WO2017104344A1 - Resin plate, resin plate manufacturing method, and insulating material unit using resin plates - Google Patents

Resin plate, resin plate manufacturing method, and insulating material unit using resin plates Download PDF

Info

Publication number
WO2017104344A1
WO2017104344A1 PCT/JP2016/084122 JP2016084122W WO2017104344A1 WO 2017104344 A1 WO2017104344 A1 WO 2017104344A1 JP 2016084122 W JP2016084122 W JP 2016084122W WO 2017104344 A1 WO2017104344 A1 WO 2017104344A1
Authority
WO
WIPO (PCT)
Prior art keywords
density
bent portion
resin plate
bent
heat insulating
Prior art date
Application number
PCT/JP2016/084122
Other languages
French (fr)
Japanese (ja)
Inventor
雅敏 蔵野
一幸 城井
昌史 平川
Original Assignee
ニチアス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニチアス株式会社 filed Critical ニチアス株式会社
Priority to CN201680058521.XA priority Critical patent/CN108138489B/en
Priority to JP2017517812A priority patent/JP6200624B1/en
Publication of WO2017104344A1 publication Critical patent/WO2017104344A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/02Bending or folding
    • B29C53/04Bending or folding of plates or sheets
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure

Definitions

  • the present invention relates to a resin plate having a bent portion, and more particularly to a guide plate for a heat insulating material unit.
  • a bent portion can be formed by bending a part of one plate-like plate. At this time, a part of the plate-like plate is bent along the fold line formed on the plate, but if the connection strength of the bent portion through the fold line is low, the bent portion is bent and rotated. It may break while it is broken, or it may break if a tensile force is applied to the bent part.
  • An object of the present invention is to improve the connection strength of a bent portion through a bent portion in a resin plate having a bent portion formed by bending a part thereof.
  • the present invention is a resin plate having a resin plate body, a bent portion formed on the plate body, and a bent portion formed by bending a part of the plate body along the bent portion. It is.
  • the bent portion includes a high-density portion and a low-density portion, and the high-density portion and the low-density portion are alternately arranged in the direction in which the bent portion extends.
  • the high density portion is formed so that the density per predetermined unit is higher than the density other than the bent portion, and the low density portion is formed so that the density per predetermined unit is lower than the density of the high density portion.
  • the high-density part and the low-density part are alternately arranged, making it easy to turn the bent part so that it can be bent, and the high-density part has a high density so that it can be bent via the bent part.
  • the connection strength of the parts can be improved.
  • the high density portion has a first depth recessed from the surface of the plate body, and the low density portion has a second depth deeper than the first depth recessed from the surface of the plate body. It can comprise so that it may have.
  • the low density portion can be configured as a notch that penetrates in the thickness direction of the plate body.
  • the ratio of the first depth E to the thickness F of the plate body is expressed by the following formula (4 ).
  • a heat insulating unit disposed in the heat insulating structure of the present invention is sandwiched between at least a pair of the resin plate according to any one of claims 1 to 5 and the pair of resin plates, and a pair of resins. And a heat insulating material block compressed in a direction sandwiched by the plates.
  • the bent portion is arranged to be bent so as to extend from the side surface of the heat insulating material block with which the resin plate abuts toward one surface adjacent to the side surface of the heat insulating material block.
  • the method of manufacturing a resin plate having a bent portion according to the present invention includes a step of forming a bent portion for forming a bent portion by bending a part of the plate body on a resin plate body.
  • the above process includes a high density portion in which the density per predetermined unit is higher than the density other than the bent portion, and a low density portion in which the density per predetermined unit is lower than the density of the high density portion. Are formed so that they are alternately arranged in the extending direction. By comprising in this way, the resin plate which can acquire the effect of said (1) can be manufactured.
  • the product of the present invention has the resin plate according to any one of claims 1 to 5.
  • FIG. 3 is an XZ sectional view of a bent portion formed on the resin plate of the first embodiment.
  • FIG. 6 is an XZ sectional view of a bent portion formed on a resin plate in a modification of the first embodiment. It is a figure for demonstrating the deformation
  • FIG. 1 is a configuration diagram of a resin plate having a bent portion 110.
  • the resin plate of the present embodiment is composed of a single plate body 100 made of resin, and a bent portion 110 is formed by bending a part of the plate body 100 along a bent portion 120. Is formed.
  • the plate body 100 is made of a resin material such as vinyl chloride resin, PET resin, acrylic resin, PP resin, or polycarbonate.
  • the plate body 100 is formed in a rectangular shape having a length in the Y direction H1, a width in the X direction H2 (X direction), and a thickness (plate thickness) in the Z direction D.
  • the shape of the plate body 100 is not particularly limited to a quadrangle such as a rectangular shape, and may be a polygonal shape or a circular shape, or may be a corrugated plate shape such as a flat plate shape or a curved shape.
  • the bent portion 120 is extended from one end to the other end of the plate body 100 in the X direction, and the length of the bent portion 120 is the same (or substantially the same) as the width H2 of the plate body 100. Further, the bent portion 120 is formed on the plate body 100 so as to be located at a predetermined distance H3 from one end of the plate body 100 in the Y direction. The length of the bent portion 120 can be configured to be shorter than the width H2 of the plate body 100.
  • the bending portion 120 divides one plate body 100 into a region other than the bent portion 110 and the bent portion 110, and a bending line (specifically, a bending line for bending the bent portion 110 to the surface 102 side).
  • the fold line is linear, and can be configured to be curved or wavy, for example, linear or arcuate). That is, the bent portion 120 is formed as a fold line in the XY plane of the plate body 100 where the surface 101 side is a peak and the surface 102 side is a valley.
  • the position (predetermined distance H3) of the plate body 100 where the bent part 120 is formed can be arbitrarily set. Further, one or a plurality of bent portions 120 may be formed on the plate body 100.
  • the bent portion 110 can be bent so that the bent portion 120 can be bent.
  • FIG. 2 is a diagram showing an aspect of the bent portion 110 formed by bending a part of the plate body 100.
  • the bent portion 110 can be bent with the surface 102 of the plate body 100 as an inner side, and is bent from a flat state (a state parallel to the Y direction, for example, 0 degrees) ( It can be freely bent and rotated within a range up to 90 degrees (for example, 90 degrees) with respect to the Z direction.
  • FIG. 3 is an XZ sectional view of the bent portion 120 of the present embodiment.
  • the bent portion 120 includes a high density portion 121 and a low density portion 122, and a plurality of high density portions 121 and low density portions 122 are alternately arranged in the direction (X direction) in which the bent portion 120 extends.
  • the bending part 120 shown in the example of FIG. 3 can be formed by, for example, pressing (including hot pressing).
  • the high density portion 121 is a recess having a depth d1 that is recessed from the surface 101 of the plate body 100.
  • the low density portion 122 is a recess having a depth d2 that is deeper than the depth d1 that is recessed from the surface 101 of the plate body 100.
  • the low density portion 122 is formed as a cutout portion penetrating from the surface 101 to the surface 102. Therefore, the density a1 of the low density portion 122 in FIG. 3 is 0 with respect to the density b in the thickness direction of the plate body 100, and is stamped and formed by pressing.
  • the depth d2 of the low density portion 122 is the same as the thickness D of the plate body 100.
  • the high density portion 121 is formed by being compressed by the depth d1 from the surface 101 in the Z direction by pressing.
  • the density a per predetermined unit (for example, per unit volume) of the high-density portion 121 is higher than the density other than the bent portion 120, for example, the density b of the plate body 100 where the bent portion 120 is not formed.
  • a region corresponding to the high density portion 121 is cut from the surface 101 to a predetermined depth less than the depth d1 by cutting, and then the high density portion is pressed.
  • the region corresponding to 121 can be compressed to a depth d1.
  • FIG. 4 is a view showing a modified example of the bent portion 120, and shows a mode in which the low density portion 122 does not penetrate in the thickness direction of the plate body 100 with respect to the example of FIG. 3.
  • the low density portion 122 is formed as a recess having a depth d ⁇ b> 3 from the surface 101.
  • the low density portion 122 can be formed by cutting a region corresponding to the low density portion 122 from the surface 101 at a depth d3.
  • the high density portion 121 is compressed in the thickness direction and formed to a density a higher than the density b of the plate body 100 as in the example of FIG. 3, but the low density portion 122 is thick. It is molded so that it is not compressed in the vertical direction (the density a1 of the low density portion 122 is the same as the density b of the plate body 100), or the density a1 of the low density portion 122 is lower than the density a of the high density portion 121. It can be formed by being compressed in the thickness direction.
  • the high density portion 121 of the present embodiment is formed such that the density a per predetermined unit is higher than the density b other than the bent portion 120, and the low density portion 122 has the density a 1 per predetermined unit of the high density portion 121. It is formed lower than the density a.
  • the density a1 of the low density portion is in the range of 0 ⁇ a1 ⁇ a.
  • a density a1 of “0” indicates a penetrated state (a state where no resin is present).
  • the bent portion 120 is formed by performing the above-described pressing or / and cutting from the surface 101 side opposite to the bending direction of the bent portion 110.
  • one high density portion 121 has a length A in the X direction
  • one low density portion 122 has a length B in the X direction.
  • the total value of the total value A_total of the lengths A of the plurality of high-density portions 121 and the total value B_total of the lengths B of the plurality of low-density portions 122 is the length H2 of the bent portion 120 in the X direction. Therefore, the total value A_total is a region where the high-density portion 121 is disposed with respect to the total length H2 of the bent portion 120 in the X direction, and the total value B_total is a low density with respect to the total length H2 of the bent portion 120 in the X direction. This is an area where the part 122 is arranged.
  • FIG. 5 is a diagram for explaining a deformed state of the bent portion 110 that is bent along the bent portion 120 and the high-density portion 121 that constitutes the bent portion 120.
  • the width of the bent portion 120 in the Y direction is P when the bent portion 110 is not bent along the bent portion 120 toward the surface 102.
  • the high-density portion 121 expands and deforms.
  • the high density portion 121 on the surface 101 side is longer than the width P.
  • FIG. 5C when the bent portion 110 is bent until it is perpendicular to the Y direction, the high-density portion 121 is further expanded and deformed.
  • the length of the high density portion 121 on the surface 101 side is further longer than the length of FIG.
  • the bent portion 110 can be bent and easily rotated by arranging the high density portions 121 and the low density portions 122 alternately.
  • the connection strength of the bent part 110 via the bent part 120 can be improved.
  • the resin plate of this embodiment can be applied to a guide member of a heat insulating material unit disposed on the surface of a heat insulating structure such as a furnace.
  • FIG. 6 is a diagram showing a configuration example of a heat insulating material unit 300 using a resin plate as a product having the resin plate of the present embodiment.
  • the heat insulating material block 200 is formed by folding a long heat insulating sheet into several layers.
  • a fixing member 201 for bundling and fixing the heat insulating material folded in a block shape is provided on the upper surface of the heat insulating material block 200.
  • the heat insulating sheet constituting the heat insulating material block 200 has a predetermined width in the X direction, and the heat insulating material block 200 folded in several layers is formed into a cubic or rectangular parallelepiped shape.
  • a heat insulation sheet for example, a ceramic fiber blanket, an AES blanket, etc. manufactured by NICHIAS Corporation can be used, but not limited thereto.
  • the resin plates having the bent portions 110 are provided on the left and right side surfaces of the heat insulating material block 200, respectively, and are arranged so that the heat insulating material block 200 is sandwiched between a pair of resin plates.
  • the heat insulating material block 200 can be compressed in the direction sandwiched between the pair of resin plates.
  • the bent portion 110 extends from the side surface of the heat insulating material block 200 with which the resin plate abuts toward one surface adjacent to the side surface of the heat insulating material block 200, that is, from the lower end of the side surface of the heat insulating material block 200. It is bent so as to extend toward the bottom of the block 200.
  • the periphery of the heat insulating material block 200 is constrained and compressed by a plurality of restraining bands KB from the outside of the pair of resin plates.
  • the heat insulating material unit 300 of the present embodiment includes a heat insulating material block 200, a pair of resin plates that sandwich the heat insulating material block 200 between the left and right side surfaces, and a restraining band KB that compresses the heat insulating material block 200 from the upper, lower, left, and right directions from the outside of the resin plate. It is comprised including.
  • FIG. 7 is a diagram showing an example in which the heat insulating material unit 300 shown in FIG. 6 is applied to a heat insulating structure.
  • the heat insulating unit 300 is lined, for example, on the surface of the heat insulating structure.
  • the refractory brick Re1 that forms the surface of the heat insulating structure
  • Re2 that forms the installation space S in which the heat insulating material unit 300 is disposed using the refractory brick Re1 as the installation surface.
  • the refractory brick Re2 is disposed so as to extend in the vertical direction from the refractory brick Re1, and an installation space S is formed between the pair of refractory bricks Re2.
  • the width of the installation space S in the Z direction corresponds to the width of the heat insulating material unit 300 in the Z direction
  • the length of the heat insulating material unit 300 in the Y direction corresponds to the length of the installation space S in the Y direction.
  • the heat insulating material unit 300 is inserted into the installation space S with the fixing member 201 side as the installation direction in the installation space S, and is lined on the surface of the heat insulation structure. Therefore, the bottom side of the heat insulating material unit 300 inserted into the installation space S, that is, the bent portion 110 of the resin plate is exposed to the installation space S.
  • the heat insulating material unit 300 can also be arrange
  • FIG. 8 is a diagram showing an operation process when the heat insulating material unit 300 is disposed in the heat insulating structure shown in FIG.
  • the worker inserts the heat insulating material unit 300 into the installation space S of the heat insulating structure.
  • the heat insulating material unit 300 is inserted into the installation space S so that the resin plates arranged on the left and right in the Z direction are located between the firebrick Re2 and the heat insulating material block 200.
  • the worker cuts and removes the restraining band KB of the heat insulating material unit 300 inserted in the installation space S.
  • the compressed heat insulating material block 200 expands in the vertical and horizontal directions.
  • each resin plate is pressed against the refractory brick Re2, and is sandwiched between the heat insulating material block 200 and the refractory brick Re2.
  • interposed between the heat insulating material block 200 except the bent part 110, and the refractory brick Re2 is comprised as a guide member (guide surface).
  • the bent portion 110 of each resin plate positioned on the bottom side of the heat insulating material block 200 is pressed outward in the Z direction with respect to the installation space S. .
  • the bent portion 110 arranged so as to extend substantially parallel to the Z direction is inclined in a direction away from the bottom of the heat insulating material block 200.
  • the bent portion 110 is gripped by an operator in order to remove (pull out) the guide member (resin plate) disposed in the installation space S (that is, the bent portion 110 functions as a grippable gripping portion. To do). As indicated by a two-dot chain line, the worker can grasp the bent portion 110 and pull it out of the installation space S. At this time, the surface 101 of the resin plate that comes into contact with the refractory brick Re2 can be easily pulled out because the coefficient of friction is small.
  • the guide member when a guide member having a large friction coefficient is used, the guide member is pressed against the refractory bricks Re2 in the installation space S. Therefore, when the guide member is pulled out of the installation space S, an excessive tensile force is applied to the bent portion 120.
  • the connecting portion for example, the high density portion 121 with the bent portion 110 may be broken.
  • the coefficient of friction increases with the heat insulating material block 200, and when the guide member is pulled out of the installation space S, the heat insulating material block 200 may also jump out of the installation space S, and workability is improved. descend.
  • the heat insulating material unit 300 of the present embodiment uses a resin plate having a small coefficient of friction between the surface 101 and the surface 102 as a guide member, the heat insulating material is suppressed while applying an excessive tensile force to the bent portion 120.
  • the installation workability of the block 200 can be improved.
  • the installation method of the heat insulating material unit 300 was demonstrated taking the heat insulation structure shown in FIG.7 and FIG.8 as an example, for example, without partitioning the installation space S by the refractory bricks Re2, the heat insulating material units 300 may be connected to each other. It can also be lined directly adjacent. Even in such a case, the installation workability of the heat insulating material block 200 can be improved.
  • the resin plate of Example 1 is made of PET resin.
  • the depth d1 of the high-density portion 121 is 1.4 mm
  • the depth d2 of the low-density portion 122 is 2 mm (penetrated notch portion)
  • the ratio of A_total and B_total with respect to the total length of the bent portions 120 arranged alternately with the portions 122 1/3 (where the total length of the bent portions is 280 mm, A_total is 70 mm, and B_to
  • the resin plate of Example 2 is made of vinyl chloride resin.
  • the depth d1 of the high-density portion 121 is 1.2 mm
  • the depth d2 of the low-density portion 122 is 0.2 mm
  • the ratio (a / b) between the high-density portion 121 and the density b of the plate body 100 is 2.
  • the density a of the high density portion is 3.5 g / cm 3 and the density b of the plate body 100 is 1.4 g / cm 3
  • the length A of the one high density portion and the length of the low density portion Ratio to B (A / B) 3/2 (where the high-density portion length A is 30 mm and the low-density portion length B is 20 mm), and the high-density portion 121 and the low-density portion 122 alternate
  • the ratio of A_total and B_total with respect to the total length of the bent portions 120 arranged side by side is 9/5 (where the total length of the bent portions is 280 mm, A_total is 180 mm, and B_total is 100 mm).
  • the bending strength was 150N.
  • Table 1 below shows the performance evaluation from the ratio (A / B) of the length A of one high-density part and the length B of the low-density part.
  • means a property that can be easily folded without breaking when folded by hand 10 times or more, and “ ⁇ ” means when folded 10 times or more by hand. It means properties that are easy to break or difficult to bend, such as with partial breaks.
  • each parameter based on the said Example 1, Example 2, and Table 1 can take the following numerical ranges.
  • Ratio of length A of one high-density part and length B of a low-density part (A / B) 1/9 ⁇ A / B ⁇ 9/1 Preferably, 3/7 ⁇ A / B ⁇ 7/3. It is preferable to increase the value of “A / B” as the thickness D of the plate body 100 increases.
  • Ratio (a / b) between the high density portion 121 and the density b of the plate body 100 1 ⁇ a / b ⁇ 5 Preferably, 2 ⁇ a / b ⁇ 4. If the density of the high density portion 121 is increased too much, the flexibility becomes low, and if the density is not increased, cracks (breaks) occur.
  • Ratio (d1 / D) between the depth d1 of the high-density portion 121 and the thickness D of the plate body 100 0.5 ⁇ d1 / D ⁇ 1 Preferably, 0.3 ⁇ d1 / D ⁇ 1. Due to such a depth relationship, the bent portion 120 can be easily bent without being broken.
  • Bending strength Ft of the bent portion 120 30N ⁇ Ft ⁇ 300N
  • strength it can make it easy to bend the bending part 120 hard to fracture
  • the present invention is not limited to the above-described embodiments, and the above-described embodiments can be modified within the scope of the gist of the invention.
  • the application of the present invention is not limited to a cover of a heat insulating material such as the heat insulating material unit 300, and all industrial fields (for example, other cover members, food containers, trays, file cases, etc., unless departing from the spirit of the present invention). It can be applied to a stationery such as a pen case.
  • the resin plate can be configured as an assembly product that can be assembled by bending the bent portion 110 (for example, a partition for an article such as a book or a packing material that accommodates the article).
  • the bent part 110 can be configured as a wall part for partitioning an article such as a book, a wall part for packing for storing the article, or the like.
  • the high density portion 121 has a predetermined depth (third depth) recessed from the surface of the plate body 100, and the low density portion is the plate. It is also possible to have a depth (fourth depth) shallower than the predetermined depth (third depth) recessed from the surface of the body.
  • the bent portion 120 of the resin plate can be formed by pressing or / and cutting.
  • the bent portion 110 can be bent with respect to both surface sides by forming the bent portion 120 by pressing or / and cutting the resin plate from both surface sides of the resin plate. It is also possible to configure so that.
  • the product having the resin plate according to the present invention is not limited to the heat insulating unit having the resin plate as a cover material, but is a product having the resin plate integrally or separately (for example, temporary materials such as a clear fence for building materials, panels, etc. Or a roofing material, or a stationery such as a writing instrument container in which a lid and one side wall adjacent to the lid are formed of the resin plate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Building Environments (AREA)

Abstract

[Problem] To improve the connection strength in a folded portion formed by folding a portion of a resin plate. [Solution] This resin plate comprises a resin plate body, a fold formed in the plate body, and a folded portion formed by folding a portion of the plate body along the fold. The fold comprises a high-density portion and a low-density portion, and the high-density portion and the low-density portion are disposed alternately in the direction in which the fold extends. In addition, the high-density portion is formed so that the prescribed unit density is higher than the density in portions outside of the fold, and the low-density portion is formed so that the prescribed unit density is lower than the density in the high-density portion.

Description

樹脂プレート及び樹脂プレートの製造方法、樹脂プレートを用いた断熱材ユニットResin plate, resin plate manufacturing method, and heat insulation unit using resin plate
 本発明は、被折曲部を有する樹脂プレートに関し、より詳細には、断熱材ユニットのガイドプレートに関する。 The present invention relates to a resin plate having a bent portion, and more particularly to a guide plate for a heat insulating material unit.
 例えば、一枚の板状プレートの一部を折り曲げて被折曲部を構成することができる。このとき、プレートに形成された折り曲げ線に沿って板状プレートの一部を折り曲げるが、折り曲げ線を介した被折曲部の連結強度が低いと、折り曲げて被折曲部を回動させているうちに破断したり、被折曲部に引っ張り力を加えると破断したりしてしまうことがある。 For example, a bent portion can be formed by bending a part of one plate-like plate. At this time, a part of the plate-like plate is bent along the fold line formed on the plate, but if the connection strength of the bent portion through the fold line is low, the bent portion is bent and rotated. It may break while it is broken, or it may break if a tensile force is applied to the bent part.
特許第5431833号公報Japanese Patent No. 5431833 実用新案登録第2588805号公報Utility Model Registration No. 2588805 実開平2-27059号公報Japanese Utility Model Publication No. 2-27059
 本発明は、一部を折り曲げて形成される被折曲部を有する樹脂プレートにおいて、折り曲げ部を介した被折曲部の連結強度を向上させることを目的とする。 An object of the present invention is to improve the connection strength of a bent portion through a bent portion in a resin plate having a bent portion formed by bending a part thereof.
(1)本発明は、樹脂製のプレート体と、プレート体に形成される折り曲げ部と、折り曲げ部に沿ってプレート体の一部を折り曲げて形成される被折曲部と、を有する樹脂プレートである。折り曲げ部は、高密度部と低密度部とを備え、高密度部と低密度部とが折り曲げ部が延びる方向において交互に並んで配置されている。そして、高密度部は、所定単位当たりの密度が折り曲げ部以外の密度よりも高く形成されており、低密度部は、所定単位当たりの密度が高密度部の密度よりも低く形成されている。 (1) The present invention is a resin plate having a resin plate body, a bent portion formed on the plate body, and a bent portion formed by bending a part of the plate body along the bent portion. It is. The bent portion includes a high-density portion and a low-density portion, and the high-density portion and the low-density portion are alternately arranged in the direction in which the bent portion extends. The high density portion is formed so that the density per predetermined unit is higher than the density other than the bent portion, and the low density portion is formed so that the density per predetermined unit is lower than the density of the high density portion.
 高密度部と低密度部とが交互に並んで配置されることで、被折曲部を折り曲げ自在に回動させ易くしつつ、高密度部の密度が高いので折り曲げ部を介した被折曲部の連結強度を向上させることができる。 The high-density part and the low-density part are alternately arranged, making it easy to turn the bent part so that it can be bent, and the high-density part has a high density so that it can be bent via the bent part. The connection strength of the parts can be improved.
(2)上記(1)において、高密度部は、プレート体の表面から凹んだ第1深さを有し、低密度部は、プレート体の表面から凹んだ第1深さよりも深い第2深さを有するように構成することができる。 (2) In the above (1), the high density portion has a first depth recessed from the surface of the plate body, and the low density portion has a second depth deeper than the first depth recessed from the surface of the plate body. It can comprise so that it may have.
(3)上記(1)において、高密度部の密度をa、折り曲げ部以外の密度をbとしたとき、密度aと密度bの比が以下の式(1)を満たし、折り曲げ部が延びる方向に沿って交互に並んで配置される複数の高密度部と低密度部における、一の高密度部の長さをA、一の低密度部の長さをBとしたとき、長さAと長さBの比が以下の式(2)を満たすように構成することができる。
 1<a/b≦5       (1)
 1/9≦A/B≦9/1   (2)
(3) In the above (1), when the density of the high density portion is a and the density other than the bent portion is b, the ratio of the density a and the density b satisfies the following formula (1) and the bent portion extends. In a plurality of high-density portions and low-density portions that are alternately arranged along the length A, when the length of one high-density portion is A and the length of one low-density portion is B, the length A and It can comprise so that ratio of length B may satisfy | fill the following formula | equation (2).
1 <a / b ≦ 5 (1)
1/9 ≦ A / B ≦ 9/1 (2)
(4)上記(1)において、折り曲げ部の全長に対して高密度部が配置される領域をC、低密度部が配置される領域をDとしたとき、領域Cと領域Dとの比が以下の式(3)を満たすように構成することができる。
 1/9≦C/D≦9/1   (3)
(4) In the above (1), when the region where the high density portion is arranged with respect to the entire length of the bent portion is C and the region where the low density portion is arranged is D, the ratio between the region C and the region D is It can comprise so that the following formula | equation (3) may be satisfy | filled.
1/9 ≦ C / D ≦ 9/1 (3)
(5)上記(2)において、低密度部は、プレート体の厚さ方向に貫通する切り欠き部として構成することができる。このとき、高密度部の第1深さをE、折り曲げ部以外のプレート体の厚さをFとしたとき、第1深さEとプレート体の厚さFとの比が以下の式(4)を満たすように構成することができる。
 0.5≦E/F<1   (4)
(5) In the above (2), the low density portion can be configured as a notch that penetrates in the thickness direction of the plate body. At this time, when the first depth of the high-density portion is E and the thickness of the plate body other than the bent portion is F, the ratio of the first depth E to the thickness F of the plate body is expressed by the following formula (4 ).
0.5 ≦ E / F <1 (4)
(6)本発明の断熱構造体に配設される断熱材ユニットは、少なくとも一対の請求項1から5のいずれか1つに記載の樹脂プレートと、一対の樹脂プレートに挟持され、一対の樹脂プレートによって挟持される方向に圧縮された断熱材ブロックと、を有する。ここで、被折曲部は、樹脂プレートが当接する断熱材ブロックの側面から断熱材ブロックの側面に隣接する一面に向かって延びるように折り曲げられるように配置されている。 (6) A heat insulating unit disposed in the heat insulating structure of the present invention is sandwiched between at least a pair of the resin plate according to any one of claims 1 to 5 and the pair of resin plates, and a pair of resins. And a heat insulating material block compressed in a direction sandwiched by the plates. Here, the bent portion is arranged to be bent so as to extend from the side surface of the heat insulating material block with which the resin plate abuts toward one surface adjacent to the side surface of the heat insulating material block.
(7)本発明の被折曲部を有する樹脂プレートの製造方法は、樹脂製のプレート体に、プレート体の一部を折り曲げて被折曲部として形成するための折り曲げ部を形成する工程を含むことができる。ここで、上記工程は、所定単位当たりの密度が前記折り曲げ部以外の密度よりも高く形成される高密度部と、所定単位当たりの密度が高密度部の密度よりも低く形成される低密度部とが、折り曲げ部が延びる方向において交互に並んで配置されるように、折り曲げ部を形成する。このように構成することで、上記(1)の効果を得ることができる樹脂プレートを製造することができる。さらに、(8)本発明の製品は、請求項1から5のいずれか1つに記載の樹脂プレートを有する。 (7) The method of manufacturing a resin plate having a bent portion according to the present invention includes a step of forming a bent portion for forming a bent portion by bending a part of the plate body on a resin plate body. Can be included. Here, the above process includes a high density portion in which the density per predetermined unit is higher than the density other than the bent portion, and a low density portion in which the density per predetermined unit is lower than the density of the high density portion. Are formed so that they are alternately arranged in the extending direction. By comprising in this way, the resin plate which can acquire the effect of said (1) can be manufactured. Furthermore, (8) the product of the present invention has the resin plate according to any one of claims 1 to 5.
第1実施形態の被折曲部を有する樹脂プレートの構成図である。It is a block diagram of the resin plate which has a to-be-folded part of 1st Embodiment. 第1実施形態の樹脂プレートの一部を折り曲げて形成される被折曲部の態様を示す図である。It is a figure which shows the aspect of the bending part formed by bending a part of resin plate of 1st Embodiment. 第1実施形態の樹脂プレートに形成される折り曲げ部のX-Z断面図である。FIG. 3 is an XZ sectional view of a bent portion formed on the resin plate of the first embodiment. 第1実施形態の変形例における樹脂プレートに形成される折り曲げ部のX-Z断面図である。FIG. 6 is an XZ sectional view of a bent portion formed on a resin plate in a modification of the first embodiment. 第1実施形態の折り曲げ部に沿って折り曲げられる被折曲部と折り曲げ部を構成する高密度部の変形状態を説明するための図である。It is a figure for demonstrating the deformation | transformation state of the to-be-folded part bent along the bending part of 1st Embodiment, and the high-density part which comprises a bending part. 第1実施形態の樹脂プレートを用いた断熱材ユニットの構成例を示す図である。It is a figure which shows the structural example of the heat insulating material unit using the resin plate of 1st Embodiment. 図6に示した断熱材ユニットが断熱構造体に適用される一例を示す図である。It is a figure which shows an example in which the heat insulating unit shown in FIG. 6 is applied to a heat insulation structure. 図7に示した断熱構造体に断熱材ユニットを配設する際の作業工程を示す図である。It is a figure which shows the operation | work process at the time of arrange | positioning a heat insulating material unit to the heat insulation structure shown in FIG.
 以下、実施形態につき、図面を参照して説明する。 Hereinafter, embodiments will be described with reference to the drawings.
(第1実施形態)
 図1から図8は、第1実施形態を示す図である。図1は、被折曲部110を有する樹脂プレートの構成図である。図1に示すように、本実施形態の樹脂プレートは、樹脂製の一枚のプレート体100で構成され、プレート体100の一部を折り曲げ部120に沿って折り曲げることで、被折曲部110が形成される。
(First embodiment)
1 to 8 are diagrams showing a first embodiment. FIG. 1 is a configuration diagram of a resin plate having a bent portion 110. As shown in FIG. 1, the resin plate of the present embodiment is composed of a single plate body 100 made of resin, and a bent portion 110 is formed by bending a part of the plate body 100 along a bent portion 120. Is formed.
 プレート体100は、塩化ビニル樹脂、PET樹脂、アクリル樹脂、PP樹脂、ポリカーボネイトなどの樹脂材で構成されている。プレート体100は、Y方向の長さがH1、X方向の幅がH2(X方向)、Z方向の厚さ(板厚)がDの矩形状に形成されている。なお、プレート体100の形状は、矩形状など四角形に特に限らず、多角形状や円形状で構成されることも可能であるし、平板状や湾曲形状など波形板状などで構成され得る。 The plate body 100 is made of a resin material such as vinyl chloride resin, PET resin, acrylic resin, PP resin, or polycarbonate. The plate body 100 is formed in a rectangular shape having a length in the Y direction H1, a width in the X direction H2 (X direction), and a thickness (plate thickness) in the Z direction D. The shape of the plate body 100 is not particularly limited to a quadrangle such as a rectangular shape, and may be a polygonal shape or a circular shape, or may be a corrugated plate shape such as a flat plate shape or a curved shape.
 折り曲げ部120は、プレート体100のX方向の一端から他端にかけて延設されており、折り曲げ部120の長さは、プレート体100の幅H2と同じ(又は略同じ)である。また、折り曲げ部120は、プレート体100のY方向の一端から所定距離H3、内側に位置してプレート体100に形成されている。なお、折り曲げ部120の長さは、プレート体100の幅H2よりも短く構成することも可能である。 The bent portion 120 is extended from one end to the other end of the plate body 100 in the X direction, and the length of the bent portion 120 is the same (or substantially the same) as the width H2 of the plate body 100. Further, the bent portion 120 is formed on the plate body 100 so as to be located at a predetermined distance H3 from one end of the plate body 100 in the Y direction. The length of the bent portion 120 can be configured to be shorter than the width H2 of the plate body 100.
 折り曲げ部120は、一枚のプレート体100を被折曲部110と被折曲部110以外の領域に区画し、被折曲部110を表面102側に折り曲げるための折り曲げ線(具体的には、折り曲げ線は、線状であり、例えば直線状や円弧状など曲線状や波線状で構成され得る)である。つまり、折り曲げ部120は、プレート体100のX-Y平面において、表面101側が山、表面102側が谷となる折り曲げ線として形成される。ここで、折り曲げ部120が形成されるプレート体100の位置(所定距離H3)は、任意に設定することができる。また、折り曲げ部120は、プレート体100に一又は複数形成され得る。 The bending portion 120 divides one plate body 100 into a region other than the bent portion 110 and the bent portion 110, and a bending line (specifically, a bending line for bending the bent portion 110 to the surface 102 side). The fold line is linear, and can be configured to be curved or wavy, for example, linear or arcuate). That is, the bent portion 120 is formed as a fold line in the XY plane of the plate body 100 where the surface 101 side is a peak and the surface 102 side is a valley. Here, the position (predetermined distance H3) of the plate body 100 where the bent part 120 is formed can be arbitrarily set. Further, one or a plurality of bent portions 120 may be formed on the plate body 100.
 被折曲部110は、折り曲げ部120を連結部として折り曲げ自在に回動することができる。図2は、プレート体100の一部を折り曲げて形成された被折曲部110の態様を示す図である。図2に示すように、被折曲部110は、プレート体100の表面102を内側として折り曲げることができ、フラットな状態(Y方向と水平な状態、例えば、0度)から屈曲させた状態(Z方向と水平な状態、例えば、90度)までの範囲で、折り曲げ自在に回動させることができる。 The bent portion 110 can be bent so that the bent portion 120 can be bent. FIG. 2 is a diagram showing an aspect of the bent portion 110 formed by bending a part of the plate body 100. As shown in FIG. 2, the bent portion 110 can be bent with the surface 102 of the plate body 100 as an inner side, and is bent from a flat state (a state parallel to the Y direction, for example, 0 degrees) ( It can be freely bent and rotated within a range up to 90 degrees (for example, 90 degrees) with respect to the Z direction.
 図3は、本実施形態の折り曲げ部120のX-Z断面図である。折り曲げ部120は、高密度部121と低密度部122とを含んで構成されており、高密度部121と低密度部122とが折り曲げ部120が延びる方向(X方向)において交互に複数並んで配置されている。図3の例で示す折り曲げ部120は、例えば、プレス加工(例えば熱圧加工を含む)で形成することができる。 FIG. 3 is an XZ sectional view of the bent portion 120 of the present embodiment. The bent portion 120 includes a high density portion 121 and a low density portion 122, and a plurality of high density portions 121 and low density portions 122 are alternately arranged in the direction (X direction) in which the bent portion 120 extends. Has been placed. The bending part 120 shown in the example of FIG. 3 can be formed by, for example, pressing (including hot pressing).
 高密度部121は、プレート体100の表面101から凹んだ深さd1を有する凹部である。また、低密度部122は、プレート体100の表面101から凹んだ深さd1よりも深い深さd2を有する凹部である。ここで、図3の例では、低密度部122は、表面101から表面102まで貫通する切り欠き部として形成されている。したがって、図3の低密度部122の密度a1は、プレート体100の厚さ方向の密度bに対して0となっており、プレス加工によって打ち抜き成形される。低密度部122の深さd2は、プレート体100の厚さDと同じとなっている。 The high density portion 121 is a recess having a depth d1 that is recessed from the surface 101 of the plate body 100. The low density portion 122 is a recess having a depth d2 that is deeper than the depth d1 that is recessed from the surface 101 of the plate body 100. Here, in the example of FIG. 3, the low density portion 122 is formed as a cutout portion penetrating from the surface 101 to the surface 102. Therefore, the density a1 of the low density portion 122 in FIG. 3 is 0 with respect to the density b in the thickness direction of the plate body 100, and is stamped and formed by pressing. The depth d2 of the low density portion 122 is the same as the thickness D of the plate body 100.
 一方、高密度部121は、プレス加工によって表面101からZ方向に深さd1圧縮されて形成される。高密度部121の所定単位当たり(例えば、単位体積あたり)の密度aが折り曲げ部120以外の密度、例えば、折り曲げ部120が形成されないプレート体100の密度bよりも高く形成されている。 On the other hand, the high density portion 121 is formed by being compressed by the depth d1 from the surface 101 in the Z direction by pressing. The density a per predetermined unit (for example, per unit volume) of the high-density portion 121 is higher than the density other than the bent portion 120, for example, the density b of the plate body 100 where the bent portion 120 is not formed.
 図3に示す高密度部121の他の成形例として、例えば、切削加工により高密度部121に対応する領域を表面101から深さd1未満の所定深さまで切削し、その後プレス加工で高密度部121に対応する領域を深さd1まで圧縮することができる。 As another molding example of the high density portion 121 shown in FIG. 3, for example, a region corresponding to the high density portion 121 is cut from the surface 101 to a predetermined depth less than the depth d1 by cutting, and then the high density portion is pressed. The region corresponding to 121 can be compressed to a depth d1.
 次に、図4は、折り曲げ部120の変形例を示す図であり、図3の例に対して低密度部122がプレート体100の厚さ方向に貫通していない態様を示している。図4に示すように、低密度部122は、表面101から深さd3を有する凹部として形成されている。このとき、低密度部122は、低密度部122に対応する領域を表面101から深さd3で切削して形成することができる。 Next, FIG. 4 is a view showing a modified example of the bent portion 120, and shows a mode in which the low density portion 122 does not penetrate in the thickness direction of the plate body 100 with respect to the example of FIG. 3. As shown in FIG. 4, the low density portion 122 is formed as a recess having a depth d <b> 3 from the surface 101. At this time, the low density portion 122 can be formed by cutting a region corresponding to the low density portion 122 from the surface 101 at a depth d3.
 図4の例において、高密度部121は、図3の例と同様に、厚さ方向に圧縮されてプレート体100の密度bよりも高い密度aに形成されるが、低密度部122が厚さ方向に圧縮されないように(低密度部122の密度a1がプレート体100の密度bと同じに)成形したり、低密度部122の密度a1が高密度部121の密度aよりも低い密度となるように厚さ方向に圧縮して成形したりすることができる。 In the example of FIG. 4, the high density portion 121 is compressed in the thickness direction and formed to a density a higher than the density b of the plate body 100 as in the example of FIG. 3, but the low density portion 122 is thick. It is molded so that it is not compressed in the vertical direction (the density a1 of the low density portion 122 is the same as the density b of the plate body 100), or the density a1 of the low density portion 122 is lower than the density a of the high density portion 121. It can be formed by being compressed in the thickness direction.
 このように本実施形態の高密度部121は、所定単位当たりの密度aが折り曲げ部120以外の密度bよりも高く形成され、低密度部122は、所定単位当たりの密度a1が高密度部121の密度aよりも低く形成される。低密度部の密度a1は、0≦a1<aの範囲となる。密度a1が「0」とは、貫通した状態(樹脂が存在しない状態)を示している。なお、折り曲げ部120は、被折曲部110の折り曲げ方向とは逆の表面101側から上述したプレス加工又は/及び切削加工が施されて形成されている。 As described above, the high density portion 121 of the present embodiment is formed such that the density a per predetermined unit is higher than the density b other than the bent portion 120, and the low density portion 122 has the density a 1 per predetermined unit of the high density portion 121. It is formed lower than the density a. The density a1 of the low density portion is in the range of 0 ≦ a1 <a. A density a1 of “0” indicates a penetrated state (a state where no resin is present). The bent portion 120 is formed by performing the above-described pressing or / and cutting from the surface 101 side opposite to the bending direction of the bent portion 110.
 そして、図3及び図4に示すように、一の高密度部121は、X方向に長さAを有し、一の低密度部122は、X方向に長さBを有している。複数の高密度部121の長さAの合計値A_totalと、複数の低密度部122の長さBの合計値B_totalとの合算値が、折り曲げ部120のX方向長さH2となる。したがって、合計値A_totalは、折り曲げ部120のX方向の全長H2に対して高密度部121が配置される領域であり、合計値B_totalは、折り曲げ部120のX方向の全長H2に対して低密度部122が配置される領域となる。 3 and 4, one high density portion 121 has a length A in the X direction, and one low density portion 122 has a length B in the X direction. The total value of the total value A_total of the lengths A of the plurality of high-density portions 121 and the total value B_total of the lengths B of the plurality of low-density portions 122 is the length H2 of the bent portion 120 in the X direction. Therefore, the total value A_total is a region where the high-density portion 121 is disposed with respect to the total length H2 of the bent portion 120 in the X direction, and the total value B_total is a low density with respect to the total length H2 of the bent portion 120 in the X direction. This is an area where the part 122 is arranged.
 図5は、折り曲げ部120に沿って折り曲げられる被折曲部110と折り曲げ部120を構成する高密度部121の変形状態を説明するための図である。図5(a)に示すように、被折曲部110を折り曲げ部120に沿って表面102側に折り曲げていない状態では、Y方向における折り曲げ部120の幅はPである。 FIG. 5 is a diagram for explaining a deformed state of the bent portion 110 that is bent along the bent portion 120 and the high-density portion 121 that constitutes the bent portion 120. As shown in FIG. 5A, the width of the bent portion 120 in the Y direction is P when the bent portion 110 is not bent along the bent portion 120 toward the surface 102.
 次に、図5(b)に示すように、被折曲部110を折り曲げ部120に沿って表面102側に折り曲げると、高密度部121は伸長して変形する。表面101側における高密度部121は、幅Pよりも長くなる。また、図5(c)に示すように被折曲部110をY方向に対して垂直となるまで折り曲げると、高密度部121はさらに伸長して変形する。表面101側における高密度部121の長さは、図5(b)の長さよりもさらに長くなる。 Next, as shown in FIG. 5B, when the bent portion 110 is bent along the bent portion 120 toward the surface 102, the high-density portion 121 expands and deforms. The high density portion 121 on the surface 101 side is longer than the width P. Further, as shown in FIG. 5C, when the bent portion 110 is bent until it is perpendicular to the Y direction, the high-density portion 121 is further expanded and deformed. The length of the high density portion 121 on the surface 101 side is further longer than the length of FIG.
 本実施形態の被折曲部110を有する樹脂プレートは、高密度部121と低密度部122とが交互に並んで配置されることで、被折曲部110を折り曲げ自在に回動させ易くしつつ、高密度部121の密度が高いので、折り曲げ部120を介した被折曲部110の連結強度を向上させることができる。 In the resin plate having the bent portion 110 according to the present embodiment, the bent portion 110 can be bent and easily rotated by arranging the high density portions 121 and the low density portions 122 alternately. However, since the density of the high-density part 121 is high, the connection strength of the bent part 110 via the bent part 120 can be improved.
 次に、上述した本実施形態の樹脂プレートの使用例について説明する。例えば、炉などの断熱構造体の表面に配置される断熱材ユニットのガイド部材に、本実施形態の樹脂プレートを適用することができる。 Next, a usage example of the resin plate of this embodiment described above will be described. For example, the resin plate of this embodiment can be applied to a guide member of a heat insulating material unit disposed on the surface of a heat insulating structure such as a furnace.
 図6は、本実施形態の樹脂プレートを有する製品として、樹脂プレートを用いた断熱材ユニット300の構成例を示す図である。図6に示すように、断熱材ブロック200は、長尺状の断熱シートを幾層にも折り畳んでブロック状に成形したものである。断熱材ブロック200の上面には、ブロック状に折り畳まれた断熱材を束ねて固定するための固定部材201が設けられている。 FIG. 6 is a diagram showing a configuration example of a heat insulating material unit 300 using a resin plate as a product having the resin plate of the present embodiment. As shown in FIG. 6, the heat insulating material block 200 is formed by folding a long heat insulating sheet into several layers. On the upper surface of the heat insulating material block 200, a fixing member 201 for bundling and fixing the heat insulating material folded in a block shape is provided.
 断熱材ブロック200を構成する断熱シートは、X方向に所定の幅を有しおり、幾層にも折り畳まれた断熱材ブロック200は、立方体又は直方体の形状に成形されている。なお、断熱シートとしては、例えば、ニチアス株式会社のセラミックファイバーブランケット、AESブランケットなどを用いることができるが、これに限るものではない。 The heat insulating sheet constituting the heat insulating material block 200 has a predetermined width in the X direction, and the heat insulating material block 200 folded in several layers is formed into a cubic or rectangular parallelepiped shape. In addition, as a heat insulation sheet, for example, a ceramic fiber blanket, an AES blanket, etc. manufactured by NICHIAS Corporation can be used, but not limited thereto.
 被折曲部110を有する樹脂プレートは、断熱材ブロック200の左右側面にそれぞれ設けられ、断熱材ブロック200が一対の樹脂プレートで挟持されるように配置される。断熱材ブロック200は、一対の樹脂プレートによって挟持される方向に圧縮することができる。このとき、被折曲部110は、樹脂プレートが当接する断熱材ブロック200の側面から断熱材ブロック200の当該側面に隣接する一面に向かって、すなわち、断熱材ブロック200の側面の下端から断熱材ブロック200の底部に向かって、延びるように折り曲げられている。 The resin plates having the bent portions 110 are provided on the left and right side surfaces of the heat insulating material block 200, respectively, and are arranged so that the heat insulating material block 200 is sandwiched between a pair of resin plates. The heat insulating material block 200 can be compressed in the direction sandwiched between the pair of resin plates. At this time, the bent portion 110 extends from the side surface of the heat insulating material block 200 with which the resin plate abuts toward one surface adjacent to the side surface of the heat insulating material block 200, that is, from the lower end of the side surface of the heat insulating material block 200. It is bent so as to extend toward the bottom of the block 200.
 断熱材ブロック200は、一対の樹脂プレートの外側から複数の拘束バンドKBで周囲が拘束され、圧縮されている。X-Z平面と略平行に断熱材ブロック200及び樹脂プレートの周囲を拘束する拘束バンドKBと、Y-Z平面に略平行に断熱材ブロック200及び樹脂プレートの周囲を拘束する拘束バンドKBと、が設けられている。 The periphery of the heat insulating material block 200 is constrained and compressed by a plurality of restraining bands KB from the outside of the pair of resin plates. A restraining band KB for restraining the periphery of the heat insulating material block 200 and the resin plate substantially parallel to the XZ plane; and a restraining band KB for restraining the periphery of the heat insulating material block 200 and the resin plate substantially parallel to the YZ plane; Is provided.
 本実施形態の断熱材ユニット300は、断熱材ブロック200と、断熱材ブロック200を左右側面が挟み込む一対の樹脂プレートと、樹脂プレートの外側から断熱材ブロック200を上下左右方向から圧縮する拘束バンドKBとを含んで構成されている。 The heat insulating material unit 300 of the present embodiment includes a heat insulating material block 200, a pair of resin plates that sandwich the heat insulating material block 200 between the left and right side surfaces, and a restraining band KB that compresses the heat insulating material block 200 from the upper, lower, left, and right directions from the outside of the resin plate. It is comprised including.
 図7は、図6に示した断熱材ユニット300が断熱構造体に適用される一例を示す図である。断熱材ユニット300は、例えば、断熱構造体の表面にライニングされる。断熱構造体の一例として、図7の例では、断熱構造体の表面を構成する耐火レンガRe1と、耐火レンガRe1を設置面として断熱材ユニット300が配置される設置空間Sを形成する耐火レンガRe2と、を含んで構成されている。 FIG. 7 is a diagram showing an example in which the heat insulating material unit 300 shown in FIG. 6 is applied to a heat insulating structure. The heat insulating unit 300 is lined, for example, on the surface of the heat insulating structure. As an example of the heat insulating structure, in the example of FIG. 7, the refractory brick Re1 that forms the surface of the heat insulating structure and the refractory brick Re2 that forms the installation space S in which the heat insulating material unit 300 is disposed using the refractory brick Re1 as the installation surface. And.
 耐火レンガRe2は、耐火レンガRe1から垂直方向に延びるように配置され、一対の耐火レンガRe2間に、設置空間Sが形成される。設置空間SのZ方向の幅は、断熱材ユニット300のZ方向の幅に対応しており、断熱材ユニット300のY方向の長さは、設置空間SのY方向長さに対応している。 The refractory brick Re2 is disposed so as to extend in the vertical direction from the refractory brick Re1, and an installation space S is formed between the pair of refractory bricks Re2. The width of the installation space S in the Z direction corresponds to the width of the heat insulating material unit 300 in the Z direction, and the length of the heat insulating material unit 300 in the Y direction corresponds to the length of the installation space S in the Y direction. .
 そして、図7に示すように、固定部材201側を設置空間Sへの設置方向として、断熱材ユニット300が設置空間S内に挿入され、断熱構造体の表面にライニングされる。したがって、設置空間S内に挿入された断熱材ユニット300の底部側、すなわち、樹脂プレートの被折曲部110は、設置空間Sに対して露出している。なお、耐火レンガRe1に固定部材201を固定するように設置空間Sに断熱材ユニット300を配置することもできる。 Then, as shown in FIG. 7, the heat insulating material unit 300 is inserted into the installation space S with the fixing member 201 side as the installation direction in the installation space S, and is lined on the surface of the heat insulation structure. Therefore, the bottom side of the heat insulating material unit 300 inserted into the installation space S, that is, the bent portion 110 of the resin plate is exposed to the installation space S. In addition, the heat insulating material unit 300 can also be arrange | positioned in the installation space S so that the fixing member 201 may be fixed to the refractory brick Re1.
 図8は、図7に示した断熱構造体に断熱材ユニット300を配設する際の作業工程を示す図である。まず、作業員は、断熱構造体の設置空間Sに断熱材ユニット300を挿入する。このとき、断熱材ユニット300は、Z方向左右に配置されている樹脂プレートが、耐火レンガRe2と断熱材ブロック200との間に位置するように、設置空間S内に挿入される。 FIG. 8 is a diagram showing an operation process when the heat insulating material unit 300 is disposed in the heat insulating structure shown in FIG. First, the worker inserts the heat insulating material unit 300 into the installation space S of the heat insulating structure. At this time, the heat insulating material unit 300 is inserted into the installation space S so that the resin plates arranged on the left and right in the Z direction are located between the firebrick Re2 and the heat insulating material block 200.
 次に、作業員は、設置空間S内に挿入された断熱材ユニット300の拘束バンドKBを切断して取り除く。拘束バンドKBを取り除くと、圧縮されていた断熱材ブロック200は、上下左右方向それぞれに膨張する。断熱材ブロック200がZ方向左右に膨張することで、各樹脂プレートは、耐火レンガRe2に対して押圧され、断熱材ブロック200と耐火レンガRe2との間に挟まれる。このように、被折曲部110を除く断熱材ブロック200と耐火レンガRe2との間に挟まれるプレート体100の領域が、ガイド部材(ガイド面)として構成される。 Next, the worker cuts and removes the restraining band KB of the heat insulating material unit 300 inserted in the installation space S. When the restraining band KB is removed, the compressed heat insulating material block 200 expands in the vertical and horizontal directions. As the heat insulating material block 200 expands left and right in the Z direction, each resin plate is pressed against the refractory brick Re2, and is sandwiched between the heat insulating material block 200 and the refractory brick Re2. Thus, the area | region of the plate body 100 pinched | interposed between the heat insulating material block 200 except the bent part 110, and the refractory brick Re2 is comprised as a guide member (guide surface).
 一方、断熱材ブロック200がY方向上下に膨張することで、断熱材ブロック200の底部側に位置する各樹脂プレートの被折曲部110が、設置空間Sに対してZ方向外側に押圧される。このため、Z方向に略平行に延びるように配置されていた被折曲部110は、断熱材ブロック200の底部から離れる方向に傾斜する。 On the other hand, when the heat insulating material block 200 expands vertically in the Y direction, the bent portion 110 of each resin plate positioned on the bottom side of the heat insulating material block 200 is pressed outward in the Z direction with respect to the installation space S. . For this reason, the bent portion 110 arranged so as to extend substantially parallel to the Z direction is inclined in a direction away from the bottom of the heat insulating material block 200.
 被折曲部110は、設置空間S内に配置されたガイド部材(樹脂プレート)を取り除く(引き抜く)ために作業員によって把持される(即ち、被折曲部110は把持可能な把持部として機能する)。二点鎖線で示すように、作業員は、被折曲部110を掴んで設置空間Sの外側に向かって引き抜くことができる。このとき、耐火レンガRe2に当接する樹脂プレートの表面101は、摩擦係数が小さいため、容易に引き抜くことができる。 The bent portion 110 is gripped by an operator in order to remove (pull out) the guide member (resin plate) disposed in the installation space S (that is, the bent portion 110 functions as a grippable gripping portion. To do). As indicated by a two-dot chain line, the worker can grasp the bent portion 110 and pull it out of the installation space S. At this time, the surface 101 of the resin plate that comes into contact with the refractory brick Re2 can be easily pulled out because the coefficient of friction is small.
 例えば、摩擦係数が大きいガイド部材を使用すると、ガイド部材が設置空間S内で耐火レンガRe2に押圧されているため、設置空間Sからガイド部材を引き抜こうとすると、折り曲げ部120に過度の引っ張り力が加わり、被折曲部110との連結部(例えば、高密度部121)が破断してしまうおそれがある。また、断熱材ブロック200との間でも摩擦係数が大きくなり、設置空間Sからガイド部材を引く抜く際に、断熱材ブロック200も設置空間S内から外側に飛び出てしまうおそれがあり、作業性が低下する。 For example, when a guide member having a large friction coefficient is used, the guide member is pressed against the refractory bricks Re2 in the installation space S. Therefore, when the guide member is pulled out of the installation space S, an excessive tensile force is applied to the bent portion 120. In addition, there is a possibility that the connecting portion (for example, the high density portion 121) with the bent portion 110 may be broken. In addition, the coefficient of friction increases with the heat insulating material block 200, and when the guide member is pulled out of the installation space S, the heat insulating material block 200 may also jump out of the installation space S, and workability is improved. descend.
 本実施形態の断熱材ユニット300は、表面101及び表面102の摩擦係数が小さい樹脂プレートをガイド部材として使用しているため、折り曲げ部120に過度の引っ張り力が加わることを抑制しつつ、断熱材ブロック200の設置作業性を向上させることができる。 Since the heat insulating material unit 300 of the present embodiment uses a resin plate having a small coefficient of friction between the surface 101 and the surface 102 as a guide member, the heat insulating material is suppressed while applying an excessive tensile force to the bent portion 120. The installation workability of the block 200 can be improved.
 なお、図7及び図8に示した断熱構造体を一例として、断熱材ユニット300の設置方法を説明したが、例えば、耐火レンガRe2で設置空間Sを区画せずに、断熱材ユニット300同士を直接隣接させてライニングすることもできる。このような場合であっても、断熱材ブロック200の設置作業性を向上させることができる。 In addition, although the installation method of the heat insulating material unit 300 was demonstrated taking the heat insulation structure shown in FIG.7 and FIG.8 as an example, for example, without partitioning the installation space S by the refractory bricks Re2, the heat insulating material units 300 may be connected to each other. It can also be lined directly adjacent. Even in such a case, the installation workability of the heat insulating material block 200 can be improved.
(実施例1)
 図1に示した樹脂プレート100Aにおいて、プレート体100の長さH1=340mm、幅H2=280、厚さD=2mm、折り曲げ部120が形成される位置(距離)H3=50mmの樹脂プレートを用いて以下の実験を行った。なお、本実施例1の樹脂プレートは、PET樹脂製である。
Example 1
In the resin plate 100A shown in FIG. 1, a resin plate having a length H1 = 340 mm, a width H2 = 280, a thickness D = 2 mm, and a position (distance) H3 = 50 mm where the bent portion 120 is formed is used. The following experiment was conducted. The resin plate of Example 1 is made of PET resin.
 高密度部121の深さd1=1.4mm、低密度部122の深さd2=2mm(貫通した切り欠き部)であり、高密度部121とプレート体100の密度bとの比(a/b)=3.2(ここで、高密度部の密度aが4.5g/cm、プレート体100の密度bが1.4g/cm)、一の高密度部の長さAと低密度部の長さBとの比(A/B)=1/3(ここで、高密度部の長さAが10mm、低密度部の長さBが30mm)、高密度部121と低密度部122とが交互に並んで配置された折り曲げ部120の全長に対するA_totalとB_totalの比=1/3(ここで、折り曲げ部の全長が280mm、A_totalが70mm、B_totalが210mm)、の条件下で、折り曲げ部120の曲げ強度は、70Nであった。 The depth d1 of the high-density portion 121 is 1.4 mm, the depth d2 of the low-density portion 122 is 2 mm (penetrated notch portion), and the ratio between the high-density portion 121 and the density b of the plate body 100 (a / b) = 3.2 (where the density a of the high density portion is 4.5 g / cm 3 and the density b of the plate body 100 is 1.4 g / cm 3 ), the length A of the one high density portion is as low as Ratio (A / B) to the density part length B = 1/3 (where the high density part length A is 10 mm and the low density part length B is 30 mm), the high density part 121 and the low density part The ratio of A_total and B_total with respect to the total length of the bent portions 120 arranged alternately with the portions 122 = 1/3 (where the total length of the bent portions is 280 mm, A_total is 70 mm, and B_total is 210 mm). The bending strength of the bent portion 120 was 70N.
(実施例2)
 図1に示した樹脂プレート100Aにおいて、プレート体100の長さH1=340mm、幅H2=280、厚さD=2mm、折り曲げ部120が形成される位置(距離)H3=50mmの樹脂プレートを用いて以下の実験を行った。なお、本実施例2の樹脂プレートは、塩化ビニル樹脂製である。
(Example 2)
In the resin plate 100A shown in FIG. 1, a resin plate having a length H1 = 340 mm, a width H2 = 280, a thickness D = 2 mm, and a position (distance) H3 = 50 mm where the bent portion 120 is formed is used. The following experiment was conducted. The resin plate of Example 2 is made of vinyl chloride resin.
 高密度部121の深さd1=1.2mm、低密度部122の深さd2=0.2mmであり、高密度部121とプレート体100の密度bとの比(a/b)=2.5(ここで、高密度部の密度aが3.5g/cm、プレート体100の密度bが1.4g/cm)、一の高密度部の長さAと低密度部の長さBとの比(A/B)=3/2(ここで、高密度部の長さAが30mm、低密度部の長さBが20mm)、高密度部121と低密度部122とが交互に並んで配置された折り曲げ部120の全長に対するA_totalとB_totalの比=9/5(ここで、折り曲げ部の全長が280mm、A_totalが180mm、B_totalが100mm)、の条件下で、折り曲げ部120の曲げ強度は、150Nであった。 The depth d1 of the high-density portion 121 is 1.2 mm, the depth d2 of the low-density portion 122 is 0.2 mm, and the ratio (a / b) between the high-density portion 121 and the density b of the plate body 100 is 2. 5 (here, the density a of the high density portion is 3.5 g / cm 3 and the density b of the plate body 100 is 1.4 g / cm 3 ), the length A of the one high density portion and the length of the low density portion Ratio to B (A / B) = 3/2 (where the high-density portion length A is 30 mm and the low-density portion length B is 20 mm), and the high-density portion 121 and the low-density portion 122 alternate The ratio of A_total and B_total with respect to the total length of the bent portions 120 arranged side by side is 9/5 (where the total length of the bent portions is 280 mm, A_total is 180 mm, and B_total is 100 mm). The bending strength was 150N.
 以下の表1は、一の高密度部の長さAと低密度部の長さBとの比(A/B)から性能評価したものである。折曲性評価において、「○」は手を用いて10回以上折曲げるときに破断を伴わず容易に折曲げできる性状を意味し、「△」は手を用いて10回以上折曲げるときに一部破断を伴うなど破断し易い又は曲げ難い性状を意味する。
Figure JPOXMLDOC01-appb-T000001
Table 1 below shows the performance evaluation from the ratio (A / B) of the length A of one high-density part and the length B of the low-density part. In the bendability evaluation, “◯” means a property that can be easily folded without breaking when folded by hand 10 times or more, and “△” means when folded 10 times or more by hand. It means properties that are easy to break or difficult to bend, such as with partial breaks.
Figure JPOXMLDOC01-appb-T000001
 ここで、上記実施例1、実施例2及び表1に基づく各パラメータは、以下の数値範囲をとることができる。
1)一の高密度部の長さAと低密度部の長さBとの比(A/B)
 1/9≦A/B≦9/1
 好ましくは、3/7≦A/B≦7/3とすることができる。プレート体100の厚さDが厚くなるほど「A/B」の値を大きくすることが好ましい。
Here, each parameter based on the said Example 1, Example 2, and Table 1 can take the following numerical ranges.
1) Ratio of length A of one high-density part and length B of a low-density part (A / B)
1/9 ≦ A / B ≦ 9/1
Preferably, 3/7 ≦ A / B ≦ 7/3. It is preferable to increase the value of “A / B” as the thickness D of the plate body 100 increases.
2)高密度部121とプレート体100の密度bとの比(a/b)
 1<a/b≦5
 好ましくは、2≦a/b≦4とすることができる。高密度部121の密度を上げすぎると柔軟性が低くなり、密度を上げなければ、割れ(破断)が発生する。
2) Ratio (a / b) between the high density portion 121 and the density b of the plate body 100
1 <a / b ≦ 5
Preferably, 2 ≦ a / b ≦ 4. If the density of the high density portion 121 is increased too much, the flexibility becomes low, and if the density is not increased, cracks (breaks) occur.
3)高密度部121の深さd1とプレート体100の厚さDとの比(d1/D)
 0.5≦d1/D<1
 好ましくは、0.3≦d1/D<1とすることができる。このような深さの関係により、折り曲げ部120を破断し難く曲げ易くすることができる。
3) Ratio (d1 / D) between the depth d1 of the high-density portion 121 and the thickness D of the plate body 100
0.5 ≦ d1 / D <1
Preferably, 0.3 ≦ d1 / D <1. Due to such a depth relationship, the bent portion 120 can be easily bent without being broken.
4)折り曲げ部120の曲げ強度Ft:30N≦Ft≦300N
 このような強度にすることで、折り曲げ部120を破断し難く曲げ易くすることができる。
4) Bending strength Ft of the bent portion 120: 30N ≦ Ft ≦ 300N
By setting it as such intensity | strength, it can make it easy to bend the bending part 120 hard to fracture | rupture.
 なお、本発明は、上記実施例に限られず、また上記実施例は発明の趣旨の範囲内で変更可能である。また本発明の用途も断熱材ユニット300のような断熱材のカバーに限定されず、本発明の趣旨を逸脱しない限り産業上全ての分野(例えば、その他カバー部材、食品容器、トレーやファイルケースやペンケースなど文房具)に適用され得る。例えば、樹脂プレートは、被折曲部110を折り曲げることで組立可能な組立製品(例えば本など物品の仕切りや、物品を収容する梱包材など)として構成され得る。この場合、被折曲部110は、本など物品の仕切り用の壁部や、物品を収容する梱包用の壁部などとして構成され得る。 Note that the present invention is not limited to the above-described embodiments, and the above-described embodiments can be modified within the scope of the gist of the invention. Further, the application of the present invention is not limited to a cover of a heat insulating material such as the heat insulating material unit 300, and all industrial fields (for example, other cover members, food containers, trays, file cases, etc., unless departing from the spirit of the present invention). It can be applied to a stationery such as a pen case. For example, the resin plate can be configured as an assembly product that can be assembled by bending the bent portion 110 (for example, a partition for an article such as a book or a packing material that accommodates the article). In this case, the bent part 110 can be configured as a wall part for partitioning an article such as a book, a wall part for packing for storing the article, or the like.
 また例えば、本発明のその他実施例として、樹脂プレートの折り曲げ部120において、高密度部121がプレート体100の表面から凹んだ所定深さ(第3深さ)を有し、低密度部がプレート体の表面から凹んだ前記所定深さ(第3深さ)よりも浅い深さ(第4深さ)を有するように構成することも可能である。かかる樹脂プレートの折り曲げ部120は、プレス加工又は/及び切削加工により形成され得る。 Further, for example, as another embodiment of the present invention, in the bent portion 120 of the resin plate, the high density portion 121 has a predetermined depth (third depth) recessed from the surface of the plate body 100, and the low density portion is the plate. It is also possible to have a depth (fourth depth) shallower than the predetermined depth (third depth) recessed from the surface of the body. The bent portion 120 of the resin plate can be formed by pressing or / and cutting.
 その他の実施例として、樹脂プレートは、樹脂プレートの両表面側からプレス加工又は/及び切削加工して折り曲げ部120を形成することにより、被折曲部110が両表面側に対して折り曲げ可能になるように構成することも可能である。 As another example, the bent portion 110 can be bent with respect to both surface sides by forming the bent portion 120 by pressing or / and cutting the resin plate from both surface sides of the resin plate. It is also possible to configure so that.
 その他、本発明にかかる樹脂プレートを有する製品は、樹脂プレートをカバー材として有する断熱材ユニットに限らず、本樹脂プレートを一体的又は別体で有する製品(例えば建材のクリアフェンスなど仮設資材、パネル材や屋根材、又は、蓋体と該蓋体に隣接する一側壁部とを本樹脂プレートで形成してなる筆記用具容器といった文房具など)を含み得る。 In addition, the product having the resin plate according to the present invention is not limited to the heat insulating unit having the resin plate as a cover material, but is a product having the resin plate integrally or separately (for example, temporary materials such as a clear fence for building materials, panels, etc. Or a roofing material, or a stationery such as a writing instrument container in which a lid and one side wall adjacent to the lid are formed of the resin plate.
100  プレート体
101,102  表面
110  被折曲部
120  折り曲げ部
121  高密度部
122  密度部
200  断熱材ブロック
201  固定部材
300  断熱材ユニット
KB  拘束バンド
Re  断熱体
DESCRIPTION OF SYMBOLS 100 Plate body 101,102 Surface 110 Bending part 120 Bending part 121 High density part 122 Density part 200 Heat insulating material block 201 Fixing member 300 Heat insulating material unit KB Restraint band Re Thermal insulation

Claims (8)

  1.  樹脂製のプレート体と、
     前記プレート体に形成される折り曲げ部と、
     前記折り曲げ部に沿って前記プレート体の一部を折り曲げて形成される被折曲部と、を有し、
     前記折り曲げ部は、高密度部と低密度部とを備え、前記高密度部と前記低密度部とが前記折り曲げ部が延びる方向において交互に並んで配置されており、
     前記高密度部は、所定単位当たりの密度が前記折り曲げ部以外の密度よりも高く形成されており、
     前記低密度部は、前記所定単位当たりの密度が前記高密度部の密度よりも低く形成されていることを特徴とする樹脂プレート。
    A resin plate,
    A bent portion formed on the plate body;
    A bent portion formed by bending a part of the plate body along the bent portion,
    The bent portion includes a high-density portion and a low-density portion, and the high-density portion and the low-density portion are alternately arranged in a direction in which the bent portion extends,
    The high density portion is formed such that the density per predetermined unit is higher than the density other than the bent portion,
    The low density portion is formed of a resin plate having a density per predetermined unit lower than that of the high density portion.
  2.  前記高密度部は、前記プレート体の表面から凹んだ第1深さを有し、
     前記低密度部は、前記プレート体の表面から凹んだ前記第1深さよりも深い第2深さを有することを特徴とする請求項1に記載の樹脂プレート。
    The high-density portion has a first depth recessed from the surface of the plate body,
    2. The resin plate according to claim 1, wherein the low density portion has a second depth deeper than the first depth recessed from the surface of the plate body.
  3.  前記高密度部の密度をa、前記折り曲げ部以外の密度をbとしたとき、前記aと前記bの比が以下の式(1)を満たし、前記折り曲げ部が延びる方向に沿って交互に並んで配置される複数の前記高密度部と前記低密度部において、一の前記高密度部の長さをA、一の前記低密度部の長さをBとしたとき、前記Aと前記Bの比が以下の式(2)を満たすことを特徴とする請求項1に記載の樹脂プレート。
     1<a/b≦5       (1)
     1/9≦A/B≦9/1   (2)
    When the density of the high density portion is a and the density other than the bent portion is b, the ratio of the a and the b satisfies the following formula (1) and is alternately arranged along the extending direction of the bent portion. In the plurality of high-density parts and the low-density parts arranged in the above, when the length of one high-density part is A and the length of one low-density part is B, the A and B The resin plate according to claim 1, wherein the ratio satisfies the following formula (2).
    1 <a / b ≦ 5 (1)
    1/9 ≦ A / B ≦ 9/1 (2)
  4.  前記折り曲げ部の全長に対して前記高密度部が配置される領域をC、前記低密度部が配置される領域をDとしたとき、前記Cと前記Dとの比が以下の式(3)を満たすことを特徴とする請求項1に記載の樹脂プレート。
     1/9≦C/D≦9/1   (3)
    When the region where the high density portion is arranged with respect to the total length of the bent portion is C and the region where the low density portion is arranged is D, the ratio of the C and the D is expressed by the following formula (3). The resin plate according to claim 1, wherein:
    1/9 ≦ C / D ≦ 9/1 (3)
  5.  前記低密度部は、前記プレート体の厚さ方向に貫通する切り欠き部であり、
     前記高密度部の前記第1深さをE、前記折り曲げ部以外の前記プレート体の厚さをFとしたとき、前記Eと前記Fとの比が以下の式(4)を満たすことを特徴とする請求項2に記載の樹脂プレート。
     0.5≦E/F<1     (4)
    The low-density part is a notch that penetrates in the thickness direction of the plate body,
    When the first depth of the high-density portion is E and the thickness of the plate body other than the bent portion is F, the ratio of E to F satisfies the following formula (4). The resin plate according to claim 2.
    0.5 ≦ E / F <1 (4)
  6.  断熱構造体に配設される断熱材ユニットであって、
     前記断熱材ユニットは、
     少なくとも一対の請求項1から5のいずれか1つに記載の樹脂プレートと、
     一対の前記樹脂プレートに挟持され、一対の前記樹脂プレートによって挟持される方向に圧縮された断熱材ブロックと、を有し、
     前記被折曲部は、前記樹脂プレートが当接する前記断熱材ブロックの側面から前記断熱材ブロックの前記側面に隣接する一面に向かって延びるように折り曲げられていることを特徴とする断熱材ユニット。
    A heat insulating unit disposed in the heat insulating structure,
    The insulation unit is
    At least a pair of resin plates according to any one of claims 1 to 5;
    A heat insulating material block sandwiched between a pair of the resin plates and compressed in a direction sandwiched between the pair of resin plates,
    The heat-insulating material unit, wherein the bent portion is bent so as to extend from a side surface of the heat insulating material block with which the resin plate abuts toward a surface adjacent to the side surface of the heat insulating material block.
  7.  被折曲部を有する樹脂プレートの製造方法であって、
     樹脂製のプレート体に、前記プレート体の一部を折り曲げて前記被折曲部として形成するための折り曲げ部を形成する工程を含み、
     前記工程は、
     所定単位当たりの密度が前記折り曲げ部以外の密度よりも高く形成される高密度部と、前記所定単位当たりの密度が前記高密度部の密度よりも低く形成される低密度部とが、前記折り曲げ部が延びる方向において交互に並んで配置されるように、前記折り曲げ部を形成することを特徴とする樹脂プレートの製造方法。
    A method for producing a resin plate having a bent portion,
    Including a step of forming a bent portion for forming the bent portion by bending a part of the plate body on the resin plate body,
    The process includes
    The high-density portion formed with a density per predetermined unit higher than the density other than the bent portion, and the low-density portion formed with a density per predetermined unit lower than the density of the high-density portion are the bent portions. A method for producing a resin plate, comprising forming the bent portions so as to be alternately arranged in a direction in which the portions extend.
  8.  請求項1から5のいずれか1つに記載の樹脂プレートを有する製品。 A product having the resin plate according to any one of claims 1 to 5.
PCT/JP2016/084122 2015-12-17 2016-11-17 Resin plate, resin plate manufacturing method, and insulating material unit using resin plates WO2017104344A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680058521.XA CN108138489B (en) 2015-12-17 2016-11-17 Resin plate, method for manufacturing resin plate, and heat insulating material unit using resin plate
JP2017517812A JP6200624B1 (en) 2015-12-17 2016-11-17 Resin plate, resin plate manufacturing method, and heat insulation unit using resin plate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015246351 2015-12-17
JP2015-246351 2015-12-17
JP2015256871 2015-12-28
JP2015-256871 2015-12-28

Publications (1)

Publication Number Publication Date
WO2017104344A1 true WO2017104344A1 (en) 2017-06-22

Family

ID=59056101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084122 WO2017104344A1 (en) 2015-12-17 2016-11-17 Resin plate, resin plate manufacturing method, and insulating material unit using resin plates

Country Status (3)

Country Link
JP (1) JP6200624B1 (en)
CN (1) CN108138489B (en)
WO (1) WO2017104344A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0129360Y2 (en) * 1981-03-17 1989-09-06
EP0892121A1 (en) * 1996-01-31 1999-01-20 Jean Paul Tisserand Method for realizing rigid hollow structures of polycarbonate or PVC and utilization of the method for fabricating shelters or receptacles
JP3785112B2 (en) * 2002-04-17 2006-06-14 富士包装紙器株式会社 Perforated plastic sheet for bending
JP4908564B2 (en) * 2009-09-14 2012-04-04 三菱樹脂株式会社 Bending ruled plastic sheet and ruled line blade for plastic sheet
JP2015027781A (en) * 2013-07-01 2015-02-12 株式会社オートネットワーク技術研究所 Manufacturing apparatus and manufacturing method of sheet material
JP2015224065A (en) * 2014-05-29 2015-12-14 凸版印刷株式会社 Packaging film having impact-resistant characteristic and high rigidity

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1908586A1 (en) * 2006-10-05 2008-04-09 Novameer B.V. Process for producing laminates of unidirectionally arranged polymeric tapes
CN104369492B (en) * 2013-08-16 2016-11-16 神华集团有限责任公司 A kind of multi-layered board and its preparation method and application

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0129360Y2 (en) * 1981-03-17 1989-09-06
EP0892121A1 (en) * 1996-01-31 1999-01-20 Jean Paul Tisserand Method for realizing rigid hollow structures of polycarbonate or PVC and utilization of the method for fabricating shelters or receptacles
JP3785112B2 (en) * 2002-04-17 2006-06-14 富士包装紙器株式会社 Perforated plastic sheet for bending
JP4908564B2 (en) * 2009-09-14 2012-04-04 三菱樹脂株式会社 Bending ruled plastic sheet and ruled line blade for plastic sheet
JP2015027781A (en) * 2013-07-01 2015-02-12 株式会社オートネットワーク技術研究所 Manufacturing apparatus and manufacturing method of sheet material
JP2015224065A (en) * 2014-05-29 2015-12-14 凸版印刷株式会社 Packaging film having impact-resistant characteristic and high rigidity

Also Published As

Publication number Publication date
CN108138489A (en) 2018-06-08
JP6200624B1 (en) 2017-09-20
CN108138489B (en) 2020-07-24
JPWO2017104344A1 (en) 2017-12-14

Similar Documents

Publication Publication Date Title
JP6156118B2 (en) Wire harness with protector, manufacturing method of wire harness with protector, protector assembly jig
JP6200624B1 (en) Resin plate, resin plate manufacturing method, and heat insulation unit using resin plate
WO2012029320A1 (en) Structure for covering steel beam
JP6065830B2 (en) Protector, wire module, and protector manufacturing method
WO2003083629A3 (en) Document display and retention device
JPWO2018220661A1 (en) Packing equipment
JP5863724B2 (en) Heat resistant block and furnace liner
JP2015151184A (en) Glass package, and method of manufacturing the glass package
CN103963389B (en) Flexible membrane chip ceramic material and preparation method thereof
JP6912278B2 (en) Packaging box and blank packaging box
KR101685682B1 (en) Wet tissue stacked structure
KR102034508B1 (en) Corrugated board having a honeycomb structure
JP6449022B2 (en) Laminated structure and terminal processing method of laminated structure
JP6640539B2 (en) Partition body sheet, partition body, and method of manufacturing partition body
JP6230869B2 (en) Packaging box
JP3168617U (en) Corrugated cushioning material
CN110104300B (en) Packaging box, using method of packaging box and manufacturing method of packaging box
KR102146029B1 (en) Box
JP5326868B2 (en) Article holding structure forming method and packing material
JP3188378U (en) Single-sided cardboard processed paper
JP3188379U (en) Single-sided cardboard processed paper
JP2007063946A (en) Tile
JP3198613U (en) Packing material and package
CN203778076U (en) Combined packing
JP3656139B1 (en) Packaging mount

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017517812

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875328

Country of ref document: EP

Kind code of ref document: A1