WO2017104485A1 - Storage device, vaporizer, substrate processing device, and method for manufacturing semiconductor device - Google Patents

Storage device, vaporizer, substrate processing device, and method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2017104485A1
WO2017104485A1 PCT/JP2016/086222 JP2016086222W WO2017104485A1 WO 2017104485 A1 WO2017104485 A1 WO 2017104485A1 JP 2016086222 W JP2016086222 W JP 2016086222W WO 2017104485 A1 WO2017104485 A1 WO 2017104485A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
bottom wall
side wall
pipe
liquid
Prior art date
Application number
PCT/JP2016/086222
Other languages
French (fr)
Japanese (ja)
Inventor
直子 北川
優一 和田
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to JP2017555996A priority Critical patent/JP6487574B2/en
Priority to CN201680072763.4A priority patent/CN108369911B/en
Priority to KR1020187016545A priority patent/KR102122786B1/en
Publication of WO2017104485A1 publication Critical patent/WO2017104485A1/en
Priority to US16/008,825 priority patent/US10480069B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/543Controlling the film thickness or evaporation rate using measurement on the vapor source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02307Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02343Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment

Definitions

  • the present invention relates to a storage device for storing a liquid, a vaporizer, a substrate processing apparatus, and a method for manufacturing a semiconductor device.
  • a container serving as a storage tank for temporarily storing the liquid is provided in front of the processing chamber.
  • the storage tank has a role of controlling liquid supply to the processing chamber (see, for example, Patent Document 1).
  • High productivity is required for processing equipment.
  • One method for achieving high productivity is, for example, shortening the maintenance time of the processing apparatus.
  • an object of the present invention is to provide a processing apparatus capable of achieving high productivity and a structure for realizing the processing apparatus.
  • the peripheral side wall, the lid wall disposed on the upper end side of the side wall, connected to the lower end side of the side wall, and can be placed on the weight detector.
  • a bottom wall having a mounting surface; a storage chamber surrounded by the side wall, the lid wall, and the bottom wall; a recess communicating with the storage chamber; and a recess provided on the bottom wall; Connected to a portion in the gravitational direction, the other end is configured to extend in a direction different from the gravitational direction in the bottom wall, and a connecting tube configured to have a diameter smaller than the diameter of the recess,
  • a structure including a gas flow path provided on a wall different from the bottom wall and a liquid discharge path connected to a downstream end of the communication pipe is provided.
  • FIG. 3 is an AA arrow view of FIG. 2. It is explanatory drawing explaining the storage tank which concerns on embodiment of this invention. It is explanatory drawing explaining the controller which concerns on embodiment of this invention. It is explanatory drawing explaining the relationship between the storage tank and washing
  • FIG. 1 shows a substrate processing apparatus which is an example of a processing apparatus in which the present invention is implemented. First, an outline of a substrate processing apparatus to which the present invention is applied will be described with reference to FIG.
  • a cassette stage 23 is provided on the front side of the inside of the casing 21 as a container transfer means for transferring a cassette 22 as a substrate storage container with an external transfer device (not shown).
  • a cassette elevator 24 as an elevating means is provided, and a cassette transporter 25 as a cassette transport means is attached to the cassette elevator 24.
  • a cassette shelf 26 as a storage means for the cassette 22 is provided on the rear side of the cassette elevator 24, and a spare cassette shelf 27 as a cassette storage means is also provided above the cassette stage 23.
  • a clean unit 28 composed of a fan and a dust-proof filter is provided above the spare cassette shelf 27, and is configured to distribute clean air inside the housing 21, for example, in a region where the cassette 22 is transported.
  • a substrate processing furnace 29 is provided above the rear portion of the casing 21, and a boat 32 as a substrate holding means for holding wafers 31 as substrates in a horizontal posture in multiple stages is provided below the substrate processing furnace 29.
  • a boat elevator 33 is provided as an elevating means for inserting and withdrawing to the boat elevator, and a seal cap 35 as a lid for closing the furnace port portion of the substrate processing furnace 29 is provided at the tip of the elevating member 34 attached to the boat elevator 33.
  • the boat 32 is vertically supported by the seal cap 35, and the boat 32 holds the wafer 31 in a horizontal posture in multiple stages.
  • a transfer elevator 36 as an elevating means is provided between the dredger boat elevator 33 and the cassette shelf 26, and a wafer transfer machine 37 as a substrate transfer means is attached to the transfer elevator 36.
  • the wafer transfer device 37 has a required number (for example, five) of substrate transfer plates 40 on which a substrate is mounted, and the substrate transfer plate 40 can be moved back and forth.
  • a furnace port shutter 38 as a shielding member that has an opening / closing mechanism and closes the furnace port of the substrate processing furnace 29 is provided in the vicinity of the lower portion of the substrate processing furnace 29.
  • a clean unit 30 composed of a fan and a dustproof filter is provided on the side surface of the housing 21 facing the transfer elevator 36. Clean air sent from the clean unit 30 is transferred to the wafer transfer device 37, the boat 32, After flowing through the region including the boat elevator 33, the exhaust is exhausted to the outside of the housing 21 by an exhaust device (not shown).
  • the control unit 41 performs drive control of the cassette transfer machine 25, wafer transfer machine 37, boat elevator 33, etc., heating control of the substrate processing furnace 29, and the like.
  • the cassette 22 loaded with the wafer 31 in the vertical posture is carried into the cassette stage 23 from an external transfer device (not shown), and is rotated 90 ° on the cassette stage 23 so that the wafer 31 is in the horizontal posture. Further, the cassette 22 is transported from the cassette stage 23 to the cassette shelf 26 or the spare cassette shelf 27 by cooperation of the raising / lowering operation of the cassette elevator 24, the transverse operation, the advance / retreat operation of the cassette transporter 25, and the rotation operation.
  • the cassette shelf 26 has a transfer shelf 39 in which the cassette 22 to be transferred by the wafer transfer device 37 is stored.
  • the cassette 22 used for transferring the wafer 31 is transferred by the cassette elevator 24 and the cassette transfer device 25. It is transferred to the mounting shelf 39.
  • the wafer transfer machine 37 When the cassette 22 is transferred to the transfer shelf 39, the wafer transfer machine 37 is lowered from the transfer shelf 39 by the cooperation of the advance / retreat operation, the rotation operation, and the lifting / lowering operation of the transfer elevator 36 of the substrate transfer plate 40. The wafer 31 is transferred to the boat 32.
  • the boat 32 When a predetermined number of wafers 31 are transferred to the boat 32, the boat 32 is raised by the boat elevator 33 and the boat 32 is inserted into the substrate processing furnace 29. When the boat 32 is completely inserted, the substrate processing furnace 29 is hermetically closed by the seal cap 35.
  • the wafer 31 is heated and a processing gas is supplied into the substrate processing furnace 29 according to the selected processing recipe, and the processing chamber is supplied from the gas exhaust pipe 66 by an exhaust device (not shown).
  • the wafer 31 is processed while the atmosphere 2 is discharged (see FIG. 2).
  • a reaction tube 1 is provided inside a heater 42 that is a heating device (heating means), and a manifold 44 is connected to the lower end of the reaction tube 1 by means of, for example, stainless steel via an O-ring 46 that is an airtight member.
  • the lower end opening (furnace port portion) 44 is airtightly closed by a seal cap 35 as a lid through an O-ring 18 as an airtight member, and at least the processing chamber 2 by the reaction tube 1, the manifold 44 and the seal cap 35. Is defined.
  • a boat 32 is erected on the anchor seal cap 35 via a boat support 45, and the boat support 45 serves as a holding body for holding the boat 32.
  • Two types of gas supply pipes (a first gas supply pipe 47 and a second gas supply pipe 48) are provided as supply paths for supplying a plurality of types of processing gases, here two types of processing gases, to the soot processing chamber 2.
  • the first gas supply pipe 47 is provided with a liquid source 71, a first mass flow controller 49 that is a liquid flow rate control device (flow rate control means), a vaporizer 51, and a valve 52 that is an on-off valve in order from the upstream side.
  • a first carrier gas supply pipe 53 that supplies a carrier gas is joined downstream of the valve 52.
  • the first carrier gas supply pipe 53 is provided with a carrier gas source 72, a second mass flow controller 54 as a flow rate control device (flow rate control means), and a valve 55 as an on-off valve in this order from the upstream.
  • a first nozzle 56 is provided at the tip of the first gas supply pipe 47 from the lower part to the upper part along the inner wall of the reaction pipe 1, and a first gas is supplied to the side surface of the first nozzle 56.
  • a gas supply hole 57 is provided.
  • the first gas supply holes 57 are provided at an equal pitch from the lower part to the upper part, and have the same opening area.
  • the vaporizer 51 has a storage tank structure for storing a liquid material and a heater for heating the liquid material, as will be described later.
  • a pipe provided between the first gas supply pipe 47 and the liquid source supply source 71 upstream from the vaporizer 51 is referred to as a supply pipe 47a.
  • the downstream side of the vaporizer 51 in the first gas supply pipe 47 is a supply pipe 47b.
  • first gas supply pipe 47 the first mass flow controller 49, the vaporizer 51, the valve 52, and the nozzle 56 are collectively referred to as a first gas supply unit.
  • the carrier gas supply pipe 53, the second mass flow controller 54, and the valve 55 may be included in the first gas supply unit.
  • the liquid source source 71 and the carrier gas source 72 may be included in the first gas supply unit.
  • the second gas supply pipe 48 is provided with a reaction gas source 73, a third mass flow controller 58 as a flow rate control device (flow rate control means), and a valve 59 as an on-off valve in order from the upstream direction.
  • a second carrier gas supply pipe 61 for supplying the carrier gas is joined.
  • the second carrier gas supply pipe 61 is provided with a carrier gas source 74, a fourth mass flow controller 62 which is a flow rate control device (flow rate control means), and a valve 63 which is an on-off valve in this order from upstream.
  • a second nozzle 64 is provided at the tip of the second gas supply pipe 48 in parallel with the first nozzle 56, and a second gas supply hole 65, which is a supply hole for supplying gas, is provided on the side surface of the second nozzle 64. Is provided.
  • the second gas supply holes 65 are provided at an equal pitch from the lower part to the upper part, and have the same opening area.
  • the second gas supply pipe 48, the third mass flow controller 58, the valve 59, and the nozzle 64 are collectively referred to as a second gas supply unit.
  • the carrier gas supply pipe 61, the fourth mass flow controller 62, and the valve 63 may be included in the second gas supply unit.
  • the liquid source supplied from the liquid source source 71 merges with the first carrier gas supply pipe 53 via the liquid mass flow controller 49, the vaporizer 51, and the valve 52, and further into the processing chamber 2 via the first nozzle 56. To be supplied. In addition, when it supplies in the process chamber 2, the liquid raw material in the state vaporized by the vaporizer 51 is supplied.
  • the reaction gas supplied from the reaction gas source 73 merges with the second carrier gas supply pipe 61 via the first mass flow controller 58 and the valve 59, and is further supplied to the processing chamber 2 via the second nozzle 64.
  • the soot processing chamber 2 is connected to a vacuum pump 68 which is an exhaust device (exhaust means) via a gas exhaust pipe 66 for exhausting gas, and is evacuated.
  • the valve 67 is an open / close valve capable of opening and closing the valve to evacuate and stop the evacuation of the processing chamber 2 and further adjust the pressure by adjusting the valve opening.
  • the boat seal mechanism 35 is provided with a boat rotation mechanism 69, and the boat rotation mechanism 69 rotates the boat 32 in order to improve processing uniformity.
  • the storage tank structure 200 is used as a container for storing a liquid.
  • FIG. 4 is an explanatory diagram for explaining the detailed structure of the vaporizer 51.
  • the vaporizer 51 includes a side wall 201, a bottom wall 202, and a lid wall 203 that constitute the storage tank 200.
  • the side wall 201 is configured in a cylindrical shape (circumferential shape), for example.
  • the side wall 201 includes a side wall 201a having a cylindrical structure with the same diameter, and a side wall 201b configured such that the diameter decreases toward the bottom wall 202.
  • the side wall 201a is the side wall 201 between ⁇ and ⁇
  • the side wall 201b is the side wall 201 between ⁇ and ⁇ .
  • the side wall 201a and the side wall 201b have a continuous structure without a step.
  • the side wall 201b has a structure in which the diameter decreases toward the bottom wall 202, and is configured to have a curvature that minimizes the influence of the surface tension of the liquid.
  • the storage chamber 210 constituted by the side wall 201, the bottom wall 202, and the lid wall 203 is supplied with a liquid source from a liquid source supply pipe 204 described later, and the storage chamber 210 stores the liquid source.
  • the stored liquid raw material is referred to as a liquid raw material 216.
  • the surface of the bottom wall 202 in the gravity direction (Z direction) is configured as a mounting surface 202 a that can be mounted on the weight detector 221.
  • the placement surface 202a is configured in a planar shape, for example, so as to be placed on the weight detector 221 in a stable state.
  • the lid wall 203 is connected (fixed) to the upper end side of the side wall 201 by welding or the like so that the liquid inside does not leak.
  • the bottom wall 202 is connected (fixed) to the lower end side of the side wall 201 by welding or the like so that the liquid inside does not leak.
  • a recess 211 is provided in the bottom wall 202.
  • the recess 211 has a structure continuous to the side wall 201b and is configured to be smaller than the diameter of the side wall 201b.
  • the recess 211 is configured to have a cone shape with a diameter that gradually decreases downward.
  • a hole structure 211a to which a communication tube 212 described later is connected is provided.
  • the communication pipe 212 is also called a communication flow path.
  • a discharge pipe 213 described later is connected to the other end (downstream end) of the communication pipe 212.
  • the discharge pipe 213 is also called a liquid discharge path.
  • the diameter of the discharge pipe 213 is configured to be smaller than the diameter of the communication pipe 212.
  • the discharge pipe 213 is fixed so as to be inserted into the communication pipe 212, for example.
  • the communication pipe 212 is also called a communication structure.
  • the piping 206 that communicates with the processing furnace 29 is configured as a gas flow path through which the gas-state raw material vaporized in the storage chamber 210 flows.
  • a supply pipe 47 b is connected to the downstream side of the pipe 206.
  • the pipe 206 is provided on a wall different from the bottom wall 202. For example, it is provided on the lid wall 203. When provided in the lid wall 203, the pipe 206 is passed through a hole provided in the lid wall 203.
  • the pipe 206 is provided with a valve 207 which is a first valve. By opening and closing the valve 207, the processing chamber 2 is communicated with or shut off.
  • a pipe 208 is connected between the valve 207 and the storage chamber 210 (the lid wall 203 in FIG. 4).
  • the pipe 208 is provided with a valve 209 that is a second valve.
  • a removable pipe 218 is provided downstream of the valve 209.
  • An inert gas source 217 is connected to the pipe 218. By opening and closing the valve 209, the inert gas source 217 and the pipe 208 are communicated with each other or blocked.
  • the valve 209 may be provided in the pipe 206. In this case, the pipe 208 is omitted, and the valve 209 is also used as a joining part for joining the pipe 218 and the pipe 208 together.
  • the communication pipe 212 is provided inside the bottom wall 202.
  • the shape of the connecting pipe 212 is configured to be bent in the lateral direction so as not to penetrate the mounting surface 202a after being directed from the hole structure 211a of the concave portion 211 in the direction of gravity, and then extended in a direction different from the direction of gravity.
  • the direction different from the gravitational direction is, for example, the direction opposite to the gravitational direction and is the direction of the lid 203. By doing in this way, it becomes possible to mount the mounting surface 202a on the weight detector 221.
  • the shape of the connecting tube 212 is extended in the direction of the lid, for example, as a direction different from the direction of gravity. Direction may be used.
  • the discharge pipe 213 is provided with a valve 214 which is a third valve.
  • the discharge pipe 213 can be connected to a cleaning device and a discharge tank described later.
  • the valve 214 is closed in the substrate processing mode for processing the substrate processing, and is opened in the maintenance mode for discharging the liquid to the cleaning device and the discharge tank.
  • the following configuration is provided. That is, a relationship of “diameter of the side wall 201b> diameter of the recess 211> diameter of the communication pipe 212> diameter of the discharge pipe 213” is established. That is, the diameter of the flow path through which the liquid is discharged becomes smaller as the liquid is discharged.
  • the capillary phenomenon described later can be realized in the paths of the recess 211, the communication pipe 212, and the discharge pipe 213.
  • each of the connecting portion between the recess 211 and the connecting pipe 212 and the connecting portion between the connecting pipe 212 and the discharge pipe 213 should have a structure having no step. Furthermore, it is desirable that the structure has no branch. By adopting such a structure, it becomes possible to prevent liquid accumulation and bubbles from entering at the connecting portions of each structure. Furthermore, the pressure in the liquid discharge path can be made linear. By making the pressure linear, the liquid can be moved smoothly.
  • the liquid source supply pipe 204 is configured as a liquid supply channel for supplying the liquid source to the storage chamber 210.
  • the liquid source supply pipe 204 is provided on a wall different from the bottom wall 202. For example, it is provided on the lid wall 203. In the case of the lid wall 203, the liquid source supply pipe 204 is passed through a hole provided in the lid wall 203. One end of the liquid source supply pipe 204 is connected to the liquid source source 71 via the supply pipe 47 a, and the other end is maintained in the storage chamber 210.
  • the liquid source supply pipe 204 is provided with a valve 205. By opening and closing the valve 205, the mass flow controller 49 and the liquid source source 71 are communicated with each other or blocked.
  • a heater 215 is provided on the outer periphery of the side wall 202.
  • the heater 215 heats the storage chamber 210.
  • the liquid raw material 216 stored in the storage chamber 210 is heated and vaporized.
  • the side wall 201, the bottom wall 202, the lid wall 203, the pipe 206, the storage chamber 210, the recess 211, the communication pipe 212, and the discharge pipe 213 are collectively referred to as a storage device.
  • any one of the heater 215, the valve 207, the valve 205, the valve 214, or a combination thereof may be added to the storage device.
  • a weight detector 221 may be added.
  • the substrate processing apparatus has a controller 41 that controls the operation of each unit.
  • the controller 41 which is a control unit (control means) is configured as a computer including a CPU (Central Processing Unit) 41a, a RAM (Random Access Memory) 41b, a storage device 41c, and an I / O port 41d.
  • the RAM 41b, the storage device 41c, and the I / O port 41d are configured to exchange data with the CPU 41a via the internal bus 41e.
  • an input / output device 411 configured as a touch panel or an external storage device 412 can be connected to the controller 41.
  • a receiving unit 413 connected to the host device 75 via a network is provided. The receiving unit 413 can receive information on other devices from the host device.
  • the storage device 41c is configured by, for example, a flash memory, an HDD (Hard Disk Drive), or the like.
  • a control program for controlling the operation of the substrate processing apparatus a program recipe describing a procedure and conditions for substrate processing to be described later, a maintenance program, and the like are readably stored.
  • the process recipe is a combination of instructions so that the controller 41 can execute each procedure in a substrate processing step performed in a substrate processing mode, which will be described later, to obtain a predetermined result, and functions as a program.
  • the maintenance program refers to a control program for the apparatus in a maintenance mode to be described later.
  • the program recipe, the maintenance program, the control program, and the like are collectively referred to simply as a program.
  • the RAM 41b is configured as a memory area (work area) in which a program, data, and the like read by the CPU 41a are temporarily stored.
  • the I / O port 41d is connected to an elevating member, a heater, a mass flow controller (also referred to as MFC), a valve, and the like.
  • MFC mass flow controller
  • the control unit 41 adjusts the flow rate of the mass flow controller, valve, heater, vacuum pump, boat rotation mechanism, valve opening / closing operation, heater temperature adjustment, start and stop of the vacuum pump, adjustment of the rotation speed of the boat rotation mechanism, boat lifting / lowering
  • the raising / lowering operation control of the mechanism is performed.
  • the controller 41 is not limited to being configured as a dedicated computer, and may be configured as a general-purpose computer.
  • an external storage device storing the above-described program for example, a magnetic tape, a magnetic disk such as a flexible disk or a hard disk, an optical disk such as a CD or DVD, a magneto-optical disk such as an MO, a semiconductor memory such as a USB memory or a memory card
  • the controller 41 according to the present embodiment can be configured by preparing 412 and installing a program in a general-purpose computer using the external storage device 412.
  • the means for supplying the program to the computer is not limited to supplying the program via the external storage device 412.
  • the program may be supplied without using the external storage device 412 using communication means such as the Internet or a dedicated line.
  • the storage device 41c and the external storage device 412 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium. Note that in this specification, when the term “recording medium” is used, it may include only the storage device 41c alone, may include only the external storage device 412 alone, or may include both.
  • FIG. 6 is an explanatory diagram for explaining the relationship between the cleaning device 300 and the vaporizer 51.
  • the heater 215 is omitted for convenience of explanation.
  • the cleaning device 300 mainly includes a solvent tank 301, a vacuum pump 302, and a trap device 303. Furthermore, a tire 304 is provided as a moving mechanism that moves the housing of the cleaning device 300 to the vicinity of the vaporizer 51.
  • the solvent tank 301 is provided with a solvent supply system 310 for conveying the solvent to the vaporizer 51.
  • the solvent supply system 310 has a pipe 311 connected to the solvent tank 301.
  • the pipe 311 is provided with a valve 312.
  • a joining part 313 that joins with another pipe is provided.
  • a pipe 314 having a valve 315 and being connectable to the valve 209 is provided between the junction 313 and the vaporizer valve 209.
  • the solvent tank 301 is provided with a solvent discharge system 320 for returning again the solution used when the vaporizer 51 is cleaned.
  • the solvent discharge system 320 can be connected to the valve 214 of the vaporizer 51 and includes a pipe 321 provided with a valve 322.
  • a junction 323 that merges with other pipes is provided on the downstream side of the pipe 321.
  • a pipe 325 having a valve 324 is provided between the junction 323 and the solvent tank 301.
  • a particle counter 326 is provided in the pipe 325 downstream of the valve 324.
  • An inert gas supply system 330 for purging the solvent is connected to the solvent supply system 301.
  • an inert gas supply pipe 331 provided with a valve 332 is configured to be connected to the junction 313.
  • An inert gas source 333 is connected upstream of the inert gas supply pipe 331.
  • the inert gas used here may not be a material that reacts with the solvent to generate dust, and for example, nitrogen (N 2) gas is used.
  • the inert gas supply system mainly includes an inert gas supply pipe 331 and a valve 332. Note that an inert gas source 333 and a pipe 314 may be included in the inert gas supply system.
  • the solvent supply system 301 is connected to an evacuation system 340 for adjusting the pressure in each pipe.
  • a pipe 341 including a valve 342 and a junction 343 is connected to the junction 313.
  • a vacuum pump 302 is connected to a side of the pipe 342 that is different from the junction 313 side.
  • a vacuum exhaust system 340 is also connected to the solvent discharge system 320.
  • a pipe 344 provided with a valve 345 is connected to the junction 323.
  • a side of the pipe 344 that is different from the junction 323 side is connected to the junction 343 of the pipe 341 and communicates with the vacuum pump 302.
  • An exhaust / heating unit system 350 is connected to the downstream side of the trap device 303 connected to the vacuum pump 302. Specifically, a pipe 351 having a junction 353 is connected to the trap device 303. An exhaust / heating unit 352 is provided on the side of the pipe 351 different from the trap device 303. A pipe 354 having a valve 355 is provided between the junction 323 and the junction 353.
  • TEMAH tetrakisethylmethylaminohafnium
  • O3 ozone
  • TEMAH is an example of a liquid raw material.
  • the wafer 31 is loaded into the boat 32 and carried into the processing chamber 2.
  • the vaporizer 51 is connected to the liquid source source 71 as shown in FIG. After the boat 32 is carried into the processing chamber 2, four steps described later are sequentially executed.
  • Step 1 TEMAH and carrier gas (N2) are flowed in a state where the heater 42 and the heater 215 are operated.
  • the valve 52, the valve 55, and the valve 67 are opened.
  • the flow rate of TEMAH is adjusted by the mass flow controller 49 from the supply pipe 47 a and is supplied to the vaporizer 51 through the pipe 205.
  • TEMAH is stored in the storage chamber 210 and vaporized by the heater 215.
  • the vaporized gaseous TEMAH is supplied to the supply pipe 47b via the pipe 206.
  • the carrier gas (N2) whose flow rate is adjusted by the second mass flow controller 54 from the first carrier gas supply pipe 53 is mixed.
  • the mixed gas is exhausted from the gas exhaust pipe 66 while being supplied into the processing chamber 2 from the first gas supply hole 57 of the first nozzle 56.
  • the supply flow rate of TEMAH controlled by the mass flow controller 49 is 0.1 to 0.3 g / min.
  • the time for exposing the wafer 31 to TEMAH is 30 to 180 seconds.
  • the temperature of the heater 42 at this time is set so that the wafer 31 is 180 to 250 ° C.
  • the pressure in the processing chamber 2 is 50 to 100 Pa. As a result, a film containing Hf is formed on the wafer 31.
  • Step 2 the valve 52 of the first gas supply pipe 47 and the valve 55 of the first carrier supply pipe 53 are closed to stop the supply of TEMAH gas and carrier gas.
  • the valve 67 of the gas exhaust pipe 66 is kept open, the substrate processing furnace 29 is exhausted to 20 Pa or less by the vacuum pump 68, and the residual TEMAH gas is removed from the processing chamber 2.
  • an inert gas for example, N2 used as a carrier gas is supplied to the substrate processing furnace 29, the effect of eliminating residual TEMAH is further enhanced.
  • Step 3 O3 and carrier gas (N2) are flowed.
  • the valve 59 provided in the second gas supply pipe 48 and the valve 63 provided in the second carrier gas supply pipe 61 are both opened, O3 whose flow rate is adjusted by the first mass flow controller 58 from the second gas supply pipe 48,
  • the carrier gas (N2) whose flow rate is adjusted by the third mass flow controller 62 is mixed from the second carrier gas supply pipe 61, and gas is exhausted while being supplied into the processing chamber 2 from the second gas supply hole 65 of the second nozzle 64. Exhaust from tube 66.
  • the time for exposing O3 to the wafer 31 is 10 to 120 seconds.
  • the temperature of the wafer 31 at this time is 180 to 250 ° C.
  • the pressure in the processing chamber 2 is 50 to 100 Pa as in the case of supplying the TEMAH gas.
  • Step 4 In step 4, after the film is formed, the valve 59 and the valve 63 are closed, and the inside of the processing chamber 2 is evacuated by the vacuum pump 68 to eliminate O3 remaining after contributing to the film formation. At this time, if an inert gas, for example, N 2 used as a carrier gas is supplied into the processing chamber 2, the effect of further removing remaining O 3 from the processing chamber 2 is enhanced.
  • an inert gas for example, N 2 used as a carrier gas
  • steps 1 to 4 are defined as one cycle, and the HfO 2 film having a predetermined thickness can be formed on the wafer 31 by repeating this cycle a plurality of times.
  • the maintenance process of the vaporizer 51 is performed when the vaporizer 51 is started up or when the processing apparatus is maintained. In the maintenance process, the liquid in the storage chamber 210 is drained, the liquid is replaced, and cleaning is performed.
  • the vaporizer 80 illustrated in FIG. 8 is a first comparative example.
  • the vaporizer 90 shown in FIG. 9 is a second comparative example.
  • the description of the same configuration as that of the vaporizer 51 is omitted, and the description will focus on the differences.
  • the vaporizer 80 has a side wall 801, a bottom wall 802, and a lid wall 803 similarly to the vaporizer 51, but is different from the vaporizer 51 in that it does not have a recess 211, a connecting pipe 212, and a discharge pipe 213 continuous therewith. .
  • maintenance refers to, for example, liquid removal, liquid replacement, and cleaning. In order to implement them while taking down time into consideration, it is necessary to drain the liquid while it is placed on the weight detector 221.
  • the vaporizer 80 is difficult to open and close because the side wall 801 and the lid wall 803 are connected by welding or the like for safety reasons. Furthermore, it is conceivable to discharge the liquid from the liquid source supply pipe 204, but it is difficult to eliminate the liquid stored between the bottom wall 802 and the tip of the liquid source supply pipe 204 due to structural problems. . In order to exclude the liquid under such a configuration, for example, it is conceivable that the distance between the bottom wall 802 and the tip of the liquid source supply pipe 204 is remarkably shortened. The wall 802 may come into contact with the liquid raw material tube 204 or the bottom wall 802. Debris generated due to breakage becomes garbage for wafer processing and is not a realistic structure.
  • the vaporizer 90 includes a side wall 901, a bottom wall 902, and a lid wall 903, similar to the vaporizer 51, but differs in that the bottom wall 902 cannot be placed on the weight detector and is attached thereto. .
  • the vaporizer 90 has a liquid level detector 904.
  • the liquid level detector 904 detects the liquid level height of the storage chamber 210. The remaining amount of liquid is detected by detecting the height of the liquid surface.
  • a discharge pipe 905 is provided on the bottom wall 902. Since the remaining liquid level is detected by the liquid level detector 904 instead of the weight detector as in the first embodiment, there is a space below the bottom wall 903. Accordingly, it is possible to arrange the pipe 905 for discharging the liquid in the direction of gravity.
  • the discharge pipe 905 passes through the bottom wall.
  • the liquid level detector 92 it may be impossible to follow the fluctuation of the liquid, and it is difficult to accurately measure the remaining liquid amount. Furthermore, when the liquid is emptied, the detection tool of the liquid level detector hits the bottom of the storage tank, which causes dust to be generated.
  • the vaporizer 51 is mainly configured by the side wall 201, the bottom wall 202, and the lid wall 203. In order not to leak the liquid stored in the storage chamber 210 to the outside, each wall is fixed by welding or the like.
  • the liquid is drained so that no residue is generated in a state where it is mounted on the processing apparatus. Details will be described below.
  • the discharge pipe 213 and a drain liquid tank (not shown) are connected.
  • the valve 207 is closed and the valve 209 is opened.
  • the valve 205 is closed and the valve 214 is opened.
  • the inert gas supply source 217 communicates with the discharge liquid tank.
  • the inert gas supplied from the inert gas supply source 217 is supplied into the storage chamber 210 and pressurizes the remaining liquid 216.
  • the pressurized liquid is discharged from the discharge pipe 213 through the recess 211 and the communication pipe 212.
  • the storage tank structure 200 has a relationship of “diameter of the side wall 201b> diameter of the recess 211> diameter of the communication pipe 212> diameter of the discharge pipe 213”. Accordingly, the liquid 216 is raised to a position higher than the bottom wall 202 by capillary action.
  • the pressure applied to the liquid is “the pressure of the side wall 201b> the pressure of the recess 211> the communication.
  • cleaning process Next, the cleaning process will be described.
  • a cleaning process is performed using the storage chamber 210 as a target.
  • cleaning is performed in a state where the vaporizer 51 is mounted on the substrate processing apparatus in consideration of downtime.
  • the mobile cleaning unit 300 shown in FIG. 6 is connected to the vaporizer 51. Specifically, the valve 214 is closed, and the pipe 218 is removed with the valves 207 and 209 closed. Next, the valve 209 and the pipe 314 are connected, and further the valve 214 and the pipe 321 are connected. By doing in this way, piping is connected as shown in FIG. At this time, all the valves of the cleaning device 300 are closed.
  • the vacuum pump 302 is activated. Thereafter, the valve 342 is opened, and the junction 313 and the pipe 341 are communicated. At the same time, the valve 345 is opened, and the junction 323 and the pipe 341 are communicated.
  • the atmospheric pressure is, for example, 0.01 Pa or less.
  • valve 315 When the atmosphere in the pipe reaches a predetermined pressure, the valve 315 is opened and the pipe 314 is communicated with the vacuum pump 302. At the same time, the valve 322 is opened, and the piping 321 is communicated with the vacuum pump 302 in the same manner, and a leak check is performed targeting the connection portion with the vaporizer 51 and the like.
  • valve 209 and the valve 214 are opened to communicate with the vacuum pump 302, and the inside of the storage chamber 210 is evacuated.
  • valve 342 and the valve 345 are closed, and the storage chamber 210 and the vacuum pump 302 are disconnected.
  • valve 312 is opened, and the piping of the solvent supply system 310 is communicated.
  • valve 324 is opened to allow the solvent discharge system 320 to communicate.
  • a fresh solvent can be supplied from the solvent tank 301 to the storage chamber 210 via the solvent supply system 310.
  • the solvent that has cleaned the storage chamber 210 can be supplied from the storage chamber 210 to the solvent tank 301 via the solvent discharge system 320.
  • the liquid circulation pump 316 is started, and the storage chamber 210 is cleaned by circulating the solvent. During this time, the concentration of the particle component of the solvent that has passed through the pipe 325 is extracted by the particle counter 326. When the particle component becomes lower than a predetermined value, it is determined that the cleaning is completed, and the liquid circulation pump 316 is stopped.
  • the solvent remaining in the storage chamber 210 is extracted.
  • the valve 312 is closed and the valve 332 is opened.
  • the solvent tank 301 and the storage chamber 210 are shut off, and the storage chamber 210 and the inert gas supply source 333 are communicated with each other.
  • the inert gas supplied from the inert gas source 333 is supplied to the storage chamber 210 via the pipe 331 and the pipe 314.
  • the supplied inert gas discharges the residual solvent in the pipe 314 and the storage tank to the solvent tank 301 and recovers the solvent.
  • valve 324 is closed and the valve 355 is opened.
  • the exhaust / heating unit 352 and the storage chamber 210 are communicated with each other.
  • an inert gas is supplied for a predetermined time, and the residual solvent is discharged from the pipe 314, the storage chamber 210, and the like.
  • valve 332 is closed to shut off the storage chamber 210 and the inert gas source 333. Further, the valve 355 is closed. At the same time, the valve 342 and the valve 345 are opened, and the storage chamber 210, the pipe 314, and the pipe 321 are communicated with the vacuum pump 302. The vacuum pump 302 evacuates the storage chamber 210.
  • the valve 342 and the valve 345 are closed to stop the evacuation process.
  • the predetermined pressure refers to, for example, 0.01 Pa or less.
  • the storage chamber 210 and the inert gas source 333 are communicated with each other by opening the valve 332, and the storage chamber 210 is filled with an inert gas.
  • all the valves are closed, and the pipe 314 and the pipe 321 are removed from the vaporizer 51.
  • the vaporizer 51 of the second embodiment has a side wall 701, a bottom wall 702, and a lid wall 703. Further, a communication pipe 232 and a discharge pipe 233 are provided. Unlike the first embodiment, the discharge pipe 233 is embedded in the side wall 701, and the communication pipe 232 extends to a position where it can be connected to the discharge pipe 233. In the second embodiment, the heater 215 is provided as in the first embodiment.
  • the storage chamber 210 contains a raw material in a liquid state and a raw material in a vaporized state. Since the temperature is different between the position adjacent to the liquid state raw material and the position adjacent to the vaporized state raw material, in the discharge pipe 213, for example, the temperature may be different between upstream and downstream. Since the thermal expansion coefficients of liquids due to different temperatures are different, the relationship between pressures may become unstable upstream and downstream of the discharge pipe 213. Alternatively, a phenomenon such as solidification of the liquid occurs due to a decrease in temperature. Depending on the properties of the liquid raw material, these phenomena become significant, so it is desirable to make the temperature uniform.
  • the discharge pipe 233 is embedded in the side wall 701. Since the heat generated by the heater 215 is uniformly dispersed in the side wall 701, the heat effect can be made uniform between the upstream and downstream of the discharge pipe 233. More preferably, the discharge pipe 233 is provided in the same direction as the extending direction of the heater 215. Thereby, the upstream and downstream thermal effects can be made more uniform. From the above, the pressure of the liquid passing through the discharge pipe 233 does not become unstable. Furthermore, the temperature is stabilized.
  • TEMAH is used as a source (liquid raw material) and O3 gas is used as a reactant (reactive gas), and these are alternately supplied.
  • the HfO film is formed on the wafer W by way of example.
  • the present invention is not limited to this. That is, it is only necessary to use a liquid raw material as the source, and as the reactant, other types of thin films may be formed using a gas that reacts with the source and performs film processing. Furthermore, even when three or more kinds of process gases are used, the present invention can be applied as long as the film formation process is performed by alternately supplying these gases.
  • the cleaning device 300 it is not limited to the case of only discharging the liquid, and may be connected to a waste liquid device.
  • the gas flow path is provided on the lid, the present invention is not limited thereto, and may be provided on the side wall, for example.
  • the gas flow path is provided on the lid, the present invention is not limited thereto, and may be provided on the side wall, for example.
  • the film forming process in the semiconductor device is taken as an example of the process performed by the substrate processing apparatus, but the present invention is not limited to this. That is, in addition to the film formation process, a process for forming an oxide film or a nitride film, or a process for forming a film containing metal may be used. Further, the specific content of the substrate processing is not questioned and can be suitably applied not only to the film forming processing but also to other substrate processing such as annealing processing, oxidation processing, nitriding processing, diffusion processing, and lithography processing.
  • the present invention provides other substrate processing apparatuses such as annealing processing apparatuses, oxidation processing apparatuses, nitriding processing apparatuses, exposure apparatuses, coating apparatuses, drying apparatuses, heating apparatuses, and processing apparatuses using plasma. It can be suitably applied to. In the present invention, these devices may be mixed.
  • each embodiment described above has described the semiconductor manufacturing process, but is not limited thereto, a liquid raw material tank or an intermediate storage tank for storing a liquid that requires high cleanliness of the liquid in the chemical industry field, You may use for the liquid tank etc. which are incorporated in a vaporizer.
  • the liquid here is, for example, pure water, hydrogen peroxide water, ammonia water, alcohols, or organic acids.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Provided are a processing device capable of attaining high productivity and the following structure for achieving the same. That is, the structure is provided with: a circumferentially shaped side wall; a cover wall disposed on the upper end side of the side wall; a bottom wall connected to the lower end side of the side wall and having a mounting surface whereon a weight detector is mountable; a retention chamber surrounded by the side wall, cover wall, and bottom wall; a recessed part provided in the bottom wall and linking to the retention chamber; a connecting pipe constituted such that one end of which is connected to a site in the gravitational direction of the recessed part and the other end extends in a direction different from the gravitational direction within the bottom wall, and constituted such that the diameter is smaller than the diameter of the recessed part; a gas flow path provided in a wall different from the bottom wall; and a liquid discharge path connected to the downstream end of the connecting pipe.

Description

貯留装置、気化器、基板処理装置および半導体装置の製造方法Storage device, vaporizer, substrate processing apparatus, and semiconductor device manufacturing method
 本発明は、液体を貯留する貯留装置、気化器、基板処理装置および半導体装置の製造方法に関する。 The present invention relates to a storage device for storing a liquid, a vaporizer, a substrate processing apparatus, and a method for manufacturing a semiconductor device.
 処理対象物を液体で処理する装置があり、そこでは処理チャンバの手前でいったん液体を貯留する貯留タンクとしての容器を有する。貯留タンクは、処理チャンバへの液体供給を制御する等の役割を有する(例えば特許文献1参照)。 There is an apparatus for processing an object to be processed with a liquid, in which a container serving as a storage tank for temporarily storing the liquid is provided in front of the processing chamber. The storage tank has a role of controlling liquid supply to the processing chamber (see, for example, Patent Document 1).
特開2007‐227471JP2007-227471A
 処理装置では高い生産性が求められている。高い生産性を達成するための一つの方法としては、例えば処理装置のメンテナンス時間の短縮化がある。 High productivity is required for processing equipment. One method for achieving high productivity is, for example, shortening the maintenance time of the processing apparatus.
 本発明は、上記問題に鑑み、高い生産性を達成可能な処理装置やそれを実現するための構造を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide a processing apparatus capable of achieving high productivity and a structure for realizing the processing apparatus.
 本発明の一態様によれば、周状に構成された側壁と、前記側壁の上端側に配された蓋壁と、前記側壁の下端側に接続されると共に、重量検知器上に載置可能な載置面を有する底壁と、前記側壁と前記蓋壁と前記底壁で囲まれた貯留室と、前記貯留室に連通すると共に、前記底壁に設けられた凹部と、一端が前記凹部のうち重力方向の部位に接続され、他端が前記底壁内にて重力方向とは異なる方向に延伸するよう構成され、径が前記凹部の径よりも小さくなるよう構成される連絡管と、前記底壁と異なる壁に設けられるガス流路と、前記連絡管の下流端に接続される液体排出路とを備える構造が提供される。 According to one aspect of the present invention, the peripheral side wall, the lid wall disposed on the upper end side of the side wall, connected to the lower end side of the side wall, and can be placed on the weight detector. A bottom wall having a mounting surface; a storage chamber surrounded by the side wall, the lid wall, and the bottom wall; a recess communicating with the storage chamber; and a recess provided on the bottom wall; Connected to a portion in the gravitational direction, the other end is configured to extend in a direction different from the gravitational direction in the bottom wall, and a connecting tube configured to have a diameter smaller than the diameter of the recess, A structure including a gas flow path provided on a wall different from the bottom wall and a liquid discharge path connected to a downstream end of the communication pipe is provided.
 本発明によれば、高い生産性を達成可能な処理装置やそれを実現するための構造を提供することができる。 According to the present invention, it is possible to provide a processing apparatus capable of achieving high productivity and a structure for realizing the processing apparatus.
本発明の実施形態に係る処理装置の概略を示す斜視図である。It is a perspective view which shows the outline of the processing apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る処理装置に使用される基板処理炉の概略断面図である。It is a schematic sectional drawing of the substrate processing furnace used for the processing apparatus which concerns on embodiment of this invention. 図2のA-A矢視図である。FIG. 3 is an AA arrow view of FIG. 2. 本発明の実施形態に係る貯留タンクを説明する説明図である。It is explanatory drawing explaining the storage tank which concerns on embodiment of this invention. 本発明の実施形態に係るコントローラを説明する説明図である。It is explanatory drawing explaining the controller which concerns on embodiment of this invention. 本発明の実施形態に係る貯留タンクと洗浄装置との関係を説明する説明図である。It is explanatory drawing explaining the relationship between the storage tank and washing | cleaning apparatus which concern on embodiment of this invention. 本発明の実施形態に係る貯留タンクを説明する説明図である。It is explanatory drawing explaining the storage tank which concerns on embodiment of this invention. 比較例を説明する説明図である。It is explanatory drawing explaining a comparative example. 比較例を説明する説明図である。It is explanatory drawing explaining a comparative example.
  以下、本発明の図面を参照しつつ本発明を実施する為の最良の形態を説明する。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings of the present invention.
(第一の実施形態)
  図1は、本発明が実施される処理装置の一例である基板処理装置を示すものである。先ず、図1により本発明が適用される基板処理装置の概略を説明する。
(First embodiment)
FIG. 1 shows a substrate processing apparatus which is an example of a processing apparatus in which the present invention is implemented. First, an outline of a substrate processing apparatus to which the present invention is applied will be described with reference to FIG.
  筐体21内部の前面側には、図示しない外部搬送装置との間で基板収納容器としてのカセット22の授受を行う容器授受手段としてのカセットステージ23が設けられ、カセットステージ23の後側には昇降手段としてのカセットエレベータ24が設けられ、カセットエレベータ24にはカセット搬送手段としてのカセット搬送機25が取付けられている。又、カセットエレベータ24の後側には、カセット22の収納手段としてのカセット棚26が設けられると共にカセットステージ23の上方にもカセット収納手段である予備カセット棚27が設けられている。予備カセット棚27の上方にはファン、防塵フィルタで構成されたクリーンユニット28が設けられ、クリーンエアを筐体21の内部、例えばカセット22が搬送される領域を流通させる様に構成されている。 A cassette stage 23 is provided on the front side of the inside of the casing 21 as a container transfer means for transferring a cassette 22 as a substrate storage container with an external transfer device (not shown). A cassette elevator 24 as an elevating means is provided, and a cassette transporter 25 as a cassette transport means is attached to the cassette elevator 24. Further, a cassette shelf 26 as a storage means for the cassette 22 is provided on the rear side of the cassette elevator 24, and a spare cassette shelf 27 as a cassette storage means is also provided above the cassette stage 23. A clean unit 28 composed of a fan and a dust-proof filter is provided above the spare cassette shelf 27, and is configured to distribute clean air inside the housing 21, for example, in a region where the cassette 22 is transported.
  筐体21の後部上方には、基板処理炉29が設けられ、基板処理炉29の下方には基板としてのウエハ31を水平姿勢で多段に保持する基板保持手段としてのボート32を基板処理炉29に挿入、引出しする昇降手段としてのボートエレベータ33が設けられ、ボートエレベータ33に取付けられた昇降部材34の先端部には基板処理炉29の炉口部を閉塞する蓋体としてのシールキャップ35が取付けられ、シールキャップ35にボート32が垂直に支持され、ボート32はウエハ31を水平姿勢で多段に保持する。 A substrate processing furnace 29 is provided above the rear portion of the casing 21, and a boat 32 as a substrate holding means for holding wafers 31 as substrates in a horizontal posture in multiple stages is provided below the substrate processing furnace 29. A boat elevator 33 is provided as an elevating means for inserting and withdrawing to the boat elevator, and a seal cap 35 as a lid for closing the furnace port portion of the substrate processing furnace 29 is provided at the tip of the elevating member 34 attached to the boat elevator 33. The boat 32 is vertically supported by the seal cap 35, and the boat 32 holds the wafer 31 in a horizontal posture in multiple stages.
  ボートエレベータ33とカセット棚26との間には昇降手段としての移載エレベータ36が設けられ、移載エレベータ36には基板移載手段としてのウエハ移載機37が取付けられている。ウエハ移載機37は、基板を載置する所要枚数(例えば5枚)の基板搬送プレート40を有し、基板搬送プレート40は進退、回転可能となっている。 A transfer elevator 36 as an elevating means is provided between the dredger boat elevator 33 and the cassette shelf 26, and a wafer transfer machine 37 as a substrate transfer means is attached to the transfer elevator 36. The wafer transfer device 37 has a required number (for example, five) of substrate transfer plates 40 on which a substrate is mounted, and the substrate transfer plate 40 can be moved back and forth.
  又、基板処理炉29下部近傍には、開閉機構を持ち基板処理炉29の炉口を塞ぐ遮蔽部材としての炉口シャッタ38が設けられている。 Moreover, a furnace port shutter 38 as a shielding member that has an opening / closing mechanism and closes the furnace port of the substrate processing furnace 29 is provided in the vicinity of the lower portion of the substrate processing furnace 29.
  移載エレベータ36と対向する筐体21の側面には、ファン、防塵フィルタで構成されたクリーンユニット30が設けられ、クリーンユニット30から送出されたクリーンエアは、ウエハ移載機37、ボート32、ボートエレベータ33を含む領域を流通した後、図示しない排気装置により筐体21の外部に排気される様になっている。 A clean unit 30 composed of a fan and a dustproof filter is provided on the side surface of the housing 21 facing the transfer elevator 36. Clean air sent from the clean unit 30 is transferred to the wafer transfer device 37, the boat 32, After flowing through the region including the boat elevator 33, the exhaust is exhausted to the outside of the housing 21 by an exhaust device (not shown).
  カセット搬送機25、ウエハ移載機37、ボートエレベータ33等の駆動制御、基板処理炉29の加熱制御等は制御部41により行われる。 The control unit 41 performs drive control of the cassette transfer machine 25, wafer transfer machine 37, boat elevator 33, etc., heating control of the substrate processing furnace 29, and the like.
  以下、作動について説明する。 Hereinafter, the operation will be described.
  ウエハ31が垂直姿勢で装填されたカセット22は、図示しない外部搬送装置からカセットステージ23に搬入され、ウエハ31が水平姿勢となる様、カセットステージ23で90°回転させられる。更に、カセット22は、カセットエレベータ24の昇降動作、横行動作及びカセット搬送機25の進退動作、回転動作の協働によりカセットステージ23からカセット棚26又は予備カセット棚27に搬送される。 The cassette 22 loaded with the wafer 31 in the vertical posture is carried into the cassette stage 23 from an external transfer device (not shown), and is rotated 90 ° on the cassette stage 23 so that the wafer 31 is in the horizontal posture. Further, the cassette 22 is transported from the cassette stage 23 to the cassette shelf 26 or the spare cassette shelf 27 by cooperation of the raising / lowering operation of the cassette elevator 24, the transverse operation, the advance / retreat operation of the cassette transporter 25, and the rotation operation.
  カセット棚26にはウエハ移載機37の搬送対象となるカセット22が収納される移載棚39があり、ウエハ31の移載に供されるカセット22はカセットエレベータ24、カセット搬送機25により移載棚39に移載される。 The cassette shelf 26 has a transfer shelf 39 in which the cassette 22 to be transferred by the wafer transfer device 37 is stored. The cassette 22 used for transferring the wafer 31 is transferred by the cassette elevator 24 and the cassette transfer device 25. It is transferred to the mounting shelf 39.
  カセット22が移載棚39に移載されると、ウエハ移載機37は、基板搬送プレート40の進退動作、回転動作及び移載エレベータ36の昇降動作の協働により移載棚39から降下状態のボート32にウエハ31を移載する。 When the cassette 22 is transferred to the transfer shelf 39, the wafer transfer machine 37 is lowered from the transfer shelf 39 by the cooperation of the advance / retreat operation, the rotation operation, and the lifting / lowering operation of the transfer elevator 36 of the substrate transfer plate 40. The wafer 31 is transferred to the boat 32.
  ボート32に所定枚数のウエハ31が移載されると、ボートエレベータ33によりボート32が上昇され、ボート32が基板処理炉29に挿入される。完全にボート32が挿入された状態では、シールキャップ35により基板処理炉29が気密に閉塞される。 When a predetermined number of wafers 31 are transferred to the boat 32, the boat 32 is raised by the boat elevator 33 and the boat 32 is inserted into the substrate processing furnace 29. When the boat 32 is completely inserted, the substrate processing furnace 29 is hermetically closed by the seal cap 35.
  気密に閉塞された基板処理炉29内では、選択された処理レシピに従い、ウエハ31が加熱されると共に処理ガスが基板処理炉29内に供給され、ガス排気管66から図示しない排気装置によって処理室2の雰囲気が排出されつつ、ウエハ31に処理がなされる(図2参照)。 In the airtightly closed substrate processing furnace 29, the wafer 31 is heated and a processing gas is supplied into the substrate processing furnace 29 according to the selected processing recipe, and the processing chamber is supplied from the gas exhaust pipe 66 by an exhaust device (not shown). The wafer 31 is processed while the atmosphere 2 is discharged (see FIG. 2).
  図2、図3により上記基板処理装置に用いられる縦型の基板処理炉29について説明する。 2 and 3, a vertical substrate processing furnace 29 used in the substrate processing apparatus will be described.
  加熱装置(加熱手段)であるヒータ42の内側に反応管1が設けられ、反応管1の下端には、例えばステンレス等によりマニホールド44が気密部材であるOリング46を介して連設され、マニホールド44の下端開口部(炉口部)は蓋体であるシールキャップ35により気密部材であるOリング18を介して気密に閉塞され、少なくとも、反応管1、マニホールド44及びシールキャップ35により処理室2を画成している。 A reaction tube 1 is provided inside a heater 42 that is a heating device (heating means), and a manifold 44 is connected to the lower end of the reaction tube 1 by means of, for example, stainless steel via an O-ring 46 that is an airtight member. The lower end opening (furnace port portion) 44 is airtightly closed by a seal cap 35 as a lid through an O-ring 18 as an airtight member, and at least the processing chamber 2 by the reaction tube 1, the manifold 44 and the seal cap 35. Is defined.
  シールキャップ35にはボート支持台45を介してボート32が立設され、ボート支持台45はボート32を保持する保持体となっている。 A boat 32 is erected on the anchor seal cap 35 via a boat support 45, and the boat support 45 serves as a holding body for holding the boat 32.
  処理室2へは複数種類、ここでは2種類の処理ガスを供給する供給経路としての2本のガス供給管(第1ガス供給管47、第2ガス供給管48)が設けられている。 Two types of gas supply pipes (a first gas supply pipe 47 and a second gas supply pipe 48) are provided as supply paths for supplying a plurality of types of processing gases, here two types of processing gases, to the soot processing chamber 2.
  第1ガス供給管47には上流から順に、液体原料源71、液体の流量制御装置(流量制御手段)である第一マスフローコントローラ49、気化器51、及び開閉弁であるバルブ52が設けられる。バルブ52の下流側には、キャリアガスを供給する第1キャリアガス供給管53が合流される。第1キャリアガス供給管53には上流から順に、キャリアガス源72、流量制御装置(流量制御手段)である第2マスフローコントローラ54、及び開閉弁であるバルブ55が設けられている。又、第1ガス供給管47の先端部には、反応管1の内壁に沿って下部から上部に亘り、第1ノズル56が設けられ、第1ノズル56の側面にはガスを供給する第1ガス供給孔57が設けられている。第1ガス供給孔57は、下部から上部に亘って等ピッチで設けられ、それぞれ同一の開口面積を有している。気化器51は、後述するように液体原料を貯留する貯留タンク構造と、液体原料を加熱するヒータを有する。本実施形態の説明においては、第一ガス供給管47のうち、気化器51よりも上流であって、液体原料供給源71との間に設けられた配管を供給管47aとする。また、第一ガス供給管47のうち、気化器51の下流側を供給管47bとする。 The first gas supply pipe 47 is provided with a liquid source 71, a first mass flow controller 49 that is a liquid flow rate control device (flow rate control means), a vaporizer 51, and a valve 52 that is an on-off valve in order from the upstream side. A first carrier gas supply pipe 53 that supplies a carrier gas is joined downstream of the valve 52. The first carrier gas supply pipe 53 is provided with a carrier gas source 72, a second mass flow controller 54 as a flow rate control device (flow rate control means), and a valve 55 as an on-off valve in this order from the upstream. A first nozzle 56 is provided at the tip of the first gas supply pipe 47 from the lower part to the upper part along the inner wall of the reaction pipe 1, and a first gas is supplied to the side surface of the first nozzle 56. A gas supply hole 57 is provided. The first gas supply holes 57 are provided at an equal pitch from the lower part to the upper part, and have the same opening area. The vaporizer 51 has a storage tank structure for storing a liquid material and a heater for heating the liquid material, as will be described later. In the description of the present embodiment, a pipe provided between the first gas supply pipe 47 and the liquid source supply source 71 upstream from the vaporizer 51 is referred to as a supply pipe 47a. In addition, the downstream side of the vaporizer 51 in the first gas supply pipe 47 is a supply pipe 47b.
 ここで、第一ガス供給管47、第一マスフローコントローラ49、気化器51、バルブ52、ノズル56をまとめて第一ガス供給部と呼ぶ。尚、キャリアガス供給管53、第二マスフローコントローラ54、バルブ55を第一ガス供給部に含めても良い。更には、液体原料源71、キャリアガス源72を第一ガス供給部に含めても良い。 Here, the first gas supply pipe 47, the first mass flow controller 49, the vaporizer 51, the valve 52, and the nozzle 56 are collectively referred to as a first gas supply unit. The carrier gas supply pipe 53, the second mass flow controller 54, and the valve 55 may be included in the first gas supply unit. Furthermore, the liquid source source 71 and the carrier gas source 72 may be included in the first gas supply unit.
  第2ガス供給管48には上流方向から順に、反応ガス源73、流量制御装置(流量制御手段)である第三マスフローコントローラ58、開閉弁であるバルブ59が設けられ、バルブ59の下流側にキャリアガスを供給する第2キャリアガス供給管61が合流されている。第2キャリアガス供給管61には上流から順に、キャリアガス源74、流量制御装置(流量制御手段)である第四マスフローコントローラ62、及び開閉弁であるバルブ63が設けられている。第2ガス供給管48の先端部には、第1ノズル56と平行に第2ノズル64が設けられ、第2ノズル64の側面にはガスを供給する供給孔である第2ガス供給孔65が設けられている。第2ガス供給孔65は、下部から上部に亘って等ピッチで設けられ、それぞれ同一の開口面積を有している。 The second gas supply pipe 48 is provided with a reaction gas source 73, a third mass flow controller 58 as a flow rate control device (flow rate control means), and a valve 59 as an on-off valve in order from the upstream direction. A second carrier gas supply pipe 61 for supplying the carrier gas is joined. The second carrier gas supply pipe 61 is provided with a carrier gas source 74, a fourth mass flow controller 62 which is a flow rate control device (flow rate control means), and a valve 63 which is an on-off valve in this order from upstream. A second nozzle 64 is provided at the tip of the second gas supply pipe 48 in parallel with the first nozzle 56, and a second gas supply hole 65, which is a supply hole for supplying gas, is provided on the side surface of the second nozzle 64. Is provided. The second gas supply holes 65 are provided at an equal pitch from the lower part to the upper part, and have the same opening area.
 ここで、第二ガス供給管48、第三マスフローコントローラ58、バルブ59、ノズル64をまとめて第二ガス供給部と呼ぶ。尚、キャリアガス供給管61、第四マスフローコントローラ62、バルブ63を第二ガス供給部に含めても良い。更には、反応ガス源73、キャリアガス源74を第二ガス供給部に含めても良い。 Here, the second gas supply pipe 48, the third mass flow controller 58, the valve 59, and the nozzle 64 are collectively referred to as a second gas supply unit. The carrier gas supply pipe 61, the fourth mass flow controller 62, and the valve 63 may be included in the second gas supply unit. Furthermore, you may include the reactive gas source 73 and the carrier gas source 74 in a 2nd gas supply part.
  液体原料源71から供給される液体原料は、液体マスフローコントローラ49、気化器51、及びバルブ52を介し、第1キャリアガス供給管53と合流し、更に第1ノズル56を介して処理室2内に供給される。なお、処理室2内に供給される際は、気化器51にて気化された状態の液体原料が供給される。反応ガス源73から供給される反応ガスは、第1マスフローコントローラ58、バルブ59を介し、第2キャリアガス供給管61と合流し、更に第2ノズル64を介して処理室2に供給される。 The liquid source supplied from the liquid source source 71 merges with the first carrier gas supply pipe 53 via the liquid mass flow controller 49, the vaporizer 51, and the valve 52, and further into the processing chamber 2 via the first nozzle 56. To be supplied. In addition, when it supplies in the process chamber 2, the liquid raw material in the state vaporized by the vaporizer 51 is supplied. The reaction gas supplied from the reaction gas source 73 merges with the second carrier gas supply pipe 61 via the first mass flow controller 58 and the valve 59, and is further supplied to the processing chamber 2 via the second nozzle 64.
  処理室2は、ガスを排気するガス排気管66を介して排気装置(排気手段)である真空ポンプ68に接続され、真空排気される様になっている。尚、バルブ67は弁を開閉して処理室2の真空排気及び真空排気停止ができ、更に弁開度を調節して圧力調整可能となっている開閉弁である。 The soot processing chamber 2 is connected to a vacuum pump 68 which is an exhaust device (exhaust means) via a gas exhaust pipe 66 for exhausting gas, and is evacuated. The valve 67 is an open / close valve capable of opening and closing the valve to evacuate and stop the evacuation of the processing chamber 2 and further adjust the pressure by adjusting the valve opening.
  シールキャップ35にはボート回転機構69が設けられ、ボート回転機構69は処理の均一性を向上する為にボート32を回転する様になっている。 The boat seal mechanism 35 is provided with a boat rotation mechanism 69, and the boat rotation mechanism 69 rotates the boat 32 in order to improve processing uniformity.
(気化器)
 続いて、図4を用いて貯留タンク構造200を有する気化器の一例である気化器51を説明する。貯留タンク構造200は液体を貯留する容器として用いられる。
 図4は気化器51の詳細な構造を説明する説明図である。気化器51は、貯留タンク200を構成する側壁201、底壁202、蓋壁203を有する。側壁201は例えば円筒状(周状)に構成される。側壁201は、径が等しい筒状構造である側壁201aと、底壁202に向かうほど径が小さくなるよう構成された側壁201bを有する。図4においては、側壁201aはα-β間の側壁201であり、側壁201bはβ-γ間の側壁201を指す。
(Vaporizer)
Next, a vaporizer 51 which is an example of a vaporizer having a storage tank structure 200 will be described with reference to FIG. The storage tank structure 200 is used as a container for storing a liquid.
FIG. 4 is an explanatory diagram for explaining the detailed structure of the vaporizer 51. The vaporizer 51 includes a side wall 201, a bottom wall 202, and a lid wall 203 that constitute the storage tank 200. The side wall 201 is configured in a cylindrical shape (circumferential shape), for example. The side wall 201 includes a side wall 201a having a cylindrical structure with the same diameter, and a side wall 201b configured such that the diameter decreases toward the bottom wall 202. In FIG. 4, the side wall 201a is the side wall 201 between α and β, and the side wall 201b is the side wall 201 between β and γ.
 側壁201aと側壁201bは段差のない連続した構造である。側壁201bは底壁202に向かうほど径が小さくなる構造であり、そこでは液体の表面張力の影響を最小とする曲率となるよう構成される。 The side wall 201a and the side wall 201b have a continuous structure without a step. The side wall 201b has a structure in which the diameter decreases toward the bottom wall 202, and is configured to have a curvature that minimizes the influence of the surface tension of the liquid.
 側壁201、底壁202のうち、液体と接触する面では、液体の表面張力を最小化するために表面積を小さくすることが望ましい。それを実現するために、液体と接触する面に対して、例えば複合電解研磨を実施する。更に、液体の種類や性質に応じて、不働態化、ガラス化、フッ素処理等を行い、液体との反応を防止する。 It is desirable to reduce the surface area of the side wall 201 and the bottom wall 202 in order to minimize the surface tension of the liquid on the surface in contact with the liquid. In order to realize this, for example, composite electropolishing is performed on the surface in contact with the liquid. Further, depending on the type and properties of the liquid, passivation, vitrification, fluorine treatment, etc. are performed to prevent reaction with the liquid.
 側壁201、底壁202、蓋壁203で構成された貯留室210には、後述する液体原料供給管204から液体原料が供給され、貯留室210は液体原料を貯留する。図4においては、貯留された液体原料を液体原料216と呼ぶ。 The storage chamber 210 constituted by the side wall 201, the bottom wall 202, and the lid wall 203 is supplied with a liquid source from a liquid source supply pipe 204 described later, and the storage chamber 210 stores the liquid source. In FIG. 4, the stored liquid raw material is referred to as a liquid raw material 216.
 底壁202のうち、重力方向(Z方向)の面は、重量検知器221に載置可能な載置面202aとして構成されている。載置面202aは、重量検知器221に安定した状態で載置されるよう、例えば平面状に構成される。重量検知器221にて貯留タンク構造の重量を検知することで、貯留室210内に貯留された液体原料216の重量を計測可能とする。重量を計測することで、液体の残量を計測可能とする。 The surface of the bottom wall 202 in the gravity direction (Z direction) is configured as a mounting surface 202 a that can be mounted on the weight detector 221. The placement surface 202a is configured in a planar shape, for example, so as to be placed on the weight detector 221 in a stable state. By detecting the weight of the storage tank structure with the weight detector 221, the weight of the liquid raw material 216 stored in the storage chamber 210 can be measured. By measuring the weight, the remaining amount of liquid can be measured.
 蓋壁203は、内部の液体が漏れないよう溶接等で側壁201の上端側に接続(固定)される。底壁202も同様に、内部の液体が漏れないよう溶接等で側壁201の下端側に接続(固定)される。このように固定することで、液体が入った状態での搬送時や、重量検知器221上に載置する際の据え付け作業時等で液体が漏れることを防ぐ。 The lid wall 203 is connected (fixed) to the upper end side of the side wall 201 by welding or the like so that the liquid inside does not leak. Similarly, the bottom wall 202 is connected (fixed) to the lower end side of the side wall 201 by welding or the like so that the liquid inside does not leak. By fixing in this way, the liquid is prevented from leaking during transportation in a state where the liquid is contained or during installation work when being placed on the weight detector 221.
 底壁202には、凹部211が設けられる。凹部211は側壁201bに連続した構造であると共に、側壁201bにおける径よりも小さくなるよう構成されている。凹部211は、下方に向かって徐々に径が小さくなる錐体形状となるよう構成される。凹部211の底には、後述する連絡管212が接続される孔構造211aが設けられる。 A recess 211 is provided in the bottom wall 202. The recess 211 has a structure continuous to the side wall 201b and is configured to be smaller than the diameter of the side wall 201b. The recess 211 is configured to have a cone shape with a diameter that gradually decreases downward. At the bottom of the recess 211, a hole structure 211a to which a communication tube 212 described later is connected is provided.
 凹部211の孔構造211aには、凹部211よりも径が小さい連絡管212の一端が接続される。連絡管212は連絡流路とも呼ぶ。連絡管212のうち、他端(下流端)には後述する排出管213が接続される。排出管213は液体排出路とも呼ぶ。排出管213の径は、連絡管212の径よりも小さくなるよう構成される。排出管213は、例えば連絡管212に差し込まれるように固定される。なお、連絡管212は連絡構造とも呼ぶ。 One end of a communication tube 212 having a diameter smaller than that of the recess 211 is connected to the hole structure 211 a of the recess 211. The communication pipe 212 is also called a communication flow path. A discharge pipe 213 described later is connected to the other end (downstream end) of the communication pipe 212. The discharge pipe 213 is also called a liquid discharge path. The diameter of the discharge pipe 213 is configured to be smaller than the diameter of the communication pipe 212. The discharge pipe 213 is fixed so as to be inserted into the communication pipe 212, for example. The communication pipe 212 is also called a communication structure.
 処理炉29と連通する配管206は貯留室210内で気化されたガス状態の原料が流れるガス流路として構成される。配管206の下流側には供給管47bが接続さる。配管206は底壁202と異なる壁に設けられる。例えば蓋壁203に設けられる。蓋壁203に設けられる場合、蓋壁203に設けられた穴に配管206を貫通させる。配管206には第一のバルブであるバルブ207が設けられる。バルブ207を開閉することで、処理室2との間を連通させたり遮断させたりする。 The piping 206 that communicates with the processing furnace 29 is configured as a gas flow path through which the gas-state raw material vaporized in the storage chamber 210 flows. A supply pipe 47 b is connected to the downstream side of the pipe 206. The pipe 206 is provided on a wall different from the bottom wall 202. For example, it is provided on the lid wall 203. When provided in the lid wall 203, the pipe 206 is passed through a hole provided in the lid wall 203. The pipe 206 is provided with a valve 207 which is a first valve. By opening and closing the valve 207, the processing chamber 2 is communicated with or shut off.
 配管206であって、バルブ207と貯留室210(図4においては蓋壁203)との間には配管208が接続されている。配管208には第二のバルブであるバルブ209が設けられる。バルブ209の下流には取り外し可能な配管218が設けられる。配管218には不活性ガス源217が接続される。バルブ209が開閉されることで、不活性ガス源217と配管208との間を連通させたり遮断させたりする。なお、バルブ209を配管206に設けてもよい。この場合、配管208は省略され、バルブ209は配管218と配管208とが合流するための合流部としても用いられる。 A pipe 208 is connected between the valve 207 and the storage chamber 210 (the lid wall 203 in FIG. 4). The pipe 208 is provided with a valve 209 that is a second valve. A removable pipe 218 is provided downstream of the valve 209. An inert gas source 217 is connected to the pipe 218. By opening and closing the valve 209, the inert gas source 217 and the pipe 208 are communicated with each other or blocked. Note that the valve 209 may be provided in the pipe 206. In this case, the pipe 208 is omitted, and the valve 209 is also used as a joining part for joining the pipe 218 and the pipe 208 together.
 連絡管212は、底壁202の内部に設けられる。連絡管212の形状は、凹部211の孔構造211aから重力方向に向かった後、載置面202aを貫通しないよう側方に折り曲げられ、その後重力方向とは異なる方向に延伸するよう構成される。ここで重力方向と異なる方向とは、例えば重力方向と反対の方向であり、蓋203の方向である。このようにすることで、重量検知器221上に載置面202aを載置することが可能となる。なお、本実施形態においては、連絡管212の形状は重力方向とは異なる方向として例えば蓋方向に延伸されているが、液体が排出される構造であればよく、例えば重力方向から見
て横の方向でもよい。
The communication pipe 212 is provided inside the bottom wall 202. The shape of the connecting pipe 212 is configured to be bent in the lateral direction so as not to penetrate the mounting surface 202a after being directed from the hole structure 211a of the concave portion 211 in the direction of gravity, and then extended in a direction different from the direction of gravity. Here, the direction different from the gravitational direction is, for example, the direction opposite to the gravitational direction and is the direction of the lid 203. By doing in this way, it becomes possible to mount the mounting surface 202a on the weight detector 221. In the present embodiment, the shape of the connecting tube 212 is extended in the direction of the lid, for example, as a direction different from the direction of gravity. Direction may be used.
 排出管213には第三のバルブであるバルブ214が設けられる。排出管213は、後述する洗浄装置や排出用タンクに接続可能とする。バルブ214は、基板処理を処理する基板処理モードでは閉とされ、洗浄装置や排出用タンクに液体を排出するメンテナンスモードでは開とされる。 The discharge pipe 213 is provided with a valve 214 which is a third valve. The discharge pipe 213 can be connected to a cleaning device and a discharge tank described later. The valve 214 is closed in the substrate processing mode for processing the substrate processing, and is opened in the maintenance mode for discharging the liquid to the cleaning device and the discharge tank.
 ここで側壁201b、凹部211、連絡管212、排出管213の径の関係を整理すると次のように構成される。即ち、「側壁201bの径>凹部211の径>連絡管212の径>排出管213の径」という関係とする。即ち、液体が排出される方向に向かうほど、液体が排出される液体が流れる流路の径が小さくなるよう構成される。このような構成とすることで、凹部211、連絡管212、排出管213の経路において、後述する毛細管現象を実現することができる。 Here, when the relationship among the diameters of the side wall 201b, the concave portion 211, the connecting pipe 212, and the discharge pipe 213 is arranged, the following configuration is provided. That is, a relationship of “diameter of the side wall 201b> diameter of the recess 211> diameter of the communication pipe 212> diameter of the discharge pipe 213” is established. That is, the diameter of the flow path through which the liquid is discharged becomes smaller as the liquid is discharged. By adopting such a configuration, the capillary phenomenon described later can be realized in the paths of the recess 211, the communication pipe 212, and the discharge pipe 213.
 より良くは、凹部211と連絡管212との接続部分や、連絡管212と排出管213との接続部分のそれぞれは段差のない構造が望ましい。更には、分岐を持たない構造とすることが望ましい。このような構造とすることで、各構造の接続部分における液体溜まりや気泡の入り込みを防ぐことが可能となる。更には液体排出路の圧力をリニアにすることが可能となる。圧力をリニアにすることで、液体をスムーズに移動させることができる。 More preferably, each of the connecting portion between the recess 211 and the connecting pipe 212 and the connecting portion between the connecting pipe 212 and the discharge pipe 213 should have a structure having no step. Furthermore, it is desirable that the structure has no branch. By adopting such a structure, it becomes possible to prevent liquid accumulation and bubbles from entering at the connecting portions of each structure. Furthermore, the pressure in the liquid discharge path can be made linear. By making the pressure linear, the liquid can be moved smoothly.
 液体原料供給管204は液体原料を貯留室210に供給するための液体供給流路として構成される。液体原料供給管204は底壁202と異なる壁に設けられる。例えば蓋壁203に設けられる。蓋壁203の場合、蓋壁203に設けられた穴に液体原料供給管204を貫通させる。液体原料供給管204の一端は供給管47aを介して液体原料源71に接続され、他端は貯留室210に維持される。液体原料供給管204にはバルブ205が設けられる。バルブ205を開閉することで、マスフローコントローラ49や液体原料源71との間を連通させたり遮断させたりする。 The liquid source supply pipe 204 is configured as a liquid supply channel for supplying the liquid source to the storage chamber 210. The liquid source supply pipe 204 is provided on a wall different from the bottom wall 202. For example, it is provided on the lid wall 203. In the case of the lid wall 203, the liquid source supply pipe 204 is passed through a hole provided in the lid wall 203. One end of the liquid source supply pipe 204 is connected to the liquid source source 71 via the supply pipe 47 a, and the other end is maintained in the storage chamber 210. The liquid source supply pipe 204 is provided with a valve 205. By opening and closing the valve 205, the mass flow controller 49 and the liquid source source 71 are communicated with each other or blocked.
 側壁202の外周にはヒータ215が設けられる。ヒータ215は貯留室210を加熱する。特にここでは、貯留室210に貯留された液体原料216を加熱し、気化させる。 A heater 215 is provided on the outer periphery of the side wall 202. The heater 215 heats the storage chamber 210. In particular, here, the liquid raw material 216 stored in the storage chamber 210 is heated and vaporized.
 ここで、側壁201、底壁202、蓋壁203、配管206、貯留室210、凹部211、連絡管212、排出管213をまとめて貯留装置と呼ぶ。また、貯留装置には、ヒータ215、バルブ207、バルブ205、バルブ214のいずれか、もしくはその組み合わせを加えても良い。更には重量検知器221を加えても良い。 Here, the side wall 201, the bottom wall 202, the lid wall 203, the pipe 206, the storage chamber 210, the recess 211, the communication pipe 212, and the discharge pipe 213 are collectively referred to as a storage device. Further, any one of the heater 215, the valve 207, the valve 205, the valve 214, or a combination thereof may be added to the storage device. Furthermore, a weight detector 221 may be added.
(制御部)
 基板処理装置は、各部の動作を制御するコントローラ41を有している。
(Control part)
The substrate processing apparatus has a controller 41 that controls the operation of each unit.
 コントローラ41の概略を図5に示す。制御部(制御手段)であるコントローラ41は、CPU(Central Processing Unit)41a、RAM(Random Access Memory)41b、記憶装置41c、I/Oポート41dを備えたコンピュータとして構成されている。RAM41b、記憶装置41c、I/Oポート41dは、内部バス41eを介して、CPU41aとデータ交換可能なように構成されている。コントローラ41には、例えばタッチパネル等として構成された入出力装置411や、外部記憶装置412が接続可能に構成されている。更に、上位装置75にネットワークを介して接続される受信部413が設けられる。受信部413は、上位装置から他の装置の情報を受信することが可能である。 The outline of the controller 41 is shown in FIG. The controller 41 which is a control unit (control means) is configured as a computer including a CPU (Central Processing Unit) 41a, a RAM (Random Access Memory) 41b, a storage device 41c, and an I / O port 41d. The RAM 41b, the storage device 41c, and the I / O port 41d are configured to exchange data with the CPU 41a via the internal bus 41e. For example, an input / output device 411 configured as a touch panel or an external storage device 412 can be connected to the controller 41. Further, a receiving unit 413 connected to the host device 75 via a network is provided. The receiving unit 413 can receive information on other devices from the host device.
 記憶装置41cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置41c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件などが記載されたプログラムレシピやメンテナンスプログラム等が読み出し可能に格納されている。なお、プロセスレシピは、後述する基板処理モードで実施される基板処理工程における各手順をコントローラ41に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。また、メンテナンスプログラムとは、後述するメンテナンスモードにおける装置の制御プログラムをいう。以下、このプログラムレシピやメンテナンスプログラム、制御プログラム等を総称して、単にプログラムともいう。なお、本明細書においてプログラムという言葉を用いた場合は、プログラムレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、その両方を含む場合がある。また、RAM41bは、CPU41aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。 The storage device 41c is configured by, for example, a flash memory, an HDD (Hard Disk Drive), or the like. In the storage device 41c, a control program for controlling the operation of the substrate processing apparatus, a program recipe describing a procedure and conditions for substrate processing to be described later, a maintenance program, and the like are readably stored. The process recipe is a combination of instructions so that the controller 41 can execute each procedure in a substrate processing step performed in a substrate processing mode, which will be described later, to obtain a predetermined result, and functions as a program. The maintenance program refers to a control program for the apparatus in a maintenance mode to be described later. Hereinafter, the program recipe, the maintenance program, the control program, and the like are collectively referred to simply as a program. When the term “program” is used in this specification, it may include only a program recipe alone, may include only a control program alone, or may include both. The RAM 41b is configured as a memory area (work area) in which a program, data, and the like read by the CPU 41a are temporarily stored.
 I/Oポート41dは、昇降部材、ヒータ、マスフローコントローラ(MFCとも呼ぶ。)、バルブ等に接続されている。 The I / O port 41d is connected to an elevating member, a heater, a mass flow controller (also referred to as MFC), a valve, and the like.
  制御部41は、マスフローコントローラ、バルブ、ヒータ、真空ポンプ、ボート回転機構、の流量調整、バルブの開閉動作、ヒータの温度調整、真空ポンプの起動及び停止、ボート回転機構の回転速度調節、ボート昇降機構の昇降動作制御等が行われる。 The control unit 41 adjusts the flow rate of the mass flow controller, valve, heater, vacuum pump, boat rotation mechanism, valve opening / closing operation, heater temperature adjustment, start and stop of the vacuum pump, adjustment of the rotation speed of the boat rotation mechanism, boat lifting / lowering The raising / lowering operation control of the mechanism is performed.
 なお、コントローラ41は、専用のコンピュータとして構成されている場合に限らず、汎用のコンピュータとして構成されていても良い。例えば、上述のプログラムを格納した外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MOなどの光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)412を用意し、係る外部記憶装置412を用いて汎用のコンピュータにプログラムをインストールすること等により、本実施形態に係るコントローラ41を構成することができる。なお、コンピュータにプログラムを供給するための手段
は、外部記憶装置412を介して供給する場合に限らない。例えば、インターネットや専用回線等の通信手段を用い、外部記憶装置412を介さずにプログラムを供給するようにしても良い。なお、記憶装置41cや外部記憶装置412は、コンピュータ読み取り可能な記録媒体として構成される。以下、これらを総称して、単に記録媒体ともいう。なお、本明細書において、記録媒体という言葉を用いた場合は、記憶装置41c単体のみを含む場合、外部記憶装置412単体のみを含む場合、または、その両方を含む場合が有る。
The controller 41 is not limited to being configured as a dedicated computer, and may be configured as a general-purpose computer. For example, an external storage device storing the above-described program (for example, a magnetic tape, a magnetic disk such as a flexible disk or a hard disk, an optical disk such as a CD or DVD, a magneto-optical disk such as an MO, a semiconductor memory such as a USB memory or a memory card) The controller 41 according to the present embodiment can be configured by preparing 412 and installing a program in a general-purpose computer using the external storage device 412. The means for supplying the program to the computer is not limited to supplying the program via the external storage device 412. For example, the program may be supplied without using the external storage device 412 using communication means such as the Internet or a dedicated line. The storage device 41c and the external storage device 412 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium. Note that in this specification, when the term “recording medium” is used, it may include only the storage device 41c alone, may include only the external storage device 412 alone, or may include both.
(洗浄装置)
 続いて、図6を用いて後述するクリーニング工程で使用する洗浄装置300について説明する。図6は洗浄装置300と気化器51との関連を説明する説明図である。ここでは説明の便宜上ヒータ215を省略する。
(Cleaning device)
Next, a cleaning apparatus 300 used in a cleaning process described later will be described with reference to FIG. FIG. 6 is an explanatory diagram for explaining the relationship between the cleaning device 300 and the vaporizer 51. Here, the heater 215 is omitted for convenience of explanation.
 洗浄装置300は、主に溶剤タンク301、真空ポンプ302、トラップ装置303を有する。更には、洗浄装置300の筐体を気化器51の近くまで移動させる移動機構としてのタイヤ304が設けられる。 The cleaning device 300 mainly includes a solvent tank 301, a vacuum pump 302, and a trap device 303. Furthermore, a tire 304 is provided as a moving mechanism that moves the housing of the cleaning device 300 to the vicinity of the vaporizer 51.
(溶剤供給系)
溶剤タンク301には、溶剤を気化器51に搬送するための溶剤供給系310が設けられる。溶剤供給系310は、溶剤タンク301に接続される配管311を有する。配管311には、バルブ312が設けられる。配管311の下流端には他の配管と合流する合流部313が設けられる。合流部313と気化器のバルブ209の間には、バルブ315を有し、バルブ209に接続可能とされる配管314が設けられる。
(Solvent supply system)
The solvent tank 301 is provided with a solvent supply system 310 for conveying the solvent to the vaporizer 51. The solvent supply system 310 has a pipe 311 connected to the solvent tank 301. The pipe 311 is provided with a valve 312. At the downstream end of the pipe 311, a joining part 313 that joins with another pipe is provided. A pipe 314 having a valve 315 and being connectable to the valve 209 is provided between the junction 313 and the vaporizer valve 209.
(溶剤排出系)
 溶剤タンク301には、気化器51をクリーニング処理した際に使用した溶液を再び戻すための溶剤排出系320が設けられる。溶剤排出系320は、気化器51のバルブ214と接続可能とされ、バルブ322を備えた配管321を有する。配管321の下流側には他の配管と合流する合流部323が設けられる。合流部323と溶剤タンク301の間にはバルブ324を有する配管325が設けられる。配管325のうち、バルブ324の下流には、パーティクルカウンタ326が設けられる。
(Solvent discharge system)
The solvent tank 301 is provided with a solvent discharge system 320 for returning again the solution used when the vaporizer 51 is cleaned. The solvent discharge system 320 can be connected to the valve 214 of the vaporizer 51 and includes a pipe 321 provided with a valve 322. A junction 323 that merges with other pipes is provided on the downstream side of the pipe 321. A pipe 325 having a valve 324 is provided between the junction 323 and the solvent tank 301. A particle counter 326 is provided in the pipe 325 downstream of the valve 324.
(不活性ガス供給系)
 溶剤供給系301には、溶剤をパージするための不活性ガス供給系330が接続される。具体的には、バルブ332を備えた不活性ガス供給管331が合流部313に接続されるよう構成される。不活性ガス供給管331の上流には不活性ガス源333が接続される。ここで使用される不活性ガスは溶剤と反応してゴミを生成してしまう材料でなければよく、例えば窒素(N2)ガスが用いられる。不活性ガス供給系としては、主に不活性ガス供給管331、バルブ332を有する。なお、不活性ガス供給系に、不活性ガス源333や配管314を含めてもよい。
(Inert gas supply system)
An inert gas supply system 330 for purging the solvent is connected to the solvent supply system 301. Specifically, an inert gas supply pipe 331 provided with a valve 332 is configured to be connected to the junction 313. An inert gas source 333 is connected upstream of the inert gas supply pipe 331. The inert gas used here may not be a material that reacts with the solvent to generate dust, and for example, nitrogen (N 2) gas is used. The inert gas supply system mainly includes an inert gas supply pipe 331 and a valve 332. Note that an inert gas source 333 and a pipe 314 may be included in the inert gas supply system.
(真空排気系)
 溶剤供給系301には、各配管内の圧力等を調整するための真空排気系340が接続されている。具体的には、バルブ342、合流部343を備える配管341が合流部313に接続される。配管342のうち、合流部313側と異なる側には真空ポンプ302が接続される。
(Evacuation system)
The solvent supply system 301 is connected to an evacuation system 340 for adjusting the pressure in each pipe. Specifically, a pipe 341 including a valve 342 and a junction 343 is connected to the junction 313. A vacuum pump 302 is connected to a side of the pipe 342 that is different from the junction 313 side.
 更に、溶剤排出系320にも真空排気系340が接続される。具体的には、合流部323にバルブ345を備えた配管344が接続される。配管344のうち、合流部323側と異なる側は、配管341の合流部343に接続され、真空ポンプ302と連通される。 Furthermore, a vacuum exhaust system 340 is also connected to the solvent discharge system 320. Specifically, a pipe 344 provided with a valve 345 is connected to the junction 323. A side of the pipe 344 that is different from the junction 323 side is connected to the junction 343 of the pipe 341 and communicates with the vacuum pump 302.
(排気・加熱ユニット系)
 真空ポンプ302と接続されるトラップ装置303の下流側には、排気・加熱ユニット系350が接続される。具体的には、合流部353を有する配管351がトラップ装置303に接続される。配管351のうち、トラップ装置303と異なる側には、排気・加熱ユニット352が設けられる。合流部323と合流部353の間には、バルブ355を有する配管354が設けられる。
(Exhaust / heating unit system)
An exhaust / heating unit system 350 is connected to the downstream side of the trap device 303 connected to the vacuum pump 302. Specifically, a pipe 351 having a junction 353 is connected to the trap device 303. An exhaust / heating unit 352 is provided on the side of the pipe 351 different from the trap device 303. A pipe 354 having a valve 355 is provided between the junction 323 and the junction 353.
(基板処理工程)
  次に、基板を処理する例について説明する。ここでは、半導体デバイスの製造工程の一例として、ソース(原料)とリアクタント(反応ガス)を交互に処理室に供給することで膜処理を行うサイクル処理を説明する。本実施形態においては、ソースとしてのテトラキスエチルメチルアミノハフニウム(Hf[N(C2h5)(CH3)]4、略称:TEMAH)を用い、リアクタントとしてオゾン(O3) を用いて基板上でHfO2膜を成膜する例を記す。なお、TEMAHは液体原料の一例である。
(Substrate processing process)
Next, an example of processing a substrate will be described. Here, as an example of a semiconductor device manufacturing process, a cycle process in which film processing is performed by alternately supplying a source (raw material) and a reactant (reactive gas) to a processing chamber will be described. In this embodiment, tetrakisethylmethylaminohafnium (Hf [N (C2h5) (CH3)] 4, abbreviation: TEMAH) is used as a source, and ozone (O3) is used as a reactant to form an HfO2 film on the substrate. An example of film formation will be described. TEMAH is an example of a liquid raw material.
  先ず、上述した様にウエハ31をボート32に装填し、処理室2に搬入する。このとき、図2に記載のように、気化器51は液体原料源71に接続される。ボート32を処理室2に搬入後、後述する4つのステップを順次実行する。 First, as described above, the wafer 31 is loaded into the boat 32 and carried into the processing chamber 2. At this time, the vaporizer 51 is connected to the liquid source source 71 as shown in FIG. After the boat 32 is carried into the processing chamber 2, four steps described later are sequentially executed.
  (ステップ1)
  ステップ1では、ヒータ42とヒータ215を稼働させた状態で、TEMAHとキャリアガス(N2)を流す。まずバルブ52、バルブ55、バルブ67を開ける。TEMAHは供給管47aからマスフローコントローラ49により流量調整され、配管205を介して気化器51に供給される。TEMAHは貯留室210に貯留されると共に、ヒータ215によって気化される。気化されたガス状のTEMAHは、配管206を介して供給管47bに供給される。供給管47bでは、第1キャリアガス供給管53から第2マスフローコントローラ54により流量調整されたキャリアガス(N2)が混合される。この混合ガスを第1ノズル56の第1ガス供給孔57から処理室2内に供給しつつガス排気管66から排気する。マスフローコントローラ49で制御するTEMAHの供給流量は0.1~0.3g/minである。ウエハ31にTEMAHを晒す時間は30~180秒間である。この時のヒータ42の温度はウエハ31が180~250℃になる様設定してある。又、処理室2内の圧力は50~100Paである。これによりウエハ31上にHfを含む膜が形成される。
(Step 1)
In Step 1, TEMAH and carrier gas (N2) are flowed in a state where the heater 42 and the heater 215 are operated. First, the valve 52, the valve 55, and the valve 67 are opened. The flow rate of TEMAH is adjusted by the mass flow controller 49 from the supply pipe 47 a and is supplied to the vaporizer 51 through the pipe 205. TEMAH is stored in the storage chamber 210 and vaporized by the heater 215. The vaporized gaseous TEMAH is supplied to the supply pipe 47b via the pipe 206. In the supply pipe 47b, the carrier gas (N2) whose flow rate is adjusted by the second mass flow controller 54 from the first carrier gas supply pipe 53 is mixed. The mixed gas is exhausted from the gas exhaust pipe 66 while being supplied into the processing chamber 2 from the first gas supply hole 57 of the first nozzle 56. The supply flow rate of TEMAH controlled by the mass flow controller 49 is 0.1 to 0.3 g / min. The time for exposing the wafer 31 to TEMAH is 30 to 180 seconds. The temperature of the heater 42 at this time is set so that the wafer 31 is 180 to 250 ° C. The pressure in the processing chamber 2 is 50 to 100 Pa. As a result, a film containing Hf is formed on the wafer 31.
  (ステップ2)
  ステップ2では、第1ガス供給管47のバルブ52及び第1キャリア供給管53のバルブ55を閉めて、TEMAHガスとキャリアガスの供給を止める。ガス排気管66のバルブ67は開いたままにし、真空ポンプ68により、基板処理炉29を20Pa以下に排気し、残留TEMAHガスを処理室2内から排除する。又、この時には不活性ガス、例えばキャリアガスとして使ったN2 を基板処理炉29に供給すると、更に残留TEMAHを排除する効果が高まる。
(Step 2)
In step 2, the valve 52 of the first gas supply pipe 47 and the valve 55 of the first carrier supply pipe 53 are closed to stop the supply of TEMAH gas and carrier gas. The valve 67 of the gas exhaust pipe 66 is kept open, the substrate processing furnace 29 is exhausted to 20 Pa or less by the vacuum pump 68, and the residual TEMAH gas is removed from the processing chamber 2. At this time, if an inert gas, for example, N2 used as a carrier gas is supplied to the substrate processing furnace 29, the effect of eliminating residual TEMAH is further enhanced.
  (ステップ3)
  ステップ3では、O3 とキャリアガス(N2)を流す。まず第2ガス供給管48に設けたバルブ59、第2キャリアガス供給管61に設けたバルブ63を共に開けて、第2ガス供給管48から第1マスフローコントローラ58により流量調整されたO3と、第2キャリアガス供給管61から第3マスフローコントローラ62により流量調整されたキャリアガス(N2)とを混合し、第2ノズル64の第2ガス供給孔65から処理室2内に供給しつつガス排気管66から排気する。ウエハ31にO3を晒す時間は10~120秒間である。この時のウエハ31の温度はTEMAHガスの供給時と同じく180~250℃である。又、処理室2内の圧力もTEMAHガスの供給時と同じく、50~100Paである。O3の供給により、ウエハ31の下地膜上のHfを含む膜とO3とが反応して、ウエハ31上にハフニア(HfO2) 膜が形成される。
(Step 3)
In step 3, O3 and carrier gas (N2) are flowed. First, the valve 59 provided in the second gas supply pipe 48 and the valve 63 provided in the second carrier gas supply pipe 61 are both opened, O3 whose flow rate is adjusted by the first mass flow controller 58 from the second gas supply pipe 48, The carrier gas (N2) whose flow rate is adjusted by the third mass flow controller 62 is mixed from the second carrier gas supply pipe 61, and gas is exhausted while being supplied into the processing chamber 2 from the second gas supply hole 65 of the second nozzle 64. Exhaust from tube 66. The time for exposing O3 to the wafer 31 is 10 to 120 seconds. The temperature of the wafer 31 at this time is 180 to 250 ° C. as in the case of supplying the TEMAH gas. Also, the pressure in the processing chamber 2 is 50 to 100 Pa as in the case of supplying the TEMAH gas. By supplying O 3, the Hf-containing film on the base film of the wafer 31 reacts with O 3 to form a hafnia (HfO 2) film on the wafer 31.
  (ステップ4)
  ステップ4では、膜を形成後、バルブ59及びバルブ63を閉じ、真空ポンプ68により処理室2内を真空排気し、成膜に寄与した後に残留するO3を排除する。又、この時には不活性ガス、例えばキャリアガスとして使ったN2を処理室2内に供給すると、更に残留するO3を処理室2から排除する効果が高まる。
(Step 4)
In step 4, after the film is formed, the valve 59 and the valve 63 are closed, and the inside of the processing chamber 2 is evacuated by the vacuum pump 68 to eliminate O3 remaining after contributing to the film formation. At this time, if an inert gas, for example, N 2 used as a carrier gas is supplied into the processing chamber 2, the effect of further removing remaining O 3 from the processing chamber 2 is enhanced.
  又、上述したステップ1~4を1サイクルとし、このサイクルを複数回繰返すことにより、ウエハ31上に所定の膜厚のHfO2膜を形成することができる。 In addition, the above-described steps 1 to 4 are defined as one cycle, and the HfO 2 film having a predetermined thickness can be formed on the wafer 31 by repeating this cycle a plurality of times.
(メンテナンス工程)
 続いてメンテナンス工程を説明する。本実施形態におけるメンテナンス工程では、気化器51のメンテナンス工程について説明する。
(Maintenance process)
Next, the maintenance process will be described. In the maintenance process in this embodiment, the maintenance process of the vaporizer 51 will be described.
 気化器51のメンテナンス工程は、気化器51の立ち上げ時や処理装置のメンテナンス時等に行う。メンテナンス工程では、貯留室210内の液抜き、液の入れ替え、クリーニングを行う。 The maintenance process of the vaporizer 51 is performed when the vaporizer 51 is started up or when the processing apparatus is maintained. In the maintenance process, the liquid in the storage chamber 210 is drained, the liquid is replaced, and cleaning is performed.
 以下に比較例と対比しつつ、本実施形態の気化器や貯留装置等の詳細を説明する。 Hereinafter, details of the vaporizer, the storage device, and the like of the present embodiment will be described in comparison with the comparative example.
(メンテナンス工程における比較例の説明)
 まず、図8、図9を用いて、二つの比較例を説明する。
 図8に記載の気化器80は第一の比較例である。図9に記載の気化器90は第二の比較例である。ここでは気化器51と同様の構成については説明を省略し、相違点を中心に説明する。
(Description of comparative examples in the maintenance process)
First, two comparative examples will be described with reference to FIGS.
The vaporizer 80 illustrated in FIG. 8 is a first comparative example. The vaporizer 90 shown in FIG. 9 is a second comparative example. Here, the description of the same configuration as that of the vaporizer 51 is omitted, and the description will focus on the differences.
 気化器80は、気化器51と同様に側壁801、底壁802、蓋壁803を有するが、凹部211や、それに連続する連絡管212、排出管213を有しない点で気化器51と相違する。 The vaporizer 80 has a side wall 801, a bottom wall 802, and a lid wall 803 similarly to the vaporizer 51, but is different from the vaporizer 51 in that it does not have a recess 211, a connecting pipe 212, and a discharge pipe 213 continuous therewith. .
 気化器80においてメンテナンス工程を実施する場合を考える。ここでいうメンテナンスとは、例えば液抜きや液の入れ替え、クリーニングである。ダウンタイムを考慮しつつそれらを実施するには、重量検知器221に載置した状態で液体を抜く必要がある。 Consider a case where a maintenance process is performed in the vaporizer 80. The term “maintenance” used herein refers to, for example, liquid removal, liquid replacement, and cleaning. In order to implement them while taking down time into consideration, it is necessary to drain the liquid while it is placed on the weight detector 221.
 気化器80は気化器51と同様に、安全上の問題から側壁801と蓋壁803が溶接等で接続されていることから、蓋壁803の開閉が困難である。更には、液体原料供給管204から液体を排出することが考えられるが、構造上の問題から、底壁802と液体原料供給管204の先端との間に貯留される液体を排除することは難しい。このような構成の元、液体を排除するためには、例えば底壁802と液体原料供給管204の先端との間の距離を著しく短くすることが考えられるが、液体原料管204の先端と底壁802が接触し、液体原料管204や底壁802の破損につながる恐れがある。破損によって発生した破片はウエハ処理にとってゴミとなるので、現実的な構造ではない。 Like the vaporizer 51, the vaporizer 80 is difficult to open and close because the side wall 801 and the lid wall 803 are connected by welding or the like for safety reasons. Furthermore, it is conceivable to discharge the liquid from the liquid source supply pipe 204, but it is difficult to eliminate the liquid stored between the bottom wall 802 and the tip of the liquid source supply pipe 204 due to structural problems. . In order to exclude the liquid under such a configuration, for example, it is conceivable that the distance between the bottom wall 802 and the tip of the liquid source supply pipe 204 is remarkably shortened. The wall 802 may come into contact with the liquid raw material tube 204 or the bottom wall 802. Debris generated due to breakage becomes garbage for wafer processing and is not a realistic structure.
 比較例の構造の場合、上記の問題点が存在すると同時に、凹部211、連絡管212、排出管213が存在しないことから、貯留室210の液体を排出することは困難である。 In the case of the structure of the comparative example, it is difficult to discharge the liquid in the storage chamber 210 because the above-described problems exist and at the same time the recess 211, the connecting pipe 212, and the discharge pipe 213 do not exist.
 続いて第二の比較例である気化器90を説明する。
 気化器90は、気化器51と同様に側壁901、底壁902、蓋壁903を有するが、底壁902が重量検出器に載置不可能な構成である点やそれに付随する点で相違する。
Next, a vaporizer 90 as a second comparative example will be described.
The vaporizer 90 includes a side wall 901, a bottom wall 902, and a lid wall 903, similar to the vaporizer 51, but differs in that the bottom wall 902 cannot be placed on the weight detector and is attached thereto. .
 以下に詳細を説明する。気化器90は液面レベル検知器904を有する。液面レベル検知器904は貯留室210の液面高さを検知するものである。液面の高さを検知することで、液体の残量を検知する。底壁902には排出管905が設けられる。第一の実施形態のような重量検知器の替わりに液面レベル検知器904で液体残量を検知しているので、底壁903の下方にスペースを有する。従って、重力方向に液体を排出するための配管905を配することが可能となる。排出管905は底壁を貫通する。 Details are explained below. The vaporizer 90 has a liquid level detector 904. The liquid level detector 904 detects the liquid level height of the storage chamber 210. The remaining amount of liquid is detected by detecting the height of the liquid surface. A discharge pipe 905 is provided on the bottom wall 902. Since the remaining liquid level is detected by the liquid level detector 904 instead of the weight detector as in the first embodiment, there is a space below the bottom wall 903. Accordingly, it is possible to arrange the pipe 905 for discharging the liquid in the direction of gravity. The discharge pipe 905 passes through the bottom wall.
 ところが、液面レベル検知器92の場合、液体の変動に追従できない場合があり、正確な残液量を計測することが難しい。更には、液体が空になった場合、液面レベル検知器の検知具が貯留タンクの底にぶつかり、それが原因でゴミが発生してしまう。 However, in the case of the liquid level detector 92, it may be impossible to follow the fluctuation of the liquid, and it is difficult to accurately measure the remaining liquid amount. Furthermore, when the liquid is emptied, the detection tool of the liquid level detector hits the bottom of the storage tank, which causes dust to be generated.
(本実施形態におけるメンテナンス工程)
 上記のように、比較例1、比較例2では種々の課題が発生する。そこで本実施形態では、図4に記載のように、凹部211やそれに連続する連絡管212、排出管213を設け、比較例に係る課題を解決する構造としている。以下に、本実施形態の構造を用いたメンテナンス工程の詳細を説明する。
(Maintenance process in this embodiment)
As described above, various problems occur in Comparative Example 1 and Comparative Example 2. Therefore, in the present embodiment, as shown in FIG. 4, the concave portion 211, the connecting pipe 212 and the discharge pipe 213 that are continuous with the concave portion 211 are provided, and the structure according to the comparative example is solved. Below, the detail of the maintenance process using the structure of this embodiment is demonstrated.
(液抜き工程)
 最初に、メンテナンス工程にて液抜きを図る理由を説明する。
前述のように、気化器51は側壁201、底壁202、蓋壁203で主に構成されている。貯留室210に貯留される液体を外部に漏らさないために、それぞれの壁は溶接等で固定される。
(Liquid draining process)
First, the reason for draining liquid in the maintenance process will be described.
As described above, the vaporizer 51 is mainly configured by the side wall 201, the bottom wall 202, and the lid wall 203. In order not to leak the liquid stored in the storage chamber 210 to the outside, each wall is fixed by welding or the like.
 従来の気化器を初めて使用する場合、使用開始時に気化器からゴミが発生することがある。発明者による鋭意研究の結果、気化器内のクリーン度が所望のレベルに達していなかったり、あるいは液体原料が気化器の溶接部分と接触し、それが腐食となってしまったりすることが原因であることがわかった。ここでは出荷されたばかりの装置を例にしたが、それに限るものではなく、長期に使用した場合においても液体原料によって腐食が進み、それがゴミになることがわかった。そのため、気化器の立ち上げ時やメンテナンス時に、気化器からゴミを除去することが求められている。 When using a conventional vaporizer for the first time, dust may be generated from the vaporizer at the start of use. As a result of earnest research by the inventor, the degree of cleanliness in the vaporizer has not reached the desired level, or the liquid raw material comes into contact with the welded portion of the vaporizer, causing corrosion. I found out. Here, the device just shipped is taken as an example. However, the present invention is not limited to this, and it has been found that even when used for a long period of time, corrosion progresses due to the liquid raw material and becomes garbage. Therefore, it is required to remove dust from the vaporizer at the time of start-up and maintenance of the vaporizer.
 また、近年では、多品種の処理に対応すべく、一つの処理装置において複数の原料に対応することが求められており、そのような状況においても、ダウンタイムを増加させないよう、タンクを処理装置に搭載した状態で原料を入れ替えることが求められる。 In recent years, it has been required to handle a plurality of raw materials in a single processing apparatus in order to handle a wide variety of processing. Even in such a situation, the tank is processed so as not to increase downtime. It is required to replace the raw material while it is mounted on.
 その場合、入れ替え前に使用した液体原料の成分が貯留室210に残留すると、前に使用した液体原料と新たに使用する液体原料が反応し、貯留室210内に副生成物が発生する。発生した副生成物は配管206から処理室32に運ばれ、基板に付着した場合、基板の品質の低下や歩留まりの低下が懸念される。 In this case, when the components of the liquid raw material used before the replacement remain in the storage chamber 210, the previously used liquid raw material reacts with the newly used liquid raw material, and a by-product is generated in the storage chamber 210. When the generated by-product is conveyed from the pipe 206 to the processing chamber 32 and adheres to the substrate, there is a concern that the quality of the substrate or the yield may be reduced.
 また、副生成物が発生しないよう、他の液体が貯留されたタンクと交換することが考えられるが、次のようにタンクの交換に多くの時間を要する。即ち、安全度を高めるために液体を抜いた状態でタンクを輸送する必要があるが、例えばその液体が蒸気圧の低い性質である場合、24時間程度のパージが必要となる。従って、このような手法ではダウンタイムが増加してしまう。 Also, it is conceivable to replace the tank with another liquid so that no by-product is generated, but it takes a lot of time to replace the tank as follows. That is, in order to increase the safety level, it is necessary to transport the tank with the liquid removed. For example, when the liquid has a low vapor pressure, purging for about 24 hours is required. Therefore, such a method increases downtime.
 そこで、本実施形態においては、処理装置に搭載した状態で、残留物が発生しないよう液抜きを行う。以下に詳細を説明する。 Therefore, in this embodiment, the liquid is drained so that no residue is generated in a state where it is mounted on the processing apparatus. Details will be described below.
 液抜きを行う液抜き工程では、まず排出管213と図示しない排出液タンクとを接続する。次に、配管218が接続された状態で、バルブ207を閉とすると共にバルブ209を開とする。更に、バルブ205を閉とすると共に、バルブ214を開とする。このようにバルブ制御することで、不活性ガス供給源217と排出液タンクとの間が連通する。不活性ガス供給源217から供給された不活性ガスは貯留室210内に供給され、残留した液体216を加圧する。加圧された液体は凹部211、連絡管212を介して排出管213から排出される。 In the liquid draining process for draining liquid, first, the discharge pipe 213 and a drain liquid tank (not shown) are connected. Next, with the pipe 218 connected, the valve 207 is closed and the valve 209 is opened. Further, the valve 205 is closed and the valve 214 is opened. By controlling the valve in this way, the inert gas supply source 217 communicates with the discharge liquid tank. The inert gas supplied from the inert gas supply source 217 is supplied into the storage chamber 210 and pressurizes the remaining liquid 216. The pressurized liquid is discharged from the discharge pipe 213 through the recess 211 and the communication pipe 212.
 ところで前述のように、貯留タンク構造200では「側壁201bの径>凹部211の径>連絡管212の径>排出管213の径」の関係を有する。従って、液体216は毛細管現象によって底壁202よりも高い位置に上昇される。 As described above, the storage tank structure 200 has a relationship of “diameter of the side wall 201b> diameter of the recess 211> diameter of the communication pipe 212> diameter of the discharge pipe 213”. Accordingly, the liquid 216 is raised to a position higher than the bottom wall 202 by capillary action.
 本実施形態の場合、さらに加圧を行っているので、凹部211と連絡管212と排出管213に液体が充填された場合、液体にかかる圧力は「側壁201bの圧力>凹部211の圧力>連絡管212の圧力>排出管213の圧力」となり、上流と下流とで差圧が産まれる。従って、不活性ガスによって加圧された液体は、凹部211を通過した後連絡管212によって重力方向とは異なる方向に方向転換され、さらに排出管213を上昇し、排出液タンクに移動される。 In the case of the present embodiment, since the pressurization is further performed, when the recess 211, the communication pipe 212, and the discharge pipe 213 are filled with the liquid, the pressure applied to the liquid is “the pressure of the side wall 201b> the pressure of the recess 211> the communication. The pressure of the pipe 212> the pressure of the discharge pipe 213 ", and a differential pressure is produced upstream and downstream. Therefore, after the liquid pressurized by the inert gas passes through the recess 211, the direction is changed in the direction different from the direction of gravity by the communication pipe 212, and further rises in the discharge pipe 213 and is moved to the discharge liquid tank.
 尚、ここで貯留室210内の残留液を加圧することを記載したが、凹部211と排出管213の下流とで圧力差を与えることができればよく、例えば排出管213の下流から液体を吸引するようにしてもよい。 In addition, although it described that pressurizing the residual liquid in the storage chamber 210 here, it should just be able to give a pressure difference with the recessed part 211 and the downstream of the discharge pipe 213, for example, a liquid is attracted | sucked from the downstream of the discharge pipe 213. You may do it.
(クリーニング工程)
 続いてクリーニング工程を説明する。クリーニング工程では、貯留室210をターゲットとしてクリーニング処理を行う。ここではダウンタイムを考慮し、気化器51を基板処理装置に搭載した状態でクリーニングを行う例について説明する。
(Cleaning process)
Next, the cleaning process will be described. In the cleaning process, a cleaning process is performed using the storage chamber 210 as a target. Here, an example in which cleaning is performed in a state where the vaporizer 51 is mounted on the substrate processing apparatus in consideration of downtime will be described.
 まず、図6に記載の移動式洗浄ユニット300を気化器51に接続する。具体的には、バルブ214を閉じると共に、バルブ207、バルブ209を閉じた状態で配管218を取り外す。次にバルブ209と配管314を接続し、さらにバルブ214と配管321を接続する。このようにすることで、図6のように配管が接続される。このとき、洗浄装置300の全てのバルブを閉じた状態とする。 First, the mobile cleaning unit 300 shown in FIG. 6 is connected to the vaporizer 51. Specifically, the valve 214 is closed, and the pipe 218 is removed with the valves 207 and 209 closed. Next, the valve 209 and the pipe 314 are connected, and further the valve 214 and the pipe 321 are connected. By doing in this way, piping is connected as shown in FIG. At this time, all the valves of the cleaning device 300 are closed.
 続いて、真空ポンプ302を起動する。
 その後、バルブ342を開として、合流部313と配管341とを連通させる。それと並行してバルブ345を開として、合流部323と配管341を連通させる。雰囲気の圧力は例えば0.01Pa以下とする。
Subsequently, the vacuum pump 302 is activated.
Thereafter, the valve 342 is opened, and the junction 313 and the pipe 341 are communicated. At the same time, the valve 345 is opened, and the junction 323 and the pipe 341 are communicated. The atmospheric pressure is, for example, 0.01 Pa or less.
 配管内の雰囲気が所定の圧力となったら、バルブ315を開として、配管314を真空ポンプ302に連通させる。それと並行してバルブ322を開として、同様に配管321を真空ポンプ302に連通させ、気化器51との接続箇所等をターゲットとしたリークチェックを行う。 When the atmosphere in the pipe reaches a predetermined pressure, the valve 315 is opened and the pipe 314 is communicated with the vacuum pump 302. At the same time, the valve 322 is opened, and the piping 321 is communicated with the vacuum pump 302 in the same manner, and a leak check is performed targeting the connection portion with the vaporizer 51 and the like.
 リークチェックが終了し、リークが無いと判断されたらバルブ209とバルブ214を開として真空ポンプ302と連通させ、貯留室210内を真空排気する。 When the leak check is completed and it is determined that there is no leak, the valve 209 and the valve 214 are opened to communicate with the vacuum pump 302, and the inside of the storage chamber 210 is evacuated.
 貯留室210の圧力が所定の圧力となったら、バルブ342とバルブ345を閉として、貯留室210と真空ポンプ302との間を断絶する。 When the pressure in the storage chamber 210 reaches a predetermined pressure, the valve 342 and the valve 345 are closed, and the storage chamber 210 and the vacuum pump 302 are disconnected.
 次にバルブ312を開として、溶剤供給系310の配管を連通させる。それと並行してバルブ324を開として、溶剤排出系320を連通させる。このように連通することで、フレッシュな溶剤を、溶剤供給系310を介して溶剤タンク301から貯留室210に供給可能とする。それと共に、貯留室210をクリーニングした溶剤を、溶剤排出系320を介して貯留室210から溶剤タンク301に供給可能とする。 Next, the valve 312 is opened, and the piping of the solvent supply system 310 is communicated. At the same time, the valve 324 is opened to allow the solvent discharge system 320 to communicate. By communicating in this way, a fresh solvent can be supplied from the solvent tank 301 to the storage chamber 210 via the solvent supply system 310. At the same time, the solvent that has cleaned the storage chamber 210 can be supplied from the storage chamber 210 to the solvent tank 301 via the solvent discharge system 320.
 この後、液体循環ポンプ316を起動し、溶剤を巡回させて貯留室210のクリーニングを行う。この間、配管325を通過した溶剤のパーティクル成分の濃度をパーティクルカウンタ326で抽出する。パーティクル成分が所定の値よりも低くなったらクリーニングが完了したと判断し液体循環ポンプ316を停止する。 Thereafter, the liquid circulation pump 316 is started, and the storage chamber 210 is cleaned by circulating the solvent. During this time, the concentration of the particle component of the solvent that has passed through the pipe 325 is extracted by the particle counter 326. When the particle component becomes lower than a predetermined value, it is determined that the cleaning is completed, and the liquid circulation pump 316 is stopped.
 クリーニング処理が終了したら貯留室210に残留した溶剤を抜き取る。ここでは、バルブ312を閉じると共に、バルブ332を開とする。このようにすることで、溶剤タンク301と貯留室210が遮断されると共に、貯留室210と不活性ガス供給源333が連通される。不活性ガス源333から供給された不活性ガスは、配管331、配管314を介して貯留室210に供給される。供給された不活性ガスは、配管314や貯留タンクの残留溶剤を溶剤タンク301に排出し、溶剤を回収する。 When the cleaning process is completed, the solvent remaining in the storage chamber 210 is extracted. Here, the valve 312 is closed and the valve 332 is opened. By doing so, the solvent tank 301 and the storage chamber 210 are shut off, and the storage chamber 210 and the inert gas supply source 333 are communicated with each other. The inert gas supplied from the inert gas source 333 is supplied to the storage chamber 210 via the pipe 331 and the pipe 314. The supplied inert gas discharges the residual solvent in the pipe 314 and the storage tank to the solvent tank 301 and recovers the solvent.
 続いてバルブ324を閉にすると共に、バルブ355を開とする。このようにすることで、排気・加熱ユニット352と貯留室210が連通される。この状態で所定時間不活性ガスを供給し、配管314や貯留室210等から残留溶剤を排出する。 Subsequently, the valve 324 is closed and the valve 355 is opened. By doing so, the exhaust / heating unit 352 and the storage chamber 210 are communicated with each other. In this state, an inert gas is supplied for a predetermined time, and the residual solvent is discharged from the pipe 314, the storage chamber 210, and the like.
 続いて、バルブ332を閉として貯留室210と不活性ガス源333との間を遮断する。更に、バルブ355を閉とする。それと並行して、バルブ342とバルブ345を開として、貯留室210、配管314、配管321を真空ポンプ302に連通させる。真空ポンプ302は貯留室210を真空排気する。 Subsequently, the valve 332 is closed to shut off the storage chamber 210 and the inert gas source 333. Further, the valve 355 is closed. At the same time, the valve 342 and the valve 345 are opened, and the storage chamber 210, the pipe 314, and the pipe 321 are communicated with the vacuum pump 302. The vacuum pump 302 evacuates the storage chamber 210.
 貯留室210が所定の圧力となったら、バルブ342とバルブ345を閉として真空排気処理を停止する。ここで所定の圧力とは、例えば0.01Pa以下をいう。 When the storage chamber 210 reaches a predetermined pressure, the valve 342 and the valve 345 are closed to stop the evacuation process. Here, the predetermined pressure refers to, for example, 0.01 Pa or less.
 次に、バルブ332を開として貯留室210と不活性ガス源333とを連通させ、貯留室210に不活性ガスを充てんする。次にすべてのバルブを閉として、気化器51から配管314と配管321を取り外す。 Next, the storage chamber 210 and the inert gas source 333 are communicated with each other by opening the valve 332, and the storage chamber 210 is filled with an inert gas. Next, all the valves are closed, and the pipe 314 and the pipe 321 are removed from the vaporizer 51.
 以上のようにすることで、短いダウンタイムで確実に残留溶剤を排出する。このようにすることで、全体としてダウンタイムを短縮することができ、結果生産性を高めることが可能となる。 By doing as described above, residual solvent is surely discharged with a short downtime. By doing in this way, downtime can be shortened as a whole, and as a result, productivity can be increased.
(第二の実施形態)
 続いて図7を用いて第二の実施形態を説明する。ここでは第一の実施形態との相違点を中心に説明する。第一の実施形態と同様の構成は同番号を付与すると共に、説明を省略する。
(Second embodiment)
Next, a second embodiment will be described with reference to FIG. Here, the difference from the first embodiment will be mainly described. Constituent elements similar to those of the first embodiment are given the same numbers, and descriptions thereof are omitted.
 第二の実施形態の気化器51では、側壁701、底壁702、蓋壁703を有する。更に、連絡管232と排出管233を有する。第一の実施例と異なり、排出管233は側壁701に埋め込まれると共に、連絡管232は排出管233に接続可能な位置まで延伸している。尚、第二の実施形態では、第一の実施形態と同様ヒータ215を有する。 The vaporizer 51 of the second embodiment has a side wall 701, a bottom wall 702, and a lid wall 703. Further, a communication pipe 232 and a discharge pipe 233 are provided. Unlike the first embodiment, the discharge pipe 233 is embedded in the side wall 701, and the communication pipe 232 extends to a position where it can be connected to the discharge pipe 233. In the second embodiment, the heater 215 is provided as in the first embodiment.
 第一の実施形態では、排出管213の一部が貯留室210内に配されているため、排出管213とヒータ215の間には貯留室210の空間と側壁201が存在する。前述したように、貯留室210には液体状態の原料や気化状態の原料が存在する。液体状態の原料と隣接する箇所と、気化状態の原料と隣接する箇所では温度が異なるため、排出管213においても、例えば上流と下流とで温度が異なってしまう場合がある。温度が異なることによる液体の熱膨張率が異なるため排出管213の上流と下流とで圧力の関係が不安定になることがある。あるいは温度が低くなってしまうことによって液体が固化するなどの現象が起きる。液体原料の性質によってはそれらの現象が顕著となるため、温度を均一にすることが望ましい。 In the first embodiment, since a part of the discharge pipe 213 is disposed in the storage chamber 210, the space of the storage chamber 210 and the side wall 201 exist between the discharge pipe 213 and the heater 215. As described above, the storage chamber 210 contains a raw material in a liquid state and a raw material in a vaporized state. Since the temperature is different between the position adjacent to the liquid state raw material and the position adjacent to the vaporized state raw material, in the discharge pipe 213, for example, the temperature may be different between upstream and downstream. Since the thermal expansion coefficients of liquids due to different temperatures are different, the relationship between pressures may become unstable upstream and downstream of the discharge pipe 213. Alternatively, a phenomenon such as solidification of the liquid occurs due to a decrease in temperature. Depending on the properties of the liquid raw material, these phenomena become significant, so it is desirable to make the temperature uniform.
 そこで本実施形態においては、排出管233を側壁701に埋め込む構造とする。ヒータ215が発した熱は側壁701内で均一に分散されるため、排出管233の上流と下流とでは熱影響を均一にすることができる。より良くは、ヒータ215の延伸方向と同方向に排出管233を設ける。これにより、上流と下流の熱影響をより均一にすることができる。以上のことから、排出管233を通過する液体の圧力が不安定になることがない。更には、温度が安定化される。 Therefore, in this embodiment, the discharge pipe 233 is embedded in the side wall 701. Since the heat generated by the heater 215 is uniformly dispersed in the side wall 701, the heat effect can be made uniform between the upstream and downstream of the discharge pipe 233. More preferably, the discharge pipe 233 is provided in the same direction as the extending direction of the heater 215. Thereby, the upstream and downstream thermal effects can be made more uniform. From the above, the pressure of the liquid passing through the discharge pipe 233 does not become unstable. Furthermore, the temperature is stabilized.
 以上のようにすることで、短いダウンタイムで確実に残留溶剤を排出する。このようにすることで、全体としてダウンタイムを短縮することができ、結果生産性を高めることが可能となる。 By doing as described above, residual solvent is surely discharged with a short downtime. By doing in this way, downtime can be shortened as a whole, and as a result, productivity can be increased.
(本発明の他の実施形態)
 以上、本発明の実施形態を具体的に説明したが、本発明は上述の各実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
(Other embodiments of the present invention)
As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to each above-mentioned embodiment, A various change is possible in the range which does not deviate from the summary.
また、例えば、上述の各実施形態では、基板処理装置が行う成膜処理として、ソース(液体原料)としてTEMAHを用い、リアクタント(反応ガス)としてO3ガスを用いて、それらを交互に供給することによってウエハW上にHfO膜を形成する場合を例にあげたが、本発明がこれに限定されることはない。すなわち、ソースとしては液体原料を用いていれば良く、リアクタントとしてはソースと反応して膜処理を行うガスを用いて他の種類の薄膜を形成しても構わない。さらには、3種類以上の処理ガスを用いる場合であっても、これらを交互に供給して成膜処理を行うのであれば、本発明を適用することが可能である。 Further, for example, in each of the above-described embodiments, as a film forming process performed by the substrate processing apparatus, TEMAH is used as a source (liquid raw material) and O3 gas is used as a reactant (reactive gas), and these are alternately supplied. In this example, the HfO film is formed on the wafer W by way of example. However, the present invention is not limited to this. That is, it is only necessary to use a liquid raw material as the source, and as the reactant, other types of thin films may be formed using a gas that reacts with the source and performs film processing. Furthermore, even when three or more kinds of process gases are used, the present invention can be applied as long as the film formation process is performed by alternately supplying these gases.
 また、ここでは洗浄装置300に接続したが、液体を排出するのみの場合はそれに限るものではなく、廃液装置に接続してもよい。更には、ガス流路が蓋に設けられることを説明したが、それに限るものではなく、例えば側壁に設けても良い。更には、ガス流路が蓋に設けられることを説明したが、それに限るものではなく、例えば側壁に設けても良い。 In addition, although connected to the cleaning device 300 here, it is not limited to the case of only discharging the liquid, and may be connected to a waste liquid device. Furthermore, although it has been described that the gas flow path is provided on the lid, the present invention is not limited thereto, and may be provided on the side wall, for example. Furthermore, although it has been described that the gas flow path is provided on the lid, the present invention is not limited thereto, and may be provided on the side wall, for example.
 また、例えば、上述した各実施形態では、基板処理装置が行う処理として半導体装置における成膜処理を例にあげたが、本発明がこれに限定されることはない。すなわち、成膜処理の他、酸化膜、窒化膜を形成する処理、金属を含む膜を形成する処理であってもよい。また、基板処理の具体的内容は不問であり、成膜処理だけでなく、アニール処理、酸化処理、窒化処理、拡散処理、リソグラフィ処理等の他の基板処理にも好適に適用できる。さらに、本発明は、他の基板処理装置、例えばアニール処理装置、酸化処理装置、窒化処理装置、露光装置、塗布装置、乾燥装置、加熱装置、プラズマを利用した処理装置等の他の基板処理装置にも好適に適用できる。また、本発明は、これらの装置が混在していてもよい。 For example, in each of the above-described embodiments, the film forming process in the semiconductor device is taken as an example of the process performed by the substrate processing apparatus, but the present invention is not limited to this. That is, in addition to the film formation process, a process for forming an oxide film or a nitride film, or a process for forming a film containing metal may be used. Further, the specific content of the substrate processing is not questioned and can be suitably applied not only to the film forming processing but also to other substrate processing such as annealing processing, oxidation processing, nitriding processing, diffusion processing, and lithography processing. Furthermore, the present invention provides other substrate processing apparatuses such as annealing processing apparatuses, oxidation processing apparatuses, nitriding processing apparatuses, exposure apparatuses, coating apparatuses, drying apparatuses, heating apparatuses, and processing apparatuses using plasma. It can be suitably applied to. In the present invention, these devices may be mixed.
 また、例えば、上述した各実施形態は、半導体製造プロセスについて説明したが、それに限るものではなく、化学工業分野における液体の高清浄度を必要とする液体を貯留する液体原料タンクや中間貯蔵タンク、気化器に内蔵する液体タンク等に用いても良い。ここでいう液体とは、例えば純水、過酸化水素水、アンモニア水、アルコール類、有機酸類である。 In addition, for example, each embodiment described above has described the semiconductor manufacturing process, but is not limited thereto, a liquid raw material tank or an intermediate storage tank for storing a liquid that requires high cleanliness of the liquid in the chemical industry field, You may use for the liquid tank etc. which are incorporated in a vaporizer. The liquid here is, for example, pure water, hydrogen peroxide water, ammonia water, alcohols, or organic acids.
 また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加、削除、置換をすることも可能である。 Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. Moreover, it is also possible to add, delete, or replace another configuration for a part of the configuration of each embodiment.
 なお、この出願は、2015年12月18日に出願された日本出願特願2015-247366を基礎として優先権の利益を主張するものであり、その開示の全てを引用によってここに取り込む。 Note that this application claims the benefit of priority based on Japanese Patent Application No. 2015-247366 filed on Dec. 18, 2015, the entire disclosure of which is incorporated herein by reference.
 本発明によれば、高い生産性を達成可能な処理装置やそれを実現するための構造を提供することができる。 According to the present invention, it is possible to provide a processing apparatus capable of achieving high productivity and a structure for realizing the processing apparatus.
29…処理炉、31…ウエハ(基板)、32…ボート、47…ガス供給管、48…ガス供給管、51…気化器、200…貯留タンク構造、201…側壁、202…底壁、203…蓋壁、211…凹部、212…連絡管、213…排出管、221…重量検知器、215…ヒータ
 
 
 
DESCRIPTION OF SYMBOLS 29 ... Processing furnace, 31 ... Wafer (substrate), 32 ... Boat, 47 ... Gas supply pipe, 48 ... Gas supply pipe, 51 ... Vaporizer, 200 ... Storage tank structure, 201 ... Side wall, 202 ... Bottom wall, 203 ... Lid wall, 211 ... recess, 212 ... communication pipe, 213 ... discharge pipe, 221 ... weight detector, 215 ... heater

Claims (11)

  1. 周状に構成された側壁と、前記側壁の上端側に配された蓋壁と、前記側壁の下端側に接続されると共に、重量検知器上に載置可能な載置面を有する底壁と、前記側壁と前記蓋壁と前記底壁で囲まれた貯留室と、前記貯留室に連通すると共に、前記底壁に設けられた凹部と、一端が前記凹部のうち重力方向の部位に接続され、他端が前記底壁内にて重力方向とは異なる方向に延伸するよう構成され、径が前記凹部の径よりも小さくなるよう構成される連絡管と、前記底壁と異なる壁に設けられるガス流路と、前記連絡管の下流端に接続される液体排出路とを備える貯留装置。 A circumferentially configured side wall, a lid wall disposed on the upper end side of the side wall, a bottom wall having a placement surface connected to the lower end side of the side wall and capable of being placed on the weight detector A storage chamber surrounded by the side wall, the lid wall, and the bottom wall; a recess communicating with the storage chamber; and one end connected to a portion of the recess in the direction of gravity. The other end is configured to extend in a direction different from the gravity direction in the bottom wall, and is provided on a connecting pipe configured to have a diameter smaller than the diameter of the recess, and on a wall different from the bottom wall. A storage device comprising a gas flow path and a liquid discharge path connected to a downstream end of the communication pipe.
  2.  前記凹部の径は、前記側壁の径よりも小さくなるよう構成される請求項1に記載の貯留装置。 The storage device according to claim 1, wherein a diameter of the recess is configured to be smaller than a diameter of the side wall.
  3.  前記連絡管と前記凹部は連続した構造である請求項1または請求項2に記載の貯留装置。  The storage device according to claim 1 or 2, wherein the connecting pipe and the recess have a continuous structure. *
  4.  前記連絡管は、前記底壁の内部に設けられる請求項1から請求項3のうち、いずれか一項に記載の貯留装置。 The storage device according to any one of claims 1 to 3, wherein the communication pipe is provided inside the bottom wall.
  5.  前記貯留室の径は、前記底壁に向かうほど小さくなるよう構成される請求項1から請求項4のうち、いずれか一項に記載の貯留装置。 The storage device according to any one of claims 1 to 4, wherein a diameter of the storage chamber is configured to become smaller toward the bottom wall.
  6.  前記液体排出路は、ポンプに接続可能なよう構成される請求項1から請求項5のうち、いずれか一項に記載の貯留装置。 The storage device according to any one of claims 1 to 5, wherein the liquid discharge path is configured to be connectable to a pump.
  7.  前記液体排出路は、前記側壁内を貫通するよう構成される請求項1から請求項6のうち、いずれか一項に記載の貯留装置。 The storage device according to any one of claims 1 to 6, wherein the liquid discharge path is configured to penetrate through the side wall.
  8. 周状に構成された側壁と、前記側壁の上端側に配された蓋壁と、前記側壁の下端側に接続されると共に、重量検知器上に載置可能な載置面を有する底壁と、前記側壁と前記蓋壁と前記底壁で囲まれた貯留室と、前記貯留室に連通すると共に、前記底壁に設けられた凹部と、一端が前記凹部のうち重力方向の部位に接続され、他端が前記底壁内にて重力方向とは異なる方向に延伸するよう構成され、径が前記凹部の径よりも小さくなるよう構成される連絡管と、前記底壁と異なる壁に設けられるガス流路と、前記連絡管の下流端に接続される液体排出路とを備える貯留装置と、前記貯留室を加熱するヒータと、を有する気化器。 A circumferentially configured side wall, a lid wall disposed on the upper end side of the side wall, a bottom wall having a placement surface connected to the lower end side of the side wall and capable of being placed on the weight detector A storage chamber surrounded by the side wall, the lid wall, and the bottom wall; a recess communicating with the storage chamber; and one end connected to a portion of the recess in the direction of gravity. The other end is configured to extend in a direction different from the gravity direction in the bottom wall, and is provided on a connecting pipe configured to have a diameter smaller than the diameter of the recess, and on a wall different from the bottom wall. A vaporizer comprising: a storage device including a gas flow path and a liquid discharge path connected to a downstream end of the communication pipe; and a heater for heating the storage chamber.
  9. 周状に構成された側壁と、前記側壁の上端側に配された蓋壁と、前記側壁の下端側に接続されると共に、重量検知器上に載置可能な載置面を有する底壁と、前記側壁と前記蓋壁と前記底壁で囲まれた貯留室と、前記貯留室に連通すると共に、前記底壁に設けられた凹部と、一端が前記凹部のうち重力方向の部位に接続され、他端が前記底壁内にて重力方向とは異なる方向に延伸するよう構成され、径が前記凹部の径よりも小さくなるよう構成される連絡管と、前記底壁と異なる壁に設けられるガス流路と、前記連絡流路の下流端に接続される液体排出路とを備える貯留装置と、前記貯留室を加熱するヒータと、を有する気化器と、前記気化器に連通される処理室と、前記処理室内で基板を支持する基板支持部とを有する基板処理装置。 A circumferentially configured side wall, a lid wall disposed on the upper end side of the side wall, a bottom wall having a placement surface connected to the lower end side of the side wall and capable of being placed on the weight detector A storage chamber surrounded by the side wall, the lid wall, and the bottom wall; a recess communicating with the storage chamber; and one end connected to a portion of the recess in the direction of gravity. The other end is configured to extend in a direction different from the gravity direction in the bottom wall, and is provided on a connecting pipe configured to have a diameter smaller than the diameter of the recess, and on a wall different from the bottom wall. A vaporizer having a gas flow path and a liquid discharge path connected to a downstream end of the communication flow path, a heater for heating the storage chamber, and a processing chamber communicated with the vaporizer And a substrate processing apparatus for supporting the substrate in the processing chamber.
  10.  前記処理室内で基板を処理する際は、基板処理モードとして、前記底壁が重量計測器に支持された状態で前記ガス流路が前記処理室に連通すると共に、前記液体配管が液体原料源に連通するよう構成され、前記貯留装置内をメンテナンスする際は、メンテナンスモードとして、前記底壁が重量計測器に載置された状態で前記ガス流路が前記不活性ガス源に連通すると共に前記液体排出路が廃液装置または洗浄装置のいずれかに接続されるよう構成される請求項12に記載の基板処理装置。 When processing a substrate in the processing chamber, as a substrate processing mode, the gas flow path communicates with the processing chamber with the bottom wall supported by a weight measuring device, and the liquid pipe serves as a liquid source source. When maintaining the inside of the storage device, the gas flow path communicates with the inert gas source while the bottom wall is placed on a weight measuring device, and the liquid is maintained. The substrate processing apparatus according to claim 12, wherein the discharge path is configured to be connected to either a waste liquid apparatus or a cleaning apparatus.
  11.  基板を処理室内の基板支持部に支持する工程と、周状に構成された側壁と、前記側壁の上端側に配された蓋壁と、前記側壁の下端側に接続されると共に、重量検知器上に載置可能な載置面を有する底壁と、前記側壁と前記蓋壁と前記底壁で囲まれた貯留室と、前記貯留室に連通すると共に、前記底壁に設けられた凹部と、一端が前記凹部のうち重力方向の部位に接続され、他端が前記底壁内にて重力方向とは異なる方向に延伸するよう構成され、径が前記凹部の径よりも小さくなるよう構成される連絡管と、前記底壁と異なる壁に設けられるガス流路と、前記連絡流路の下流端に接続される液体排出路とを備える貯留装置と、前記貯留室を加熱するヒータと、を有する気化器に原料を供給し、前記原料を気化する工程と、前記気化器に連通された処理室内に前記気化された原料を供給し、前記基板を処理する工程と、を有する半導体装置の製造方法。
     
     
    A step of supporting the substrate on a substrate support in the processing chamber, a circumferentially configured side wall, a lid wall disposed on the upper end side of the side wall, and a weight detector connected to the lower end side of the side wall; A bottom wall having a placement surface capable of being placed thereon; a storage chamber surrounded by the side wall, the lid wall, and the bottom wall; and a recess provided in the bottom wall and communicating with the storage chamber. The one end is connected to a portion of the recess in the direction of gravity, and the other end is configured to extend in a direction different from the direction of gravity in the bottom wall, and the diameter is configured to be smaller than the diameter of the recess. A storage pipe comprising a connecting pipe, a gas flow path provided on a wall different from the bottom wall, a liquid discharge path connected to a downstream end of the communication flow path, and a heater for heating the storage chamber. A step of supplying the raw material to the vaporizer and vaporizing the raw material, and communicating with the vaporizer Processing and supplies the vaporized raw material into the room, a method of manufacturing a semiconductor device having a step of processing the substrate.

PCT/JP2016/086222 2015-12-18 2016-12-06 Storage device, vaporizer, substrate processing device, and method for manufacturing semiconductor device WO2017104485A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017555996A JP6487574B2 (en) 2015-12-18 2016-12-06 Storage device, vaporizer, substrate processing apparatus, and semiconductor device manufacturing method
CN201680072763.4A CN108369911B (en) 2015-12-18 2016-12-06 Storage device, vaporizer, substrate processing apparatus, and method for manufacturing semiconductor device
KR1020187016545A KR102122786B1 (en) 2015-12-18 2016-12-06 Storage device, vaporizer, substrate processing device and method for manufacturing semiconductor device
US16/008,825 US10480069B2 (en) 2015-12-18 2018-06-14 Storage device, vaporizer and substrate processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015247366 2015-12-18
JP2015-247366 2015-12-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/008,825 Continuation US10480069B2 (en) 2015-12-18 2018-06-14 Storage device, vaporizer and substrate processing apparatus

Publications (1)

Publication Number Publication Date
WO2017104485A1 true WO2017104485A1 (en) 2017-06-22

Family

ID=59056437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086222 WO2017104485A1 (en) 2015-12-18 2016-12-06 Storage device, vaporizer, substrate processing device, and method for manufacturing semiconductor device

Country Status (5)

Country Link
US (1) US10480069B2 (en)
JP (1) JP6487574B2 (en)
KR (1) KR102122786B1 (en)
CN (1) CN108369911B (en)
WO (1) WO2017104485A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019058969A1 (en) * 2017-09-21 2019-03-28 株式会社Kokusai Electric Storage container, aerator, substrate processing device, and method for manufacturing semiconductor device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102375472B1 (en) * 2017-03-29 2022-03-18 히타치 긴조쿠 가부시키가이샤 carburetor
JP6901153B2 (en) 2019-02-07 2021-07-14 株式会社高純度化学研究所 Solid vaporization supply system for metal halogen compounds for thin film formation.
JP6887688B2 (en) * 2019-02-07 2021-06-16 株式会社高純度化学研究所 A container for evaporative raw materials and a solid vaporization supply system using the container for evaporative raw materials
JP7203070B2 (en) * 2020-09-23 2023-01-12 株式会社Kokusai Electric Substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004040630A1 (en) * 2002-10-30 2004-05-13 Hitachi Kokusai Electric Inc. Method for manufacturing semiconductor device and substrate processing system
JP2007100207A (en) * 2005-09-09 2007-04-19 Lintec Co Ltd Method for vaporization of liquid raw material which enables low-temperature vaporization of liquid raw material, and vaporizer using the method
JP2007227471A (en) * 2006-02-21 2007-09-06 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP2013521409A (en) * 2010-03-03 2013-06-10 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Cleaning solvent and cleaning method for metal compounds

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5870391U (en) * 1981-11-09 1983-05-13 三菱重工業株式会社 storage tank
US5451258A (en) * 1994-05-11 1995-09-19 Materials Research Corporation Apparatus and method for improved delivery of vaporized reactant gases to a reaction chamber
US6136725A (en) * 1998-04-14 2000-10-24 Cvd Systems, Inc. Method for chemical vapor deposition of a material on a substrate
JP2000046631A (en) * 1998-07-29 2000-02-18 Kaijo Corp Liquid level measuring device by ultrasonic wave
US20020127875A1 (en) * 1999-10-18 2002-09-12 Applied Materials, Inc. Point of use mixing and aging system for chemicals used in a film forming apparatus
CN2539749Y (en) * 2002-02-01 2003-03-12 浙江大学蓝星新材料技术有限公司 Evaporator for chemical vapour-phase deposition proplastid
JP3619964B2 (en) * 2002-02-01 2005-02-16 大陽日酸株式会社 Gas supply method
JP3881569B2 (en) * 2002-03-13 2007-02-14 株式会社堀場エステック Liquid material vaporizer
JP2004327962A (en) * 2003-04-07 2004-11-18 Matsushita Electric Ind Co Ltd Resist separation apparatus and separation method
DE10338290B3 (en) * 2003-08-20 2005-01-20 Cs Clean Systems Ag Container residual contents weighing device for container supplying chemical vapor deposition reactor for semiconductor chip or electronic component manufacture uses weighing cells mounted on platform supporting container
US20050224523A1 (en) * 2004-04-13 2005-10-13 Advanced Technology Materials, Inc. Liquid dispensing method and system with headspace gas removal
JP5573666B2 (en) * 2010-12-28 2014-08-20 東京エレクトロン株式会社 Raw material supply apparatus and film forming apparatus
JP5571005B2 (en) 2011-01-12 2014-08-13 株式会社クボタ Pressure exchange device and performance adjustment method of pressure exchange device
JP5614418B2 (en) * 2012-01-25 2014-10-29 東京エレクトロン株式会社 Liquid processing apparatus, liquid processing method, and storage medium
JP2014007289A (en) * 2012-06-25 2014-01-16 Tokyo Electron Ltd Gas supply device and film forming device
JP6078335B2 (en) * 2012-12-27 2017-02-08 株式会社日立国際電気 Substrate processing apparatus, semiconductor device manufacturing method, vaporization system, vaporizer, and program
JP5949586B2 (en) * 2013-01-31 2016-07-06 東京エレクトロン株式会社 Raw material gas supply apparatus, film forming apparatus, raw material supply method, and storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004040630A1 (en) * 2002-10-30 2004-05-13 Hitachi Kokusai Electric Inc. Method for manufacturing semiconductor device and substrate processing system
JP2007100207A (en) * 2005-09-09 2007-04-19 Lintec Co Ltd Method for vaporization of liquid raw material which enables low-temperature vaporization of liquid raw material, and vaporizer using the method
JP2007227471A (en) * 2006-02-21 2007-09-06 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP2013521409A (en) * 2010-03-03 2013-06-10 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Cleaning solvent and cleaning method for metal compounds

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019058969A1 (en) * 2017-09-21 2019-03-28 株式会社Kokusai Electric Storage container, aerator, substrate processing device, and method for manufacturing semiconductor device
JPWO2019058969A1 (en) * 2017-09-21 2020-03-26 株式会社Kokusai Electric Storage container, vaporizer, substrate processing apparatus, and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JPWO2017104485A1 (en) 2018-10-18
US20180291502A1 (en) 2018-10-11
US10480069B2 (en) 2019-11-19
CN108369911A (en) 2018-08-03
KR102122786B1 (en) 2020-06-26
CN108369911B (en) 2022-06-17
JP6487574B2 (en) 2019-03-20
KR20180084887A (en) 2018-07-25

Similar Documents

Publication Publication Date Title
JP6487574B2 (en) Storage device, vaporizer, substrate processing apparatus, and semiconductor device manufacturing method
JP5820731B2 (en) Substrate processing apparatus and solid material replenishment method
JP4899879B2 (en) Substrate processing apparatus, substrate processing method, and storage medium
US8093072B2 (en) Substrate processing apparatus and method of manufacturing semiconductor device
KR101232688B1 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and method of confirming operation of liquid flowrate control device
JP4952610B2 (en) Substrate processing apparatus, substrate processing method, and storage medium
JP2007242791A (en) Substrate treatment apparatus
KR102074668B1 (en) Substrate processing apparatus, quartz reaction tube, cleaning method and program
TWI613319B (en) Substrate processing apparatus and method of manufacturing semiconductor apparatus
JP2010040695A (en) Substrate processing apparatus and raw material replenishment method
TW201603160A (en) Substrate processing apparatus
JP2007073746A (en) Substrate processing device
JP7154055B2 (en) Film forming method and film forming apparatus
JP2009117554A (en) Substrate treatment device
KR100980533B1 (en) Atmosphere opening method of processing chamber and recording medium
JP6817911B2 (en) Cleaning method for wafer boat support, heat treatment equipment and heat treatment equipment
JP5785062B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP2007227471A (en) Substrate processing apparatus
JP2004260204A (en) Substrate processing equipment
JP2013034020A (en) Cleaning method, method for manufacturing semiconductor device, and device for processing substrate
JP2007227470A (en) Substrate processor
JP2011222656A (en) Substrate treatment apparatus
TW202335086A (en) Leakage detection device, method for manufacturing semiconductor device, substrate treatment method, and program
JP4903619B2 (en) Substrate processing equipment
JP2008243837A (en) Film forming apparatus, method of forming film, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875468

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187016545

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187016545

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2017555996

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875468

Country of ref document: EP

Kind code of ref document: A1