WO2017104139A1 - 伝搬路推定方法 - Google Patents

伝搬路推定方法 Download PDF

Info

Publication number
WO2017104139A1
WO2017104139A1 PCT/JP2016/005145 JP2016005145W WO2017104139A1 WO 2017104139 A1 WO2017104139 A1 WO 2017104139A1 JP 2016005145 W JP2016005145 W JP 2016005145W WO 2017104139 A1 WO2017104139 A1 WO 2017104139A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
propagation path
component
amplitude
subcarrier
Prior art date
Application number
PCT/JP2016/005145
Other languages
English (en)
French (fr)
Inventor
原田 博司
水谷 圭一
仁宣 牧野
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to US16/061,577 priority Critical patent/US10785061B2/en
Publication of WO2017104139A1 publication Critical patent/WO2017104139A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • H04L25/0232Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols by interpolation between sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26134Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain

Definitions

  • the present invention relates to a propagation path estimation method.
  • Fading is a phenomenon in which received power fluctuates due to interference of radio waves that have passed through various propagation paths. Since it fluctuates due to changes in propagation paths, it has severe time fluctuations especially when moving at high speeds.
  • the phase of the delay differs depending on the frequency, resulting in a difference between strengthening and weakening.
  • This is called fading frequency selectivity, and is a strength difference depending on the delay time of each delayed wave and its relative power.
  • the maximum delay time of the delayed wave becomes long, so that the frequency selectivity is particularly strong.
  • An OFDM (Orthogonal-Frequency-Division-Multiplex) modulation method is known as a method that enables relatively high-efficiency communication in such an environment.
  • information symbols represented by complex numbers are mounted on a plurality of frequency subcarriers that are orthogonal and do not interfere with each other, and one OFDM symbol is created by adding each subcarrier signal on the time axis.
  • This operation can be generally realized by performing an inverse Fourier transform operation on complex number information symbols of frequency subcarriers included in one OFDM symbol.
  • the influence of this fading channel is appropriately estimated and compensated (equalized) in each subcarrier.
  • the bandwidth of each subcarrier is set so small that the frequency selectivity within the subcarrier can be ignored. Therefore, the above compensation can be performed only by considering the frequency selectivity between the subcarriers. .
  • some subcarriers are pilot subcarriers that are known signals in both transceivers. And a method of performing data transmission using the remaining subcarriers is employed.
  • Non-Patent Document 1 describes a general OFDM channel estimation method.
  • Non-Patent Document 2 describes a propagation path estimation method by linear interpolation in WiMAX UL.
  • STD-T103 has been completed by ARIB as a transmitter standard corresponding to this technical standard.
  • This STD-T103 has two operation modes, one of which is Mode1 in which the basic parameters of IEEE 802.16-2009 [3], known by WiMAX, are applied to the VHF band as they are. Characteristic evaluation in a VHF band mobile communication environment has been performed so far (see Non-Patent Document 3).
  • the previously proposed propagation path estimation method has a problem that an amplitude fluctuation amount is underestimated in a fading propagation path with strong frequency selectivity or temporal fluctuation, and the estimation error becomes large. This is because the amount of amplitude fluctuation due to actual fading is not a linear transition on the complex plane.
  • equalization is performed by multiplying the received signal by the inverse of the estimated complex fluctuation amount of the propagation path.
  • the amplitude fluctuation amount is estimated too small as described above, Compensation is made to a value that is extremely larger than the value to be compensated, and the reception quality deteriorates.
  • the estimation error is large, there is a problem that it is difficult to achieve good reception quality even if other error correction techniques are used.
  • an object of the present invention is to provide a propagation path estimation method capable of suppressing a propagation path estimation error and improving reception quality.
  • the present invention provides a channel estimation method using pilot subcarriers inserted in an OFDM signal.
  • the in-phase component and the quadrature component of the propagation path estimation value in each pilot subcarrier are separated into an amplitude component and a phase component, and the propagation path of the data subcarrier portion existing between each pilot subcarrier is separated into the separated amplitude component and phase.
  • a reference parameter is generated to assist the propagation path estimation of the data subcarrier part between each pilot subcarrier, Determine whether the quadrature on the complex plane of the phase component estimation value interpolated by the phase / amplitude separation linear interpolation and the reference parameter is different, When it is determined that the quadrants are different, phase connection processing is performed to eliminate phase discontinuity for the phase component estimation value interpolated by the phase / amplitude separation linear interpolation, If it is determined that the quadrants are not different, or after the phase connection process, the complex of the data subcarrier part is calculated from the phase component and the amplitude component of the propagation path estimation value of the interpolated data subcarrier part between the pilot subcarriers. This is a propagation path estimation method for calculating propagation path estimation values.
  • the receiver configuration for implementing the present invention is the same as that described in Non-Patent Document 3 described above.
  • a pilot signal is inserted.
  • the pilot arrangement of IEEE 802.16-2009 [3] Mode 1 is a structure in which some data subcarriers are sandwiched between four pilot signals in DL, and all data subcarriers are sandwiched between four pilot signals in UL.
  • a pilot arrangement with a tile structure In the pilot arrangement of Mode 2, a tile is composed of 4 symbols and 4 subcarriers in DL, and pilot subcarriers are inserted at the four corners.
  • pilot subcarriers are placed at the four corners of a tile of 7 symbols and 4 subcarriers.
  • a propagation path estimation value of each pilot subcarrier that is already known is obtained, and the propagation path of the data portion sandwiched between the pilot subcarriers is estimated by interpolation.
  • pilot subcarriers are scattered in the signal as in the above-described example, propagation path fluctuations of data subcarriers that do not contain pilot subcarriers are estimated by performing interpolation. Thereafter, equalization is performed by multiplying the received signal by the reciprocal of the estimated propagation path fluctuation for each subcarrier. As an actual interpolation method, interpolation is performed for each tile.
  • the order of interpolation may be either the subcarrier direction or the OFDM symbol direction, and does not limit the present invention.
  • Figure 1 shows an image of the interpolation method performed by pilot subcarriers.
  • a star mark indicates a pilot subcarrier.
  • a broken line represents a conventional linear interpolation method on a complex plane.
  • the solid line represents the phase / amplitude separated linear interpolation method of the present invention.
  • the channel fluctuation value in the data subcarrier is estimated based on the transmission / reception signal in the pilot subcarrier. After this estimation, a series of estimations described later are performed in order to equalize the transmission signal in the data subcarrier.
  • Step ST2 The propagation path estimation value in the pilot subcarrier is separated into an amplitude fluctuation amount estimation value R p, qp and a phase fluctuation amount estimation value ⁇ p, qp . Each is shown in Equation 3.
  • Step ST3 The amplitude fluctuation amount estimation value and the phase fluctuation amount estimation value in the data subcarrier are estimated by interpolating the amplitude fluctuation amount estimation value and the phase fluctuation amount estimation value in the pilot subcarrier.
  • Step ST4 Calculate the direction vector of the phase / amplitude separated linear interpolation propagation path estimated value in the data subcarrier based on the estimated amount of phase fluctuation in the data subcarrier.
  • Step ST5 As shown in the following equation 6, the channel estimation value in the pilot subcarrier is linearly interpolated on the complex plane (conventional method) to obtain the channel estimation value in the data subcarrier, which is used as the reference parameter. To do.
  • Step ST6 Compare the Ich component Qch component of the data subcarrier propagation path estimated value (reference parameter) by linear interpolation on the complex plane and the direction vector of the data subcarrier propagation path estimated value by phase / amplitude separated linear interpolation. Thus, it is determined whether the quadrants coincide (whether phase connection is necessary) (Formula 7).
  • Step ST7 If it is determined in step ST6 that the quadrants are different, the phase connection is canceled by adding 2 ⁇ to the smaller value as shown in the following equation.
  • Step ST8 Only phase interpolation is performed again in the phase / amplitude separation linear interpolation method as follows. Subsequent to step ST8, interpolation processing (formula 9) of step ST9 is performed.
  • Step ST9 The data subcarrier propagation path estimated value by the final phase / amplitude separation linear interpolation is calculated from the amplitude fluctuation amount estimated value and the phase fluctuation amount estimated value after the phase connection as shown in Expression 10. Even when it is determined in step ST6 that the quadrants are not different, the process of step ST9 is performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Noise Elimination (AREA)

Abstract

各パイロットサブキャリアにおける伝搬路推定値の同相成分及び直交成分を振幅成分と位相成分に分離し、各パイロットサブキャリア間に存在するデータサブキャリア部分の伝搬路を、この分離された振幅成分及び位相成分それぞれで位相・振幅分離線形補間することによって推定し、各パイロットサブ キャリア間を複素平面上で線形補間を行うことによって、参照パラメータを生成し、補間された位相成分推定値と参照パラメータの複素平面上での象限が異なっている場合に、位相・振幅分離線形補間によって補間された位相成分推定値に対して位相の不連続を解消する位相接続の処理を行い、象限が異 なっていない場合、又は位相接続処理の後に、伝搬路推定値の位相成分と振幅成分から当該データサブキャリア部分の複素伝搬路推定値を計算する伝搬路推定方法である。

Description

伝搬路推定方法
 この発明は、伝搬路推定方法に関する。
 非常に過酷なフェージング伝搬路においてパイロット信号による伝搬路推定誤差が大きくなり受信品質が劣化する問題があった。無線通信において送信された電波は様々な伝搬環境により反射、散乱、回折して受信される。フェージングとは様々な伝搬路を通った電波が干渉する事で受信電力が変動する現象であり、伝搬路の変化により変動するため特に高速に移動した場合等では激しい時間変動を持つこととなる。
 また、広帯域で長い遅延をもつ伝搬環境において通信を行う際には、周波数により遅延分の位相が異なるため強め合い弱め合いの差が生じる。これをフェージングの周波数選択性と言い、各遅延波の遅延時間とその相対電力に依存した強弱差となる。長距離の通信を行う際には遅延波の最大遅延時間が長くなるため、特に周波数選択性は強くなる。
 こうした環境でも比較的高能率に通信を行うことが可能となる方式としてOFDM(Orthogonal Frequency Division Multiplex) 変調方式が知られている。この方式では、直交していて互いが干渉することのない複数の周波数サブキャリアに複素数で表される情報シンボルを搭載し、各サブキャリ信号を時間軸で足し合わせることで一つのOFDMシンボルが作られる。この動作は一般的に一つのOFDMシンボルに含まれる周波数サブキャリアの複素数情報シンボルに対して逆フーリエ変換操作を行うことで実現することができる。
 上述したように、受信機側ではフェージングの影響を受けた信号が到達するため、正しく復調を行うためには適切にこのフェージング伝搬路の影響を各サブキャリアにおいて推定を行い補償(等化)する必要がある。一般にそれぞれのサブキャリアの帯域幅は、サブキャリア内の周波数選択性を無視できるほど小さく設定されているため、サブキャリア間の周波数選択性のみを考慮することにより上記補償を行うことが可能となる。
 OFDMを採用している代表的な通信システムであるWiMAX(Worldwide Interoperability for Microwave Access)やLTE(Long Term Evolution)などのシステムでは、一部のサブキャリアを送受信機両方において既知信号であるパイロットサブキャリアとし、残りのサブキャリアを用いてデータ伝送を行う方式が採用されている。
 これらのシステムでは一般的にパイロットサブキャリアの伝搬路推定を行い、その推定値を基にデータサブキャリアの伝搬路推定を行い、等化が行われる。パイロットサブキャリアの推定値から伝搬路推定を行う際、従来は複素平面上で線形補間を行う方式が一般的に用いられてきた。例えば非特許文献1には、一般的なOFDMの伝搬路推定方式について記載されている。非特許文献2には、WiMAXのULにおける線形補間による伝搬路推定方式について記載されている。
 さらに、最近では、アナログ放送からデジタル放送へと移行したため、VHF帯の一部である170MHz~202.5MHz(以下200MHz帯と表す)が2007年6月の情報通信審議会答申によりブロードバンド自営通信へと割り当てられるととなり、その技術基準が策定されている。この技術基準に対応した送信機の標準規格として、ARIBによりSTD-T103が策定完了している。このSTD-T103には二つの動作モードがあり、その一つがWiMAXで知られるIEEE 802.16-2009〔3〕の基本パラメータをそのままVHF帯に適用したMode1であり、その受信機構成の提案やVHF帯移動通信環境における特性評価がこれまでに行われている(非特許文献3参照)。
S.Coleri,M.Ergen,A.Puri,and A.Bahai, "Channel estimation techniques based on pilot arrangement in OFDM system. "IEEE Trans.,vol.48,no.3,Sep 2002 K.Ho and A.Kwasinski,"Uplink Channel Estimation in WiMAX," Proc.WCNC 2009,pp.1-6,Apr.2009. 牧野仁宣,水谷圭一,原田博司,"VHF帯ブロードバンド移動通信システムの受信機設定に関する検討"信学技報,RCS2014-333, pp.189-194,2015年3月
 先に提案されている伝搬路推定方法では、周波数選択性もしくは時間的変動の強いフェージング伝搬路において、振幅変動量を過小に推定してしまいその推定誤差が大きくなるという問題があった。これは実際のフェージングによる振幅変動量は複素平面上では線形的な遷移ではないためである。
 さらに、推定された伝搬路の複素変動量の逆数を受信信号に乗ずることによって等化を行うが、従来の伝搬路推定方法では、上述したように過小に振幅変動量を推定した場合に、本来補償すべき値より極端に大きい値に補償してしまい、受信品質が劣化する。推定誤差が大きい場合、その他の誤り訂正技術等を用いても良好な受信品質を達成するのは困難であるという問題があった。
 したがって、この発明の目的は、伝搬路の推定誤差を抑圧し受信品質を改善することができる伝搬路推定方法を提供することにある。
 上述した課題を解決するために、この発明は、OFDM信号に挿入されたパイロットサブキャリアを使用する伝搬路推定方法において、
 各パイロットサブキャリアにおける伝搬路推定値の同相成分及び直交成分を振幅成分と位相成分に分離し、各パイロットサブキャリア間に存在するデータサブキャリア部分の伝搬路を、この分離された振幅成分及び位相成分それぞれで位相・振幅分離線形補間することによって推定し、
 各パイロットサブキャリア間を複素平面上で線形補間を行うことによって、各パイロットサブキャリア間のデータサブキャリア部分の伝搬路推定を補助するための参照パラメータを生成し、
 上記位相・振幅分離線形補間によって補間された位相成分推定値と上記参照パラメータの複素平面上での象限が異なっているかどうかを判定し、
 象限が異なっていると判定される場合に、上記位相・振幅分離線形補間によって補間された位相成分推定値に対して位相の不連続を解消する位相接続の処理を行い、
 象限が異なっていないと判定される場合、又は位相接続処理の後に、各パイロットサブキャリア間の補間されたデータサブキャリア部分の伝搬路推定値の位相成分と振幅成分から当該データサブキャリア部分の複素伝搬路推定値を計算する
 伝搬路推定方法である。
 少なくとも一つの実施形態によれば、激しいフェージング伝搬路の推定誤差を抑圧し受信品質を改善することができる。なお、ここに記載された効果は必ずしも限定されるものではなく、この発明中に記載されたいずれの効果であってもよい。また、以下の説明における例示された効果によりこの発明の内容が限定して解釈されるものではない。
補間方法の説明に使用する略線図である。 補間方法の説明に使用するフローチャートである。
 以下、この発明を実施の形態について説明する。なお、以下に説明する一実施の形態は、この発明の好適な具体例であり、技術的に好ましい種々の限定が付されているが、この発明の範囲は、以下の説明において、特にこの発明を限定する旨の記載がない限り、これらの実施の形態に限定されないものとする。
 本発明の実施に際しての受信機構成は、上述した非特許文献3に記載のものと同様のものを使用する。受信機において受信信号を復調するために、パイロット信号が挿入される。例えばIEEE 802.16-2009〔3〕Mode1のパイロット配置はDLでは一部のデータサブキャリアが四つのパイロット信号に挟まれる構造であり、ULでは全てのデータサブキャリアが四つのパイロット信号に挟まれるタイル構造のパイロット配置となる。Mode2のパイロット配置はDLでは4シンボル4サブキャリアでタイルを構成し、その四隅にパイロットサブキャリアが入る形となる。ULでは、7シンボル4サブキャリアのタイル四隅にパイロットサブキャリアが入る形となる。受信側では、既知である各パイロットサブキャリアの伝搬路推定値を求めることで、各パイロットサブキャリアに挟まれるデータ部分の伝搬路を補間推定する。
 パイロットサブキャリアは、上述した例のように信号の中にばらまかれているので、補間を行うことによって、パイロットサブキャリアの入っていないデータサブキャリアの伝搬路変動の推定を行う。その後、受信信号に対してこの推定した伝搬路変動の逆数を各サブキャリア毎に掛け合わせることによって等化を行う。実際の補間の方法としてはそれぞれタイル毎に補間を行う。補間の順序はサブキャリア方向、OFDMシンボル方向のどちらでもよく、本発明を限定するものではない。
 パイロットサブキャリアにより行う補間法のイメージを図1に示す。図1において星マークがパイロットサブキャリアを示す。破線は、従来の複素平面上線形補間法を表している。実線は本発明である位相・振幅分離線形補間法を表している。なお、伝搬路推定値を同相成分(Ich)と直交成分(Qch)に分けた形の表示と、以下に述べるように、Ichに対してQchにjを掛け合わせたものを足し合わせる複素数表示との何れの表示も使用できる。
 前提について説明する。i番目のOFDMシンボルのj番目サブキャリアにおける伝搬路変動値をhi,j とし、送信信号をsi,j とし、雑音をni,j とした場合には、受信信号ri,j は式(1)で示される。
Figure JPOXMLDOC01-appb-M000001
 パイロットサブキャリアの入っているシンボルの番号をpとし、そのシンボル中の入っているサブキャリアの番号をqとした場合、受信機側が手に入れられる情報は、パイロットサブキャリアにおける受信信号rp,qp、送信信号sp,qp、データサブキャリアにおける受信信号ri,j である。のパイロットサブキャリアにおける送受信号を基にデータサブキャリアにおける伝搬路変動値を推定する。この推定の後に、データサブキャリアにおける送信信号へと等化を行うために後述する一連の推定を行う。
 図2のフローチャートを参照して本発明の補間方法の一実施の形態について説明する。
 ステップST1:パイロットサブキャリアにおける受信信号rp,qp、送信信号sp,qpからパイロットサブキャリアにおける伝搬路推定値は次の式2で表される。
Figure JPOXMLDOC01-appb-M000002
 ステップST2:パイロットサブキャリアにおける伝搬路推定値を振幅変動量推定値Rp,qpと位相変動量推定値θp,qpに分離する。それぞれは式3で示すものとなる。
Figure JPOXMLDOC01-appb-M000003
 ステップST3:パイロットサブキャリアにおける振幅変動量推定値及び位相変動量推定値を補間することにより、データサブキャリアにおける振幅変動量推定値及び位相変動量推定値を推定する。タイル構造がlシンボルmサブキャリアの時、i=imodl,i= floor(i/l)×l,j=jmodm,j= floor(j/m)×mとする。一つのタイルに着目すると、(p,q)=(1+i,1+j),(l+i,m+j),(l+i,l+j),(1+i,m+j)の四種類に分離されるため、振幅変動量推定値及び位相変動量推定値は式4式5で表される。
Figure JPOXMLDOC01-appb-M000004
 ステップST4:データサブキャリアにおける位相変動量推定値により、データサブキャリアにおける位相・振幅分離線形補間伝搬路推定値の方向ベクトルを計算する。
Figure JPOXMLDOC01-appb-M000005
 ステップST5:次の式6のように、パイロットサブキャリアにおける伝搬路推定値を複素平面上の線形補間(従来方法)することにより、データサブキャリアにおける伝搬路推定値を求め、これを参照パラメータとする。
Figure JPOXMLDOC01-appb-M000006
 ステップST6:複素平面上の線形補間によるデータサブキャリア伝搬路推定値(参照パラメータ)のIch成分Qch成分と、位相・振幅分離形線形補間によりデータサブキャリア伝搬路推定値の方向ベクトルを比較することにより、象限が一致しているかどうか(位相接続が必要かどうか)を判定する(式7)。
Figure JPOXMLDOC01-appb-M000007
 ステップST7:ステップST6において象限が異なっていると判定されると、次式に示すようにどちらか小さいほうの値に2πを足し合わせることにより位相接続を解消する
Figure JPOXMLDOC01-appb-M000008
 ステップST8:次のように、位相・振幅分離線形補間法のうち位相補間のみを再度行う。ステップST8に続いてステップST9の補間処理(式9)がなされる。
Figure JPOXMLDOC01-appb-M000009
 ステップST9:最終的な位相・振幅分離線形補間によるデータサブキャリア伝搬路推定値は、式10で示すように、振幅変動量推定値と位相接続後の位相変動量推定値により計算される。ステップST6において象限が異なっていないと判定された場合にも、ステップST9の処理がなされる。
Figure JPOXMLDOC01-appb-M000010
 実際の伝搬路変動は複素平面上で直線的に変動せず、位相および振幅それぞれにおいて変動が起きるため、上述した処理の結果、本発明である位相・振幅分離線形補間法を用いて等化を行うことにより、従来法である複素平面上での線形補間のみを用いた場合と比べて、より現実的な伝搬路変動を補間追従することが可能となり、その結果、より伝搬路推定誤差を抑圧することが可能となり、上述するような激しいフェージング伝搬路においても良好な受信品質を達成することが可能となる。
 以上、この発明の実施の形態について具体的に説明したが、上述の各実施の形態に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。
ST1~ST9・・・伝搬路推定方法の各ステップ

Claims (2)

  1.  OFDM信号に挿入されたパイロットサブキャリアを使用する伝搬路推定方法において、
     各パイロットサブキャリアにおける伝搬路推定値の同相成分及び直交成分を振幅成分と位相成分に分離し、各パイロットサブキャリア間に存在するデータサブキャリア部分の伝搬路を、この分離された振幅成分及び位相成分それぞれで位相・振幅分離線形補間することによって推定し、
     各パイロットサブキャリア間を複素平面上で線形補間を行うことによって、各パイロットサブキャリア間のデータサブキャリア部分の伝搬路推定を補助するための参照パラメータを生成し、
     上記位相・振幅分離線形補間によって補間された位相成分推定値と上記参照パラメータの複素平面上での象限が異なっているかどうかを判定し、
     象限が異なっていると判定される場合に、上記位相・振幅分離線形補間によって補間された位相成分推定値に対して位相の不連続を解消する位相接続の処理を行い、
     象限が異なっていないと判定される場合、又は上記位相接続処理の後に、各パイロットサブキャリア間の補間されたデータサブキャリア部分の伝搬路推定値の位相成分と振幅成分から当該データサブキャリア部分の複素伝搬路推定値を計算する
     伝搬路推定方法。
  2.  上記パイロットサブキャリアは、OFDM信号のシンボル方向及びサブキャリア方向でそれぞれ所定の間隔で、もしくは所定の位置に配置される請求項1に記載の伝搬路推定方法。
PCT/JP2016/005145 2015-12-16 2016-12-15 伝搬路推定方法 WO2017104139A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/061,577 US10785061B2 (en) 2015-12-16 2016-12-15 Propagation channel estimation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-245290 2015-12-16
JP2015245290A JP6632364B2 (ja) 2015-12-16 2015-12-16 伝搬路推定方法

Publications (1)

Publication Number Publication Date
WO2017104139A1 true WO2017104139A1 (ja) 2017-06-22

Family

ID=59056501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/005145 WO2017104139A1 (ja) 2015-12-16 2016-12-15 伝搬路推定方法

Country Status (3)

Country Link
US (1) US10785061B2 (ja)
JP (1) JP6632364B2 (ja)
WO (1) WO2017104139A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188892A1 (ja) * 2018-03-29 2019-10-03 株式会社東海理化電機製作所 測距システム
US10849477B2 (en) 2016-04-25 2020-12-01 Omachron Intellectual Property Inc. Cyclone assembly for surface cleaning apparatus and a surface cleaning apparatus having same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112737988B (zh) * 2020-12-29 2023-12-05 芯翼信息科技(上海)有限公司 一种信道估计方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088771A (ja) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd 補間方法、およびそれを利用した補間装置、受信装置
JP2011019057A (ja) * 2009-07-08 2011-01-27 Hitachi Kokusai Electric Inc Ofdm受信装置
JP2012028922A (ja) * 2010-07-21 2012-02-09 Fujitsu Ltd Ofdm通信受信装置
JP2015136026A (ja) * 2014-01-17 2015-07-27 富士通株式会社 受信機,受信方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4022625B2 (ja) * 2004-03-08 2007-12-19 独立行政法人情報通信研究機構 通信システム、通信方法、基地局、および移動局
JP4409395B2 (ja) * 2004-07-13 2010-02-03 富士通株式会社 伝搬路推定方法及び推定装置
CN101689975A (zh) * 2007-06-27 2010-03-31 艾利森电话股份有限公司 用于在mimo系统中进行改进的无线电资源分配的方法和设备
JP2009253548A (ja) * 2008-04-03 2009-10-29 Sharp Corp 送信装置、受信装置、通信システム、送信方法および受信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088771A (ja) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd 補間方法、およびそれを利用した補間装置、受信装置
JP2011019057A (ja) * 2009-07-08 2011-01-27 Hitachi Kokusai Electric Inc Ofdm受信装置
JP2012028922A (ja) * 2010-07-21 2012-02-09 Fujitsu Ltd Ofdm通信受信装置
JP2015136026A (ja) * 2014-01-17 2015-07-27 富士通株式会社 受信機,受信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOU-SEOK LEE; ET AL.: "Noise Reduction for Channel Estimation Based on Pilot-Block Averaging in DVB-T Receivers", IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, vol. 52, no. 1, 13 March 2006 (2006-03-13), pages 51 - 58, XP055391480 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10849477B2 (en) 2016-04-25 2020-12-01 Omachron Intellectual Property Inc. Cyclone assembly for surface cleaning apparatus and a surface cleaning apparatus having same
US11185201B2 (en) 2016-04-25 2021-11-30 Omachron Intellectual Property Inc. Cyclone assembly for surface cleaning apparatus and a surface cleaning apparatus having same
WO2019188892A1 (ja) * 2018-03-29 2019-10-03 株式会社東海理化電機製作所 測距システム
JP2019174416A (ja) * 2018-03-29 2019-10-10 株式会社東海理化電機製作所 測距システム

Also Published As

Publication number Publication date
JP2017112491A (ja) 2017-06-22
JP6632364B2 (ja) 2020-01-22
US10785061B2 (en) 2020-09-22
US20200267027A1 (en) 2020-08-20

Similar Documents

Publication Publication Date Title
US8681912B2 (en) Method and apparatus for estimating channel using phase compensation in wireless communication system
JP5042219B2 (ja) 受信機および周波数情報推定方法
US8363539B2 (en) OFDM receiver and OFDM receiving method
CN102546495A (zh) 频偏补偿方法及装置
CN105122752A (zh) 估计频率偏移的设备及其方法
US20120328055A1 (en) Channel estimation circuit, channel estimation method, and receiver
WO2017104139A1 (ja) 伝搬路推定方法
US9148325B2 (en) System and methods for compensation of I/Q imbalance in beamforming OFDM systems
EP3665878B1 (en) Inter-carrier interference compensation
US10728081B1 (en) Wideband TX IQ imbalance estimation
US20080101216A1 (en) Orthogonal frequency division multiplex (ofdm) signal equalizier
US9735997B2 (en) Method, device and computer program for correcting a frequency shift on symbols received by a receiver
JP2013251655A (ja) 受信装置、受信方法、及びプログラム
US9059887B2 (en) Receiving device and receiving method for determining doppler frequency from pilot signals using OFDM
US8897354B2 (en) Receiver apparatus, method for processing received signal and computer program product
US11973618B2 (en) Algorithm and architecture for channel estimation in 5G new radio
JP4486008B2 (ja) 受信装置
WO2013129146A1 (ja) チャネル推定方法および受信機
JP5594074B2 (ja) 受信装置
KR102634917B1 (ko) 사운딩 기반 채널 상태 정보 추정 방법, 사운딩 기반 채널 상태 정보 추정 장치, 사운딩 기반 채널 상태 정보 추정 프로그램을 저장하는 저장매체
KR100843727B1 (ko) 직교 주파수 분할 다중 또는 직교 주파수 분할 다중 접속방식을 지원하는 수신 장치 및 그 방법
JP6869449B1 (ja) 伝送路等化処理装置、および、伝送路等化処理方法
JP5306111B2 (ja) Ofdm受信装置
WO2013129536A1 (ja) 移動局装置、無線通信システム、チャネル推定方法及びその制御プログラム
KR100952935B1 (ko) 채널 추정장치, 그 장치를 포함하는 ofdm 수신장치 및채널 추정방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875127

Country of ref document: EP

Kind code of ref document: A1