WO2017103988A1 - Compressor for dual refrigeration device, and dual refrigeration device - Google Patents

Compressor for dual refrigeration device, and dual refrigeration device Download PDF

Info

Publication number
WO2017103988A1
WO2017103988A1 PCT/JP2015/085036 JP2015085036W WO2017103988A1 WO 2017103988 A1 WO2017103988 A1 WO 2017103988A1 JP 2015085036 W JP2015085036 W JP 2015085036W WO 2017103988 A1 WO2017103988 A1 WO 2017103988A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression mechanism
compressor
refrigerant
low
refrigeration apparatus
Prior art date
Application number
PCT/JP2015/085036
Other languages
French (fr)
Japanese (ja)
Inventor
和幸 塚本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/085036 priority Critical patent/WO2017103988A1/en
Priority to JP2017555898A priority patent/JP6522156B2/en
Publication of WO2017103988A1 publication Critical patent/WO2017103988A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit

Definitions

  • the present invention relates to a compressor for a binary refrigeration apparatus including one electric motor and two compression mechanisms, and having a refrigerant circuit using two different refrigerants on the high-end side and the low-end side and a cascade heat exchanger, and the compressor
  • the present invention relates to a binary refrigeration apparatus equipped with a compressor.
  • a binary refrigeration apparatus is known as an apparatus for performing cooling in a low temperature range of minus several tens of degrees used for freezing fresh fish.
  • the binary refrigeration apparatus includes a high-side refrigerant circuit for circulating the high-temperature side refrigerant and a low-side refrigerant circuit for circulating the low-temperature side refrigerant. It has the cascade heat exchanger comprised so that heat could be exchanged with the condenser in a side refrigerant circuit.
  • This binary refrigeration apparatus includes a refrigerant compressor in each of a high-side refrigerant circuit and a low-side refrigerant circuit (see, for example, Patent Document 1).
  • the generally known binary refrigeration apparatus requires a refrigerant compressor in each of the high-source refrigerant circuit and the low-source refrigerant circuit. For this reason, the binary refrigeration apparatus is equipped with at least two compressors, and there is a problem that the main body of the binary refrigeration apparatus becomes large. Further, since at least two compressors are mounted, there is a problem that the mass becomes heavy.
  • the present invention solves the above-mentioned problems, and a main object is to provide a compressor for a binary refrigeration apparatus for realizing a compact, lightweight, and inexpensive binary refrigeration apparatus, and a compressor equipped with the compressor.
  • An original refrigeration apparatus is provided.
  • one electric motor a first compression mechanism that compresses the first refrigerant by the electric motor, and a second refrigerant that is different from the first refrigerant by the electric motor.
  • a partition wall that separates the first compression mechanism portion and the second compression mechanism portion from each other.
  • the present invention since there is one compressor for the binary refrigeration apparatus, it is possible to reduce the size and weight compared to the conventional binary refrigeration apparatus. As a result, it is possible to reduce the environmental burden in transportation, save installation space, and simplify foundation work. Furthermore, an inexpensive binary refrigeration apparatus can be provided.
  • FIG. 1 is a schematic configuration diagram of a compressor for a binary refrigeration apparatus according to Embodiment 1 of the present invention. It is a schematic block diagram of the other structural example of the compressor for binary refrigerating apparatuses which concerns on Embodiment 1 of this invention. It is a schematic block diagram of the compressor for binary refrigerating apparatuses which concerns on Embodiment 2 of this invention. It is a schematic block diagram of the compressor for binary refrigeration apparatus which concerns on Embodiment 3 of this invention. It is a schematic block diagram of the other structural example of the compressor for binary refrigeration apparatuses which concerns on Embodiment 3 of this invention.
  • FIG. 1 shows a basic configuration of a binary refrigeration apparatus using a compressor for a binary refrigeration apparatus according to Embodiment 1 of the present invention.
  • the binary refrigeration apparatus 60 includes a high-side refrigerant circuit 32 and a low-side refrigerant circuit 34.
  • the high-end side refrigerant circuit 32 includes a high-end side compression mechanism section 2 of a compressor for a binary refrigerating apparatus (hereinafter referred to as a compressor 1), a high-end side condenser 40, a high-end side expansion mechanism 43,
  • the former side evaporator 53 is connected by piping.
  • the low-side refrigerant circuit 34 connects the low-side compression mechanism 3 of the compressor 1, the low-side condenser 52, the low-side expansion mechanism 54, and the low-side evaporator 56 with piping.
  • the high-side evaporator 53 and the low-side condenser 52 constitute a cascade heat exchanger 36. Note that the refrigerant used in the high-side refrigerant circuit 32 and the refrigerant used in the low-side refrigerant circuit 34 are not the same.
  • the binary refrigeration apparatus 60 shown in FIG. 1 has a basic configuration, and the binary refrigeration apparatus 60 may include a liquid receiver, an oil separator, an accumulator, and the like.
  • the operation of the high-source side refrigerant circuit 32 will be described.
  • the high-temperature and high-pressure refrigerant gas compressed by the high-side compression mechanism unit 2 enters the high-side condenser 40, performs heat exchange with water or air, condenses, and becomes a high-pressure refrigerant liquid.
  • the high-end side condenser 40 may be either a water-cooled type that exchanges heat with cooling water or an air-cooled type that exchanges heat with air.
  • a case where heat is exchanged with cooling water is shown as an example.
  • the refrigerant liquid that has exited the high-side condenser 40 is decompressed by the high-side expansion mechanism 43 to become a low-temperature and low-pressure refrigerant liquid.
  • the low-temperature and low-pressure refrigerant liquid enters the high-side evaporator 53.
  • heat is exchanged with the low-temperature side high-temperature and high-pressure refrigerant gas to be vaporized to become a low-temperature and low-pressure refrigerant gas.
  • the low-temperature and low-pressure refrigerant gas is sucked into the high-side compression mechanism unit 2.
  • the operation of the low-source side refrigerant circuit 34 will be described.
  • the high-temperature and high-pressure refrigerant gas compressed by the low-source side compression mechanism unit 3 enters the low-source side condenser 52, exchanges heat with the low-temperature and low-pressure refrigerant liquid on the high-source side, condenses, and condenses the high-pressure refrigerant liquid. It becomes.
  • the low-source side condenser 52 may be any type including a shell and tube type, a plate heat exchanger, and a double pipe type heat exchanger.
  • the refrigerant liquid that has exited the low-side condenser 52 is decompressed by the low-side expansion mechanism 54 and becomes a low-temperature and low-pressure refrigerant liquid.
  • the low-temperature / low-pressure refrigerant liquid enters the low-source evaporator 56. Here, it is vaporized by heat exchange with antifreeze (generally referred to as “brine”) and air, and becomes a low-temperature and low-pressure refrigerant gas.
  • brine antifreeze
  • the low-temperature / low-pressure refrigerant gas is sucked into the low-source compression mechanism unit 3.
  • FIG. 2 is a schematic configuration diagram of the compressor for the binary refrigeration apparatus according to Embodiment 1 of the present invention.
  • the low-side compression mechanism 103 and the high-side compression mechanism 104 are arranged on the rotor shaft 102 of the electric motor 101.
  • the arrangement of the compression mechanism in FIG. 2 is the same as that of a compressor generally called a two-stage compressor.
  • the two-stage compressor operates with a single refrigerant, and its function is to suck in the low-temperature / low-pressure refrigerant gas and then compress it in the low-stage compression section, and then suck in the high-stage compression section to generate high-temperature / high-pressure.
  • the compressor 1 includes a partition wall 105 and a shaft seal 107 between the low-side compression mechanism unit 103 and the high-side compression mechanism unit 104, so that the low-source refrigerant and the high-source refrigerant are not mixed. It has become. That is, the low-side compression mechanism 103 and the high-side compression mechanism 104 separated by the partition wall 105 and the shaft seal 107 each have a suction port and a discharge port, and suck and discharge different refrigerants. .
  • FIG. 3 is a schematic configuration diagram of another configuration example of the compressor for a binary refrigeration apparatus according to Embodiment 1 of the present invention.
  • a low-side compression mechanism 103 and a high-side compression mechanism 104 are arranged on the rotor shafts on both sides of the electric motor 101, respectively.
  • a partition wall 105 and a shaft seal 107 are provided between the electric motor 101 and the high-side compression mechanism 104.
  • the electric motor 101 is arranged in the refrigerant space of the low-side compression mechanism unit 103, the electric motor 101 may be arranged in the refrigerant space of the high-side compression mechanism unit 104.
  • the partition wall 105 and the shaft seal 107 are provided between the electric motor 101 and the low-side compression mechanism 103.
  • the compression mechanism portions By disposing the compression mechanism portions on both sides of the electric motor 101, the axial load (thrust load) generated by the compressed high-temperature and high-pressure refrigerant gas is offset, and the thrust bearing is downsized.
  • the compression method of the high-side compression mechanism unit and the low-side compression mechanism unit may be any of a reciprocating type, a rotary type, and a speed type, and the high-side compression mechanism unit and the low-side compression unit It is not essential that the mechanism part is the same. That is, even if the high-end compression mechanism is a screw type and the low-end compression mechanism is a reciprocating type, the effects of the present invention are not impaired. These aspects also apply to other embodiments described below.
  • the low-side compression mechanism unit 103 and the high-side compression mechanism unit 104 are provided in a single casing, so that the binary refrigeration apparatus includes a single compressor. Can be configured. Therefore, it is possible to realize a small, light and inexpensive binary refrigeration apparatus.
  • FIG. 4 is a schematic configuration diagram of a compressor for a binary refrigeration apparatus according to Embodiment 2 of the present invention.
  • the high-side compression mechanism 104 and the low-side compression mechanism 103 are respectively arranged on the rotor shafts on both sides of the electric motor 101.
  • a partition wall 105 and a shaft seal 107 are provided between the electric motor 101 and the high-side compression mechanism 104 and the low-side compression mechanism 103, respectively.
  • the low-side compression mechanism unit 103 and the high-side compression mechanism unit 104 are not adjacent to each other by disposing the electric motor 101 in the center. Therefore, the compressor 1 according to the second embodiment can suppress the possibility of mixing the high and low refrigerants due to the wear of the shaft seal 107 as compared with the compressor 1 according to the first embodiment. Further, by arranging the compression mechanism portions on both sides of the electric motor 101, the axial load (thrust load) generated by the compressed high-temperature / high-pressure refrigerant gas is offset, and the thrust bearing can be downsized.
  • the motor chamber 108 that houses the motor 101 may be either a low-source refrigerant space that has a large motor cooling effect or a high-source refrigerant space to avoid low-temperature brittleness of the motor material. .
  • FIG. 5 is a schematic configuration diagram of a compressor for a binary refrigeration apparatus according to Embodiment 3 of the present invention.
  • the electric motor chamber 108 that is the refrigerant space in the compressor 1 according to the second embodiment can be replaced with either the low-source refrigerant space or the high-source refrigerant space. Instead, it is an open space. That is, it is a configuration generally called “open type”. In this configuration, even if the shaft seal 107 does not function due to wear, the high-source refrigerant and the low-source refrigerant are not directly mixed.
  • FIG. 6 and 7 are schematic configuration diagrams of other configuration examples of the compressor for a binary refrigeration apparatus according to Embodiment 3 of the present invention.
  • the compressor 1 of FIG. 6 installs the electric motor 101 that was in the refrigerant space in the compressor 1 according to Embodiment 1 in the open air space.
  • the compressor 1 in FIG. 7 is configured such that the motor 101 that is in the refrigerant space in the compressor 1 according to the first embodiment is installed in the open air space, and the low-side compression mechanism unit 103 and the high-side compression mechanism Each refrigerant space of the section 104 is made into an independent space by a shaft seal 107.
  • FIG. 8 is a schematic configuration diagram of a compressor for a two-dimensional refrigeration apparatus according to Embodiment 4 of the present invention.
  • the compressor 1 according to the fourth embodiment is one of the compressors 1 according to the first to third embodiments of the present invention, in which the rotor shaft 102, the low-side compression mechanism unit 103, and the high-side compression mechanism unit 104 are used.
  • the low original gear 109 and the high original gear 110 increase the rotational speed of the low original side compression mechanism 103 and the high original side compression mechanism 104 to increase the speed, whereby the compressor according to the first to third embodiments. 1 compression capability can be improved.
  • FIGS. 10 to 12 are schematic configuration diagrams of other configuration examples of the compressor for the binary refrigeration apparatus according to Embodiment 4 of the present invention.
  • the compressor 1 shown in FIG. 9 includes a low-side gear 109 and a high-side gear in the compressor 1 in which the low-side compression mechanism 103 and the high-side compression mechanism 104 are arranged on the rotor shafts 102 on both sides of the electric motor 101.
  • 110 is provided in the motor chamber 108.
  • the compressor 1 shown in FIGS. 10 to 12 is obtained by operatively connecting a low-side gear 109 and a high-side gear 110 to an electric motor 101 installed in an atmospheric space.
  • 110 represents an example installed in the refrigerant space or the atmospheric space.
  • 13 and 14 is a compressor 1 in which a partition wall 105 and a shaft seal 107 are provided between a low-side compression mechanism unit 103 and a high-side compression mechanism unit 104.
  • 1 represents an example having 109 and a high-side gear 110.
  • the compressor for a two-dimensional refrigeration apparatus is one of the compressors 1 according to Embodiments 1 to 4 of the present invention, in which the motor 101 is an inverter 111 (not shown). It is driven.
  • the inverter 111 can increase or decrease the rotational speed of the electric motor 101 and can change the rotational speeds of the low-side compression mechanism unit 103 and the high-side compression mechanism unit 104, so that the compression capacity can be improved. Further, by performing the deceleration operation, it is possible to improve the efficiency during the capacity control as compared with the case where the capacity control is mechanically performed.
  • a compressor for a two-dimensional refrigeration apparatus is any one of the compressors 1 according to Embodiments 1 to 5, and includes a global warming potential ( A refrigerant having a low GWP value is used.
  • R404A the mainstream of low-temperature refrigerants, has a GWP value of 3,943 (IPCC fifth report calculation value) Very big.
  • GWP value 1: IPCC fifth report calculation value
  • the compressor for a two-dimensional refrigeration apparatus has been shown, but as a result, the compressor has only one casing.
  • the high and low compression units are driven by one electric motor, the function of two compressors in the conventional binary refrigeration apparatus can be achieved by one compressor.
  • the refrigeration apparatus main body can also be reduced in size and weight, which can contribute to the reduction of the environmental load in transportation.
  • the compressor since the compressor is configured with a single housing, it can be configured at a lower cost than two conventional compressors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

To provide a compressor for a dual refrigeration device for the purpose of achieving a small and light-weight dual refrigeration device, and a dual refrigeration device equipped with the compressor. A compressor relating to the present invention is provided with: one electric motor; a first compression mechanism unit for compressing a first refrigerant using the electric motor; a second compression mechanism unit for compressing a second refrigerant using the electric motor, said second refrigerant being different from the first refrigerant; and a partition wall that separates the first compression mechanism unit and the second compression mechanism unit from each other.

Description

二元冷凍装置用圧縮機及び二元冷凍装置Compressor for binary refrigeration equipment and binary refrigeration equipment
 本発明は、1つの電動機と2つの圧縮機構部を備え、高元側と低元側の2つの異なる冷媒を用いた冷媒回路とカスケード熱交換器とを有する二元冷凍装置用圧縮機及び該圧縮機を搭載した二元冷凍装置に関するものである。 The present invention relates to a compressor for a binary refrigeration apparatus including one electric motor and two compression mechanisms, and having a refrigerant circuit using two different refrigerants on the high-end side and the low-end side and a cascade heat exchanger, and the compressor The present invention relates to a binary refrigeration apparatus equipped with a compressor.
 従来、鮮魚の冷凍などに用いられるマイナス数十度の低温度帯の冷却を行うための装置として、二元冷凍装置が知られている。二元冷凍装置は、高温側冷媒を循環するための高元側冷媒回路と、低温側冷媒を循環するための低元側冷媒回路とを有し、高元側冷媒回路における蒸発器と低元側冷媒回路における凝縮器とを熱交換できるように構成したカスケード熱交換器を有するものである。
 この二元冷凍装置は、高元側冷媒回路と低元側冷媒回路のそれぞれに冷媒圧縮機を備えている(例えば、特許文献1参照)。
2. Description of the Related Art Conventionally, a binary refrigeration apparatus is known as an apparatus for performing cooling in a low temperature range of minus several tens of degrees used for freezing fresh fish. The binary refrigeration apparatus includes a high-side refrigerant circuit for circulating the high-temperature side refrigerant and a low-side refrigerant circuit for circulating the low-temperature side refrigerant. It has the cascade heat exchanger comprised so that heat could be exchanged with the condenser in a side refrigerant circuit.
This binary refrigeration apparatus includes a refrigerant compressor in each of a high-side refrigerant circuit and a low-side refrigerant circuit (see, for example, Patent Document 1).
特許第5119513号公報Japanese Patent No. 5119513
 一般に知られている二元冷凍装置は、高元冷媒回路と低元冷媒回路のそれぞれに冷媒圧縮機を必要としていた。そのため、二元冷凍装置は少なくとも2台の圧縮機を搭載することになり、二元冷凍装置の本体が大きくなるという問題点があった。さらに圧縮機を少なくとも2台搭載するため、質量も重くなるという問題点もあった。 The generally known binary refrigeration apparatus requires a refrigerant compressor in each of the high-source refrigerant circuit and the low-source refrigerant circuit. For this reason, the binary refrigeration apparatus is equipped with at least two compressors, and there is a problem that the main body of the binary refrigeration apparatus becomes large. Further, since at least two compressors are mounted, there is a problem that the mass becomes heavy.
 その結果、大型で質量の大きい二元冷凍装置を製造後、設置場所まで輸送するには、大量の燃料を消費し、環境負荷が大きくなるという課題があった。さらには、大型化、重量化により、二元冷凍装置の設置スペースを広く確保する必要や、設置場所の基礎の強度を確保しなければならない課題があった。また、圧縮機を少なくとも2台搭載するため、製造コストが高価になるという課題があった。 As a result, in order to transport a large-sized, large mass binary refrigeration system to the installation location, there is a problem that a large amount of fuel is consumed and the environmental load increases. Furthermore, due to the increase in size and weight, there is a problem that it is necessary to secure a wide installation space for the binary refrigeration apparatus and to secure the strength of the foundation of the installation location. In addition, since at least two compressors are mounted, there is a problem that the manufacturing cost becomes expensive.
 本発明は、前記のような課題を解決するものであり、主たる目的は、小型で軽量かつ安価な二元冷凍装置を実現するための二元冷凍装置用圧縮機と該圧縮機を搭載した二元冷凍装置を提供するものである。 The present invention solves the above-mentioned problems, and a main object is to provide a compressor for a binary refrigeration apparatus for realizing a compact, lightweight, and inexpensive binary refrigeration apparatus, and a compressor equipped with the compressor. An original refrigeration apparatus is provided.
 本発明に係る二元冷凍装置用圧縮機においては、1つの電動機と、この電動機によって第1の冷媒を圧縮する第1圧縮機構部と、この電動機によって第1の冷媒とは異なる第2の冷媒を圧縮する第2圧縮機構部と、第1圧縮機構部と第2圧縮機構部とを隔離する隔壁と、を備えたものである。 In the compressor for a binary refrigeration apparatus according to the present invention, one electric motor, a first compression mechanism that compresses the first refrigerant by the electric motor, and a second refrigerant that is different from the first refrigerant by the electric motor. And a partition wall that separates the first compression mechanism portion and the second compression mechanism portion from each other.
 本発明によれば、二元冷凍装置用圧縮機が1台であるため、従来の二元冷凍装置に比べ、小型化、軽量化が可能となる。この結果、輸送における環境負荷の軽減、設置スペースの省スペース化、基礎工事の簡素化を図ることができる。さらには、安価な二元冷凍装置を提供することが可能となる。 According to the present invention, since there is one compressor for the binary refrigeration apparatus, it is possible to reduce the size and weight compared to the conventional binary refrigeration apparatus. As a result, it is possible to reduce the environmental burden in transportation, save installation space, and simplify foundation work. Furthermore, an inexpensive binary refrigeration apparatus can be provided.
本発明の実施の形態1に係る二元冷凍装置用圧縮機を用いた二元冷凍装置の基本的な構成を表す。The basic structure of the binary refrigeration apparatus using the compressor for binary refrigeration apparatuses which concerns on Embodiment 1 of this invention is represented. 本発明の実施の形態1に係る二元冷凍装置用圧縮機の概略構成図である。1 is a schematic configuration diagram of a compressor for a binary refrigeration apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る二元冷凍装置用圧縮機の他の構成例の概略構成図である。It is a schematic block diagram of the other structural example of the compressor for binary refrigerating apparatuses which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る二元冷凍装置用圧縮機の概略構成図である。It is a schematic block diagram of the compressor for binary refrigerating apparatuses which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る二元冷凍装置用圧縮機の概略構成図である。It is a schematic block diagram of the compressor for binary refrigeration apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る二元冷凍装置用圧縮機の他の構成例の概略構成図である。It is a schematic block diagram of the other structural example of the compressor for binary refrigeration apparatuses which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る二元冷凍装置用圧縮機の他の構成例の概略構成図である。It is a schematic block diagram of the other structural example of the compressor for binary refrigeration apparatuses which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る二次元冷凍装置用圧縮機の概略構成図である。It is a schematic block diagram of the compressor for two-dimensional refrigeration equipment concerning Embodiment 4 of the present invention. 本発明の実施の形態4に係る二元冷凍装置用圧縮機の他の構成例の概略構成図である。It is a schematic block diagram of the other structural example of the compressor for binary refrigeration apparatuses which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る二元冷凍装置用圧縮機の他の構成例の概略構成図である。It is a schematic block diagram of the other structural example of the compressor for binary refrigeration apparatuses which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る二元冷凍装置用圧縮機の他の構成例の概略構成図である。It is a schematic block diagram of the other structural example of the compressor for binary refrigeration apparatuses which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る二元冷凍装置用圧縮機の他の構成例の概略構成図である。It is a schematic block diagram of the other structural example of the compressor for binary refrigeration apparatuses which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る二元冷凍装置用圧縮機の他の構成例の概略構成図である。It is a schematic block diagram of the other structural example of the compressor for binary refrigeration apparatuses which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る二元冷凍装置用圧縮機の他の構成例の概略構成図である。It is a schematic block diagram of the other structural example of the compressor for binary refrigeration apparatuses which concerns on Embodiment 4 of this invention.
 以下、本発明の実施の形態に係る二元冷凍装置用圧縮機について説明する。なお、この実施の形態により本発明が限定されるものではない。また、この実施の形態の構成要素には、発明の同一性を維持しつつ置換可能かつ置換自明なものが含まれる。また、この実施の形態に記載された複数の変形例は、当業者自明の範囲内にて任意に組み合わせが可能である。 Hereinafter, a compressor for a binary refrigeration apparatus according to an embodiment of the present invention will be described. In addition, this invention is not limited by this embodiment. Further, the constituent elements of this embodiment include those that can be replaced while maintaining the identity of the invention and that are obvious for replacement. In addition, a plurality of modifications described in this embodiment can be arbitrarily combined within a range obvious to those skilled in the art.
 [実施の形態1]
 図1は、本発明の実施の形態1に係る二元冷凍装置用圧縮機を用いた二元冷凍装置の基本的な構成を表す。二元冷凍装置60は、高元側冷媒回路32と低元側冷媒回路34とを有する。
 高元側冷媒回路32は、二元冷凍装置用圧縮機(以下、圧縮機1という)の高元側圧縮機構部2と、高元側凝縮器40と、高元側膨張機構43と、高元側蒸発器53とを配管で接続する。
 低元側冷媒回路34は、圧縮機1の低元側圧縮機構部3と、低元側凝縮器52と、低元側膨張機構54と、低元側蒸発器56とを配管で接続する。高元側蒸発器53と低元側凝縮器52は、カスケード熱交換器36を構成している。
 なお、高元側冷媒回路32で使用する冷媒と低元側冷媒回路34で使用する冷媒は同一ではない。また、図1に記載の二元冷凍装置60は基本的な構成であり、二元冷凍装置60は、受液器、油分離器、アキュムレータなどを備えてもよい。
[Embodiment 1]
FIG. 1 shows a basic configuration of a binary refrigeration apparatus using a compressor for a binary refrigeration apparatus according to Embodiment 1 of the present invention. The binary refrigeration apparatus 60 includes a high-side refrigerant circuit 32 and a low-side refrigerant circuit 34.
The high-end side refrigerant circuit 32 includes a high-end side compression mechanism section 2 of a compressor for a binary refrigerating apparatus (hereinafter referred to as a compressor 1), a high-end side condenser 40, a high-end side expansion mechanism 43, The former side evaporator 53 is connected by piping.
The low-side refrigerant circuit 34 connects the low-side compression mechanism 3 of the compressor 1, the low-side condenser 52, the low-side expansion mechanism 54, and the low-side evaporator 56 with piping. The high-side evaporator 53 and the low-side condenser 52 constitute a cascade heat exchanger 36.
Note that the refrigerant used in the high-side refrigerant circuit 32 and the refrigerant used in the low-side refrigerant circuit 34 are not the same. Further, the binary refrigeration apparatus 60 shown in FIG. 1 has a basic configuration, and the binary refrigeration apparatus 60 may include a liquid receiver, an oil separator, an accumulator, and the like.
 高元側冷媒回路32の作用について、説明する。高元側圧縮機構部2によって圧縮された高温・高圧の冷媒ガスは、高元側凝縮器40に入り水または空気と熱交換を行い、凝縮し、高圧の冷媒液となる。ここで、高元側凝縮器40は冷却水と熱交換する水冷式、空気と熱交換する空冷式のいずれであっても良い。ここでは冷却水と熱交換している場合を例に示している。高元側凝縮器40を出た冷媒液は、高元側膨張機構43によって減圧され、低温・低圧の冷媒液となる。この低温・低圧となった冷媒液は、高元側蒸発器53へ入る。ここで、低元側の高温・高圧の冷媒ガスと熱交換して気化し、低温・低圧の冷媒ガスとなる。低温・低圧の冷媒ガスは、高元側圧縮機構部2へ吸い込まれる。 The operation of the high-source side refrigerant circuit 32 will be described. The high-temperature and high-pressure refrigerant gas compressed by the high-side compression mechanism unit 2 enters the high-side condenser 40, performs heat exchange with water or air, condenses, and becomes a high-pressure refrigerant liquid. Here, the high-end side condenser 40 may be either a water-cooled type that exchanges heat with cooling water or an air-cooled type that exchanges heat with air. Here, a case where heat is exchanged with cooling water is shown as an example. The refrigerant liquid that has exited the high-side condenser 40 is decompressed by the high-side expansion mechanism 43 to become a low-temperature and low-pressure refrigerant liquid. The low-temperature and low-pressure refrigerant liquid enters the high-side evaporator 53. Here, heat is exchanged with the low-temperature side high-temperature and high-pressure refrigerant gas to be vaporized to become a low-temperature and low-pressure refrigerant gas. The low-temperature and low-pressure refrigerant gas is sucked into the high-side compression mechanism unit 2.
 低元側冷媒回路34の作用について、説明する。低元側圧縮機構部3によって圧縮された高温・高圧の冷媒ガスは、低元側凝縮器52に入り高元側の低温・低圧の冷媒液と熱交換を行い、凝縮し、高圧の冷媒液となる。ここで、低元側凝縮器52の形式はシェルアンドチューブ式、プレート熱交換器、二重管式熱交換器をはじめ、いずれの形式であっても差し支えない。低元側凝縮器52を出た冷媒液は、低元側膨張機構54によって減圧され、低温・低圧の冷媒液となる。この低温・低圧となった冷媒液は、低元側蒸発器56へ入る。ここで、不凍液(一般に「ブライン」と言われる。)や空気と熱交換して気化し、低温・低圧の冷媒ガスとなる。ここではブラインと熱交換している場合を例に示している。低温・低圧の冷媒ガスは、低元側圧縮機構部3へ吸い込まれる。 The operation of the low-source side refrigerant circuit 34 will be described. The high-temperature and high-pressure refrigerant gas compressed by the low-source side compression mechanism unit 3 enters the low-source side condenser 52, exchanges heat with the low-temperature and low-pressure refrigerant liquid on the high-source side, condenses, and condenses the high-pressure refrigerant liquid. It becomes. Here, the low-source side condenser 52 may be any type including a shell and tube type, a plate heat exchanger, and a double pipe type heat exchanger. The refrigerant liquid that has exited the low-side condenser 52 is decompressed by the low-side expansion mechanism 54 and becomes a low-temperature and low-pressure refrigerant liquid. The low-temperature / low-pressure refrigerant liquid enters the low-source evaporator 56. Here, it is vaporized by heat exchange with antifreeze (generally referred to as “brine”) and air, and becomes a low-temperature and low-pressure refrigerant gas. Here, a case where heat is exchanged with brine is shown as an example. The low-temperature / low-pressure refrigerant gas is sucked into the low-source compression mechanism unit 3.
 図2は、本発明の実施の形態1に係る二元冷凍装置用圧縮機の概略構成図である。
 本発明の実施の形態1に係る圧縮機1は、電動機101のロータシャフト102に低元側圧縮機構部103と高元側圧縮機構部104を配置している。図2の圧縮機構部の配置は、一般に二段圧縮機と呼ばれる圧縮機と同一である。しかしながら、二段圧縮機は、単一の冷媒で動作し、その機能は、低温・低圧の冷媒ガスを吸い込んだ後、低段圧縮部において圧縮したのち、高段圧縮部が吸込み、高温・高圧の冷媒ガスを吐出するものである。
 これに対し圧縮機1は、低元側圧縮機構部103と高元側圧縮機構部104との間に隔壁105と軸シール107を備えており、低元冷媒と高元冷媒が混合しない構造となっている。すなわち、隔壁105と軸シール107とで隔離された低元側圧縮機構部103と高元側圧縮機構部104はそれぞれ吸込口と吐出口を有し、それぞれ異なる冷媒を吸込み、吐出するものである。
FIG. 2 is a schematic configuration diagram of the compressor for the binary refrigeration apparatus according to Embodiment 1 of the present invention.
In the compressor 1 according to Embodiment 1 of the present invention, the low-side compression mechanism 103 and the high-side compression mechanism 104 are arranged on the rotor shaft 102 of the electric motor 101. The arrangement of the compression mechanism in FIG. 2 is the same as that of a compressor generally called a two-stage compressor. However, the two-stage compressor operates with a single refrigerant, and its function is to suck in the low-temperature / low-pressure refrigerant gas and then compress it in the low-stage compression section, and then suck in the high-stage compression section to generate high-temperature / high-pressure. The refrigerant gas is discharged.
On the other hand, the compressor 1 includes a partition wall 105 and a shaft seal 107 between the low-side compression mechanism unit 103 and the high-side compression mechanism unit 104, so that the low-source refrigerant and the high-source refrigerant are not mixed. It has become. That is, the low-side compression mechanism 103 and the high-side compression mechanism 104 separated by the partition wall 105 and the shaft seal 107 each have a suction port and a discharge port, and suck and discharge different refrigerants. .
 図3は、本発明の実施の形態1に係る二元冷凍装置用圧縮機の他の構成例の概略構成図である。図3の圧縮機1は、電動機101の両側のロータシャフトにそれぞれ低元側圧縮機構部103と高元側圧縮機構部104を配置したものである。隔壁105と軸シール107が、電動機101と高元側圧縮機構部104との間に備えられている。電動機101は低元側圧縮機構部103の冷媒空間の中に配置されているが、高元側圧縮機構部104の冷媒空間の中に配置されてもよい。その場合には、隔壁105と軸シール107が、電動機101と低元側圧縮機構部103の間に備えられる。
 電動機101の両側に圧縮機構部を配置することにより、圧縮した高温・高圧の冷媒ガスによって生じる軸方向荷重(スラスト荷重)が相殺され、スラスト軸受の小型化という効果がある。
FIG. 3 is a schematic configuration diagram of another configuration example of the compressor for a binary refrigeration apparatus according to Embodiment 1 of the present invention. In the compressor 1 of FIG. 3, a low-side compression mechanism 103 and a high-side compression mechanism 104 are arranged on the rotor shafts on both sides of the electric motor 101, respectively. A partition wall 105 and a shaft seal 107 are provided between the electric motor 101 and the high-side compression mechanism 104. Although the electric motor 101 is arranged in the refrigerant space of the low-side compression mechanism unit 103, the electric motor 101 may be arranged in the refrigerant space of the high-side compression mechanism unit 104. In that case, the partition wall 105 and the shaft seal 107 are provided between the electric motor 101 and the low-side compression mechanism 103.
By disposing the compression mechanism portions on both sides of the electric motor 101, the axial load (thrust load) generated by the compressed high-temperature and high-pressure refrigerant gas is offset, and the thrust bearing is downsized.
 なお、低元側圧縮機構部103と高元側圧縮機構部104の配置はそれぞれ逆の位置であってもよい。また、高元側圧縮機構部と低元側圧縮機構部の圧縮方式は、往復動式、回転式、速度式のいずれであってもよく、かつ、高元側圧縮機構部と低元側圧縮機構部が同一であることを必須としない。すなわち、高元側圧縮機構部がスクリュー式、低元側圧縮機構部がレシプロ式であっても本発明の効果が損なわれることはない。これらの態様は以下に説明する他の実施の形態にも当てはまるものである。 Note that the positions of the low-side compression mechanism unit 103 and the high-side compression mechanism unit 104 may be reversed. The compression method of the high-side compression mechanism unit and the low-side compression mechanism unit may be any of a reciprocating type, a rotary type, and a speed type, and the high-side compression mechanism unit and the low-side compression unit It is not essential that the mechanism part is the same. That is, even if the high-end compression mechanism is a screw type and the low-end compression mechanism is a reciprocating type, the effects of the present invention are not impaired. These aspects also apply to other embodiments described below.
 本発明の実施の形態1に係る圧縮機1は、低元側圧縮機構部103と高元側圧縮機構部104が1つの筐体で提供されるため、1台の圧縮機で二元冷凍装置を構成することができる。そのため、小型で軽量かつ安価な二元冷凍装置を実現することができる。 In the compressor 1 according to Embodiment 1 of the present invention, the low-side compression mechanism unit 103 and the high-side compression mechanism unit 104 are provided in a single casing, so that the binary refrigeration apparatus includes a single compressor. Can be configured. Therefore, it is possible to realize a small, light and inexpensive binary refrigeration apparatus.
 [実施の形態2]
 図4は、本発明の実施の形態2に係る二元冷凍装置用圧縮機の概略構成図である。
 実施の形態2に係る圧縮機1は、電動機101の両側のロータシャフトにそれぞれ高元側圧縮機構部104と低元側圧縮機構部103をそれぞれ配置したものである。また、隔壁105と軸シール107が、電動機101と高元側圧縮機構部104及び低元側圧縮機構部103との間にそれぞれ設けられている。
[Embodiment 2]
FIG. 4 is a schematic configuration diagram of a compressor for a binary refrigeration apparatus according to Embodiment 2 of the present invention.
In the compressor 1 according to the second embodiment, the high-side compression mechanism 104 and the low-side compression mechanism 103 are respectively arranged on the rotor shafts on both sides of the electric motor 101. A partition wall 105 and a shaft seal 107 are provided between the electric motor 101 and the high-side compression mechanism 104 and the low-side compression mechanism 103, respectively.
 この実施の形態2に係る圧縮機1は、中央に電動機101を配置することにより、低元側圧縮機構部103と高元側圧縮機構部104が隣接しなくなる。そのため、実施の形態2に係る圧縮機1は、実施の形態1に係る圧縮機1よりも軸シール107の損耗に起因する高元冷媒と低元冷媒の混合の可能性を抑えることができる。
 また、電動機101の両側に圧縮機構部を配置することにより、圧縮した高温・高圧の冷媒ガスによって生じる軸方向荷重(スラスト荷重)が相殺され、スラスト軸受の小型化という効果がある。
 なお、電動機101を収納する電動機室108は、電動機冷却効果が大きい低元冷媒空間とすること、電動機材料の低温脆性を回避するために高元冷媒空間とすること、のいずれであっても良い。
In the compressor 1 according to the second embodiment, the low-side compression mechanism unit 103 and the high-side compression mechanism unit 104 are not adjacent to each other by disposing the electric motor 101 in the center. Therefore, the compressor 1 according to the second embodiment can suppress the possibility of mixing the high and low refrigerants due to the wear of the shaft seal 107 as compared with the compressor 1 according to the first embodiment.
Further, by arranging the compression mechanism portions on both sides of the electric motor 101, the axial load (thrust load) generated by the compressed high-temperature / high-pressure refrigerant gas is offset, and the thrust bearing can be downsized.
The motor chamber 108 that houses the motor 101 may be either a low-source refrigerant space that has a large motor cooling effect or a high-source refrigerant space to avoid low-temperature brittleness of the motor material. .
 [実施の形態3]
 図5は、本発明の実施の形態3に係る二元冷凍装置用圧縮機の概略構成図である。
 本発明の実施の形態3に係る圧縮機1は、実施の形態2に係る圧縮機1では冷媒空間であった電動機室108を、低元冷媒空間、高元冷媒空間のいずれの冷媒空間ともせず、大気開放空間とするものである。すなわち、一般的には「開放型」と呼ばれる構成である。
 この構成では、軸シール107が損耗により機能しなくなった場合でも、高元冷媒と低元冷媒が直接混合することはない。
[Embodiment 3]
FIG. 5 is a schematic configuration diagram of a compressor for a binary refrigeration apparatus according to Embodiment 3 of the present invention.
In the compressor 1 according to the third embodiment of the present invention, the electric motor chamber 108 that is the refrigerant space in the compressor 1 according to the second embodiment can be replaced with either the low-source refrigerant space or the high-source refrigerant space. Instead, it is an open space. That is, it is a configuration generally called “open type”.
In this configuration, even if the shaft seal 107 does not function due to wear, the high-source refrigerant and the low-source refrigerant are not directly mixed.
 図6及び図7は、本発明の実施の形態3に係る二元冷凍装置用圧縮機の他の構成例の概略構成図である。図6の圧縮機1は、実施の形態1に係る圧縮機1では冷媒空間にあった電動機101を、大気開放空間に設置するものである。図7の圧縮機1は、実施の形態1に係る圧縮機1では冷媒空間にあった電動機101を、大気開放空間に設置するものであり、低元側圧縮機構部103と高元側圧縮機構部104の各冷媒空間をそれぞれ軸シール107で独立した空間としたものである。 6 and 7 are schematic configuration diagrams of other configuration examples of the compressor for a binary refrigeration apparatus according to Embodiment 3 of the present invention. The compressor 1 of FIG. 6 installs the electric motor 101 that was in the refrigerant space in the compressor 1 according to Embodiment 1 in the open air space. The compressor 1 in FIG. 7 is configured such that the motor 101 that is in the refrigerant space in the compressor 1 according to the first embodiment is installed in the open air space, and the low-side compression mechanism unit 103 and the high-side compression mechanism Each refrigerant space of the section 104 is made into an independent space by a shaft seal 107.
 [実施の形態4]
 図8は、本発明の実施の形態4に係る二次元冷凍装置用圧縮機の概略構成図である。実施の形態4に係る圧縮機1は、本発明の実施の形態1~3の圧縮機1のいずれかであって、ロータシャフト102と低元側圧縮機構部103及び高元側圧縮機構部104が低元側ギヤ109及び高元側ギヤ110によって作動連結されるものである。すなわち、低元側ギヤ109、高元側ギヤ110によって低元側圧縮機構部103と高元側圧縮機構部104の回転数を変更することができる。低元側ギヤ109及び高元側ギヤ110によって低元側圧縮機構部103と高元側圧縮機構部104の回転数が上昇し増速することにより、前記実施の形態1~3に係る圧縮機1の圧縮能力の向上が可能となる。
[Embodiment 4]
FIG. 8 is a schematic configuration diagram of a compressor for a two-dimensional refrigeration apparatus according to Embodiment 4 of the present invention. The compressor 1 according to the fourth embodiment is one of the compressors 1 according to the first to third embodiments of the present invention, in which the rotor shaft 102, the low-side compression mechanism unit 103, and the high-side compression mechanism unit 104 are used. Are operatively connected by a low-side gear 109 and a high-side gear 110. That is, the rotation speeds of the low-side compression mechanism 103 and the high-side compression mechanism 104 can be changed by the low-side gear 109 and the high-side gear 110. The low original gear 109 and the high original gear 110 increase the rotational speed of the low original side compression mechanism 103 and the high original side compression mechanism 104 to increase the speed, whereby the compressor according to the first to third embodiments. 1 compression capability can be improved.
 図9~図14は、本発明の実施の形態4に係る二元冷凍装置用圧縮機の他の構成例の概略構成図である。図9の圧縮機1は、電動機101の両側のロータシャフト102に低元側圧縮機構部103と高元側圧縮機構部104を配置する圧縮機1において、低元側ギヤ109と高元側ギヤ110を電動機室108に有するものである。図10~図12の圧縮機1は、大気空間に設置された電動機101に低元側ギヤ109と高元側ギヤ110を作動連結させたものであり、低元側ギヤ109と高元側ギヤ110が、冷媒空間又は大気空間に設置された一例を表すものである。図13及び14の圧縮機1は、隔壁105と軸シール107が、低元側圧縮機構部103と高元側圧縮機構部104との間に備えられている圧縮機1において、低元側ギヤ109と高元側ギヤ110を有する一例を表すものである。 9 to 14 are schematic configuration diagrams of other configuration examples of the compressor for the binary refrigeration apparatus according to Embodiment 4 of the present invention. The compressor 1 shown in FIG. 9 includes a low-side gear 109 and a high-side gear in the compressor 1 in which the low-side compression mechanism 103 and the high-side compression mechanism 104 are arranged on the rotor shafts 102 on both sides of the electric motor 101. 110 is provided in the motor chamber 108. The compressor 1 shown in FIGS. 10 to 12 is obtained by operatively connecting a low-side gear 109 and a high-side gear 110 to an electric motor 101 installed in an atmospheric space. 110 represents an example installed in the refrigerant space or the atmospheric space. 13 and 14 is a compressor 1 in which a partition wall 105 and a shaft seal 107 are provided between a low-side compression mechanism unit 103 and a high-side compression mechanism unit 104. 1 represents an example having 109 and a high-side gear 110.
 [実施の形態5]
 本発明の実施の形態5に係る二次元冷凍装置用圧縮機は、本発明の実施の形態1~4に係る圧縮機1のいずれかであって、電動機101がインバータ111(図示せず)で駆動されるものである。インバータ111によって電動機101の回転数の増減が可能となり、低元側圧縮機構部103と高元側圧縮機構部104の回転数を変更することができるので、圧縮能力の向上を図ることができる。また、減速運転することにより、機械的に容量制御を行う時に比べ、容量制御時の効率改善を図ることができる。
[Embodiment 5]
The compressor for a two-dimensional refrigeration apparatus according to Embodiment 5 of the present invention is one of the compressors 1 according to Embodiments 1 to 4 of the present invention, in which the motor 101 is an inverter 111 (not shown). It is driven. The inverter 111 can increase or decrease the rotational speed of the electric motor 101 and can change the rotational speeds of the low-side compression mechanism unit 103 and the high-side compression mechanism unit 104, so that the compression capacity can be improved. Further, by performing the deceleration operation, it is possible to improve the efficiency during the capacity control as compared with the case where the capacity control is mechanically performed.
 [実施の形態6]
 本発明の実施の形態6に係る二次元冷凍装置用圧縮機は、前記実施の形態1~5に係る圧縮機1のいずれかであって、高元冷媒及び低元冷媒に地球温暖化係数(GWP値)の低い冷媒を用いるものである。昨今の地球環境問題に対応し、GWP値の低い冷媒への切替えが進んでいる中、現在、低温用冷媒の主流であるR404AはGWP値が3,943(IPCC第5次レポート計算値)と非常に大きい。例えば、高元冷媒として低GWP冷媒であるHFO冷媒やR1234yf(GWP値=1未満:IPCC第5次レポート計算値)を使用し、低元冷媒として二酸化炭素(GWP値=1)を使用すれば、環境負荷の大幅な改善となる。
[Embodiment 6]
A compressor for a two-dimensional refrigeration apparatus according to Embodiment 6 of the present invention is any one of the compressors 1 according to Embodiments 1 to 5, and includes a global warming potential ( A refrigerant having a low GWP value is used. In response to the recent global environmental problems, while switching to refrigerants with low GWP values is progressing, R404A, the mainstream of low-temperature refrigerants, has a GWP value of 3,943 (IPCC fifth report calculation value) Very big. For example, if HFO refrigerant, which is a low GWP refrigerant, or R1234yf (less than GWP value = 1: IPCC fifth report calculation value) is used as the high-source refrigerant, and carbon dioxide (GWP value = 1) is used as the low-source refrigerant. The environmental impact will be greatly improved.
 以上の通り本発明の実施の形態1~6に係る二次元冷凍装置用圧縮機を示したが、これにより、圧縮機の筐体は1つになる。そして、1つの電動機で高元及び低元側圧縮機構部を駆動するため、圧縮機1台で従来の二元冷凍装置における圧縮機2台分の機能を果たすことができる。このため、冷凍装置本体も小型化、軽量化が可能となり、輸送における環境負荷の低減に貢献できる。また、1つの筐体で圧縮機を構成することになるので、従来の圧縮機2台に比べ、安価に構成することができる。 As described above, the compressor for a two-dimensional refrigeration apparatus according to Embodiments 1 to 6 of the present invention has been shown, but as a result, the compressor has only one casing. In addition, since the high and low compression units are driven by one electric motor, the function of two compressors in the conventional binary refrigeration apparatus can be achieved by one compressor. For this reason, the refrigeration apparatus main body can also be reduced in size and weight, which can contribute to the reduction of the environmental load in transportation. In addition, since the compressor is configured with a single housing, it can be configured at a lower cost than two conventional compressors.
 1 圧縮機、2 高元側圧縮機構部、3 低元側圧縮機構部、32 高元側冷媒回路、34 低元側冷媒回路、36 カスケード熱交換器、40 高元側凝縮器、43 高元側膨張機構、52 低元側凝縮器、53 高元側蒸発器、54 低元側膨張機構、56 低元側蒸発器、60 二元冷凍装置、101 電動機、102 ロータシャフト、103 低元側圧縮機構部、104 高元側圧縮機構部、105 隔壁、107 軸シール、108 電動機室、109 低元側ギヤ、110 高元側ギヤ、111 インバータ。 1 compressor, 2 high side compression mechanism, 3 low side compression mechanism, 32 high side refrigerant circuit, 34 low side refrigerant circuit, 36 cascade heat exchanger, 40 high side condenser, 43 high source Side expansion mechanism, 52 Low-side condenser, 53 High-side evaporator, 54 Low-side expansion mechanism, 56 Low-side evaporator, 60 Two-way refrigeration system, 101 Electric motor, 102 Rotor shaft, 103 Low-side compression Mechanism part, 104 High-end side compression mechanism part, 105 Bulkhead, 107 Shaft seal, 108 Motor room, 109 Low-side gear, 110 High-side gear, 111 Inverter.

Claims (11)

  1.  1つの電動機と、
     前記電動機によって第1の冷媒を圧縮する第1圧縮機構部と、
     前記電動機によって第1の冷媒とは異なる第2の冷媒を圧縮する第2圧縮機構部と、
     前記第1圧縮機構部と前記第2圧縮機構部とを隔離する隔壁と、を備えた二元冷凍装置用圧縮機。
    One motor,
    A first compression mechanism that compresses the first refrigerant by the electric motor;
    A second compression mechanism that compresses a second refrigerant different from the first refrigerant by the electric motor;
    A compressor for a binary refrigeration apparatus, comprising: a partition wall that separates the first compression mechanism portion and the second compression mechanism portion.
  2.  前記第1圧縮機構部と前記第2圧縮機構部が1つの筐体に収容され、
     前記隔壁は、前記筐体内で前記第1圧縮機構部と前記第2圧縮機構部を隔離する請求項1に記載の二元冷凍装置用圧縮機。
    The first compression mechanism part and the second compression mechanism part are accommodated in one housing,
    The compressor for a binary refrigeration apparatus according to claim 1, wherein the partition separates the first compression mechanism portion and the second compression mechanism portion within the casing.
  3.  前記第1圧縮機構部と前記第2圧縮機構部が別々の筐体に収容され、
     前記筐体が隔壁として作用する請求項1に記載の二元冷凍装置用圧縮機。
    The first compression mechanism unit and the second compression mechanism unit are housed in separate housings,
    The compressor for a binary refrigeration apparatus according to claim 1, wherein the housing acts as a partition wall.
  4.  前記電動機が、大気に開放された状態で前記筐体内に設置された請求項2又は3に記載の二元冷凍装置用圧縮機。 The compressor for a binary refrigeration apparatus according to claim 2 or 3, wherein the electric motor is installed in the casing in a state of being open to the atmosphere.
  5.  前記電動機が、ロータシャフトを備え、
     前記第1圧縮機構部と前記第2圧縮機構部が、前記ロータシャフト上に隣接して配置され、
     前記第1圧縮機構部と前記第2圧縮機構部との間に隔壁と軸シールを有する請求項1~4に記載の二元冷凍装置用圧縮機。
    The electric motor comprises a rotor shaft;
    The first compression mechanism portion and the second compression mechanism portion are disposed adjacent to each other on the rotor shaft;
    The compressor for a dual refrigeration apparatus according to any one of claims 1 to 4, further comprising a partition wall and a shaft seal between the first compression mechanism section and the second compression mechanism section.
  6.  前記電動機が、前記電動機を貫通するロータシャフトを備え、
     前記第1圧縮機構部と前記第2圧縮機構部が、前記電動機を挟んで対抗するそれぞれの側の前記ロータシャフト上にそれぞれ配置され、
     前記第1圧縮機構部及び前記第2圧縮機構部と前記電動機との間に隔壁と軸シールを有する請求項1~4に記載の二元冷凍装置用圧縮機。
    The electric motor includes a rotor shaft penetrating the electric motor;
    The first compression mechanism portion and the second compression mechanism portion are respectively disposed on the rotor shafts on opposite sides facing each other with the electric motor interposed therebetween,
    The compressor for a dual refrigeration apparatus according to any one of claims 1 to 4, further comprising a partition wall and a shaft seal between the first compression mechanism section, the second compression mechanism section, and the electric motor.
  7.  前記ロータシャフトと、前記第1圧縮機構部及び前記第2圧縮機構部のいずれか一方又は両方との間にギヤを備える請求項1~6のいずれか一項に記載の二元冷凍装置用圧縮機。 The compression for a binary refrigeration apparatus according to any one of claims 1 to 6, further comprising a gear between the rotor shaft and one or both of the first compression mechanism section and the second compression mechanism section. Machine.
  8.  前記第1の冷媒及び前記第2の冷媒のいずれか一方又は両方に低GWP冷媒を使用した請求項1~7のいずれか一項に記載の二元冷凍装置用圧縮機。 The compressor for a binary refrigeration apparatus according to any one of claims 1 to 7, wherein a low GWP refrigerant is used for one or both of the first refrigerant and the second refrigerant.
  9.  前記第1の冷媒及び前記第2の冷媒のいずれか一方又は両方に自然冷媒を使用した請求項1~7のいずれか一項に記載の二元冷凍装置用圧縮機。 The compressor for a binary refrigeration apparatus according to any one of claims 1 to 7, wherein a natural refrigerant is used for one or both of the first refrigerant and the second refrigerant.
  10.  前記第1の冷媒及び前記第2の冷媒のいずれか一方に低GWP冷媒を使用し、他方に自然冷媒を使用した請求項1~7のいずれか一項に記載の二元冷凍装置用圧縮機。 The compressor for a binary refrigeration apparatus according to any one of claims 1 to 7, wherein a low GWP refrigerant is used for one of the first refrigerant and the second refrigerant, and a natural refrigerant is used for the other. .
  11.  圧縮機と高元側凝縮器と高元側膨張機構とカスケード熱交換器の蒸発器とが順に接続されて冷媒が循環する高元側冷媒回路と、前記圧縮機とカスケード熱交換器の凝縮器と低元側膨張機構と低元側蒸発器とが順に接続されて冷媒が循環する低元側冷媒回路を備えた二元冷凍装置であって、
     前記圧縮機が、請求項1~10のいずれか一項に記載の二元冷凍装置用圧縮機を搭載した二元冷凍装置。
    A compressor, a high-end side condenser, a high-end side expansion mechanism, and a cascade heat exchanger evaporator are connected in order to circulate refrigerant, and the compressor and the cascade heat exchanger condenser And a low-side expansion mechanism and a low-side side evaporator are connected in order, and a low-side refrigerant circuit including a low-side refrigerant circuit in which the refrigerant circulates,
    A binary refrigeration apparatus in which the compressor is mounted with the compressor for a binary refrigeration apparatus according to any one of claims 1 to 10.
PCT/JP2015/085036 2015-12-15 2015-12-15 Compressor for dual refrigeration device, and dual refrigeration device WO2017103988A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/085036 WO2017103988A1 (en) 2015-12-15 2015-12-15 Compressor for dual refrigeration device, and dual refrigeration device
JP2017555898A JP6522156B2 (en) 2015-12-15 2015-12-15 Compressor for dual refrigeration unit and dual refrigeration unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/085036 WO2017103988A1 (en) 2015-12-15 2015-12-15 Compressor for dual refrigeration device, and dual refrigeration device

Publications (1)

Publication Number Publication Date
WO2017103988A1 true WO2017103988A1 (en) 2017-06-22

Family

ID=59056107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085036 WO2017103988A1 (en) 2015-12-15 2015-12-15 Compressor for dual refrigeration device, and dual refrigeration device

Country Status (2)

Country Link
JP (1) JP6522156B2 (en)
WO (1) WO2017103988A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3640549A4 (en) * 2017-12-19 2020-08-05 Gree Green Refrigeration Technology Center Co., Ltd. of Zhuhai Air conditioner system and air conditioner having same
US20220011024A1 (en) * 2020-07-08 2022-01-13 Rheem Manufacturing Company Dual-circuit heating, ventilation, air conditioning, and refrigeration systems and associated methods
US12013135B2 (en) 2020-08-06 2024-06-18 Rheem Manufacturing Company Systems and methods of detecting an obstructed furnace air filter using a flame sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04203768A (en) * 1990-11-30 1992-07-24 Hitachi Ltd Two-refrigerant freezer
US20100147006A1 (en) * 2007-06-04 2010-06-17 Taras Michael F Refrigerant system with cascaded circuits and performance enhancement features
US20150121940A1 (en) * 2013-11-05 2015-05-07 Lg Electronics Inc. Refrigeration cycle of refrigerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04203768A (en) * 1990-11-30 1992-07-24 Hitachi Ltd Two-refrigerant freezer
US20100147006A1 (en) * 2007-06-04 2010-06-17 Taras Michael F Refrigerant system with cascaded circuits and performance enhancement features
US20150121940A1 (en) * 2013-11-05 2015-05-07 Lg Electronics Inc. Refrigeration cycle of refrigerator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3640549A4 (en) * 2017-12-19 2020-08-05 Gree Green Refrigeration Technology Center Co., Ltd. of Zhuhai Air conditioner system and air conditioner having same
US20220011024A1 (en) * 2020-07-08 2022-01-13 Rheem Manufacturing Company Dual-circuit heating, ventilation, air conditioning, and refrigeration systems and associated methods
US11585575B2 (en) 2020-07-08 2023-02-21 Rheem Manufacturing Company Dual-circuit heating, ventilation, air conditioning, and refrigeration systems and associated methods
US12013135B2 (en) 2020-08-06 2024-06-18 Rheem Manufacturing Company Systems and methods of detecting an obstructed furnace air filter using a flame sensor

Also Published As

Publication number Publication date
JP6522156B2 (en) 2019-05-29
JPWO2017103988A1 (en) 2018-04-05

Similar Documents

Publication Publication Date Title
KR102273425B1 (en) Scroll compressor
US10254013B2 (en) Two-stage rotary compressor and refrigeration cycle device having same
US10883744B2 (en) Converting compressor to variable VI compressor
WO2017103988A1 (en) Compressor for dual refrigeration device, and dual refrigeration device
JP2001091071A (en) Multi-stage compression refrigerating machine
US10502210B2 (en) Variable-capacity compressor and refrigeration device having same
JP5217909B2 (en) Compressor
EP1067341A2 (en) Apparatus having a refrigeration circuit
JP2010156498A (en) Refrigerating device
JP2000097177A (en) Rotary compressor and refrigerating circuit
JPH11223396A (en) Multi-stage compression refrigerating unit
JP5286010B2 (en) 2-cylinder rotary compressor and refrigeration cycle equipment
JP2006275494A (en) Refrigerating device, refrigerator and compressor
JPH11241693A (en) Compressor
JP2009074445A (en) Two-cylinder rotary compressor and refrigerating cycle device
JP2008157101A (en) Rotary compressor and refrigerating cycle device
JP2003214104A (en) Positive displacement machine
JPH1162863A (en) Compressor
JP2006214610A (en) Refrigerating device
JPH11223397A (en) Freezer refrigerator
US12031441B2 (en) Multi-bearing scroll compressor to enhance load management
JPS6137830Y2 (en)
JP2002106989A (en) Two-stage compressor, refrigerating cycle device and refrigerator
JP2016102640A (en) Rotary type compressor and air conditioner with the same
JP3435189B2 (en) Refrigeration equipment for refrigerators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910679

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017555898

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15910679

Country of ref document: EP

Kind code of ref document: A1