WO2017104455A1 - Vehicle power supply circuit and power supply system - Google Patents

Vehicle power supply circuit and power supply system Download PDF

Info

Publication number
WO2017104455A1
WO2017104455A1 PCT/JP2016/086000 JP2016086000W WO2017104455A1 WO 2017104455 A1 WO2017104455 A1 WO 2017104455A1 JP 2016086000 W JP2016086000 W JP 2016086000W WO 2017104455 A1 WO2017104455 A1 WO 2017104455A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
power storage
power supply
temperature
vehicle
Prior art date
Application number
PCT/JP2016/086000
Other languages
French (fr)
Japanese (ja)
Inventor
章生 石原
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2017104455A1 publication Critical patent/WO2017104455A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines

Definitions

  • the present invention relates to a power supply system equipped with a plurality of batteries for vehicles and a power supply circuit for vehicles used in the power supply system.
  • FIG. 3 is a block diagram illustrating such a power supply system.
  • the fuse box 3 includes, for example, a main power storage device 1 (indicated as “lead BAT” in the drawing) employing a lead storage battery, and a sub power storage device (indicated as “sub BAT” in the drawing) employing, for example, a lithium ion battery or a capacitor. 2), the loads 7a and 7b, the alternator 8 and the starter 9 are connected to each other.
  • the alternator 8 functions as a generator by driving an engine (not shown), and the starter 9 functions as an electric motor that generates torque for starting the engine.
  • the fuse box 3 includes power supply trunks 5a, 5b, and 5c each having one end connected in common, a power supply trunk 5d having one end connected to the power supply trunk 5c, and a power feed line group 31 to the load.
  • the power supply trunk lines 5a, 5b, 5c, and 5d are indicated by thick lines.
  • the other ends of the power supply trunk lines 5a, 5b, 5c are connected to the main power storage device 1, the sub power storage device 2, and the starter 9, respectively.
  • the other end of the power supply trunk line 5d is connected to the alternator 8.
  • the feed line group 31 includes a feed line 31a that connects the power supply trunk line 5d and the load 7a, and a feed line 31b that connects one end of the power supply trunk lines 5a, 5b, and 5c and the load 7b. Fuses 32, 38, 3a, and 3b are provided on the power supply trunk lines 5b and 5d and the feeder lines 31a and 31b, respectively.
  • Patent Document 1 discloses a technology relating to a hybrid vehicle capable of generating power without requiring power supply from a main battery.
  • Patent Literature 2 discloses a technique for efficiently using electric energy generated by motor regeneration or a generator by controlling the operation of a transformer.
  • the main power storage device 1 be a storage battery having a large current capacity, such as a lead storage battery.
  • the power supply line group 31 is selected to have a small resistance so as to reduce the resistance loss, current flows from the main power storage device 1 in addition to the sub power storage device 2 to the loads 7a and 7b. This contributes to promoting discharge from the main power storage device 1.
  • the power supply trunk lines 5a and 5b are usually selected to have the same length, the current supplied from the alternator 8 while the vehicle is traveling flows to the main power storage device 1 in addition to the sub power storage device 2. This contributes to promoting charging of the main power storage device 1. Since charging / discharging to the main power storage device 1 employing a lead storage battery consumes its life, it is desirable to suppress the charging / discharging and increase the frequency of use of the sub power storage device 2.
  • the lead storage battery has a larger internal resistance during continuous energization than the lithium ion battery or capacitor used in the sub power storage device 2. Therefore, from the viewpoint of reducing energy loss, it is desirable to suppress charging / discharging of the lead storage battery and increase the usage frequency of the sub power storage device 2.
  • the first object of the present invention is to provide a technique for reducing the current flowing from the main power storage device 1 when the temperature of the sub power storage device 2 is high during traveling, that is, when the alternator 8 is operating.
  • the main power storage device 1 plays a role of supplying a current to a starter for starting the engine, but the lead storage battery employed in the main power storage device 1 has a large internal resistance at a low temperature. It is desirable that the resistance of the trunk lines 5a and 5c be designed to be small. However, since the internal resistance decreases as the temperature of the lead storage battery increases, an unnecessarily large current flows through starter 9 when the temperature of main power storage device 1 is high. This accelerates the deterioration of the lead storage battery employed in the main power storage device 1 and is not desirable.
  • a second object of the present invention is to provide a technique for reducing the current flowing from the main power storage device 1 when the temperature of the main power storage device 1 is high at the first start, that is, when the starter 9 is started. .
  • the vehicle power supply circuit supplies current to a load capable of supplying current from both the first power storage device and the second power storage device charged by an on-vehicle alternator.
  • a wiring connecting the load and the second power storage device in parallel; connected between the wiring and the first power storage device, and when the alternator is in operation, the temperature of the second power storage device is A resistance circuit that takes a first resistance value when the temperature is higher than a predetermined temperature of 1, and takes a second resistance value that is lower than the first resistance value when the temperature is lower than the first predetermined temperature.
  • FIG. 1 is a block diagram illustrating the configuration of a power feeding circuit according to this embodiment.
  • This configuration has a configuration in which the power supply trunk line 5a is replaced with a resistance circuit 4 with respect to the fuse box 3 shown in FIG.
  • the operation of the resistance circuit 4 is controlled by a control signal J output from an ECU (Electronic Control Unit) 6 mounted on the vehicle.
  • ECU 6 outputs control signal J based on temperature Th1 of main power storage device 1, temperature Th2 of sub power storage device 2, and ignition signal IG.
  • the main power storage device 1 and the sub power storage device 2 are charged by an alternator 8 that exhibits a power generation function when the vehicle is traveling.
  • an alternator 8 that exhibits a power generation function when the vehicle is traveling.
  • a lead storage battery is used for the main power storage device 1
  • a lithium ion battery or an electric double layer capacitor is used for the sub power storage device 2.
  • Currents can be supplied to the loads 7 a and 7 b from the main power storage device 1 and the sub power storage device 2 through the feeder line group 31 from the resistance circuit 4 and the power supply trunk lines 5 b and 5 d.
  • the power supply main line 5b and the power supply line 31b can be regarded as wiring that connects the load 7b and the sub power storage device 2 in parallel.
  • the resistance circuit 4 is connected in series between the wiring and the main power storage device 1.
  • the resistance circuit 4 includes a switch 4a and a resistor 4b connected in parallel to the switch 4a.
  • the resistance value of the resistance circuit 4 When the switch 4a is conductive (ON state), the resistance value of the resistance circuit 4 is lower than the resistance value of the resistor 4b (almost zero). When the switch 4a is non-conductive (OFF state), the resistance value of the resistance circuit 4 is the resistance value of the resistor 4b. Therefore, the resistance value of the resistance circuit 4 can be controlled by controlling ON / OFF of the switch 4a.
  • the ECU 6 can recognize whether or not the vehicle is running based on the ignition signal IG. Since the ignition signal IG is a known technique, a detailed description of the technique for generating the ignition signal IG is omitted.
  • the ECU 6 deactivates / activates the control signal J depending on whether the temperature Th2 of the sub power storage device 2 is higher or lower than the predetermined temperature T2. To do.
  • the switch 4a is turned ON / OFF according to the activation / deactivation of the control signal J, respectively.
  • the resistance circuit 4 sets the resistance value of the resistor 4b when the temperature Th2 of the sub power storage device 2 is higher than the predetermined temperature T2, and sets the temperature Th2 of the sub power storage device 2 to the predetermined temperature T2. Lower than that of the resistor 4b (approximately zero in the above example).
  • the resistance circuit 4 operates as described above, when the temperature Th2 of the sub power storage device 2 is high, the current supplied from the main power storage device 1 to the wiring (the power supply trunk line 5b and the power supply line 31b) is reduced. Thus, charging / discharging of the main power storage device 1 can be suppressed.
  • the temperature Th2 of the sub power storage device 2 is low, the current supplied from the main power storage device 1 to the wiring is increased, so that the current necessary for the load 7b can be secured.
  • Predetermined temperature T2 can be appropriately set in view of the magnitude of current required for power supply to load 7b and the magnitude of current that can be output by sub power storage device 2.
  • the load 7a is connected in parallel with the sub power storage device 2 by the power supply trunk lines 5b, 5c, 5d and the feeder line 31a. Therefore, similarly to the load 7b, the magnitude of the current output from the main power storage device 1 is controlled according to the temperature Th2 of the sub power storage device 2, and the charging / discharging of the main power storage device 1 and the current required for the load 7a are controlled. Is selectively obtained.
  • the power supply trunk lines 5b, 5c, 5d, and the feeder line 31a can be regarded as wirings that connect the sub power storage device 2 and the load 7a in parallel.
  • the ECU 6 deactivates / activates the control signal J depending on whether the temperature Th1 of the main power storage device 1 is higher or lower than the predetermined temperature T1. .
  • the switch 4a is turned on / off in response to the activation / deactivation of the control signal J. Therefore, when the starter 9 is in operation, the resistance circuit 4 determines the resistance value of the resistor 4b when the temperature Th1 of the main power storage device 1 is higher than the predetermined temperature T1, and the temperature Th1 of the main power storage device 1 is higher than the predetermined temperature T1. When the value is low, a resistance value lower than that of the resistor 4b (substantially zero in the above example) is taken.
  • the resistance circuit 4 operates as described above, when the temperature Th1 of the main power storage device 1 is high, the current supplied from the main power storage device 1 to the power supply trunk line 5c is prevented from being excessive, and thus the main power storage device. 1 charging / discharging can be suppressed.
  • the temperature Th1 of the main power storage device 1 is low, a current required for the starter 9 can be secured.
  • the predetermined temperature T1 can be appropriately set in view of the magnitude of the current required for power supply to the starter 9.
  • the power supply trunk lines 5b and 5c can be regarded as wirings connecting the sub power storage device 2 and the starter 9 in parallel. Further, the power supply trunk lines 5b, 5c, 5d and the feeder line group 31 can be regarded as wirings connecting the sub power storage device 2, the alternator 8, the starter 9, and the loads 7a, 7b in parallel.
  • the fuse box 3 uses the main power storage device 1 and the sub power storage device 2 as supply sources to supply power to the loads 7a and 7b and the starter 9 that are mounted on the vehicle, and thus can be regarded as a vehicle power supply circuit. Further, the fuse box 3 and the sub power storage device 2 can be collectively regarded as a power supply system.
  • FIG. 2 is a conceptual diagram summarizing the above operation (ON / OFF) of the switch 4a.
  • the temperature Th1 is equal to the predetermined temperature T1
  • the same operation as when the temperature Th1 is higher than the predetermined temperature T1 is performed.
  • the temperature Th2 is equal to the predetermined temperature T2
  • the same operation as when the temperature Th2 is higher than the predetermined temperature T2 is performed.
  • the temperature Th2 is equal to the predetermined temperature T2
  • the temperature Th2 is predetermined. It is good also as performing the same operation
  • the switch 4a is turned off (OFF) so that an unnecessarily large current does not flow through the starter 9. Since no current needs to flow through the starter 9 during traveling, the switch 4a is turned on (ON) if the temperature Th2 is less than the predetermined temperature T2, regardless of the temperature Th1, and the switch 4a is not turned on if less than the predetermined temperature T2. Turn on (OFF).
  • the switch 4a when the vehicle is parked, the case where the switch 4a is made conductive (ON state) is illustrated regardless of the temperatures Th1 and Th2. In this case, however, the switch 4a may be turned off. This is because the electric power required during parking is smaller than during driving.
  • the predetermined temperatures T1 and T2 can be set independently of each other. This is because the temperatures Th1 and Th2 respectively function as thresholds with respect to the temperatures Th1 and Th2, and the temperatures Th1 and Th2 are temperatures of independent components such as the main power storage device 1 and the sub power storage device 2, respectively.
  • the resistance circuit 4 is not limited to the parallel connection of the switch 4a and the resistor 4b, and may have other configurations.
  • the resistance value of the resistance circuit 4 selected based on the magnitude relation of the temperature Th1 with respect to the predetermined temperature T1 may be different from the resistance value of the resistance circuit 4 selected based on the magnitude relation of the temperature Th2 with respect to the predetermined temperature T2.
  • the resistance value required for the resistance circuit 4 based on the temperature Th2 is set by the current to be supplied to the loads 7a and 7b when the alternator 8 is operating, and is required for the resistance circuit 4 based on the temperature Th1. This is because the resistance value is set by the current to be supplied to the starter 9 when the starter 9 is started.
  • each structure demonstrated by said each embodiment and each modification can be suitably combined unless it mutually contradicts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Charge By Means Of Generators (AREA)

Abstract

The purpose of the present invention is to provide a way to make the current flowing from a primary power storage device small if the temperature of a secondary power storage device is high when an alternator is operating. Current can be supplied to a load from either a primary power storage device or a secondary power storage device, which are charged by an in-vehicle alternator. A fuse box is a power feed circuit that is provided with: wiring (power supply main line and power feed line) that connects the load and the secondary power storage device in parallel; and a resistance circuit that is connected between the wiring and the primary power storage device and that, when the alternator is operating, has a first resistance value for when the temperature of the secondary power storage device is higher than a prescribed temperature, and a second resistance value, which is lower than the first resistance value, for when the temperature of the secondary power storage device is lower than the prescribed temperature.

Description

車両用電源回路及び電源システムVehicle power circuit and power system
 この発明は、車両用の複数のバッテリを搭載した電源システム及び当該電源システムに用いられる車両用の電源回路に関する。 The present invention relates to a power supply system equipped with a plurality of batteries for vehicles and a power supply circuit for vehicles used in the power supply system.
 車両用の電源システムにおいて、鉛蓄電池とリチウムイオン電池とを併用する場合がある。図3はそのような電源システムを例示するブロック図である。ヒューズボックス3は、例えば鉛蓄電池が採用される主蓄電装置1(図中「鉛BAT」と表記)と、例えばリチウムイオン電池やキャパシタが採用される副蓄電装置(図中「サブBAT」と表記)2と、負荷7a,7bと、オルタネーター8と、スターター9とを相互に接続する。オルタネーター8は不図示のエンジンの駆動によって発電機として機能し、スターター9は当該エンジンを始動させるためのトルクを発生させる電動機として機能する。これらはいずれも車載される電源システムの構成要素である。 In a vehicle power supply system, a lead storage battery and a lithium ion battery may be used in combination. FIG. 3 is a block diagram illustrating such a power supply system. The fuse box 3 includes, for example, a main power storage device 1 (indicated as “lead BAT” in the drawing) employing a lead storage battery, and a sub power storage device (indicated as “sub BAT” in the drawing) employing, for example, a lithium ion battery or a capacitor. 2), the loads 7a and 7b, the alternator 8 and the starter 9 are connected to each other. The alternator 8 functions as a generator by driving an engine (not shown), and the starter 9 functions as an electric motor that generates torque for starting the engine. These are all components of a power supply system mounted on a vehicle.
 具体的にはヒューズボックス3は、それぞれの一端が共通に接続された電源幹線5a,5b,5cと、電源幹線5cに一端が接続された電源幹線5dと、負荷への給電線群31とを有する。図3では、電源幹線5a,5b,5c,5dを太線で示している。 Specifically, the fuse box 3 includes power supply trunks 5a, 5b, and 5c each having one end connected in common, a power supply trunk 5d having one end connected to the power supply trunk 5c, and a power feed line group 31 to the load. Have. In FIG. 3, the power supply trunk lines 5a, 5b, 5c, and 5d are indicated by thick lines.
 電源幹線5a,5b,5cの他端はそれぞれ主蓄電装置1、副蓄電装置2、スターター9に接続される。電源幹線5dの他端はオルタネーター8に接続される。給電線群31は、電源幹線5dと負荷7aとを接続する給電線31a、電源幹線5a,5b,5cの一端と負荷7bとを接続する給電線31bとを含む。電源幹線5b,5d、給電線31a,31bには、それぞれヒューズ32,38,3a,3bが設けられている。 The other ends of the power supply trunk lines 5a, 5b, 5c are connected to the main power storage device 1, the sub power storage device 2, and the starter 9, respectively. The other end of the power supply trunk line 5d is connected to the alternator 8. The feed line group 31 includes a feed line 31a that connects the power supply trunk line 5d and the load 7a, and a feed line 31b that connects one end of the power supply trunk lines 5a, 5b, and 5c and the load 7b. Fuses 32, 38, 3a, and 3b are provided on the power supply trunk lines 5b and 5d and the feeder lines 31a and 31b, respectively.
 特許文献1は、メインバッテリからの電力供給を必要とせずに発電可能なハイブリッド車両に関する技術を開示する。特許文献2は、変圧器の作動を制御して、モータの回生又は発電機によって生成された電気エネルギーを効率的に利用する技術を開示する。 Patent Document 1 discloses a technology relating to a hybrid vehicle capable of generating power without requiring power supply from a main battery. Patent Literature 2 discloses a technique for efficiently using electric energy generated by motor regeneration or a generator by controlling the operation of a transformer.
特開2003-61208号公報JP 2003-61208 A 特開2003-199201号公報JP 2003-199201 A
 車両の初回始動時にスターター9へ流す電流を大きくする観点で、主蓄電装置1には鉛蓄電池のように電流容量が大きな蓄電池が採用されることが望ましい。但し、給電線群31は抵抗損失を低下させるべくその抵抗が小さく選定されるので、負荷7a,7bには副蓄電装置2に加え、主蓄電装置1からも電流が流れる。これは主蓄電装置1からの放電を促進する一因となる。また電源幹線5a,5bは通常、同程度の長さに選定されるので、車両が走行中にオルタネーター8から供給される電流は副蓄電装置2に加え、主蓄電装置1にも流れる。これは主蓄電装置1への充電を促進する一因となる。鉛蓄電池を採用する主蓄電装置1への充放電は、その寿命を消耗させることから、当該充放電を抑制し、副蓄電装置2の使用頻度を多くすることが望ましい。 From the viewpoint of increasing the current flowing to the starter 9 when the vehicle is first started, it is desirable that the main power storage device 1 be a storage battery having a large current capacity, such as a lead storage battery. However, since the power supply line group 31 is selected to have a small resistance so as to reduce the resistance loss, current flows from the main power storage device 1 in addition to the sub power storage device 2 to the loads 7a and 7b. This contributes to promoting discharge from the main power storage device 1. Moreover, since the power supply trunk lines 5a and 5b are usually selected to have the same length, the current supplied from the alternator 8 while the vehicle is traveling flows to the main power storage device 1 in addition to the sub power storage device 2. This contributes to promoting charging of the main power storage device 1. Since charging / discharging to the main power storage device 1 employing a lead storage battery consumes its life, it is desirable to suppress the charging / discharging and increase the frequency of use of the sub power storage device 2.
 また、鉛蓄電池は副蓄電装置2で採用されるようなリチウムイオン電池やキャパシタと比較して、連続通電時の内部抵抗が大きい。従ってエネルギー損失を低減する観点からは鉛蓄電池の充放電を抑制し、副蓄電装置2の使用頻度を多くすることが望ましい。 In addition, the lead storage battery has a larger internal resistance during continuous energization than the lithium ion battery or capacitor used in the sub power storage device 2. Therefore, from the viewpoint of reducing energy loss, it is desirable to suppress charging / discharging of the lead storage battery and increase the usage frequency of the sub power storage device 2.
 しかしながら、副蓄電装置2もその温度が低下すると出力特性が悪化し、給電線群31に出力する電流も低下する。よってそのような場合には主蓄電装置1から流れる電流を高めることが望ましい。 However, when the temperature of the secondary power storage device 2 is also lowered, the output characteristics are deteriorated, and the current output to the feeder line group 31 is also reduced. Therefore, in such a case, it is desirable to increase the current flowing from main power storage device 1.
 そこで、本発明は、走行中、即ちオルタネーター8が稼働しているときに、副蓄電装置2の温度が高い場合、主蓄電装置1から流れる電流を小さくする技術を提供することを第1の目的とする。 Therefore, the first object of the present invention is to provide a technique for reducing the current flowing from the main power storage device 1 when the temperature of the sub power storage device 2 is high during traveling, that is, when the alternator 8 is operating. And
 また、主蓄電装置1は、エンジンを始動させるためのスターターに電流を供給する役割を担っているが、主蓄電装置1に採用される鉛蓄電池は、低温時にはその内部抵抗が大きいことから、電源幹線5a,5cの抵抗は小さく設計されることが望ましい。しかしながら当該内部抵抗は、鉛蓄電池の温度上昇に伴って低下するため、主蓄電装置1の温度が高いときにはスターター9に不要に大きな電流が流れる。これは主蓄電装置1に採用される鉛蓄電池の劣化を促進してしまい、望ましくない。 The main power storage device 1 plays a role of supplying a current to a starter for starting the engine, but the lead storage battery employed in the main power storage device 1 has a large internal resistance at a low temperature. It is desirable that the resistance of the trunk lines 5a and 5c be designed to be small. However, since the internal resistance decreases as the temperature of the lead storage battery increases, an unnecessarily large current flows through starter 9 when the temperature of main power storage device 1 is high. This accelerates the deterioration of the lead storage battery employed in the main power storage device 1 and is not desirable.
 そこで、本発明は、初回始動時、即ちスターター9の始動時において、主蓄電装置1の温度が高い場合、主蓄電装置1から流れる電流を小さくする技術を提供することを第2の目的とする。 Accordingly, a second object of the present invention is to provide a technique for reducing the current flowing from the main power storage device 1 when the temperature of the main power storage device 1 is high at the first start, that is, when the starter 9 is started. .
 車両用電源回路は、車載されるオルタネーターによって充電される第1蓄電装置及び第2蓄電装置のいずれからも、電流の供給が可能な負荷に電流を供給する。そして前記負荷と前記第2蓄電装置とを並列に接続する配線と;前記配線と前記第1蓄電装置との間に接続され、前記オルタネーターの稼働時において、前記第2蓄電装置の温度が、第1の所定温度よりも高い場合に第1抵抗値を、前記第1の所定温度よりも低い場合に前記第1抵抗値よりも低い第2抵抗値をそれぞれ採る抵抗回路と;を備える。 The vehicle power supply circuit supplies current to a load capable of supplying current from both the first power storage device and the second power storage device charged by an on-vehicle alternator. And a wiring connecting the load and the second power storage device in parallel; connected between the wiring and the first power storage device, and when the alternator is in operation, the temperature of the second power storage device is A resistance circuit that takes a first resistance value when the temperature is higher than a predetermined temperature of 1, and takes a second resistance value that is lower than the first resistance value when the temperature is lower than the first predetermined temperature.
 オルタネーターが稼働しているときに、第2蓄電装置の温度が高い場合、第1蓄電装置から流れる電流を小さくする。 When the alternator is operating and the temperature of the second power storage device is high, the current flowing from the first power storage device is reduced.
実施形態に係る給電回路の構成を例示するブロック図である。It is a block diagram which illustrates the composition of the electric power feeding circuit concerning an embodiment. スイッチの動作(ON/OFF)を纏めた概念図である。It is the conceptual diagram which summarized the operation | movement (ON / OFF) of the switch. 従来の技術を例示するブロック図である。It is a block diagram which illustrates a prior art.
 図1は、本実施の形態に係る給電回路の構成を例示するブロック図である。当該構成は、図3に示されたヒューズボックス3に対し、その電源幹線5aを抵抗回路4に置換した構成を有している。抵抗回路4の動作は、車載されるECU(エレクトロニックコントロールユニット)6から出力される制御信号Jによって制御される。ECU6は、主蓄電装置1の温度Th1、副蓄電装置2の温度Th2及びイグニッション信号IGに基づいて制御信号Jを出力する。 FIG. 1 is a block diagram illustrating the configuration of a power feeding circuit according to this embodiment. This configuration has a configuration in which the power supply trunk line 5a is replaced with a resistance circuit 4 with respect to the fuse box 3 shown in FIG. The operation of the resistance circuit 4 is controlled by a control signal J output from an ECU (Electronic Control Unit) 6 mounted on the vehicle. ECU 6 outputs control signal J based on temperature Th1 of main power storage device 1, temperature Th2 of sub power storage device 2, and ignition signal IG.
 その他、本実施の形態の説明において、図3を用いて説明されたものと同様の構成要素については同一符号を付してその説明を省略する。 In addition, in the description of the present embodiment, the same components as those described with reference to FIG.
 図1において、主蓄電装置1及び副蓄電装置2は、車両走行時に於いて発電機能を発揮するオルタネーター8によって充電される。主蓄電装置1には例えば鉛蓄電池が、副蓄電装置2には例えばリチウムイオンバッテリあるいは電気二重層キャパシタが、それぞれ採用される。負荷7a,7bには、抵抗回路4及び電源幹線5b,5dから、給電線群31を介して、主蓄電装置1と副蓄電装置2のいずれからも、電流の供給が可能である。 In FIG. 1, the main power storage device 1 and the sub power storage device 2 are charged by an alternator 8 that exhibits a power generation function when the vehicle is traveling. For example, a lead storage battery is used for the main power storage device 1, and a lithium ion battery or an electric double layer capacitor is used for the sub power storage device 2. Currents can be supplied to the loads 7 a and 7 b from the main power storage device 1 and the sub power storage device 2 through the feeder line group 31 from the resistance circuit 4 and the power supply trunk lines 5 b and 5 d.
 電源幹線5b及び給電線31bは、負荷7bと副蓄電装置2とを並列に接続する配線として捉えることができる。抵抗回路4はかかる配線と主蓄電装置1との間に直列に接続される。抵抗回路4は、スイッチ4aと、スイッチ4aに並列に接続される抵抗4bとを有する。 The power supply main line 5b and the power supply line 31b can be regarded as wiring that connects the load 7b and the sub power storage device 2 in parallel. The resistance circuit 4 is connected in series between the wiring and the main power storage device 1. The resistance circuit 4 includes a switch 4a and a resistor 4b connected in parallel to the switch 4a.
 スイッチ4aが導通するとき(ON状態)では抵抗回路4の抵抗値は、抵抗4bの抵抗値よりも低くなる(ほぼ零)。スイッチ4aが非導通のとき(OFF状態)では抵抗回路4の抵抗値は、抵抗4bの抵抗値となる。従って、スイッチ4aのON/OFFを制御することにより、抵抗回路4の抵抗値を制御することができる。 When the switch 4a is conductive (ON state), the resistance value of the resistance circuit 4 is lower than the resistance value of the resistor 4b (almost zero). When the switch 4a is non-conductive (OFF state), the resistance value of the resistance circuit 4 is the resistance value of the resistor 4b. Therefore, the resistance value of the resistance circuit 4 can be controlled by controlling ON / OFF of the switch 4a.
 ECU6は、イグニッション信号IGに基づいて、車両が走行中か否かを了知できる。かかるイグニッション信号IGについては周知の技術であるので、これを生成する技術についての詳細な説明は省略する。 The ECU 6 can recognize whether or not the vehicle is running based on the ignition signal IG. Since the ignition signal IG is a known technique, a detailed description of the technique for generating the ignition signal IG is omitted.
 ECU6は、車両が走行中である場合、即ちオルタネーター8の稼働時において、副蓄電装置2の温度Th2が、所定温度T2よりも高いか低いかに応じて、それぞれ制御信号Jを非活性/活性にする。 When the vehicle is running, that is, when the alternator 8 is operating, the ECU 6 deactivates / activates the control signal J depending on whether the temperature Th2 of the sub power storage device 2 is higher or lower than the predetermined temperature T2. To do.
 抵抗回路4では制御信号Jの活性/非活性に応じて、それぞれスイッチ4aがON/OFFする。これにより、抵抗回路4は、オルタネーター8の稼働時において、副蓄電装置2の温度Th2が所定温度T2よりも高い場合には抵抗4bの抵抗値を、副蓄電装置2の温度Th2が所定温度T2よりも低い場合には抵抗4bよりも低い抵抗値(上述の例ではほぼ零)を、それぞれ採ることになる。 In the resistance circuit 4, the switch 4a is turned ON / OFF according to the activation / deactivation of the control signal J, respectively. Thereby, when the alternator 8 is in operation, the resistance circuit 4 sets the resistance value of the resistor 4b when the temperature Th2 of the sub power storage device 2 is higher than the predetermined temperature T2, and sets the temperature Th2 of the sub power storage device 2 to the predetermined temperature T2. Lower than that of the resistor 4b (approximately zero in the above example).
 抵抗回路4が上述の様に動作するので、副蓄電装置2の温度Th2が高い場合には主蓄電装置1から上記配線(電源幹線5b、給電線31b)へ供給される電流を小さくし、以て主蓄電装置1の充放電を抑制できる。副蓄電装置2の温度Th2が低い場合には主蓄電装置1から上記配線へ供給される電流を大きくし、以て負荷7bに必要な電流を確保できる。所定温度T2は、負荷7bへの給電に必要な電流の大きさや、副蓄電装置2が出力可能な電流の大きさに鑑みて適宜に設定することができる。 Since the resistance circuit 4 operates as described above, when the temperature Th2 of the sub power storage device 2 is high, the current supplied from the main power storage device 1 to the wiring (the power supply trunk line 5b and the power supply line 31b) is reduced. Thus, charging / discharging of the main power storage device 1 can be suppressed. When the temperature Th2 of the sub power storage device 2 is low, the current supplied from the main power storage device 1 to the wiring is increased, so that the current necessary for the load 7b can be secured. Predetermined temperature T2 can be appropriately set in view of the magnitude of current required for power supply to load 7b and the magnitude of current that can be output by sub power storage device 2.
 負荷7aは、電源幹線5b,5c,5d及び給電線31aによって副蓄電装置2と並列に接続される。よって負荷7bと同様に、主蓄電装置1から出力される電流の大小が、副蓄電装置2の温度Th2に応じて制御され、主蓄電装置1の充放電の抑制と、負荷7aに必要な電流の確保とが選択的に得られる。この場合、電源幹線5b,5c,5d、給電線31aを、副蓄電装置2と負荷7aとを並列に接続する配線として捉えることができる。 The load 7a is connected in parallel with the sub power storage device 2 by the power supply trunk lines 5b, 5c, 5d and the feeder line 31a. Therefore, similarly to the load 7b, the magnitude of the current output from the main power storage device 1 is controlled according to the temperature Th2 of the sub power storage device 2, and the charging / discharging of the main power storage device 1 and the current required for the load 7a are controlled. Is selectively obtained. In this case, the power supply trunk lines 5b, 5c, 5d, and the feeder line 31a can be regarded as wirings that connect the sub power storage device 2 and the load 7a in parallel.
 ECU6は、車両を初回始動させる場合、即ちスターター9の始動時において、主蓄電装置1の温度Th1が、所定温度T1よりも高いか低いかに応じて、それぞれ制御信号Jを非活性/活性にする。 When starting the vehicle for the first time, that is, when starting the starter 9, the ECU 6 deactivates / activates the control signal J depending on whether the temperature Th1 of the main power storage device 1 is higher or lower than the predetermined temperature T1. .
 制御信号Jの活性/非活性に応じて、それぞれスイッチ4aがON/OFFする。よって抵抗回路4は、スターター9の稼働時において、主蓄電装置1の温度Th1が所定温度T1よりも高い場合には抵抗4bの抵抗値を、主蓄電装置1の温度Th1が所定温度T1よりも低い場合には抵抗4bよりも低い抵抗値(上述の例ではほぼ零)を、それぞれ採ることになる。 The switch 4a is turned on / off in response to the activation / deactivation of the control signal J. Therefore, when the starter 9 is in operation, the resistance circuit 4 determines the resistance value of the resistor 4b when the temperature Th1 of the main power storage device 1 is higher than the predetermined temperature T1, and the temperature Th1 of the main power storage device 1 is higher than the predetermined temperature T1. When the value is low, a resistance value lower than that of the resistor 4b (substantially zero in the above example) is taken.
 抵抗回路4が上述の様に動作するので、主蓄電装置1の温度Th1が高い場合には主蓄電装置1から電源幹線5cへ供給される電流が過大となることを抑え、以て主蓄電装置1の充放電を抑制できる。主蓄電装置1の温度Th1が低い場合にはスターター9に必要な電流を確保できる。所定温度T1は、スターター9への給電に必要な電流の大きさに鑑みて適宜に設定することができる。 Since the resistance circuit 4 operates as described above, when the temperature Th1 of the main power storage device 1 is high, the current supplied from the main power storage device 1 to the power supply trunk line 5c is prevented from being excessive, and thus the main power storage device. 1 charging / discharging can be suppressed. When the temperature Th1 of the main power storage device 1 is low, a current required for the starter 9 can be secured. The predetermined temperature T1 can be appropriately set in view of the magnitude of the current required for power supply to the starter 9.
 電源幹線5b,5cを、副蓄電装置2とスターター9とを並列に接続する配線と捉えることができる。また、電源幹線5b、5c、5d及び給電線群31を、副蓄電装置2、オルタネーター8、スターター9,負荷7a,7bを並列に接続する配線として捉えることができる。 The power supply trunk lines 5b and 5c can be regarded as wirings connecting the sub power storage device 2 and the starter 9 in parallel. Further, the power supply trunk lines 5b, 5c, 5d and the feeder line group 31 can be regarded as wirings connecting the sub power storage device 2, the alternator 8, the starter 9, and the loads 7a, 7b in parallel.
 以上のようにしてヒューズボックス3は主蓄電装置1及び副蓄電装置2を供給源として、車載される負荷7a,7bやスターター9に電源を供給するので、車両用電源回路として捉えることができる。また、ヒューズボックス3と副蓄電装置2とを纏めて電源システムとして捉えることもできる。 As described above, the fuse box 3 uses the main power storage device 1 and the sub power storage device 2 as supply sources to supply power to the loads 7a and 7b and the starter 9 that are mounted on the vehicle, and thus can be regarded as a vehicle power supply circuit. Further, the fuse box 3 and the sub power storage device 2 can be collectively regarded as a power supply system.
 図2はスイッチ4aの上記の動作(ON/OFF)を纏めた概念図である。ここでは温度Th1が所定温度T1と等しい場合には、温度Th1が所定温度T1よりも高い場合と同じ動作をすることとしている。同様に、温度Th2が所定温度T2と等しい場合には、温度Th2が所定温度T2よりも高い場合と同じ動作をすることとしている。もちろん、温度Th1が所定温度T1と等しい場合には、温度Th1が所定温度T1よりも低い場合と同じ動作をしてもよいし、温度Th2が所定温度T2と等しい場合には、温度Th2が所定温度T2よりも低い場合と同じ動作をすることとしてもよい。温度Th1,Th2を得てECU6に了知させる技術は周知の技術を用いて実現されるので、ここではその詳細な説明を省略する。 FIG. 2 is a conceptual diagram summarizing the above operation (ON / OFF) of the switch 4a. Here, when the temperature Th1 is equal to the predetermined temperature T1, the same operation as when the temperature Th1 is higher than the predetermined temperature T1 is performed. Similarly, when the temperature Th2 is equal to the predetermined temperature T2, the same operation as when the temperature Th2 is higher than the predetermined temperature T2 is performed. Of course, when the temperature Th1 is equal to the predetermined temperature T1, the same operation as when the temperature Th1 is lower than the predetermined temperature T1 may be performed. When the temperature Th2 is equal to the predetermined temperature T2, the temperature Th2 is predetermined. It is good also as performing the same operation | movement as the case where it is lower than temperature T2. Since the technique for obtaining the temperatures Th1 and Th2 and causing the ECU 6 to recognize the temperature is realized using a known technique, a detailed description thereof is omitted here.
 車両を初回始動させる場合、即ちスターター9の始動時において、主蓄電装置1の温度Th1が所定温度T1よりも高い場合には、主蓄電装置1から放電可能な電流は大きい。よってスターター9に不要に大きな電流が流れないよう、スイッチ4aを非導通(OFF)にする。走行中はスターター9に電流を流す必要がないので、温度Th1によらず、温度Th2が所定温度T2未満であればスイッチ4aを導通(ON)にし、所定温度T2未満であればスイッチ4aを非導通(OFF)にする。 When the vehicle is started for the first time, that is, when the starter 9 is started, if the temperature Th1 of the main power storage device 1 is higher than the predetermined temperature T1, the current that can be discharged from the main power storage device 1 is large. Therefore, the switch 4a is turned off (OFF) so that an unnecessarily large current does not flow through the starter 9. Since no current needs to flow through the starter 9 during traveling, the switch 4a is turned on (ON) if the temperature Th2 is less than the predetermined temperature T2, regardless of the temperature Th1, and the switch 4a is not turned on if less than the predetermined temperature T2. Turn on (OFF).
 なお、車両が駐車中の場合、温度Th1,Th2によらず、スイッチ4aを導通させている(ON状態)場合が例示されている。但し、この場合、スイッチ4aを非導通にしてもよい。駐車中に必要な電力は走行中よりも小さいからである。 In addition, when the vehicle is parked, the case where the switch 4a is made conductive (ON state) is illustrated regardless of the temperatures Th1 and Th2. In this case, however, the switch 4a may be turned off. This is because the electric power required during parking is smaller than during driving.
 {変形例}
 所定温度T1,T2は互いに独立して設定できる。それぞれ温度Th1,Th2に対して閾値として機能する温度であり、温度Th1,Th2はそれぞれ主蓄電装置1、副蓄電装置2という独立した構成要素の温度だからである。
{Modifications}
The predetermined temperatures T1 and T2 can be set independently of each other. This is because the temperatures Th1 and Th2 respectively function as thresholds with respect to the temperatures Th1 and Th2, and the temperatures Th1 and Th2 are temperatures of independent components such as the main power storage device 1 and the sub power storage device 2, respectively.
 抵抗回路4はスイッチ4aと抵抗4bとの並列接続に限定されず、他の構成でもよい。また温度Th1の所定温度T1に対する大小関係で選択される抵抗回路4の抵抗値は、温度Th2の所定温度T2に対する大小関係で選択される抵抗回路4の抵抗値と異なってもよい。温度Th2に基づいて抵抗回路4に要求される抵抗値は、オルタネーター8が稼働している際に負荷7a,7bに与えられるべき電流によって設定され、温度Th1に基づいて抵抗回路4に要求される抵抗値は、スターター9の始動時にスターター9に与えられるべき電流によって設定されるからである。 The resistance circuit 4 is not limited to the parallel connection of the switch 4a and the resistor 4b, and may have other configurations. The resistance value of the resistance circuit 4 selected based on the magnitude relation of the temperature Th1 with respect to the predetermined temperature T1 may be different from the resistance value of the resistance circuit 4 selected based on the magnitude relation of the temperature Th2 with respect to the predetermined temperature T2. The resistance value required for the resistance circuit 4 based on the temperature Th2 is set by the current to be supplied to the loads 7a and 7b when the alternator 8 is operating, and is required for the resistance circuit 4 based on the temperature Th1. This is because the resistance value is set by the current to be supplied to the starter 9 when the starter 9 is started.
 なお、上記各実施形態及び各変形例で説明した各構成は、相互に矛盾しない限り適宜組合わせることができる。 In addition, each structure demonstrated by said each embodiment and each modification can be suitably combined unless it mutually contradicts.
 以上のようにこの発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 Although the present invention has been described in detail as described above, the above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that countless variations that are not illustrated can be envisaged without departing from the scope of the present invention.
 1 主蓄電装置(第1蓄電装置)
 2 副蓄電装置(第2蓄電装置)
 3 ヒューズボックス(車両用電源回路)
 4 抵抗回路
 4a スイッチ
 4b 抵抗
 5a,5b,5c,5d 電源幹線
 7a,7b 負荷
 8 オルタネーター
 9 スターター
 31a,31b 給電線
1 Main power storage device (first power storage device)
2 Sub power storage device (second power storage device)
3 Fuse box (vehicle power circuit)
4 Resistance circuit 4a Switch 4b Resistance 5a, 5b, 5c, 5d Power supply trunk line 7a, 7b Load 8 Alternator 9 Starter 31a, 31b Feed line

Claims (5)

  1.  車載されるオルタネーターによって充電される第1蓄電装置及び第2蓄電装置のいずれからも、電流の供給が可能な負荷に電流を供給する車両用電源回路であって、
     前記負荷と前記第2蓄電装置とを並列に接続する配線と;
     前記配線と前記第1蓄電装置との間に接続され、前記オルタネーターの稼働時において、前記第2蓄電装置の温度が、第1の所定温度よりも高い場合に第1抵抗値を、前記第1の所定温度よりも低い場合に前記第1抵抗値よりも低い第2抵抗値をそれぞれ採る抵抗回路と;
    を備える車両用電源回路。
    A vehicle power supply circuit that supplies current to a load capable of supplying current from both the first power storage device and the second power storage device that are charged by an on-vehicle alternator,
    Wiring connecting the load and the second power storage device in parallel;
    The first resistance value is set when the temperature of the second power storage device is higher than a first predetermined temperature when the alternator is in operation and is connected between the wiring and the first power storage device. A resistance circuit that takes a second resistance value lower than the first resistance value when the temperature is lower than a predetermined temperature;
    A vehicle power supply circuit comprising:
  2.  請求項1に記載の車両用電源回路であって、
     前記配線は、車載されるスターターをも前記第2蓄電装置と並列に接続し、
     前記抵抗回路は、前記スターターの始動時において、前記第1蓄電装置の温度が、第2の所定温度よりも高い場合に第3抵抗値を、前記第2の所定温度よりも低い場合に前記第3抵抗値よりも低い第4抵抗値をそれぞれ採る、車両用電源回路。
    The vehicle power supply circuit according to claim 1,
    The wiring connects a starter mounted on the vehicle in parallel with the second power storage device,
    When the starter is started, the resistance circuit has a third resistance value when the temperature of the first power storage device is higher than a second predetermined temperature, and the first resistance value when the temperature is lower than the second predetermined temperature. A vehicle power supply circuit that takes a fourth resistance value lower than the three resistance values.
  3.  請求項1又は請求項2に記載の車両用電源回路であって
     前記第1蓄電装置は鉛蓄電池である、車両用電源回路。
    The vehicle power supply circuit according to claim 1 or 2, wherein the first power storage device is a lead storage battery.
  4.  請求項1~請求項3のいずれか一項に記載の車両用電源回路であって
     前記抵抗回路は、スイッチと、前記スイッチに並列に接続される抵抗とを有する、車両用電源回路。
    The vehicle power supply circuit according to any one of claims 1 to 3, wherein the resistance circuit includes a switch and a resistor connected in parallel to the switch.
  5.  請求項1~請求項4のいずれか一項に記載の車両用電源回路と、
     前記第2蓄電装置と
    を備える電源システム。
    A vehicle power supply circuit according to any one of claims 1 to 4,
    A power supply system comprising the second power storage device.
PCT/JP2016/086000 2015-12-18 2016-12-05 Vehicle power supply circuit and power supply system WO2017104455A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015247236A JP2017109680A (en) 2015-12-18 2015-12-18 Vehicular power supply circuit and power supply system
JP2015-247236 2015-12-18

Publications (1)

Publication Number Publication Date
WO2017104455A1 true WO2017104455A1 (en) 2017-06-22

Family

ID=59056392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086000 WO2017104455A1 (en) 2015-12-18 2016-12-05 Vehicle power supply circuit and power supply system

Country Status (2)

Country Link
JP (1) JP2017109680A (en)
WO (1) WO2017104455A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007259645A (en) * 2006-03-24 2007-10-04 Mazda Motor Corp Battery controller
JP2008125159A (en) * 2006-11-08 2008-05-29 Auto Network Gijutsu Kenkyusho:Kk Power supply apparatus
WO2013115034A1 (en) * 2012-01-31 2013-08-08 三洋電機株式会社 Power source device for vehicle and vehicle provided with said power source device
JP2014225942A (en) * 2013-05-15 2014-12-04 三洋電機株式会社 Power storage system
JP2015042509A (en) * 2013-08-26 2015-03-05 三菱自動車工業株式会社 Electric power source device for hybrid vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007259645A (en) * 2006-03-24 2007-10-04 Mazda Motor Corp Battery controller
JP2008125159A (en) * 2006-11-08 2008-05-29 Auto Network Gijutsu Kenkyusho:Kk Power supply apparatus
WO2013115034A1 (en) * 2012-01-31 2013-08-08 三洋電機株式会社 Power source device for vehicle and vehicle provided with said power source device
JP2014225942A (en) * 2013-05-15 2014-12-04 三洋電機株式会社 Power storage system
JP2015042509A (en) * 2013-08-26 2015-03-05 三菱自動車工業株式会社 Electric power source device for hybrid vehicle

Also Published As

Publication number Publication date
JP2017109680A (en) 2017-06-22

Similar Documents

Publication Publication Date Title
US9676278B2 (en) Vehicle electrical network having at least two energy storage devices, method for operating a vehicle electrical network, and means for the implementation thereof
JP5611345B2 (en) Circuit device for in-vehicle system
US20140070608A1 (en) Motor vehicle with a multi-voltage onboard electrical system and associated method
KR101841559B1 (en) Method for operation of an onboard power supply
JP2013252015A (en) Power supply control method and device for vehicle
US20150251544A1 (en) Vehicular power supply system
CN103201928A (en) Device for stabilizing a supply voltage in a motor vehicle
JP6406328B2 (en) Power supply device and battery unit
JP2015009654A (en) Power storage system
WO2018008567A1 (en) Power source control device and power source system
US8275504B2 (en) Stabilization apparatus and method for stabling load voltage of vehicle
JP6131533B2 (en) Vehicle power supply control method and apparatus
WO2016143541A1 (en) Automobile power supply device and method for controlling automobile power supply device
JP6312474B2 (en) Vehicle power supply system
WO2020209132A1 (en) Control device for power supply device
WO2018012302A1 (en) Power supply device
JP6744786B2 (en) Power supply control device for electric vehicle
JP2016213969A (en) Power supply device
JP2018139462A (en) Power unit
WO2017104455A1 (en) Vehicle power supply circuit and power supply system
JP6541414B2 (en) Power supply device
KR102564017B1 (en) Apparatus for managing power of electric field load in vehicle
JP2015058821A (en) Vehicular power device
JP2016213967A (en) Power supply device
WO2017183437A1 (en) Automotive power supply device and automotive power supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875438

Country of ref document: EP

Kind code of ref document: A1