JP2000097177A - Rotary compressor and refrigerating circuit - Google Patents

Rotary compressor and refrigerating circuit

Info

Publication number
JP2000097177A
JP2000097177A JP10267928A JP26792898A JP2000097177A JP 2000097177 A JP2000097177 A JP 2000097177A JP 10267928 A JP10267928 A JP 10267928A JP 26792898 A JP26792898 A JP 26792898A JP 2000097177 A JP2000097177 A JP 2000097177A
Authority
JP
Japan
Prior art keywords
refrigerant
rotary compressor
cylinder
rotary
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10267928A
Other languages
Japanese (ja)
Inventor
Takeo Komatsubara
健夫 小松原
Toshiyuki Ebara
俊行 江原
Nobuhisa Koumoto
伸央 甲元
Masaya Tadano
昌也 只野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10267928A priority Critical patent/JP2000097177A/en
Publication of JP2000097177A publication Critical patent/JP2000097177A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • F04C2210/261Carbon dioxide (CO2)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the reliability of a small rotary compressor using inexpensive carbon dioxide as a refrigerant and a refrigerating circuit using the rotary compressor. SOLUTION: In this rotary compressor 1 in which a rotary compression element 5 comprising cylinders 14, 15 whose both end openings are closed, rollers 16, 17 rotated in the inside of these cylinders 14, 15 and vanes 20, 21 forming a compression space in the inside of the cylinders 14, 15 by being brought into contact with the rollers 16, 17 is stored in the inside of a sealed container 2 and an absorbed refrigerant is compressed by the rotary compression element 5 and discharged, carbon dioxide is used as a refrigerant and the inner pressure of the rotary compressor 1 is lowered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自然冷媒の内、特
に二酸化炭素(CO2)を用いた回転式圧縮機に関す
る。
The present invention relates to a rotary compressor using natural refrigerant, particularly carbon dioxide (CO 2 ).

【0002】[0002]

【従来の技術】従来、冷凍サイクルには、冷媒としてフ
ロン(R11、R12、R134aなど)が一般的に用
いられていた。しかしながら、フロンは大気中に放出さ
れると大きな温暖化効果やオゾン層破壊などの問題を有
している。
2. Description of the Related Art Freon (R11, R12, R134a, etc.) has been generally used as a refrigerant in a refrigeration cycle. However, if CFCs are released into the atmosphere, they have problems such as a large warming effect and ozone layer depletion.

【0003】このため、近年、環境に与える影響の少な
い他の自然冷媒、例えば、酸素(O 2)、二酸化炭素
(CO2)、ハイドロカーボン(HC)、アンモニア
(NH3)、水(H2O)を冷媒として用いる研究が行わ
れている。
[0003] For this reason, in recent years, the impact on the environment has been small.
Other natural refrigerants such as oxygen (O Two),carbon dioxide
(COTwo), Hydrocarbon (HC), ammonia
(NHThree), Water (HTwoResearch using O) as refrigerant
Have been.

【0004】これら自然冷媒の内、酸素と水は、回転式
圧縮機に用いても圧力が低くて冷凍サイクルの冷媒とし
ては用いる事ができない。また、アンモニアやハイドロ
カーボンは可燃性であるため、取り扱いが難しい問題が
ある。
[0004] Of these natural refrigerants, oxygen and water cannot be used as refrigerants in a refrigeration cycle because of their low pressure even when used in rotary compressors. In addition, since ammonia and hydrocarbons are flammable, there is a problem that handling is difficult.

【0005】このため、CO2即ち、二酸化炭素を用い
る圧縮機の開発が望まれていた。
Therefore, development of a compressor using CO 2, ie, carbon dioxide, has been desired.

【0006】また、従来では、大別してレシプロ式とロ
ータリ式(回転式)の圧縮機があるが、レシプロ式圧縮
機では騒音や振動の問題がある。
Conventionally, compressors of reciprocating type and rotary type (rotary type) are roughly classified. However, reciprocating type compressors have problems of noise and vibration.

【0007】従って、二酸化炭素を用いるロータリ式圧
縮機の開発が切望されている。
Therefore, development of a rotary compressor using carbon dioxide has been desired.

【0008】この様な、二酸化炭素を用いた圧縮機は、
特開平10−19401号公報(F25B 9/06)
に開示されている。尚、この圧縮機は、一般的にロタス
コ回転圧縮機と称し、高圧用として用いられるものであ
る。
[0008] Such a compressor using carbon dioxide,
JP-A-10-19401 (F25B 9/06)
Is disclosed. This compressor is generally called a Rotasco rotary compressor, and is used for high pressure.

【0009】[0009]

【発明が解決しようとする課題】ところで、上述した様
なロタスコ回転圧縮機でもって、二酸化炭素を冷媒とし
て用いた場合、冷媒圧力は高圧側で約150kg/cm
2Gにも達し、低圧側では約30〜40kg/cm2Gと
なる。
When carbon dioxide is used as a refrigerant in the Rotasco rotary compressor as described above, the refrigerant pressure is about 150 kg / cm on the high pressure side.
2 G, and about 30 to 40 kg / cm 2 G on the low pressure side.

【0010】この様に、二酸化炭素を冷媒として用いる
冷凍サイクルでは、フロンに比較して冷媒圧力が高く、
その差圧も大きいものとなる。特に、冷媒圧力が高くな
ると、圧縮機の外郭である密閉容器が耐えられず、圧縮
機が破損する問題を有している。
As described above, in a refrigeration cycle using carbon dioxide as a refrigerant, the refrigerant pressure is higher than that of chlorofluorocarbon, and
The pressure difference is also large. In particular, when the refrigerant pressure becomes high, there is a problem that the sealed container that is the outer shell of the compressor cannot withstand and the compressor is damaged.

【0011】この問題を解決するためには、密閉容器の
板厚を厚くすれば良いが、コスト的に高価となると共
に、板厚を厚くした分、大型化してしまう問題があっ
た。
In order to solve this problem, the thickness of the closed container may be increased. However, there is a problem that the cost is high and the size is increased by the increased thickness.

【0012】特に、前述の如き、ロタスコ回転圧縮機で
ある場合は、更に補強しなければ圧力に耐えられないも
のであった。
In particular, in the case of the Rotasco rotary compressor as described above, it cannot withstand the pressure without further reinforcement.

【0013】更にまた、二酸化炭素冷媒の場合、吐出ガ
ス温度が高温となりやすく、潤滑油や二酸化炭素冷媒自
体の品質低下を招きやすいという問題があった。
Furthermore, in the case of the carbon dioxide refrigerant, the temperature of the discharged gas tends to be high, and the quality of the lubricating oil and the carbon dioxide refrigerant itself tends to deteriorate.

【0014】本発明はこの様な問題点に鑑みてなされた
もので、小型で低コストな二酸化炭素を冷媒として用い
た回転式圧縮機及び回転式圧縮機を用いた冷凍回路の信
頼性向上を目的とした。
The present invention has been made in view of such problems, and has been made to improve the reliability of a small-sized and low-cost rotary compressor using carbon dioxide as a refrigerant and a refrigeration circuit using the rotary compressor. The purpose was.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
の手段として、請求項1の発明では、両端開口を閉塞さ
れたシリンダと、このシリンダ内を回転するローラと、
このローラに当接することにより前記シリンダ内に圧縮
空間を形成するベーンとからなる回転圧縮要素を密閉容
器内に収納し、吸入した冷媒を前記回転圧縮要素にて圧
縮して吐出する回転式圧縮機において、冷媒として二酸
炭素を用い、前記密閉容器内部を低圧とした回転式圧縮
機を提供する。
In order to achieve the above object, according to the first aspect of the present invention, there is provided a cylinder having both ends closed, a roller rotating in the cylinder,
A rotary compressor that accommodates a rotary compression element consisting of a vane forming a compression space in the cylinder by contacting the roller in a closed container, and compresses and sucks the sucked refrigerant by the rotary compression element. The present invention provides a rotary compressor using carbon dioxide as a refrigerant and reducing the pressure inside the closed vessel.

【0016】回転圧縮要素にて圧縮される二酸化炭素
は、通常約31℃という低い臨界点温度である。従っ
て、二酸化炭素を冷媒として用いる際には、冷媒がガス
化した状態、即ち、超臨界域で用いる事となる。超臨界
域では、二酸化炭素冷媒は高圧となり、蒸気密度も高い
ため、内部高圧の圧縮機では、密閉容器に負荷がかかる
ととう問題があるが、内部低圧とした回転式圧縮機に用
いる事により、回転式圧縮機の密閉容器に対して必要以
上に負荷をかけることなく、他の冷媒と同等の冷凍能力
を発揮する事ができる。
The carbon dioxide compressed by the rotary compression element has a low critical point temperature, typically about 31 ° C. Therefore, when carbon dioxide is used as a refrigerant, the refrigerant is used in a gasified state, that is, in a supercritical region. In the supercritical region, the carbon dioxide refrigerant has a high pressure and a high vapor density.Therefore, in a high-pressure internal compressor, there is a problem that a load is applied to the closed vessel. The refrigeration capacity equivalent to that of other refrigerants can be exerted without imposing an unnecessary load on the sealed container of the rotary compressor.

【0017】また、請求項2の発明では、両端開口を閉
塞されたシリンダと、このシリンダ内を回転するローラ
と、このローラに当接することにより前記シリンダ内に
圧縮空間を形成するベーンとからなる回転圧縮要素を密
閉容器内に収納し、吸入した冷媒を前記回転圧縮要素に
て圧縮して吐出する回転式圧縮機において、冷媒として
二酸炭素を用い、前記密閉容器内部を中間圧としたこと
を特徴とする回転式圧縮機を提供する。
According to the second aspect of the present invention, there is provided a cylinder having both ends closed, a roller rotating in the cylinder, and a vane forming a compression space in the cylinder by contacting the roller. In a rotary compressor that stores a rotary compression element in a closed container and compresses and discharges the sucked refrigerant by the rotary compression element, carbon dioxide is used as a refrigerant, and the inside of the closed container is set to an intermediate pressure. A rotary compressor is provided.

【0018】回転圧縮要素にて圧縮される二酸化炭素
は、通常約31℃という低い臨界点温度である。従っ
て、二酸化炭素を冷媒として用いる際には、冷媒がガス
化した状態、即ち、超臨界域で用いる事となる。超臨界
域では、二酸化炭素冷媒は高圧となり、蒸気密度も高い
ため、内部高圧の圧縮機では、密閉容器に負荷がかかる
という問題があるが、内部中間圧とした回転式圧縮機に
用いる事により、回転式圧縮機の密閉容器に対して必要
以上に負荷をかけることなく、他の冷媒と同等の冷凍能
力を発揮する事ができる。
The carbon dioxide compressed by the rotary compression element has a low critical point temperature, typically about 31 ° C. Therefore, when carbon dioxide is used as a refrigerant, the refrigerant is used in a gasified state, that is, in a supercritical region. In the supercritical region, the carbon dioxide refrigerant has a high pressure and a high vapor density.Therefore, the internal high-pressure compressor has a problem that a load is applied to the sealed container.However, by using a rotary compressor with an internal intermediate pressure, The refrigeration capacity equivalent to that of other refrigerants can be exerted without imposing an unnecessary load on the sealed container of the rotary compressor.

【0019】また、請求項3の発明では、前記回転圧縮
要素は、複数段からなることを特徴とする請求項1又は
2記載の回転式圧縮機を提供する。
According to a third aspect of the present invention, there is provided the rotary compressor according to the first or second aspect, wherein the rotary compression element comprises a plurality of stages.

【0020】この様に、複数段圧縮することにより、回
転式圧縮機の吐出ガス温度を低く抑える事ができる。従
って、回転式圧縮機の耐熱性を向上させる事ができ、二
酸化炭素冷媒自身や潤滑油の変質を防止でき、以って回
転式圧縮機の信頼性を向上する事ができる。
As described above, by performing compression in a plurality of stages, the temperature of the discharge gas of the rotary compressor can be kept low. Therefore, the heat resistance of the rotary compressor can be improved, the deterioration of the carbon dioxide refrigerant itself and the lubricating oil can be prevented, and the reliability of the rotary compressor can be improved.

【0021】また、請求項4の発明では、請求項3に記
載の回転式圧縮機を備える冷凍回路であって、前記回転
式圧縮機の吐出冷媒の温度を低下させる過冷却器を設け
たことを特徴とする冷凍回路を提供する。
According to a fourth aspect of the present invention, there is provided a refrigeration circuit including the rotary compressor according to the third aspect, wherein a subcooler for lowering the temperature of refrigerant discharged from the rotary compressor is provided. A refrigeration circuit characterized by the following.

【0022】この様に、複数段階により圧縮を行い、過
冷却器により膨張弁に入る前の冷媒を冷却すると共に、
過冷却器により回転式圧縮機の吐出ガス温度を低下させ
る。
As described above, the compression is performed in a plurality of stages, and the refrigerant before entering the expansion valve is cooled by the supercooler.
The temperature of the gas discharged from the rotary compressor is reduced by the subcooler.

【0023】従って、回転式圧縮機の耐熱性を向上させ
る事ができ、二酸化炭素冷媒自身や潤滑油の変質を防止
でき、以って回転式圧縮機の信頼性を向上する事ができ
る。
Accordingly, the heat resistance of the rotary compressor can be improved, and the deterioration of the carbon dioxide refrigerant itself and the lubricating oil can be prevented, whereby the reliability of the rotary compressor can be improved.

【0024】[0024]

【発明の実施の形態】以下、本発明の一実施例について
図面を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings.

【0025】図1は本発明を具備する2シリンダの回転
式圧縮機の縦断面図、図2は本発明を具備する1シリン
ダの回転式圧縮機を用いた冷凍回路図、図3は本発明を
具備する1シリンダの回転式圧縮機を用いた冷凍回路図
におけるモリエル線図、図4は本発明を具備する2シリ
ンダの回転式圧縮機を用いた冷凍回路図、図5は本発明
を具備する2シリンダの回転式圧縮機を用いた冷凍回路
図におけるモリエル線図である。
FIG. 1 is a longitudinal sectional view of a two-cylinder rotary compressor equipped with the present invention, FIG. 2 is a refrigeration circuit diagram using a one-cylinder rotary compressor equipped with the present invention, and FIG. Mollier diagram in a refrigeration circuit diagram using a one-cylinder rotary compressor provided with: a refrigeration circuit diagram using a two-cylinder rotary compressor provided with the present invention; and FIG. FIG. 3 is a Mollier diagram in a refrigeration circuit diagram using a two-cylinder rotary compressor to be used.

【0026】図1における1は、本発明を具備する2シ
リンダの回転式圧縮機(ロータリ式コンプレッサ)で、
鉄などの金属からなる密閉容器2内の上部に設けられた
電動要素3と、この電動要素3の下方に設けられ、電動
要素3の回転軸4にて回転駆動される回転圧縮要素5と
からなるものである。
1 is a two-cylinder rotary compressor (rotary compressor) equipped with the present invention.
An electric element 3 provided at an upper portion in a closed container 2 made of metal such as iron, and a rotary compression element 5 provided below the electric element 3 and driven to rotate by a rotation shaft 4 of the electric element 3. It becomes.

【0027】また、前記密閉容器2は下部をオイル溜と
し、前記電動要素3及び回転圧縮要素5を収納する容器
体2Aと、この容器体2Aを密閉する密閉蓋2Bとより
なるもので、この密閉蓋2Bには前記電動要素3に電力
を供給するためのターミナル端子(配線は省略)6が取
り付けられている。
The hermetically sealed container 2 has an oil reservoir at its lower part, and includes a container 2A for accommodating the electric element 3 and the rotary compression element 5, and a sealing lid 2B for sealing the container 2A. A terminal terminal (wiring is omitted) 6 for supplying electric power to the electric element 3 is attached to the sealing lid 2B.

【0028】また、電動要素3は、ロータ7及びステー
タ8からなるもので、ロータ7は積層した電磁鋼板から
なる積層体10の内部に図示しない永久磁石を設けてな
るもので、ステータ8はリング状の電磁鋼板を積層した
積層体12に巻線11を取り付けてなるものである。
尚、9はバランサーである。この構造は、直流モータと
称するものであるが、積層した電磁鋼板にアルミニウム
製のアルミ芯を挿入してなる交流モータと称するモータ
を用いても良い。
The electric element 3 is composed of a rotor 7 and a stator 8, and the rotor 7 is provided with a permanent magnet (not shown) inside a laminated body 10 composed of laminated electromagnetic steel sheets. The windings 11 are attached to a laminated body 12 in which a plurality of electromagnetic steel sheets are laminated.
In addition, 9 is a balancer. Although this structure is referred to as a DC motor, a motor referred to as an AC motor in which an aluminum core made of aluminum is inserted into a laminated electromagnetic steel plate may be used.

【0029】更には、自動車等のエアコンに用いる場
合、自動車のエンジンなどを駆動源としても良いし、他
の駆動源であっても良い。
Further, when used for an air conditioner of a car or the like, an engine of the car or the like may be used as a drive source, or another drive source may be used.

【0030】また、回転圧縮要素5は、プレートミドル
(中間仕切板)13と、このプレートミドル13の上下
に取り付けられた上下シリンダ14、15と、この上下
シリンダ14、15内を回転軸4の上下偏心部16、1
7によって回転する上下ローラ18、19と、この上下
ローラ18、19に接して上下シリンダ14、15内を
高圧室と低圧室とに区画する上下ベーン20、21と、
上下シリンダ14、15の上下の開口を閉塞すると共
に、前記回転軸4の回転を許容するメインフレーム2
2、ベアリングプレート23とで構成されている。
The rotary compression element 5 includes a plate middle (intermediate partition plate) 13, upper and lower cylinders 14 and 15 mounted above and below the plate middle 13, and a rotating shaft 4 inside the upper and lower cylinders 14 and 15. Vertical eccentric part 16, 1
Upper and lower rollers 18 and 19 which are rotated by 7; upper and lower vanes 20 and 21 which contact the upper and lower rollers 18 and 19 to partition the inside of the upper and lower cylinders 14 and 15 into a high-pressure chamber and a low-pressure chamber;
The main frame 2 that closes the upper and lower openings of the upper and lower cylinders 14 and 15 and allows the rotation of the rotary shaft 4.
2, and a bearing plate 23.

【0031】更にこれらは、メインフレーム22、上シ
リンダ14、プレートミドル13、下シリンダ15、ベ
アリングプレート23の順に配置され、ボルト24にて
連結されているものである。
Further, these are arranged in the order of a main frame 22, an upper cylinder 14, a plate middle 13, a lower cylinder 15, and a bearing plate 23, and are connected by bolts 24.

【0032】また、前記回転軸4には、前記回転圧縮要
素5の各摺動部に潤滑油、即ちオイルを供給するための
給油孔25が設けられている。更に、回転軸4の外周面
には、この給油孔25と連通し、オイルを上下ローラ1
8、19の内側に導く給油溝26が形成されている。更
に、前記上下ベーン20、21には前記上下ローラ1
8、19に対して常時付勢するためのスプリング27が
設けられている。
The rotary shaft 4 is provided with an oil supply hole 25 for supplying lubricating oil, that is, oil, to each sliding portion of the rotary compression element 5. Further, the outer peripheral surface of the rotating shaft 4 communicates with the oil supply hole 25 so that the oil is supplied to the upper and lower rollers 1.
An oil supply groove 26 leading to the inside of each of 8 and 19 is formed. Further, the upper and lower vanes 20 and 21 are provided with the upper and lower rollers 1.
A spring 27 for constantly biasing the springs 8 and 19 is provided.

【0033】ここで、潤滑油としてのオイルは、鉱物油
(ミネラルオイル)、アルキルベンゼン油、エーテル
油、エステル油など既存のオイルで良い。
The oil used as the lubricating oil may be an existing oil such as a mineral oil (mineral oil), an alkylbenzene oil, an ether oil or an ester oil.

【0034】また、前記上下シリンダ14、15には冷
媒を導入する上下導入管(図示せず)が設けられている
と共に、冷媒を吐出する上下出口管30、31がそれぞ
れ設けられている。そして、これら上下導入管及び上下
出口管30、31には冷媒配管32、33、34がそれ
ぞれ接続されている。
The upper and lower cylinders 14 and 15 are provided with upper and lower introduction pipes (not shown) for introducing the refrigerant, and upper and lower outlet pipes 30 and 31 for discharging the refrigerant, respectively. Refrigerant pipes 32, 33, and 34 are connected to the upper and lower introduction pipes and the upper and lower outlet pipes 30, 31, respectively.

【0035】尚、35は密閉容器2を支持するための台
座で、36はサクションマフラである。
Reference numeral 35 denotes a pedestal for supporting the closed container 2, and reference numeral 36 denotes a suction muffler.

【0036】以上の説明では、2シリンダの回転式圧縮
機1の構造について説明したが、1シリンダの回転式圧
縮機50であっても良く、以下に1シリンダの場合の冷
媒回路について説明する。
In the above description, the structure of the two-cylinder rotary compressor 1 has been described. However, a one-cylinder rotary compressor 50 may be used, and a refrigerant circuit for one cylinder will be described below.

【0037】この場合、図2及び図3に示す如く、回転
式圧縮機50の吐出側冷媒配管51が凝縮器52に接続
されており、この凝縮器52と冷却器(蒸発器)53と
が、膨張弁54を介して冷媒配管55にて接続されてい
る。更に、この冷却器53と前記回転式圧縮機50が吸
込側冷媒配管56にて接続されているものである。
In this case, as shown in FIGS. 2 and 3, a discharge side refrigerant pipe 51 of the rotary compressor 50 is connected to a condenser 52, and the condenser 52 and a cooler (evaporator) 53 are connected. And an expansion valve 54 connected to a refrigerant pipe 55. Further, the cooler 53 and the rotary compressor 50 are connected by a suction-side refrigerant pipe 56.

【0038】従って、1シリンダの回転式圧縮機50に
て圧縮され、高温となった二酸化炭素のガス冷媒が、凝
縮器52にて冷却され、膨張弁54にて膨張させた後、
冷却器53に流入する。ここで、収熱したガス冷媒は、
再び吸込側冷媒配管56から回転式圧縮機50に戻る事
となる。
Accordingly, the gas refrigerant of carbon dioxide, which has been compressed by the one-cylinder rotary compressor 50 and has become high temperature, is cooled by the condenser 52 and expanded by the expansion valve 54.
It flows into the cooler 53. Here, the collected gas refrigerant is
It returns to the rotary compressor 50 again from the suction side refrigerant pipe 56.

【0039】図3において、I点は回転式圧縮機50の
吸込圧力で、約30kgf/cm2Gであり、J点は回
転式圧縮機50の吐出圧力を示し、この時点では高温の
吐出ガスとなっている。
In FIG. 3, point I is the suction pressure of the rotary compressor 50, which is about 30 kgf / cm 2 G, and point J indicates the discharge pressure of the rotary compressor 50. It has become.

【0040】尚、本発明の回転式圧縮機1、50の場
合、冷媒吐出圧力は約100〜130kgf/cm2
である。
In the case of the rotary compressors 1 and 50 of the present invention, the refrigerant discharge pressure is about 100 to 130 kgf / cm 2 G.
It is.

【0041】そして、K点が凝縮器52の出口圧力であ
り、膨張弁54にて断熱膨張させ、冷媒圧力を臨界圧力
以下(約30kgf/cm2G)のL点まで低下させ
る。次いで、冷媒が冷却器53に流入し、冷却器53内
の冷媒は周囲の熱を奪って蒸発し、回転式圧縮機50に
戻る。
The point K is the outlet pressure of the condenser 52 and is adiabatically expanded by the expansion valve 54 to lower the refrigerant pressure to the point L below the critical pressure (about 30 kgf / cm 2 G). Next, the refrigerant flows into the cooler 53, and the refrigerant in the cooler 53 evaporates by removing surrounding heat and returns to the rotary compressor 50.

【0042】次に、図1で詳述した2シリンダの回転式
圧縮機1の冷媒回路を図4及び図5を参照して説明す
る。
Next, the refrigerant circuit of the two-cylinder rotary compressor 1 described in detail with reference to FIG. 1 will be described with reference to FIGS.

【0043】この2シリンダの回転式圧縮機1の場合、
回転式圧縮機1の下シリンダ15にに設けられた下出口
管31と凝縮器37とが、吐出側冷媒配管32を介して
接続されており、この凝縮器37と冷却器38とは、膨
張弁39を介して冷媒配管40にて接続されている。ま
た、この冷却器38と回転式圧縮機1の上シリンダ14
の上導入管とは、吸込側冷媒配管33にて接続されてい
る。
In the case of the two-cylinder rotary compressor 1,
A lower outlet pipe 31 provided in the lower cylinder 15 of the rotary compressor 1 and a condenser 37 are connected via a discharge-side refrigerant pipe 32, and the condenser 37 and the cooler 38 are expanded. The refrigerant pipe 40 is connected via a valve 39. The cooler 38 and the upper cylinder 14 of the rotary compressor 1
The upper inlet pipe is connected to the suction side refrigerant pipe 33.

【0044】更に、前記凝縮器37と膨張弁39とを接
続する冷媒配管40には、バイパス膨張弁41を介して
過冷却器42と接続するバイパス管43が設けられてい
る。
The refrigerant pipe 40 connecting the condenser 37 and the expansion valve 39 is provided with a bypass pipe 43 connected to a subcooler 42 via a bypass expansion valve 41.

【0045】また、過冷却器42からの過冷却器冷媒配
管44は、前記回転式圧縮機1の上シリンダ14に設け
られた上出口管30及び下シリンダ15の下導入管29
とを接続する接続冷媒配管34と、前記サクションマフ
ラー36内で結合されているものである。
The supercooler refrigerant pipe 44 from the subcooler 42 is connected to an upper outlet pipe 30 provided in the upper cylinder 14 of the rotary compressor 1 and a lower inlet pipe 29 of the lower cylinder 15.
And a connection refrigerant pipe 34 for connecting the inside and the inside of the suction muffler 36.

【0046】尚、前記過冷却器42は、二重管にて構成
されるもので、前記バイパス管43からの冷媒を内側に
流し、前記冷媒配管40の冷媒が外側を流れるものであ
る。これは、逆に内側を冷媒配管40とし、外側をバイ
パス管43としても良い。
Incidentally, the subcooler 42 is constituted by a double pipe, in which the refrigerant from the bypass pipe 43 flows inside, and the refrigerant in the refrigerant pipe 40 flows outside. Conversely, the inside may be the refrigerant pipe 40 and the outside may be the bypass pipe 43.

【0047】更には、熱伝導的に接触して設けた構造で
あっても良い。
Further, a structure provided in contact with heat conduction may be used.

【0048】また、前記バイパス管43と分岐した後の
冷媒配管40は、前記過冷却器42に導入され、過冷却
器42にて、バイパス膨張弁41後のバイパス管43と
熱伝導可能に接触して設けられている。この後、前述し
た膨張弁39に接続されるものである。
The refrigerant pipe 40 branching off from the bypass pipe 43 is introduced into the subcooler 42, where it contacts the bypass pipe 43 after the bypass expansion valve 41 in a heat conductive manner. It is provided. Thereafter, it is connected to the expansion valve 39 described above.

【0049】従って、2シリンダの回転式圧縮機1にて
圧縮され、高温となった二酸化炭素のガス冷媒が、凝縮
器37にて冷却され、更に前記過冷却器42で前記バイ
パス管43と熱交換、即ち放熱した後、膨張弁39にて
膨張する。この後、冷却器38に流入し、ここで放熱し
たガス冷媒は、再び吸込側冷媒配管33から回転式圧縮
機1に戻る事となる。
Therefore, the gas refrigerant of carbon dioxide, which has been compressed by the two-cylinder rotary compressor 1 and has become high temperature, is cooled by the condenser 37, and is further cooled by the subcooler 42 to the heat of the bypass pipe 43. After the replacement, that is, the heat is released, the expansion valve 39 expands. Thereafter, the gas refrigerant flowing into the cooler 38 and radiating heat here returns to the rotary compressor 1 again from the suction side refrigerant pipe 33.

【0050】また、凝縮器37にて凝縮された冷媒の一
部は、バイパス管43に分流し、バイパス膨張弁41に
て断熱膨張した後、過冷却器42にて前記冷媒配管40
から収熱する。過冷却器42にて収熱した冷媒は、前記
上シリンダ14にて高温、高圧となった冷媒と混ざり、
高温、高圧の冷媒を冷却すると共に、下シリンダ15に
流入する。尚、過冷却器42にて収熱した後の冷媒は、
前記上シリンダ14の吐出後の高温、高圧冷媒より低温
である。
A part of the refrigerant condensed in the condenser 37 is diverted to the bypass pipe 43 and is adiabatically expanded by the bypass expansion valve 41.
From the heat. The refrigerant collected in the supercooler 42 is mixed with the high-temperature, high-pressure refrigerant in the upper cylinder 14,
The high-temperature, high-pressure refrigerant is cooled and flows into the lower cylinder 15. In addition, the refrigerant after collecting heat in the supercooler 42 is:
The high temperature after the discharge of the upper cylinder 14 is lower than the high pressure refrigerant.

【0051】図5のA点は過冷却器42及び圧縮機の上
シリンダ14から吐出された冷媒が合流し、下シリンダ
15に吸い込まれる冷媒で、B点は下シリンダ15から
吐出される冷媒である。この状態では1シリンダの場合
より冷媒が同圧で低温に抑えられている。
In FIG. 5, point A is the refrigerant discharged from the supercooler 42 and the compressor upper cylinder 14 and merged into the lower cylinder 15, and point B is the refrigerant discharged from the lower cylinder 15. is there. In this state, the refrigerant is kept at the same pressure and lower in temperature than in the case of one cylinder.

【0052】そして、C点は凝縮器37にて凝縮された
後、分流した冷媒で、バイパス膨張弁41にて断熱膨張
する。D点はこの断熱膨張して圧力低下し、放熱した冷
媒で、過冷却器42に流入して、C点の冷媒をE点まで
冷却する。
Then, the refrigerant at point C is condensed in the condenser 37 and then agitated, and is adiabatically expanded by the bypass expansion valve 41. The point D is adiabatically expanded and pressure-reduced refrigerant that has radiated heat, flows into the supercooler 42, and cools the refrigerant at the point C to the point E.

【0053】また、E点の過冷却された冷媒は、膨張弁
39にて断熱膨張し、F点の状態となる。この後、G点
に示す如く、冷却器38にて収熱して高温となった冷媒
は、上シリンダ14に流入する。
Further, the supercooled refrigerant at the point E is adiabatically expanded by the expansion valve 39 to be in the state at the point F. Thereafter, as indicated by point G, the refrigerant that has collected heat in the cooler 38 and has become high temperature flows into the upper cylinder 14.

【0054】H点に示す如く、上シリンダ14にて圧縮
され、高温、高圧となった冷媒は、前述した過冷却器4
2で圧力が低下し、過冷却に使われ、温度上昇した冷媒
(但し、前述した如く、上シリンダ14の吐出後の高
温、高圧冷媒より低温)と合流し、A点に示す如く、温
度低下した冷媒が回転式圧縮機1に流入する。
As shown at point H, the refrigerant which has been compressed by the upper cylinder 14 and has become high temperature and high pressure is supplied to the above-described subcooler 4.
2, the pressure decreases, the refrigerant is used for supercooling, and merges with the refrigerant whose temperature has risen (however, as described above, the high temperature after discharge of the upper cylinder 14 and the lower temperature than the high-pressure refrigerant). The cooled refrigerant flows into the rotary compressor 1.

【0055】回転圧縮要素5にて圧縮される二酸化炭素
は、通常約31℃という低い臨界点温度である。従っ
て、二酸化炭素を冷媒として用いる際には、冷媒がガス
化した状態、即ち、超臨界域で用いる事となる。超臨界
域では、二酸化炭素冷媒は高圧となり、蒸気密度も高い
ため、内部高圧の圧縮機では、密閉容器2に負荷がかか
るという問題があるが、内部低圧又は内部中間圧とした
回転式圧縮機1、50に用いる事により、回転式圧縮機
1、50の密閉容器2に対して必要以上に負荷をかける
ことなく、他の冷媒と同等の冷凍能力を発揮する事がで
きる。
The carbon dioxide compressed by the rotary compression element 5 has a low critical point temperature, usually about 31 ° C. Therefore, when carbon dioxide is used as a refrigerant, the refrigerant is used in a gasified state, that is, in a supercritical region. In the supercritical region, the carbon dioxide refrigerant has a high pressure and a high vapor density. Therefore, in a compressor having an internal high pressure, there is a problem that a load is applied to the closed vessel 2. However, a rotary compressor having an internal low pressure or an internal intermediate pressure is used. The use of the refrigerants 1 and 50 makes it possible to exhibit the same refrigerating capacity as other refrigerants without imposing an unnecessary load on the closed casing 2 of the rotary compressors 1 and 50.

【0056】従って、密閉容器2の内部を冷媒の吸込圧
と同様の低圧としても、他の冷媒と同様の冷凍能力を有
するものであり、小型で低コストな二酸化炭素を冷媒と
して用いた回転式圧縮機1、50を提供する事ができ
る。
Therefore, even if the inside of the closed vessel 2 is set at a low pressure similar to the suction pressure of the refrigerant, it has the same refrigerating capacity as other refrigerants, and is a rotary type using small and inexpensive carbon dioxide as the refrigerant. Compressors 1 and 50 can be provided.

【0057】ここで、密閉容器2の内部を低圧にするに
は、圧縮機の吸入冷媒を密閉容器2の内部に導入すれば
良く、例えば、本実施例の2シリンダの回転式圧縮機1
の場合では、上シリンダ14の導入管を密閉容器2内に
開口させて、冷媒の一部を導入してやれば良い。これに
より、前記密閉容器2の内部圧力を、吸入冷媒とほぼ同
圧、即ち、低圧とする事ができるのである。
Here, in order to reduce the pressure inside the sealed container 2, the refrigerant sucked from the compressor may be introduced into the sealed container 2. For example, the two-cylinder rotary compressor 1 of the present embodiment may be used.
In this case, the introduction pipe of the upper cylinder 14 may be opened in the closed vessel 2 to introduce a part of the refrigerant. This makes it possible to make the internal pressure of the closed vessel 2 substantially the same as the suction refrigerant, that is, a low pressure.

【0058】尚、二酸化炭素冷媒の臨界圧力は、約72
〜73kgf/cm2Gであり、この臨界圧力以上、即
ち超臨界域では、二酸化炭素冷媒はガス化しているもの
である。
The critical pressure of the carbon dioxide refrigerant is about 72
A ~73kgf / cm 2 G, the critical pressure or higher, that is, in a supercritical range, the carbon dioxide refrigerant are those gasified.

【0059】また、密閉容器2の内部を冷媒の吸込圧よ
り高く、吐出圧より低い中間圧、(例えば、2段圧縮の
場合は2段目の吸込圧)としても、他の冷媒と同様の冷
凍能力を有するものであり、小型で低コストな二酸化炭
素を冷媒として用いた回転式圧縮機1、50を提供する
事ができる。
Further, even if the inside of the closed container 2 is set at an intermediate pressure higher than the suction pressure of the refrigerant and lower than the discharge pressure (for example, the suction pressure of the second stage in the case of two-stage compression), the same as other refrigerants is used. It is possible to provide the rotary compressors 1 and 50 having a refrigerating capacity and using small and low-cost carbon dioxide as a refrigerant.

【0060】ここで、密閉容器2の内部を中間圧にする
には、圧縮途中の冷媒の一部を密閉容器2の内部に導入
してやれば良く、例えば、本実施例の2シリンダの回転
式圧縮機1の場合では、下シリンダ15の導入管を密閉
容器2内に開口させて、冷媒の一部を導入してやれば良
い。これにより、前記密閉容器2の内部圧力を、上シリ
ンダ14で一次圧縮した後の冷媒圧力、即ち中間圧とほ
ぼ同圧とする事ができるのである。
Here, in order to set the inside of the closed vessel 2 to an intermediate pressure, a part of the refrigerant being compressed may be introduced into the inside of the closed vessel 2. In the case of the machine 1, the introduction pipe of the lower cylinder 15 may be opened in the closed vessel 2 to introduce a part of the refrigerant. This makes it possible to make the internal pressure of the closed vessel 2 substantially equal to the refrigerant pressure after the primary compression by the upper cylinder 14, that is, the intermediate pressure.

【0061】更に、複数段圧縮することにより、回転式
圧縮機1の吐出ガス温度を低く抑える事ができる。従っ
て、回転式圧縮機1の耐熱性を向上させる事ができ、二
酸化炭素冷媒自身や潤滑油の変質を防止でき、以って回
転式圧縮機1の信頼性を向上する事ができる。
Further, by performing a plurality of stages of compression, the temperature of the gas discharged from the rotary compressor 1 can be kept low. Accordingly, the heat resistance of the rotary compressor 1 can be improved, and the deterioration of the carbon dioxide refrigerant itself and the lubricating oil can be prevented, so that the reliability of the rotary compressor 1 can be improved.

【0062】尚、以上の説明おいて、特に2シリンダの
回転式圧縮機1である場合、内部低圧とした回転式圧縮
機1とは、(密閉容器2内の圧力)<(上シリンダ14
の圧縮空間の平均圧力)<(下シリンダ15の圧縮空間
の平均圧力)の圧力関係である回転式圧縮機1であり、
内部中間圧とした回転式圧縮機1とは、(上シリンダ1
4の圧縮空間の平均圧力)<(密閉容器2内の圧力)<
(下シリンダ15の圧縮空間の平均圧力)の圧力関係で
ある回転式圧縮機1である。
In the above description, especially in the case of the rotary compressor 1 having two cylinders, the rotary compressor 1 having an internal low pressure is defined as (pressure in the sealed container 2) <(upper cylinder 14).
(The average pressure of the compression space of the lower cylinder 15) <(the average pressure of the compression space of the lower cylinder 15).
The rotary compressor 1 having the internal intermediate pressure is defined as (upper cylinder 1
4 (average pressure in compression space) <(pressure in closed container 2) <
(The average pressure of the compression space of the lower cylinder 15).

【0063】また、以上詳述した回転式圧縮機1、50
やこの回転式圧縮機1、50を用いた冷凍回路は、家庭
用エアコン、業務用エアコン(パッケージエアコン)、
自動車用エアコン、家庭用冷蔵庫、業務用冷蔵庫、業務
用冷凍庫、業務用冷凍冷蔵庫、ショーケース、自動販売
機、給湯機等に用いるものである。
The rotary compressors 1 and 50 described in detail above
And refrigeration circuits using the rotary compressors 1 and 50 are used for home air conditioners, commercial air conditioners (package air conditioners),
It is used for automotive air conditioners, home refrigerators, commercial refrigerators, commercial freezers, commercial refrigerators, showcases, vending machines, water heaters and the like.

【0064】更に、この回転式圧縮機1、50は、15
フレームのサイズであり、1馬力の出力である。
Further, the rotary compressors 1 and 50
It is the size of the frame, which is one horsepower output.

【0065】[0065]

【発明の効果】以上詳述した如く、請求項1の発明によ
ると、冷媒として二酸化炭素を用い、内部低圧としたの
で、他の冷媒と同様の冷凍能力を有するものであり、小
型で低コストな二酸化炭素を冷媒として用いた回転式圧
縮機を提供する事ができる。
As described in detail above, according to the first aspect of the present invention, since carbon dioxide is used as the refrigerant and the internal pressure is reduced, the refrigerant has the same refrigerating capacity as other refrigerants, and is small in size and low in cost. It is possible to provide a rotary compressor using carbon dioxide as a refrigerant.

【0066】また、請求項2の発明によると、冷媒とし
て二酸化炭素を用い、内部中間圧としたので、他の冷媒
と同様の冷凍能力を有するものであり、小型で低コスト
な二酸化炭素を冷媒として用いた回転式圧縮機を提供す
る事ができる。
According to the second aspect of the present invention, since carbon dioxide is used as the refrigerant and the internal intermediate pressure is used, the refrigerant has the same refrigerating capacity as other refrigerants, and can reduce the size of the carbon dioxide which is small and inexpensive. Can be provided.

【0067】また、請求項3の発明によると、複数段圧
縮することにより、回転式圧縮機の吐出ガス温度を低く
抑える事ができる。従って、回転式圧縮機の耐熱性を向
上させる事ができ、二酸化炭素冷媒自身や潤滑油の変質
を防止でき、以って回転式圧縮機の信頼性を向上する事
ができる。
According to the third aspect of the present invention, the temperature of the discharge gas of the rotary compressor can be kept low by performing the multiple-stage compression. Therefore, the heat resistance of the rotary compressor can be improved, the deterioration of the carbon dioxide refrigerant itself and the lubricating oil can be prevented, and the reliability of the rotary compressor can be improved.

【0068】また、請求項4の発明によると、複数段階
に圧縮を行い、過冷却器により膨張弁に入る前の冷媒を
冷却すると共に、過冷却器により回転式圧縮機の吐出ガ
ス温度を低下させると共に、回転式圧縮機の耐熱性を向
上させる事ができ、二酸化炭素冷媒自身や潤滑油の変質
を防止でき、以って回転式圧縮機の信頼性を向上する事
ができる。
According to the fourth aspect of the invention, compression is performed in a plurality of stages, the refrigerant before entering the expansion valve is cooled by the supercooler, and the discharge gas temperature of the rotary compressor is reduced by the subcooler. At the same time, the heat resistance of the rotary compressor can be improved, and the carbon dioxide refrigerant itself and the lubricating oil can be prevented from being deteriorated, so that the reliability of the rotary compressor can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を具備する2シリンダの回転式圧縮機の
縦断面図である。
FIG. 1 is a longitudinal sectional view of a two-cylinder rotary compressor equipped with the present invention.

【図2】本発明を具備する1シリンダの回転式圧縮機を
用いた冷凍回路図である。
FIG. 2 is a refrigeration circuit diagram using a one-cylinder rotary compressor equipped with the present invention.

【図3】本発明を具備する1シリンダの回転式圧縮機を
用いた冷凍回路図におけるモリエル線図である。
FIG. 3 is a Mollier diagram in a refrigeration circuit diagram using a one-cylinder rotary compressor equipped with the present invention.

【図4】本発明を具備する2シリンダの回転式圧縮機を
用いた冷凍回路図である。
FIG. 4 is a refrigeration circuit diagram using a two-cylinder rotary compressor equipped with the present invention.

【図5】本発明を具備する2シリンダの回転式圧縮機を
用いた冷凍回路図におけるモリエル線図である。
FIG. 5 is a Mollier diagram in a refrigeration circuit diagram using a two-cylinder rotary compressor equipped with the present invention.

【符号の説明】[Explanation of symbols]

1 2シリンダの回転式圧縮機 2 密閉容器 3 電動要素 5 回転圧縮要素 14 上シリンダ 15 下シリンダ 18 上ローラ 19 下ローラ 20 上ベーン 21 下ベーン 22 メインフレーム 23 ベアリングプレート 42 過冷却器 50 1シリンダの回転式圧縮機 DESCRIPTION OF SYMBOLS 1 2 cylinder rotary compressor 2 airtight container 3 electric element 5 rotary compression element 14 upper cylinder 15 lower cylinder 18 upper roller 19 lower roller 20 upper vane 21 lower vane 22 main frame 23 bearing plate 42 subcooler 50 1 cylinder Rotary compressor

フロントページの続き (72)発明者 甲元 伸央 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 只野 昌也 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 3H029 AA04 AA09 AA13 AA17 AB03 AB05 BB00 BB11 BB12 BB38 BB44 CC09 CC22 CC24 CC46Continued on the front page (72) Inventor Nobuo Komoto 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Masaya Tadano 2-5-2 Keihanhondori, Moriguchi-shi, Osaka No. 5 F-term in Sanyo Electric Co., Ltd. (reference) 3H029 AA04 AA09 AA13 AA17 AB03 AB05 BB00 BB11 BB12 BB38 BB44 CC09 CC22 CC24 CC46

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 両端開口を閉塞されたシリンダと、この
シリンダ内を回転するローラと、このローラに当接する
ことにより前記シリンダ内に圧縮空間を形成するベーン
とからなる回転圧縮要素を密閉容器内に収納し、吸入し
た冷媒を前記回転圧縮要素にて圧縮して吐出する回転式
圧縮機において、 冷媒として二酸炭素を用い、前記密閉容器内部を低圧と
したことを特徴とする回転式圧縮機。
1. A rotary compression element comprising a cylinder whose both ends are closed, a roller rotating in the cylinder, and a vane forming a compression space in the cylinder by contacting the roller. A rotary compressor that compresses the sucked refrigerant by the rotary compression element and discharges the compressed refrigerant, wherein carbon dioxide is used as the refrigerant and the pressure inside the sealed container is reduced. .
【請求項2】 両端開口を閉塞されたシリンダと、この
シリンダ内を回転するローラと、このローラに当接する
ことにより前記シリンダ内に圧縮空間を形成するベーン
とからなる回転圧縮要素を密閉容器内に収納し、吸入し
た冷媒を前記回転圧縮要素にて圧縮して吐出する回転式
圧縮機において、 冷媒として二酸炭素を用い、前記密閉容器内部を中間圧
としたことを特徴とする回転式圧縮機。
2. A rotary compression element comprising a cylinder whose both ends are closed, a roller rotating in the cylinder, and a vane forming a compression space in the cylinder by contacting the roller. A rotary compressor that compresses the sucked refrigerant by the rotary compression element and discharges the compressed refrigerant, wherein carbon dioxide is used as the refrigerant and the inside of the sealed container is set to an intermediate pressure. Machine.
【請求項3】 前記回転圧縮要素は、複数段からなるこ
とを特徴とする請求項1又は2記載の回転式圧縮機。
3. The rotary compressor according to claim 1, wherein the rotary compression element has a plurality of stages.
【請求項4】 請求項3に記載の回転式圧縮機を備える
冷凍回路であって、前記回転式圧縮機の吐出冷媒の温度
を低下させる過冷却器を設けたことを特徴とする冷凍回
路。
4. A refrigeration circuit comprising the rotary compressor according to claim 3, further comprising a supercooler for lowering the temperature of refrigerant discharged from the rotary compressor.
JP10267928A 1998-09-22 1998-09-22 Rotary compressor and refrigerating circuit Pending JP2000097177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10267928A JP2000097177A (en) 1998-09-22 1998-09-22 Rotary compressor and refrigerating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10267928A JP2000097177A (en) 1998-09-22 1998-09-22 Rotary compressor and refrigerating circuit

Publications (1)

Publication Number Publication Date
JP2000097177A true JP2000097177A (en) 2000-04-04

Family

ID=17451568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10267928A Pending JP2000097177A (en) 1998-09-22 1998-09-22 Rotary compressor and refrigerating circuit

Country Status (1)

Country Link
JP (1) JP2000097177A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156161A (en) * 2000-11-16 2002-05-31 Mitsubishi Heavy Ind Ltd Air conditioner
KR100412697B1 (en) * 2001-04-24 2003-12-31 주식회사 대우일렉트로닉스 Air conditioner having a rotary compressor
US7076963B2 (en) 2002-03-06 2006-07-18 Sanden Corporation Two-stage compressor for an automotive air conditioner, which can be driven by a vehicle running engine and an electric motor different therefrom
JP2007046583A (en) * 2005-08-12 2007-02-22 Sanden Corp Electric compressor of cooling system
CN100363622C (en) * 2003-11-25 2008-01-23 三星电子株式会社 Variable capacity rotary compressor
CN100363623C (en) * 2003-11-25 2008-01-23 三星电子株式会社 Variable capacity rotary compressor
EP2153139A1 (en) * 2007-05-23 2010-02-17 Carrier Corporation Refrigerant injection above critical point in a transcritical refrigerant system
CN103291624A (en) * 2012-02-22 2013-09-11 珠海格力节能环保制冷技术研究中心有限公司 Single two-stage totally sealed refrigeration compressor with external mixing chamber
US8857211B2 (en) 2007-03-30 2014-10-14 Fujitsu General Limited Injectable two-staged rotary compressor and heat pump system
EP2078861A3 (en) * 2008-01-10 2015-01-21 Fujitsu General Limited Two-stage rotary compressor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156161A (en) * 2000-11-16 2002-05-31 Mitsubishi Heavy Ind Ltd Air conditioner
KR100412697B1 (en) * 2001-04-24 2003-12-31 주식회사 대우일렉트로닉스 Air conditioner having a rotary compressor
US7076963B2 (en) 2002-03-06 2006-07-18 Sanden Corporation Two-stage compressor for an automotive air conditioner, which can be driven by a vehicle running engine and an electric motor different therefrom
CN100363622C (en) * 2003-11-25 2008-01-23 三星电子株式会社 Variable capacity rotary compressor
CN100363623C (en) * 2003-11-25 2008-01-23 三星电子株式会社 Variable capacity rotary compressor
JP2007046583A (en) * 2005-08-12 2007-02-22 Sanden Corp Electric compressor of cooling system
JP4606272B2 (en) * 2005-08-12 2011-01-05 サンデン株式会社 Cooling system electric compressor
US8857211B2 (en) 2007-03-30 2014-10-14 Fujitsu General Limited Injectable two-staged rotary compressor and heat pump system
EP2153139A1 (en) * 2007-05-23 2010-02-17 Carrier Corporation Refrigerant injection above critical point in a transcritical refrigerant system
EP2153139A4 (en) * 2007-05-23 2012-10-10 Carrier Corp Refrigerant injection above critical point in a transcritical refrigerant system
EP2078861A3 (en) * 2008-01-10 2015-01-21 Fujitsu General Limited Two-stage rotary compressor
CN103291624A (en) * 2012-02-22 2013-09-11 珠海格力节能环保制冷技术研究中心有限公司 Single two-stage totally sealed refrigeration compressor with external mixing chamber

Similar Documents

Publication Publication Date Title
US6568198B1 (en) Multi-stage compression refrigerating device
US6581408B1 (en) Multi-stage compression refrigerating device
US6385995B1 (en) Apparatus having a refrigeration circuit
JP2000097177A (en) Rotary compressor and refrigerating circuit
JP2000120572A (en) Rotary compressor
JP4039921B2 (en) Transcritical refrigerant cycle equipment
JP3370027B2 (en) 2-stage compression type rotary compressor
JP3291469B2 (en) Rotary compressor
JP2004317073A (en) Refrigerant cycling device
JP3291470B2 (en) Rotary compressor
JP2001153476A (en) Refrigerating plant
JP2000104690A (en) Rotary compressor
JP3548017B2 (en) Cooling system
JP3370026B2 (en) 2-stage compression type rotary compressor
JP3695963B2 (en) Rotary compressor
JP3631006B2 (en) Rotary compressor
JP2002371982A (en) Rotary compressor
JP3754213B2 (en) Rotary compressor
JP3349456B2 (en) Rotary compressor
JP3414091B2 (en) Refrigeration equipment
JP2000110765A (en) Cooling apparatus
JP3469832B2 (en) Multi-stage compression refrigeration equipment
JP4036772B2 (en) Transcritical refrigerant cycle equipment
JPH08233381A (en) Equipment for low-temperature
JP3291471B2 (en) Rotary compressor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050713

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050726

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20051014

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226