WO2017104235A1 - Gas adsorbing material - Google Patents

Gas adsorbing material Download PDF

Info

Publication number
WO2017104235A1
WO2017104235A1 PCT/JP2016/079580 JP2016079580W WO2017104235A1 WO 2017104235 A1 WO2017104235 A1 WO 2017104235A1 JP 2016079580 W JP2016079580 W JP 2016079580W WO 2017104235 A1 WO2017104235 A1 WO 2017104235A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas adsorbent
zeolite
gas
binder
mass
Prior art date
Application number
PCT/JP2016/079580
Other languages
French (fr)
Japanese (ja)
Inventor
秀哉 山本
晃平 坂田
Original Assignee
旭ファイバーグラス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭ファイバーグラス株式会社 filed Critical 旭ファイバーグラス株式会社
Publication of WO2017104235A1 publication Critical patent/WO2017104235A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum

Definitions

  • the present invention relates to a gas adsorbent.
  • the present invention relates to a gas adsorbent that adsorbs an intruding gas in a vacuum heat insulating material, a vacuum heat insulating structure, or a vacuum glass sash.
  • zeolite ion-exchanged with metals such as copper and silver is known to adsorb nitrogen gas, carbon dioxide gas, and oxygen gas, and is used as a gas adsorbent.
  • the zeolite can adsorb moisture in addition to the gas described above, but when moisture is adsorbed, the function as a gas adsorbent is reduced.
  • Patent Document 1 discloses a gas adsorbent used for adsorbing air in a closed space to maintain a reduced pressure state in the closed space, wherein the ratio of silica to alumina in the zeolite skeleton is 8 or more and 25 or less.
  • a gas adsorbent characterized by covering the periphery of the ZSM-5 type zeolite with a chemical moisture adsorbent having a greater adsorption activity with respect to water than that of the ZSM-5 type zeolite exchanged with copper.
  • Patent Document 1 discloses calcium oxide as a chemical moisture adsorbent.
  • An object of the present invention is to provide a gas adsorbent exhibiting high gas adsorbing ability.
  • the present invention relates to the following [1] to [14].
  • a gas adsorbent containing zeolite, calcium oxide, and a binder The zeolite is ion-exchanged with one or more metal ions selected from the group consisting of copper, silver, gold, iron, zinc and nickel ions; The zeolite has an average pore diameter of 0.3 to 1.3 nm, The binder is calcium silicate or magnesium silicate; The gas adsorbent has a porosity of 40 to 80%. A gas adsorbent characterized by that.
  • a core material made of an inorganic fiber mat, and a gas barrier sheet material enclosing the gas-adsorbing material and the core material From the gas-adsorbing material according to any one of [1] to [11], a core material made of an inorganic fiber mat, and a gas barrier sheet material enclosing the gas-adsorbing material and the core material.
  • a vacuum insulation material including a packaging bag.
  • a method for producing a gas adsorbent comprising: A step of mixing a zeolite, calcium oxide and a binder without adding water to obtain a mixture, and a step of compression-molding the mixture, Including
  • the zeolite is ion-exchanged with one or more metal ions selected from the group consisting of copper, silver, gold, iron, zinc and nickel ions;
  • the zeolite has an average pore diameter of 0.3 to 1.3 nm
  • the binder is calcium silicate or magnesium silicate;
  • the porosity of the gas adsorbent is 40 to 80%.
  • a gas adsorbent having a high gas adsorption capacity is provided.
  • the present invention is a gas adsorbent comprising zeolite, calcium oxide, and a binder,
  • the zeolite is ion-exchanged with one or more metal ions selected from the group consisting of copper, silver, gold, iron, zinc and nickel ions;
  • the zeolite has an average pore diameter of 0.3 to 1.3 nm,
  • the binder is calcium silicate or magnesium silicate;
  • the gas adsorbent has a porosity of 40 to 80%.
  • the present invention relates to a gas adsorbent.
  • the zeolite in the present invention has an average pore diameter of 0.3 to 1.3 nm, preferably 0.5 to 1.3 nm. If the average pore diameter is in the above range, it is 4 to 15 times the molecular diameter of nitrogen, carbon dioxide and oxygen to be adsorbed, and the target gas can be sufficiently adsorbed.
  • the average pore diameter can be measured by a pore distribution measuring device using a nitrogen gas or argon gas adsorption method.
  • Examples of zeolite having an average pore size of 0.3 to 1.3 nm include the following.
  • n in the chemical formula of ZSM-5 type zeolite is preferably 20 to 50, more preferably 30 to 45.
  • Zeolite has a structure in which alumina is bonded and incorporated in the form of a high molecular weight silicon oxide skeleton in the form of aluminate (AlO 4 ⁇ ), and aluminum atoms are negatively charged. Near the aluminum atoms, there are alkali metals such as sodium and potassium ionized by the bound water of the zeolite, and alkaline earth metals such as calcium and magnesium. It can be moved to. Movable metal ions can be easily ion exchanged with other metal ions. It is publicly known that the gas adsorption capacity changes depending on the nature of the metal ion, and the type of the metal ion is selected according to the purpose of use.
  • the gas adsorbent of the present invention is targeted for adsorption of nitrogen gas, carbon dioxide gas, oxygen gas and the like.
  • the zeolite of the present invention is ion-exchanged with one or more metal ions selected from the group consisting of copper, silver, gold, iron, zinc and nickel ions. Copper ions or silver ions are preferable metal ions because of their high gas adsorption capacity.
  • the metal ions are used for ion exchange of zeolite in the form of weak acid-base salts.
  • the weak acid base salt include inorganic salts such as carbonate, bicarbonate, phosphate, phosphite, hypophosphite, formate, acetate, propionate, oxalate, malonate , Succinate, glutarate, lactate, malate, citrate and the like, and aliphatic organic acid salts having 4 or less carbon atoms.
  • the aliphatic organic acid salt if the number of carbon atoms is 4 or less, the solubility in water is high, and the reduction of the metal ion exchange rate can be prevented.
  • the ion exchange rate in the zeolite used in the present invention is preferably 40 to 120 mol%, preferably 60 to 100 mol, based on the total number of moles of alkali metal and alkaline earth metal contained in the zeolite before ion exchange. % Is more preferable.
  • the ion exchange rate exceeding 100 mol% refers to the case where excess metal ions are present on the zeolite surface, and the excess metal ions react with oxygen or water to form metal oxides or metal on the zeolite surface. Form hydroxide.
  • the ion exchange rate is 40 mol% or more, the adsorption activity of the intruding gas in the vacuum heat insulating material is sufficient, and the heat insulating property is not deteriorated by long-term use. Further, when the ion exchange rate is 120 mol% or less, excess metal ions are not present on the zeolite surface or a small amount even if they are present, the metal oxide or metal hydroxide formed from the excess metal ions. Thus, the surface of the zeolite is not covered, and the adsorption area of the zeolite is not reduced.
  • the ion exchange rate is determined by obtaining the amount (mass%) of each constituent element from the image obtained by elemental analysis by energy dispersive X-ray spectroscopy, and the ions of alkali metal or alkaline earth metal contained in the zeolite before ion exchange. It can be calculated based on the following formula from the residual amount after exchange and the amount of ion-exchanged metal.
  • Zeolite can be ion-exchanged, for example, by the following method.
  • (1) Disperse the zeolite in ion-exchanged water, add a salt of metal ions used for ion exchange so that the amount of metal is 0.8 to 5 equivalents with respect to the number of moles of alumina in the zeolite, and at 60 ° C. for 3 hours. Stir with heating. Since metal ions in zeolite exist to electrically neutralize the monovalent negative charge of aluminum, the number of moles of metal salt added is calculated based on the number of moles of aluminum in the zeolite. To do. (2) The zeolite is sufficiently washed with ion-exchanged water and then filtered. (3) Heat and dry at 150 ° C. for 12 hours or more to remove water adhering to the zeolite surface. Heat drying is preferably performed under vacuum.
  • the content of zeolite is preferably 5 to 40% by mass, more preferably 8 to 35% by mass, based on the total mass of the gas adsorbent. If the zeolite content is 5% by mass or more, the gas can be sufficiently adsorbed. When the content is 40% by mass or less, the exposed area of the zeolite becomes a moderate size, and it is possible to avoid the problem that water is adsorbed on the zeolite before calcium oxide and the gas adsorption capacity of the zeolite is reduced. .
  • the average particle size of zeolite is preferably 1 to 25 ⁇ m, more preferably 3 to 10 ⁇ m. If the average particle diameter is in the above range, when the gas adsorbent of the present invention is molded, the zeolite is easily dispersed homogeneously in the gas adsorbent, and the total surface area of the zeolite is also increased. Adsorption ability can be fully exhibited.
  • the average particle diameter of zeolite can be measured according to JIS Z 8823.
  • the zeolite used in the present invention is known and can be easily obtained in the market or can be prepared.
  • the calcium oxide in the present invention adsorbs moisture and carbon dioxide.
  • the calcium oxide used in the present invention is not particularly limited, but the average particle size is preferably 30 to 70 ⁇ m, more preferably 35 to 55 ⁇ m.
  • the average particle diameter of calcium oxide can be measured according to JIS Z 8823.
  • the average particle diameter of calcium oxide also affects the porosity of the gas adsorbent described later, and if it is 30 ⁇ m or more, a gas adsorbent having a desired porosity can be obtained, and the gas adsorbent has sufficient adsorption activity.
  • the average particle diameter is 70 ⁇ m or less, the strength of the gas adsorbent can be improved when compression molding, and handling becomes easier.
  • the content of calcium oxide is preferably 35 to 90% by mass, more preferably 45 to 85% by mass, based on the total mass of the gas adsorbent.
  • the content of calcium oxide is within this range, moisture adsorption capacity is exhibited in vacuum insulation materials, vacuum insulation structures, or vacuum glass sashes while preventing moisture adsorption on zeolite in the production process of vacuum insulation materials, etc. can do.
  • Calcium oxide is known and can be easily obtained or prepared on the market.
  • Binder The binder in the present invention is calcium silicate or magnesium silicate.
  • the binder adsorbs moisture in the air at the time of compression molding or before and after that, and expresses the function as a binder.
  • the porosity of the gas adsorbent is in a desired range. Used for.
  • the strength and handleability of the gas adsorbent are improved by the close contact of zeolite and calcium oxide.
  • Examples of the calcium silicate include synthesized calcium silicate and natural minerals containing calcium silicate, such as cements such as Portland cement, fly ash cement, and alumina cement, calcium silicate minerals such as wollastonite and tobermorite, and grossular. , Zoisite, Clinozoite, Lawsonite, Gehlenite, Planenite, Anorsite, Scolesite, Epistibite, Laumonite, Meionite, and other calcium calcium silicate minerals, etc.
  • the tobermorite is more preferable in controlling the porosity of the gas adsorbent.
  • magnesium silicate examples include natural minerals containing magnesium silicate, such as magnesium silicate minerals such as sepiolite, attapulgite, talc, forsterite, humite, enstatite, clinoenstatite, and chrysotile, orlmanite, magnesia axinite, diolite.
  • magnesium silicate minerals such as sepiolite, attapulgite, talc, forsterite, humite, enstatite, clinoenstatite, and chrysotile, orlmanite, magnesia axinite, diolite.
  • magnesium calcium silicate minerals such as psite and tremolite, and needle-shaped sepiolite, attapulgite, and plate-like talc are more preferable for controlling the porosity.
  • the content of the binder is preferably 5% by mass to 25% by mass and more preferably 8% by mass to 20% by mass with respect to the total mass of the gas adsorbent.
  • the porosity of the adsorbent can be set to a desired range when compression molding is performed, and the gas adsorbent functions sufficiently.
  • the average particle size of the binder used in the present invention is preferably 5 to 80 ⁇ m, more preferably 8 to 70 ⁇ m.
  • the average particle diameter of the binder can be measured according to JIS Z 8823. When the binder has a needle-like or plate-like shape, the average particle diameter refers to the average length of the long sides.
  • the average particle size of the binder also affects the porosity of the gas adsorbent described later, and if it is in the above range, a gas adsorbent having a desired porosity can be obtained. The strength of the gas adsorbent can be improved, and handling becomes easy.
  • the gas adsorbent of the present invention may contain clay minerals containing sodium such as kaolinite, smectite, sericite, illite, chlorite as an extender in addition to zeolite, calcium oxide and binder.
  • the porosity of the gas adsorbent of the present invention is 40 to 80%, preferably 45 to 75%.
  • the porosity can be obtained by the following equation from the ratio of the apparent density of the molded gas adsorbent to the true density of the mixture calculated based on the true density and composition ratio of each material.
  • the porosity is in the above range, the zeolite has an appropriate exposed area, the gas adsorbent exhibits a sufficient adsorption function, and the adsorption capacity does not deteriorate during long-term use.
  • the gas adsorbent of the present invention is resistant to temperatures up to sintering, for example, up to about 900 ° C. Therefore, it can be dried by heating at a temperature of, for example, 300 ° C. to 600 ° C. before use, and can be used in a state having a low water content.
  • the gas adsorbent of the present invention has a high gas adsorbing ability.
  • the gas adsorption capacity of the gas adsorbent can be evaluated based on, for example, the thermal conductivity of the vacuum heat insulating material including the gas adsorbent. If the gas adsorption capacity of the gas adsorbing material is high, the vacuum degree of the vacuum heat insulating material can be kept high, and the thermal conductivity of the vacuum heat insulating material becomes low. For example, it is preferable that the thermal conductivity of the vacuum heat insulating material measured by a heat flow meter method at 20 ° C.
  • the thermal conductivity of the vacuum heat insulating material measured by a heat flow meter method at 20 ° C. according to JIS A1412 0.004 W / mK or less is preferable, and 0.0035 W / mK or less is more preferable.
  • the shape of the gas adsorption material of this invention is plate shape, cylindrical shape, cube shape, spherical shape, cone shape, pyramid shape, etc. If the shape is thin plate and cylinder, it can be accommodated without causing irregularities on the surface of the vacuum heat insulating material.
  • size of a gas adsorbent can be suitably set according to a use.
  • the size is preferably 0.05 to 5% by volume, more preferably 0.08 to 3% by volume of the total volume of the vacuum part such as a vacuum heat insulating material, a vacuum heat insulating structure, or a vacuum glass sash. It is more preferable that the size becomes.
  • the gas adsorbent of the present invention is excellent in handleability.
  • the handleability means that the gas adsorbent is inserted and mounted when manufacturing a vacuum heat insulating material, a vacuum heat insulating structure, a vacuum glass sash or the like, and has a bending strength that does not cause breakage or chipping by manual handling.
  • the bending strength of the gas adsorbent can be evaluated according to JIS K7171.
  • the bending strength of the gas adsorbent is preferably from 0.1 to 1.0 MPa, more preferably from 0.2 MPa to 0.6 MPa. If the bending strength of the gas adsorbent is within this range, the handleability of the gas adsorbent is improved without lowering the porosity of the gas adsorbent.
  • the gas adsorbent of the present invention includes the following steps: a step of mixing zeolite, calcium oxide and a binder without adding water, and a step of compression molding the mixture , wherein the zeolite is ion exchanged with one or more metal ions selected from the group consisting of copper, silver, gold, iron, zinc and nickel ions, The average pore diameter is 0.3 to 1.3 nm, the binder is calcium silicate or magnesium silicate, and the porosity of the gas adsorbent is 40 to 80%.
  • the means for mixing zeolite, calcium oxide and binder may be mixed in a mixing device such as a V-shaped mixer at a desired mass ratio. In the mixing process, no water is added. By not adding water, the moisture content of the obtained gas adsorbent can be lowered.
  • the obtained powdery mixture is filled into a mold such as a mold, and compression molding is performed. Prior to compression molding, the mold may be vibrated to fill the powdery mixture more densely, preferably in a close-packed state.
  • Molding conditions such as molding temperature, molding pressure and molding time can be appropriately adjusted according to the binder amount or the porosity of the gas adsorbent.
  • the molding temperature is preferably 10 to 40 ° C., more preferably 15 to 35 ° C., and still more preferably room temperature (25 ° C.).
  • a preferable molding pressure is 50 to 200 MPa, and more preferably 75 to 125 MPa.
  • a preferable molding time is 5 to 25 seconds, and more preferably 8 to 20 seconds.
  • a gas adsorbent having a porosity in the range targeted by the present invention can be molded.
  • Vacuum heat insulating material The gas adsorbent of the present invention is used in vacuum heat insulating materials used in refrigerators and vending machines, vacuum heat insulating structures used in refrigeration tank trucks and machinery, vacuum glass sashes for residential buildings, etc. Preferably, it is used for a vacuum heat insulating material.
  • the vacuum heat insulating material includes a core material, a packaging bag, and a gas adsorbing material as components, and the core material and the gas adsorbing material are filled in the packaging bag and vacuum packaged.
  • Core material A core material is a member which bears the heat insulation of a vacuum heat insulating material, and consists of an inorganic fiber mat.
  • the inorganic fiber is a fiber made of an inorganic substance, and examples thereof include glass fiber (glass wool, etc.), ceramic fiber, metal fiber and the like. Moreover, slag fiber, basalt fiber (rock wool, basalt fiber), etc. can also be used. In these, the glass fiber and basalt fiber which are excellent in heat insulation and moldability are preferable. Specifically, glass wool, rock wool or the like generally used as a heat insulating sound absorbing material can be preferably used.
  • the inorganic fiber preferably has an average fiber diameter of 3 to 7 ⁇ m. If an average fiber diameter is 3 micrometers or more, manufacture and acquisition of an inorganic fiber will become easy. If an average fiber diameter is 7 micrometers or less, the heat insulation performance required as a core material can be obtained.
  • the method for producing the inorganic fiber is not particularly limited, and examples thereof include a centrifugal method.
  • a centrifugal method for example, inorganic fibers such as glass fibers (glass wool, etc.), slag fibers, basalt fibers (rock wool, etc.) can be produced.
  • the inorganic fiber mat refers to an aggregate (web) in which inorganic fibers are accumulated regardless of the thickness and density.
  • the core material may be a single layer made of one inorganic fiber mat or a laminate in which 2 to 4 inorganic fiber mats are laminated.
  • the density of the core material is not particularly limited, but is preferably 150 to 250 kg / m 3 . Since the core material having a density of 150 kg / m 3 or more is excellent in compression resistance, the heat insulation performance is hardly lowered due to an increase in the core material density, and the heat insulation performance is excellent. Moreover, since the said core material has moderate rigidity, in addition to being easy to fill the inside of a packaging bag, workability
  • the density is more preferably 180 kg / m 3 or more.
  • the density is more preferably 180 kg / m 3 or more.
  • the vacuum heat insulating material can be installed with no gap with respect to the heat insulating box or the like, and heat insulation defects are hardly generated.
  • the density is further preferably set to 220 kg / m 3 or less.
  • the thickness of the core material is not particularly limited, but is preferably 5 mm or more and 30 mm or less.
  • the heat insulating performance of the vacuum heat insulating material is determined by the thickness of the core material and the thermal conductivity. Therefore, in addition to the low thermal conductivity of the core material, the heat insulation performance can be enhanced by setting the thickness of the core material to a certain value or more. From such a point of view, by setting the thickness to 5 mm or more, high heat insulation performance can be obtained, and design of heat insulation performance can be facilitated.
  • the thickness is set to 30 mm or less, the workability when installing the vacuum heat insulating material in the heat insulating box is improved, and the work of bonding the vacuum heat insulating material to the heat insulating box becomes easy. Moreover, required heat insulation can be provided, suppressing the manufacturing cost of a core material.
  • the inorganic fiber mat may be simply an inorganic fiber accumulated, but is preferably an inorganic fiber mat provided with a thermosetting resin derived from an organic binder.
  • Such an inorganic fiber mat has an appropriate rigidity and is not easily crushed, so that the core material density is hardly increased. Therefore, the heat insulation performance is hardly lowered due to the increase in heat conduction between the inorganic fibers.
  • the type of the organic binder is not particularly limited, but a precursor capable of forming a polymer by dehydration condensation can be suitably used.
  • the polymer formed by dehydration condensation include aldehyde condensable resins, polyesters, polyamides, and the like.
  • the aldehyde condensable resin include a resol type phenol resin, a melamine resin, a benzoguanamine resin, an acetoguanamine resin, a urea resin, and a furan resin. Among these, a resol type phenol resin is preferable.
  • thermosetting resins for example, A mixture of formaldehyde and phenol (a precursor of a resole phenolic resin); A mixture of a polycarboxylic acid and at least one substance selected from the group of polyols (including saccharides), aminoalcohols, iminoalcohols and polyamines (polyesters, polyamide precursors); Etc. are preferably used. Among these, it is more preferable to use an aqueous binder containing these as components.
  • a formaldehyde / phenol molar ratio of 2.5 or more and 3.5 or less.
  • the molar ratio is 2.5 or more, unreacted free phenol can be reduced.
  • the molar ratio is 3.5 or less, unreacted free formaldehyde can be reduced.
  • those having a molar ratio of (the total number of moles of hydroxyl group, amino group and imino group) / number of moles of carboxyl groups, such as polyol are 0.5 or more and 1.2 or less. It is preferable.
  • the molar ratio is 0.5 or more, most of the molecules constituting the binder can participate in the curing reaction, and unreacted free polycarboxylic acid can be reduced. In order to obtain the effect more reliably, the molar ratio is more preferably 0.7 or more. On the other hand, when the molar ratio is 1.2 or less, unreacted free polyol and the like can be reduced.
  • the molar ratio is more preferably 1.1 or less.
  • these substances gasify over time in the vacuum heat insulating material (outgas), and the heat insulation property of the vacuum heat insulating material is increased by the outgas. The malfunction which falls can be prevented effectively.
  • the content of the thermosetting resin in the core material is preferably 0.5% by mass or more and 5.0% by mass or less with respect to the total mass of the inorganic fibers and the thermosetting resin.
  • the content is preferably 0.5% by mass or more and 5.0% by mass or less with respect to the total mass of the inorganic fibers and the thermosetting resin.
  • the content rate of a thermosetting resin is calculated based on the ignition loss measured by the ignition loss method (LOI: Loss of Ignition). The loss on ignition is measured by measuring the mass reduced by igniting a dried sample of the mat-like material to which the organic binder has been adhered and dried at about 550 ° C.
  • the packaging bag is a bag made of a gas barrier sheet material. By the packaging bag, the vacuum state inside the bag body is maintained, and the inflow of moisture and gas into the bag body can be prevented.
  • the type of sheet material is not particularly limited as long as it has gas barrier properties.
  • Resin films made of resins such as polyester, polyethylene, polyamide, polyvinyl chloride, polyvinylidene chloride, polystyrene, polypropylene; Laminated film in which the surface of kraft paper is coated with the resin film; A laminated film in which the surface of the metal foil is coated with the resin film; A metal-deposited film in which a metal is deposited on the resin film; Etc. can be used suitably.
  • the metal foil and the metal for vapor deposition the aluminum which is excellent in gas barrier property is preferable.
  • a composite film in which one side of the vacuum heat insulating material is a metal foil film and the other side is a vapor deposition film can be used.
  • the sheet material includes a laminated sheet in which the sheet materials are laminated.
  • a laminated sheet having a protective film as the outermost layer, a gas barrier film as the intermediate layer, and a fusible film as the innermost layer is preferable.
  • the protective film is composed of a polyamide resin film or a polyethylene terephthalate resin film
  • the gas barrier film is composed of an aluminum foil, an aluminum foil laminate film, or an aluminum vapor deposition film
  • the fusible film is a low-density polyethylene.
  • a laminated sheet composed of a resin film, a high-density polyethylene resin film, a polypropylene resin film, or an ethylene-vinyl alcohol copolymer resin film can be suitably used.
  • the fusible film is disposed in the innermost layer of the laminated sheet for the purpose of fusing the peripheral edges of the sheet material.
  • the thickness of each film which comprises a lamination sheet is not specifically limited, It is preferable that the thickness of a protective film and the thickness of a gas barrier film are 10 micrometers or more and 25 micrometers or less. By making the thickness 10 ⁇ m or more, the packaging bag can be effectively prevented from being damaged. On the other hand, when the thickness is 25 ⁇ m or less, the thermal bridge (heat bridge) of the packaging bag can be reduced.
  • the thickness of the fusible film is preferably 25 ⁇ m or more and 60 ⁇ m or less. By setting the thickness to 25 ⁇ m or more, it is possible to improve the sealing performance of the fused portion where the fusible films are fused together, and it is difficult for leakage from the fused portion to occur after vacuum packaging. . In order to obtain the effect more reliably, the thickness is further preferably set to 30 ⁇ m or more. On the other hand, when the thickness is 60 ⁇ m or less, the thermal bridge (heat bridge) of the packaging bag can be reduced. In order to obtain the effect more reliably, the thickness is more preferably 50 ⁇ m or less.
  • the size of the packaging bag is not particularly limited as long as it is configured to be a size that can be filled with the core material.
  • the vacuum heat insulating material of the present invention is obtained by filling the inside of the packaging bag with the core material and the gas adsorbing material and vacuum-packaging them.
  • the degree of vacuum inside the packaging bag (residual gas pressure) is preferably 0.1 Pa or more and 10 Pa or less.
  • the degree of vacuum is lowered, the heat insulation performance of the obtained vacuum heat insulating material is improved, but the time required for vacuum packaging is increased correspondingly, and the productivity is lowered.
  • the degree of vacuum is 10 Pa or less, a sufficient heat insulating effect as a vacuum heat insulating material is exhibited. In order to obtain the effect more reliably, the degree of vacuum is more preferably 5 Pa or less.
  • the vacuum heat insulating material of the present invention may be manufactured by any manufacturing method as long as it has the above configuration.
  • the example of the manufacturing method of the vacuum heat insulating material of this invention is shown.
  • the production method of the inorganic fiber mat is not particularly limited. First, in the fiberizing step of spinning inorganic fibers, fiberization is performed by a centrifugal method (rotary method), a spinning method, or the like. The fiberization by the centrifugal method is preferable from the viewpoint of economy. Next, an organic binder is applied to the spun inorganic fibers by a spray method. Furthermore, the inorganic fiber to which the organic binder has been applied is heated and molded (matting step). Inorganic fibers to which an organic binder has been applied are accumulated on a mesh belt conveyor disposed below the fiberizing apparatus and conveyed to a hot air oven. And inorganic fiber is sent between conveyors and compressed to predetermined thickness. The compressed inorganic fiber is heated when it passes through the hot air oven, and the attached organic binder is thermally cured. By such a process, an inorganic fiber mat in which inorganic fibers are formed into a mat shape can be produced.
  • a centrifugal method rotary method
  • the heating temperature is preferably 150 to 300 ° C., and the heating time is preferably 60 to 300 seconds.
  • the heating temperature is preferably 150 ° C. or more and the heating time to 60 seconds or more.
  • the organic binder can be sufficiently cured by heat. Therefore, unreacted low molecular weight substances that cause outgassing can be reduced, and moisture adhering to the inorganic fiber mat can be reduced.
  • the heating temperature is set to 300 ° C. or less and 300 seconds or less, decomposition of the thermosetting resin derived from the organic binder can be suppressed, and productivity is improved by not performing excessive heating. Can do.
  • the density of the inorganic fiber mat is preferably 32 kg / m 3 or more and 100 kg / m 3 or less.
  • the density is more preferably 48 kg / m 3 or more.
  • the density is more preferably 90 kg / m 3 or less.
  • the thickness of the inorganic fiber mat is preferably 10 mm or more and 50 mm or less.
  • the thickness 10 mm or more the mat can be easily manufactured.
  • the thickness is more preferably 25 mm or more.
  • the handling property at the time of filling a packaging bag improves by making the said thickness into 50 mm or less.
  • the thickness is further preferably set to 45 mm or less.
  • the inorganic fiber mat may be removed by heating and forced drying before vacuum packaging to remove water adhering to the inorganic fibers. Forced drying can be performed using, for example, a far-infrared oven or a hot air oven.
  • the heating temperature is not particularly limited, but is preferably 130 ° C. or higher and more preferably 150 ° C. or higher in order to quickly remove moisture.
  • Vacuum packaging Finally, the core material and the gas adsorbent are filled in a packaging bag and vacuum packaged.
  • Vacuum packaging can be performed according to a conventionally known method. For example, a method of filling the inside of the core material and the gas adsorbing material and then evacuating the inside of the packaging bag until the degree of vacuum becomes 0.1 to 10 Pa, and heat-sealing the opening of the packaging bag, etc. Can be mentioned.
  • the core material and the gas adsorbing material are not filled in a bag formed in advance in a bag shape, but the core material and the gas adsorbing material are sandwiched between two upper and lower gas barrier sheet materials, and the two sheets
  • the sheet material may be fused to form a packaging bag made of the sheet material, and the core material and the gas adsorbing material may be filled into the packaging bag.
  • the gas adsorbent is preferably dried for 3 to 12 hours under a temperature condition of 300 to 600 ° C. before vacuum packaging.
  • the gas barrier sheet material is preferably dried at a temperature of 50 to 100 ° C. for 60 to 120 minutes before filling the core material.
  • Vacuum insulation can be used for refrigerators, vending machines, refrigerated tank trucks, mechanical equipment, vacuum glass sashes for residential buildings, and the like.
  • Example 1 10 parts by mass of Y-zeolite with an average pore diameter of 1.1 nm (ion exchange rate 85%, average particle diameter 5 ⁇ m) ion-exchanged with copper, 80 parts by mass of calcium oxide with an average particle diameter of 45 ⁇ m, and an average length of 17 ⁇ m on the long side 10 parts by mass of plate-like tobermorite was put into a V-type mixer and dry-mixed to obtain a gas adsorption mixture.
  • the above mixture was filled in a cylindrical mold having an inner diameter of 30 mm and a depth of 5 mm, and the gas adsorbent 1 was obtained by pressing with a press machine at 100 MPa for 10 seconds without heating in an environment of 25 ° C.
  • the porosity of the gas adsorbent 1 was 55%.
  • Glass fiber mat (average fiber diameter 7 ⁇ m, thickness 45 mm, density 64 kg / m 3 , binder resin adhesion 1.4%, phenol-formaldehyde resin binder (formaldehyde / phenol molar ratio 3.0) hot air at 180 ° C. Were cured for 2 minutes and then molded) and dried at 150 ° C. for 30 minutes to obtain a core material. Insert the core material and gas adsorbent 1 into the bag-shaped outer shell material, place it in the vacuum packaging machine, depressurize the vacuum packaging machine with a Penning vacuum gauge until a measured value of 2 Pa is obtained, heat seal it, and open the outer shell material.
  • Example 1 The part was sealed and the vacuum heat insulating material of Example 1 which has an ear
  • Example 2 30 parts by mass of Y-zeolite having an average pore diameter of 1.1 nm (ion exchange rate 82%, average particle diameter 5 ⁇ m) ion-exchanged with copper, 50 parts by mass of calcium oxide having an average particle diameter of 45 ⁇ m, and an average length of 17 ⁇ m on the long side 20 parts by mass of plate-like tobermorite was put into a V-type mixer and dry-mixed to obtain a gas adsorption mixture.
  • the gas adsorbent 2 was obtained except that the above mixture was filled in a cylindrical mold having an inner diameter of 30 mm and a depth of 5 mm, and was pressed at 100 MPa for 10 seconds with a press machine without heating in an environment of 25 ° C.
  • a vacuum heat insulating material of Example 2 was obtained.
  • the porosity of the gas adsorbent 2 was 55%.
  • Example 3 10 parts by mass of Y-zeolite having an average pore diameter of 1.1 nm (ion exchange rate of 93%, average particle diameter of 5 ⁇ m) ion-exchanged with silver, 80 parts by mass of calcium oxide having an average particle diameter of 45 ⁇ m, and an average length of 65 ⁇ m on the long side
  • Ten parts by mass of acicular wollastonite was put into a V-type mixer and dry-mixed to obtain a gas adsorption mixture.
  • the gas adsorbent 3 was obtained except that the above mixture was filled in a cylindrical mold having an inner diameter of 30 mm and a depth of 5 mm, and pressed at 100 MPa for 15 seconds with a press machine without heating in an environment of 25 ° C.
  • the vacuum heat insulating material of Example 3 was obtained in the same manner as Example 1.
  • the porosity of the gas adsorbent 3 was 46%.
  • Example 4 ZSM-5 zeolite with an average pore size of 0.5 nm ion-exchanged with copper (ion exchange rate 82%, average particle size 6 ⁇ m, zeolite Na + 39 (H 2 O) 16
  • the above mixture was filled in a cylindrical mold having an inner diameter of 30 mm and a depth of 5 mm, and was pressed at 100 MPa for 10 seconds with a press machine without heating in an environment of 25 ° C. to obtain a gas adsorbent 4.
  • the porosity of the gas adsorbent 4 was 57%.
  • Polyethylene (density 0.94 g / cm 3 , thickness 50 ⁇ m), aluminum-deposited ethylene-vinyl alcohol copolymer film (thickness 12 ⁇ m), aluminum-deposited polyethylene terephthalate (thickness 12 ⁇ m) and polyamide (thickness 15 ⁇ m) are laminated in this order.
  • 2 gas barrier films total thickness 105 ⁇ m including urethane adhesive
  • Glass fiber mat (average fiber diameter 7 ⁇ m, thickness 45 mm, density 64 kg / m 3 , binder resin adhesion 1.4%, phenol-formaldehyde resin binder (formaldehyde / phenol molar ratio 3.0) hot air at 180 ° C. Were cured for 2 minutes and then molded) and dried at 150 ° C. for 30 minutes to obtain a core material.
  • Example 4 Insert the core material and gas adsorbing material 4 into the bag-shaped outer shell material, place it in the vacuum packaging machine, depressurize the vacuum packaging machine with a Penning vacuum gauge until a measured value of 2 Pa is obtained, heat seal and open the outer skin material The part was sealed and the vacuum heat insulating material of Example 4 which has an ear
  • the vacuum heat insulating material after the ear folding was 670 mm long, 390 mm wide and 15 mm thick, and the core material density was 210 kg / m 3 .
  • Example 5 10 parts by mass of Y-zeolite having an average pore size of 1.1 nm ion-exchanged with copper (93% ion exchange rate, average particle size 5 ⁇ m), 80 parts by mass of calcium oxide having an average particle size of 45 ⁇ m, and an average length of 50 ⁇ m on the long side
  • Ten parts by mass of needle-shaped sepiolite was put into a V-type mixer and dry-mixed to obtain a gas adsorption mixture.
  • the gas adsorbent 5 was obtained except that the above mixture was filled in a cylindrical mold having an inner diameter of 30 mm and a depth of 5 mm, and pressed at 100 MPa for 15 seconds with a press machine without heating in an environment of 25 ° C.
  • a vacuum heat insulating material of Example 5 was obtained.
  • the porosity of the gas adsorbent 5 was 48%.
  • Comparative Example 1 10 parts by mass of Y-zeolite having an average pore diameter of 1.1 nm (ion exchange rate 82%, average particle diameter 5 ⁇ m) ion-exchanged with copper and 90 parts by mass of calcium oxide having an average particle diameter of 45 ⁇ m were put into a V-type mixer, Dry mixing was performed to obtain a gas adsorption mixture. The above mixture was filled in a cylindrical mold having an inner diameter of 30 mm and a depth of 5 mm, and was pressed at 100 MPa for 10 seconds with a press machine without heating in an environment of 25 ° C. to obtain a gas adsorbent 6. The porosity of the gas adsorbent 6 was 38%. In the same manner as in Example 1, a vacuum heat insulating material of Comparative Example 1 was obtained.
  • Comparative Example 2 100 parts by mass of calcium oxide having an average particle size of 45 ⁇ m is filled into a cylindrical mold having an inner diameter of 30 mm and a depth of 5 mm, and is pressed at 100 MPa for 10 seconds by a press machine without heating in an environment of 25 ° C. Adsorbent 7 was obtained. The porosity of the gas adsorbent 7 was 35%. In the same manner as in Example 1, a vacuum heat insulating material of Comparative Example 2 was obtained.
  • Comparative Example 3 90 parts by mass of Y-zeolite having an average pore diameter of 1.1 nm (ion exchange rate of 85%, average particle diameter of 5 ⁇ m) ion-exchanged with copper and 10 parts by mass of tobermorite of plate-like crystals having an average long side of 17 ⁇ m in average length
  • the mixture was put into a mold mixer and dry-mixed to obtain a gas adsorption mixture.
  • the above mixture was filled in a cylindrical mold having an inner diameter of 30 mm and a depth of 5 mm, and was pressed at 100 MPa for 10 seconds with a press machine without heating in an environment of 25 ° C. to obtain a gas adsorbent 8.
  • the porosity of the gas adsorbent 8 was 75%.
  • a vacuum heat insulating material of Comparative Example 3 was obtained.
  • Comparative Example 4 ZSM-5 type zeolite (average particle size 6 ⁇ m, Na + 39 (H 2 O) 16
  • the above mixture was filled in a cylindrical mold having an inner diameter of 30 mm and a depth of 5 mm, and was pressed at 100 MPa for 10 seconds with a press machine without heating in an environment of 25 ° C. to obtain a gas adsorbent 9.
  • the porosity of the gas adsorbent 9 was 55%.
  • a vacuum heat insulating material of Comparative Example 4 was obtained.
  • Evaluation example 2 The vacuum heat insulating materials of Examples 1 to 4 and Comparative Examples 1 to 4 were allowed to stand in a dryer at 90 ° C. for 30 days, and then the thermal conductivity at 20 ° C. was measured by a heat flow meter method according to JIS A1412. did.
  • the gas adsorbent of the present invention is useful in application to vacuum heat insulating materials used in refrigerators and vending machines, vacuum heat insulating structures used in refrigeration tank trucks and machinery, vacuum glass sashes for residential buildings, and the like.

Abstract

Provided is a gas adsorbing material which exhibits high gas adsorption capacity. The porosity of this gas adsorbing material is controlled to 40-80% by using a binder that is composed of calcium silicate or magnesium silicate together with zeolite and calcium oxide.

Description

気体吸着材Gas adsorbent
 本発明は、気体吸着材に関する。特に、真空断熱材、真空断熱構造物、あるいは真空ガラスサッシ内で侵入ガスを吸着する気体吸着材に関する。 The present invention relates to a gas adsorbent. In particular, the present invention relates to a gas adsorbent that adsorbs an intruding gas in a vacuum heat insulating material, a vacuum heat insulating structure, or a vacuum glass sash.
 芯材を包装袋内に減圧密封して得られる真空断熱材においては、製造当初から包装袋の内部に存在した水分、或いは外部から包装袋の内部に侵入した水分、窒素ガス、二酸化炭素ガス等が、真空断熱材の断熱性能を低下させるおそれがある。水分及び侵入ガスに起因する問題を回避するため、包装袋の内部に、芯材とともに吸着材を収納し、この吸着材に水分及びガスを吸着させることが提案されている。 In the vacuum heat insulating material obtained by sealing the core material in the packaging bag under reduced pressure, moisture existing in the packaging bag from the beginning of manufacture, moisture entering the packaging bag from the outside, nitrogen gas, carbon dioxide gas, etc. However, there exists a possibility of reducing the heat insulation performance of a vacuum heat insulating material. In order to avoid problems caused by moisture and intrusion gas, it has been proposed to store an adsorbent together with a core material inside the packaging bag and adsorb the moisture and gas to the adsorbent.
 一般的に、銅、銀などの金属で金属イオン交換したゼオライトは窒素ガス、二酸化炭素ガス、酸素ガスを吸着することが公知であり、ガス吸着材として用いられている。上記ゼオライトは、上記のガスに加えて水分も吸着することができるが、水分を吸着すると、ガス吸着材としての機能は低下する。上記ゼオライトによる水分の吸着を防ぐため、上記ゼオライトと共に水分吸着材を用いることが提案されている。水分吸着材としては、酸化カルシウムが使用されている。 Generally, zeolite ion-exchanged with metals such as copper and silver is known to adsorb nitrogen gas, carbon dioxide gas, and oxygen gas, and is used as a gas adsorbent. The zeolite can adsorb moisture in addition to the gas described above, but when moisture is adsorbed, the function as a gas adsorbent is reduced. In order to prevent moisture adsorption by the zeolite, it has been proposed to use a moisture adsorbent together with the zeolite. Calcium oxide is used as the moisture adsorbing material.
 特許文献1では、閉空間の空気を吸着して前記閉空間の減圧状態を維持するために用いる気体吸着材であって、ゼオライト骨格中のシリカ対アルミナ比が8以上25以下である銅イオン交換したZSM-5型ゼオライトの周囲を、水に対する吸着活性が前記銅イオン交換したZSM-5型ゼオライトよりも大きな化学水分吸着材で覆ったことを特徴とする気体吸着材が提案されている。特許文献1は、化学水分吸着材として、酸化カルシウムを開示している。 Patent Document 1 discloses a gas adsorbent used for adsorbing air in a closed space to maintain a reduced pressure state in the closed space, wherein the ratio of silica to alumina in the zeolite skeleton is 8 or more and 25 or less. There has been proposed a gas adsorbent characterized by covering the periphery of the ZSM-5 type zeolite with a chemical moisture adsorbent having a greater adsorption activity with respect to water than that of the ZSM-5 type zeolite exchanged with copper. Patent Document 1 discloses calcium oxide as a chemical moisture adsorbent.
特開2012-217942号公報JP 2012-217842 A
 特許文献1の気体吸着材では、ゼオライトを酸化カルシウムで覆うために、ゼオライトの水分吸着を防ぐことができるが、ゼオライトの露出する表面積が小さくなるため、ガス吸着能が不充分となる場合がある。 In the gas adsorbent of Patent Document 1, since zeolite is covered with calcium oxide, moisture adsorption of zeolite can be prevented. However, since the exposed surface area of zeolite becomes small, gas adsorption ability may be insufficient. .
 本発明の課題は、高いガス吸着能を発揮する気体吸着材を提供することである。 An object of the present invention is to provide a gas adsorbent exhibiting high gas adsorbing ability.
 上記課題は、ゼオライト及び酸化カルシウムと共に、珪酸カルシウム又は珪酸マグネシウムからなるバインダーを用いて、気体吸着材の空孔率を40~80%に調節することにより解決できることが見出された。すなわち、本発明は下記〔1〕~〔14〕に関するものである。 It has been found that the above problem can be solved by adjusting the porosity of the gas adsorbent to 40 to 80% using a binder made of calcium silicate or magnesium silicate together with zeolite and calcium oxide. That is, the present invention relates to the following [1] to [14].
〔1〕ゼオライトと、酸化カルシウムと、バインダーとを含む気体吸着材であって、
 前記ゼオライトが、銅、銀、金、鉄、亜鉛及びニッケルイオンからなる群から選択される1種以上の金属イオンでイオン交換されており、
 前記ゼオライトの平均細孔径が、0.3~1.3nmであり、
 前記バインダーが、珪酸カルシウム又は珪酸マグネシウムであり、
 前記気体吸着材の空孔率が、40~80%である、
ことを特徴とする、気体吸着材。
[1] A gas adsorbent containing zeolite, calcium oxide, and a binder,
The zeolite is ion-exchanged with one or more metal ions selected from the group consisting of copper, silver, gold, iron, zinc and nickel ions;
The zeolite has an average pore diameter of 0.3 to 1.3 nm,
The binder is calcium silicate or magnesium silicate;
The gas adsorbent has a porosity of 40 to 80%.
A gas adsorbent characterized by that.
〔2〕前記バインダーが、珪酸カルシウムである、前記〔1〕に記載の気体吸着材。 [2] The gas adsorbent according to [1], wherein the binder is calcium silicate.
〔3〕前記珪酸カルシウムが、ドバモライト、ウォラストナイト又はポルトランドセメントである、前記〔2〕に記載の気体吸着材。 [3] The gas adsorbent according to [2], wherein the calcium silicate is dobermorite, wollastonite, or Portland cement.
〔4〕前記バインダーが、珪酸マグネシウムである、前記〔1〕に記載の気体吸着材。 [4] The gas adsorbent according to [1], wherein the binder is magnesium silicate.
〔5〕前記珪酸マグネシウムが、セピオライト、アタパルジャイト又はタルクである、前記〔4〕に記載の気体吸着材。 [5] The gas adsorbent according to [4], wherein the magnesium silicate is sepiolite, attapulgite, or talc.
〔6〕前記バインダーの含有量が、気体吸着材の総質量に対して、5質量%~25質量%である、前記〔1〕~〔5〕のいずれか1項に記載の気体吸着材。 [6] The gas adsorbent according to any one of [1] to [5], wherein the content of the binder is 5% by mass to 25% by mass with respect to the total mass of the gas adsorbent.
〔7〕前記金属イオンが、銅、銀、鉄及びニッケルイオンからなる群から選択される1種以上である、前記〔1〕~〔6〕のいずれか1項に記載の気体吸着材。 [7] The gas adsorbent according to any one of [1] to [6], wherein the metal ions are at least one selected from the group consisting of copper, silver, iron and nickel ions.
〔8〕前記ゼオライトにおけるイオン交換率が、イオン交換前のゼオライトに含まれるアルカリ金属及びアルカリ土類金属の総モル数に対して、40~120モル%である、前記〔1〕~〔7〕のいずれか1項に記載の気体吸着材。 [8] The above [1] to [7], wherein the ion exchange rate in the zeolite is 40 to 120 mol% with respect to the total number of moles of alkali metal and alkaline earth metal contained in the zeolite before ion exchange. The gas adsorbent according to any one of the above.
〔9〕前記ゼオライトの含有量が、気体吸着材の総質量に対して、5質量%~40質量%である、前記〔1〕~〔8〕のいずれか1項に記載の気体吸着材。 [9] The gas adsorbent according to any one of [1] to [8], wherein the zeolite content is 5% by mass to 40% by mass with respect to the total mass of the gas adsorbent.
〔10〕圧縮成形品である、前記〔1〕~〔9〕のいずれか1項に記載の気体吸着材。 [10] The gas adsorbent according to any one of [1] to [9], which is a compression molded product.
〔11〕真空断熱材用である、前記〔1〕~〔10〕のいずれか1項に記載の気体吸着材。 [11] The gas adsorbent according to any one of [1] to [10], which is used for a vacuum heat insulating material.
〔12〕前記〔1〕~〔11〕のいずれか1項に記載の気体吸着材と、無機繊維マットからなる芯材と、前記気体吸着材及び前記芯材を封入する、ガスバリア性シート材からなる包装袋と、を含む、真空断熱材。 [12] From the gas-adsorbing material according to any one of [1] to [11], a core material made of an inorganic fiber mat, and a gas barrier sheet material enclosing the gas-adsorbing material and the core material. A vacuum insulation material, including a packaging bag.
〔13〕気体吸着材の製造方法であって、
 水を添加せずに、ゼオライトと、酸化カルシウムと、バインダーとを混合して混合物を得る工程、及び
 前記混合物を圧縮成形する工程、
を含み、
 前記ゼオライトが、銅、銀、金、鉄、亜鉛及びニッケルイオンからなる群から選択される1種以上の金属イオンでイオン交換されており、
 前記ゼオライトの平均細孔径が、0.3~1.3nmであり、
 前記バインダーが、珪酸カルシウム又は珪酸マグネシウムであり、
 気体吸着材の空孔率が、40~80%である、
ことを特徴とする、方法。
[13] A method for producing a gas adsorbent, comprising:
A step of mixing a zeolite, calcium oxide and a binder without adding water to obtain a mixture, and a step of compression-molding the mixture,
Including
The zeolite is ion-exchanged with one or more metal ions selected from the group consisting of copper, silver, gold, iron, zinc and nickel ions;
The zeolite has an average pore diameter of 0.3 to 1.3 nm,
The binder is calcium silicate or magnesium silicate;
The porosity of the gas adsorbent is 40 to 80%.
A method characterized by that.
〔14〕前記圧縮成形する工程が、50~200MPaの成形圧力で行われる、前記〔13〕に記載の方法。 [14] The method according to [13], wherein the compression molding step is performed at a molding pressure of 50 to 200 MPa.
 本発明により、ガス吸着能が高い気体吸着材が提供される。 According to the present invention, a gas adsorbent having a high gas adsorption capacity is provided.
 本発明は、ゼオライトと、酸化カルシウムと、バインダーとを含む気体吸着材であって、
 前記ゼオライトが、銅、銀、金、鉄、亜鉛及びニッケルイオンからなる群から選択される1種以上の金属イオンでイオン交換されており、
 前記ゼオライトの平均細孔径が、0.3~1.3nmであり、
 前記バインダーが、珪酸カルシウム又は珪酸マグネシウムであり、
 前記気体吸着材の空孔率が、40~80%である、
ことを特徴とする、気体吸着材に関するものである。
The present invention is a gas adsorbent comprising zeolite, calcium oxide, and a binder,
The zeolite is ion-exchanged with one or more metal ions selected from the group consisting of copper, silver, gold, iron, zinc and nickel ions;
The zeolite has an average pore diameter of 0.3 to 1.3 nm,
The binder is calcium silicate or magnesium silicate;
The gas adsorbent has a porosity of 40 to 80%.
The present invention relates to a gas adsorbent.
ゼオライト
 本発明におけるゼオライトは、0.3~1.3nm、好ましくは0.5~1.3nmの平均細孔径を有する。平均細孔径が上記範囲であれば、吸着の対象とする窒素、二酸化炭素、酸素の分子径の4~15倍であり、対象のガスを十分に吸着することが可能となる。平均細孔径は、窒素ガスあるいはアルゴンガス吸着法による細孔分布測定装置により測定することができる。
Zeolite The zeolite in the present invention has an average pore diameter of 0.3 to 1.3 nm, preferably 0.5 to 1.3 nm. If the average pore diameter is in the above range, it is 4 to 15 times the molecular diameter of nitrogen, carbon dioxide and oxygen to be adsorbed, and the target gas can be sufficiently adsorbed. The average pore diameter can be measured by a pore distribution measuring device using a nitrogen gas or argon gas adsorption method.
 平均細孔径が0.3~1.3nmであるゼオライトとしては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-I000001
Examples of zeolite having an average pore size of 0.3 to 1.3 nm include the following.
Figure JPOXMLDOC01-appb-I000001
 ZSM-5型ゼオライトの化学式におけるnの値は、好ましくは20~50であり、より好ましくは30~45である。 The value of n in the chemical formula of ZSM-5 type zeolite is preferably 20 to 50, more preferably 30 to 45.
 ゼオライトは、高分子量化している酸化ケイ素骨格の中に、アルミナがアルミン酸(AlO4 -)の形で結合して組み込まれている構造を有し、アルミニウム原子がマイナス電荷を帯びている。このアルミニウム原子の近傍には、ゼオライトの結合水により、イオン化しているナトリウム、カリウム等のアルカリ金属、カルシウム、マグネシウム等のアルカリ土類金属が存在しており、ゼオライトの細孔内を比較的自由に移動できるとされている。移動可能な金属イオンは、他の金属イオンと容易にイオン交換することができる。この金属イオンの性質により、気体の吸着能が変化していることは公知であり、使用する目的に合わせ、金属イオンの種類を選択する。 Zeolite has a structure in which alumina is bonded and incorporated in the form of a high molecular weight silicon oxide skeleton in the form of aluminate (AlO 4 ), and aluminum atoms are negatively charged. Near the aluminum atoms, there are alkali metals such as sodium and potassium ionized by the bound water of the zeolite, and alkaline earth metals such as calcium and magnesium. It can be moved to. Movable metal ions can be easily ion exchanged with other metal ions. It is publicly known that the gas adsorption capacity changes depending on the nature of the metal ion, and the type of the metal ion is selected according to the purpose of use.
 本発明の気体吸着材は、窒素ガス、二酸化炭素ガス、酸素ガス等を吸着対象としている。上記吸着対象に合わせ、本発明のゼオライトは、銅、銀、金、鉄、亜鉛及びニッケルイオンからなる群から選択される1種以上の金属イオンでイオン交換されている。銅イオン又は銀イオンが、気体吸着能が高く、好ましい金属イオンである。 The gas adsorbent of the present invention is targeted for adsorption of nitrogen gas, carbon dioxide gas, oxygen gas and the like. In accordance with the adsorption target, the zeolite of the present invention is ion-exchanged with one or more metal ions selected from the group consisting of copper, silver, gold, iron, zinc and nickel ions. Copper ions or silver ions are preferable metal ions because of their high gas adsorption capacity.
 上記金属イオンは、弱酸塩基塩の形態で、ゼオライトのイオン交換に用いられる。上記弱酸塩基塩としては、炭酸塩、炭酸水素塩、リン酸塩、亜リン酸塩、次亜リン酸塩等の無機塩類、ギ酸塩、酢酸塩、プロピオン酸塩、シュウ酸塩、マロン酸塩、コハク酸塩、グルタル酸塩、乳酸塩、リンゴ酸塩、クエン酸塩等の炭素数が4以下の脂肪族有機酸塩が挙げられる。脂肪族有機酸塩の場合、炭素数が4以下であれば、水への溶解性が高く、金属イオン交換率の低下を防ぐことができる。 The metal ions are used for ion exchange of zeolite in the form of weak acid-base salts. Examples of the weak acid base salt include inorganic salts such as carbonate, bicarbonate, phosphate, phosphite, hypophosphite, formate, acetate, propionate, oxalate, malonate , Succinate, glutarate, lactate, malate, citrate and the like, and aliphatic organic acid salts having 4 or less carbon atoms. In the case of the aliphatic organic acid salt, if the number of carbon atoms is 4 or less, the solubility in water is high, and the reduction of the metal ion exchange rate can be prevented.
 本発明に使用するゼオライトにおけるイオン交換率は、イオン交換前のゼオライトに含まれるアルカリ金属及びアルカリ土類金属の総モル数に対して、40~120モル%であることが好ましく、60~100モル%がより好ましい。100モル%を超えるイオン交換率とは、ゼオライト表面に過剰の金属イオンが存在する場合を指しており、過剰分の金属イオンは酸素又は水と反応して、ゼオライト表面で金属酸化物、あるいは金属水酸化物を形成する。イオン交換率が40モル%以上であると、真空断熱材中での侵入ガスの吸着活性が充分で、長期の使用で断熱性が低下することがない。また、イオン交換率が120モル%以下であると、ゼオライト表面に過剰の金属イオンが存在しないか又は存在しても少量であるので、過剰の金属イオンから形成される金属酸化物又は金属水酸化によりゼオライト表面が被覆されてしまうことがなく、ゼオライトの吸着面積が減少することがない。 The ion exchange rate in the zeolite used in the present invention is preferably 40 to 120 mol%, preferably 60 to 100 mol, based on the total number of moles of alkali metal and alkaline earth metal contained in the zeolite before ion exchange. % Is more preferable. The ion exchange rate exceeding 100 mol% refers to the case where excess metal ions are present on the zeolite surface, and the excess metal ions react with oxygen or water to form metal oxides or metal on the zeolite surface. Form hydroxide. When the ion exchange rate is 40 mol% or more, the adsorption activity of the intruding gas in the vacuum heat insulating material is sufficient, and the heat insulating property is not deteriorated by long-term use. Further, when the ion exchange rate is 120 mol% or less, excess metal ions are not present on the zeolite surface or a small amount even if they are present, the metal oxide or metal hydroxide formed from the excess metal ions. Thus, the surface of the zeolite is not covered, and the adsorption area of the zeolite is not reduced.
 イオン交換率は、エネルギー分散型X線分光による元素分析によって得られた画像から各構成元素の量(質量%)を求め、イオン交換前のゼオライトに含有されるアルカリ金属又はアルカリ土類金属のイオン交換後の残留量とイオン交換した金属量より、以下の式に基づいて算出できる。
Figure JPOXMLDOC01-appb-I000002
The ion exchange rate is determined by obtaining the amount (mass%) of each constituent element from the image obtained by elemental analysis by energy dispersive X-ray spectroscopy, and the ions of alkali metal or alkaline earth metal contained in the zeolite before ion exchange. It can be calculated based on the following formula from the residual amount after exchange and the amount of ion-exchanged metal.
Figure JPOXMLDOC01-appb-I000002
 ゼオライトは、例えば、以下の方法によりイオン交換することができる。
(1)ゼオライトをイオン交換水に分散させ、ゼオライトのアルミナのモル数に対して0.8~5当量分の金属となるようにイオン交換に用いる金属イオンの塩を加え、60℃で3時間以上加熱撹拌する。ゼオライト中の金属イオンは、アルミニウムの1価のマイナス電荷を、電気的に中和するために存在しているので、添加する金属塩のモル数は、ゼオライト中のアルミニウムのモル数を基準に算出する。
(2)ゼオライトをイオン交換水で十分に洗浄後、濾過を行う。
(3)150℃で12時間以上加熱乾燥して、ゼオライト表面に付着している水を取り除く。加熱乾燥は、真空下で行うことが好ましい。
Zeolite can be ion-exchanged, for example, by the following method.
(1) Disperse the zeolite in ion-exchanged water, add a salt of metal ions used for ion exchange so that the amount of metal is 0.8 to 5 equivalents with respect to the number of moles of alumina in the zeolite, and at 60 ° C. for 3 hours. Stir with heating. Since metal ions in zeolite exist to electrically neutralize the monovalent negative charge of aluminum, the number of moles of metal salt added is calculated based on the number of moles of aluminum in the zeolite. To do.
(2) The zeolite is sufficiently washed with ion-exchanged water and then filtered.
(3) Heat and dry at 150 ° C. for 12 hours or more to remove water adhering to the zeolite surface. Heat drying is preferably performed under vacuum.
 ゼオライトの含有量は、気体吸着材の総質量に対して、好ましくは5~40質量%、より好ましくは8~35質量%である。ゼオライトの含有量が5質量%以上であると、ガスを十分に吸着することができる。含有量が40質量%以下であると、ゼオライトの露出面積は適度な大きさとなり、酸化カルシウムよりも先にゼオライトに水が吸着されてゼオライトのガス吸着能が低下するといった問題を避けることができる。 The content of zeolite is preferably 5 to 40% by mass, more preferably 8 to 35% by mass, based on the total mass of the gas adsorbent. If the zeolite content is 5% by mass or more, the gas can be sufficiently adsorbed. When the content is 40% by mass or less, the exposed area of the zeolite becomes a moderate size, and it is possible to avoid the problem that water is adsorbed on the zeolite before calcium oxide and the gas adsorption capacity of the zeolite is reduced. .
 ゼオライトの平均粒子径は、1~25μmであることが好ましく、3~10μであることがより好ましい。平均粒子径が上記範囲であれば、本発明の気体吸着材を成形する際に、ゼオライトが気体吸着材中に均質に分散されやすく、更にゼオライトの総表面積も大きくなるので、気体吸着材としての吸着能を十分に発揮することができる。ゼオライトの平均粒子径は、JIS Z 8823に準じて測定することができる。 The average particle size of zeolite is preferably 1 to 25 μm, more preferably 3 to 10 μm. If the average particle diameter is in the above range, when the gas adsorbent of the present invention is molded, the zeolite is easily dispersed homogeneously in the gas adsorbent, and the total surface area of the zeolite is also increased. Adsorption ability can be fully exhibited. The average particle diameter of zeolite can be measured according to JIS Z 8823.
 本発明で用いるゼオライトは公知であり、市場において容易に入手することができるか、又は調製可能である。 The zeolite used in the present invention is known and can be easily obtained in the market or can be prepared.
酸化カルシウム
 本発明における酸化カルシウムは、水分及び二酸化炭素を吸着する。
 本発明で使用する酸化カルシウムに特に限定はないが、平均粒子径が30~70μmであることが好ましく、35~55μmであることがより好ましい。酸化カルシウムの平均粒子径は、JIS Z 8823に準じて測定することができる。酸化カルシウムの平均粒子径は、後述の気体吸着材の空孔率にも影響し、30μm以上であれば、所望の空孔率を有する気体吸着材が得られ、気体吸着材は十分な吸着活性を有する。平均粒子径が70μm以下であれば、圧縮成形した場合に気体吸着材の強度を向上させることができ、取扱いがより容易になる。
Calcium oxide The calcium oxide in the present invention adsorbs moisture and carbon dioxide.
The calcium oxide used in the present invention is not particularly limited, but the average particle size is preferably 30 to 70 μm, more preferably 35 to 55 μm. The average particle diameter of calcium oxide can be measured according to JIS Z 8823. The average particle diameter of calcium oxide also affects the porosity of the gas adsorbent described later, and if it is 30 μm or more, a gas adsorbent having a desired porosity can be obtained, and the gas adsorbent has sufficient adsorption activity. Have When the average particle diameter is 70 μm or less, the strength of the gas adsorbent can be improved when compression molding, and handling becomes easier.
 酸化カルシウムの含有量は、気体吸着材の総質量に対して、好ましくは35~90質量%であり、より好ましくは45~85質量%である。酸化カルシウムの含有量がこの範囲にあると、真空断熱材等の製造工程でのゼオライトへの水分吸着を防ぎながら、真空断熱材、真空断熱構造物、あるいは真空ガラスサッシ中で水分吸着能を発揮することができる。 The content of calcium oxide is preferably 35 to 90% by mass, more preferably 45 to 85% by mass, based on the total mass of the gas adsorbent. When the content of calcium oxide is within this range, moisture adsorption capacity is exhibited in vacuum insulation materials, vacuum insulation structures, or vacuum glass sashes while preventing moisture adsorption on zeolite in the production process of vacuum insulation materials, etc. can do.
 酸化カルシウムは公知であり、市場において容易に入手することができるか、又は調製可能である。 Calcium oxide is known and can be easily obtained or prepared on the market.
バインダー
 本発明におけるバインダーは、珪酸カルシウム又は珪酸マグネシウムである。バインダーは、圧縮成形時もしくはその前後で空気中の水分を吸着してバインダーとしての機能を発現し、ゼオライト及び酸化カルシウムを適度に密着させて、気体吸着材の空孔率を所望の範囲とするために用いられる。また、ゼオライト及び酸化カルシウムが密着することにより、気体吸着材の強度及び取扱性が向上する。
Binder The binder in the present invention is calcium silicate or magnesium silicate. The binder adsorbs moisture in the air at the time of compression molding or before and after that, and expresses the function as a binder. By adhering zeolite and calcium oxide appropriately, the porosity of the gas adsorbent is in a desired range. Used for. Moreover, the strength and handleability of the gas adsorbent are improved by the close contact of zeolite and calcium oxide.
 珪酸カルシウムとしては、合成された珪酸カルシウム及び珪酸カルシウムを含む天然鉱物が挙げられ、例えば、ポルトランドセメント、フライアッシュセメント、アルミナセメント等のセメント類、ウォラストナイト、トバモライト等の珪酸カルシウム鉱物類、グロッシュラー、ゾイサイト、クリノゾイサイト、ローソナイト、ゲーレナイト、プレーナイト、アノーサイト、スコレサイト、エピスティバイト、ラウモナイト、メイオナイト等の珪酸アルミニウムカルシウム鉱物類等が挙げられ、針状結晶のウォラストナイト、板状結晶のトバモライトが、気体吸着材の空孔率を制御する上で、より好ましい。 Examples of the calcium silicate include synthesized calcium silicate and natural minerals containing calcium silicate, such as cements such as Portland cement, fly ash cement, and alumina cement, calcium silicate minerals such as wollastonite and tobermorite, and grossular. , Zoisite, Clinozoite, Lawsonite, Gehlenite, Planenite, Anorsite, Scolesite, Epistibite, Laumonite, Meionite, and other calcium calcium silicate minerals, etc. The tobermorite is more preferable in controlling the porosity of the gas adsorbent.
 珪酸マグネシウムとしては、珪酸マグネシウムを含む天然鉱物が挙げられ、例えば、セピオライト、アタパルジャイト、タルク、フォルステライト、ヒューマイト、エンスタタイト、クリノエンスタタイト、クリソタイル等の珪酸マグネシウム鉱物類、オルルマナイト、マグネシアアクシナイト、ディオプサイト、トレモライト等の珪酸マグネシウムカルシウム鉱物類が挙げられ、針状結晶のセピオライト、アタパルジャイト、及び板状結晶のタルクが、空孔率を制御する上で、より好ましい。 Examples of magnesium silicate include natural minerals containing magnesium silicate, such as magnesium silicate minerals such as sepiolite, attapulgite, talc, forsterite, humite, enstatite, clinoenstatite, and chrysotile, orlmanite, magnesia axinite, diolite. Examples thereof include magnesium calcium silicate minerals such as psite and tremolite, and needle-shaped sepiolite, attapulgite, and plate-like talc are more preferable for controlling the porosity.
 バインダーの含有量は、気体吸着材の総質量に対して、好ましくは5質量%~25質量%であり、より好ましくは8~20質量%である。バインダーの含有量がこの範囲にあると、圧縮成形した場合に吸着材の空孔率を所望の範囲とすることができ、気体吸着材が十分に機能する。 The content of the binder is preferably 5% by mass to 25% by mass and more preferably 8% by mass to 20% by mass with respect to the total mass of the gas adsorbent. When the content of the binder is within this range, the porosity of the adsorbent can be set to a desired range when compression molding is performed, and the gas adsorbent functions sufficiently.
 本発明で使用するバインダーの平均粒子径は、好ましくは5~80μm、より好ましくは8~70μmである。バインダーの平均粒子径は、JIS Z 8823に準じて測定することができる。バインダーが針状又は板状の形状を有する場合、平均粒子径は長辺の平均長さのことを指す。バインダーの平均粒子径は、後述の気体吸着材の空孔率にも影響し、上記範囲であると、所望の空孔率を有する気体吸着材が得られ、また、圧縮成形した場合には、気体吸着材の強度を向上させることができ、取扱いが容易になる。 The average particle size of the binder used in the present invention is preferably 5 to 80 μm, more preferably 8 to 70 μm. The average particle diameter of the binder can be measured according to JIS Z 8823. When the binder has a needle-like or plate-like shape, the average particle diameter refers to the average length of the long sides. The average particle size of the binder also affects the porosity of the gas adsorbent described later, and if it is in the above range, a gas adsorbent having a desired porosity can be obtained. The strength of the gas adsorbent can be improved, and handling becomes easy.
 本発明の気体吸着材は、ゼオライト、酸化カルシウム及びバインダーの他に、増量剤として、カオリナイト、スメクタイト、セリサイト、イライト、クロライト等のナトリウムを含む粘土鉱物を含んでもよい。 The gas adsorbent of the present invention may contain clay minerals containing sodium such as kaolinite, smectite, sericite, illite, chlorite as an extender in addition to zeolite, calcium oxide and binder.
 本発明の気体吸着材の空孔率は、40~80%であり、好ましくは45~75%である。
 空孔率は、各材料の真密度及び組成比に基づいて算出した混合物の真密度に対する、成形した気体吸着材の見掛けの密度の比から、以下の式により求めることができる。
Figure JPOXMLDOC01-appb-I000003
 空孔率が上記の範囲にあると、ゼオライトは適度な露出面積を有し、気体吸着材は十分な吸着機能を発揮し、長期使用での吸着能の低下が生じることがない。
The porosity of the gas adsorbent of the present invention is 40 to 80%, preferably 45 to 75%.
The porosity can be obtained by the following equation from the ratio of the apparent density of the molded gas adsorbent to the true density of the mixture calculated based on the true density and composition ratio of each material.
Figure JPOXMLDOC01-appb-I000003
When the porosity is in the above range, the zeolite has an appropriate exposed area, the gas adsorbent exhibits a sufficient adsorption function, and the adsorption capacity does not deteriorate during long-term use.
 本発明の気体吸着材は、焼結する温度まで、例えば約900℃までの温度に耐性を有する。そのため、使用前に、例えば300℃~600℃の温度で加熱乾燥をすることが可能であり、水分含有量の少ない状態で使用することができる。 The gas adsorbent of the present invention is resistant to temperatures up to sintering, for example, up to about 900 ° C. Therefore, it can be dried by heating at a temperature of, for example, 300 ° C. to 600 ° C. before use, and can be used in a state having a low water content.
 本発明の気体吸着材は、高いガス吸着能を有する。気体吸着材のガス吸着能は、例えば、気体吸着材を含む真空断熱材の熱伝導率に基づいて評価することができる。気体吸着材のガス吸着能が高ければ、真空断熱材の真空度を高く保つことができ、真空断熱材の熱伝導率が低くなる。例えば、気体吸着材を含む真空断熱材の製造直後に、JIS A1412に準じて20℃で熱流計法により測定した真空断熱材の熱伝導率が、0.002W/mK以下であることが好ましく、0.0016W/mK以下であることがより好ましい。また、気体吸着材を含む真空断熱材の製造後、90℃の乾燥機内で30日静置させた後に、JIS A1412に準じて20℃で熱流計法により測定した真空断熱材の熱伝導率が、0.004W/mK以下であることが好ましく、0.0035W/mK以下であることがより好ましい。 The gas adsorbent of the present invention has a high gas adsorbing ability. The gas adsorption capacity of the gas adsorbent can be evaluated based on, for example, the thermal conductivity of the vacuum heat insulating material including the gas adsorbent. If the gas adsorption capacity of the gas adsorbing material is high, the vacuum degree of the vacuum heat insulating material can be kept high, and the thermal conductivity of the vacuum heat insulating material becomes low. For example, it is preferable that the thermal conductivity of the vacuum heat insulating material measured by a heat flow meter method at 20 ° C. according to JIS A1412 immediately after the manufacture of the vacuum heat insulating material including the gas adsorbing material is 0.002 W / mK or less. More preferably, it is 0.0016 W / mK or less. Moreover, after manufacturing the vacuum heat insulating material containing the gas adsorbent, after leaving it to stand in a 90 ° C. dryer for 30 days, the thermal conductivity of the vacuum heat insulating material measured by a heat flow meter method at 20 ° C. according to JIS A1412 0.004 W / mK or less is preferable, and 0.0035 W / mK or less is more preferable.
 本発明の気体吸着材の形状には、特に制限は無いが、好ましくは、板状、円筒状、立方体状、球状、円錐状、角錐状等である。形状が厚みの薄い板状及び円筒状であれば、真空断熱材の表面に凹凸を生じることなく、収納することができる。
 気体吸着材の大きさは、用途に合わせて適宜設定することができる。例えば、真空断熱材、真空断熱構造物、あるいは真空ガラスサッシ等の真空部分の総体積の0.05~5体積%になる大きさであることが好ましく、更には、0.08~3体積%になる大きさであることがより好ましい。
Although there is no restriction | limiting in particular in the shape of the gas adsorption material of this invention, Preferably, it is plate shape, cylindrical shape, cube shape, spherical shape, cone shape, pyramid shape, etc. If the shape is thin plate and cylinder, it can be accommodated without causing irregularities on the surface of the vacuum heat insulating material.
The magnitude | size of a gas adsorbent can be suitably set according to a use. For example, the size is preferably 0.05 to 5% by volume, more preferably 0.08 to 3% by volume of the total volume of the vacuum part such as a vacuum heat insulating material, a vacuum heat insulating structure, or a vacuum glass sash. It is more preferable that the size becomes.
 本発明の気体吸着材は、取扱性に優れている。取扱性とは、真空断熱材、真空断熱構造物、あるいは真空ガラスサッシ等の製造時に気体吸着材を挿入装着させる際に、人手による取扱で割れや欠けが生じない曲げ強度を有することである。気体吸着材の曲げ強度は、JIS K7171に準じて評価することができる。気体吸着材の曲げ強度が、0.1 MPa以上、1.0MPa以下であることが好ましく、0.2MPa以上、0.6MPa以下であることがより好ましい。気体吸着材の曲げ強度がこの範囲にあれば、気体吸着材の空孔率を下げることなく、気体吸着材の取扱性が高くなる。 The gas adsorbent of the present invention is excellent in handleability. The handleability means that the gas adsorbent is inserted and mounted when manufacturing a vacuum heat insulating material, a vacuum heat insulating structure, a vacuum glass sash or the like, and has a bending strength that does not cause breakage or chipping by manual handling. The bending strength of the gas adsorbent can be evaluated according to JIS K7171. The bending strength of the gas adsorbent is preferably from 0.1 to 1.0 MPa, more preferably from 0.2 MPa to 0.6 MPa. If the bending strength of the gas adsorbent is within this range, the handleability of the gas adsorbent is improved without lowering the porosity of the gas adsorbent.
気体吸着材の製造方法
 本発明の気体吸着材は、以下の工程
 水を添加せずに、ゼオライトと、酸化カルシウムと、バインダーとを混合して混合物を得る工程、及び
 前記混合物を圧縮成形する工程、
を含む方法により製造することができ、ここで、ゼオライトは、銅、銀、金、鉄、亜鉛及びニッケルイオンからなる群から選択される1種以上の金属イオンでイオン交換されており、ゼオライトの平均細孔径は、0.3~1.3nmであり、バインダーは、珪酸カルシウム又は珪酸マグネシウムであり、気体吸着材の空孔率は、40~80%である。
Manufacturing method of gas adsorbent The gas adsorbent of the present invention includes the following steps: a step of mixing zeolite, calcium oxide and a binder without adding water, and a step of compression molding the mixture ,
Wherein the zeolite is ion exchanged with one or more metal ions selected from the group consisting of copper, silver, gold, iron, zinc and nickel ions, The average pore diameter is 0.3 to 1.3 nm, the binder is calcium silicate or magnesium silicate, and the porosity of the gas adsorbent is 40 to 80%.
 ゼオライト、酸化カルシウム及びバインダーの混合手段に特に制限は無い。例えば、各成分を所望する質量比でV型ミキサー等の混合装置に投入して混合してもよい。
 混合工程において、水は添加されない。水を添加しないことにより、得られる気体吸着材の水分含有量を低くすることができる。
There is no particular limitation on the means for mixing zeolite, calcium oxide and binder. For example, the components may be mixed in a mixing device such as a V-shaped mixer at a desired mass ratio.
In the mixing process, no water is added. By not adding water, the moisture content of the obtained gas adsorbent can be lowered.
 得られた粉体状の混合物を、金型等の型に充填し、圧縮成形を行う。圧縮成形の前に、型を振動させて、粉体状の混合物をより密に、好ましくは最密状態に充填させてもよい。 The obtained powdery mixture is filled into a mold such as a mold, and compression molding is performed. Prior to compression molding, the mold may be vibrated to fill the powdery mixture more densely, preferably in a close-packed state.
 成形温度、成形圧力及び成形時間等の成形条件は、バインダー量又は気体吸着材の空孔率に合わせ、適宜調製することができる。
 好ましい成形温度は、10~40℃であり、より好ましくは15~35℃、更に好ましくは常温(25℃)である。成形温度が上記範囲であれば、取扱性に優れた気体吸着材を成形することができる。
 好ましい成形圧力は、50~200MPaであり、より好ましくは75~125MPaである。成形圧力が上記範囲であれば、本発明が目的とする範囲の空孔率を有する気体吸着材を成形することができる。
 好ましい成形時間は5~25秒であり、より好ましくは8~20秒である。成形時間が上記範囲であれば、本発明が目的とする範囲の空孔率を有する気体吸着材を成形することができる。
Molding conditions such as molding temperature, molding pressure and molding time can be appropriately adjusted according to the binder amount or the porosity of the gas adsorbent.
The molding temperature is preferably 10 to 40 ° C., more preferably 15 to 35 ° C., and still more preferably room temperature (25 ° C.). When the molding temperature is in the above range, a gas adsorbent excellent in handleability can be molded.
A preferable molding pressure is 50 to 200 MPa, and more preferably 75 to 125 MPa. When the molding pressure is in the above range, a gas adsorbent having a porosity in the range targeted by the present invention can be molded.
A preferable molding time is 5 to 25 seconds, and more preferably 8 to 20 seconds. When the molding time is in the above range, a gas adsorbent having a porosity in the range targeted by the present invention can be molded.
真空断熱材
 本発明の気体吸着材は、冷蔵庫や自動販売機に用いられる真空断熱材、冷凍タンクローリや機械設備に使用される真空断熱構造物、住宅建物用の真空ガラスサッシ等に用いられるが、好適には、真空断熱材に用いられる。真空断熱材は、芯材と、包装袋と、気体吸着材とを構成要素とし、芯材および気体吸着材が包装袋の内部に充填され、真空包装されてなるものである。
Vacuum heat insulating material The gas adsorbent of the present invention is used in vacuum heat insulating materials used in refrigerators and vending machines, vacuum heat insulating structures used in refrigeration tank trucks and machinery, vacuum glass sashes for residential buildings, etc. Preferably, it is used for a vacuum heat insulating material. The vacuum heat insulating material includes a core material, a packaging bag, and a gas adsorbing material as components, and the core material and the gas adsorbing material are filled in the packaging bag and vacuum packaged.
芯材
 芯材は、真空断熱材の断熱性を担う部材であり、無機繊維マットからなる。
 無機繊維とは、無機物からなる繊維であり、例えばガラス繊維(グラスウール等)、セラミック繊維、金属繊維等を挙げることができる。また、スラグ繊維、玄武岩繊維(ロックウール、バサルト繊維)等を用いることもできる。これらの中では、断熱性、成形加工性に優れるガラス繊維、玄武岩繊維が好ましい。具体的には、断熱吸音材として一般的に用いられているグラスウール、ロックウール等を好適に用いることができる。
Core material A core material is a member which bears the heat insulation of a vacuum heat insulating material, and consists of an inorganic fiber mat.
The inorganic fiber is a fiber made of an inorganic substance, and examples thereof include glass fiber (glass wool, etc.), ceramic fiber, metal fiber and the like. Moreover, slag fiber, basalt fiber (rock wool, basalt fiber), etc. can also be used. In these, the glass fiber and basalt fiber which are excellent in heat insulation and moldability are preferable. Specifically, glass wool, rock wool or the like generally used as a heat insulating sound absorbing material can be preferably used.
 無機繊維は、平均繊維径が3~7μmのものが好ましい。平均繊維径が3μm以上であれば、無機繊維の製造及び入手が容易となる。平均繊維径が7μm以下であれば、芯材として必要な断熱性能を得ることができる。 The inorganic fiber preferably has an average fiber diameter of 3 to 7 μm. If an average fiber diameter is 3 micrometers or more, manufacture and acquisition of an inorganic fiber will become easy. If an average fiber diameter is 7 micrometers or less, the heat insulation performance required as a core material can be obtained.
 前記無機繊維の製法は特に限定されないが、例えば遠心法等を挙げることができる。遠心法を用いて、例えばガラス繊維(グラスウール等)、スラグ繊維、玄武岩繊維(ロックウール等)等の無機繊維を製造することができる。 The method for producing the inorganic fiber is not particularly limited, and examples thereof include a centrifugal method. By using the centrifugal method, for example, inorganic fibers such as glass fibers (glass wool, etc.), slag fibers, basalt fibers (rock wool, etc.) can be produced.
 無機繊維マットとは、その厚さや密度に拘わらず、無機繊維が集積された集合物(ウエブ)を指す。前記芯材は、前記無機繊維マット1枚からなる単層体であってもよく、前記無機繊維マットが2~4枚積層された積層体であってもよい。 The inorganic fiber mat refers to an aggregate (web) in which inorganic fibers are accumulated regardless of the thickness and density. The core material may be a single layer made of one inorganic fiber mat or a laminate in which 2 to 4 inorganic fiber mats are laminated.
 芯材の密度(真空包装された状態での密度)は特に限定されないが、150~250kg/m3であることが好ましい。密度が150kg/m3以上の芯材は耐圧縮性に優れるため、芯材密度の上昇による断熱性能の低下が起こり難く、断熱性能に優れる。また、前記芯材は適度な剛性があるため、包装袋の内部に充填し易いことに加えて、真空断熱材を断熱箱に設置する際の作業性が良好となる。更に、前記芯材は適度な剛性があるために、寸法精度が高く、形状を保持する性能が高い真空断熱材を得ることができる。従って、真空断熱材を断熱箱に設置した際に断熱箱との間に隙間が生じ難く、高い断熱性能を発現させることができる。前記効果をより確実に得るためには、前記密度を180kg/m3以上とすることが更に好ましい。一方、前記密度を250kg/m3以下とすることによって、芯材を構成する無機繊維間に適度な空隙が保たれ、無機繊維同士が過度に接触せず、断熱性能を高めることができる。また、芯材に適度な可撓性、柔軟性を付与することができるため、真空断熱材の表面に不陸(多数の凸部)が形成され難い。従って、真空断熱材を断熱箱等に対して隙間なく設置することができ、断熱欠損が生じ難い。前記効果をより確実に得るためには、前記密度を220kg/m3以下とすることが更に好ましい。 The density of the core material (density in a vacuum packaged state) is not particularly limited, but is preferably 150 to 250 kg / m 3 . Since the core material having a density of 150 kg / m 3 or more is excellent in compression resistance, the heat insulation performance is hardly lowered due to an increase in the core material density, and the heat insulation performance is excellent. Moreover, since the said core material has moderate rigidity, in addition to being easy to fill the inside of a packaging bag, workability | operativity at the time of installing a vacuum heat insulating material in a heat insulation box becomes favorable. Furthermore, since the said core material has moderate rigidity, it can obtain a vacuum heat insulating material with high dimensional accuracy and high performance of maintaining the shape. Therefore, when the vacuum heat insulating material is installed in the heat insulating box, a gap is hardly generated between the heat insulating box and high heat insulating performance can be exhibited. In order to obtain the effect more reliably, the density is more preferably 180 kg / m 3 or more. On the other hand, by setting the density to 250 kg / m 3 or less, an appropriate gap is maintained between the inorganic fibers constituting the core material, the inorganic fibers do not contact each other excessively, and the heat insulation performance can be improved. Moreover, since moderate flexibility and softness can be imparted to the core material, unevenness (a large number of convex portions) is hardly formed on the surface of the vacuum heat insulating material. Therefore, the vacuum heat insulating material can be installed with no gap with respect to the heat insulating box or the like, and heat insulation defects are hardly generated. In order to obtain the effect more reliably, the density is further preferably set to 220 kg / m 3 or less.
 芯材の厚さ(真空包装された状態での厚さ)は特に限定されないが、5mm以上、30mm以下であることが好ましい。真空断熱材の断熱性能は、芯材の厚さと熱伝導率により決定される。従って、芯材の熱伝導率が低いことに加えて、芯材の厚さを一定以上とすることにより、断熱性能を高めることができる。そのような観点から、前記厚さを5mm以上とすることによって、高い断熱性能を得られ、しかも断熱性能の設計が容易となる。一方、前記厚さを30mm以下とすることによって、断熱箱に真空断熱材を設置する際の作業性が向上し、断熱箱に対する真空断熱材の接着作業等が容易になる。また、芯材の製造コストを抑制しつつ、必要な断熱性を付与することができる。 The thickness of the core material (thickness in a vacuum packaged state) is not particularly limited, but is preferably 5 mm or more and 30 mm or less. The heat insulating performance of the vacuum heat insulating material is determined by the thickness of the core material and the thermal conductivity. Therefore, in addition to the low thermal conductivity of the core material, the heat insulation performance can be enhanced by setting the thickness of the core material to a certain value or more. From such a point of view, by setting the thickness to 5 mm or more, high heat insulation performance can be obtained, and design of heat insulation performance can be facilitated. On the other hand, by setting the thickness to 30 mm or less, the workability when installing the vacuum heat insulating material in the heat insulating box is improved, and the work of bonding the vacuum heat insulating material to the heat insulating box becomes easy. Moreover, required heat insulation can be provided, suppressing the manufacturing cost of a core material.
 無機繊維マットは、前記のように無機繊維が集積されているだけでも構わないが、有機バインダーに由来する熱硬化性樹脂が付与された無機繊維マットであることが好ましい。このような無機繊維マットは、適度な剛性があり、潰れ難いため、芯材密度が上昇し難い。従って、無機繊維間の熱伝導が増加することに起因する断熱性能の低下が起こり難い。 As described above, the inorganic fiber mat may be simply an inorganic fiber accumulated, but is preferably an inorganic fiber mat provided with a thermosetting resin derived from an organic binder. Such an inorganic fiber mat has an appropriate rigidity and is not easily crushed, so that the core material density is hardly increased. Therefore, the heat insulation performance is hardly lowered due to the increase in heat conduction between the inorganic fibers.
 前記有機バインダーの種類は特に限定されないが、脱水縮合により重合体を形成し得る前駆体を好適に用いることができる。脱水縮合により形成される重合体としては、例えばアルデヒド縮合性樹脂、ポリエステル、ポリアミド等を挙げることができる。アルデヒド縮合性樹脂としては、例えばレゾール型フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、アセトグアナミン樹脂、尿素樹脂、フラン樹脂等を挙げることができる。中でも、レゾール型フェノール樹脂が好ましい。 The type of the organic binder is not particularly limited, but a precursor capable of forming a polymer by dehydration condensation can be suitably used. Examples of the polymer formed by dehydration condensation include aldehyde condensable resins, polyesters, polyamides, and the like. Examples of the aldehyde condensable resin include a resol type phenol resin, a melamine resin, a benzoguanamine resin, an acetoguanamine resin, a urea resin, and a furan resin. Among these, a resol type phenol resin is preferable.
 従って、前記有機バインダーとしては、これらの重合体(熱硬化性樹脂)を形成し得る前駆体、例えば、
 ホルムアルデヒドと、フェノールとの混合物(レゾール型フェノール樹脂の前駆体);
 ポリカルボン酸と、ポリオール(糖類を含む)、アミノアルコール、イミノアルコール及びポリアミンの群から選択される少なくとも1種の物質との混合物(ポリエステル、ポリアミドの前駆体);
等を用いることが好ましい。中でも、これらを成分とする水性バインダーを用いることが更に好ましい。
Therefore, as the organic binder, precursors that can form these polymers (thermosetting resins), for example,
A mixture of formaldehyde and phenol (a precursor of a resole phenolic resin);
A mixture of a polycarboxylic acid and at least one substance selected from the group of polyols (including saccharides), aminoalcohols, iminoalcohols and polyamines (polyesters, polyamide precursors);
Etc. are preferably used. Among these, it is more preferable to use an aqueous binder containing these as components.
 ホルムアルデヒドとフェノールとの混合物としては、ホルムアルデヒド/フェノールのモル比が2.5以上、3.5以下のものを用いることが好ましい。前記モル比を2.5以上とすると、未反応の遊離フェノールを減少させることができる。一方、前記モル比を3.5以下とすると、未反応の遊離ホルムアルデヒドを減少させることができる。 As the mixture of formaldehyde and phenol, it is preferable to use a formaldehyde / phenol molar ratio of 2.5 or more and 3.5 or less. When the molar ratio is 2.5 or more, unreacted free phenol can be reduced. On the other hand, when the molar ratio is 3.5 or less, unreacted free formaldehyde can be reduced.
 ポリカルボン酸/ポリオール等混合物としては、ポリオール等の(水酸基、アミノ基、イミノ基の総モル数)/カルボキシル基のモル数のモル比が、0.5以上、1.2以下のものを用いることが好ましい。前記モル比を0.5以上とすると、バインダーを構成する殆どの分子が硬化反応に関与して、未反応の遊離ポリカルボン酸を減少させることができる。前記効果をより確実に得るためには、前記モル比を0.7以上とすることが更に好ましい。一方、前記モル比を1.2以下とすると、未反応の遊離ポリオール等を減少させることができる。前記効果をより確実に得るためには、前記モル比を1.1以下とすることが更に好ましい。なお、未反応の遊離ポリカルボン酸、未反応の遊離ポリオール等を減少させることで、これらの物質が真空断熱材中において経時的にガス化し(アウトガス)、前記アウトガスによって真空断熱材の断熱性が低下する不具合を有効に防止することができる。 As the mixture of polycarboxylic acid / polyol, etc., those having a molar ratio of (the total number of moles of hydroxyl group, amino group and imino group) / number of moles of carboxyl groups, such as polyol, are 0.5 or more and 1.2 or less. It is preferable. When the molar ratio is 0.5 or more, most of the molecules constituting the binder can participate in the curing reaction, and unreacted free polycarboxylic acid can be reduced. In order to obtain the effect more reliably, the molar ratio is more preferably 0.7 or more. On the other hand, when the molar ratio is 1.2 or less, unreacted free polyol and the like can be reduced. In order to obtain the effect more reliably, the molar ratio is more preferably 1.1 or less. In addition, by reducing unreacted free polycarboxylic acid, unreacted free polyol, etc., these substances gasify over time in the vacuum heat insulating material (outgas), and the heat insulation property of the vacuum heat insulating material is increased by the outgas. The malfunction which falls can be prevented effectively.
 前記芯材における前記熱硬化性樹脂の含有率は、無機繊維と熱硬化性樹脂の合計質量に対し0.5質量%以上、5.0質量%以下であることが好ましい。前記含有率を0.5質量%以上とすることにより、前記芯材の剛性が高まり、真空包装時に芯材が潰れ難くなるため、断熱性能の低下が起こり難い。また、芯材が垂れ難くなり、芯材の搬送や包装袋への充填等、ハンドリング性が向上する。前記効果をより確実に得るためには、前記含有率を1.0質量%以上とすることが更に好ましい。一方、前記含有率を5.0質量%以下とすると、前記熱硬化性樹脂の熱伝導に起因する断熱性能の低下が起こり難い。また、前記熱硬化性樹脂に由来するアウトガスの発生が抑制され、前記アウトガスに起因する断熱性能の低下が起こり難い。前記効果をより確実に得るためには、前記含有率を3.0%以下とすることが更に好ましい。なお、熱硬化性樹脂の含有率は、強熱減量法(LOI:Loss of Ignition)により測定された強熱減量に基づき算出される。強熱減量の測定は、有機バインダーを付着させ、乾燥させたマット状物の乾燥試料を約550℃で強熱することにより減少した質量を測定することにより行う。 The content of the thermosetting resin in the core material is preferably 0.5% by mass or more and 5.0% by mass or less with respect to the total mass of the inorganic fibers and the thermosetting resin. By setting the content to 0.5% by mass or more, the rigidity of the core material is increased, and the core material is not easily crushed during vacuum packaging. In addition, the core material is less likely to sag, and handling properties such as transportation of the core material and filling of the packaging bag are improved. In order to acquire the said effect more reliably, it is still more preferable that the said content rate shall be 1.0 mass% or more. On the other hand, when the content is 5.0% by mass or less, the heat insulation performance is hardly lowered due to the heat conduction of the thermosetting resin. Moreover, generation | occurrence | production of the outgas originating in the said thermosetting resin is suppressed, and the fall of the heat insulation performance resulting from the said outgas does not occur easily. In order to acquire the said effect more reliably, it is still more preferable that the said content rate shall be 3.0% or less. In addition, the content rate of a thermosetting resin is calculated based on the ignition loss measured by the ignition loss method (LOI: Loss of Ignition). The loss on ignition is measured by measuring the mass reduced by igniting a dried sample of the mat-like material to which the organic binder has been adhered and dried at about 550 ° C.
包装袋
 包装袋は、ガスバリア性のシート材からなる袋体である。包装袋によって、袋体内部の真空状態が維持され、袋体内部への水分やガスの流入を防止することができる。
Packaging Bag The packaging bag is a bag made of a gas barrier sheet material. By the packaging bag, the vacuum state inside the bag body is maintained, and the inflow of moisture and gas into the bag body can be prevented.
 ガスバリア性を有する限り、シート材の種類は特に限定されない。例えば、
 ポリエステル、ポリエチレン、ポリアミド、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリプロピレン等の樹脂からなる樹脂フィルム;
 クラフト紙の表面が前記樹脂フィルムで被覆されたラミネートフィルム;
 金属箔の表面が前記樹脂フィルムで被覆されたラミネートフィルム;
 前記樹脂フィルムに金属が蒸着された金属蒸着フィルム;
等を好適に用いることができる。前記金属箔、蒸着用の金属としては、ガスバリア性に優れるアルミニウムが好ましい。用途によっては真空断熱材の片側面を金属箔フィルム、もう片面を蒸着フィルム面にした複合フィルムを用いる事ができる。
The type of sheet material is not particularly limited as long as it has gas barrier properties. For example,
Resin films made of resins such as polyester, polyethylene, polyamide, polyvinyl chloride, polyvinylidene chloride, polystyrene, polypropylene;
Laminated film in which the surface of kraft paper is coated with the resin film;
A laminated film in which the surface of the metal foil is coated with the resin film;
A metal-deposited film in which a metal is deposited on the resin film;
Etc. can be used suitably. As said metal foil and the metal for vapor deposition, the aluminum which is excellent in gas barrier property is preferable. Depending on the application, a composite film in which one side of the vacuum heat insulating material is a metal foil film and the other side is a vapor deposition film can be used.
 前記シート材には、前記シート材が積層された積層シートも含まれる。中でも、最外層に保護フィルム、中間層にガスバリア性フィルム、最内層に融着性フィルムを備えた積層シートが好ましい。例えば、前記保護フィルムが、ポリアミド樹脂フィルム又はポリエチレンテレフタレート樹脂フィルムにより構成され、前記ガスバリア性フィルムが、アルミニウム箔、アルミニウム箔ラミネートフィルム又はアルミニウム蒸着フィルムにより構成され、前記融着性フィルムが、低密度ポリエチレン樹脂フィルム、高密度ポリエチレン樹脂フィルム、ポリプロピレン樹脂フィルム又はエチレン-ビニルアルコール共重合体樹脂フィルムにより構成された積層シートを好適に用いることができる。なお、前記融着性フィルムは、前記シート材の周縁部同士を融着させる目的で積層シートの最内層に配置されている。
 積層シートを構成する各フィルムの厚さについては特に限定されないが、保護フィルムの厚さ及びガスバリア性フィルムの厚さは10μm以上、25μm以下であることが好ましい。前記厚さを10μm以上とすることにより、包装袋の破損を有効に防止することができる。一方、前記厚さを25μm以下とすることにより、包装袋の熱橋(ヒートブリッジ)を少なくすることができる。
The sheet material includes a laminated sheet in which the sheet materials are laminated. Among these, a laminated sheet having a protective film as the outermost layer, a gas barrier film as the intermediate layer, and a fusible film as the innermost layer is preferable. For example, the protective film is composed of a polyamide resin film or a polyethylene terephthalate resin film, the gas barrier film is composed of an aluminum foil, an aluminum foil laminate film, or an aluminum vapor deposition film, and the fusible film is a low-density polyethylene. A laminated sheet composed of a resin film, a high-density polyethylene resin film, a polypropylene resin film, or an ethylene-vinyl alcohol copolymer resin film can be suitably used. The fusible film is disposed in the innermost layer of the laminated sheet for the purpose of fusing the peripheral edges of the sheet material.
Although the thickness of each film which comprises a lamination sheet is not specifically limited, It is preferable that the thickness of a protective film and the thickness of a gas barrier film are 10 micrometers or more and 25 micrometers or less. By making the thickness 10 μm or more, the packaging bag can be effectively prevented from being damaged. On the other hand, when the thickness is 25 μm or less, the thermal bridge (heat bridge) of the packaging bag can be reduced.
 融着性フィルムの厚さは、25μm以上、60μm以下であることが好ましい。前記厚さを25μm以上とすることにより、融着性フィルム同士を融着させた融着部の密封性を高めることができ、真空包装後において融着部からの漏れ(リーク)発生し難くなる。前記効果をより確実に得るためには、前記厚さを30μm以上とすることが更に好ましい。一方、前記厚さを60μm以下とすることにより、包装袋の熱橋(ヒートブリッジ)を少なくすることができる。前記効果をより確実に得るためには、前記厚さを50μm以下とすることが更に好ましい。 The thickness of the fusible film is preferably 25 μm or more and 60 μm or less. By setting the thickness to 25 μm or more, it is possible to improve the sealing performance of the fused portion where the fusible films are fused together, and it is difficult for leakage from the fused portion to occur after vacuum packaging. . In order to obtain the effect more reliably, the thickness is further preferably set to 30 μm or more. On the other hand, when the thickness is 60 μm or less, the thermal bridge (heat bridge) of the packaging bag can be reduced. In order to obtain the effect more reliably, the thickness is more preferably 50 μm or less.
 なお、包装袋のサイズは特に限定されず、芯材が充填可能なサイズに構成されていればよい。 It should be noted that the size of the packaging bag is not particularly limited as long as it is configured to be a size that can be filled with the core material.
真空度
 本発明の真空断熱材は、前記芯材および前記ガス吸着材が前記包装袋の内部に充填され、真空包装されてなるものである。包装袋の内部の真空度(残存気体の圧力)は0.1Pa以上、10Pa以下であることが好ましい。真空度を下げるほど、得られる真空断熱材の断熱性能は向上するが、その分、真空包装に要する時間が長くなり、生産性が低下する。真空度を0.1Pa以上とすることによって、真空引きに要する時間が短縮され、効率的に真空断熱材を製造することができる。一方、前記真空度を10Pa以下とすることによって、真空断熱材として十分な断熱効果が発揮される。前記効果をより確実に得るためには、前記真空度を5Pa以下とすることが更に好ましい。
Degree of vacuum The vacuum heat insulating material of the present invention is obtained by filling the inside of the packaging bag with the core material and the gas adsorbing material and vacuum-packaging them. The degree of vacuum inside the packaging bag (residual gas pressure) is preferably 0.1 Pa or more and 10 Pa or less. As the degree of vacuum is lowered, the heat insulation performance of the obtained vacuum heat insulating material is improved, but the time required for vacuum packaging is increased correspondingly, and the productivity is lowered. By setting the degree of vacuum to 0.1 Pa or more, the time required for evacuation is shortened, and a vacuum heat insulating material can be efficiently manufactured. On the other hand, when the degree of vacuum is 10 Pa or less, a sufficient heat insulating effect as a vacuum heat insulating material is exhibited. In order to obtain the effect more reliably, the degree of vacuum is more preferably 5 Pa or less.
真空断熱材の製造方法
 本発明の真空断熱材は前記構成を有する限り、いかなる製造方法により製造してもよい。以下、本発明の真空断熱材の製造方法の例を示す。
Manufacturing method of vacuum heat insulating material The vacuum heat insulating material of the present invention may be manufactured by any manufacturing method as long as it has the above configuration. Hereinafter, the example of the manufacturing method of the vacuum heat insulating material of this invention is shown.
無機繊維マットの製造
 無機繊維マットの製造方法は特に限定されない
 まず、無機繊維を紡出させる繊維化工程では、遠心法(ロータリー法)、紡糸法等により繊維化を行う。遠心法による繊維化が経済性の点で好ましい。
 次いで、紡出された無機繊維にスプレー式にて有機バインダーを付与する。
 更に、有機バインダーが付与された無機繊維を加熱し成形する(マット化工程)。有機バインダーが付与された無機繊維を、繊維化装置の下方に配置されたメッシュベルトコンベアに集積し、熱風オーブンに搬送する。そして、無機繊維を、コンベア間に送り込み、所定の厚さに圧縮する。圧縮された無機繊維は熱風オーブンの内部を通過する際に加熱され、付着された有機バインダーが熱硬化される。このような工程により、無機繊維がマット状に成形された無機繊維マットを製造することができる。
Production of inorganic fiber mat The production method of the inorganic fiber mat is not particularly limited. First, in the fiberizing step of spinning inorganic fibers, fiberization is performed by a centrifugal method (rotary method), a spinning method, or the like. The fiberization by the centrifugal method is preferable from the viewpoint of economy.
Next, an organic binder is applied to the spun inorganic fibers by a spray method.
Furthermore, the inorganic fiber to which the organic binder has been applied is heated and molded (matting step). Inorganic fibers to which an organic binder has been applied are accumulated on a mesh belt conveyor disposed below the fiberizing apparatus and conveyed to a hot air oven. And inorganic fiber is sent between conveyors and compressed to predetermined thickness. The compressed inorganic fiber is heated when it passes through the hot air oven, and the attached organic binder is thermally cured. By such a process, an inorganic fiber mat in which inorganic fibers are formed into a mat shape can be produced.
 前記マット化工程において、加熱温度は150~300℃、加熱時間は60~300秒であることが好ましい。加熱温度を150℃以上、加熱時間を60秒以上とすることにより、前記有機バインダーの熱硬化を十分に進行させることができる。従って、アウトガスの原因となる未反応の低分子量物質を減少させることができ、また、無機繊維マットに付着した水分を減少させることができる。加熱温度を300℃以下、300秒以下とすることにより、前記有機バインダーに由来する熱硬化性樹脂の分解を抑制することができ、また、過剰な加熱を行わないことで生産性を向上させることができる。 In the matting step, the heating temperature is preferably 150 to 300 ° C., and the heating time is preferably 60 to 300 seconds. By setting the heating temperature to 150 ° C. or more and the heating time to 60 seconds or more, the organic binder can be sufficiently cured by heat. Therefore, unreacted low molecular weight substances that cause outgassing can be reduced, and moisture adhering to the inorganic fiber mat can be reduced. By setting the heating temperature to 300 ° C. or less and 300 seconds or less, decomposition of the thermosetting resin derived from the organic binder can be suppressed, and productivity is improved by not performing excessive heating. Can do.
 前記無機繊維マットの密度は、32kg/m3以上、100kg/m3以下であることが好ましい。前記密度を32kg/m3以上とすることにより、一定の剛性が付与され、包装袋に充填する際のハンドリング性が向上する。前記効果をより確実に得るためには、前記密度を48kg/m3以上とすることが更に好ましい。一方、100kg/m3以下とすることにより、真空包装の際の芯材の密度上昇および断熱性能の経時的な低下を抑制することができる。前記効果をより確実に得るためには、前記密度を90kg/m3以下とすることが更に好ましい。 The density of the inorganic fiber mat is preferably 32 kg / m 3 or more and 100 kg / m 3 or less. By setting the density to 32 kg / m 3 or more, a certain rigidity is imparted, and handling properties when filling the packaging bag are improved. In order to obtain the effect more reliably, the density is more preferably 48 kg / m 3 or more. On the other hand, by setting it as 100 kg / m < 3 > or less, the density increase of the core material in the case of vacuum packaging and the time-dependent fall of heat insulation performance can be suppressed. In order to obtain the effect more reliably, the density is more preferably 90 kg / m 3 or less.
 また、前記無機繊維マットの厚さは、10mm以上、50mm以下であることが好ましい。前記厚さを10mm以上とすることにより、マットを製造し易くなる。前記効果をより確実に得るためには、前記厚さを25mm以上とすることが更に好ましい。一方、前記厚さを50mm以下とすることにより、包装袋に充填する際のハンドリング性が向上する。前記効果をより確実に得るためには、前記厚さを45mm以下とすることが更に好ましい。 The thickness of the inorganic fiber mat is preferably 10 mm or more and 50 mm or less. By making the thickness 10 mm or more, the mat can be easily manufactured. In order to obtain the effect more reliably, the thickness is more preferably 25 mm or more. On the other hand, the handling property at the time of filling a packaging bag improves by making the said thickness into 50 mm or less. In order to obtain the effect more reliably, the thickness is further preferably set to 45 mm or less.
 前記無機繊維マットは、真空包装前に加熱して強制乾燥させることにより無機繊維に付着している水分を除去してもよい。強制乾燥は、例えば遠赤外線オーブン、熱風オーブンを用いて行うことができる。加熱温度は特に限定されないが、水分を素早く除去するためには130℃以上とすることが好ましく、150℃以上とすることが更に好ましい。 The inorganic fiber mat may be removed by heating and forced drying before vacuum packaging to remove water adhering to the inorganic fibers. Forced drying can be performed using, for example, a far-infrared oven or a hot air oven. The heating temperature is not particularly limited, but is preferably 130 ° C. or higher and more preferably 150 ° C. or higher in order to quickly remove moisture.
真空包装
 最後に、前記芯材及び気体吸着材を包装袋に充填して真空包装する。真空包装は従来公知の方法に準じて行うことができる。例えば、前記芯材及び気体吸着材の内部に充填した後、前記包装袋の内部を真空度が0.1~10Paとなるまで真空引きし、前記包装袋の開口部をヒートシールする方法等を挙げることができる。
Vacuum packaging Finally, the core material and the gas adsorbent are filled in a packaging bag and vacuum packaged. Vacuum packaging can be performed according to a conventionally known method. For example, a method of filling the inside of the core material and the gas adsorbing material and then evacuating the inside of the packaging bag until the degree of vacuum becomes 0.1 to 10 Pa, and heat-sealing the opening of the packaging bag, etc. Can be mentioned.
 また、前記芯材及び気体吸着材を予め袋状に形成された包装袋に充填するのではなく、前記芯材及び前記気体吸着材を上下2枚のガスバリア性のシート材で挟み、前記2枚のシート材の周縁部を融着させて前記シート材からなる包装袋を形成し、前記芯材及び前記気体吸着材を前記包装袋の内部に充填してもよい。
 なお、前記気体吸着材は、真空包装前に、300~600℃の温度条件下で、3~12時間乾燥することが好ましい。また、前記ガスバリア性のシート材は、芯材を充填する前に、50~100℃の温度条件下で、60~120分乾燥することが好ましい。これらの乾燥により、気体吸着材及び包装袋に吸着されている水分が除去され、得られる真空断熱材の内部に水分が混入しないようにすることができる。従って、真空断熱材の断熱性を向上させることが可能となる。
Further, the core material and the gas adsorbing material are not filled in a bag formed in advance in a bag shape, but the core material and the gas adsorbing material are sandwiched between two upper and lower gas barrier sheet materials, and the two sheets The sheet material may be fused to form a packaging bag made of the sheet material, and the core material and the gas adsorbing material may be filled into the packaging bag.
The gas adsorbent is preferably dried for 3 to 12 hours under a temperature condition of 300 to 600 ° C. before vacuum packaging. The gas barrier sheet material is preferably dried at a temperature of 50 to 100 ° C. for 60 to 120 minutes before filling the core material. By these drying, the moisture adsorbed on the gas adsorbing material and the packaging bag is removed, and the moisture can be prevented from being mixed into the obtained vacuum heat insulating material. Therefore, it becomes possible to improve the heat insulation of a vacuum heat insulating material.
 真空断熱材は、冷蔵庫、自動販売機、冷凍タンクローリ、機械設備、住宅建物用の真空ガラスサッシ等に用いることができる。 Vacuum insulation can be used for refrigerators, vending machines, refrigerated tank trucks, mechanical equipment, vacuum glass sashes for residential buildings, and the like.
 以下、本発明について、実施例により詳細に説明する。しかしながら、本発明は、実施例に制限されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to the examples.
実施例1
 銅でイオン交換した平均細孔径1.1nmのY型ゼオライト(イオン交換率85%、平均粒径5μm)10質量部、平均粒子径45μmの酸化カルシウム80質量部、長辺の平均長さ17μmの板状結晶のトバモライト10質量部をV型ミキサに投入して、乾式混合して、気体吸着用混合物を得た。内径30mm、深さ5mmの円筒形の金型に上記混合物を充填し、25℃の環境下で、加熱せずにプレス機により100MPaで10秒間押圧して、気体吸着材1を得た。気体吸着材1の空孔率は55%であった。
 ポリエチレン(密度0.94g/cm3、厚さ50μm)、アルミ箔(厚さ6.5μm)、ポリエチレンテレフタレート(厚さ12μm)及びポリアミド(厚さ25μm)をこの順に積層して構成されたガスバリア性フィルム(ウレタン系接着剤を含む総厚み100μm)2枚の外皮材を、互いのポリエチレン層が接するように重ね、芯材の挿入のための開口部を残して外周部をヒートシールし、袋状に形成した。
 ガラス繊維マット(平均繊維径7μm、厚さ45mm、密度64kg/m3、バインダーの樹脂付着量1.4%、フェノール-ホルムアルデヒド樹脂バインダー(ホルムアルデヒド/フェノールのモル比3.0)を180℃の熱風で2分間硬化させて成形した)を2枚積層し、150℃で30分乾燥して芯材を得た。
  芯材及び気体吸着材1を袋状の外皮材に挿入し、真空包装機内に置き、真空包装機内をペニング真空計で2Paの測定値が得られるまで減圧し、ヒートシールして外皮材の開口部を密封し、耳部を有する実施例1の真空断熱材を得た。耳折り後の真空断熱材は、縦670mm、横390mm、厚さ15mmの大きさであり、芯材密度は210kg/m3であった。
Example 1
10 parts by mass of Y-zeolite with an average pore diameter of 1.1 nm (ion exchange rate 85%, average particle diameter 5 μm) ion-exchanged with copper, 80 parts by mass of calcium oxide with an average particle diameter of 45 μm, and an average length of 17 μm on the long side 10 parts by mass of plate-like tobermorite was put into a V-type mixer and dry-mixed to obtain a gas adsorption mixture. The above mixture was filled in a cylindrical mold having an inner diameter of 30 mm and a depth of 5 mm, and the gas adsorbent 1 was obtained by pressing with a press machine at 100 MPa for 10 seconds without heating in an environment of 25 ° C. The porosity of the gas adsorbent 1 was 55%.
Gas barrier property formed by laminating polyethylene (density 0.94 g / cm 3 , thickness 50 μm), aluminum foil (thickness 6.5 μm), polyethylene terephthalate (thickness 12 μm) and polyamide (thickness 25 μm) in this order. Two sheets of film (total thickness 100μm including urethane adhesive) are stacked so that the polyethylene layers are in contact with each other, and the outer periphery is heat-sealed, leaving an opening for insertion of the core material. Formed.
Glass fiber mat (average fiber diameter 7 μm, thickness 45 mm, density 64 kg / m 3 , binder resin adhesion 1.4%, phenol-formaldehyde resin binder (formaldehyde / phenol molar ratio 3.0) hot air at 180 ° C. Were cured for 2 minutes and then molded) and dried at 150 ° C. for 30 minutes to obtain a core material.
Insert the core material and gas adsorbent 1 into the bag-shaped outer shell material, place it in the vacuum packaging machine, depressurize the vacuum packaging machine with a Penning vacuum gauge until a measured value of 2 Pa is obtained, heat seal it, and open the outer shell material. The part was sealed and the vacuum heat insulating material of Example 1 which has an ear | edge part was obtained. Vacuum insulation material after folding ear, vertical 670 mm, horizontal 390 mm, a size of a thickness of 15 mm, the core density was 210 kg / m 3.
実施例2
 銅でイオン交換した平均細孔径1.1nmのY型ゼオライト(イオン交換率82%、平均粒径5μm)30質量部、平均粒子径45μmの酸化カルシウム50質量部、長辺の平均長さ17μmの板状結晶のトバモライト20質量部をV型ミキサに投入して、乾式混合して、気体吸着用混合物を得た。内径30mm、深さ5mmの円筒形の金型に上記混合物を充填し、25℃の環境下で、加熱せずにプレス機により100MPaで10秒間押圧して、気体吸着材2を得た以外は、実施例1と同様にして実施例2の真空断熱材を得た。気体吸着材2の空孔率は55%であった。
Example 2
30 parts by mass of Y-zeolite having an average pore diameter of 1.1 nm (ion exchange rate 82%, average particle diameter 5 μm) ion-exchanged with copper, 50 parts by mass of calcium oxide having an average particle diameter of 45 μm, and an average length of 17 μm on the long side 20 parts by mass of plate-like tobermorite was put into a V-type mixer and dry-mixed to obtain a gas adsorption mixture. The gas adsorbent 2 was obtained except that the above mixture was filled in a cylindrical mold having an inner diameter of 30 mm and a depth of 5 mm, and was pressed at 100 MPa for 10 seconds with a press machine without heating in an environment of 25 ° C. In the same manner as in Example 1, a vacuum heat insulating material of Example 2 was obtained. The porosity of the gas adsorbent 2 was 55%.
実施例3
 銀でイオン交換した平均細孔径1.1nmのY型ゼオライト(イオン交換率93%、平均粒径5μm)10質量部、平均粒子径45μmの酸化カルシウム80質量部、長辺の平均長さ65μmの針状結晶のウォラストナイト10質量部をV型ミキサに投入して、乾式混合して、気体吸着用混合物を得た。内径30mm、深さ5mmの円筒形の金型に上記混合物を充填し、25℃の環境下で、加熱せずにプレス機により100MPaで15秒間押圧して、気体吸着材3を得た以外は、実施例1と同様にして実施例3の真空断熱材を得た。気体吸着材3の空孔率は46%であった。
Example 3
10 parts by mass of Y-zeolite having an average pore diameter of 1.1 nm (ion exchange rate of 93%, average particle diameter of 5 μm) ion-exchanged with silver, 80 parts by mass of calcium oxide having an average particle diameter of 45 μm, and an average length of 65 μm on the long side Ten parts by mass of acicular wollastonite was put into a V-type mixer and dry-mixed to obtain a gas adsorption mixture. The gas adsorbent 3 was obtained except that the above mixture was filled in a cylindrical mold having an inner diameter of 30 mm and a depth of 5 mm, and pressed at 100 MPa for 15 seconds with a press machine without heating in an environment of 25 ° C. The vacuum heat insulating material of Example 3 was obtained in the same manner as Example 1. The porosity of the gas adsorbent 3 was 46%.
実施例4
 銅でイオン交換した平均細孔径0.5nmのZSM-5型ゼオライト(イオン交換率82%、平均粒径6μm、イオン交換前のゼオライトNa+ 39(H2O)16|[Al39Si57O192])10質量部、平均粒子径45μmの酸化カルシウム80質量部、平均粒子径10μmのポルトランドセメント10質量部をV型ミキサに投入して、乾式混合して、気体吸着用混合物を得た。内径30mm、深さ5mmの円筒形の金型に上記混合物を充填し、25℃の環境下で、加熱せずにプレス機により100MPaで10秒間押圧して、気体吸着材4を得た。気体吸着材4の空孔率は57%であった。
Example 4
ZSM-5 zeolite with an average pore size of 0.5 nm ion-exchanged with copper (ion exchange rate 82%, average particle size 6 μm, zeolite Na + 39 (H 2 O) 16 | [Al 39 Si 57 O before ion exchange) 192 ]) 10 parts by mass, 80 parts by mass of calcium oxide having an average particle diameter of 45 μm and 10 parts by mass of Portland cement having an average particle diameter of 10 μm were put into a V-type mixer and dry-mixed to obtain a gas adsorption mixture. The above mixture was filled in a cylindrical mold having an inner diameter of 30 mm and a depth of 5 mm, and was pressed at 100 MPa for 10 seconds with a press machine without heating in an environment of 25 ° C. to obtain a gas adsorbent 4. The porosity of the gas adsorbent 4 was 57%.
 ポリエチレン(密度0.94g/cm3、厚さ50μm)、アルミ蒸着エチレン-ビニルアルコール共重合フィルム(厚さ12μm)、アルミ蒸着ポリエチレンテレフタレート(厚さ12μm)及びポリアミド(厚さ15μm)をこの順に積層して構成されたガスバリア性フィルム(ウレタン系接着剤を含む総厚み105μm)2枚の外皮材を、互いのポリエチレン層が接するように重ね、芯材の挿入のための開口部を残して外周部をヒートシールし、袋状に形成した。
 ガラス繊維マット(平均繊維径7μm、厚さ45mm、密度64kg/m3、バインダーの樹脂付着量1.4%、フェノール-ホルムアルデヒド樹脂バインダー(ホルムアルデヒド/フェノールのモル比3.0)を180℃の熱風で2分間硬化させて成形した)を2枚積層し、150℃で30分乾燥して芯材を得た。
  芯材及び気体吸着材4を袋状の外皮材に挿入し、真空包装機内に置き、真空包装機内をペニング真空計で2Paの測定値が得られるまで減圧し、ヒートシールして外皮材の開口部を密封し、耳部を有する実施例4の真空断熱材を得た。耳折り後の真空断熱材は、縦670mm、横390mm、厚さ15mmの大きさであり、芯材密度は210kg/m3であった。
Polyethylene (density 0.94 g / cm 3 , thickness 50 μm), aluminum-deposited ethylene-vinyl alcohol copolymer film (thickness 12 μm), aluminum-deposited polyethylene terephthalate (thickness 12 μm) and polyamide (thickness 15 μm) are laminated in this order. 2 gas barrier films (total thickness 105 μm including urethane adhesive) are stacked so that the polyethylene layers are in contact with each other, leaving an opening for inserting the core material Was heat sealed to form a bag.
Glass fiber mat (average fiber diameter 7 μm, thickness 45 mm, density 64 kg / m 3 , binder resin adhesion 1.4%, phenol-formaldehyde resin binder (formaldehyde / phenol molar ratio 3.0) hot air at 180 ° C. Were cured for 2 minutes and then molded) and dried at 150 ° C. for 30 minutes to obtain a core material.
Insert the core material and gas adsorbing material 4 into the bag-shaped outer shell material, place it in the vacuum packaging machine, depressurize the vacuum packaging machine with a Penning vacuum gauge until a measured value of 2 Pa is obtained, heat seal and open the outer skin material The part was sealed and the vacuum heat insulating material of Example 4 which has an ear | edge part was obtained. The vacuum heat insulating material after the ear folding was 670 mm long, 390 mm wide and 15 mm thick, and the core material density was 210 kg / m 3 .
実施例5
 銅でイオン交換した平均細孔径1.1nmのY型ゼオライト(イオン交換率93%、平均粒径5μm)10質量部、平均粒子径45μmの酸化カルシウム80質量部、長辺の平均長さ50μmの針状結晶のセピオライト10質量部をV型ミキサに投入して、乾式混合して、気体吸着用混合物を得た。内径30mm、深さ5mmの円筒形の金型に上記混合物を充填し、25℃の環境下で、加熱せずにプレス機により100MPaで15秒間押圧して、気体吸着材5を得た以外は、実施例1と同様にして実施例5の真空断熱材を得た。気体吸着材5の空孔率は48%であった。
Example 5
10 parts by mass of Y-zeolite having an average pore size of 1.1 nm ion-exchanged with copper (93% ion exchange rate, average particle size 5 μm), 80 parts by mass of calcium oxide having an average particle size of 45 μm, and an average length of 50 μm on the long side Ten parts by mass of needle-shaped sepiolite was put into a V-type mixer and dry-mixed to obtain a gas adsorption mixture. The gas adsorbent 5 was obtained except that the above mixture was filled in a cylindrical mold having an inner diameter of 30 mm and a depth of 5 mm, and pressed at 100 MPa for 15 seconds with a press machine without heating in an environment of 25 ° C. In the same manner as in Example 1, a vacuum heat insulating material of Example 5 was obtained. The porosity of the gas adsorbent 5 was 48%.
比較例1
 銅でイオン交換した平均細孔径1.1nmのY型ゼオライト(イオン交換率82%、平均粒径5μm)10質量部、平均粒子径45μmの酸化カルシウム90質量部をV型ミキサに投入して、乾式混合して、気体吸着用混合物を得た。内径30mm、深さ5mmの円筒形の金型に上記混合物を充填し、25℃の環境下で、加熱せずにプレス機により100MPaで10秒間押圧して、気体吸着材6を得た。気体吸着材6の空孔率は38%であった。
 実施例1と同様にして、比較例1の真空断熱材を得た。
Comparative Example 1
10 parts by mass of Y-zeolite having an average pore diameter of 1.1 nm (ion exchange rate 82%, average particle diameter 5 μm) ion-exchanged with copper and 90 parts by mass of calcium oxide having an average particle diameter of 45 μm were put into a V-type mixer, Dry mixing was performed to obtain a gas adsorption mixture. The above mixture was filled in a cylindrical mold having an inner diameter of 30 mm and a depth of 5 mm, and was pressed at 100 MPa for 10 seconds with a press machine without heating in an environment of 25 ° C. to obtain a gas adsorbent 6. The porosity of the gas adsorbent 6 was 38%.
In the same manner as in Example 1, a vacuum heat insulating material of Comparative Example 1 was obtained.
比較例2
 平均粒子径45μmの酸化カルシウム100質量部を内径30mm、深さ5mmの円筒形の金型に充填し、25℃の環境下で、加熱せずにプレス機により100MPaで10秒間押圧して、気体吸着材7を得た。気体吸着材7の空孔率は35%であった。
 実施例1と同様にして、比較例2の真空断熱材を得た。
Comparative Example 2
100 parts by mass of calcium oxide having an average particle size of 45 μm is filled into a cylindrical mold having an inner diameter of 30 mm and a depth of 5 mm, and is pressed at 100 MPa for 10 seconds by a press machine without heating in an environment of 25 ° C. Adsorbent 7 was obtained. The porosity of the gas adsorbent 7 was 35%.
In the same manner as in Example 1, a vacuum heat insulating material of Comparative Example 2 was obtained.
比較例3
 銅でイオン交換した平均細孔径1.1nmのY型ゼオライト(イオン交換率85%、平均粒径5μm)90質量部、平均長辺の平均長さ17μmの板状結晶のトバモライト10質量部をV型ミキサに投入して、乾式混合して、気体吸着用混合物を得た。内径30mm、深さ5mmの円筒形の金型に上記混合物を充填し、25℃の環境下で、加熱せずにプレス機により100MPaで10秒間押圧して、気体吸着材8を得た。気体吸着材8の空孔率は75%であった。
 実施例1と同様にして、比較例3の真空断熱材を得た。
Comparative Example 3
90 parts by mass of Y-zeolite having an average pore diameter of 1.1 nm (ion exchange rate of 85%, average particle diameter of 5 μm) ion-exchanged with copper and 10 parts by mass of tobermorite of plate-like crystals having an average long side of 17 μm in average length The mixture was put into a mold mixer and dry-mixed to obtain a gas adsorption mixture. The above mixture was filled in a cylindrical mold having an inner diameter of 30 mm and a depth of 5 mm, and was pressed at 100 MPa for 10 seconds with a press machine without heating in an environment of 25 ° C. to obtain a gas adsorbent 8. The porosity of the gas adsorbent 8 was 75%.
In the same manner as in Example 1, a vacuum heat insulating material of Comparative Example 3 was obtained.
比較例4
 イオン交換を施さない平均細孔径0.5nmのZSM-5型ゼオライト(平均粒径6μm、Na+ 39(H2O)16|[Al39Si57O192])10質量部、平均粒子径45μmの酸化カルシウム80質量部、平均粒子径10μmのポルトランドセメント10質量部をV型ミキサに投入して、乾式混合して、気体吸着用混合物を得た。内径30mm、深さ5mmの円筒形の金型に上記混合物を充填し、25℃の環境下で、加熱せずにプレス機により100MPaで10秒間押圧して、気体吸着材9を得た。気体吸着材9の空孔率は55%であった。
 実施例1と同様にして、比較例4の真空断熱材を得た。
Comparative Example 4
ZSM-5 type zeolite (average particle size 6 μm, Na + 39 (H 2 O) 16 | [Al 39 Si 57 O 192 ]) 10 parts by mass, average particle size 45 μm 80 parts by mass of calcium oxide and 10 parts by mass of Portland cement having an average particle diameter of 10 μm were put into a V-type mixer and dry-mixed to obtain a gas adsorption mixture. The above mixture was filled in a cylindrical mold having an inner diameter of 30 mm and a depth of 5 mm, and was pressed at 100 MPa for 10 seconds with a press machine without heating in an environment of 25 ° C. to obtain a gas adsorbent 9. The porosity of the gas adsorbent 9 was 55%.
In the same manner as in Example 1, a vacuum heat insulating material of Comparative Example 4 was obtained.
評価例1
 実施例1~4、比較例1~4の真空断熱材を、JIS A1412に準じて、20℃での熱伝導率を熱流計法で測定した。
Evaluation Example 1
The thermal conductivity at 20 ° C. of the vacuum heat insulating materials of Examples 1 to 4 and Comparative Examples 1 to 4 was measured by a heat flow meter method according to JIS A1412.
評価例2
 実施例1~4、比較例1~4の真空断熱材を、90℃の乾燥機内で30日静置させた後、JIS A1412に準じて、20℃での熱伝導率を熱流計法で測定した。
Evaluation example 2
The vacuum heat insulating materials of Examples 1 to 4 and Comparative Examples 1 to 4 were allowed to stand in a dryer at 90 ° C. for 30 days, and then the thermal conductivity at 20 ° C. was measured by a heat flow meter method according to JIS A1412. did.
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000005
 本発明の気体吸着材は、冷蔵庫や自動販売機に用いられる真空断熱材、冷凍タンクローリや機械設備に使用される真空断熱構造物、住宅建物用の真空ガラスサッシ等への適用において有用である。 The gas adsorbent of the present invention is useful in application to vacuum heat insulating materials used in refrigerators and vending machines, vacuum heat insulating structures used in refrigeration tank trucks and machinery, vacuum glass sashes for residential buildings, and the like.

Claims (14)

  1.  ゼオライトと、酸化カルシウムと、バインダーとを含む気体吸着材であって、
     前記ゼオライトが、銅、銀、金、鉄、亜鉛及びニッケルイオンからなる群から選択される1種以上の金属イオンでイオン交換されており、
     前記ゼオライトの平均細孔径が、0.3~1.3nmであり、
     前記バインダーが、珪酸カルシウム又は珪酸マグネシウムであり、
     前記気体吸着材の空孔率が、40~80%である、
    ことを特徴とする、気体吸着材。
    A gas adsorbent containing zeolite, calcium oxide, and a binder,
    The zeolite is ion-exchanged with one or more metal ions selected from the group consisting of copper, silver, gold, iron, zinc and nickel ions;
    The zeolite has an average pore diameter of 0.3 to 1.3 nm,
    The binder is calcium silicate or magnesium silicate;
    The gas adsorbent has a porosity of 40 to 80%.
    A gas adsorbent characterized by that.
  2.  前記バインダーが、珪酸カルシウムである、請求項1に記載の気体吸着材。 The gas adsorbent according to claim 1, wherein the binder is calcium silicate.
  3.  前記珪酸カルシウムが、ドバモライト、ウォラストナイト又はポルトランドセメントである、請求項2に記載の気体吸着材。 The gas adsorbent according to claim 2, wherein the calcium silicate is dobermorite, wollastonite, or Portland cement.
  4.  前記バインダーが、珪酸マグネシウムである、請求項1に記載の気体吸着材。 The gas adsorbent according to claim 1, wherein the binder is magnesium silicate.
  5.  前記珪酸マグネシウムが、セピオライト、アタパルジャイト又はタルクである、請求項4に記載の気体吸着材。 The gas adsorbent according to claim 4, wherein the magnesium silicate is sepiolite, attapulgite or talc.
  6.  前記バインダーの含有量が、気体吸着材の総質量に対して、5質量%~25質量%である、請求項1~5のいずれか1項に記載の気体吸着材。 The gas adsorbent according to any one of claims 1 to 5, wherein a content of the binder is 5% by mass to 25% by mass with respect to a total mass of the gas adsorbent.
  7.  前記金属イオンが、銅、銀、鉄及びニッケルイオンからなる群から選択される1種以上である、請求項1~6のいずれか1項に記載の気体吸着材。 The gas adsorbent according to any one of claims 1 to 6, wherein the metal ions are at least one selected from the group consisting of copper, silver, iron and nickel ions.
  8.  前記ゼオライトにおけるイオン交換率が、イオン交換前のゼオライトに含まれるアルカリ金属及びアルカリ土類金属の総モル数に対して、40~120モル%である、請求項1~7のいずれか1項に記載の気体吸着材。 The ion exchange rate in the zeolite is 40 to 120 mol% with respect to the total number of moles of alkali metal and alkaline earth metal contained in the zeolite before ion exchange, according to any one of claims 1 to 7. The gas adsorbent described.
  9.  前記ゼオライトの含有量が、気体吸着材の総質量に対して、5質量%~40質量%である、請求項1~8のいずれか1項に記載の気体吸着材。 The gas adsorbent according to any one of claims 1 to 8, wherein a content of the zeolite is 5 mass% to 40 mass% with respect to a total mass of the gas adsorbent.
  10.  圧縮成形品である、請求項1~9のいずれか1項に記載の気体吸着材。 The gas adsorbent according to any one of claims 1 to 9, which is a compression molded product.
  11.  真空断熱材用である、請求項1~10のいずれか1項に記載の気体吸着材。 The gas adsorbent according to any one of claims 1 to 10, which is used for a vacuum heat insulating material.
  12.  請求項1~11のいずれか1項に記載の気体吸着材と、無機繊維マットからなる芯材と、前記気体吸着材及び前記芯材を封入する、ガスバリア性シート材からなる包装袋と、を含む、真空断熱材。 A gas adsorbent according to any one of claims 1 to 11, a core material made of an inorganic fiber mat, and a packaging bag made of a gas barrier sheet material enclosing the gas adsorbent and the core material. Including vacuum insulation.
  13.  気体吸着材の製造方法であって、
     水を添加せずに、ゼオライトと、酸化カルシウムと、バインダーとを混合して混合物を得る工程、及び
     前記混合物を圧縮成形する工程、
    を含み、
     前記ゼオライトが、銅、銀、金、鉄、亜鉛及びニッケルイオンからなる群から選択される1種以上の金属イオンでイオン交換されており、
     前記ゼオライトの平均細孔径が、0.3~1.3nmであり、
     前記バインダーが、珪酸カルシウム又は珪酸マグネシウムであり、
     気体吸着材の空孔率が、40~80%である、
    ことを特徴とする、方法。
    A method for producing a gas adsorbent, comprising:
    A step of mixing a zeolite, calcium oxide and a binder without adding water to obtain a mixture, and a step of compression-molding the mixture,
    Including
    The zeolite is ion-exchanged with one or more metal ions selected from the group consisting of copper, silver, gold, iron, zinc and nickel ions;
    The zeolite has an average pore diameter of 0.3 to 1.3 nm,
    The binder is calcium silicate or magnesium silicate;
    The porosity of the gas adsorbent is 40 to 80%.
    A method characterized by that.
  14.  前記圧縮成形する工程が、50~200MPaの成形圧力で行われる、請求項13に記載の方法。 The method according to claim 13, wherein the compression molding step is performed at a molding pressure of 50 to 200 MPa.
PCT/JP2016/079580 2015-12-15 2016-10-05 Gas adsorbing material WO2017104235A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-243949 2015-12-15
JP2015243949A JP6806439B2 (en) 2015-12-15 2015-12-15 Gas adsorbent

Publications (1)

Publication Number Publication Date
WO2017104235A1 true WO2017104235A1 (en) 2017-06-22

Family

ID=59056546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079580 WO2017104235A1 (en) 2015-12-15 2016-10-05 Gas adsorbing material

Country Status (2)

Country Link
JP (1) JP6806439B2 (en)
WO (1) WO2017104235A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112221534A (en) * 2020-11-16 2021-01-15 湖南映宏新材料股份有限公司 High-performance adsorption catalysis material and preparation method thereof
CN113024832A (en) * 2021-03-15 2021-06-25 海信视像科技股份有限公司 Gas adsorption composite material, flame-retardant HIPS composite material and display equipment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167666A1 (en) * 2018-02-27 2019-09-06 パナソニックIpマネジメント株式会社 Vacuum heat insulating material, heat insulating structure using vacuum heat insulating material, and home electric appliance, house wall, and transport device using vacuum heat insulating material and heat insulating structure
CN108840706A (en) * 2018-07-23 2018-11-20 合肥帧讯低温科技有限公司 A kind of preparation method of refrigerator heat insulation material
JP7454827B2 (en) 2019-02-22 2024-03-25 旭ファイバーグラス株式会社 vacuum insulation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244579B2 (en) * 1982-05-06 1990-10-04 Mitsubishi Heavy Ind Ltd
JPH07204504A (en) * 1994-01-21 1995-08-08 Babcock Hitachi Kk Honeycomb adsorbent and production thereof
JPH11246214A (en) * 1998-03-04 1999-09-14 Tosoh Corp A-type zeolite bead compact and its production
JP2006234346A (en) * 2005-02-28 2006-09-07 Matsushita Electric Ind Co Ltd Heat insulating body
JP2009011943A (en) * 2007-07-05 2009-01-22 Toyobo Co Ltd Adsorption sheet and adsorption element
WO2014174837A1 (en) * 2013-04-23 2014-10-30 パナソニックIpマネジメント株式会社 Insulator including gas adsorbing material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833013B2 (en) * 1978-05-24 1983-07-16 大成建設株式会社 How to remove air pollutants
JPH0244579A (en) * 1988-08-03 1990-02-14 Fujitsu Ltd Data control system for magnetic tape control device
JPH10180113A (en) * 1996-12-26 1998-07-07 Hino Motors Ltd Catalyst for purifying exhaust gas and preparation thereof
JP4014909B2 (en) * 1997-05-08 2007-11-28 高砂熱学工業株式会社 filter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244579B2 (en) * 1982-05-06 1990-10-04 Mitsubishi Heavy Ind Ltd
JPH07204504A (en) * 1994-01-21 1995-08-08 Babcock Hitachi Kk Honeycomb adsorbent and production thereof
JPH11246214A (en) * 1998-03-04 1999-09-14 Tosoh Corp A-type zeolite bead compact and its production
JP2006234346A (en) * 2005-02-28 2006-09-07 Matsushita Electric Ind Co Ltd Heat insulating body
JP2009011943A (en) * 2007-07-05 2009-01-22 Toyobo Co Ltd Adsorption sheet and adsorption element
WO2014174837A1 (en) * 2013-04-23 2014-10-30 パナソニックIpマネジメント株式会社 Insulator including gas adsorbing material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112221534A (en) * 2020-11-16 2021-01-15 湖南映宏新材料股份有限公司 High-performance adsorption catalysis material and preparation method thereof
CN113024832A (en) * 2021-03-15 2021-06-25 海信视像科技股份有限公司 Gas adsorption composite material, flame-retardant HIPS composite material and display equipment
CN113024832B (en) * 2021-03-15 2022-05-27 海信视像科技股份有限公司 Gas adsorption composite material, flame-retardant HIPS composite material and display equipment

Also Published As

Publication number Publication date
JP2017109150A (en) 2017-06-22
JP6806439B2 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
WO2017104235A1 (en) Gas adsorbing material
CN102652061B (en) Vacuum heat-insulating plate and manufacture method thereof
TWI671389B (en) Refractory structure and method of use thereof
EP1510747B1 (en) Vacuum thermal insulating material, process for producing the same and refrigerator including the same
US20160340586A1 (en) Fire resistant material
WO2006132001A1 (en) Process for producing glass wool molding, glass wool molding and vacuum insulation material
JP6185270B2 (en) Vacuum insulation
CN113939942A (en) Heat-insulating fireproof material and application thereof
KR20150039196A (en) Vacuum insulation panel including annealed binderless glass fiber
JP2004052774A (en) Vacuum heat insulating material, refrigerating and cooling/heating apparatus using the same, vacuum heat insulating material core material, and its manufacturing method
WO2016098858A1 (en) Vacuum insulation material
WO2015115149A1 (en) Vacuum heat-insulating material, heat-insulating box using vacuum heat-insulating material, and method for manufacturing vacuum heat-insulating material
JP2009168091A (en) Vacuum heat insulation material, and building using vacuum heat insulation material in wall
KR101525297B1 (en) Core material having glass wool for vacuum insulation, method for manufacturing the same and vacuum insulation using the same
CN109996604A (en) Filter, gas absorption device and vacuum insulation part using filter
JP4898157B2 (en) Manufacturing method of vacuum insulation core material
WO2020262665A1 (en) Outer packaging material for vacuum heat insulating material, vacuum heat insulating material, and article with vacuum heat insulating material
JP2015098907A (en) Vacuum heat insulation material
BR102017027453B1 (en) DEVICE WORKING AT HIGH TEMPERATURE AND INSULATING PRODUCT
KR20050016490A (en) Vacuum thermal insulating material, process for producing the same and refrigerator including the same
KR20120051512A (en) Aerogel-open cell foam composite
CN110670747A (en) Green environment-friendly heat-insulation board
JP3527727B2 (en) Vacuum insulation material and equipment using the vacuum insulation material
JP3497500B1 (en) Vacuum heat insulating material, refrigerator using vacuum heat insulating material, and manufacturing method of vacuum heat insulating material core material
EP2985376B1 (en) Core material for vacuum insulator, comprising organic synthetic fiber, and vacuum insulator containing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875220

Country of ref document: EP

Kind code of ref document: A1