹拌翼、還流冷却器、滴下漏斗、温度計を備えたセパラブルフラスコに水52部、酢酸ナトリウム1部を加え、150rpmで撹拌しながらフラスコ内の温度を80℃に昇温した。次に、過硫酸アンモニウム10%水溶液3部をフラスコに添加し、さらに上記で調製したプレエマルジョン7.7部(重合モノマー全量の5%)を一括して添加して、30分間初期重合を行った後、続いてプレエマルジョン146.3と過硫酸アンモニウム10%水溶液4.6部を滴下漏斗より5時間掛けて滴下して重合反応を行った。引き続き80℃で2時間熟成を行い、その間に過硫酸アンモニウム10%水溶液3.5部を3回に分割して添加し反応を完結させ、室温に冷却し、不揮発分49.1%、粘度26,200mPa.s(ブルックフィールド型粘度計BM12rpm、23℃)の水性合成樹脂エマルジョンを得た。
〔再乳化性合成樹脂粉末の製造〕
得られた水性合成樹脂エマルジョンを用いて、実施例1と同様にして再乳化性合成樹脂粉末を製造しようとしたが、粘度が高く、スプレー噴霧が不可能だった。
<Comparative example 3>
[Preparation of pre-emulsion]
A pre-emulsion was prepared in the same manner as in Example 1.
[Manufacturing of aqueous synthetic resin emulsion]
52 parts of water and 1 part of sodium acetate were added to a separable flask equipped with a paddle-type stirring blade, a reflux condenser, a dropping funnel, and a thermometer, and the temperature inside the flask was raised to 80 ° C. while stirring at 150 rpm. Next, 3 parts of a 10% ammonium persulfate aqueous solution was added to the flask, and 7.7 parts (5% of the total amount of the polymerization monomer) of the pre-emulsion prepared above was added all at once, and initial polymerization was carried out for 30 minutes. Subsequently, 4.6 parts of the pre-emulsion 146.3 and 4.6 parts of a 10% ammonium persulfate aqueous solution were added dropwise from the dropping funnel over 5 hours to carry out a polymerization reaction. Subsequently, the mixture was aged at 80 ° C. for 2 hours, during which 3.5 parts of a 10% ammonium persulfate aqueous solution was added in 3 portions to complete the reaction, cooled to room temperature, non-volatile content 49.1%, viscosity 26, 200 mPa. An aqueous synthetic resin emulsion of s (Brookfield viscometer BM 12 rpm, 23 ° C.) was obtained.
[Manufacturing of re-emulsifying synthetic resin powder]
Using the obtained aqueous synthetic resin emulsion, an attempt was made to produce a re-emulsifying synthetic resin powder in the same manner as in Example 1, but the viscosity was high and spray spraying was impossible.

<比較例4>
〔プレエマルジョンの調製〕
実施例1と同様にして、プレエマルジョンを調製した。
〔水性合成樹脂エマルジョンの製造〕
パドル型撹拌翼、還流冷却器、滴下漏斗、温度計を備えたセパラブルフラスコに水52部、酢酸ナトリウム1部を加え、150rpmで撹拌しながらフラスコ内の温度を80℃に昇温した。次に、過硫酸アンモニウム10%水溶液3部をフラスコに添加し、さらに、上記で調製したプレエマルジョン15.4部(重合モノマー全量の10%)を一括して添加して、10分間初期重合を行った後、続いてプレエマルジョン138.6部と過硫酸アンモニウム10%水溶液4.6部を滴下漏斗より5時間掛けて滴下したが、途中で反応が不安定となり、良好な重合反応が行えず、水性合成樹脂エマルジョンを得ることができなかった。
<Comparative example 4>
[Preparation of pre-emulsion]
A pre-emulsion was prepared in the same manner as in Example 1.
[Manufacturing of aqueous synthetic resin emulsion]
52 parts of water and 1 part of sodium acetate were added to a separable flask equipped with a paddle-type stirring blade, a reflux condenser, a dropping funnel, and a thermometer, and the temperature inside the flask was raised to 80 ° C. while stirring at 150 rpm. Next, 3 parts of a 10% ammonium persulfate aqueous solution was added to the flask, and 15.4 parts (10% of the total amount of the polymerization monomer) of the pre-emulsion prepared above was added all at once, and initial polymerization was carried out for 10 minutes. After that, 138.6 parts of the pre-emulsion and 4.6 parts of the 10% ammonium persulfate aqueous solution were added dropwise from the dropping funnel over 5 hours, but the reaction became unstable during the process, and a good polymerization reaction could not be performed. A synthetic resin emulsion could not be obtained.

上記実施例1および比較例1で得られた再乳化性合成樹脂粉末を用いて、以下の方法により再乳化性、ポリマーセメントモルタルの流動性を評価した。 Using the re-emulsifying synthetic resin powders obtained in Example 1 and Comparative Example 1, the re-emulsifying property and the fluidity of the polymer cement mortar were evaluated by the following methods.

<樹脂粉末の再乳化性>
脱イオン水100部に、攪拌しながら再乳化性水性合成樹脂エマルジョン粉末100部を添加し、その後1000回転で10分間撹拌して再乳化した。この再乳化液のブルックフィールド型粘度計BM12rpm、23℃における粘度を測定した。評価基準は以下のとおりである。結果を表2に示す。
(評価基準)
○・・・再乳化したエマルジョン溶液の粘度が3,000mPa.s未満
△・・・再乳化したエマルジョン溶液の粘度が3,000mPa.s以上、5,000mPa.s未満
×・・・再乳化したエマルジョン溶液の粘度が5,000mPa.s以上
<Re-emulsifying property of resin powder>
To 100 parts of deionized water, 100 parts of a re-emulsifying aqueous synthetic resin emulsion powder was added with stirring, and then the mixture was re-emulsified by stirring at 1000 rpm for 10 minutes. The viscosity of this re-emulsified solution was measured at a Brookfield viscometer BM 12 rpm and 23 ° C. The evaluation criteria are as follows. The results are shown in Table 2.
(Evaluation criteria)
◯ ・ ・ ・ The viscosity of the re-emulsified emulsion solution is 3,000 mPa. Less than s Δ: The viscosity of the re-emulsified emulsion solution is 3,000 mPa. s or more, 5,000 mPa. Less than s × ・ ・ ・ The viscosity of the re-emulsified emulsion solution is 5,000 mPa. s or more

<ポリマーセメントモルタルの流動性>
JIS A6203に準拠して、下記表1のように再乳化性合成樹脂粉末と各種成分を配合し、ポリマーセメントモルタルが規定のフロー値:170±5mmに適合するまで加水してポリマーセメントモルタルを作製した。
各加水量におけるポリマーセメントモルタルのフロー値を表1に示す。
<Fluidity of polymer cement mortar>
In accordance with JIS A6203, re-emulsifying synthetic resin powder and various components are mixed as shown in Table 1 below, and water is added until the polymer cement mortar meets the specified flow value: 170 ± 5 mm to prepare a polymer cement mortar. did.
Table 1 shows the flow values of the polymer cement mortar at each amount of water added.

Figure 0006861147
Figure 0006861147

JIS A6203規定のフロー値を満たすまで加水したポリマーセメントモルタルについて、水/セメント(%)を求め、下記の基準で評価した。結果を表2に示す。
(評価基準)
○・・・水/セメントが80%未満
×・・・水/セメントが80%以上
Water / cement (%) was determined for the polymer cement mortar that had been hydrated until it satisfied the flow value specified in JIS A6203, and evaluated according to the following criteria. The results are shown in Table 2.
(Evaluation criteria)
○ ・ ・ ・ Water / cement is less than 80% × ・ ・ ・ Water / cement is 80% or more

Figure 0006861147
Figure 0006861147

表2に示すように、本発明の製造方法で得られたに実施例1の合成樹脂エマルジョンは粘度が低く、これを乾燥して得られた乳化性合成樹脂粉末は、再乳化性に優れ、これを用いてなるセメントモルタルの流動性が良好であることがわかる。 As shown in Table 2, the synthetic resin emulsion of Example 1 obtained by the production method of the present invention has a low viscosity, and the emulsifying synthetic resin powder obtained by drying the synthetic resin emulsion has excellent re-emulsifying property. It can be seen that the fluidity of the cement mortar made by using this is good.

一方、本発明の製造方法とモノマーの重合方法が異なる製造方法で得られた比較例1の合成樹脂エマルジョンは、粘度が高く、これを乾燥して得られた再乳化性合成樹脂粉末は、再乳化後の粘度も高く再乳化性に劣るものであった。
また、表1及び表2の結果からわかるように、比較例1の製造方法で得られた合成樹脂エマルジョンを乾燥して得られた再乳化性合成樹脂粉末を用いたポリマーセメントモルタルは、実施例1と同量の加水量ではJIS A 6203に規定のフロー値に適合させることができず、規定のフロー値に適合するよう調整するためにはより多くの水を加える必要があるものであり、実施例1の製造方法で得られた合成樹脂エマルジョンを乾燥して得られた再乳化性合成樹脂粉末と比べて流動性に劣るものであることがわかる。ポリマーセメントモルタルの加水量が多いと、ポリマーセメントの硬化速度が低下し、また得られる硬化物の強度が低下するため、実用性に劣るものであった。
On the other hand, the synthetic resin emulsion of Comparative Example 1 obtained by a production method in which the production method of the present invention and the polymerization method of the monomer are different has a high viscosity, and the re-emulsifying synthetic resin powder obtained by drying the synthetic resin emulsion is re-emulsified. The viscosity after emulsification was also high and the re-emulsifying property was inferior.
Further, as can be seen from the results of Tables 1 and 2, the polymer cement mortar using the re-emulsifying synthetic resin powder obtained by drying the synthetic resin emulsion obtained by the production method of Comparative Example 1 was used in Examples. With the same amount of water added as 1, it is not possible to adapt to the specified flow value in JIS A 6203, and it is necessary to add more water in order to adjust to conform to the specified flow value. It can be seen that the fluidity is inferior to that of the re-emulsifying synthetic resin powder obtained by drying the synthetic resin emulsion obtained by the production method of Example 1. When the amount of water added to the polymer cement mortar is large, the curing rate of the polymer cement is lowered and the strength of the obtained cured product is lowered, which is inferior in practicality.

また、比較例2、3の製造方法で得られた合成樹脂エマルジョンは粘度が高いため再乳化性合成樹脂粉末を得ることができず、比較例4の製造方法においては、重合安定性が悪く、合成樹脂エマルジョンを得ることができなかった。 Further, since the synthetic resin emulsions obtained by the production methods of Comparative Examples 2 and 3 have high viscosity, a re-emulsifying synthetic resin powder cannot be obtained, and the production method of Comparative Example 4 has poor polymerization stability. A synthetic resin emulsion could not be obtained.

本発明の水性合成樹脂エマルジョンの製造方法によれば、高固形分濃度かつ低粘度の水性合成樹脂エマルジョンを得ることができ、そのため、再乳化後の作業性に優れるエマルジョン粉末を生産効率よく得ることができ、本発明の再乳化性合成樹脂粉末の製造方法により得られる再乳化性合成樹脂粉末およびこれを再乳化して得られる水性合成樹脂エマルジョンは、セメントモルタル混和剤として使用した際に、良好な流動性、作業性を示し、セメントモルタル用途として、補修モルタル用、下地調整塗材用、セルフレベリング材、タイル接着モルタル、及び石膏系材料などの改質剤として非常に有用である。 According to the method for producing an aqueous synthetic resin emulsion of the present invention, an aqueous synthetic resin emulsion having a high solid content concentration and a low viscosity can be obtained, and therefore, an emulsion powder having excellent workability after re-emulsification can be obtained with high production efficiency. The re-emulsifying synthetic resin powder obtained by the method for producing a re-emulsifying synthetic resin powder of the present invention and the aqueous synthetic resin emulsion obtained by re-emulsifying the same are good when used as a cement mortar admixture. It exhibits excellent fluidity and workability, and is very useful as a modifier for cement mortars such as repair mortars, base adjustment coating materials, self-leveling materials, tile adhesive mortars, and plaster-based materials.

Claims (5)

重合成分をポリビニルアルコール系樹脂の存在下で乳化重合する水性合成樹脂エマルジョンの製造方法であって、
20℃の水に対する溶解度が0.1%以下である疎水性モノマーを前記重合成分全体に対して30重量%以上含有し、
前記重合成分の全量を、前記ポリビニルアルコール系樹脂の存在下、前記水性媒体中に乳化分散させてプレエマルジョンを調製し、
水性媒体中に、前記プレエマルジョンの全量を連続して添加しながら乳化重合することを特徴とする水性合成樹脂エマルジョンの製造方法。
A method for producing an aqueous synthetic resin emulsion in which a polymerization component is emulsion-polymerized in the presence of a polyvinyl alcohol-based resin.
A hydrophobic monomer having a solubility in water at 20 ° C. of 0.1% or less is contained in an amount of 30% by weight or more based on the total polymerization component.
A pre-emulsion was prepared by emulsifying and dispersing the entire amount of the polymerized component in the aqueous medium in the presence of the polyvinyl alcohol-based resin.
A method for producing an aqueous synthetic resin emulsion , which comprises emulsion polymerization while continuously adding the entire amount of the preemulsion into an aqueous medium.
20℃の水に対する溶解度が0.1%以下である前記疎水性モノマーとしてスチレンを含有し、
このスチレンの含有割合が、前記重合成分中の20℃の水に対する溶解度が0.1%以下である前記疎水性モノマー全体に対して80重量%以下であることを特徴とする請求項1記載の水性合成樹脂エマルジョンの製造方法。
Styrene is contained as the hydrophobic monomer having a solubility in water at 20 ° C. of 0.1% or less.
The first aspect of the present invention, wherein the content ratio of the styrene is 80% by weight or less based on the whole hydrophobic monomer having a solubility in water at 20 ° C. of 0.1% or less in the polymerization component. A method for producing an aqueous synthetic resin emulsion.
前記水性合成樹脂エマルジョンの粘度が100〜5000mPa・s、かつ、固形分濃度が30〜60%であることを特徴とする請求項1又は2に記載の水性合成樹脂エマルジョンの製造方法。 The method for producing an aqueous synthetic resin emulsion according to claim 1 or 2 , wherein the aqueous synthetic resin emulsion has a viscosity of 100 to 5000 mPa · s and a solid content concentration of 30 to 60%. 請求項1〜のいずれかに記載の製造方法で得られた水性合成樹脂エマルジョンを乾燥することを特徴とする再乳化性合成樹脂粉末の製造方法。 A method for producing a re-emulsifying synthetic resin powder, which comprises drying the aqueous synthetic resin emulsion obtained by the production method according to any one of claims 1 to 3. 請求項記載の製造方法で得られた再乳化性合成樹脂粉末を用いることを特徴とするポリマーセメントモルタルの製造方法。

A method for producing a polymer cement mortar, which comprises using the re-emulsifying synthetic resin powder obtained by the production method according to claim 4.

JP2017501044A 2015-12-18 2016-12-13 A method for producing an aqueous synthetic resin emulsion, a method for producing a re-emulsifying synthetic resin powder, a method for producing a polymer cement mortar, an aqueous synthetic resin emulsion and a re-emulsifying synthetic resin powder. Active JP6861147B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015247078 2015-12-18
JP2015247078 2015-12-18
PCT/JP2016/087093 WO2017104671A1 (en) 2015-12-18 2016-12-13 Method for producing aqueous synthetic resin emulsion, method for producing reemulsifiable synthetic resin powder, method for producing polymer cement mortar, aqueous synthetic resin emulsion, and reemulsifiable synthetic resin powder

Publications (2)

Publication Number Publication Date
JPWO2017104671A1 JPWO2017104671A1 (en) 2018-10-04
JP6861147B2 true JP6861147B2 (en) 2021-04-21

Family

ID=59056636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017501044A Active JP6861147B2 (en) 2015-12-18 2016-12-13 A method for producing an aqueous synthetic resin emulsion, a method for producing a re-emulsifying synthetic resin powder, a method for producing a polymer cement mortar, an aqueous synthetic resin emulsion and a re-emulsifying synthetic resin powder.

Country Status (3)

Country Link
JP (1) JP6861147B2 (en)
TW (1) TWI810149B (en)
WO (1) WO2017104671A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109912234B (en) * 2019-03-01 2021-09-28 江西赣丰玻纤网有限公司 Glass fiber coating and preparation method thereof
CN114057439A (en) * 2021-12-15 2022-02-18 山东银王建筑工程有限公司 Elastic mortar for building exterior wall and preparation process thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04185607A (en) * 1990-11-21 1992-07-02 Hoechst Gosei Kk Redispersible acrylic resin powder prepared from emulsion containing protective clloid and production of the powder
JP3142374B2 (en) * 1992-05-29 2001-03-07 日本エヌエスシー株式会社 Underwater curing method of cement mixed with polymer emulsion using modified polyvinyl alcohol
JP3190744B2 (en) * 1992-10-21 2001-07-23 株式会社クラレ Aqueous emulsion
JP4473998B2 (en) * 1999-12-06 2010-06-02 日本酢ビ・ポバール株式会社 Method for emulsion polymerization of vinyl compounds
US7981958B1 (en) * 2002-09-17 2011-07-19 Kuraray Co., Ltd. Synthetic resin emulsion powder
WO2007060960A1 (en) * 2005-11-24 2007-05-31 Nichigo-Mowinyl Co., Ltd. Re-emulsifiable resin powder, aqueous emulsion and adhesive composition using same
JP5036325B2 (en) * 2006-02-22 2012-09-26 日本合成化学工業株式会社 Aqueous emulsion and its use
JP5121250B2 (en) * 2007-02-26 2013-01-16 日本合成化学工業株式会社 Aqueous emulsion, method for producing aqueous emulsion, and re-emulsifiable resin powder
JP5566011B2 (en) * 2007-07-18 2014-08-06 日本合成化学工業株式会社 Aqueous synthetic resin emulsion, re-emulsifiable emulsion powder, and adhesive composition using the same
JP2016160140A (en) * 2015-03-02 2016-09-05 Dic株式会社 Method for finishing surface of cement composition, and cement structure for water use section

Also Published As

Publication number Publication date
TW201734057A (en) 2017-10-01
JPWO2017104671A1 (en) 2018-10-04
WO2017104671A1 (en) 2017-06-22
TWI810149B (en) 2023-08-01

Similar Documents

Publication Publication Date Title
EP2166028B1 (en) Aqueous synthetic-resin emulsion for cement mortar admixture, re-emulsifiable powder for cement mortar admixture from aqueous synthetic-resin emulsion, and cement mortar admixture comprising the same
JP4398789B2 (en) Redispersible acrylic synthetic resin emulsion powder composition and method for producing the same
RU2411266C2 (en) Re-emulsifiable powdered resin, aqueous emulsion and adhesive composition based on said emulsion
JP2010522798A (en) Acrylic ester copolymer composition and redispersible powder
JP2006057019A (en) Aqueous acrylic copolymer emulsion, redispersible acrylic copolymer emulsion powder and method for producing the same
JP2000053711A (en) Re-dispersible emulsion powder and its production
WO2013187443A1 (en) Re-emulsifiable synthetic resin powder composition for polymer cement and polymer cement mortar formed using same
JP6861147B2 (en) A method for producing an aqueous synthetic resin emulsion, a method for producing a re-emulsifying synthetic resin powder, a method for producing a polymer cement mortar, an aqueous synthetic resin emulsion and a re-emulsifying synthetic resin powder.
JP4963877B2 (en) Redispersible powder of synthetic resin emulsion composition
JP2008038144A (en) Reemulsifiable resin powder, aqueous emulsion and finish coating material for building produced by using the same
JP5318708B2 (en) Emulsion composition and waterproofing coating film using the same
JP4979494B2 (en) Re-emulsifiable resin powder composition for hydraulic material, aqueous emulsion for hydraulic material, and building finish coating material using them
JP5370801B2 (en) Aqueous synthetic resin emulsion for cement mortar admixture, re-emulsifiable aqueous synthetic resin emulsion powder for cement mortar admixture, and cement mortar admixture using the same
JP5489091B2 (en) Re-emulsifiable resin powder composition, aqueous emulsion obtained by re-emulsifying the same, and building finish coating material using the same
WO2006132210A1 (en) Synthetic resin emulsion composition
JP5892835B2 (en) Re-emulsifiable synthetic resin powder composition for polymer cement, and polymer cement mortar using the same
JP5398115B2 (en) Re-emulsifiable resin powder, aqueous emulsion, and adhesive composition using the same
JP2017119737A (en) Method for producing synthetic resin emulsion, polymer cement composition using synthetic resin emulsion obtained by production method, and coated film waterproof material obtained by using the polymer cement composition
JP5718074B2 (en) POLYMER CEMENT COMPOSITION, COATING WATERPROOF MATERIAL USING SAME, AND EMULSION COMPOSITION FOR POLYMER CEMENT
JP2012206895A (en) Polymer cement composition, coating film waterproof material therefrom, and emulsion composition for polymer cement
JP4997489B2 (en) Cement mortar admixture
JP5557222B2 (en) Cation polymer-containing aqueous emulsion, cationic polymer-containing aqueous emulsion powder, and cement mortar admixture using the same
JP2014015386A (en) Re-emulsifiable synthetic resin powder for polymer cement and polymer cement mortar using the same
JP2014015385A (en) Re-emulsifiable synthetic resin powder for polymer cement and polymer cement mortar formed using the same
KR102026807B1 (en) Organic-inorgainc hybride micelle particle and methode for manufacturing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170125

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210329

R150 Certificate of patent or registration of utility model

Ref document number: 6861147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250